]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/elfload.c
db75cd4b33fde5a3a9015ffaa8a500456ad26e0e
[mirror_qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qemu/lockable.h"
21 #include "qapi/error.h"
22 #include "qemu/error-report.h"
23 #include "target_signal.h"
24 #include "accel/tcg/debuginfo.h"
25
26 #ifdef _ARCH_PPC64
27 #undef ARCH_DLINFO
28 #undef ELF_PLATFORM
29 #undef ELF_HWCAP
30 #undef ELF_HWCAP2
31 #undef ELF_CLASS
32 #undef ELF_DATA
33 #undef ELF_ARCH
34 #endif
35
36 #define ELF_OSABI ELFOSABI_SYSV
37
38 /* from personality.h */
39
40 /*
41 * Flags for bug emulation.
42 *
43 * These occupy the top three bytes.
44 */
45 enum {
46 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
47 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
48 descriptors (signal handling) */
49 MMAP_PAGE_ZERO = 0x0100000,
50 ADDR_COMPAT_LAYOUT = 0x0200000,
51 READ_IMPLIES_EXEC = 0x0400000,
52 ADDR_LIMIT_32BIT = 0x0800000,
53 SHORT_INODE = 0x1000000,
54 WHOLE_SECONDS = 0x2000000,
55 STICKY_TIMEOUTS = 0x4000000,
56 ADDR_LIMIT_3GB = 0x8000000,
57 };
58
59 /*
60 * Personality types.
61 *
62 * These go in the low byte. Avoid using the top bit, it will
63 * conflict with error returns.
64 */
65 enum {
66 PER_LINUX = 0x0000,
67 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
68 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
69 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
70 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
71 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
72 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
73 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
74 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
75 PER_BSD = 0x0006,
76 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
77 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
78 PER_LINUX32 = 0x0008,
79 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
80 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
81 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
82 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
83 PER_RISCOS = 0x000c,
84 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
85 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
86 PER_OSF4 = 0x000f, /* OSF/1 v4 */
87 PER_HPUX = 0x0010,
88 PER_MASK = 0x00ff,
89 };
90
91 /*
92 * Return the base personality without flags.
93 */
94 #define personality(pers) (pers & PER_MASK)
95
96 int info_is_fdpic(struct image_info *info)
97 {
98 return info->personality == PER_LINUX_FDPIC;
99 }
100
101 /* this flag is uneffective under linux too, should be deleted */
102 #ifndef MAP_DENYWRITE
103 #define MAP_DENYWRITE 0
104 #endif
105
106 /* should probably go in elf.h */
107 #ifndef ELIBBAD
108 #define ELIBBAD 80
109 #endif
110
111 #if TARGET_BIG_ENDIAN
112 #define ELF_DATA ELFDATA2MSB
113 #else
114 #define ELF_DATA ELFDATA2LSB
115 #endif
116
117 #ifdef TARGET_ABI_MIPSN32
118 typedef abi_ullong target_elf_greg_t;
119 #define tswapreg(ptr) tswap64(ptr)
120 #else
121 typedef abi_ulong target_elf_greg_t;
122 #define tswapreg(ptr) tswapal(ptr)
123 #endif
124
125 #ifdef USE_UID16
126 typedef abi_ushort target_uid_t;
127 typedef abi_ushort target_gid_t;
128 #else
129 typedef abi_uint target_uid_t;
130 typedef abi_uint target_gid_t;
131 #endif
132 typedef abi_int target_pid_t;
133
134 #ifdef TARGET_I386
135
136 #define ELF_HWCAP get_elf_hwcap()
137
138 static uint32_t get_elf_hwcap(void)
139 {
140 X86CPU *cpu = X86_CPU(thread_cpu);
141
142 return cpu->env.features[FEAT_1_EDX];
143 }
144
145 #ifdef TARGET_X86_64
146 #define ELF_CLASS ELFCLASS64
147 #define ELF_ARCH EM_X86_64
148
149 #define ELF_PLATFORM "x86_64"
150
151 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
152 {
153 regs->rax = 0;
154 regs->rsp = infop->start_stack;
155 regs->rip = infop->entry;
156 }
157
158 #define ELF_NREG 27
159 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
160
161 /*
162 * Note that ELF_NREG should be 29 as there should be place for
163 * TRAPNO and ERR "registers" as well but linux doesn't dump
164 * those.
165 *
166 * See linux kernel: arch/x86/include/asm/elf.h
167 */
168 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
169 {
170 (*regs)[0] = tswapreg(env->regs[15]);
171 (*regs)[1] = tswapreg(env->regs[14]);
172 (*regs)[2] = tswapreg(env->regs[13]);
173 (*regs)[3] = tswapreg(env->regs[12]);
174 (*regs)[4] = tswapreg(env->regs[R_EBP]);
175 (*regs)[5] = tswapreg(env->regs[R_EBX]);
176 (*regs)[6] = tswapreg(env->regs[11]);
177 (*regs)[7] = tswapreg(env->regs[10]);
178 (*regs)[8] = tswapreg(env->regs[9]);
179 (*regs)[9] = tswapreg(env->regs[8]);
180 (*regs)[10] = tswapreg(env->regs[R_EAX]);
181 (*regs)[11] = tswapreg(env->regs[R_ECX]);
182 (*regs)[12] = tswapreg(env->regs[R_EDX]);
183 (*regs)[13] = tswapreg(env->regs[R_ESI]);
184 (*regs)[14] = tswapreg(env->regs[R_EDI]);
185 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
186 (*regs)[16] = tswapreg(env->eip);
187 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
188 (*regs)[18] = tswapreg(env->eflags);
189 (*regs)[19] = tswapreg(env->regs[R_ESP]);
190 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
191 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
192 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
193 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
194 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
195 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
196 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
197 }
198
199 #if ULONG_MAX > UINT32_MAX
200 #define INIT_GUEST_COMMPAGE
201 static bool init_guest_commpage(void)
202 {
203 /*
204 * The vsyscall page is at a high negative address aka kernel space,
205 * which means that we cannot actually allocate it with target_mmap.
206 * We still should be able to use page_set_flags, unless the user
207 * has specified -R reserved_va, which would trigger an assert().
208 */
209 if (reserved_va != 0 &&
210 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
211 error_report("Cannot allocate vsyscall page");
212 exit(EXIT_FAILURE);
213 }
214 page_set_flags(TARGET_VSYSCALL_PAGE,
215 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
216 PAGE_EXEC | PAGE_VALID);
217 return true;
218 }
219 #endif
220 #else
221
222 /*
223 * This is used to ensure we don't load something for the wrong architecture.
224 */
225 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
226
227 /*
228 * These are used to set parameters in the core dumps.
229 */
230 #define ELF_CLASS ELFCLASS32
231 #define ELF_ARCH EM_386
232
233 #define ELF_PLATFORM get_elf_platform()
234 #define EXSTACK_DEFAULT true
235
236 static const char *get_elf_platform(void)
237 {
238 static char elf_platform[] = "i386";
239 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
240 if (family > 6) {
241 family = 6;
242 }
243 if (family >= 3) {
244 elf_platform[1] = '0' + family;
245 }
246 return elf_platform;
247 }
248
249 static inline void init_thread(struct target_pt_regs *regs,
250 struct image_info *infop)
251 {
252 regs->esp = infop->start_stack;
253 regs->eip = infop->entry;
254
255 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
256 starts %edx contains a pointer to a function which might be
257 registered using `atexit'. This provides a mean for the
258 dynamic linker to call DT_FINI functions for shared libraries
259 that have been loaded before the code runs.
260
261 A value of 0 tells we have no such handler. */
262 regs->edx = 0;
263 }
264
265 #define ELF_NREG 17
266 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
267
268 /*
269 * Note that ELF_NREG should be 19 as there should be place for
270 * TRAPNO and ERR "registers" as well but linux doesn't dump
271 * those.
272 *
273 * See linux kernel: arch/x86/include/asm/elf.h
274 */
275 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
276 {
277 (*regs)[0] = tswapreg(env->regs[R_EBX]);
278 (*regs)[1] = tswapreg(env->regs[R_ECX]);
279 (*regs)[2] = tswapreg(env->regs[R_EDX]);
280 (*regs)[3] = tswapreg(env->regs[R_ESI]);
281 (*regs)[4] = tswapreg(env->regs[R_EDI]);
282 (*regs)[5] = tswapreg(env->regs[R_EBP]);
283 (*regs)[6] = tswapreg(env->regs[R_EAX]);
284 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
285 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
286 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
287 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
288 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
289 (*regs)[12] = tswapreg(env->eip);
290 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
291 (*regs)[14] = tswapreg(env->eflags);
292 (*regs)[15] = tswapreg(env->regs[R_ESP]);
293 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
294 }
295 #endif
296
297 #define USE_ELF_CORE_DUMP
298 #define ELF_EXEC_PAGESIZE 4096
299
300 #endif
301
302 #ifdef TARGET_ARM
303
304 #ifndef TARGET_AARCH64
305 /* 32 bit ARM definitions */
306
307 #define ELF_ARCH EM_ARM
308 #define ELF_CLASS ELFCLASS32
309 #define EXSTACK_DEFAULT true
310
311 static inline void init_thread(struct target_pt_regs *regs,
312 struct image_info *infop)
313 {
314 abi_long stack = infop->start_stack;
315 memset(regs, 0, sizeof(*regs));
316
317 regs->uregs[16] = ARM_CPU_MODE_USR;
318 if (infop->entry & 1) {
319 regs->uregs[16] |= CPSR_T;
320 }
321 regs->uregs[15] = infop->entry & 0xfffffffe;
322 regs->uregs[13] = infop->start_stack;
323 /* FIXME - what to for failure of get_user()? */
324 get_user_ual(regs->uregs[2], stack + 8); /* envp */
325 get_user_ual(regs->uregs[1], stack + 4); /* envp */
326 /* XXX: it seems that r0 is zeroed after ! */
327 regs->uregs[0] = 0;
328 /* For uClinux PIC binaries. */
329 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
330 regs->uregs[10] = infop->start_data;
331
332 /* Support ARM FDPIC. */
333 if (info_is_fdpic(infop)) {
334 /* As described in the ABI document, r7 points to the loadmap info
335 * prepared by the kernel. If an interpreter is needed, r8 points
336 * to the interpreter loadmap and r9 points to the interpreter
337 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
338 * r9 points to the main program PT_DYNAMIC info.
339 */
340 regs->uregs[7] = infop->loadmap_addr;
341 if (infop->interpreter_loadmap_addr) {
342 /* Executable is dynamically loaded. */
343 regs->uregs[8] = infop->interpreter_loadmap_addr;
344 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
345 } else {
346 regs->uregs[8] = 0;
347 regs->uregs[9] = infop->pt_dynamic_addr;
348 }
349 }
350 }
351
352 #define ELF_NREG 18
353 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
354
355 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
356 {
357 (*regs)[0] = tswapreg(env->regs[0]);
358 (*regs)[1] = tswapreg(env->regs[1]);
359 (*regs)[2] = tswapreg(env->regs[2]);
360 (*regs)[3] = tswapreg(env->regs[3]);
361 (*regs)[4] = tswapreg(env->regs[4]);
362 (*regs)[5] = tswapreg(env->regs[5]);
363 (*regs)[6] = tswapreg(env->regs[6]);
364 (*regs)[7] = tswapreg(env->regs[7]);
365 (*regs)[8] = tswapreg(env->regs[8]);
366 (*regs)[9] = tswapreg(env->regs[9]);
367 (*regs)[10] = tswapreg(env->regs[10]);
368 (*regs)[11] = tswapreg(env->regs[11]);
369 (*regs)[12] = tswapreg(env->regs[12]);
370 (*regs)[13] = tswapreg(env->regs[13]);
371 (*regs)[14] = tswapreg(env->regs[14]);
372 (*regs)[15] = tswapreg(env->regs[15]);
373
374 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
375 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
376 }
377
378 #define USE_ELF_CORE_DUMP
379 #define ELF_EXEC_PAGESIZE 4096
380
381 enum
382 {
383 ARM_HWCAP_ARM_SWP = 1 << 0,
384 ARM_HWCAP_ARM_HALF = 1 << 1,
385 ARM_HWCAP_ARM_THUMB = 1 << 2,
386 ARM_HWCAP_ARM_26BIT = 1 << 3,
387 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
388 ARM_HWCAP_ARM_FPA = 1 << 5,
389 ARM_HWCAP_ARM_VFP = 1 << 6,
390 ARM_HWCAP_ARM_EDSP = 1 << 7,
391 ARM_HWCAP_ARM_JAVA = 1 << 8,
392 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
393 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
394 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
395 ARM_HWCAP_ARM_NEON = 1 << 12,
396 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
397 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
398 ARM_HWCAP_ARM_TLS = 1 << 15,
399 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
400 ARM_HWCAP_ARM_IDIVA = 1 << 17,
401 ARM_HWCAP_ARM_IDIVT = 1 << 18,
402 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
403 ARM_HWCAP_ARM_LPAE = 1 << 20,
404 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
405 ARM_HWCAP_ARM_FPHP = 1 << 22,
406 ARM_HWCAP_ARM_ASIMDHP = 1 << 23,
407 ARM_HWCAP_ARM_ASIMDDP = 1 << 24,
408 ARM_HWCAP_ARM_ASIMDFHM = 1 << 25,
409 ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
410 ARM_HWCAP_ARM_I8MM = 1 << 27,
411 };
412
413 enum {
414 ARM_HWCAP2_ARM_AES = 1 << 0,
415 ARM_HWCAP2_ARM_PMULL = 1 << 1,
416 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
417 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
418 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
419 ARM_HWCAP2_ARM_SB = 1 << 5,
420 ARM_HWCAP2_ARM_SSBS = 1 << 6,
421 };
422
423 /* The commpage only exists for 32 bit kernels */
424
425 #define HI_COMMPAGE (intptr_t)0xffff0f00u
426
427 static bool init_guest_commpage(void)
428 {
429 ARMCPU *cpu = ARM_CPU(thread_cpu);
430 abi_ptr commpage;
431 void *want;
432 void *addr;
433
434 /*
435 * M-profile allocates maximum of 2GB address space, so can never
436 * allocate the commpage. Skip it.
437 */
438 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
439 return true;
440 }
441
442 commpage = HI_COMMPAGE & -qemu_host_page_size;
443 want = g2h_untagged(commpage);
444 addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
445 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
446
447 if (addr == MAP_FAILED) {
448 perror("Allocating guest commpage");
449 exit(EXIT_FAILURE);
450 }
451 if (addr != want) {
452 return false;
453 }
454
455 /* Set kernel helper versions; rest of page is 0. */
456 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
457
458 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
459 perror("Protecting guest commpage");
460 exit(EXIT_FAILURE);
461 }
462
463 page_set_flags(commpage, commpage | ~qemu_host_page_mask,
464 PAGE_READ | PAGE_EXEC | PAGE_VALID);
465 return true;
466 }
467
468 #define ELF_HWCAP get_elf_hwcap()
469 #define ELF_HWCAP2 get_elf_hwcap2()
470
471 uint32_t get_elf_hwcap(void)
472 {
473 ARMCPU *cpu = ARM_CPU(thread_cpu);
474 uint32_t hwcaps = 0;
475
476 hwcaps |= ARM_HWCAP_ARM_SWP;
477 hwcaps |= ARM_HWCAP_ARM_HALF;
478 hwcaps |= ARM_HWCAP_ARM_THUMB;
479 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
480
481 /* probe for the extra features */
482 #define GET_FEATURE(feat, hwcap) \
483 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
484
485 #define GET_FEATURE_ID(feat, hwcap) \
486 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
487
488 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
489 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
490 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
491 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
492 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
493 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
494 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
495 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
496 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
497 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
498
499 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
500 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
501 hwcaps |= ARM_HWCAP_ARM_VFPv3;
502 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
503 hwcaps |= ARM_HWCAP_ARM_VFPD32;
504 } else {
505 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
506 }
507 }
508 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
509 /*
510 * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
511 * isar_feature function for both. The kernel reports them as two hwcaps.
