]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/main.c
linux-user: Handle compressed ISA encodings when processing MIPS exceptions
[mirror_qemu.git] / linux-user / main.c
1 /*
2 * qemu user main
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include <stdlib.h>
20 #include <stdio.h>
21 #include <stdarg.h>
22 #include <string.h>
23 #include <errno.h>
24 #include <unistd.h>
25 #include <sys/mman.h>
26 #include <sys/syscall.h>
27 #include <sys/resource.h>
28
29 #include "qemu.h"
30 #include "qemu-common.h"
31 #include "qemu/cache-utils.h"
32 #include "cpu.h"
33 #include "tcg.h"
34 #include "qemu/timer.h"
35 #include "qemu/envlist.h"
36 #include "elf.h"
37
38 char *exec_path;
39
40 int singlestep;
41 const char *filename;
42 const char *argv0;
43 int gdbstub_port;
44 envlist_t *envlist;
45 const char *cpu_model;
46 unsigned long mmap_min_addr;
47 #if defined(CONFIG_USE_GUEST_BASE)
48 unsigned long guest_base;
49 int have_guest_base;
50 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
51 /*
52 * When running 32-on-64 we should make sure we can fit all of the possible
53 * guest address space into a contiguous chunk of virtual host memory.
54 *
55 * This way we will never overlap with our own libraries or binaries or stack
56 * or anything else that QEMU maps.
57 */
58 # ifdef TARGET_MIPS
59 /* MIPS only supports 31 bits of virtual address space for user space */
60 unsigned long reserved_va = 0x77000000;
61 # else
62 unsigned long reserved_va = 0xf7000000;
63 # endif
64 #else
65 unsigned long reserved_va;
66 #endif
67 #endif
68
69 static void usage(void);
70
71 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
72 const char *qemu_uname_release = CONFIG_UNAME_RELEASE;
73
74 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
75 we allocate a bigger stack. Need a better solution, for example
76 by remapping the process stack directly at the right place */
77 unsigned long guest_stack_size = 8 * 1024 * 1024UL;
78
79 void gemu_log(const char *fmt, ...)
80 {
81 va_list ap;
82
83 va_start(ap, fmt);
84 vfprintf(stderr, fmt, ap);
85 va_end(ap);
86 }
87
88 #if defined(TARGET_I386)
89 int cpu_get_pic_interrupt(CPUX86State *env)
90 {
91 return -1;
92 }
93 #endif
94
95 /***********************************************************/
96 /* Helper routines for implementing atomic operations. */
97
98 /* To implement exclusive operations we force all cpus to syncronise.
99 We don't require a full sync, only that no cpus are executing guest code.
100 The alternative is to map target atomic ops onto host equivalents,
101 which requires quite a lot of per host/target work. */
102 static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER;
103 static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER;
104 static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER;
105 static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER;
106 static int pending_cpus;
107
108 /* Make sure everything is in a consistent state for calling fork(). */
109 void fork_start(void)
110 {
111 pthread_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
112 pthread_mutex_lock(&exclusive_lock);
113 mmap_fork_start();
114 }
115
116 void fork_end(int child)
117 {
118 mmap_fork_end(child);
119 if (child) {
120 /* Child processes created by fork() only have a single thread.
121 Discard information about the parent threads. */
122 first_cpu = thread_cpu;
123 first_cpu->next_cpu = NULL;
124 pending_cpus = 0;
125 pthread_mutex_init(&exclusive_lock, NULL);
126 pthread_mutex_init(&cpu_list_mutex, NULL);
127 pthread_cond_init(&exclusive_cond, NULL);
128 pthread_cond_init(&exclusive_resume, NULL);
129 pthread_mutex_init(&tcg_ctx.tb_ctx.tb_lock, NULL);
130 gdbserver_fork((CPUArchState *)thread_cpu->env_ptr);
131 } else {
132 pthread_mutex_unlock(&exclusive_lock);
133 pthread_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
134 }
135 }
136
137 /* Wait for pending exclusive operations to complete. The exclusive lock
138 must be held. */
139 static inline void exclusive_idle(void)
140 {
141 while (pending_cpus) {
142 pthread_cond_wait(&exclusive_resume, &exclusive_lock);
143 }
144 }
145
146 /* Start an exclusive operation.
147 Must only be called from outside cpu_arm_exec. */
148 static inline void start_exclusive(void)
149 {
150 CPUState *other_cpu;
151
152 pthread_mutex_lock(&exclusive_lock);
153 exclusive_idle();
154
155 pending_cpus = 1;
156 /* Make all other cpus stop executing. */
157 for (other_cpu = first_cpu; other_cpu; other_cpu = other_cpu->next_cpu) {
158 if (other_cpu->running) {
159 pending_cpus++;
160 cpu_exit(other_cpu);
161 }
162 }
163 if (pending_cpus > 1) {
164 pthread_cond_wait(&exclusive_cond, &exclusive_lock);
165 }
166 }
167
168 /* Finish an exclusive operation. */
169 static inline void end_exclusive(void)
170 {
171 pending_cpus = 0;
172 pthread_cond_broadcast(&exclusive_resume);
173 pthread_mutex_unlock(&exclusive_lock);
174 }
175
176 /* Wait for exclusive ops to finish, and begin cpu execution. */
177 static inline void cpu_exec_start(CPUState *cpu)
178 {
179 pthread_mutex_lock(&exclusive_lock);
180 exclusive_idle();
181 cpu->running = true;
182 pthread_mutex_unlock(&exclusive_lock);
183 }
184
185 /* Mark cpu as not executing, and release pending exclusive ops. */
186 static inline void cpu_exec_end(CPUState *cpu)
187 {
188 pthread_mutex_lock(&exclusive_lock);
189 cpu->running = false;
190 if (pending_cpus > 1) {
191 pending_cpus--;
192 if (pending_cpus == 1) {
193 pthread_cond_signal(&exclusive_cond);
194 }
195 }
196 exclusive_idle();
197 pthread_mutex_unlock(&exclusive_lock);
198 }
199
200 void cpu_list_lock(void)
201 {
202 pthread_mutex_lock(&cpu_list_mutex);
203 }
204
205 void cpu_list_unlock(void)
206 {
207 pthread_mutex_unlock(&cpu_list_mutex);
208 }
209
210
211 #ifdef TARGET_I386
212 /***********************************************************/
213 /* CPUX86 core interface */
214
215 void cpu_smm_update(CPUX86State *env)
216 {
217 }
218
219 uint64_t cpu_get_tsc(CPUX86State *env)
220 {
221 return cpu_get_real_ticks();
222 }
223
224 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
225 int flags)
226 {
