]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/aarch64/signal.c
b265cfd4706696f98e852a392bbcd83285dc52fb
[mirror_qemu.git] / linux-user / aarch64 / signal.c
1 /*
2 * Emulation of Linux signals
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qemu.h"
21 #include "user-internals.h"
22 #include "signal-common.h"
23 #include "linux-user/trace.h"
24
25 struct target_sigcontext {
26 uint64_t fault_address;
27 /* AArch64 registers */
28 uint64_t regs[31];
29 uint64_t sp;
30 uint64_t pc;
31 uint64_t pstate;
32 /* 4K reserved for FP/SIMD state and future expansion */
33 char __reserved[4096] __attribute__((__aligned__(16)));
34 };
35
36 struct target_ucontext {
37 abi_ulong tuc_flags;
38 abi_ulong tuc_link;
39 target_stack_t tuc_stack;
40 target_sigset_t tuc_sigmask;
41 /* glibc uses a 1024-bit sigset_t */
42 char __unused[1024 / 8 - sizeof(target_sigset_t)];
43 /* last for future expansion */
44 struct target_sigcontext tuc_mcontext;
45 };
46
47 /*
48 * Header to be used at the beginning of structures extending the user
49 * context. Such structures must be placed after the rt_sigframe on the stack
50 * and be 16-byte aligned. The last structure must be a dummy one with the
51 * magic and size set to 0.
52 */
53 struct target_aarch64_ctx {
54 uint32_t magic;
55 uint32_t size;
56 };
57
58 #define TARGET_FPSIMD_MAGIC 0x46508001
59
60 struct target_fpsimd_context {
61 struct target_aarch64_ctx head;
62 uint32_t fpsr;
63 uint32_t fpcr;
64 uint64_t vregs[32 * 2]; /* really uint128_t vregs[32] */
65 };
66
67 #define TARGET_EXTRA_MAGIC 0x45585401
68
69 struct target_extra_context {
70 struct target_aarch64_ctx head;
71 uint64_t datap; /* 16-byte aligned pointer to extra space cast to __u64 */
72 uint32_t size; /* size in bytes of the extra space */
73 uint32_t reserved[3];
74 };
75
76 #define TARGET_SVE_MAGIC 0x53564501
77
78 struct target_sve_context {
79 struct target_aarch64_ctx head;
80 uint16_t vl;
81 uint16_t flags;
82 uint16_t reserved[2];
83 /* The actual SVE data immediately follows. It is laid out
84 * according to TARGET_SVE_SIG_{Z,P}REG_OFFSET, based off of
85 * the original struct pointer.
86 */
87 };
88
89 #define TARGET_SVE_VQ_BYTES 16
90
91 #define TARGET_SVE_SIG_ZREG_SIZE(VQ) ((VQ) * TARGET_SVE_VQ_BYTES)
92 #define TARGET_SVE_SIG_PREG_SIZE(VQ) ((VQ) * (TARGET_SVE_VQ_BYTES / 8))
93
94 #define TARGET_SVE_SIG_REGS_OFFSET \
95 QEMU_ALIGN_UP(sizeof(struct target_sve_context), TARGET_SVE_VQ_BYTES)
96 #define TARGET_SVE_SIG_ZREG_OFFSET(VQ, N) \
97 (TARGET_SVE_SIG_REGS_OFFSET + TARGET_SVE_SIG_ZREG_SIZE(VQ) * (N))
98 #define TARGET_SVE_SIG_PREG_OFFSET(VQ, N) \
99 (TARGET_SVE_SIG_ZREG_OFFSET(VQ, 32) + TARGET_SVE_SIG_PREG_SIZE(VQ) * (N))
100 #define TARGET_SVE_SIG_FFR_OFFSET(VQ) \
101 (TARGET_SVE_SIG_PREG_OFFSET(VQ, 16))
102 #define TARGET_SVE_SIG_CONTEXT_SIZE(VQ) \
103 (TARGET_SVE_SIG_PREG_OFFSET(VQ, 17))
104
105 #define TARGET_SVE_SIG_FLAG_SM 1
106
107 #define TARGET_ZA_MAGIC 0x54366345
108
109 struct target_za_context {
110 struct target_aarch64_ctx head;
111 uint16_t vl;
112 uint16_t reserved[3];
113 /* The actual ZA data immediately follows. */