512 */
513 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
514 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
515 GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
516 GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
517 GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
518 GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
519
520 return hwcaps;
521 }
522
523 uint32_t get_elf_hwcap2(void)
524 {
525 ARMCPU *cpu = ARM_CPU(thread_cpu);
526 uint32_t hwcaps = 0;
527
528 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
529 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
530 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
531 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
532 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
533 GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
534 GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
535 return hwcaps;
536 }
537
538 const char *elf_hwcap_str(uint32_t bit)
539 {
540 static const char *hwcap_str[] = {
541 [__builtin_ctz(ARM_HWCAP_ARM_SWP )] = "swp",
542 [__builtin_ctz(ARM_HWCAP_ARM_HALF )] = "half",
543 [__builtin_ctz(ARM_HWCAP_ARM_THUMB )] = "thumb",
544 [__builtin_ctz(ARM_HWCAP_ARM_26BIT )] = "26bit",
545 [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
546 [__builtin_ctz(ARM_HWCAP_ARM_FPA )] = "fpa",
547 [__builtin_ctz(ARM_HWCAP_ARM_VFP )] = "vfp",
548 [__builtin_ctz(ARM_HWCAP_ARM_EDSP )] = "edsp",
549 [__builtin_ctz(ARM_HWCAP_ARM_JAVA )] = "java",
550 [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT )] = "iwmmxt",
551 [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH )] = "crunch",
552 [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE )] = "thumbee",
553 [__builtin_ctz(ARM_HWCAP_ARM_NEON )] = "neon",
554 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3 )] = "vfpv3",
555 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
556 [__builtin_ctz(ARM_HWCAP_ARM_TLS )] = "tls",
557 [__builtin_ctz(ARM_HWCAP_ARM_VFPv4 )] = "vfpv4",
558 [__builtin_ctz(ARM_HWCAP_ARM_IDIVA )] = "idiva",
559 [__builtin_ctz(ARM_HWCAP_ARM_IDIVT )] = "idivt",
560 [__builtin_ctz(ARM_HWCAP_ARM_VFPD32 )] = "vfpd32",
561 [__builtin_ctz(ARM_HWCAP_ARM_LPAE )] = "lpae",
562 [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM )] = "evtstrm",
563 [__builtin_ctz(ARM_HWCAP_ARM_FPHP )] = "fphp",
564 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP )] = "asimdhp",
565 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP )] = "asimddp",
566 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
567 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
568 [__builtin_ctz(ARM_HWCAP_ARM_I8MM )] = "i8mm",
569 };
570
571 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
572 }
573
574 const char *elf_hwcap2_str(uint32_t bit)
575 {
576 static const char *hwcap_str[] = {
577 [__builtin_ctz(ARM_HWCAP2_ARM_AES )] = "aes",
578 [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
579 [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
580 [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
581 [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
582 [__builtin_ctz(ARM_HWCAP2_ARM_SB )] = "sb",
583 [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
584 };
585
586 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
587 }
588
589 #undef GET_FEATURE
590 #undef GET_FEATURE_ID
591
592 #define ELF_PLATFORM get_elf_platform()
593
594 static const char *get_elf_platform(void)
595 {
596 CPUARMState *env = thread_cpu->env_ptr;
597
598 #if TARGET_BIG_ENDIAN
599 # define END "b"
600 #else
601 # define END "l"
602 #endif
603
604 if (arm_feature(env, ARM_FEATURE_V8)) {
605 return "v8" END;
606 } else if (arm_feature(env, ARM_FEATURE_V7)) {
607 if (arm_feature(env, ARM_FEATURE_M)) {
608 return "v7m" END;
609 } else {
610 return "v7" END;
611 }
612 } else if (arm_feature(env, ARM_FEATURE_V6)) {
613 return "v6" END;
614 } else if (arm_feature(env, ARM_FEATURE_V5)) {
615 return "v5" END;
616 } else {
617 return "v4" END;
618 }
619
620 #undef END
621 }
622
623 #else
624 /* 64 bit ARM definitions */
625
626 #define ELF_ARCH EM_AARCH64
627 #define ELF_CLASS ELFCLASS64
628 #if TARGET_BIG_ENDIAN
629 # define ELF_PLATFORM "aarch64_be"
630 #else
631 # define ELF_PLATFORM "aarch64"
632 #endif
633
634 static inline void init_thread(struct target_pt_regs *regs,
635 struct image_info *infop)
636 {
637 abi_long stack = infop->start_stack;
638 memset(regs, 0, sizeof(*regs));
639
640 regs->pc = infop->entry & ~0x3ULL;
641 regs->sp = stack;
642 }
643
644 #define ELF_NREG 34
645 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
646
647 static void elf_core_copy_regs(target_elf_gregset_t *regs,
648 const CPUARMState *env)
649 {
650 int i;
651
652 for (i = 0; i < 32; i++) {
653 (*regs)[i] = tswapreg(env->xregs[i]);
654 }
655 (*regs)[32] = tswapreg(env->pc);
656 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
657 }
658
659 #define USE_ELF_CORE_DUMP
660 #define ELF_EXEC_PAGESIZE 4096
661
662 enum {
663 ARM_HWCAP_A64_FP = 1 << 0,
664 ARM_HWCAP_A64_ASIMD = 1 << 1,
665 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
666 ARM_HWCAP_A64_AES = 1 << 3,
667 ARM_HWCAP_A64_PMULL = 1 << 4,
668 ARM_HWCAP_A64_SHA1 = 1 << 5,
669 ARM_HWCAP_A64_SHA2 = 1 << 6,
670 ARM_HWCAP_A64_CRC32 = 1 << 7,
671 ARM_HWCAP_A64_ATOMICS = 1 << 8,
672 ARM_HWCAP_A64_FPHP = 1 << 9,
673 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
674 ARM_HWCAP_A64_CPUID = 1 << 11,
675 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
676 ARM_HWCAP_A64_JSCVT = 1 << 13,
677 ARM_HWCAP_A64_FCMA = 1 << 14,
678 ARM_HWCAP_A64_LRCPC = 1 << 15,
679 ARM_HWCAP_A64_DCPOP = 1 << 16,
680 ARM_HWCAP_A64_SHA3 = 1 << 17,
681 ARM_HWCAP_A64_SM3 = 1 << 18,
682 ARM_HWCAP_A64_SM4 = 1 << 19,
683 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
684 ARM_HWCAP_A64_SHA512 = 1 << 21,
685 ARM_HWCAP_A64_SVE = 1 << 22,
686 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
687 ARM_HWCAP_A64_DIT = 1 << 24,
688 ARM_HWCAP_A64_USCAT = 1 << 25,
689 ARM_HWCAP_A64_ILRCPC = 1 << 26,
690 ARM_HWCAP_A64_FLAGM = 1 << 27,
691 ARM_HWCAP_A64_SSBS = 1 << 28,
692 ARM_HWCAP_A64_SB = 1 << 29,
693 ARM_HWCAP_A64_PACA = 1 << 30,
694 ARM_HWCAP_A64_PACG = 1UL << 31,
695
696 ARM_HWCAP2_A64_DCPODP = 1 << 0,
697 ARM_HWCAP2_A64_SVE2 = 1 << 1,
698 ARM_HWCAP2_A64_SVEAES = 1 << 2,
699 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
700 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
701 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
702 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
703 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
704 ARM_HWCAP2_A64_FRINT = 1 << 8,
705 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
706 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
707 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
708 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
709 ARM_HWCAP2_A64_I8MM = 1 << 13,
710 ARM_HWCAP2_A64_BF16 = 1 << 14,
711 ARM_HWCAP2_A64_DGH = 1 << 15,
712 ARM_HWCAP2_A64_RNG = 1 << 16,
713 ARM_HWCAP2_A64_BTI = 1 << 17,
714 ARM_HWCAP2_A64_MTE = 1 << 18,
715 ARM_HWCAP2_A64_ECV = 1 << 19,
716 ARM_HWCAP2_A64_AFP = 1 << 20,
717 ARM_HWCAP2_A64_RPRES = 1 << 21,
718 ARM_HWCAP2_A64_MTE3 = 1 << 22,
719 ARM_HWCAP2_A64_SME = 1 << 23,
720 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24,
721 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25,
722 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26,
723 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27,
724 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28,
725 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29,
726 ARM_HWCAP2_A64_SME_FA64 = 1 << 30,
727 ARM_HWCAP2_A64_WFXT = 1ULL << 31,
728 ARM_HWCAP2_A64_EBF16 = 1ULL << 32,
729 ARM_HWCAP2_A64_SVE_EBF16 = 1ULL << 33,
730 ARM_HWCAP2_A64_CSSC = 1ULL << 34,
731 ARM_HWCAP2_A64_RPRFM = 1ULL << 35,
732 ARM_HWCAP2_A64_SVE2P1 = 1ULL << 36,
733 ARM_HWCAP2_A64_SME2 = 1ULL << 37,
734 ARM_HWCAP2_A64_SME2P1 = 1ULL << 38,
735 ARM_HWCAP2_A64_SME_I16I32 = 1ULL << 39,
736 ARM_HWCAP2_A64_SME_BI32I32 = 1ULL << 40,
737 ARM_HWCAP2_A64_SME_B16B16 = 1ULL << 41,
738 ARM_HWCAP2_A64_SME_F16F16 = 1ULL << 42,
739 ARM_HWCAP2_A64_MOPS = 1ULL << 43,
740 ARM_HWCAP2_A64_HBC = 1ULL << 44,
741 };
742
743 #define ELF_HWCAP get_elf_hwcap()
744 #define ELF_HWCAP2 get_elf_hwcap2()
745
746 #define GET_FEATURE_ID(feat, hwcap) \
747 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
748
749 uint32_t get_elf_hwcap(void)
750 {
751 ARMCPU *cpu = ARM_CPU(thread_cpu);
752 uint32_t hwcaps = 0;
753
754 hwcaps |= ARM_HWCAP_A64_FP;
755 hwcaps |= ARM_HWCAP_A64_ASIMD;
756 hwcaps |= ARM_HWCAP_A64_CPUID;
757
758 /* probe for the extra features */
759
760 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
761 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
762 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
763 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
764 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
765 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
766 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
767 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
768 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
769 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
770 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
771 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
772 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
773 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
774 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
775 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
776 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
777 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
778 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
779 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
780 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
781 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
782 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
783
784 return hwcaps;
785 }
786
787 uint32_t get_elf_hwcap2(void)
788 {
789 ARMCPU *cpu = ARM_CPU(thread_cpu);
790 uint32_t hwcaps = 0;
791
792 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
793 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
794 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
795 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
796 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
797 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
798 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
799 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
800 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
801 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
802 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
803 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
804 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
805 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
806 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
807 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
808 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
809 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
810 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
811 ARM_HWCAP2_A64_SME_F32F32 |
812 ARM_HWCAP2_A64_SME_B16F32 |
813 ARM_HWCAP2_A64_SME_F16F32 |
814 ARM_HWCAP2_A64_SME_I8I32));
815 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
816 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
817 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
818 GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
819 GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
820
821 return hwcaps;
822 }
823
824 const char *elf_hwcap_str(uint32_t bit)
825 {
826 static const char *hwcap_str[] = {
827 [__builtin_ctz(ARM_HWCAP_A64_FP )] = "fp",
828 [__builtin_ctz(ARM_HWCAP_A64_ASIMD )] = "asimd",
829 [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
830 [__builtin_ctz(ARM_HWCAP_A64_AES )] = "aes",
831 [__builtin_ctz(ARM_HWCAP_A64_PMULL )] = "pmull",
832 [__builtin_ctz(ARM_HWCAP_A64_SHA1 )] = "sha1",
833 [__builtin_ctz(ARM_HWCAP_A64_SHA2 )] = "sha2",
834 [__builtin_ctz(ARM_HWCAP_A64_CRC32 )] = "crc32",
835 [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
836 [__builtin_ctz(ARM_HWCAP_A64_FPHP )] = "fphp",
837 [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
838 [__builtin_ctz(ARM_HWCAP_A64_CPUID )] = "cpuid",
839 [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
840 [__builtin_ctz(ARM_HWCAP_A64_JSCVT )] = "jscvt",
841 [__builtin_ctz(ARM_HWCAP_A64_FCMA )] = "fcma",
842 [__builtin_ctz(ARM_HWCAP_A64_LRCPC )] = "lrcpc",
843 [__builtin_ctz(ARM_HWCAP_A64_DCPOP )] = "dcpop",
844 [__builtin_ctz(ARM_HWCAP_A64_SHA3 )] = "sha3",
845 [__builtin_ctz(ARM_HWCAP_A64_SM3 )] = "sm3",
846 [__builtin_ctz(ARM_HWCAP_A64_SM4 )] = "sm4",
847 [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
848 [__builtin_ctz(ARM_HWCAP_A64_SHA512 )] = "sha512",
849 [__builtin_ctz(ARM_HWCAP_A64_SVE )] = "sve",
850 [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
851 [__builtin_ctz(ARM_HWCAP_A64_DIT )] = "dit",
852 [__builtin_ctz(ARM_HWCAP_A64_USCAT )] = "uscat",
853 [__builtin_ctz(ARM_HWCAP_A64_ILRCPC )] = "ilrcpc",
854 [__builtin_ctz(ARM_HWCAP_A64_FLAGM )] = "flagm",
855 [__builtin_ctz(ARM_HWCAP_A64_SSBS )] = "ssbs",
856 [__builtin_ctz(ARM_HWCAP_A64_SB )] = "sb",
857 [__builtin_ctz(ARM_HWCAP_A64_PACA )] = "paca",
858 [__builtin_ctz(ARM_HWCAP_A64_PACG )] = "pacg",
859 };
860
861 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
862 }
863
864 const char *elf_hwcap2_str(uint32_t bit)
865 {
866 static const char *hwcap_str[] = {
867 [__builtin_ctz(ARM_HWCAP2_A64_DCPODP )] = "dcpodp",
868 [__builtin_ctz(ARM_HWCAP2_A64_SVE2 )] = "sve2",
869 [__builtin_ctz(ARM_HWCAP2_A64_SVEAES )] = "sveaes",
870 [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL )] = "svepmull",
871 [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM )] = "svebitperm",
872 [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3 )] = "svesha3",
873 [__builtin_ctz(ARM_HWCAP2_A64_SVESM4 )] = "svesm4",
874 [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2 )] = "flagm2",
875 [__builtin_ctz(ARM_HWCAP2_A64_FRINT )] = "frint",
876 [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM )] = "svei8mm",
877 [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM )] = "svef32mm",
878 [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM )] = "svef64mm",
879 [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16 )] = "svebf16",
880 [__builtin_ctz(ARM_HWCAP2_A64_I8MM )] = "i8mm",
881 [__builtin_ctz(ARM_HWCAP2_A64_BF16 )] = "bf16",
882 [__builtin_ctz(ARM_HWCAP2_A64_DGH )] = "dgh",
883 [__builtin_ctz(ARM_HWCAP2_A64_RNG )] = "rng",
884 [__builtin_ctz(ARM_HWCAP2_A64_BTI )] = "bti",
885 [__builtin_ctz(ARM_HWCAP2_A64_MTE )] = "mte",
886 [__builtin_ctz(ARM_HWCAP2_A64_ECV )] = "ecv",
887 [__builtin_ctz(ARM_HWCAP2_A64_AFP )] = "afp",
888 [__builtin_ctz(ARM_HWCAP2_A64_RPRES )] = "rpres",
889 [__builtin_ctz(ARM_HWCAP2_A64_MTE3 )] = "mte3",
890 [__builtin_ctz(ARM_HWCAP2_A64_SME )] = "sme",
891 [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64 )] = "smei16i64",
892 [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64 )] = "smef64f64",
893 [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32 )] = "smei8i32",
894 [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32 )] = "smef16f32",
895 [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32 )] = "smeb16f32",
896 [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32 )] = "smef32f32",
897 [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64 )] = "smefa64",
898 [__builtin_ctz(ARM_HWCAP2_A64_WFXT )] = "wfxt",
899 [__builtin_ctzll(ARM_HWCAP2_A64_EBF16 )] = "ebf16",
900 [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16 )] = "sveebf16",
901 [__builtin_ctzll(ARM_HWCAP2_A64_CSSC )] = "cssc",
902 [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM )] = "rprfm",
903 [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1 )] = "sve2p1",
904 [__builtin_ctzll(ARM_HWCAP2_A64_SME2 )] = "sme2",
905 [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1 )] = "sme2p1",
906 [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
907 [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
908 [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
909 [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
910 [__builtin_ctzll(ARM_HWCAP2_A64_MOPS )] = "mops",
911 [__builtin_ctzll(ARM_HWCAP2_A64_HBC )] = "hbc",
912 };
913
914 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
915 }
916
917 #undef GET_FEATURE_ID
918
919 #endif /* not TARGET_AARCH64 */
920 #endif /* TARGET_ARM */
921
922 #ifdef TARGET_SPARC
923 #ifdef TARGET_SPARC64
924
925 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
926 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
927 #ifndef TARGET_ABI32
928 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
929 #else
930 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
931 #endif
932
933 #define ELF_CLASS ELFCLASS64
934 #define ELF_ARCH EM_SPARCV9
935 #else
936 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
937 | HWCAP_SPARC_MULDIV)
938 #define ELF_CLASS ELFCLASS32
939 #define ELF_ARCH EM_SPARC
940 #endif /* TARGET_SPARC64 */
941
942 static inline void init_thread(struct target_pt_regs *regs,
943 struct image_info *infop)
944 {
945 /* Note that target_cpu_copy_regs does not read psr/tstate. */
946 regs->pc = infop->entry;
947 regs->npc = regs->pc + 4;
948 regs->y = 0;
949 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
950 - TARGET_STACK_BIAS);
951 }
952 #endif /* TARGET_SPARC */
953
954 #ifdef TARGET_PPC
955
956 #define ELF_MACHINE PPC_ELF_MACHINE
957
958 #if defined(TARGET_PPC64)
959
960 #define elf_check_arch(x) ( (x) == EM_PPC64 )
961
962 #define ELF_CLASS ELFCLASS64
963
964 #else
965
966 #define ELF_CLASS ELFCLASS32
967 #define EXSTACK_DEFAULT true
968
969 #endif
970
971 #define ELF_ARCH EM_PPC
972
973 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
974 See arch/powerpc/include/asm/cputable.h. */
975 enum {
976 QEMU_PPC_FEATURE_32 = 0x80000000,
977 QEMU_PPC_FEATURE_64 = 0x40000000,
978 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
979 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
980 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
981 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
982 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
983 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
984 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
985 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
986 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
987 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
988 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
989 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
990 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
991 QEMU_PPC_FEATURE_CELL = 0x00010000,
992 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
993 QEMU_PPC_FEATURE_SMT = 0x00004000,
994 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
995 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
996 QEMU_PPC_FEATURE_PA6T = 0x00000800,
997 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
998 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
999 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
1000 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
1001 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
1002
1003 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
1004 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
1005
1006 /* Feature definitions in AT_HWCAP2. */
1007 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
1008 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
1009 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
1010 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
1011 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
1012 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
1013 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
1014 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
1015 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
1016 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
1017 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
1018 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
1019 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
1020 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
1021 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
1022 };
1023
1024 #define ELF_HWCAP get_elf_hwcap()
1025
1026 static uint32_t get_elf_hwcap(void)
1027 {
1028 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1029 uint32_t features = 0;
1030
1031 /* We don't have to be terribly complete here; the high points are
1032 Altivec/FP/SPE support. Anything else is just a bonus. */
1033 #define GET_FEATURE(flag, feature) \
1034 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1035 #define GET_FEATURE2(flags, feature) \
1036 do { \
1037 if ((cpu->env.insns_flags2 & flags) == flags) { \
1038 features |= feature; \
1039 } \
1040 } while (0)
1041 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
1042 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
1043 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
1044 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
1045 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
1046 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
1047 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
1048 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
1049 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
1050 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
1051 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
1052 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
1053 QEMU_PPC_FEATURE_ARCH_2_06);
1054 #undef GET_FEATURE
1055 #undef GET_FEATURE2
1056
1057 return features;
1058 }
1059
1060 #define ELF_HWCAP2 get_elf_hwcap2()
1061
1062 static uint32_t get_elf_hwcap2(void)
1063 {
1064 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1065 uint32_t features = 0;
1066
1067 #define GET_FEATURE(flag, feature) \
1068 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1069 #define GET_FEATURE2(flag, feature) \
1070 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1071
1072 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
1073 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
1074 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
1075 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
1076 QEMU_PPC_FEATURE2_VEC_CRYPTO);
1077 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
1078 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
1079 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
1080 QEMU_PPC_FEATURE2_MMA);
1081
1082 #undef GET_FEATURE
1083 #undef GET_FEATURE2
1084
1085 return features;
1086 }
1087
1088 /*
1089 * The requirements here are:
1090 * - keep the final alignment of sp (sp & 0xf)
1091 * - make sure the 32-bit value at the first 16 byte aligned position of
1092 * AUXV is greater than 16 for glibc compatibility.