227 unsigned int e1, e2;
228 uint32_t *p;
229 e1 = (addr << 16) | (limit & 0xffff);
230 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
231 e2 |= flags;
232 p = ptr;
233 p[0] = tswap32(e1);
234 p[1] = tswap32(e2);
235 }
236
237 static uint64_t *idt_table;
238 #ifdef TARGET_X86_64
239 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
240 uint64_t addr, unsigned int sel)
241 {
242 uint32_t *p, e1, e2;
243 e1 = (addr & 0xffff) | (sel << 16);
244 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
245 p = ptr;
246 p[0] = tswap32(e1);
247 p[1] = tswap32(e2);
248 p[2] = tswap32(addr >> 32);
249 p[3] = 0;
250 }
251 /* only dpl matters as we do only user space emulation */
252 static void set_idt(int n, unsigned int dpl)
253 {
254 set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
255 }
256 #else
257 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
258 uint32_t addr, unsigned int sel)
259 {
260 uint32_t *p, e1, e2;
261 e1 = (addr & 0xffff) | (sel << 16);
262 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
263 p = ptr;
264 p[0] = tswap32(e1);
265 p[1] = tswap32(e2);
266 }
267
268 /* only dpl matters as we do only user space emulation */
269 static void set_idt(int n, unsigned int dpl)
270 {
271 set_gate(idt_table + n, 0, dpl, 0, 0);
272 }
273 #endif
274
275 void cpu_loop(CPUX86State *env)
276 {
277 int trapnr;
278 abi_ulong pc;
279 target_siginfo_t info;
280
281 for(;;) {
282 trapnr = cpu_x86_exec(env);
283 switch(trapnr) {
284 case 0x80:
285 /* linux syscall from int $0x80 */
286 env->regs[R_EAX] = do_syscall(env,
287 env->regs[R_EAX],
288 env->regs[R_EBX],
289 env->regs[R_ECX],
290 env->regs[R_EDX],
291 env->regs[R_ESI],
292 env->regs[R_EDI],
293 env->regs[R_EBP],
294 0, 0);
295 break;
296 #ifndef TARGET_ABI32
297 case EXCP_SYSCALL:
298 /* linux syscall from syscall instruction */
299 env->regs[R_EAX] = do_syscall(env,
300 env->regs[R_EAX],
301 env->regs[R_EDI],
302 env->regs[R_ESI],
303 env->regs[R_EDX],
304 env->regs[10],
305 env->regs[8],
306 env->regs[9],
307 0, 0);
308 env->eip = env->exception_next_eip;
309 break;
310 #endif
311 case EXCP0B_NOSEG:
312 case EXCP0C_STACK:
313 info.si_signo = SIGBUS;
314 info.si_errno = 0;
315 info.si_code = TARGET_SI_KERNEL;
316 info._sifields._sigfault._addr = 0;
317 queue_signal(env, info.si_signo, &info);
318 break;
319 case EXCP0D_GPF:
320 /* XXX: potential problem if ABI32 */
321 #ifndef TARGET_X86_64
322 if (env->eflags & VM_MASK) {
323 handle_vm86_fault(env);
324 } else
325 #endif
326 {
327 info.si_signo = SIGSEGV;
328 info.si_errno = 0;
329 info.si_code = TARGET_SI_KERNEL;
330 info._sifields._sigfault._addr = 0;
331 queue_signal(env, info.si_signo, &info);
332 }
333 break;
334 case EXCP0E_PAGE:
335 info.si_signo = SIGSEGV;
336 info.si_errno = 0;
337 if (!(env->error_code & 1))
338 info.si_code = TARGET_SEGV_MAPERR;
339 else
340 info.si_code = TARGET_SEGV_ACCERR;
341 info._sifields._sigfault._addr = env->cr[2];
342 queue_signal(env, info.si_signo, &info);
343 break;
344 case EXCP00_DIVZ:
345 #ifndef TARGET_X86_64
346 if (env->eflags & VM_MASK) {
347 handle_vm86_trap(env, trapnr);
348 } else
349 #endif
350 {
351 /* division by zero */
352 info.si_signo = SIGFPE;
353 info.si_errno = 0;
354 info.si_code = TARGET_FPE_INTDIV;
355 info._sifields._sigfault._addr = env->eip;
356 queue_signal(env, info.si_signo, &info);
357 }
358 break;
359 case EXCP01_DB:
360 case EXCP03_INT3:
361 #ifndef TARGET_X86_64
362 if (env->eflags & VM_MASK) {
363 handle_vm86_trap(env, trapnr);
364 } else
365 #endif
366 {
367 info.si_signo = SIGTRAP;
368 info.si_errno = 0;
369 if (trapnr == EXCP01_DB) {
370 info.si_code = TARGET_TRAP_BRKPT;
371 info._sifields._sigfault._addr = env->eip;
372 } else {
373 info.si_code = TARGET_SI_KERNEL;
374 info._sifields._sigfault._addr = 0;
375 }
376 queue_signal(env, info.si_signo, &info);
377 }
378 break;
379 case EXCP04_INTO:
380 case EXCP05_BOUND:
381 #ifndef TARGET_X86_64
382 if (env->eflags & VM_MASK) {
383 handle_vm86_trap(env, trapnr);
384 } else
385 #endif
386 {
387 info.si_signo = SIGSEGV;
388 info.si_errno = 0;
389 info.si_code = TARGET_SI_KERNEL;
390 info._sifields._sigfault._addr = 0;
391 queue_signal(env, info.si_signo, &info);
392 }
393 break;
394 case EXCP06_ILLOP:
395 info.si_signo = SIGILL;
396 info.si_errno = 0;
397 info.si_code = TARGET_ILL_ILLOPN;
398 info._sifields._sigfault._addr = env->eip;
399 queue_signal(env, info.si_signo, &info);
400 break;
401 case EXCP_INTERRUPT:
402 /* just indicate that signals should be handled asap */
403 break;
404 case EXCP_DEBUG:
405 {
406 int sig;
407
408 sig = gdb_handlesig (env, TARGET_SIGTRAP);
409 if (sig)
410 {
411 info.si_signo = sig;
412 info.si_errno = 0;
413 info.si_code = TARGET_TRAP_BRKPT;
414 queue_signal(env, info.si_signo, &info);
415 }
416 }
417 break;
418 default:
419 pc = env->segs[R_CS].base + env->eip;
420 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
421 (long)pc, trapnr);
422 abort();
423 }
424 process_pending_signals(env);
425 }
426 }
427 #endif
428
429 #ifdef TARGET_ARM
430
431 #define get_user_code_u32(x, gaddr, doswap) \
432 ({ abi_long __r = get_user_u32((x), (gaddr)); \
433 if (!__r && (doswap)) { \
434 (x) = bswap32(x); \
435 } \
436 __r; \
437 })
438
439 #define get_user_code_u16(x, gaddr, doswap) \
440 ({ abi_long __r = get_user_u16((x), (gaddr)); \
441 if (!__r && (doswap)) { \
442 (x) = bswap16(x); \
443 } \
444 __r; \
445 })
446
447 /*
448 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
449 * Input:
450 * r0 = pointer to oldval
451 * r1 = pointer to newval
452 * r2 = pointer to target value
453 *
454 * Output:
455 * r0 = 0 if *ptr was changed, non-0 if no exchange happened
456 * C set if *ptr was changed, clear if no exchange happened
457 *
458 * Note segv's in kernel helpers are a bit tricky, we can set the
459 * data address sensibly but the PC address is just the entry point.
460 */
461 static void arm_kernel_cmpxchg64_helper(CPUARMState *env)
462 {
463 uint64_t oldval, newval, val;
464 uint32_t addr, cpsr;
465 target_siginfo_t info;
466
467 /* Based on the 32 bit code in do_kernel_trap */
468
469 /* XXX: This only works between threads, not between processes.