114 };
115
116 #define TARGET_ZA_SIG_REGS_OFFSET \
117 QEMU_ALIGN_UP(sizeof(struct target_za_context), TARGET_SVE_VQ_BYTES)
118 #define TARGET_ZA_SIG_ZAV_OFFSET(VQ, N) \
119 (TARGET_ZA_SIG_REGS_OFFSET + (VQ) * TARGET_SVE_VQ_BYTES * (N))
120 #define TARGET_ZA_SIG_CONTEXT_SIZE(VQ) \
121 TARGET_ZA_SIG_ZAV_OFFSET(VQ, VQ * TARGET_SVE_VQ_BYTES)
122
123 struct target_rt_sigframe {
124 struct target_siginfo info;
125 struct target_ucontext uc;
126 };
127
128 struct target_rt_frame_record {
129 uint64_t fp;
130 uint64_t lr;
131 };
132
133 static void target_setup_general_frame(struct target_rt_sigframe *sf,
134 CPUARMState *env, target_sigset_t *set)
135 {
136 int i;
137
138 __put_user(0, &sf->uc.tuc_flags);
139 __put_user(0, &sf->uc.tuc_link);
140
141 target_save_altstack(&sf->uc.tuc_stack, env);
142
143 for (i = 0; i < 31; i++) {
144 __put_user(env->xregs[i], &sf->uc.tuc_mcontext.regs[i]);
145 }
146 __put_user(env->xregs[31], &sf->uc.tuc_mcontext.sp);
147 __put_user(env->pc, &sf->uc.tuc_mcontext.pc);
148 __put_user(pstate_read(env), &sf->uc.tuc_mcontext.pstate);
149
150 __put_user(env->exception.vaddress, &sf->uc.tuc_mcontext.fault_address);
151
152 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
153 __put_user(set->sig[i], &sf->uc.tuc_sigmask.sig[i]);
154 }
155 }
156
157 static void target_setup_fpsimd_record(struct target_fpsimd_context *fpsimd,
158 CPUARMState *env)
159 {
160 int i;
161
162 __put_user(TARGET_FPSIMD_MAGIC, &fpsimd->head.magic);
163 __put_user(sizeof(struct target_fpsimd_context), &fpsimd->head.size);
164 __put_user(vfp_get_fpsr(env), &fpsimd->fpsr);
165 __put_user(vfp_get_fpcr(env), &fpsimd->fpcr);
166
167 for (i = 0; i < 32; i++) {
168 uint64_t *q = aa64_vfp_qreg(env, i);
169 #if TARGET_BIG_ENDIAN
170 __put_user(q[0], &fpsimd->vregs[i * 2 + 1]);
171 __put_user(q[1], &fpsimd->vregs[i * 2]);
172 #else
173 __put_user(q[0], &fpsimd->vregs[i * 2]);
174 __put_user(q[1], &fpsimd->vregs[i * 2 + 1]);
175 #endif
176 }
177 }
178
179 static void target_setup_extra_record(struct target_extra_context *extra,
180 uint64_t datap, uint32_t extra_size)
181 {
182 __put_user(TARGET_EXTRA_MAGIC, &extra->head.magic);
183 __put_user(sizeof(struct target_extra_context), &extra->head.size);
184 __put_user(datap, &extra->datap);
185 __put_user(extra_size, &extra->size);
186 }
187
188 static void target_setup_end_record(struct target_aarch64_ctx *end)
189 {
190 __put_user(0, &end->magic);
191 __put_user(0, &end->size);
192 }
193
194 static void target_setup_sve_record(struct target_sve_context *sve,
195 CPUARMState *env, int size)
196 {
197 int i, j, vq = sve_vq(env);
198
199 memset(sve, 0, sizeof(*sve));
200 __put_user(TARGET_SVE_MAGIC, &sve->head.magic);
201 __put_user(size, &sve->head.size);
202 __put_user(vq * TARGET_SVE_VQ_BYTES, &sve->vl);
203 if (FIELD_EX64(env->svcr, SVCR, SM)) {
204 __put_user(TARGET_SVE_SIG_FLAG_SM, &sve->flags);
205 }
206
207 /* Note that SVE regs are stored as a byte stream, with each byte element
208 * at a subsequent address. This corresponds to a little-endian store
209 * of our 64-bit hunks.