1093 * AT_IGNOREPPC is used for that.
1094 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1095 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1096 */
1097 #define DLINFO_ARCH_ITEMS 5
1098 #define ARCH_DLINFO \
1099 do { \
1100 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
1101 /* \
1102 * Handle glibc compatibility: these magic entries must \
1103 * be at the lowest addresses in the final auxv. \
1104 */ \
1105 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
1106 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
1107 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1108 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1109 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
1110 } while (0)
1111
1112 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
1113 {
1114 _regs->gpr[1] = infop->start_stack;
1115 #if defined(TARGET_PPC64)
1116 if (get_ppc64_abi(infop) < 2) {
1117 uint64_t val;
1118 get_user_u64(val, infop->entry + 8);
1119 _regs->gpr[2] = val + infop->load_bias;
1120 get_user_u64(val, infop->entry);
1121 infop->entry = val + infop->load_bias;
1122 } else {
1123 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
1124 }
1125 #endif
1126 _regs->nip = infop->entry;
1127 }
1128
1129 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
1130 #define ELF_NREG 48
1131 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1132
1133 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
1134 {
1135 int i;
1136 target_ulong ccr = 0;
1137
1138 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
1139 (*regs)[i] = tswapreg(env->gpr[i]);
1140 }
1141
1142 (*regs)[32] = tswapreg(env->nip);
1143 (*regs)[33] = tswapreg(env->msr);
1144 (*regs)[35] = tswapreg(env->ctr);
1145 (*regs)[36] = tswapreg(env->lr);
1146 (*regs)[37] = tswapreg(cpu_read_xer(env));
1147
1148 ccr = ppc_get_cr(env);
1149 (*regs)[38] = tswapreg(ccr);
1150 }
1151
1152 #define USE_ELF_CORE_DUMP
1153 #define ELF_EXEC_PAGESIZE 4096
1154
1155 #endif
1156
1157 #ifdef TARGET_LOONGARCH64
1158
1159 #define ELF_CLASS ELFCLASS64
1160 #define ELF_ARCH EM_LOONGARCH
1161 #define EXSTACK_DEFAULT true
1162
1163 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1164
1165 static inline void init_thread(struct target_pt_regs *regs,
1166 struct image_info *infop)
1167 {
1168 /*Set crmd PG,DA = 1,0 */
1169 regs->csr.crmd = 2 << 3;
1170 regs->csr.era = infop->entry;
1171 regs->regs[3] = infop->start_stack;
1172 }
1173
1174 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1175 #define ELF_NREG 45
1176 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1177
1178 enum {
1179 TARGET_EF_R0 = 0,
1180 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1181 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1182 };
1183
1184 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1185 const CPULoongArchState *env)
1186 {
1187 int i;
1188
1189 (*regs)[TARGET_EF_R0] = 0;
1190
1191 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1192 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1193 }
1194
1195 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1196 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1197 }
1198
1199 #define USE_ELF_CORE_DUMP
1200 #define ELF_EXEC_PAGESIZE 4096
1201
1202 #define ELF_HWCAP get_elf_hwcap()
1203
1204 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1205 enum {
1206 HWCAP_LOONGARCH_CPUCFG = (1 << 0),
1207 HWCAP_LOONGARCH_LAM = (1 << 1),
1208 HWCAP_LOONGARCH_UAL = (1 << 2),
1209 HWCAP_LOONGARCH_FPU = (1 << 3),
1210 HWCAP_LOONGARCH_LSX = (1 << 4),
1211 HWCAP_LOONGARCH_LASX = (1 << 5),
1212 HWCAP_LOONGARCH_CRC32 = (1 << 6),
1213 HWCAP_LOONGARCH_COMPLEX = (1 << 7),
1214 HWCAP_LOONGARCH_CRYPTO = (1 << 8),
1215 HWCAP_LOONGARCH_LVZ = (1 << 9),
1216 HWCAP_LOONGARCH_LBT_X86 = (1 << 10),
1217 HWCAP_LOONGARCH_LBT_ARM = (1 << 11),
1218 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1219 };
1220
1221 static uint32_t get_elf_hwcap(void)
1222 {
1223 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1224 uint32_t hwcaps = 0;
1225
1226 hwcaps |= HWCAP_LOONGARCH_CRC32;
1227
1228 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1229 hwcaps |= HWCAP_LOONGARCH_UAL;
1230 }
1231
1232 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1233 hwcaps |= HWCAP_LOONGARCH_FPU;
1234 }
1235
1236 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1237 hwcaps |= HWCAP_LOONGARCH_LAM;
1238 }
1239
1240 return hwcaps;
1241 }
1242
1243 #define ELF_PLATFORM "loongarch"
1244
1245 #endif /* TARGET_LOONGARCH64 */
1246
1247 #ifdef TARGET_MIPS
1248
1249 #ifdef TARGET_MIPS64
1250 #define ELF_CLASS ELFCLASS64
1251 #else
1252 #define ELF_CLASS ELFCLASS32
1253 #endif
1254 #define ELF_ARCH EM_MIPS
1255 #define EXSTACK_DEFAULT true
1256
1257 #ifdef TARGET_ABI_MIPSN32
1258 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1259 #else
1260 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1261 #endif
1262
1263 #define ELF_BASE_PLATFORM get_elf_base_platform()
1264
1265 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \
1266 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1267 { return _base_platform; } } while (0)
1268
1269 static const char *get_elf_base_platform(void)
1270 {
1271 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1272
1273 /* 64 bit ISAs goes first */
1274 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1275 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1276 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1277 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1278 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1279 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1280 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1281
1282 /* 32 bit ISAs */
1283 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1284 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1285 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1286 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1287 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1288
1289 /* Fallback */
1290 return "mips";
1291 }
1292 #undef MATCH_PLATFORM_INSN
1293
1294 static inline void init_thread(struct target_pt_regs *regs,
1295 struct image_info *infop)
1296 {
1297 regs->cp0_status = 2 << CP0St_KSU;
1298 regs->cp0_epc = infop->entry;
1299 regs->regs[29] = infop->start_stack;
1300 }
1301
1302 /* See linux kernel: arch/mips/include/asm/elf.h. */
1303 #define ELF_NREG 45
1304 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1305
1306 /* See linux kernel: arch/mips/include/asm/reg.h. */
1307 enum {
1308 #ifdef TARGET_MIPS64
1309 TARGET_EF_R0 = 0,
1310 #else
1311 TARGET_EF_R0 = 6,
1312 #endif
1313 TARGET_EF_R26 = TARGET_EF_R0 + 26,
1314 TARGET_EF_R27 = TARGET_EF_R0 + 27,
1315 TARGET_EF_LO = TARGET_EF_R0 + 32,
1316 TARGET_EF_HI = TARGET_EF_R0 + 33,
1317 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1318 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1319 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1320 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1321 };
1322
1323 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1324 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1325 {
1326 int i;
1327
1328 for (i = 0; i < TARGET_EF_R0; i++) {
1329 (*regs)[i] = 0;
1330 }
1331 (*regs)[TARGET_EF_R0] = 0;
1332
1333 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1334 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1335 }
1336
1337 (*regs)[TARGET_EF_R26] = 0;
1338 (*regs)[TARGET_EF_R27] = 0;
1339 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1340 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1341 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1342 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1343 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1344 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1345 }
1346
1347 #define USE_ELF_CORE_DUMP
1348 #define ELF_EXEC_PAGESIZE 4096
1349
1350 /* See arch/mips/include/uapi/asm/hwcap.h. */
1351 enum {
1352 HWCAP_MIPS_R6 = (1 << 0),
1353 HWCAP_MIPS_MSA = (1 << 1),
1354 HWCAP_MIPS_CRC32 = (1 << 2),
1355 HWCAP_MIPS_MIPS16 = (1 << 3),
1356 HWCAP_MIPS_MDMX = (1 << 4),
1357 HWCAP_MIPS_MIPS3D = (1 << 5),
1358 HWCAP_MIPS_SMARTMIPS = (1 << 6),
1359 HWCAP_MIPS_DSP = (1 << 7),
1360 HWCAP_MIPS_DSP2 = (1 << 8),
1361 HWCAP_MIPS_DSP3 = (1 << 9),
1362 HWCAP_MIPS_MIPS16E2 = (1 << 10),
1363 HWCAP_LOONGSON_MMI = (1 << 11),
1364 HWCAP_LOONGSON_EXT = (1 << 12),
1365 HWCAP_LOONGSON_EXT2 = (1 << 13),
1366 HWCAP_LOONGSON_CPUCFG = (1 << 14),
1367 };
1368
1369 #define ELF_HWCAP get_elf_hwcap()
1370
1371 #define GET_FEATURE_INSN(_flag, _hwcap) \
1372 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1373
1374 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1375 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1376
1377 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1378 do { \
1379 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1380 hwcaps |= _hwcap; \
1381 } \
1382 } while (0)
1383
1384 static uint32_t get_elf_hwcap(void)
1385 {
1386 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1387 uint32_t hwcaps = 0;
1388
1389 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1390 2, HWCAP_MIPS_R6);
1391 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1392 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1393 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1394
1395 return hwcaps;
1396 }
1397
1398 #undef GET_FEATURE_REG_EQU
1399 #undef GET_FEATURE_REG_SET
1400 #undef GET_FEATURE_INSN
1401
1402 #endif /* TARGET_MIPS */
1403
1404 #ifdef TARGET_MICROBLAZE
1405
1406 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1407
1408 #define ELF_CLASS ELFCLASS32
1409 #define ELF_ARCH EM_MICROBLAZE
1410
1411 static inline void init_thread(struct target_pt_regs *regs,
1412 struct image_info *infop)
1413 {
1414 regs->pc = infop->entry;
1415 regs->r1 = infop->start_stack;
1416
1417 }
1418
1419 #define ELF_EXEC_PAGESIZE 4096
1420
1421 #define USE_ELF_CORE_DUMP
1422 #define ELF_NREG 38
1423 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1424
1425 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1426 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1427 {
1428 int i, pos = 0;
1429
1430 for (i = 0; i < 32; i++) {
1431 (*regs)[pos++] = tswapreg(env->regs[i]);
1432 }
1433
1434 (*regs)[pos++] = tswapreg(env->pc);
1435 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1436 (*regs)[pos++] = 0;
1437 (*regs)[pos++] = tswapreg(env->ear);
1438 (*regs)[pos++] = 0;
1439 (*regs)[pos++] = tswapreg(env->esr);
1440 }
1441
1442 #endif /* TARGET_MICROBLAZE */
1443
1444 #ifdef TARGET_NIOS2
1445
1446 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1447
1448 #define ELF_CLASS ELFCLASS32
1449 #define ELF_ARCH EM_ALTERA_NIOS2
1450
1451 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1452 {
1453 regs->ea = infop->entry;
1454 regs->sp = infop->start_stack;
1455 }
1456
1457 #define LO_COMMPAGE TARGET_PAGE_SIZE
1458
1459 static bool init_guest_commpage(void)
1460 {
1461 static const uint8_t kuser_page[4 + 2 * 64] = {
1462 /* __kuser_helper_version */
1463 [0x00] = 0x02, 0x00, 0x00, 0x00,
1464
1465 /* __kuser_cmpxchg */
1466 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
1467 0x3a, 0x28, 0x00, 0xf8, /* ret */
1468
1469 /* __kuser_sigtramp */
1470 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
1471 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
1472 };
1473
1474 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1475 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1476 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1477
1478 if (addr == MAP_FAILED) {
1479 perror("Allocating guest commpage");
1480 exit(EXIT_FAILURE);
1481 }
1482 if (addr != want) {
1483 return false;
1484 }
1485
1486 memcpy(addr, kuser_page, sizeof(kuser_page));
1487
1488 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1489 perror("Protecting guest commpage");
1490 exit(EXIT_FAILURE);
1491 }
1492
1493 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1494 PAGE_READ | PAGE_EXEC | PAGE_VALID);
1495 return true;
1496 }
1497
1498 #define ELF_EXEC_PAGESIZE 4096
1499
1500 #define USE_ELF_CORE_DUMP
1501 #define ELF_NREG 49
1502 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1503
1504 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1505 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1506 const CPUNios2State *env)
1507 {
1508 int i;
1509
1510 (*regs)[0] = -1;
1511 for (i = 1; i < 8; i++) /* r0-r7 */
1512 (*regs)[i] = tswapreg(env->regs[i + 7]);
1513
1514 for (i = 8; i < 16; i++) /* r8-r15 */
1515 (*regs)[i] = tswapreg(env->regs[i - 8]);
1516
1517 for (i = 16; i < 24; i++) /* r16-r23 */
1518 (*regs)[i] = tswapreg(env->regs[i + 7]);
1519 (*regs)[24] = -1; /* R_ET */
1520 (*regs)[25] = -1; /* R_BT */
1521 (*regs)[26] = tswapreg(env->regs[R_GP]);
1522 (*regs)[27] = tswapreg(env->regs[R_SP]);
1523 (*regs)[28] = tswapreg(env->regs[R_FP]);
1524 (*regs)[29] = tswapreg(env->regs[R_EA]);
1525 (*regs)[30] = -1; /* R_SSTATUS */
1526 (*regs)[31] = tswapreg(env->regs[R_RA]);
1527
1528 (*regs)[32] = tswapreg(env->pc);
1529
1530 (*regs)[33] = -1; /* R_STATUS */
1531 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1532
1533 for (i = 35; i < 49; i++) /* ... */
1534 (*regs)[i] = -1;
1535 }
1536
1537 #endif /* TARGET_NIOS2 */
1538
1539 #ifdef TARGET_OPENRISC
1540
1541 #define ELF_ARCH EM_OPENRISC
1542 #define ELF_CLASS ELFCLASS32
1543 #define ELF_DATA ELFDATA2MSB
1544
1545 static inline void init_thread(struct target_pt_regs *regs,
1546 struct image_info *infop)
1547 {
1548 regs->pc = infop->entry;
1549 regs->gpr[1] = infop->start_stack;
1550 }
1551
1552 #define USE_ELF_CORE_DUMP
1553 #define ELF_EXEC_PAGESIZE 8192
1554
1555 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1556 #define ELF_NREG 34 /* gprs and pc, sr */
1557 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1558
1559 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1560 const CPUOpenRISCState *env)
1561 {
1562 int i;
1563
1564 for (i = 0; i < 32; i++) {
1565 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1566 }
1567 (*regs)[32] = tswapreg(env->pc);
1568 (*regs)[33] = tswapreg(cpu_get_sr(env));
1569 }
1570 #define ELF_HWCAP 0
1571 #define ELF_PLATFORM NULL
1572
1573 #endif /* TARGET_OPENRISC */
1574
1575 #ifdef TARGET_SH4
1576
1577 #define ELF_CLASS ELFCLASS32
1578 #define ELF_ARCH EM_SH
1579
1580 static inline void init_thread(struct target_pt_regs *regs,
1581 struct image_info *infop)
1582 {
1583 /* Check other registers XXXXX */
1584 regs->pc = infop->entry;
1585 regs->regs[15] = infop->start_stack;
1586 }
1587
1588 /* See linux kernel: arch/sh/include/asm/elf.h. */
1589 #define ELF_NREG 23
1590 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1591
1592 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1593 enum {
1594 TARGET_REG_PC = 16,
1595 TARGET_REG_PR = 17,
1596 TARGET_REG_SR = 18,
1597 TARGET_REG_GBR = 19,
1598 TARGET_REG_MACH = 20,
1599 TARGET_REG_MACL = 21,
1600 TARGET_REG_SYSCALL = 22
1601 };
1602
1603 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1604 const CPUSH4State *env)
1605 {
1606 int i;
1607
1608 for (i = 0; i < 16; i++) {
1609 (*regs)[i] = tswapreg(env->gregs[i]);
1610 }
1611
1612 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1613 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1614 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1615 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1616 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1617 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1618 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1619 }
1620
1621 #define USE_ELF_CORE_DUMP
1622 #define ELF_EXEC_PAGESIZE 4096
1623
1624 enum {
1625 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1626 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1627 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1628 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1629 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1630 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1631 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1632 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1633 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1634 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1635 };
1636
1637 #define ELF_HWCAP get_elf_hwcap()
1638
1639 static uint32_t get_elf_hwcap(void)
1640 {
1641 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1642 uint32_t hwcap = 0;
1643
1644 hwcap |= SH_CPU_HAS_FPU;
1645
1646 if (cpu->env.features & SH_FEATURE_SH4A) {
1647 hwcap |= SH_CPU_HAS_LLSC;
1648 }
1649
1650 return hwcap;
1651 }
1652
1653 #endif
1654
1655 #ifdef TARGET_CRIS
1656
1657 #define ELF_CLASS ELFCLASS32
1658 #define ELF_ARCH EM_CRIS
1659
1660 static inline void init_thread(struct target_pt_regs *regs,
1661 struct image_info *infop)
1662 {
1663 regs->erp = infop->entry;
1664 }
1665
1666 #define ELF_EXEC_PAGESIZE 8192
1667
1668 #endif
1669
1670 #ifdef TARGET_M68K
1671
1672 #define ELF_CLASS ELFCLASS32
1673 #define ELF_ARCH EM_68K
1674
1675 /* ??? Does this need to do anything?