470 It's probably possible to implement this with native host
471 operations. However things like ldrex/strex are much harder so
472 there's not much point trying. */
473 start_exclusive();
474 cpsr = cpsr_read(env);
475 addr = env->regs[2];
476
477 if (get_user_u64(oldval, env->regs[0])) {
478 env->cp15.c6_data = env->regs[0];
479 goto segv;
480 };
481
482 if (get_user_u64(newval, env->regs[1])) {
483 env->cp15.c6_data = env->regs[1];
484 goto segv;
485 };
486
487 if (get_user_u64(val, addr)) {
488 env->cp15.c6_data = addr;
489 goto segv;
490 }
491
492 if (val == oldval) {
493 val = newval;
494
495 if (put_user_u64(val, addr)) {
496 env->cp15.c6_data = addr;
497 goto segv;
498 };
499
500 env->regs[0] = 0;
501 cpsr |= CPSR_C;
502 } else {
503 env->regs[0] = -1;
504 cpsr &= ~CPSR_C;
505 }
506 cpsr_write(env, cpsr, CPSR_C);
507 end_exclusive();
508 return;
509
510 segv:
511 end_exclusive();
512 /* We get the PC of the entry address - which is as good as anything,
513 on a real kernel what you get depends on which mode it uses. */
514 info.si_signo = SIGSEGV;
515 info.si_errno = 0;
516 /* XXX: check env->error_code */
517 info.si_code = TARGET_SEGV_MAPERR;
518 info._sifields._sigfault._addr = env->cp15.c6_data;
519 queue_signal(env, info.si_signo, &info);
520
521 end_exclusive();
522 }
523
524 /* Handle a jump to the kernel code page. */
525 static int
526 do_kernel_trap(CPUARMState *env)
527 {
528 uint32_t addr;
529 uint32_t cpsr;
530 uint32_t val;
531
532 switch (env->regs[15]) {
533 case 0xffff0fa0: /* __kernel_memory_barrier */
534 /* ??? No-op. Will need to do better for SMP. */
535 break;
536 case 0xffff0fc0: /* __kernel_cmpxchg */
537 /* XXX: This only works between threads, not between processes.
538 It's probably possible to implement this with native host
539 operations. However things like ldrex/strex are much harder so
540 there's not much point trying. */
541 start_exclusive();
542 cpsr = cpsr_read(env);
543 addr = env->regs[2];
544 /* FIXME: This should SEGV if the access fails. */
545 if (get_user_u32(val, addr))
546 val = ~env->regs[0];
547 if (val == env->regs[0]) {
548 val = env->regs[1];
549 /* FIXME: Check for segfaults. */
550 put_user_u32(val, addr);
551 env->regs[0] = 0;
552 cpsr |= CPSR_C;
553 } else {
554 env->regs[0] = -1;
555 cpsr &= ~CPSR_C;
556 }
557 cpsr_write(env, cpsr, CPSR_C);
558 end_exclusive();
559 break;
560 case 0xffff0fe0: /* __kernel_get_tls */
561 env->regs[0] = env->cp15.c13_tls2;
562 break;
563 case 0xffff0f60: /* __kernel_cmpxchg64 */
564 arm_kernel_cmpxchg64_helper(env);
565 break;
566
567 default:
568 return 1;
569 }
570 /* Jump back to the caller. */
571 addr = env->regs[14];
572 if (addr & 1) {
573 env->thumb = 1;
574 addr &= ~1;
575 }
576 env->regs[15] = addr;
577
578 return 0;
579 }
580
581 static int do_strex(CPUARMState *env)
582 {
583 uint32_t val;
584 int size;
585 int rc = 1;
586 int segv = 0;
587 uint32_t addr;
588 start_exclusive();
589 addr = env->exclusive_addr;
590 if (addr != env->exclusive_test) {
591 goto fail;
592 }
593 size = env->exclusive_info & 0xf;
594 switch (size) {
595 case 0:
596 segv = get_user_u8(val, addr);
597 break;
598 case 1:
599 segv = get_user_u16(val, addr);
600 break;
601 case 2:
602 case 3:
603 segv = get_user_u32(val, addr);
604 break;
605 default:
606 abort();
607 }
608 if (segv) {
609 env->cp15.c6_data = addr;
610 goto done;
611 }
612 if (val != env->exclusive_val) {
613 goto fail;
614 }
615 if (size == 3) {
616 segv = get_user_u32(val, addr + 4);
617 if (segv) {
618 env->cp15.c6_data = addr + 4;
619 goto done;
620 }
621 if (val != env->exclusive_high) {
622 goto fail;
623 }
624 }
625 val = env->regs[(env->exclusive_info >> 8) & 0xf];
626 switch (size) {
627 case 0:
628 segv = put_user_u8(val, addr);
629 break;
630 case 1:
631 segv = put_user_u16(val, addr);
632 break;
633 case 2:
634 case 3:
635 segv = put_user_u32(val, addr);
636 break;
637 }
638 if (segv) {
639 env->cp15.c6_data = addr;
640 goto done;
641 }
642 if (size == 3) {
643 val = env->regs[(env->exclusive_info >> 12) & 0xf];
644 segv = put_user_u32(val, addr + 4);
645 if (segv) {
646 env->cp15.c6_data = addr + 4;
647 goto done;
648 }
649 }
650 rc = 0;
651 fail:
652 env->regs[15] += 4;
653 env->regs[(env->exclusive_info >> 4) & 0xf] = rc;
654 done:
655 end_exclusive();
656 return segv;
657 }
658
659 void cpu_loop(CPUARMState *env)
660 {
661 CPUState *cs = CPU(arm_env_get_cpu(env));
662 int trapnr;
663 unsigned int n, insn;
664 target_siginfo_t info;
665 uint32_t addr;
666
667 for(;;) {
668 cpu_exec_start(cs);
669 trapnr = cpu_arm_exec(env);
670 cpu_exec_end(cs);
671 switch(trapnr) {
672 case EXCP_UDEF:
673 {
674 TaskState *ts = env->opaque;
675 uint32_t opcode;
676 int rc;
677
678 /* we handle the FPU emulation here, as Linux */
679 /* we get the opcode */
680 /* FIXME - what to do if get_user() fails? */
681 get_user_code_u32(opcode, env->regs[15], env->bswap_code);
682
683 rc = EmulateAll(opcode, &ts->fpa, env);
684 if (rc == 0) { /* illegal instruction */
685 info.si_signo = SIGILL;
686 info.si_errno = 0;
687 info.si_code = TARGET_ILL_ILLOPN;
688 info._sifields._sigfault._addr = env->regs[15];
689 queue_signal(env, info.si_signo, &info);
690 } else if (rc < 0) { /* FP exception */
691 int arm_fpe=0;
692
693 /* translate softfloat flags to FPSR flags */
694 if (-rc & float_flag_invalid)
695 arm_fpe |= BIT_IOC;
696 if (-rc & float_flag_divbyzero)
697 arm_fpe |= BIT_DZC;
698 if (-rc & float_flag_overflow)
699 arm_fpe |= BIT_OFC;
700 if (-rc & float_flag_underflow)
701 arm_fpe |= BIT_UFC;
702 if (-rc & float_flag_inexact)
703 arm_fpe |= BIT_IXC;
704
705 FPSR fpsr = ts->fpa.fpsr;
706 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
707
708 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */
709 info.si_signo = SIGFPE;
710 info.si_errno = 0;
711
712 /* ordered by priority, least first */
713 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES;
714 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND;
715 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF;
716 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV;