210 */
211 for (i = 0; i < 32; ++i) {
212 uint64_t *z = (void *)sve + TARGET_SVE_SIG_ZREG_OFFSET(vq, i);
213 for (j = 0; j < vq * 2; ++j) {
214 __put_user_e(env->vfp.zregs[i].d[j], z + j, le);
215 }
216 }
217 for (i = 0; i <= 16; ++i) {
218 uint16_t *p = (void *)sve + TARGET_SVE_SIG_PREG_OFFSET(vq, i);
219 for (j = 0; j < vq; ++j) {
220 uint64_t r = env->vfp.pregs[i].p[j >> 2];
221 __put_user_e(r >> ((j & 3) * 16), p + j, le);
222 }
223 }
224 }
225
226 static void target_setup_za_record(struct target_za_context *za,
227 CPUARMState *env, int size)
228 {
229 int vq = sme_vq(env);
230 int vl = vq * TARGET_SVE_VQ_BYTES;
231 int i, j;
232
233 memset(za, 0, sizeof(*za));
234 __put_user(TARGET_ZA_MAGIC, &za->head.magic);
235 __put_user(size, &za->head.size);
236 __put_user(vl, &za->vl);
237
238 if (size == TARGET_ZA_SIG_CONTEXT_SIZE(0)) {
239 return;
240 }
241 assert(size == TARGET_ZA_SIG_CONTEXT_SIZE(vq));
242
243 /*
244 * Note that ZA vectors are stored as a byte stream,
245 * with each byte element at a subsequent address.
246 */
247 for (i = 0; i < vl; ++i) {
248 uint64_t *z = (void *)za + TARGET_ZA_SIG_ZAV_OFFSET(vq, i);
249 for (j = 0; j < vq * 2; ++j) {
250 __put_user_e(env->zarray[i].d[j], z + j, le);
251 }
252 }
253 }
254
255 static void target_restore_general_frame(CPUARMState *env,
256 struct target_rt_sigframe *sf)
257 {
258 sigset_t set;
259 uint64_t pstate;
260 int i;
261
262 target_to_host_sigset(&set, &sf->uc.tuc_sigmask);
263 set_sigmask(&set);
264
265 for (i = 0; i < 31; i++) {
266 __get_user(env->xregs[i], &sf->uc.tuc_mcontext.regs[i]);
267 }
268
269 __get_user(env->xregs[31], &sf->uc.tuc_mcontext.sp);
270 __get_user(env->pc, &sf->uc.tuc_mcontext.pc);
271 __get_user(pstate, &sf->uc.tuc_mcontext.pstate);
272 pstate_write(env, pstate);
273 }
274
275 static void target_restore_fpsimd_record(CPUARMState *env,
276 struct target_fpsimd_context *fpsimd)
277 {
278 uint32_t fpsr, fpcr;
279 int i;
280
281 __get_user(fpsr, &fpsimd->fpsr);
282 vfp_set_fpsr(env, fpsr);
283 __get_user(fpcr, &fpsimd->fpcr);
284 vfp_set_fpcr(env, fpcr);
285
286 for (i = 0; i < 32; i++) {
287 uint64_t *q = aa64_vfp_qreg(env, i);
288 #if TARGET_BIG_ENDIAN
289 __get_user(q[0], &fpsimd->vregs[i * 2 + 1]);
290 __get_user(q[1], &fpsimd->vregs[i * 2]);
291 #else
292 __get_user(q[0], &fpsimd->vregs[i * 2]);
293 __get_user(q[1], &fpsimd->vregs[i * 2 + 1]);
294 #endif
295 }
296 }
297
298 static bool target_restore_sve_record(CPUARMState *env,
299 struct target_sve_context *sve,
300 int size, int *svcr)
301 {
302 int i, j, vl, vq, flags;
303 bool sm;
304
305 __get_user(vl, &sve->vl);
306 __get_user(flags, &sve->flags);
307
308 sm = flags & TARGET_SVE_SIG_FLAG_SM;
309
310 /* The cpu must support Streaming or Non-streaming SVE. */
311 if (sm
312 ? !cpu_isar_feature(aa64_sme, env_archcpu(env))
313 : !cpu_isar_feature(aa64_sve, env_archcpu(env))) {
314 return false;
315 }
316
317 /*
318 * Note that we cannot use sve_vq() because that depends on the
319 * current setting of PSTATE.SM, not the state to be restored.