1676 #define ELF_PLAT_INIT(_r) */
1677
1678 static inline void init_thread(struct target_pt_regs *regs,
1679 struct image_info *infop)
1680 {
1681 regs->usp = infop->start_stack;
1682 regs->sr = 0;
1683 regs->pc = infop->entry;
1684 }
1685
1686 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1687 #define ELF_NREG 20
1688 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1689
1690 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1691 {
1692 (*regs)[0] = tswapreg(env->dregs[1]);
1693 (*regs)[1] = tswapreg(env->dregs[2]);
1694 (*regs)[2] = tswapreg(env->dregs[3]);
1695 (*regs)[3] = tswapreg(env->dregs[4]);
1696 (*regs)[4] = tswapreg(env->dregs[5]);
1697 (*regs)[5] = tswapreg(env->dregs[6]);
1698 (*regs)[6] = tswapreg(env->dregs[7]);
1699 (*regs)[7] = tswapreg(env->aregs[0]);
1700 (*regs)[8] = tswapreg(env->aregs[1]);
1701 (*regs)[9] = tswapreg(env->aregs[2]);
1702 (*regs)[10] = tswapreg(env->aregs[3]);
1703 (*regs)[11] = tswapreg(env->aregs[4]);
1704 (*regs)[12] = tswapreg(env->aregs[5]);
1705 (*regs)[13] = tswapreg(env->aregs[6]);
1706 (*regs)[14] = tswapreg(env->dregs[0]);
1707 (*regs)[15] = tswapreg(env->aregs[7]);
1708 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1709 (*regs)[17] = tswapreg(env->sr);
1710 (*regs)[18] = tswapreg(env->pc);
1711 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1712 }
1713
1714 #define USE_ELF_CORE_DUMP
1715 #define ELF_EXEC_PAGESIZE 8192
1716
1717 #endif
1718
1719 #ifdef TARGET_ALPHA
1720
1721 #define ELF_CLASS ELFCLASS64
1722 #define ELF_ARCH EM_ALPHA
1723
1724 static inline void init_thread(struct target_pt_regs *regs,
1725 struct image_info *infop)
1726 {
1727 regs->pc = infop->entry;
1728 regs->ps = 8;
1729 regs->usp = infop->start_stack;
1730 }
1731
1732 #define ELF_EXEC_PAGESIZE 8192
1733
1734 #endif /* TARGET_ALPHA */
1735
1736 #ifdef TARGET_S390X
1737
1738 #define ELF_CLASS ELFCLASS64
1739 #define ELF_DATA ELFDATA2MSB
1740 #define ELF_ARCH EM_S390
1741
1742 #include "elf.h"
1743
1744 #define ELF_HWCAP get_elf_hwcap()
1745
1746 #define GET_FEATURE(_feat, _hwcap) \
1747 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1748
1749 uint32_t get_elf_hwcap(void)
1750 {
1751 /*
1752 * Let's assume we always have esan3 and zarch.
1753 * 31-bit processes can use 64-bit registers (high gprs).
1754 */
1755 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1756
1757 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1758 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1759 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1760 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1761 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1762 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1763 hwcap |= HWCAP_S390_ETF3EH;
1764 }
1765 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1766 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1767 GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
1768
1769 return hwcap;
1770 }
1771
1772 const char *elf_hwcap_str(uint32_t bit)
1773 {
1774 static const char *hwcap_str[] = {
1775 [HWCAP_S390_NR_ESAN3] = "esan3",
1776 [HWCAP_S390_NR_ZARCH] = "zarch",
1777 [HWCAP_S390_NR_STFLE] = "stfle",
1778 [HWCAP_S390_NR_MSA] = "msa",
1779 [HWCAP_S390_NR_LDISP] = "ldisp",
1780 [HWCAP_S390_NR_EIMM] = "eimm",
1781 [HWCAP_S390_NR_DFP] = "dfp",
1782 [HWCAP_S390_NR_HPAGE] = "edat",
1783 [HWCAP_S390_NR_ETF3EH] = "etf3eh",
1784 [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1785 [HWCAP_S390_NR_TE] = "te",
1786 [HWCAP_S390_NR_VXRS] = "vx",
1787 [HWCAP_S390_NR_VXRS_BCD] = "vxd",
1788 [HWCAP_S390_NR_VXRS_EXT] = "vxe",
1789 [HWCAP_S390_NR_GS] = "gs",
1790 [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1791 [HWCAP_S390_NR_VXRS_PDE] = "vxp",
1792 [HWCAP_S390_NR_SORT] = "sort",
1793 [HWCAP_S390_NR_DFLT] = "dflt",
1794 [HWCAP_S390_NR_NNPA] = "nnpa",
1795 [HWCAP_S390_NR_PCI_MIO] = "pcimio",
1796 [HWCAP_S390_NR_SIE] = "sie",
1797 };
1798
1799 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1800 }
1801
1802 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1803 {
1804 regs->psw.addr = infop->entry;
1805 regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1806 PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1807 PSW_MASK_32;
1808 regs->gprs[15] = infop->start_stack;
1809 }
1810
1811 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1812 #define ELF_NREG 27
1813 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1814
1815 enum {
1816 TARGET_REG_PSWM = 0,
1817 TARGET_REG_PSWA = 1,
1818 TARGET_REG_GPRS = 2,
1819 TARGET_REG_ARS = 18,
1820 TARGET_REG_ORIG_R2 = 26,
1821 };
1822
1823 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1824 const CPUS390XState *env)
1825 {
1826 int i;
1827 uint32_t *aregs;
1828
1829 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1830 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1831 for (i = 0; i < 16; i++) {
1832 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1833 }
1834 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1835 for (i = 0; i < 16; i++) {
1836 aregs[i] = tswap32(env->aregs[i]);
1837 }
1838 (*regs)[TARGET_REG_ORIG_R2] = 0;
1839 }
1840
1841 #define USE_ELF_CORE_DUMP
1842 #define ELF_EXEC_PAGESIZE 4096
1843
1844 #endif /* TARGET_S390X */
1845
1846 #ifdef TARGET_RISCV
1847
1848 #define ELF_ARCH EM_RISCV
1849
1850 #ifdef TARGET_RISCV32
1851 #define ELF_CLASS ELFCLASS32
1852 #else
1853 #define ELF_CLASS ELFCLASS64
1854 #endif
1855
1856 #define ELF_HWCAP get_elf_hwcap()
1857
1858 static uint32_t get_elf_hwcap(void)
1859 {
1860 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1861 RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1862 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1863 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1864 | MISA_BIT('V');
1865
1866 return cpu->env.misa_ext & mask;
1867 #undef MISA_BIT
1868 }
1869
1870 static inline void init_thread(struct target_pt_regs *regs,
1871 struct image_info *infop)
1872 {
1873 regs->sepc = infop->entry;
1874 regs->sp = infop->start_stack;
1875 }
1876
1877 #define ELF_EXEC_PAGESIZE 4096
1878
1879 #endif /* TARGET_RISCV */
1880
1881 #ifdef TARGET_HPPA
1882
1883 #define ELF_CLASS ELFCLASS32
1884 #define ELF_ARCH EM_PARISC
1885 #define ELF_PLATFORM "PARISC"
1886 #define STACK_GROWS_DOWN 0
1887 #define STACK_ALIGNMENT 64
1888
1889 static inline void init_thread(struct target_pt_regs *regs,
1890 struct image_info *infop)
1891 {
1892 regs->iaoq[0] = infop->entry;
1893 regs->iaoq[1] = infop->entry + 4;
1894 regs->gr[23] = 0;
1895 regs->gr[24] = infop->argv;
1896 regs->gr[25] = infop->argc;
1897 /* The top-of-stack contains a linkage buffer. */
1898 regs->gr[30] = infop->start_stack + 64;
1899 regs->gr[31] = infop->entry;
1900 }
1901
1902 #define LO_COMMPAGE 0
1903
1904 static bool init_guest_commpage(void)
1905 {
1906 void *want = g2h_untagged(LO_COMMPAGE);
1907 void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1908 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1909
1910 if (addr == MAP_FAILED) {
1911 perror("Allocating guest commpage");
1912 exit(EXIT_FAILURE);
1913 }
1914 if (addr != want) {
1915 return false;
1916 }
1917
1918 /*
1919 * On Linux, page zero is normally marked execute only + gateway.
1920 * Normal read or write is supposed to fail (thus PROT_NONE above),
1921 * but specific offsets have kernel code mapped to raise permissions
1922 * and implement syscalls. Here, simply mark the page executable.
1923 * Special case the entry points during translation (see do_page_zero).
1924 */
1925 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1926 PAGE_EXEC | PAGE_VALID);
1927 return true;
1928 }
1929
1930 #endif /* TARGET_HPPA */
1931
1932 #ifdef TARGET_XTENSA
1933
1934 #define ELF_CLASS ELFCLASS32
1935 #define ELF_ARCH EM_XTENSA
1936
1937 static inline void init_thread(struct target_pt_regs *regs,
1938 struct image_info *infop)
1939 {
1940 regs->windowbase = 0;
1941 regs->windowstart = 1;
1942 regs->areg[1] = infop->start_stack;
1943 regs->pc = infop->entry;
1944 if (info_is_fdpic(infop)) {
1945 regs->areg[4] = infop->loadmap_addr;
1946 regs->areg[5] = infop->interpreter_loadmap_addr;
1947 if (infop->interpreter_loadmap_addr) {
1948 regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1949 } else {
1950 regs->areg[6] = infop->pt_dynamic_addr;
1951 }
1952 }
1953 }
1954
1955 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1956 #define ELF_NREG 128
1957 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1958
1959 enum {
1960 TARGET_REG_PC,
1961 TARGET_REG_PS,
1962 TARGET_REG_LBEG,
1963 TARGET_REG_LEND,
1964 TARGET_REG_LCOUNT,
1965 TARGET_REG_SAR,
1966 TARGET_REG_WINDOWSTART,
1967 TARGET_REG_WINDOWBASE,
1968 TARGET_REG_THREADPTR,
1969 TARGET_REG_AR0 = 64,
1970 };
1971
1972 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1973 const CPUXtensaState *env)
1974 {
1975 unsigned i;
1976
1977 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1978 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1979 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1980 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1981 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1982 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1983 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1984 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1985 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1986 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1987 for (i = 0; i < env->config->nareg; ++i) {
1988 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1989 }
1990 }
1991
1992 #define USE_ELF_CORE_DUMP
1993 #define ELF_EXEC_PAGESIZE 4096
1994
1995 #endif /* TARGET_XTENSA */
1996
1997 #ifdef TARGET_HEXAGON
1998
1999 #define ELF_CLASS ELFCLASS32
2000 #define ELF_ARCH EM_HEXAGON
2001
2002 static inline void init_thread(struct target_pt_regs *regs,
2003 struct image_info *infop)
2004 {
2005 regs->sepc = infop->entry;
2006 regs->sp = infop->start_stack;
2007 }
2008
2009 #endif /* TARGET_HEXAGON */
2010
2011 #ifndef ELF_BASE_PLATFORM
2012 #define ELF_BASE_PLATFORM (NULL)
2013 #endif
2014
2015 #ifndef ELF_PLATFORM
2016 #define ELF_PLATFORM (NULL)
2017 #endif
2018
2019 #ifndef ELF_MACHINE
2020 #define ELF_MACHINE ELF_ARCH
2021 #endif
2022
2023 #ifndef elf_check_arch
2024 #define elf_check_arch(x) ((x) == ELF_ARCH)
2025 #endif
2026
2027 #ifndef elf_check_abi
2028 #define elf_check_abi(x) (1)
2029 #endif
2030
2031 #ifndef ELF_HWCAP
2032 #define ELF_HWCAP 0
2033 #endif
2034
2035 #ifndef STACK_GROWS_DOWN
2036 #define STACK_GROWS_DOWN 1
2037 #endif
2038
2039 #ifndef STACK_ALIGNMENT
2040 #define STACK_ALIGNMENT 16
2041 #endif
2042
2043 #ifdef TARGET_ABI32
2044 #undef ELF_CLASS
2045 #define ELF_CLASS ELFCLASS32
2046 #undef bswaptls
2047 #define bswaptls(ptr) bswap32s(ptr)
2048 #endif
2049
2050 #ifndef EXSTACK_DEFAULT
2051 #define EXSTACK_DEFAULT false
2052 #endif
2053
2054 #include "elf.h"
2055
2056 /* We must delay the following stanzas until after "elf.h". */
2057 #if defined(TARGET_AARCH64)
2058
2059 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2060 const uint32_t *data,
2061 struct image_info *info,
2062 Error **errp)
2063 {
2064 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
2065 if (pr_datasz != sizeof(uint32_t)) {
2066 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2067 return false;
2068 }
2069 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2070 info->note_flags = *data;
2071 }
2072 return true;
2073 }
2074 #define ARCH_USE_GNU_PROPERTY 1
2075
2076 #else
2077
2078 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2079 const uint32_t *data,
2080 struct image_info *info,
2081 Error **errp)
2082 {
2083 g_assert_not_reached();
2084 }
2085 #define ARCH_USE_GNU_PROPERTY 0
2086
2087 #endif
2088
2089 struct exec
2090 {
2091 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
2092 unsigned int a_text; /* length of text, in bytes */
2093 unsigned int a_data; /* length of data, in bytes */
2094 unsigned int a_bss; /* length of uninitialized data area, in bytes */
2095 unsigned int a_syms; /* length of symbol table data in file, in bytes */
2096 unsigned int a_entry; /* start address */
2097 unsigned int a_trsize; /* length of relocation info for text, in bytes */
2098 unsigned int a_drsize; /* length of relocation info for data, in bytes */
2099 };
2100
2101
2102 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2103 #define OMAGIC 0407
2104 #define NMAGIC 0410
2105 #define ZMAGIC 0413
2106 #define QMAGIC 0314
2107
2108 #define DLINFO_ITEMS 16
2109
2110 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
2111 {
2112 memcpy(to, from, n);
2113 }
2114
2115 #ifdef BSWAP_NEEDED
2116 static void bswap_ehdr(struct elfhdr *ehdr)
2117 {
2118 bswap16s(&ehdr->e_type); /* Object file type */
2119 bswap16s(&ehdr->e_machine); /* Architecture */
2120 bswap32s(&ehdr->e_version); /* Object file version */
2121 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
2122 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
2123 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
2124 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
2125 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
2126 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
2127 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
2128 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
2129 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
2130 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
2131 }
2132
2133 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
2134 {
2135 int i;
2136 for (i = 0; i < phnum; ++i, ++phdr) {
2137 bswap32s(&phdr->p_type); /* Segment type */
2138 bswap32s(&phdr->p_flags); /* Segment flags */
2139 bswaptls(&phdr->p_offset); /* Segment file offset */
2140 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
2141 bswaptls(&phdr->p_paddr); /* Segment physical address */
2142 bswaptls(&phdr->p_filesz); /* Segment size in file */
2143 bswaptls(&phdr->p_memsz); /* Segment size in memory */
2144 bswaptls(&phdr->p_align); /* Segment alignment */
2145 }
2146 }
2147
2148 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2149 {
2150 int i;
2151 for (i = 0; i < shnum; ++i, ++shdr) {
2152 bswap32s(&shdr->sh_name);
2153 bswap32s(&shdr->sh_type);
2154 bswaptls(&shdr->sh_flags);
2155 bswaptls(&shdr->sh_addr);
2156 bswaptls(&shdr->sh_offset);
2157 bswaptls(&shdr->sh_size);
2158 bswap32s(&shdr->sh_link);
2159 bswap32s(&shdr->sh_info);
2160 bswaptls(&shdr->sh_addralign);
2161 bswaptls(&shdr->sh_entsize);
2162 }
2163 }
2164
2165 static void bswap_sym(struct elf_sym *sym)
2166 {
2167 bswap32s(&sym->st_name);
2168 bswaptls(&sym->st_value);
2169 bswaptls(&sym->st_size);
2170 bswap16s(&sym->st_shndx);
2171 }
2172
2173 #ifdef TARGET_MIPS
2174 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2175 {
2176 bswap16s(&abiflags->version);
2177 bswap32s(&abiflags->ases);
2178 bswap32s(&abiflags->isa_ext);
2179 bswap32s(&abiflags->flags1);
2180 bswap32s(&abiflags->flags2);
2181 }
2182 #endif
2183 #else
2184 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2185 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2186 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2187 static inline void bswap_sym(struct elf_sym *sym) { }
2188 #ifdef TARGET_MIPS
2189 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2190 #endif
2191 #endif
2192
2193 #ifdef USE_ELF_CORE_DUMP
2194 static int elf_core_dump(int, const CPUArchState *);
2195 #endif /* USE_ELF_CORE_DUMP */
2196 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
2197
2198 /* Verify the portions of EHDR within E_IDENT for the target.
2199 This can be performed before bswapping the entire header. */
2200 static bool elf_check_ident(struct elfhdr *ehdr)
2201 {
2202 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2203 && ehdr->e_ident[EI_MAG1] == ELFMAG1
2204 && ehdr->e_ident[EI_MAG2] == ELFMAG2
2205 && ehdr->e_ident[EI_MAG3] == ELFMAG3
2206 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2207 && ehdr->e_ident[EI_DATA] == ELF_DATA
2208 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2209 }
2210
2211 /* Verify the portions of EHDR outside of E_IDENT for the target.
2212 This has to wait until after bswapping the header. */
2213 static bool elf_check_ehdr(struct elfhdr *ehdr)
2214 {
2215 return (elf_check_arch(ehdr->e_machine)
2216 && elf_check_abi(ehdr->e_flags)
2217 && ehdr->e_ehsize == sizeof(struct elfhdr)
2218 && ehdr->e_phentsize == sizeof(struct elf_phdr)
2219 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2220 }
2221
2222 /*
2223 * 'copy_elf_strings()' copies argument/envelope strings from user
2224 * memory to free pages in kernel mem. These are in a format ready
2225 * to be put directly into the top of new user memory.
2226 *
2227 */
2228 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2229 abi_ulong p, abi_ulong stack_limit)
2230 {
2231 char *tmp;
2232 int len, i;
2233 abi_ulong top = p;
2234
2235 if (!p) {
2236 return 0; /* bullet-proofing */
2237 }
2238
2239 if (STACK_GROWS_DOWN) {
2240 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2241 for (i = argc - 1; i >= 0; --i) {
2242 tmp = argv[i];
2243 if (!tmp) {
2244 fprintf(stderr, "VFS: argc is wrong");
2245 exit(-1);
2246 }
2247 len = strlen(tmp) + 1;
2248 tmp += len;
2249
2250 if (len > (p - stack_limit)) {
2251 return 0;
2252 }
2253 while (len) {
2254 int bytes_to_copy = (len > offset) ? offset : len;
2255 tmp -= bytes_to_copy;
2256 p -= bytes_to_copy;
2257 offset -= bytes_to_copy;
2258 len -= bytes_to_copy;
2259
2260 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2261
2262 if (offset == 0) {
2263 memcpy_to_target(p, scratch, top - p);
2264 top = p;
2265 offset = TARGET_PAGE_SIZE;
2266 }
2267 }
2268 }
2269 if (p != top) {
2270 memcpy_to_target(p, scratch + offset, top - p);
2271 }
2272 } else {
2273 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2274 for (i = 0; i < argc; ++i) {
2275 tmp = argv[i];
2276 if (!tmp) {
2277 fprintf(stderr, "VFS: argc is wrong");
2278 exit(-1);
2279 }
2280 len = strlen(tmp) + 1;
2281 if (len > (stack_limit - p)) {
2282 return 0;
2283 }
2284 while (len) {
2285 int bytes_to_copy = (len > remaining) ? remaining : len;
2286
2287 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2288
2289 tmp += bytes_to_copy;
2290 remaining -= bytes_to_copy;
2291 p += bytes_to_copy;
2292 len -= bytes_to_copy;
2293
2294 if (remaining == 0) {
2295 memcpy_to_target(top, scratch, p - top);
2296 top = p;
2297 remaining = TARGET_PAGE_SIZE;
2298 }
2299 }
2300 }
2301 if (p != top) {
2302 memcpy_to_target(top, scratch, p - top);
2303 }
2304 }
2305
2306 return p;
2307 }
2308
2309 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2310 * argument/environment space. Newer kernels (>2.6.33) allow more,
2311 * dependent on stack size, but guarantee at least 32 pages for
2312 * backwards compatibility.