717 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV;
718
719 info._sifields._sigfault._addr = env->regs[15];
720 queue_signal(env, info.si_signo, &info);
721 } else {
722 env->regs[15] += 4;
723 }
724
725 /* accumulate unenabled exceptions */
726 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC))
727 fpsr |= BIT_IXC;
728 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC))
729 fpsr |= BIT_UFC;
730 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC))
731 fpsr |= BIT_OFC;
732 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC))
733 fpsr |= BIT_DZC;
734 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC))
735 fpsr |= BIT_IOC;
736 ts->fpa.fpsr=fpsr;
737 } else { /* everything OK */
738 /* increment PC */
739 env->regs[15] += 4;
740 }
741 }
742 break;
743 case EXCP_SWI:
744 case EXCP_BKPT:
745 {
746 env->eabi = 1;
747 /* system call */
748 if (trapnr == EXCP_BKPT) {
749 if (env->thumb) {
750 /* FIXME - what to do if get_user() fails? */
751 get_user_code_u16(insn, env->regs[15], env->bswap_code);
752 n = insn & 0xff;
753 env->regs[15] += 2;
754 } else {
755 /* FIXME - what to do if get_user() fails? */
756 get_user_code_u32(insn, env->regs[15], env->bswap_code);
757 n = (insn & 0xf) | ((insn >> 4) & 0xff0);
758 env->regs[15] += 4;
759 }
760 } else {
761 if (env->thumb) {
762 /* FIXME - what to do if get_user() fails? */
763 get_user_code_u16(insn, env->regs[15] - 2,
764 env->bswap_code);
765 n = insn & 0xff;
766 } else {
767 /* FIXME - what to do if get_user() fails? */
768 get_user_code_u32(insn, env->regs[15] - 4,
769 env->bswap_code);
770 n = insn & 0xffffff;
771 }
772 }
773
774 if (n == ARM_NR_cacheflush) {
775 /* nop */
776 } else if (n == ARM_NR_semihosting
777 || n == ARM_NR_thumb_semihosting) {
778 env->regs[0] = do_arm_semihosting (env);
779 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) {
780 /* linux syscall */
781 if (env->thumb || n == 0) {
782 n = env->regs[7];
783 } else {
784 n -= ARM_SYSCALL_BASE;
785 env->eabi = 0;
786 }
787 if ( n > ARM_NR_BASE) {
788 switch (n) {
789 case ARM_NR_cacheflush:
790 /* nop */
791 break;
792 case ARM_NR_set_tls:
793 cpu_set_tls(env, env->regs[0]);
794 env->regs[0] = 0;
795 break;
796 default:
797 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
798 n);
799 env->regs[0] = -TARGET_ENOSYS;
800 break;
801 }
802 } else {
803 env->regs[0] = do_syscall(env,
804 n,
805 env->regs[0],
806 env->regs[1],
807 env->regs[2],
808 env->regs[3],
809 env->regs[4],
810 env->regs[5],
811 0, 0);
812 }
813 } else {
814 goto error;
815 }
816 }
817 break;
818 case EXCP_INTERRUPT:
819 /* just indicate that signals should be handled asap */
820 break;
821 case EXCP_PREFETCH_ABORT:
822 addr = env->cp15.c6_insn;
823 goto do_segv;
824 case EXCP_DATA_ABORT:
825 addr = env->cp15.c6_data;
826 do_segv:
827 {
828 info.si_signo = SIGSEGV;
829 info.si_errno = 0;
830 /* XXX: check env->error_code */
831 info.si_code = TARGET_SEGV_MAPERR;
832 info._sifields._sigfault._addr = addr;
833 queue_signal(env, info.si_signo, &info);
834 }
835 break;
836 case EXCP_DEBUG:
837 {
838 int sig;
839
840 sig = gdb_handlesig (env, TARGET_SIGTRAP);
841 if (sig)
842 {
843 info.si_signo = sig;
844 info.si_errno = 0;
845 info.si_code = TARGET_TRAP_BRKPT;
846 queue_signal(env, info.si_signo, &info);
847 }
848 }
849 break;
850 case EXCP_KERNEL_TRAP:
851 if (do_kernel_trap(env))
852 goto error;
853 break;
854 case EXCP_STREX:
855 if (do_strex(env)) {
856 addr = env->cp15.c6_data;
857 goto do_segv;
858 }
859 break;
860 default:
861 error:
862 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
863 trapnr);
864 cpu_dump_state(cs, stderr, fprintf, 0);
865 abort();
866 }
867 process_pending_signals(env);
868 }
869 }
870
871 #endif
872
873 #ifdef TARGET_UNICORE32
874
875 void cpu_loop(CPUUniCore32State *env)
876 {
877 CPUState *cs = CPU(uc32_env_get_cpu(env));
878 int trapnr;
879 unsigned int n, insn;
880 target_siginfo_t info;
881
882 for (;;) {
883 cpu_exec_start(cs);
884 trapnr = uc32_cpu_exec(env);
885 cpu_exec_end(cs);
886 switch (trapnr) {
887 case UC32_EXCP_PRIV:
888 {
889 /* system call */
890 get_user_u32(insn, env->regs[31] - 4);
891 n = insn & 0xffffff;
892
893 if (n >= UC32_SYSCALL_BASE) {
894 /* linux syscall */
895 n -= UC32_SYSCALL_BASE;
896 if (n == UC32_SYSCALL_NR_set_tls) {
897 cpu_set_tls(env, env->regs[0]);
898 env->regs[0] = 0;
899 } else {
900 env->regs[0] = do_syscall(env,
901 n,
902 env->regs[0],
903 env->regs[1],
904 env->regs[2],
905 env->regs[3],
906 env->regs[4],
907 env->regs[5],
908 0, 0);
909 }
910 } else {
911 goto error;
912 }
913 }
914 break;
915 case UC32_EXCP_DTRAP:
916 case UC32_EXCP_ITRAP:
917 info.si_signo = SIGSEGV;
918 info.si_errno = 0;
919 /* XXX: check env->error_code */
920 info.si_code = TARGET_SEGV_MAPERR;
921 info._sifields._sigfault._addr = env->cp0.c4_faultaddr;
922 queue_signal(env, info.si_signo, &info);
923 break;
924 case EXCP_INTERRUPT:
925 /* just indicate that signals should be handled asap */
926 break;
927 case EXCP_DEBUG:
928 {
929 int sig;
930
931 sig = gdb_handlesig(env, TARGET_SIGTRAP);
932 if (sig) {
933 info.si_signo = sig;
934 info.si_errno = 0;
935 info.si_code = TARGET_TRAP_BRKPT;
936 queue_signal(env, info.si_signo, &info);
937 }
938 }
939 break;
940 default:
941 goto error;
942 }
943 process_pending_signals(env);
944 }
945
946 error:
947 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
948 cpu_dump_state(cs, stderr, fprintf, 0);
949 abort();
950 }
951 #endif
952
953 #ifdef TARGET_SPARC
954 #define SPARC64_STACK_BIAS 2047
955
956 //#define DEBUG_WIN
957
958 /* WARNING: dealing with register windows _is_ complicated. More info
959 can be found at http://www.sics.se/~psm/sparcstack.html */
960 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
961 {
962 index = (index + cwp * 16) % (16 * env->nwindows);
963 /* wrap handling : if cwp is on the last window, then we use the
964 registers 'after' the end */
965 if (index < 8 && env->cwp == env->nwindows - 1)
966 index += 16 * env->nwindows;
967 return index;
968 }
969
970 /* save the register window 'cwp1' */
971 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