320 */
321 vq = sve_vqm1_for_el_sm(env, 0, sm) + 1;
322
323 /* Reject mismatched VL. */
324 if (vl != vq * TARGET_SVE_VQ_BYTES) {
325 return false;
326 }
327
328 /* Accept empty record -- used to clear PSTATE.SM. */
329 if (size <= sizeof(*sve)) {
330 return true;
331 }
332
333 /* Reject non-empty but incomplete record. */
334 if (size < TARGET_SVE_SIG_CONTEXT_SIZE(vq)) {
335 return false;
336 }
337
338 *svcr = FIELD_DP64(*svcr, SVCR, SM, sm);
339
340 /*
341 * Note that SVE regs are stored as a byte stream, with each byte element
342 * at a subsequent address. This corresponds to a little-endian load
343 * of our 64-bit hunks.
344 */
345 for (i = 0; i < 32; ++i) {
346 uint64_t *z = (void *)sve + TARGET_SVE_SIG_ZREG_OFFSET(vq, i);
347 for (j = 0; j < vq * 2; ++j) {
348 __get_user_e(env->vfp.zregs[i].d[j], z + j, le);
349 }
350 }
351 for (i = 0; i <= 16; ++i) {
352 uint16_t *p = (void *)sve + TARGET_SVE_SIG_PREG_OFFSET(vq, i);
353 for (j = 0; j < vq; ++j) {
354 uint16_t r;
355 __get_user_e(r, p + j, le);
356 if (j & 3) {
357 env->vfp.pregs[i].p[j >> 2] |= (uint64_t)r << ((j & 3) * 16);
358 } else {
359 env->vfp.pregs[i].p[j >> 2] = r;
360 }
361 }
362 }
363 return true;
364 }
365
366 static bool target_restore_za_record(CPUARMState *env,
367 struct target_za_context *za,
368 int size, int *svcr)
369 {
370 int i, j, vl, vq;
371
372 if (!cpu_isar_feature(aa64_sme, env_archcpu(env))) {
373 return false;
374 }
375
376 __get_user(vl, &za->vl);
377 vq = sme_vq(env);
378
379 /* Reject mismatched VL. */
380 if (vl != vq * TARGET_SVE_VQ_BYTES) {
381 return false;
382 }
383
384 /* Accept empty record -- used to clear PSTATE.ZA. */
385 if (size <= TARGET_ZA_SIG_CONTEXT_SIZE(0)) {
386 return true;
387 }
388
389 /* Reject non-empty but incomplete record. */
390 if (size < TARGET_ZA_SIG_CONTEXT_SIZE(vq)) {
391 return false;
392 }
393
394 *svcr = FIELD_DP64(*svcr, SVCR, ZA, 1);
395
396 for (i = 0; i < vl; ++i) {
397 uint64_t *z = (void *)za + TARGET_ZA_SIG_ZAV_OFFSET(vq, i);
398 for (j = 0; j < vq * 2; ++j) {
399 __get_user_e(env->zarray[i].d[j], z + j, le);
400 }
401 }
402 return true;
403 }
404
405 static int target_restore_sigframe(CPUARMState *env,
406 struct target_rt_sigframe *sf)
407 {
408 struct target_aarch64_ctx *ctx, *extra = NULL;
409 struct target_fpsimd_context *fpsimd = NULL;
410 struct target_sve_context *sve = NULL;
411 struct target_za_context *za = NULL;
412 uint64_t extra_datap = 0;
413 bool used_extra = false;
414 int sve_size = 0;
415 int za_size = 0;
416 int svcr = 0;
417
418 target_restore_general_frame(env, sf);
419
420 ctx = (struct target_aarch64_ctx *)sf->uc.tuc_mcontext.__reserved;
421 while (ctx) {
422 uint32_t magic, size, extra_size;
423
424 __get_user(magic, &ctx->magic);
425 __get_user(size, &ctx->size);