2313 */
2314 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2315
2316 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2317 struct image_info *info)
2318 {
2319 abi_ulong size, error, guard;
2320 int prot;
2321
2322 size = guest_stack_size;
2323 if (size < STACK_LOWER_LIMIT) {
2324 size = STACK_LOWER_LIMIT;
2325 }
2326
2327 if (STACK_GROWS_DOWN) {
2328 guard = TARGET_PAGE_SIZE;
2329 if (guard < qemu_real_host_page_size()) {
2330 guard = qemu_real_host_page_size();
2331 }
2332 } else {
2333 /* no guard page for hppa target where stack grows upwards. */
2334 guard = 0;
2335 }
2336
2337 prot = PROT_READ | PROT_WRITE;
2338 if (info->exec_stack) {
2339 prot |= PROT_EXEC;
2340 }
2341 error = target_mmap(0, size + guard, prot,
2342 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2343 if (error == -1) {
2344 perror("mmap stack");
2345 exit(-1);
2346 }
2347
2348 /* We reserve one extra page at the top of the stack as guard. */
2349 if (STACK_GROWS_DOWN) {
2350 target_mprotect(error, guard, PROT_NONE);
2351 info->stack_limit = error + guard;
2352 return info->stack_limit + size - sizeof(void *);
2353 } else {
2354 info->stack_limit = error + size;
2355 return error;
2356 }
2357 }
2358
2359 /**
2360 * zero_bss:
2361 *
2362 * Map and zero the bss. We need to explicitly zero any fractional pages
2363 * after the data section (i.e. bss). Return false on mapping failure.
2364 */
2365 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, int prot)
2366 {
2367 abi_ulong align_bss;
2368
2369 align_bss = TARGET_PAGE_ALIGN(start_bss);
2370 end_bss = TARGET_PAGE_ALIGN(end_bss);
2371
2372 if (start_bss < align_bss) {
2373 int flags = page_get_flags(start_bss);
2374
2375 if (!(flags & PAGE_VALID)) {
2376 /* Map the start of the bss. */
2377 align_bss -= TARGET_PAGE_SIZE;
2378 } else if (flags & PAGE_WRITE) {
2379 /* The page is already mapped writable. */
2380 memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2381 } else {
2382 /* Read-only zeros? */
2383 g_assert_not_reached();
2384 }
2385 }
2386
2387 return align_bss >= end_bss ||
2388 target_mmap(align_bss, end_bss - align_bss, prot,
2389 MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) != -1;
2390 }
2391
2392 #if defined(TARGET_ARM)
2393 static int elf_is_fdpic(struct elfhdr *exec)
2394 {
2395 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2396 }
2397 #elif defined(TARGET_XTENSA)
2398 static int elf_is_fdpic(struct elfhdr *exec)
2399 {
2400 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2401 }
2402 #else
2403 /* Default implementation, always false. */
2404 static int elf_is_fdpic(struct elfhdr *exec)
2405 {
2406 return 0;
2407 }
2408 #endif
2409
2410 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2411 {
2412 uint16_t n;
2413 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2414
2415 /* elf32_fdpic_loadseg */
2416 n = info->nsegs;
2417 while (n--) {
2418 sp -= 12;
2419 put_user_u32(loadsegs[n].addr, sp+0);
2420 put_user_u32(loadsegs[n].p_vaddr, sp+4);
2421 put_user_u32(loadsegs[n].p_memsz, sp+8);
2422 }
2423
2424 /* elf32_fdpic_loadmap */
2425 sp -= 4;
2426 put_user_u16(0, sp+0); /* version */
2427 put_user_u16(info->nsegs, sp+2); /* nsegs */
2428
2429 info->personality = PER_LINUX_FDPIC;
2430 info->loadmap_addr = sp;
2431
2432 return sp;
2433 }
2434
2435 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2436 struct elfhdr *exec,
2437 struct image_info *info,
2438 struct image_info *interp_info)
2439 {
2440 abi_ulong sp;
2441 abi_ulong u_argc, u_argv, u_envp, u_auxv;
2442 int size;
2443 int i;
2444 abi_ulong u_rand_bytes;
2445 uint8_t k_rand_bytes[16];
2446 abi_ulong u_platform, u_base_platform;
2447 const char *k_platform, *k_base_platform;
2448 const int n = sizeof(elf_addr_t);
2449
2450 sp = p;
2451
2452 /* Needs to be before we load the env/argc/... */
2453 if (elf_is_fdpic(exec)) {
2454 /* Need 4 byte alignment for these structs */
2455 sp &= ~3;
2456 sp = loader_build_fdpic_loadmap(info, sp);
2457 info->other_info = interp_info;
2458 if (interp_info) {
2459 interp_info->other_info = info;
2460 sp = loader_build_fdpic_loadmap(interp_info, sp);
2461 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2462 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2463 } else {
2464 info->interpreter_loadmap_addr = 0;
2465 info->interpreter_pt_dynamic_addr = 0;
2466 }
2467 }
2468
2469 u_base_platform = 0;
2470 k_base_platform = ELF_BASE_PLATFORM;
2471 if (k_base_platform) {
2472 size_t len = strlen(k_base_platform) + 1;
2473 if (STACK_GROWS_DOWN) {
2474 sp -= (len + n - 1) & ~(n - 1);
2475 u_base_platform = sp;
2476 /* FIXME - check return value of memcpy_to_target() for failure */
2477 memcpy_to_target(sp, k_base_platform, len);
2478 } else {
2479 memcpy_to_target(sp, k_base_platform, len);
2480 u_base_platform = sp;
2481 sp += len + 1;
2482 }
2483 }
2484
2485 u_platform = 0;
2486 k_platform = ELF_PLATFORM;
2487 if (k_platform) {
2488 size_t len = strlen(k_platform) + 1;
2489 if (STACK_GROWS_DOWN) {
2490 sp -= (len + n - 1) & ~(n - 1);
2491 u_platform = sp;
2492 /* FIXME - check return value of memcpy_to_target() for failure */
2493 memcpy_to_target(sp, k_platform, len);
2494 } else {
2495 memcpy_to_target(sp, k_platform, len);
2496 u_platform = sp;
2497 sp += len + 1;
2498 }
2499 }
2500
2501 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2502 * the argv and envp pointers.
2503 */
2504 if (STACK_GROWS_DOWN) {
2505 sp = QEMU_ALIGN_DOWN(sp, 16);
2506 } else {
2507 sp = QEMU_ALIGN_UP(sp, 16);
2508 }
2509
2510 /*
2511 * Generate 16 random bytes for userspace PRNG seeding.
2512 */
2513 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2514 if (STACK_GROWS_DOWN) {
2515 sp -= 16;
2516 u_rand_bytes = sp;
2517 /* FIXME - check return value of memcpy_to_target() for failure */
2518 memcpy_to_target(sp, k_rand_bytes, 16);
2519 } else {
2520 memcpy_to_target(sp, k_rand_bytes, 16);
2521 u_rand_bytes = sp;
2522 sp += 16;
2523 }
2524
2525 size = (DLINFO_ITEMS + 1) * 2;
2526 if (k_base_platform)
2527 size += 2;
2528 if (k_platform)
2529 size += 2;
2530 #ifdef DLINFO_ARCH_ITEMS
2531 size += DLINFO_ARCH_ITEMS * 2;
2532 #endif
2533 #ifdef ELF_HWCAP2
2534 size += 2;
2535 #endif
2536 info->auxv_len = size * n;
2537
2538 size += envc + argc + 2;
2539 size += 1; /* argc itself */
2540 size *= n;
2541
2542 /* Allocate space and finalize stack alignment for entry now. */
2543 if (STACK_GROWS_DOWN) {
2544 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2545 sp = u_argc;
2546 } else {
2547 u_argc = sp;
2548 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2549 }
2550
2551 u_argv = u_argc + n;
2552 u_envp = u_argv + (argc + 1) * n;
2553 u_auxv = u_envp + (envc + 1) * n;
2554 info->saved_auxv = u_auxv;
2555 info->argc = argc;
2556 info->envc = envc;
2557 info->argv = u_argv;
2558 info->envp = u_envp;
2559
2560 /* This is correct because Linux defines
2561 * elf_addr_t as Elf32_Off / Elf64_Off
2562 */
2563 #define NEW_AUX_ENT(id, val) do { \
2564 put_user_ual(id, u_auxv); u_auxv += n; \
2565 put_user_ual(val, u_auxv); u_auxv += n; \
2566 } while(0)
2567
2568 #ifdef ARCH_DLINFO
2569 /*
2570 * ARCH_DLINFO must come first so platform specific code can enforce
2571 * special alignment requirements on the AUXV if necessary (eg. PPC).
2572 */
2573 ARCH_DLINFO;
2574 #endif
2575 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2576 * on info->auxv_len will trigger.
2577 */
2578 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2579 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2580 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2581 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2582 /* Target doesn't support host page size alignment */
2583 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2584 } else {
2585 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2586 qemu_host_page_size)));
2587 }
2588 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2589 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2590 NEW_AUX_ENT(AT_ENTRY, info->entry);
2591 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2592 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2593 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2594 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2595 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2596 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2597 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2598 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2599 NEW_AUX_ENT(AT_EXECFN, info->file_string);
2600
2601 #ifdef ELF_HWCAP2
2602 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2603 #endif
2604
2605 if (u_base_platform) {
2606 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2607 }
2608 if (u_platform) {
2609 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2610 }
2611 NEW_AUX_ENT (AT_NULL, 0);
2612 #undef NEW_AUX_ENT
2613
2614 /* Check that our initial calculation of the auxv length matches how much
2615 * we actually put into it.
2616 */
2617 assert(info->auxv_len == u_auxv - info->saved_auxv);
2618
2619 put_user_ual(argc, u_argc);
2620
2621 p = info->arg_strings;
2622 for (i = 0; i < argc; ++i) {
2623 put_user_ual(p, u_argv);
2624 u_argv += n;
2625 p += target_strlen(p) + 1;
2626 }
2627 put_user_ual(0, u_argv);
2628
2629 p = info->env_strings;
2630 for (i = 0; i < envc; ++i) {
2631 put_user_ual(p, u_envp);
2632 u_envp += n;
2633 p += target_strlen(p) + 1;
2634 }
2635 put_user_ual(0, u_envp);
2636
2637 return sp;
2638 }
2639
2640 #if defined(HI_COMMPAGE)
2641 #define LO_COMMPAGE -1
2642 #elif defined(LO_COMMPAGE)
2643 #define HI_COMMPAGE 0
2644 #else
2645 #define HI_COMMPAGE 0
2646 #define LO_COMMPAGE -1
2647 #ifndef INIT_GUEST_COMMPAGE
2648 #define init_guest_commpage() true
2649 #endif
2650 #endif
2651
2652 /**
2653 * pgb_try_mmap:
2654 * @addr: host start address
2655 * @addr_last: host last address
2656 * @keep: do not unmap the probe region
2657 *
2658 * Return 1 if [@addr, @addr_last] is not mapped in the host,
2659 * return 0 if it is not available to map, and -1 on mmap error.
2660 * If @keep, the region is left mapped on success, otherwise unmapped.
2661 */
2662 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2663 {
2664 size_t size = addr_last - addr + 1;
2665 void *p = mmap((void *)addr, size, PROT_NONE,
2666 MAP_ANONYMOUS | MAP_PRIVATE |
2667 MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2668 int ret;
2669
2670 if (p == MAP_FAILED) {
2671 return errno == EEXIST ? 0 : -1;
2672 }
2673 ret = p == (void *)addr;
2674 if (!keep || !ret) {
2675 munmap(p, size);
2676 }
2677 return ret;
2678 }
2679
2680 /**
2681 * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2682 * @addr: host address
2683 * @addr_last: host last address
2684 * @brk: host brk
2685 *
2686 * Like pgb_try_mmap, but additionally reserve some memory following brk.
2687 */
2688 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2689 uintptr_t brk, bool keep)
2690 {
2691 uintptr_t brk_last = brk + 16 * MiB - 1;
2692
2693 /* Do not map anything close to the host brk. */
2694 if (addr <= brk_last && brk <= addr_last) {
2695 return 0;
2696 }
2697 return pgb_try_mmap(addr, addr_last, keep);
2698 }
2699
2700 /**
2701 * pgb_try_mmap_set:
2702 * @ga: set of guest addrs
2703 * @base: guest_base
2704 * @brk: host brk
2705 *
2706 * Return true if all @ga can be mapped by the host at @base.
2707 * On success, retain the mapping at index 0 for reserved_va.
2708 */
2709
2710 typedef struct PGBAddrs {
2711 uintptr_t bounds[3][2]; /* start/last pairs */
2712 int nbounds;
2713 } PGBAddrs;
2714
2715 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2716 {
2717 for (int i = ga->nbounds - 1; i >= 0; --i) {
2718 if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2719 ga->bounds[i][1] + base,
2720 brk, i == 0 && reserved_va) <= 0) {
2721 return false;
2722 }
2723 }
2724 return true;
2725 }
2726
2727 /**
2728 * pgb_addr_set:
2729 * @ga: output set of guest addrs
2730 * @guest_loaddr: guest image low address
2731 * @guest_loaddr: guest image high address
2732 * @identity: create for identity mapping
2733 *
2734 * Fill in @ga with the image, COMMPAGE and NULL page.
2735 */
2736 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2737 abi_ulong guest_hiaddr, bool try_identity)
2738 {
2739 int n;
2740
2741 /*
2742 * With a low commpage, or a guest mapped very low,
2743 * we may not be able to use the identity map.
2744 */
2745 if (try_identity) {
2746 if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2747 return false;
2748 }
2749 if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2750 return false;
2751 }
2752 }
2753
2754 memset(ga, 0, sizeof(*ga));
2755 n = 0;
2756
2757 if (reserved_va) {
2758 ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2759 ga->bounds[n][1] = reserved_va;
2760 n++;
2761 /* LO_COMMPAGE and NULL handled by reserving from 0. */
2762 } else {
2763 /* Add any LO_COMMPAGE or NULL page. */
2764 if (LO_COMMPAGE != -1) {
2765 ga->bounds[n][0] = 0;
2766 ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2767 n++;
2768 } else if (!try_identity) {
2769 ga->bounds[n][0] = 0;
2770 ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2771 n++;
2772 }
2773
2774 /* Add the guest image for ET_EXEC. */
2775 if (guest_loaddr) {
2776 ga->bounds[n][0] = guest_loaddr;
2777 ga->bounds[n][1] = guest_hiaddr;
2778 n++;
2779 }
2780 }
2781
2782 /*
2783 * Temporarily disable
2784 * "comparison is always false due to limited range of data type"
2785 * due to comparison between unsigned and (possible) 0.
2786 */
2787 #pragma GCC diagnostic push
2788 #pragma GCC diagnostic ignored "-Wtype-limits"
2789
2790 /* Add any HI_COMMPAGE not covered by reserved_va. */
2791 if (reserved_va < HI_COMMPAGE) {
2792 ga->bounds[n][0] = HI_COMMPAGE & qemu_host_page_mask;
2793 ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2794 n++;
2795 }
2796
2797 #pragma GCC diagnostic pop
2798
2799 ga->nbounds = n;
2800 return true;
2801 }
2802
2803 static void pgb_fail_in_use(const char *image_name)
2804 {
2805 error_report("%s: requires virtual address space that is in use "
2806 "(omit the -B option or choose a different value)",
2807 image_name);
2808 exit(EXIT_FAILURE);
2809 }
2810
2811 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2812 uintptr_t guest_hiaddr, uintptr_t align)
2813 {
2814 PGBAddrs ga;
2815 uintptr_t brk = (uintptr_t)sbrk(0);
2816
2817 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2818 fprintf(stderr, "Requested guest base %p does not satisfy "
2819 "host minimum alignment (0x%" PRIxPTR ")\n",
2820 (void *)guest_base, align);
2821 exit(EXIT_FAILURE);
2822 }
2823
2824 if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2825 || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2826 pgb_fail_in_use(image_name);
2827 }
2828 }
2829
2830 /**
2831 * pgb_find_fallback:
2832 *
2833 * This is a fallback method for finding holes in the host address space
2834 * if we don't have the benefit of being able to access /proc/self/map.
2835 * It can potentially take a very long time as we can only dumbly iterate
2836 * up the host address space seeing if the allocation would work.
2837 */
2838 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2839 uintptr_t brk)
2840 {
2841 /* TODO: come up with a better estimate of how much to skip. */
2842 uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2843
2844 for (uintptr_t base = skip; ; base += skip) {
2845 base = ROUND_UP(base, align);
2846 if (pgb_try_mmap_set(ga, base, brk)) {
2847 return base;
2848 }
2849 if (base >= -skip) {
2850 return -1;
2851 }
2852 }
2853 }
2854
2855 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2856 IntervalTreeRoot *root)
2857 {
2858 for (int i = ga->nbounds - 1; i >= 0; --i) {
2859 uintptr_t s = base + ga->bounds[i][0];
2860 uintptr_t l = base + ga->bounds[i][1];
2861 IntervalTreeNode *n;
2862
2863 if (l < s) {
2864 /* Wraparound. Skip to advance S to mmap_min_addr. */
2865 return mmap_min_addr - s;
2866 }
2867
2868 n = interval_tree_iter_first(root, s, l);
2869 if (n != NULL) {
2870 /* Conflict. Skip to advance S to LAST + 1. */
2871 return n->last - s + 1;
2872 }
2873 }
2874 return 0; /* success */
2875 }
2876
2877 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2878 uintptr_t align, uintptr_t brk)
2879 {
2880 uintptr_t last = mmap_min_addr;
2881 uintptr_t base, skip;
2882
2883 while (true) {
2884 base = ROUND_UP(last, align);
2885 if (base < last) {
2886 return -1;
2887 }
2888
2889 skip = pgb_try_itree(ga, base, root);
2890 if (skip == 0) {
2891 break;
2892 }
2893
2894 last = base + skip;
2895 if (last < base) {
2896 return -1;
2897 }
2898 }
2899
2900 /*
2901 * We've chosen 'base' based on holes in the interval tree,
2902 * but we don't yet know if it is a valid host address.