972 {
973 unsigned int i;
974 abi_ulong sp_ptr;
975
976 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
977 #ifdef TARGET_SPARC64
978 if (sp_ptr & 3)
979 sp_ptr += SPARC64_STACK_BIAS;
980 #endif
981 #if defined(DEBUG_WIN)
982 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
983 sp_ptr, cwp1);
984 #endif
985 for(i = 0; i < 16; i++) {
986 /* FIXME - what to do if put_user() fails? */
987 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
988 sp_ptr += sizeof(abi_ulong);
989 }
990 }
991
992 static void save_window(CPUSPARCState *env)
993 {
994 #ifndef TARGET_SPARC64
995 unsigned int new_wim;
996 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
997 ((1LL << env->nwindows) - 1);
998 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
999 env->wim = new_wim;
1000 #else
1001 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1002 env->cansave++;
1003 env->canrestore--;
1004 #endif
1005 }
1006
1007 static void restore_window(CPUSPARCState *env)
1008 {
1009 #ifndef TARGET_SPARC64
1010 unsigned int new_wim;
1011 #endif
1012 unsigned int i, cwp1;
1013 abi_ulong sp_ptr;
1014
1015 #ifndef TARGET_SPARC64
1016 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
1017 ((1LL << env->nwindows) - 1);
1018 #endif
1019
1020 /* restore the invalid window */
1021 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1022 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
1023 #ifdef TARGET_SPARC64
1024 if (sp_ptr & 3)
1025 sp_ptr += SPARC64_STACK_BIAS;
1026 #endif
1027 #if defined(DEBUG_WIN)
1028 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
1029 sp_ptr, cwp1);
1030 #endif
1031 for(i = 0; i < 16; i++) {
1032 /* FIXME - what to do if get_user() fails? */
1033 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
1034 sp_ptr += sizeof(abi_ulong);
1035 }
1036 #ifdef TARGET_SPARC64
1037 env->canrestore++;
1038 if (env->cleanwin < env->nwindows - 1)
1039 env->cleanwin++;
1040 env->cansave--;
1041 #else
1042 env->wim = new_wim;
1043 #endif
1044 }
1045
1046 static void flush_windows(CPUSPARCState *env)
1047 {
1048 int offset, cwp1;
1049
1050 offset = 1;
1051 for(;;) {
1052 /* if restore would invoke restore_window(), then we can stop */
1053 cwp1 = cpu_cwp_inc(env, env->cwp + offset);
1054 #ifndef TARGET_SPARC64
1055 if (env->wim & (1 << cwp1))
1056 break;
1057 #else
1058 if (env->canrestore == 0)
1059 break;
1060 env->cansave++;
1061 env->canrestore--;
1062 #endif
1063 save_window_offset(env, cwp1);
1064 offset++;
1065 }
1066 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1067 #ifndef TARGET_SPARC64
1068 /* set wim so that restore will reload the registers */
1069 env->wim = 1 << cwp1;
1070 #endif
1071 #if defined(DEBUG_WIN)
1072 printf("flush_windows: nb=%d\n", offset - 1);
1073 #endif
1074 }
1075
1076 void cpu_loop (CPUSPARCState *env)
1077 {
1078 CPUState *cs = CPU(sparc_env_get_cpu(env));
1079 int trapnr;
1080 abi_long ret;
1081 target_siginfo_t info;
1082
1083 while (1) {
1084 trapnr = cpu_sparc_exec (env);
1085
1086 /* Compute PSR before exposing state. */
1087 if (env->cc_op != CC_OP_FLAGS) {
1088 cpu_get_psr(env);
1089 }
1090
1091 switch (trapnr) {
1092 #ifndef TARGET_SPARC64
1093 case 0x88:
1094 case 0x90:
1095 #else
1096 case 0x110:
1097 case 0x16d:
1098 #endif
1099 ret = do_syscall (env, env->gregs[1],
1100 env->regwptr[0], env->regwptr[1],
1101 env->regwptr[2], env->regwptr[3],
1102 env->regwptr[4], env->regwptr[5],
1103 0, 0);
1104 if ((abi_ulong)ret >= (abi_ulong)(-515)) {
1105 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1106 env->xcc |= PSR_CARRY;
1107 #else
1108 env->psr |= PSR_CARRY;
1109 #endif
1110 ret = -ret;
1111 } else {
1112 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1113 env->xcc &= ~PSR_CARRY;
1114 #else
1115 env->psr &= ~PSR_CARRY;
1116 #endif
1117 }
1118 env->regwptr[0] = ret;
1119 /* next instruction */
1120 env->pc = env->npc;
1121 env->npc = env->npc + 4;
1122 break;
1123 case 0x83: /* flush windows */
1124 #ifdef TARGET_ABI32
1125 case 0x103:
1126 #endif
1127 flush_windows(env);
1128 /* next instruction */
1129 env->pc = env->npc;
1130 env->npc = env->npc + 4;
1131 break;
1132 #ifndef TARGET_SPARC64
1133 case TT_WIN_OVF: /* window overflow */
1134 save_window(env);
1135 break;
1136 case TT_WIN_UNF: /* window underflow */
1137 restore_window(env);
1138 break;
1139 case TT_TFAULT:
1140 case TT_DFAULT:
1141 {
1142 info.si_signo = TARGET_SIGSEGV;
1143 info.si_errno = 0;
1144 /* XXX: check env->error_code */
1145 info.si_code = TARGET_SEGV_MAPERR;
1146 info._sifields._sigfault._addr = env->mmuregs[4];
1147 queue_signal(env, info.si_signo, &info);
1148 }
1149 break;
1150 #else
1151 case TT_SPILL: /* window overflow */
1152 save_window(env);
1153 break;
1154 case TT_FILL: /* window underflow */
1155 restore_window(env);
1156 break;
1157 case TT_TFAULT:
1158 case TT_DFAULT:
1159 {
1160 info.si_signo = TARGET_SIGSEGV;
1161 info.si_errno = 0;
1162 /* XXX: check env->error_code */
1163 info.si_code = TARGET_SEGV_MAPERR;
1164 if (trapnr == TT_DFAULT)
1165 info._sifields._sigfault._addr = env->dmmuregs[4];
1166 else
1167 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc;
1168 queue_signal(env, info.si_signo, &info);
1169 }
1170 break;
1171 #ifndef TARGET_ABI32
1172 case 0x16e:
1173 flush_windows(env);
1174 sparc64_get_context(env);
1175 break;
1176 case 0x16f:
1177 flush_windows(env);
1178 sparc64_set_context(env);
1179 break;
1180 #endif
1181 #endif
1182 case EXCP_INTERRUPT:
1183 /* just indicate that signals should be handled asap */
1184 break;
1185 case TT_ILL_INSN:
1186 {
1187 info.si_signo = TARGET_SIGILL;
1188 info.si_errno = 0;
1189 info.si_code = TARGET_ILL_ILLOPC;
1190 info._sifields._sigfault._addr = env->pc;
1191 queue_signal(env, info.si_signo, &info);
1192 }
1193 break;
1194 case EXCP_DEBUG:
1195 {
1196 int sig;
1197
1198 sig = gdb_handlesig (env, TARGET_SIGTRAP);
1199 if (sig)
1200 {
1201 info.si_signo = sig;
1202 info.si_errno = 0;
1203 info.si_code = TARGET_TRAP_BRKPT;
1204 queue_signal(env, info.si_signo, &info);
1205 }
1206 }
1207 break;
1208 default:
1209 printf ("Unhandled trap: 0x%x\n", trapnr);