426 switch (magic) {
427 case 0:
428 if (size != 0) {
429 goto err;
430 }
431 if (used_extra) {
432 ctx = NULL;
433 } else {
434 ctx = extra;
435 used_extra = true;
436 }
437 continue;
438
439 case TARGET_FPSIMD_MAGIC:
440 if (fpsimd || size != sizeof(struct target_fpsimd_context)) {
441 goto err;
442 }
443 fpsimd = (struct target_fpsimd_context *)ctx;
444 break;
445
446 case TARGET_SVE_MAGIC:
447 if (sve || size < sizeof(struct target_sve_context)) {
448 goto err;
449 }
450 sve = (struct target_sve_context *)ctx;
451 sve_size = size;
452 break;
453
454 case TARGET_ZA_MAGIC:
455 if (za || size < sizeof(struct target_za_context)) {
456 goto err;
457 }
458 za = (struct target_za_context *)ctx;
459 za_size = size;
460 break;
461
462 case TARGET_EXTRA_MAGIC:
463 if (extra || size != sizeof(struct target_extra_context)) {
464 goto err;
465 }
466 __get_user(extra_datap,
467 &((struct target_extra_context *)ctx)->datap);
468 __get_user(extra_size,
469 &((struct target_extra_context *)ctx)->size);
470 extra = lock_user(VERIFY_READ, extra_datap, extra_size, 0);
471 if (!extra) {
472 return 1;
473 }
474 break;
475
476 default:
477 /* Unknown record -- we certainly didn't generate it.
478 * Did we in fact get out of sync?
479 */
480 goto err;
481 }
482 ctx = (void *)ctx + size;
483 }
484
485 /* Require FPSIMD always. */
486 if (fpsimd) {
487 target_restore_fpsimd_record(env, fpsimd);
488 } else {
489 goto err;
490 }
491
492 /* SVE data, if present, overwrites FPSIMD data. */
493 if (sve && !target_restore_sve_record(env, sve, sve_size, &svcr)) {
494 goto err;
495 }
496 if (za && !target_restore_za_record(env, za, za_size, &svcr)) {
497 goto err;
498 }
499 if (env->svcr != svcr) {
500 env->svcr = svcr;
501 arm_rebuild_hflags(env);
502 }
503 unlock_user(extra, extra_datap, 0);
504 return 0;
505
506 err:
507 unlock_user(extra, extra_datap, 0);
508 return 1;
509 }
510
511 static abi_ulong get_sigframe(struct target_sigaction *ka,
512 CPUARMState *env, int size)
513 {
514 abi_ulong sp;
515
516 sp = target_sigsp(get_sp_from_cpustate(env), ka);
517
518 sp = (sp - size) & ~15;
519
520 return sp;
521 }
522
523 typedef struct {
524 int total_size;
525 int extra_base;
526 int extra_size;
527 int std_end_ofs;
528 int extra_ofs;
529 int extra_end_ofs;
530 } target_sigframe_layout;
531
532 static int alloc_sigframe_space(int this_size, target_sigframe_layout *l)
533 {
534 /* Make sure there will always be space for the end marker. */
535 const int std_size = sizeof(struct target_rt_sigframe)
536 - sizeof(struct target_aarch64_ctx);
537 int this_loc = l->total_size;
538
539 if (l->extra_base) {
540 /* Once we have begun an extra space, all allocations go there. */
541 l->extra_size += this_size;
542 } else if (this_size + this_loc > std_size) {