2903 * Because it is the first matching hole, if the host addresses
2904 * are invalid we know there are no further matches.
2905 */
2906 return pgb_try_mmap_set(ga, base, brk) ? base : -1;
2907 }
2908
2909 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
2910 uintptr_t guest_hiaddr, uintptr_t align)
2911 {
2912 IntervalTreeRoot *root;
2913 uintptr_t brk, ret;
2914 PGBAddrs ga;
2915
2916 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2917
2918 /* Try the identity map first. */
2919 if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
2920 brk = (uintptr_t)sbrk(0);
2921 if (pgb_try_mmap_set(&ga, 0, brk)) {
2922 guest_base = 0;
2923 return;
2924 }
2925 }
2926
2927 /*
2928 * Rebuild the address set for non-identity map.
2929 * This differs in the mapping of the guest NULL page.
2930 */
2931 pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
2932
2933 root = read_self_maps();
2934
2935 /* Read brk after we've read the maps, which will malloc. */
2936 brk = (uintptr_t)sbrk(0);
2937
2938 if (!root) {
2939 ret = pgb_find_fallback(&ga, align, brk);
2940 } else {
2941 /*
2942 * Reserve the area close to the host brk.
2943 * This will be freed with the rest of the tree.
2944 */
2945 IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
2946 b->start = brk;
2947 b->last = brk + 16 * MiB - 1;
2948 interval_tree_insert(b, root);
2949
2950 ret = pgb_find_itree(&ga, root, align, brk);
2951 free_self_maps(root);
2952 }
2953
2954 if (ret == -1) {
2955 int w = TARGET_LONG_BITS / 4;
2956
2957 error_report("%s: Unable to find a guest_base to satisfy all "
2958 "guest address mapping requirements", image_name);
2959
2960 for (int i = 0; i < ga.nbounds; ++i) {
2961 error_printf(" %0*" PRIx64 "-%0*" PRIx64 "\n",
2962 w, (uint64_t)ga.bounds[i][0],
2963 w, (uint64_t)ga.bounds[i][1]);
2964 }
2965 exit(EXIT_FAILURE);
2966 }
2967 guest_base = ret;
2968 }
2969
2970 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2971 abi_ulong guest_hiaddr)
2972 {
2973 /* In order to use host shmat, we must be able to honor SHMLBA. */
2974 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2975
2976 /* Sanity check the guest binary. */
2977 if (reserved_va) {
2978 if (guest_hiaddr > reserved_va) {
2979 error_report("%s: requires more than reserved virtual "
2980 "address space (0x%" PRIx64 " > 0x%lx)",
2981 image_name, (uint64_t)guest_hiaddr, reserved_va);
2982 exit(EXIT_FAILURE);
2983 }
2984 } else {
2985 if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
2986 error_report("%s: requires more virtual address space "
2987 "than the host can provide (0x%" PRIx64 ")",
2988 image_name, (uint64_t)guest_hiaddr + 1);
2989 exit(EXIT_FAILURE);
2990 }
2991 }
2992
2993 if (have_guest_base) {
2994 pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
2995 } else {
2996 pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
2997 }
2998
2999 /* Reserve and initialize the commpage. */
3000 if (!init_guest_commpage()) {
3001 /* We have already probed for the commpage being free. */
3002 g_assert_not_reached();
3003 }
3004
3005 assert(QEMU_IS_ALIGNED(guest_base, align));
3006 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
3007 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
3008 }
3009
3010 enum {
3011 /* The string "GNU\0" as a magic number. */
3012 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
3013 NOTE_DATA_SZ = 1 * KiB,
3014 NOTE_NAME_SZ = 4,
3015 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
3016 };
3017
3018 /*
3019 * Process a single gnu_property entry.
3020 * Return false for error.
3021 */
3022 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
3023 struct image_info *info, bool have_prev_type,
3024 uint32_t *prev_type, Error **errp)
3025 {
3026 uint32_t pr_type, pr_datasz, step;
3027
3028 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
3029 goto error_data;
3030 }
3031 datasz -= *off;
3032 data += *off / sizeof(uint32_t);
3033
3034 if (datasz < 2 * sizeof(uint32_t)) {
3035 goto error_data;
3036 }
3037 pr_type = data[0];
3038 pr_datasz = data[1];
3039 data += 2;
3040 datasz -= 2 * sizeof(uint32_t);
3041 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
3042 if (step > datasz) {
3043 goto error_data;
3044 }
3045
3046 /* Properties are supposed to be unique and sorted on pr_type. */
3047 if (have_prev_type && pr_type <= *prev_type) {
3048 if (pr_type == *prev_type) {
3049 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
3050 } else {
3051 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
3052 }
3053 return false;
3054 }
3055 *prev_type = pr_type;
3056
3057 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
3058 return false;
3059 }
3060
3061 *off += 2 * sizeof(uint32_t) + step;
3062 return true;
3063
3064 error_data:
3065 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
3066 return false;
3067 }
3068
3069 /* Process NT_GNU_PROPERTY_TYPE_0. */
3070 static bool parse_elf_properties(int image_fd,
3071 struct image_info *info,
3072 const struct elf_phdr *phdr,
3073 char bprm_buf[BPRM_BUF_SIZE],
3074 Error **errp)
3075 {
3076 union {
3077 struct elf_note nhdr;
3078 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
3079 } note;
3080
3081 int n, off, datasz;
3082 bool have_prev_type;
3083 uint32_t prev_type;
3084
3085 /* Unless the arch requires properties, ignore them. */
3086 if (!ARCH_USE_GNU_PROPERTY) {
3087 return true;
3088 }
3089
3090 /* If the properties are crazy large, that's too bad. */
3091 n = phdr->p_filesz;
3092 if (n > sizeof(note)) {
3093 error_setg(errp, "PT_GNU_PROPERTY too large");
3094 return false;
3095 }
3096 if (n < sizeof(note.nhdr)) {
3097 error_setg(errp, "PT_GNU_PROPERTY too small");
3098 return false;
3099 }
3100
3101 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
3102 memcpy(&note, bprm_buf + phdr->p_offset, n);
3103 } else {
3104 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
3105 if (len != n) {
3106 error_setg_errno(errp, errno, "Error reading file header");
3107 return false;
3108 }
3109 }
3110
3111 /*
3112 * The contents of a valid PT_GNU_PROPERTY is a sequence
3113 * of uint32_t -- swap them all now.
3114 */
3115 #ifdef BSWAP_NEEDED
3116 for (int i = 0; i < n / 4; i++) {
3117 bswap32s(note.data + i);
3118 }
3119 #endif
3120
3121 /*
3122 * Note that nhdr is 3 words, and that the "name" described by namesz
3123 * immediately follows nhdr and is thus at the 4th word. Further, all
3124 * of the inputs to the kernel's round_up are multiples of 4.
3125 */
3126 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
3127 note.nhdr.n_namesz != NOTE_NAME_SZ ||
3128 note.data[3] != GNU0_MAGIC) {
3129 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
3130 return false;
3131 }
3132 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
3133
3134 datasz = note.nhdr.n_descsz + off;
3135 if (datasz > n) {
3136 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
3137 return false;
3138 }
3139
3140 have_prev_type = false;
3141 prev_type = 0;
3142 while (1) {
3143 if (off == datasz) {
3144 return true; /* end, exit ok */
3145 }
3146 if (!parse_elf_property(note.data, &off, datasz, info,
3147 have_prev_type, &prev_type, errp)) {
3148 return false;
3149 }
3150 have_prev_type = true;
3151 }
3152 }
3153
3154 /* Load an ELF image into the address space.
3155
3156 IMAGE_NAME is the filename of the image, to use in error messages.
3157 IMAGE_FD is the open file descriptor for the image.
3158
3159 BPRM_BUF is a copy of the beginning of the file; this of course
3160 contains the elf file header at offset 0. It is assumed that this
3161 buffer is sufficiently aligned to present no problems to the host
3162 in accessing data at aligned offsets within the buffer.
3163
3164 On return: INFO values will be filled in, as necessary or available. */
3165
3166 static void load_elf_image(const char *image_name, int image_fd,
3167 struct image_info *info, char **pinterp_name,
3168 char bprm_buf[BPRM_BUF_SIZE])
3169 {
3170 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
3171 struct elf_phdr *phdr;
3172 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
3173 int i, retval, prot_exec;
3174 Error *err = NULL;
3175
3176 /* First of all, some simple consistency checks */
3177 if (!elf_check_ident(ehdr)) {
3178 error_setg(&err, "Invalid ELF image for this architecture");
3179 goto exit_errmsg;
3180 }
3181 bswap_ehdr(ehdr);
3182 if (!elf_check_ehdr(ehdr)) {
3183 error_setg(&err, "Invalid ELF image for this architecture");
3184 goto exit_errmsg;
3185 }
3186
3187 i = ehdr->e_phnum * sizeof(struct elf_phdr);
3188 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
3189 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
3190 } else {
3191 phdr = (struct elf_phdr *) alloca(i);
3192 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
3193 if (retval != i) {
3194 goto exit_read;
3195 }
3196 }
3197 bswap_phdr(phdr, ehdr->e_phnum);
3198
3199 info->nsegs = 0;
3200 info->pt_dynamic_addr = 0;
3201
3202 mmap_lock();
3203
3204 /*
3205 * Find the maximum size of the image and allocate an appropriate
3206 * amount of memory to handle that. Locate the interpreter, if any.
3207 */
3208 loaddr = -1, hiaddr = 0;
3209 info->alignment = 0;
3210 info->exec_stack = EXSTACK_DEFAULT;
3211 for (i = 0; i < ehdr->e_phnum; ++i) {
3212 struct elf_phdr *eppnt = phdr + i;
3213 if (eppnt->p_type == PT_LOAD) {
3214 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3215 if (a < loaddr) {
3216 loaddr = a;
3217 }
3218 a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3219 if (a > hiaddr) {
3220 hiaddr = a;
3221 }
3222 ++info->nsegs;
3223 info->alignment |= eppnt->p_align;
3224 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3225 g_autofree char *interp_name = NULL;
3226
3227 if (*pinterp_name) {
3228 error_setg(&err, "Multiple PT_INTERP entries");
3229 goto exit_errmsg;
3230 }
3231
3232 interp_name = g_malloc(eppnt->p_filesz);
3233
3234 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3235 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3236 eppnt->p_filesz);
3237 } else {
3238 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3239 eppnt->p_offset);
3240 if (retval != eppnt->p_filesz) {
3241 goto exit_read;
3242 }
3243 }
3244 if (interp_name[eppnt->p_filesz - 1] != 0) {
3245 error_setg(&err, "Invalid PT_INTERP entry");
3246 goto exit_errmsg;
3247 }
3248 *pinterp_name = g_steal_pointer(&interp_name);
3249 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3250 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3251 goto exit_errmsg;
3252 }
3253 } else if (eppnt->p_type == PT_GNU_STACK) {
3254 info->exec_stack = eppnt->p_flags & PF_X;
3255 }
3256 }
3257
3258 load_addr = loaddr;
3259
3260 if (pinterp_name != NULL) {
3261 if (ehdr->e_type == ET_EXEC) {
3262 /*
3263 * Make sure that the low address does not conflict with
3264 * MMAP_MIN_ADDR or the QEMU application itself.
3265 */
3266 probe_guest_base(image_name, loaddr, hiaddr);
3267 } else {
3268 abi_ulong align;
3269
3270 /*
3271 * The binary is dynamic, but we still need to
3272 * select guest_base. In this case we pass a size.
3273 */
3274 probe_guest_base(image_name, 0, hiaddr - loaddr);
3275
3276 /*
3277 * Avoid collision with the loader by providing a different
3278 * default load address.
3279 */
3280 load_addr += elf_et_dyn_base;
3281
3282 /*
3283 * TODO: Better support for mmap alignment is desirable.
3284 * Since we do not have complete control over the guest
3285 * address space, we prefer the kernel to choose some address
3286 * rather than force the use of LOAD_ADDR via MAP_FIXED.
3287 * But without MAP_FIXED we cannot guarantee alignment,
3288 * only suggest it.
3289 */
3290 align = pow2ceil(info->alignment);
3291 if (align) {
3292 load_addr &= -align;
3293 }
3294 }
3295 }
3296
3297 /*
3298 * Reserve address space for all of this.
3299 *
3300 * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3301 * exactly the address range that is required. Without reserved_va,
3302 * the guest address space is not isolated. We have attempted to avoid
3303 * conflict with the host program itself via probe_guest_base, but using
3304 * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3305 *
3306 * Otherwise this is ET_DYN, and we are searching for a location
3307 * that can hold the memory space required. If the image is
3308 * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3309 * honor that address if it happens to be free.
3310 *
3311 * In both cases, we will overwrite pages in this range with mappings
3312 * from the executable.
3313 */
3314 load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3315 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3316 (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3317 -1, 0);
3318 if (load_addr == -1) {
3319 goto exit_mmap;
3320 }
3321 load_bias = load_addr - loaddr;
3322
3323 if (elf_is_fdpic(ehdr)) {
3324 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3325 g_malloc(sizeof(*loadsegs) * info->nsegs);
3326
3327 for (i = 0; i < ehdr->e_phnum; ++i) {
3328 switch (phdr[i].p_type) {
3329 case PT_DYNAMIC:
3330 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3331 break;
3332 case PT_LOAD:
3333 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3334 loadsegs->p_vaddr = phdr[i].p_vaddr;
3335 loadsegs->p_memsz = phdr[i].p_memsz;
3336 ++loadsegs;
3337 break;
3338 }
3339 }
3340 }
3341
3342 info->load_bias = load_bias;
3343 info->code_offset = load_bias;
3344 info->data_offset = load_bias;
3345 info->load_addr = load_addr;
3346 info->entry = ehdr->e_entry + load_bias;
3347 info->start_code = -1;
3348 info->end_code = 0;
3349 info->start_data = -1;
3350 info->end_data = 0;
3351 /* Usual start for brk is after all sections of the main executable. */
3352 info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
3353 info->elf_flags = ehdr->e_flags;
3354
3355 prot_exec = PROT_EXEC;
3356 #ifdef TARGET_AARCH64
3357 /*
3358 * If the BTI feature is present, this indicates that the executable
3359 * pages of the startup binary should be mapped with PROT_BTI, so that
3360 * branch targets are enforced.
3361 *
3362 * The startup binary is either the interpreter or the static executable.
3363 * The interpreter is responsible for all pages of a dynamic executable.
3364 *
3365 * Elf notes are backward compatible to older cpus.
3366 * Do not enable BTI unless it is supported.
3367 */
3368 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3369 && (pinterp_name == NULL || *pinterp_name == 0)
3370 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3371 prot_exec |= TARGET_PROT_BTI;
3372 }
3373 #endif
3374
3375 for (i = 0; i < ehdr->e_phnum; i++) {
3376 struct elf_phdr *eppnt = phdr + i;
3377 if (eppnt->p_type == PT_LOAD) {
3378 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3379 int elf_prot = 0;
3380
3381 if (eppnt->p_flags & PF_R) {
3382 elf_prot |= PROT_READ;
3383 }
3384 if (eppnt->p_flags & PF_W) {
3385 elf_prot |= PROT_WRITE;
3386 }
3387 if (eppnt->p_flags & PF_X) {
3388 elf_prot |= prot_exec;
3389 }
3390
3391 vaddr = load_bias + eppnt->p_vaddr;
3392 vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3393 vaddr_ps = vaddr & TARGET_PAGE_MASK;
3394
3395 vaddr_ef = vaddr + eppnt->p_filesz;
3396 vaddr_em = vaddr + eppnt->p_memsz;
3397
3398 /*
3399 * Some segments may be completely empty, with a non-zero p_memsz
3400 * but no backing file segment.