1210 cpu_dump_state(cs, stderr, fprintf, 0);
1211 exit (1);
1212 }
1213 process_pending_signals (env);
1214 }
1215 }
1216
1217 #endif
1218
1219 #ifdef TARGET_PPC
1220 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env)
1221 {
1222 /* TO FIX */
1223 return 0;
1224 }
1225
1226 uint64_t cpu_ppc_load_tbl(CPUPPCState *env)
1227 {
1228 return cpu_ppc_get_tb(env);
1229 }
1230
1231 uint32_t cpu_ppc_load_tbu(CPUPPCState *env)
1232 {
1233 return cpu_ppc_get_tb(env) >> 32;
1234 }
1235
1236 uint64_t cpu_ppc_load_atbl(CPUPPCState *env)
1237 {
1238 return cpu_ppc_get_tb(env);
1239 }
1240
1241 uint32_t cpu_ppc_load_atbu(CPUPPCState *env)
1242 {
1243 return cpu_ppc_get_tb(env) >> 32;
1244 }
1245
1246 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env)
1247 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1248
1249 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env)
1250 {
1251 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1252 }
1253
1254 /* XXX: to be fixed */
1255 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1256 {
1257 return -1;
1258 }
1259
1260 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1261 {
1262 return -1;
1263 }
1264
1265 #define EXCP_DUMP(env, fmt, ...) \
1266 do { \
1267 CPUState *cs = ENV_GET_CPU(env); \
1268 fprintf(stderr, fmt , ## __VA_ARGS__); \
1269 cpu_dump_state(cs, stderr, fprintf, 0); \
1270 qemu_log(fmt, ## __VA_ARGS__); \
1271 if (qemu_log_enabled()) { \
1272 log_cpu_state(cs, 0); \
1273 } \
1274 } while (0)
1275
1276 static int do_store_exclusive(CPUPPCState *env)
1277 {
1278 target_ulong addr;
1279 target_ulong page_addr;
1280 target_ulong val;
1281 int flags;
1282 int segv = 0;
1283
1284 addr = env->reserve_ea;
1285 page_addr = addr & TARGET_PAGE_MASK;
1286 start_exclusive();
1287 mmap_lock();
1288 flags = page_get_flags(page_addr);
1289 if ((flags & PAGE_READ) == 0) {
1290 segv = 1;
1291 } else {
1292 int reg = env->reserve_info & 0x1f;
1293 int size = (env->reserve_info >> 5) & 0xf;
1294 int stored = 0;
1295
1296 if (addr == env->reserve_addr) {
1297 switch (size) {
1298 case 1: segv = get_user_u8(val, addr); break;
1299 case 2: segv = get_user_u16(val, addr); break;
1300 case 4: segv = get_user_u32(val, addr); break;
1301 #if defined(TARGET_PPC64)
1302 case 8: segv = get_user_u64(val, addr); break;
1303 #endif
1304 default: abort();
1305 }
1306 if (!segv && val == env->reserve_val) {
1307 val = env->gpr[reg];
1308 switch (size) {
1309 case 1: segv = put_user_u8(val, addr); break;
1310 case 2: segv = put_user_u16(val, addr); break;
1311 case 4: segv = put_user_u32(val, addr); break;
1312 #if defined(TARGET_PPC64)
1313 case 8: segv = put_user_u64(val, addr); break;
1314 #endif
1315 default: abort();
1316 }
1317 if (!segv) {
1318 stored = 1;
1319 }
1320 }
1321 }
1322 env->crf[0] = (stored << 1) | xer_so;
1323 env->reserve_addr = (target_ulong)-1;
1324 }
1325 if (!segv) {
1326 env->nip += 4;
1327 }
1328 mmap_unlock();
1329 end_exclusive();
1330 return segv;
1331 }
1332
1333 void cpu_loop(CPUPPCState *env)
1334 {
1335 CPUState *cs = CPU(ppc_env_get_cpu(env));
1336 target_siginfo_t info;
1337 int trapnr;
1338 target_ulong ret;
1339
1340 for(;;) {
1341 cpu_exec_start(cs);
1342 trapnr = cpu_ppc_exec(env);
1343 cpu_exec_end(cs);
1344 switch(trapnr) {
1345 case POWERPC_EXCP_NONE:
1346 /* Just go on */
1347 break;
1348 case POWERPC_EXCP_CRITICAL: /* Critical input */
1349 cpu_abort(env, "Critical interrupt while in user mode. "
1350 "Aborting\n");
1351 break;
1352 case POWERPC_EXCP_MCHECK: /* Machine check exception */
1353 cpu_abort(env, "Machine check exception while in user mode. "
1354 "Aborting\n");
1355 break;
1356 case POWERPC_EXCP_DSI: /* Data storage exception */
1357 EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n",
1358 env->spr[SPR_DAR]);
1359 /* XXX: check this. Seems bugged */
1360 switch (env->error_code & 0xFF000000) {
1361 case 0x40000000:
1362 info.si_signo = TARGET_SIGSEGV;
1363 info.si_errno = 0;
1364 info.si_code = TARGET_SEGV_MAPERR;
1365 break;
1366 case 0x04000000:
1367 info.si_signo = TARGET_SIGILL;
1368 info.si_errno = 0;
1369 info.si_code = TARGET_ILL_ILLADR;
1370 break;
1371 case 0x08000000:
1372 info.si_signo = TARGET_SIGSEGV;
1373 info.si_errno = 0;
1374 info.si_code = TARGET_SEGV_ACCERR;
1375 break;
1376 default:
1377 /* Let's send a regular segfault... */
1378 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1379 env->error_code);
1380 info.si_signo = TARGET_SIGSEGV;
1381 info.si_errno = 0;
1382 info.si_code = TARGET_SEGV_MAPERR;
1383 break;
1384 }
1385 info._sifields._sigfault._addr = env->nip;
1386 queue_signal(env, info.si_signo, &info);
1387 break;
1388 case POWERPC_EXCP_ISI: /* Instruction storage exception */
1389 EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx
1390 "\n", env->spr[SPR_SRR0]);
1391 /* XXX: check this */
1392 switch (env->error_code & 0xFF000000) {
1393 case 0x40000000:
1394 info.si_signo = TARGET_SIGSEGV;
1395 info.si_errno = 0;
1396 info.si_code = TARGET_SEGV_MAPERR;
1397 break;
1398 case 0x10000000:
1399 case 0x08000000:
1400 info.si_signo = TARGET_SIGSEGV;
1401 info.si_errno = 0;
1402 info.si_code = TARGET_SEGV_ACCERR;
1403 break;
1404 default:
1405 /* Let's send a regular segfault... */
1406 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1407 env->error_code);
1408 info.si_signo = TARGET_SIGSEGV;
1409 info.si_errno = 0;
1410 info.si_code = TARGET_SEGV_MAPERR;
1411 break;
1412 }
1413 info._sifields._sigfault._addr = env->nip - 4;
1414 queue_signal(env, info.si_signo, &info);
1415 break;
1416 case POWERPC_EXCP_EXTERNAL: /* External input */
1417 cpu_abort(env, "External interrupt while in user mode. "
1418 "Aborting\n");
1419 break;
1420 case POWERPC_EXCP_ALIGN: /* Alignment exception */
1421 EXCP_DUMP(env, "Unaligned memory access\n");
1422 /* XXX: check this */
1423 info.si_signo = TARGET_SIGBUS;
1424 info.si_errno = 0;
1425 info.si_code = TARGET_BUS_ADRALN;
1426 info._sifields._sigfault._addr = env->nip - 4;
1427 queue_signal(env, info.si_signo, &info);
1428 break;
1429 case POWERPC_EXCP_PROGRAM: /* Program exception */
1430 /* XXX: check this */
1431 switch (env->error_code & ~0xF) {