543 /* This allocation does not fit in the standard space. */
544 /* Allocate the extra record. */
545 l->extra_ofs = this_loc;
546 l->total_size += sizeof(struct target_extra_context);
547
548 /* Allocate the standard end record. */
549 l->std_end_ofs = l->total_size;
550 l->total_size += sizeof(struct target_aarch64_ctx);
551
552 /* Allocate the requested record. */
553 l->extra_base = this_loc = l->total_size;
554 l->extra_size = this_size;
555 }
556 l->total_size += this_size;
557
558 return this_loc;
559 }
560
561 static void target_setup_frame(int usig, struct target_sigaction *ka,
562 target_siginfo_t *info, target_sigset_t *set,
563 CPUARMState *env)
564 {
565 target_sigframe_layout layout = {
566 /* Begin with the size pointing to the reserved space. */
567 .total_size = offsetof(struct target_rt_sigframe,
568 uc.tuc_mcontext.__reserved),
569 };
570 int fpsimd_ofs, fr_ofs, sve_ofs = 0, za_ofs = 0;
571 int sve_size = 0, za_size = 0;
572 struct target_rt_sigframe *frame;
573 struct target_rt_frame_record *fr;
574 abi_ulong frame_addr, return_addr;
575
576 /* FPSIMD record is always in the standard space. */
577 fpsimd_ofs = alloc_sigframe_space(sizeof(struct target_fpsimd_context),
578 &layout);
579
580 /* SVE state needs saving only if it exists. */
581 if (cpu_isar_feature(aa64_sve, env_archcpu(env)) ||
582 cpu_isar_feature(aa64_sme, env_archcpu(env))) {
583 sve_size = QEMU_ALIGN_UP(TARGET_SVE_SIG_CONTEXT_SIZE(sve_vq(env)), 16);
584 sve_ofs = alloc_sigframe_space(sve_size, &layout);
585 }
586 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
587 /* ZA state needs saving only if it is enabled. */
588 if (FIELD_EX64(env->svcr, SVCR, ZA)) {
589 za_size = TARGET_ZA_SIG_CONTEXT_SIZE(sme_vq(env));
590 } else {
591 za_size = TARGET_ZA_SIG_CONTEXT_SIZE(0);
592 }
593 za_ofs = alloc_sigframe_space(za_size, &layout);
594 }
595
596 if (layout.extra_ofs) {
597 /* Reserve space for the extra end marker. The standard end marker
598 * will have been allocated when we allocated the extra record.
599 */
600 layout.extra_end_ofs
601 = alloc_sigframe_space(sizeof(struct target_aarch64_ctx), &layout);
602 } else {
603 /* Reserve space for the standard end marker.
604 * Do not use alloc_sigframe_space because we cheat
605 * std_size therein to reserve space for this.
606 */
607 layout.std_end_ofs = layout.total_size;
608 layout.total_size += sizeof(struct target_aarch64_ctx);
609 }
610
611 /* We must always provide at least the standard 4K reserved space,
612 * even if we don't use all of it (this is part of the ABI)
613 */
614 layout.total_size = MAX(layout.total_size,
615 sizeof(struct target_rt_sigframe));
616
617 /*
618 * Reserve space for the standard frame unwind pair: fp, lr.
619 * Despite the name this is not a "real" record within the frame.