3401 */
3402 if (eppnt->p_filesz != 0) {
3403 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3404 elf_prot, MAP_PRIVATE | MAP_FIXED,
3405 image_fd, eppnt->p_offset - vaddr_po);
3406 if (error == -1) {
3407 goto exit_mmap;
3408 }
3409 }
3410
3411 /* If the load segment requests extra zeros (e.g. bss), map it. */
3412 if (vaddr_ef < vaddr_em &&
3413 !zero_bss(vaddr_ef, vaddr_em, elf_prot)) {
3414 goto exit_mmap;
3415 }
3416
3417 /* Find the full program boundaries. */
3418 if (elf_prot & PROT_EXEC) {
3419 if (vaddr < info->start_code) {
3420 info->start_code = vaddr;
3421 }
3422 if (vaddr_ef > info->end_code) {
3423 info->end_code = vaddr_ef;
3424 }
3425 }
3426 if (elf_prot & PROT_WRITE) {
3427 if (vaddr < info->start_data) {
3428 info->start_data = vaddr;
3429 }
3430 if (vaddr_ef > info->end_data) {
3431 info->end_data = vaddr_ef;
3432 }
3433 }
3434 #ifdef TARGET_MIPS
3435 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3436 Mips_elf_abiflags_v0 abiflags;
3437 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3438 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3439 goto exit_errmsg;
3440 }
3441 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3442 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3443 sizeof(Mips_elf_abiflags_v0));
3444 } else {
3445 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3446 eppnt->p_offset);
3447 if (retval != sizeof(Mips_elf_abiflags_v0)) {
3448 goto exit_read;
3449 }
3450 }
3451 bswap_mips_abiflags(&abiflags);
3452 info->fp_abi = abiflags.fp_abi;
3453 #endif
3454 }
3455 }
3456
3457 if (info->end_data == 0) {
3458 info->start_data = info->end_code;
3459 info->end_data = info->end_code;
3460 }
3461
3462 if (qemu_log_enabled()) {
3463 load_symbols(ehdr, image_fd, load_bias);
3464 }
3465
3466 debuginfo_report_elf(image_name, image_fd, load_bias);
3467
3468 mmap_unlock();
3469
3470 close(image_fd);
3471 return;
3472
3473 exit_read:
3474 if (retval >= 0) {
3475 error_setg(&err, "Incomplete read of file header");
3476 } else {
3477 error_setg_errno(&err, errno, "Error reading file header");
3478 }
3479 goto exit_errmsg;
3480 exit_mmap:
3481 error_setg_errno(&err, errno, "Error mapping file");
3482 goto exit_errmsg;
3483 exit_errmsg:
3484 error_reportf_err(err, "%s: ", image_name);
3485 exit(-1);
3486 }
3487
3488 static void load_elf_interp(const char *filename, struct image_info *info,
3489 char bprm_buf[BPRM_BUF_SIZE])
3490 {
3491 int fd, retval;
3492 Error *err = NULL;
3493
3494 fd = open(path(filename), O_RDONLY);
3495 if (fd < 0) {
3496 error_setg_file_open(&err, errno, filename);
3497 error_report_err(err);
3498 exit(-1);
3499 }
3500
3501 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3502 if (retval < 0) {
3503 error_setg_errno(&err, errno, "Error reading file header");
3504 error_reportf_err(err, "%s: ", filename);
3505 exit(-1);
3506 }
3507
3508 if (retval < BPRM_BUF_SIZE) {
3509 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3510 }
3511
3512 load_elf_image(filename, fd, info, NULL, bprm_buf);
3513 }
3514
3515 static int symfind(const void *s0, const void *s1)
3516 {
3517 struct elf_sym *sym = (struct elf_sym *)s1;
3518 __typeof(sym->st_value) addr = *(uint64_t *)s0;
3519 int result = 0;
3520
3521 if (addr < sym->st_value) {
3522 result = -1;
3523 } else if (addr >= sym->st_value + sym->st_size) {
3524 result = 1;
3525 }
3526 return result;
3527 }
3528
3529 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3530 {
3531 #if ELF_CLASS == ELFCLASS32
3532 struct elf_sym *syms = s->disas_symtab.elf32;
3533 #else
3534 struct elf_sym *syms = s->disas_symtab.elf64;
3535 #endif
3536
3537 // binary search
3538 struct elf_sym *sym;
3539
3540 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3541 if (sym != NULL) {
3542 return s->disas_strtab + sym->st_name;
3543 }
3544
3545 return "";
3546 }
3547
3548 /* FIXME: This should use elf_ops.h */
3549 static int symcmp(const void *s0, const void *s1)
3550 {
3551 struct elf_sym *sym0 = (struct elf_sym *)s0;
3552 struct elf_sym *sym1 = (struct elf_sym *)s1;
3553 return (sym0->st_value < sym1->st_value)
3554 ? -1
3555 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3556 }
3557
3558 /* Best attempt to load symbols from this ELF object. */
3559 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3560 {
3561 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3562 uint64_t segsz;
3563 struct elf_shdr *shdr;
3564 char *strings = NULL;
3565 struct syminfo *s = NULL;
3566 struct elf_sym *new_syms, *syms = NULL;
3567
3568 shnum = hdr->e_shnum;
3569 i = shnum * sizeof(struct elf_shdr);
3570 shdr = (struct elf_shdr *)alloca(i);
3571 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3572 return;
3573 }
3574
3575 bswap_shdr(shdr, shnum);
3576 for (i = 0; i < shnum; ++i) {
3577 if (shdr[i].sh_type == SHT_SYMTAB) {
3578 sym_idx = i;
3579 str_idx = shdr[i].sh_link;
3580 goto found;
3581 }
3582 }
3583
3584 /* There will be no symbol table if the file was stripped. */
3585 return;
3586
3587 found:
3588 /* Now know where the strtab and symtab are. Snarf them. */
3589 s = g_try_new(struct syminfo, 1);
3590 if (!s) {
3591 goto give_up;
3592 }
3593
3594 segsz = shdr[str_idx].sh_size;
3595 s->disas_strtab = strings = g_try_malloc(segsz);
3596 if (!strings ||
3597 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3598 goto give_up;
3599 }
3600
3601 segsz = shdr[sym_idx].sh_size;
3602 syms = g_try_malloc(segsz);
3603 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3604 goto give_up;
3605 }
3606
3607 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3608 /* Implausibly large symbol table: give up rather than ploughing
3609 * on with the number of symbols calculation overflowing
3610 */
3611 goto give_up;
3612 }
3613 nsyms = segsz / sizeof(struct elf_sym);
3614 for (i = 0; i < nsyms; ) {
3615 bswap_sym(syms + i);
3616 /* Throw away entries which we do not need. */
3617 if (syms[i].st_shndx == SHN_UNDEF
3618 || syms[i].st_shndx >= SHN_LORESERVE
3619 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3620 if (i < --nsyms) {
3621 syms[i] = syms[nsyms];
3622 }
3623 } else {
3624 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3625 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3626 syms[i].st_value &= ~(target_ulong)1;
3627 #endif
3628 syms[i].st_value += load_bias;
3629 i++;
3630 }
3631 }
3632
3633 /* No "useful" symbol. */
3634 if (nsyms == 0) {
3635 goto give_up;
3636 }
3637
3638 /* Attempt to free the storage associated with the local symbols
3639 that we threw away. Whether or not this has any effect on the
3640 memory allocation depends on the malloc implementation and how
3641 many symbols we managed to discard. */
3642 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3643 if (new_syms == NULL) {
3644 goto give_up;
3645 }
3646 syms = new_syms;
3647
3648 qsort(syms, nsyms, sizeof(*syms), symcmp);
3649
3650 s->disas_num_syms = nsyms;
3651 #if ELF_CLASS == ELFCLASS32
3652 s->disas_symtab.elf32 = syms;
3653 #else
3654 s->disas_symtab.elf64 = syms;
3655 #endif
3656 s->lookup_symbol = lookup_symbolxx;
3657 s->next = syminfos;
3658 syminfos = s;
3659
3660 return;
3661
3662 give_up:
3663 g_free(s);
3664 g_free(strings);
3665 g_free(syms);
3666 }
3667
3668 uint32_t get_elf_eflags(int fd)
3669 {
3670 struct elfhdr ehdr;
3671 off_t offset;
3672 int ret;
3673
3674 /* Read ELF header */
3675 offset = lseek(fd, 0, SEEK_SET);
3676 if (offset == (off_t) -1) {
3677 return 0;
3678 }
3679 ret = read(fd, &ehdr, sizeof(ehdr));
3680 if (ret < sizeof(ehdr)) {
3681 return 0;
3682 }
3683 offset = lseek(fd, offset, SEEK_SET);
3684 if (offset == (off_t) -1) {
3685 return 0;
3686 }
3687
3688 /* Check ELF signature */
3689 if (!elf_check_ident(&ehdr)) {
3690 return 0;
3691 }
3692
3693 /* check header */
3694 bswap_ehdr(&ehdr);
3695 if (!elf_check_ehdr(&ehdr)) {
3696 return 0;
3697 }
3698
3699 /* return architecture id */
3700 return ehdr.e_flags;
3701 }
3702
3703 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3704 {
3705 struct image_info interp_info;
3706 struct elfhdr elf_ex;
3707 char *elf_interpreter = NULL;
3708 char *scratch;
3709
3710 memset(&interp_info, 0, sizeof(interp_info));
3711 #ifdef TARGET_MIPS
3712 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3713 #endif
3714
3715 load_elf_image(bprm->filename, bprm->fd, info,
3716 &elf_interpreter, bprm->buf);
3717
3718 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3719 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3720 when we load the interpreter. */
3721 elf_ex = *(struct elfhdr *)bprm->buf;
3722
3723 /* Do this so that we can load the interpreter, if need be. We will
3724 change some of these later */
3725 bprm->p = setup_arg_pages(bprm, info);
3726
3727 scratch = g_new0(char, TARGET_PAGE_SIZE);
3728 if (STACK_GROWS_DOWN) {
3729 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3730 bprm->p, info->stack_limit);
3731 info->file_string = bprm->p;
3732 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3733 bprm->p, info->stack_limit);
3734 info->env_strings = bprm->p;
3735 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3736 bprm->p, info->stack_limit);
3737 info->arg_strings = bprm->p;
3738 } else {
3739 info->arg_strings = bprm->p;
3740 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3741 bprm->p, info->stack_limit);
3742 info->env_strings = bprm->p;
3743 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3744 bprm->p, info->stack_limit);
3745 info->file_string = bprm->p;
3746 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3747 bprm->p, info->stack_limit);
3748 }
3749
3750 g_free(scratch);
3751
3752 if (!bprm->p) {
3753 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3754 exit(-1);
3755 }
3756
3757 if (elf_interpreter) {
3758 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3759
3760 /*
3761 * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3762 * with the mappings the interpreter can be loaded above but
3763 * near the main executable, which can leave very little room
3764 * for the heap.
3765 * If the current brk has less than 16MB, use the end of the
3766 * interpreter.
3767 */
3768 if (interp_info.brk > info->brk &&
3769 interp_info.load_bias - info->brk < 16 * MiB) {
3770 info->brk = interp_info.brk;
3771 }
3772
3773 /* If the program interpreter is one of these two, then assume
3774 an iBCS2 image. Otherwise assume a native linux image. */
3775
3776 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3777 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3778 info->personality = PER_SVR4;
3779
3780 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3781 and some applications "depend" upon this behavior. Since
3782 we do not have the power to recompile these, we emulate
3783 the SVr4 behavior. Sigh. */
3784 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3785 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3786 }
3787 #ifdef TARGET_MIPS
3788 info->interp_fp_abi = interp_info.fp_abi;
3789 #endif
3790 }
3791
3792 /*
3793 * TODO: load a vdso, which would also contain the signal trampolines.
3794 * Otherwise, allocate a private page to hold them.
3795 */
3796 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3797 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3798 PROT_READ | PROT_WRITE,
3799 MAP_PRIVATE | MAP_ANON, -1, 0);
3800 if (tramp_page == -1) {
3801 return -errno;
3802 }
3803
3804 setup_sigtramp(tramp_page);
3805 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3806 }
3807
3808 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3809 info, (elf_interpreter ? &interp_info : NULL));
3810 info->start_stack = bprm->p;
3811
3812 /* If we have an interpreter, set that as the program's entry point.
3813 Copy the load_bias as well, to help PPC64 interpret the entry
3814 point as a function descriptor. Do this after creating elf tables
3815 so that we copy the original program entry point into the AUXV. */
3816 if (elf_interpreter) {
3817 info->load_bias = interp_info.load_bias;
3818 info->entry = interp_info.entry;
3819 g_free(elf_interpreter);
3820 }
3821
3822 #ifdef USE_ELF_CORE_DUMP
3823 bprm->core_dump = &elf_core_dump;
3824 #endif
3825
3826 return 0;
3827 }
3828
3829 #ifdef USE_ELF_CORE_DUMP
3830 /*
3831 * Definitions to generate Intel SVR4-like core files.
3832 * These mostly have the same names as the SVR4 types with "target_elf_"
3833 * tacked on the front to prevent clashes with linux definitions,
3834 * and the typedef forms have been avoided. This is mostly like
3835 * the SVR4 structure, but more Linuxy, with things that Linux does
3836 * not support and which gdb doesn't really use excluded.
3837 *
3838 * Fields we don't dump (their contents is zero) in linux-user qemu
3839 * are marked with XXX.
3840 *
3841 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3842 *
3843 * Porting ELF coredump for target is (quite) simple process. First you
3844 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3845 * the target resides):
3846 *
3847 * #define USE_ELF_CORE_DUMP
3848 *
3849 * Next you define type of register set used for dumping. ELF specification
3850 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3851 *
3852 * typedef <target_regtype> target_elf_greg_t;
3853 * #define ELF_NREG <number of registers>
3854 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3855 *
3856 * Last step is to implement target specific function that copies registers
3857 * from given cpu into just specified register set. Prototype is:
3858 *
3859 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3860 * const CPUArchState *env);
3861 *
3862 * Parameters:
3863 * regs - copy register values into here (allocated and zeroed by caller)
3864 * env - copy registers from here
3865 *
3866 * Example for ARM target is provided in this file.
3867 */
3868
3869 /* An ELF note in memory */
3870 struct memelfnote {
3871 const char *name;
3872 size_t namesz;
3873 size_t namesz_rounded;
3874 int type;
3875 size_t datasz;
3876 size_t datasz_rounded;
3877 void *data;
3878 size_t notesz;
3879 };
3880
3881 struct target_elf_siginfo {
3882 abi_int si_signo; /* signal number */
3883 abi_int si_code; /* extra code */
3884 abi_int si_errno; /* errno */
3885 };
3886
3887 struct target_elf_prstatus {
3888 struct target_elf_siginfo pr_info; /* Info associated with signal */
3889 abi_short pr_cursig; /* Current signal */
3890 abi_ulong pr_sigpend; /* XXX */
3891 abi_ulong pr_sighold; /* XXX */
3892 target_pid_t pr_pid;
3893 target_pid_t pr_ppid;
3894 target_pid_t pr_pgrp;
3895 target_pid_t pr_sid;
3896 struct target_timeval pr_utime; /* XXX User time */
3897 struct target_timeval pr_stime; /* XXX System time */
3898 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3899 struct target_timeval pr_cstime; /* XXX Cumulative system time */
3900 target_elf_gregset_t pr_reg; /* GP registers */
3901 abi_int pr_fpvalid; /* XXX */
3902 };
3903
3904 #define ELF_PRARGSZ (80) /* Number of chars for args */
3905
3906 struct target_elf_prpsinfo {
3907 char pr_state; /* numeric process state */
3908 char pr_sname; /* char for pr_state */
3909 char pr_zomb; /* zombie */
3910 char pr_nice; /* nice val */
3911 abi_ulong pr_flag; /* flags */
3912 target_uid_t pr_uid;
3913 target_gid_t pr_gid;
3914 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3915 /* Lots missing */
3916 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3917 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3918 };
3919
3920 /* Here is the structure in which status of each thread is captured. */
3921 struct elf_thread_status {
3922 QTAILQ_ENTRY(elf_thread_status) ets_link;
3923 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
3924 #if 0
3925 elf_fpregset_t fpu; /* NT_PRFPREG */
3926 struct task_struct *thread;
3927 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3928 #endif
3929 struct memelfnote notes[1];
3930 int num_notes;
3931 };
3932
3933 struct elf_note_info {
3934 struct memelfnote *notes;
3935 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3936 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
3937
3938 QTAILQ_HEAD(, elf_thread_status) thread_list;
3939 #if 0
3940 /*
3941 * Current version of ELF coredump doesn't support
3942 * dumping fp regs etc.
3943 */
3944 elf_fpregset_t *fpu;
3945 elf_fpxregset_t *xfpu;
3946 int thread_status_size;
3947 #endif
3948 int notes_size;
3949 int numnote;
3950 };
3951
3952 struct vm_area_struct {
3953 target_ulong vma_start; /* start vaddr of memory region */
3954 target_ulong vma_end; /* end vaddr of memory region */
3955 abi_ulong vma_flags; /* protection etc. flags for the region */
3956 QTAILQ_ENTRY(vm_area_struct) vma_link;
3957 };
3958
3959 struct mm_struct {
3960 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3961 int mm_count; /* number of mappings */
3962 };
3963
3964 static struct mm_struct *vma_init(void);
3965 static void vma_delete(struct mm_struct *);
3966 static int vma_add_mapping(struct mm_struct *, target_ulong,
3967 target_ulong, abi_ulong);
3968 static int vma_get_mapping_count(const struct mm_struct *);
3969 static struct vm_area_struct *vma_first(const struct mm_struct *);
3970 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3971 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3972 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3973 unsigned long flags);
3974
3975 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3976 static void fill_note(struct memelfnote *, const char *, int,
3977 unsigned int, void *);
3978 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3979 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3980 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3981 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3982 static size_t note_size(const struct memelfnote *);
3983 static void free_note_info(struct elf_note_info *);
3984 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3985 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3986
3987 static int dump_write(int, const void *, size_t);
3988 static int write_note(struct memelfnote *, int);
3989 static int write_note_info(struct elf_note_info *, int);
3990
3991 #ifdef BSWAP_NEEDED
3992 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3993 {
3994 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3995 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3996 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3997 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3998 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3999 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
4000 prstatus->pr_pid = tswap32(prstatus->pr_pid);
4001 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
4002 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
4003 prstatus->pr_sid = tswap32(prstatus->pr_sid);
4004 /* cpu times are not filled, so we skip them */
4005 /* regs should be in correct format already */
4006 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
4007 }
4008
4009 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
4010 {
4011 psinfo->pr_flag = tswapal(psinfo->pr_flag);
4012 psinfo->pr_uid = tswap16(psinfo->pr_uid);
4013 psinfo->pr_gid = tswap16(psinfo->pr_gid);
4014 psinfo->pr_pid = tswap32(psinfo->pr_pid);
4015 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
4016 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
4017 psinfo->pr_sid = tswap32(psinfo->pr_sid);
4018 }
4019
4020 static void bswap_note(struct elf_note *en)
4021 {
4022 bswap32s(&en->n_namesz);
4023 bswap32s(&en->n_descsz);
4024 bswap32s(&en->n_type);
4025 }
4026 #else
4027 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
4028 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
4029 static inline void bswap_note(struct elf_note *en) { }
4030 #endif /* BSWAP_NEEDED */
4031
4032 /*
4033 * Minimal support for linux memory regions. These are needed
4034 * when we are finding out what memory exactly belongs to
4035 * emulated process. No locks needed here, as long as
4036 * thread that received the signal is stopped.
4037 */
4038
4039 static struct mm_struct *vma_init(void)
4040 {
4041 struct mm_struct *mm;
4042
4043 if ((mm = g_malloc(sizeof (*mm))) == NULL)
4044 return (NULL);
4045
4046 mm->mm_count = 0;
4047 QTAILQ_INIT(&mm->mm_mmap);
4048
4049 return (mm);
4050 }
4051
4052 static void vma_delete(struct mm_struct *mm)
4053 {
4054 struct vm_area_struct *vma;
4055
4056 while ((vma = vma_first(mm)) != NULL) {
4057 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
4058 g_free(vma);
4059 }
4060 g_free(mm);
4061 }
4062
4063 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
4064 target_ulong end, abi_ulong flags)
4065 {
4066 struct vm_area_struct *vma;
4067
4068 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
4069 return (-1);
4070
4071 vma->vma_start = start;
4072 vma->vma_end = end;
4073 vma->vma_flags = flags;
4074
4075 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
4076 mm->mm_count++;
4077
4078 return (0);
4079 }
4080
4081 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
4082 {
4083 return (QTAILQ_FIRST(&mm->mm_mmap));
4084 }
4085
4086 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
4087 {
4088 return (QTAILQ_NEXT(vma, vma_link));
4089 }
4090
4091 static int vma_get_mapping_count(const struct mm_struct *mm)
4092 {
4093 return (mm->mm_count);
4094 }
4095
4096 /*
4097 * Calculate file (dump) size of given memory region.