1432 case POWERPC_EXCP_FP:
1433 EXCP_DUMP(env, "Floating point program exception\n");
1434 info.si_signo = TARGET_SIGFPE;
1435 info.si_errno = 0;
1436 switch (env->error_code & 0xF) {
1437 case POWERPC_EXCP_FP_OX:
1438 info.si_code = TARGET_FPE_FLTOVF;
1439 break;
1440 case POWERPC_EXCP_FP_UX:
1441 info.si_code = TARGET_FPE_FLTUND;
1442 break;
1443 case POWERPC_EXCP_FP_ZX:
1444 case POWERPC_EXCP_FP_VXZDZ:
1445 info.si_code = TARGET_FPE_FLTDIV;
1446 break;
1447 case POWERPC_EXCP_FP_XX:
1448 info.si_code = TARGET_FPE_FLTRES;
1449 break;
1450 case POWERPC_EXCP_FP_VXSOFT:
1451 info.si_code = TARGET_FPE_FLTINV;
1452 break;
1453 case POWERPC_EXCP_FP_VXSNAN:
1454 case POWERPC_EXCP_FP_VXISI:
1455 case POWERPC_EXCP_FP_VXIDI:
1456 case POWERPC_EXCP_FP_VXIMZ:
1457 case POWERPC_EXCP_FP_VXVC:
1458 case POWERPC_EXCP_FP_VXSQRT:
1459 case POWERPC_EXCP_FP_VXCVI:
1460 info.si_code = TARGET_FPE_FLTSUB;
1461 break;
1462 default:
1463 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n",
1464 env->error_code);
1465 break;
1466 }
1467 break;
1468 case POWERPC_EXCP_INVAL:
1469 EXCP_DUMP(env, "Invalid instruction\n");
1470 info.si_signo = TARGET_SIGILL;
1471 info.si_errno = 0;
1472 switch (env->error_code & 0xF) {
1473 case POWERPC_EXCP_INVAL_INVAL:
1474 info.si_code = TARGET_ILL_ILLOPC;
1475 break;
1476 case POWERPC_EXCP_INVAL_LSWX:
1477 info.si_code = TARGET_ILL_ILLOPN;
1478 break;
1479 case POWERPC_EXCP_INVAL_SPR:
1480 info.si_code = TARGET_ILL_PRVREG;
1481 break;
1482 case POWERPC_EXCP_INVAL_FP:
1483 info.si_code = TARGET_ILL_COPROC;
1484 break;
1485 default:
1486 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n",
1487 env->error_code & 0xF);
1488 info.si_code = TARGET_ILL_ILLADR;
1489 break;
1490 }
1491 break;
1492 case POWERPC_EXCP_PRIV:
1493 EXCP_DUMP(env, "Privilege violation\n");
1494 info.si_signo = TARGET_SIGILL;
1495 info.si_errno = 0;
1496 switch (env->error_code & 0xF) {
1497 case POWERPC_EXCP_PRIV_OPC:
1498 info.si_code = TARGET_ILL_PRVOPC;
1499 break;
1500 case POWERPC_EXCP_PRIV_REG:
1501 info.si_code = TARGET_ILL_PRVREG;
1502 break;
1503 default:
1504 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n",
1505 env->error_code & 0xF);
1506 info.si_code = TARGET_ILL_PRVOPC;
1507 break;
1508 }
1509 break;
1510 case POWERPC_EXCP_TRAP:
1511 cpu_abort(env, "Tried to call a TRAP\n");
1512 break;
1513 default:
1514 /* Should not happen ! */
1515 cpu_abort(env, "Unknown program exception (%02x)\n",
1516 env->error_code);
1517 break;
1518 }
1519 info._sifields._sigfault._addr = env->nip - 4;
1520 queue_signal(env, info.si_signo, &info);
1521 break;
1522 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */
1523 EXCP_DUMP(env, "No floating point allowed\n");
1524 info.si_signo = TARGET_SIGILL;
1525 info.si_errno = 0;
1526 info.si_code = TARGET_ILL_COPROC;
1527 info._sifields._sigfault._addr = env->nip - 4;
1528 queue_signal(env, info.si_signo, &info);
1529 break;
1530 case POWERPC_EXCP_SYSCALL: /* System call exception */
1531 cpu_abort(env, "Syscall exception while in user mode. "
1532 "Aborting\n");
1533 break;
1534 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */
1535 EXCP_DUMP(env, "No APU instruction allowed\n");
1536 info.si_signo = TARGET_SIGILL;
1537 info.si_errno = 0;
1538 info.si_code = TARGET_ILL_COPROC;
1539 info._sifields._sigfault._addr = env->nip - 4;
1540 queue_signal(env, info.si_signo, &info);
1541 break;
1542 case POWERPC_EXCP_DECR: /* Decrementer exception */
1543 cpu_abort(env, "Decrementer interrupt while in user mode. "
1544 "Aborting\n");
1545 break;
1546 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */
1547 cpu_abort(env, "Fix interval timer interrupt while in user mode. "
1548 "Aborting\n");
1549 break;
1550 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */
1551 cpu_abort(env, "Watchdog timer interrupt while in user mode. "
1552 "Aborting\n");
1553 break;
1554 case POWERPC_EXCP_DTLB: /* Data TLB error */
1555 cpu_abort(env, "Data TLB exception while in user mode. "
1556 "Aborting\n");
1557 break;
1558 case POWERPC_EXCP_ITLB: /* Instruction TLB error */
1559 cpu_abort(env, "Instruction TLB exception while in user mode. "
1560 "Aborting\n");
1561 break;
1562 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */
1563 EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n");
1564 info.si_signo = TARGET_SIGILL;
1565 info.si_errno = 0;
1566 info.si_code = TARGET_ILL_COPROC;
1567 info._sifields._sigfault._addr = env->nip - 4;
1568 queue_signal(env, info.si_signo, &info);
1569 break;
1570 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */
1571 cpu_abort(env, "Embedded floating-point data IRQ not handled\n");
1572 break;
1573 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */
1574 cpu_abort(env, "Embedded floating-point round IRQ not handled\n");
1575 break;
1576 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */
1577 cpu_abort(env, "Performance monitor exception not handled\n");
1578 break;
1579 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */
1580 cpu_abort(env, "Doorbell interrupt while in user mode. "
1581 "Aborting\n");
1582 break;
1583 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */
1584 cpu_abort(env, "Doorbell critical interrupt while in user mode. "
1585 "Aborting\n");
1586 break;
1587 case POWERPC_EXCP_RESET: /* System reset exception */
1588 cpu_abort(env, "Reset interrupt while in user mode. "
1589 "Aborting\n");
1590 break;
1591 case POWERPC_EXCP_DSEG: /* Data segment exception */
1592 cpu_abort(env, "Data segment exception while in user mode. "
1593 "Aborting\n");
1594 break;
1595 case POWERPC_EXCP_ISEG: /* Instruction segment exception */
1596 cpu_abort(env, "Instruction segment exception "
1597 "while in user mode. Aborting\n");
1598 break;
1599 /* PowerPC 64 with hypervisor mode support */
1600 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */
1601 cpu_abort(env, "Hypervisor decrementer interrupt "
1602 "while in user mode. Aborting\n");
1603 break;
1604 case POWERPC_EXCP_TRACE: /* Trace exception */
1605 /* Nothing to do:
1606 * we use this exception to emulate step-by-step execution mode.