620 */
621 fr_ofs = layout.total_size;
622 layout.total_size += sizeof(struct target_rt_frame_record);
623
624 frame_addr = get_sigframe(ka, env, layout.total_size);
625 trace_user_setup_frame(env, frame_addr);
626 frame = lock_user(VERIFY_WRITE, frame_addr, layout.total_size, 0);
627 if (!frame) {
628 goto give_sigsegv;
629 }
630
631 target_setup_general_frame(frame, env, set);
632 target_setup_fpsimd_record((void *)frame + fpsimd_ofs, env);
633 target_setup_end_record((void *)frame + layout.std_end_ofs);
634 if (layout.extra_ofs) {
635 target_setup_extra_record((void *)frame + layout.extra_ofs,
636 frame_addr + layout.extra_base,
637 layout.extra_size);
638 target_setup_end_record((void *)frame + layout.extra_end_ofs);
639 }
640 if (sve_ofs) {
641 target_setup_sve_record((void *)frame + sve_ofs, env, sve_size);
642 }
643 if (za_ofs) {
644 target_setup_za_record((void *)frame + za_ofs, env, za_size);
645 }
646
647 /* Set up the stack frame for unwinding. */
648 fr = (void *)frame + fr_ofs;
649 __put_user(env->xregs[29], &fr->fp);
650 __put_user(env->xregs[30], &fr->lr);
651
652 if (ka->sa_flags & TARGET_SA_RESTORER) {
653 return_addr = ka->sa_restorer;
654 } else {
655 return_addr = default_rt_sigreturn;
656 }
657 env->xregs[0] = usig;
658 env->xregs[29] = frame_addr + fr_ofs;
659 env->xregs[30] = return_addr;
660 env->xregs[31] = frame_addr;
661 env->pc = ka->_sa_handler;
662
663 /* Invoke the signal handler as if by indirect call. */
664 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
665 env->btype = 2;
666 }
667
668 /* Invoke the signal handler with both SM and ZA disabled. */
669 aarch64_set_svcr(env, 0, R_SVCR_SM_MASK | R_SVCR_ZA_MASK);
670
671 if (info) {
672 tswap_siginfo(&frame->info, info);
673 env->xregs[1] = frame_addr + offsetof(struct target_rt_sigframe, info);
674 env->xregs[2] = frame_addr + offsetof(struct target_rt_sigframe, uc);
675 }
676
677 unlock_user(frame, frame_addr, layout.total_size);
678 return;
679
680 give_sigsegv:
681 unlock_user(frame, frame_addr, layout.total_size);
682 force_sigsegv(usig);
683 }
684
685 void setup_rt_frame(int sig, struct target_sigaction *ka,
686 target_siginfo_t *info, target_sigset_t *set,
687 CPUARMState *env)
688 {
689 target_setup_frame(sig, ka, info, set, env);
690 }
691
692 void setup_frame(int sig, struct target_sigaction *ka,
693 target_sigset_t *set, CPUARMState *env)
694 {
695 target_setup_frame(sig, ka, 0, set, env);
696 }
697
698 long do_rt_sigreturn(CPUARMState *env)
699 {
700 struct target_rt_sigframe *frame = NULL;
701 abi_ulong frame_addr = env->xregs[31];
702
703 trace_user_do_rt_sigreturn(env, frame_addr);
704 if (frame_addr & 15) {
705 goto badframe;
706 }
707
708 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) {
709 goto badframe;
710 }
711
712 if (target_restore_sigframe(env, frame)) {
713 goto badframe;
714 }
715
716 target_restore_altstack(&frame->uc.tuc_stack, env);
717
718 unlock_user_struct(frame, frame_addr, 0);
719 return -QEMU_ESIGRETURN;
720
721 badframe:
722 unlock_user_struct(frame, frame_addr, 0);
723 force_sig(TARGET_SIGSEGV);
724 return -QEMU_ESIGRETURN;
725 }
726
727 long do_sigreturn(CPUARMState *env)
728 {
729 return do_rt_sigreturn(env);
730 }
731
732 void setup_sigtramp(abi_ulong sigtramp_page)
733 {
734 uint32_t *tramp = lock_user(VERIFY_WRITE, sigtramp_page, 8, 0);
735 assert(tramp != NULL);
736
737 /*
738 * mov x8,#__NR_rt_sigreturn; svc #0
739 * Since these are instructions they need to be put as little-endian
740 * regardless of target default or current CPU endianness.
741 */
742 __put_user_e(0xd2801168, &tramp[0], le);
743 __put_user_e(0xd4000001, &tramp[1], le);
744
745 default_rt_sigreturn = sigtramp_page;
746 unlock_user(tramp, sigtramp_page, 8);
747 }