4098 */
4099 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
4100 {
4101 /* if we cannot even read the first page, skip it */
4102 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
4103 return (0);
4104
4105 /*
4106 * Usually we don't dump executable pages as they contain
4107 * non-writable code that debugger can read directly from
4108 * target library etc. However, thread stacks are marked
4109 * also executable so we read in first page of given region
4110 * and check whether it contains elf header. If there is
4111 * no elf header, we dump it.
4112 */
4113 if (vma->vma_flags & PROT_EXEC) {
4114 char page[TARGET_PAGE_SIZE];
4115
4116 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
4117 return 0;
4118 }
4119 if ((page[EI_MAG0] == ELFMAG0) &&
4120 (page[EI_MAG1] == ELFMAG1) &&
4121 (page[EI_MAG2] == ELFMAG2) &&
4122 (page[EI_MAG3] == ELFMAG3)) {
4123 /*
4124 * Mappings are possibly from ELF binary. Don't dump
4125 * them.
4126 */
4127 return (0);
4128 }
4129 }
4130
4131 return (vma->vma_end - vma->vma_start);
4132 }
4133
4134 static int vma_walker(void *priv, target_ulong start, target_ulong end,
4135 unsigned long flags)
4136 {
4137 struct mm_struct *mm = (struct mm_struct *)priv;
4138
4139 vma_add_mapping(mm, start, end, flags);
4140 return (0);
4141 }
4142
4143 static void fill_note(struct memelfnote *note, const char *name, int type,
4144 unsigned int sz, void *data)
4145 {
4146 unsigned int namesz;
4147
4148 namesz = strlen(name) + 1;
4149 note->name = name;
4150 note->namesz = namesz;
4151 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
4152 note->type = type;
4153 note->datasz = sz;
4154 note->datasz_rounded = roundup(sz, sizeof (int32_t));
4155
4156 note->data = data;
4157
4158 /*
4159 * We calculate rounded up note size here as specified by
4160 * ELF document.
4161 */
4162 note->notesz = sizeof (struct elf_note) +
4163 note->namesz_rounded + note->datasz_rounded;
4164 }
4165
4166 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4167 uint32_t flags)
4168 {
4169 (void) memset(elf, 0, sizeof(*elf));
4170
4171 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
4172 elf->e_ident[EI_CLASS] = ELF_CLASS;
4173 elf->e_ident[EI_DATA] = ELF_DATA;
4174 elf->e_ident[EI_VERSION] = EV_CURRENT;
4175 elf->e_ident[EI_OSABI] = ELF_OSABI;
4176
4177 elf->e_type = ET_CORE;
4178 elf->e_machine = machine;
4179 elf->e_version = EV_CURRENT;
4180 elf->e_phoff = sizeof(struct elfhdr);
4181 elf->e_flags = flags;
4182 elf->e_ehsize = sizeof(struct elfhdr);
4183 elf->e_phentsize = sizeof(struct elf_phdr);
4184 elf->e_phnum = segs;
4185
4186 bswap_ehdr(elf);
4187 }
4188
4189 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4190 {
4191 phdr->p_type = PT_NOTE;
4192 phdr->p_offset = offset;
4193 phdr->p_vaddr = 0;
4194 phdr->p_paddr = 0;
4195 phdr->p_filesz = sz;
4196 phdr->p_memsz = 0;
4197 phdr->p_flags = 0;
4198 phdr->p_align = 0;
4199
4200 bswap_phdr(phdr, 1);
4201 }
4202
4203 static size_t note_size(const struct memelfnote *note)
4204 {
4205 return (note->notesz);
4206 }
4207
4208 static void fill_prstatus(struct target_elf_prstatus *prstatus,
4209 const TaskState *ts, int signr)
4210 {
4211 (void) memset(prstatus, 0, sizeof (*prstatus));
4212 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4213 prstatus->pr_pid = ts->ts_tid;
4214 prstatus->pr_ppid = getppid();
4215 prstatus->pr_pgrp = getpgrp();
4216 prstatus->pr_sid = getsid(0);
4217
4218 bswap_prstatus(prstatus);
4219 }
4220
4221 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4222 {
4223 char *base_filename;
4224 unsigned int i, len;
4225
4226 (void) memset(psinfo, 0, sizeof (*psinfo));
4227
4228 len = ts->info->env_strings - ts->info->arg_strings;
4229 if (len >= ELF_PRARGSZ)
4230 len = ELF_PRARGSZ - 1;
4231 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4232 return -EFAULT;
4233 }
4234 for (i = 0; i < len; i++)
4235 if (psinfo->pr_psargs[i] == 0)
4236 psinfo->pr_psargs[i] = ' ';
4237 psinfo->pr_psargs[len] = 0;
4238
4239 psinfo->pr_pid = getpid();
4240 psinfo->pr_ppid = getppid();
4241 psinfo->pr_pgrp = getpgrp();
4242 psinfo->pr_sid = getsid(0);
4243 psinfo->pr_uid = getuid();
4244 psinfo->pr_gid = getgid();
4245
4246 base_filename = g_path_get_basename(ts->bprm->filename);
4247 /*
4248 * Using strncpy here is fine: at max-length,
4249 * this field is not NUL-terminated.
4250 */
4251 (void) strncpy(psinfo->pr_fname, base_filename,
4252 sizeof(psinfo->pr_fname));
4253
4254 g_free(base_filename);
4255 bswap_psinfo(psinfo);
4256 return (0);
4257 }
4258
4259 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4260 {
4261 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4262 elf_addr_t orig_auxv = auxv;
4263 void *ptr;
4264 int len = ts->info->auxv_len;
4265
4266 /*
4267 * Auxiliary vector is stored in target process stack. It contains
4268 * {type, value} pairs that we need to dump into note. This is not
4269 * strictly necessary but we do it here for sake of completeness.
4270 */
4271
4272 /* read in whole auxv vector and copy it to memelfnote */
4273 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4274 if (ptr != NULL) {
4275 fill_note(note, "CORE", NT_AUXV, len, ptr);
4276 unlock_user(ptr, auxv, len);
4277 }
4278 }
4279
4280 /*
4281 * Constructs name of coredump file. We have following convention
4282 * for the name:
4283 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4284 *
4285 * Returns the filename
4286 */
4287 static char *core_dump_filename(const TaskState *ts)
4288 {
4289 g_autoptr(GDateTime) now = g_date_time_new_now_local();
4290 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4291 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4292
4293 return g_strdup_printf("qemu_%s_%s_%d.core",
4294 base_filename, nowstr, (int)getpid());
4295 }
4296
4297 static int dump_write(int fd, const void *ptr, size_t size)
4298 {
4299 const char *bufp = (const char *)ptr;
4300 ssize_t bytes_written, bytes_left;
4301 struct rlimit dumpsize;
4302 off_t pos;
4303
4304 bytes_written = 0;
4305 getrlimit(RLIMIT_CORE, &dumpsize);
4306 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4307 if (errno == ESPIPE) { /* not a seekable stream */
4308 bytes_left = size;
4309 } else {
4310 return pos;
4311 }
4312 } else {
4313 if (dumpsize.rlim_cur <= pos) {
4314 return -1;
4315 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4316 bytes_left = size;
4317 } else {
4318 size_t limit_left=dumpsize.rlim_cur - pos;
4319 bytes_left = limit_left >= size ? size : limit_left ;
4320 }
4321 }
4322
4323 /*
4324 * In normal conditions, single write(2) should do but
4325 * in case of socket etc. this mechanism is more portable.
4326 */
4327 do {
4328 bytes_written = write(fd, bufp, bytes_left);
4329 if (bytes_written < 0) {
4330 if (errno == EINTR)
4331 continue;
4332 return (-1);
4333 } else if (bytes_written == 0) { /* eof */
4334 return (-1);
4335 }
4336 bufp += bytes_written;
4337 bytes_left -= bytes_written;
4338 } while (bytes_left > 0);
4339
4340 return (0);
4341 }
4342
4343 static int write_note(struct memelfnote *men, int fd)
4344 {
4345 struct elf_note en;
4346
4347 en.n_namesz = men->namesz;
4348 en.n_type = men->type;
4349 en.n_descsz = men->datasz;
4350
4351 bswap_note(&en);
4352
4353 if (dump_write(fd, &en, sizeof(en)) != 0)
4354 return (-1);
4355 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4356 return (-1);
4357 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4358 return (-1);
4359
4360 return (0);
4361 }
4362
4363 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4364 {
4365 CPUState *cpu = env_cpu((CPUArchState *)env);
4366 TaskState *ts = (TaskState *)cpu->opaque;
4367 struct elf_thread_status *ets;
4368
4369 ets = g_malloc0(sizeof (*ets));
4370 ets->num_notes = 1; /* only prstatus is dumped */
4371 fill_prstatus(&ets->prstatus, ts, 0);
4372 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4373 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4374 &ets->prstatus);
4375
4376 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4377
4378 info->notes_size += note_size(&ets->notes[0]);
4379 }
4380
4381 static void init_note_info(struct elf_note_info *info)
4382 {
4383 /* Initialize the elf_note_info structure so that it is at
4384 * least safe to call free_note_info() on it. Must be
4385 * called before calling fill_note_info().
4386 */
4387 memset(info, 0, sizeof (*info));
4388 QTAILQ_INIT(&info->thread_list);
4389 }
4390
4391 static int fill_note_info(struct elf_note_info *info,
4392 long signr, const CPUArchState *env)
4393 {
4394 #define NUMNOTES 3
4395 CPUState *cpu = env_cpu((CPUArchState *)env);
4396 TaskState *ts = (TaskState *)cpu->opaque;
4397 int i;
4398
4399 info->notes = g_new0(struct memelfnote, NUMNOTES);
4400 if (info->notes == NULL)
4401 return (-ENOMEM);
4402 info->prstatus = g_malloc0(sizeof (*info->prstatus));
4403 if (info->prstatus == NULL)
4404 return (-ENOMEM);
4405 info->psinfo = g_malloc0(sizeof (*info->psinfo));
4406 if (info->prstatus == NULL)
4407 return (-ENOMEM);
4408
4409 /*
4410 * First fill in status (and registers) of current thread
4411 * including process info & aux vector.
4412 */
4413 fill_prstatus(info->prstatus, ts, signr);
4414 elf_core_copy_regs(&info->prstatus->pr_reg, env);
4415 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4416 sizeof (*info->prstatus), info->prstatus);
4417 fill_psinfo(info->psinfo, ts);
4418 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4419 sizeof (*info->psinfo), info->psinfo);
4420 fill_auxv_note(&info->notes[2], ts);
4421 info->numnote = 3;
4422
4423 info->notes_size = 0;
4424 for (i = 0; i < info->numnote; i++)
4425 info->notes_size += note_size(&info->notes[i]);
4426
4427 /* read and fill status of all threads */
4428 WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
4429 CPU_FOREACH(cpu) {
4430 if (cpu == thread_cpu) {
4431 continue;
4432 }
4433 fill_thread_info(info, cpu->env_ptr);
4434 }
4435 }
4436
4437 return (0);
4438 }
4439
4440 static void free_note_info(struct elf_note_info *info)
4441 {
4442 struct elf_thread_status *ets;
4443
4444 while (!QTAILQ_EMPTY(&info->thread_list)) {
4445 ets = QTAILQ_FIRST(&info->thread_list);
4446 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4447 g_free(ets);
4448 }
4449
4450 g_free(info->prstatus);
4451 g_free(info->psinfo);
4452 g_free(info->notes);
4453 }
4454
4455 static int write_note_info(struct elf_note_info *info, int fd)
4456 {
4457 struct elf_thread_status *ets;
4458 int i, error = 0;
4459
4460 /* write prstatus, psinfo and auxv for current thread */
4461 for (i = 0; i < info->numnote; i++)
4462 if ((error = write_note(&info->notes[i], fd)) != 0)
4463 return (error);
4464
4465 /* write prstatus for each thread */
4466 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4467 if ((error = write_note(&ets->notes[0], fd)) != 0)
4468 return (error);
4469 }
4470
4471 return (0);
4472 }
4473
4474 /*
4475 * Write out ELF coredump.
4476 *
4477 * See documentation of ELF object file format in:
4478 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4479 *
4480 * Coredump format in linux is following:
4481 *
4482 * 0 +----------------------+ \
4483 * | ELF header | ET_CORE |
4484 * +----------------------+ |
4485 * | ELF program headers | |--- headers
4486 * | - NOTE section | |
4487 * | - PT_LOAD sections | |
4488 * +----------------------+ /
4489 * | NOTEs: |
4490 * | - NT_PRSTATUS |
4491 * | - NT_PRSINFO |
4492 * | - NT_AUXV |
4493 * +----------------------+ <-- aligned to target page
4494 * | Process memory dump |
4495 * : :
4496 * . .
4497 * : :
4498 * | |
4499 * +----------------------+
4500 *
4501 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4502 * NT_PRSINFO -> struct elf_prpsinfo
4503 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4504 *
4505 * Format follows System V format as close as possible. Current
4506 * version limitations are as follows:
4507 * - no floating point registers are dumped
4508 *
4509 * Function returns 0 in case of success, negative errno otherwise.
4510 *
4511 * TODO: make this work also during runtime: it should be
4512 * possible to force coredump from running process and then
4513 * continue processing. For example qemu could set up SIGUSR2
4514 * handler (provided that target process haven't registered
4515 * handler for that) that does the dump when signal is received.
4516 */
4517 static int elf_core_dump(int signr, const CPUArchState *env)
4518 {
4519 const CPUState *cpu = env_cpu((CPUArchState *)env);
4520 const TaskState *ts = (const TaskState *)cpu->opaque;
4521 struct vm_area_struct *vma = NULL;
4522 g_autofree char *corefile = NULL;
4523 struct elf_note_info info;
4524 struct elfhdr elf;
4525 struct elf_phdr phdr;
4526 struct rlimit dumpsize;
4527 struct mm_struct *mm = NULL;
4528 off_t offset = 0, data_offset = 0;
4529 int segs = 0;
4530 int fd = -1;
4531
4532 init_note_info(&info);
4533
4534 errno = 0;
4535 getrlimit(RLIMIT_CORE, &dumpsize);
4536 if (dumpsize.rlim_cur == 0)
4537 return 0;
4538
4539 corefile = core_dump_filename(ts);
4540
4541 if ((fd = open(corefile, O_WRONLY | O_CREAT,
4542 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4543 return (-errno);
4544
4545 /*
4546 * Walk through target process memory mappings and
4547 * set up structure containing this information. After
4548 * this point vma_xxx functions can be used.
4549 */
4550 if ((mm = vma_init()) == NULL)
4551 goto out;
4552
4553 walk_memory_regions(mm, vma_walker);
4554 segs = vma_get_mapping_count(mm);
4555
4556 /*
4557 * Construct valid coredump ELF header. We also
4558 * add one more segment for notes.
4559 */
4560 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4561 if (dump_write(fd, &elf, sizeof (elf)) != 0)
4562 goto out;
4563
4564 /* fill in the in-memory version of notes */
4565 if (fill_note_info(&info, signr, env) < 0)
4566 goto out;
4567
4568 offset += sizeof (elf); /* elf header */
4569 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
4570
4571 /* write out notes program header */
4572 fill_elf_note_phdr(&phdr, info.notes_size, offset);
4573
4574 offset += info.notes_size;
4575 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4576 goto out;
4577
4578 /*
4579 * ELF specification wants data to start at page boundary so
4580 * we align it here.
4581 */
4582 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4583
4584 /*
4585 * Write program headers for memory regions mapped in
4586 * the target process.
4587 */
4588 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4589 (void) memset(&phdr, 0, sizeof (phdr));
4590
4591 phdr.p_type = PT_LOAD;
4592 phdr.p_offset = offset;
4593 phdr.p_vaddr = vma->vma_start;
4594 phdr.p_paddr = 0;
4595 phdr.p_filesz = vma_dump_size(vma);
4596 offset += phdr.p_filesz;
4597 phdr.p_memsz = vma->vma_end - vma->vma_start;
4598 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4599 if (vma->vma_flags & PROT_WRITE)
4600 phdr.p_flags |= PF_W;
4601 if (vma->vma_flags & PROT_EXEC)
4602 phdr.p_flags |= PF_X;
4603 phdr.p_align = ELF_EXEC_PAGESIZE;
4604
4605 bswap_phdr(&phdr, 1);
4606 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4607 goto out;
4608 }
4609 }
4610
4611 /*
4612 * Next we write notes just after program headers. No
4613 * alignment needed here.
4614 */
4615 if (write_note_info(&info, fd) < 0)
4616 goto out;
4617
4618 /* align data to page boundary */
4619 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4620 goto out;
4621
4622 /*
4623 * Finally we can dump process memory into corefile as well.
4624 */
4625 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4626 abi_ulong addr;
4627 abi_ulong end;
4628
4629 end = vma->vma_start + vma_dump_size(vma);
4630
4631 for (addr = vma->vma_start; addr < end;
4632 addr += TARGET_PAGE_SIZE) {
4633 char page[TARGET_PAGE_SIZE];
4634 int error;
4635
4636 /*
4637 * Read in page from target process memory and
4638 * write it to coredump file.
4639 */
4640 error = copy_from_user(page, addr, sizeof (page));
4641 if (error != 0) {
4642 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4643 addr);
4644 errno = -error;
4645 goto out;
4646 }
4647 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4648 goto out;
4649 }
4650 }
4651
4652 out:
4653 free_note_info(&info);
4654 if (mm != NULL)
4655 vma_delete(mm);
4656 (void) close(fd);
4657
4658 if (errno != 0)
4659 return (-errno);
4660 return (0);
4661 }
4662 #endif /* USE_ELF_CORE_DUMP */
4663
4664 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4665 {
4666 init_thread(regs, infop);
4667 }