1607 */
1608 break;
1609 /* PowerPC 64 with hypervisor mode support */
1610 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */
1611 cpu_abort(env, "Hypervisor data storage exception "
1612 "while in user mode. Aborting\n");
1613 break;
1614 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */
1615 cpu_abort(env, "Hypervisor instruction storage exception "
1616 "while in user mode. Aborting\n");
1617 break;
1618 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */
1619 cpu_abort(env, "Hypervisor data segment exception "
1620 "while in user mode. Aborting\n");
1621 break;
1622 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */
1623 cpu_abort(env, "Hypervisor instruction segment exception "
1624 "while in user mode. Aborting\n");
1625 break;
1626 case POWERPC_EXCP_VPU: /* Vector unavailable exception */
1627 EXCP_DUMP(env, "No Altivec instructions allowed\n");
1628 info.si_signo = TARGET_SIGILL;
1629 info.si_errno = 0;
1630 info.si_code = TARGET_ILL_COPROC;
1631 info._sifields._sigfault._addr = env->nip - 4;
1632 queue_signal(env, info.si_signo, &info);
1633 break;
1634 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */
1635 cpu_abort(env, "Programmable interval timer interrupt "
1636 "while in user mode. Aborting\n");
1637 break;
1638 case POWERPC_EXCP_IO: /* IO error exception */
1639 cpu_abort(env, "IO error exception while in user mode. "
1640 "Aborting\n");
1641 break;
1642 case POWERPC_EXCP_RUNM: /* Run mode exception */
1643 cpu_abort(env, "Run mode exception while in user mode. "
1644 "Aborting\n");
1645 break;
1646 case POWERPC_EXCP_EMUL: /* Emulation trap exception */
1647 cpu_abort(env, "Emulation trap exception not handled\n");
1648 break;
1649 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */
1650 cpu_abort(env, "Instruction fetch TLB exception "
1651 "while in user-mode. Aborting");
1652 break;
1653 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */
1654 cpu_abort(env, "Data load TLB exception while in user-mode. "
1655 "Aborting");
1656 break;
1657 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */
1658 cpu_abort(env, "Data store TLB exception while in user-mode. "
1659 "Aborting");
1660 break;
1661 case POWERPC_EXCP_FPA: /* Floating-point assist exception */
1662 cpu_abort(env, "Floating-point assist exception not handled\n");
1663 break;
1664 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */
1665 cpu_abort(env, "Instruction address breakpoint exception "
1666 "not handled\n");
1667 break;
1668 case POWERPC_EXCP_SMI: /* System management interrupt */
1669 cpu_abort(env, "System management interrupt while in user mode. "
1670 "Aborting\n");
1671 break;
1672 case POWERPC_EXCP_THERM: /* Thermal interrupt */
1673 cpu_abort(env, "Thermal interrupt interrupt while in user mode. "
1674 "Aborting\n");
1675 break;
1676 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */
1677 cpu_abort(env, "Performance monitor exception not handled\n");
1678 break;
1679 case POWERPC_EXCP_VPUA: /* Vector assist exception */
1680 cpu_abort(env, "Vector assist exception not handled\n");
1681 break;
1682 case POWERPC_EXCP_SOFTP: /* Soft patch exception */
1683 cpu_abort(env, "Soft patch exception not handled\n");
1684 break;
1685 case POWERPC_EXCP_MAINT: /* Maintenance exception */
1686 cpu_abort(env, "Maintenance exception while in user mode. "
1687 "Aborting\n");
1688 break;
1689 case POWERPC_EXCP_STOP: /* stop translation */
1690 /* We did invalidate the instruction cache. Go on */
1691 break;
1692 case POWERPC_EXCP_BRANCH: /* branch instruction: */
1693 /* We just stopped because of a branch. Go on */
1694 break;
1695 case POWERPC_EXCP_SYSCALL_USER:
1696 /* system call in user-mode emulation */
1697 /* WARNING:
1698 * PPC ABI uses overflow flag in cr0 to signal an error
1699 * in syscalls.
1700 */
1701 env->crf[0] &= ~0x1;
1702 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4],
1703 env->gpr[5], env->gpr[6], env->gpr[7],
1704 env->gpr[8], 0, 0);
1705 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) {
1706 /* Returning from a successful sigreturn syscall.
1707 Avoid corrupting register state. */
1708 break;
1709 }
1710 if (ret > (target_ulong)(-515)) {
1711 env->crf[0] |= 0x1;
1712 ret = -ret;
1713 }
1714 env->gpr[3] = ret;
1715 break;
1716 case POWERPC_EXCP_STCX:
1717 if (do_store_exclusive(env)) {
1718 info.si_signo = TARGET_SIGSEGV;
1719 info.si_errno = 0;
1720 info.si_code = TARGET_SEGV_MAPERR;
1721 info._sifields._sigfault._addr = env->nip;
1722 queue_signal(env, info.si_signo, &info);
1723 }
1724 break;
1725 case EXCP_DEBUG:
1726 {
1727 int sig;
1728
1729 sig = gdb_handlesig(env, TARGET_SIGTRAP);
1730 if (sig) {
1731 info.si_signo = sig;
1732 info.si_errno = 0;
1733 info.si_code = TARGET_TRAP_BRKPT;
1734 queue_signal(env, info.si_signo, &info);
1735 }
1736 }
1737 break;
1738 case EXCP_INTERRUPT:
1739 /* just indicate that signals should be handled asap */
1740 break;
1741 default:
1742 cpu_abort(env, "Unknown exception 0x%d. Aborting\n", trapnr);
1743 break;
1744 }
1745 process_pending_signals(env);
1746 }
1747 }
1748 #endif
1749
1750 #ifdef TARGET_MIPS
1751
1752 # ifdef TARGET_ABI_MIPSO32
1753 # define MIPS_SYS(name, args) args,
1754 static const uint8_t mips_syscall_args[] = {
1755 MIPS_SYS(sys_syscall , 8) /* 4000 */
1756 MIPS_SYS(sys_exit , 1)
1757 MIPS_SYS(sys_fork , 0)
1758 MIPS_SYS(sys_read , 3)
1759 MIPS_SYS(sys_write , 3)
1760 MIPS_SYS(sys_open , 3) /* 4005 */
1761 MIPS_SYS(sys_close , 1)
1762 MIPS_SYS(sys_waitpid , 3)
1763 MIPS_SYS(sys_creat , 2)
1764 MIPS_SYS(sys_link , 2)
1765 MIPS_SYS(sys_unlink , 1) /* 4010 */
1766 MIPS_SYS(sys_execve , 0)
1767 MIPS_SYS(sys_chdir , 1)
1768 MIPS_SYS(sys_time , 1)
1769 MIPS_SYS(sys_mknod , 3)
1770 MIPS_SYS(sys_chmod , 2) /* 4015 */
1771 MIPS_SYS(sys_lchown , 3)
1772 MIPS_SYS(sys_ni_syscall , 0)
1773 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */
1774 MIPS_SYS(sys_lseek , 3)
1775 MIPS_SYS(sys_getpid , 0) /* 4020 */
1776 MIPS_SYS(sys_mount , 5)
1777 MIPS_SYS(sys_oldumount , 1)
1778 MIPS_SYS(sys_setuid , 1)
1779 MIPS_SYS(sys_getuid , 0)
1780 MIPS_SYS(sys_stime , 1) /* 4025 */
1781 MIPS_SYS(sys_ptrace , 4)
1782 MIPS_SYS(sys_alarm , 1)
1783 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */
1784 MIPS_SYS(sys_pause , 0)
1785 MIPS_SYS(sys_utime , 2) /* 4030 */
1786 MIPS_SYS(sys_ni_syscall , 0)
1787 MIPS_SYS(sys_ni_syscall , 0)
1788 MIPS_SYS(sys_access , 2)
1789 MIPS_SYS(sys_nice , 1)
1790 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */
1791 MIPS_SYS(sys_sync , 0)
1792 MIPS_SYS(sys_kill , 2)
1793 MIPS_SYS(sys_rename , 2)
1794 MIPS_SYS(sys_mkdir , 2)
1795 MIPS_SYS(sys_rmdir , 1) /* 4040 */
1796 MIPS_SYS(sys_dup , 1)
1797 MIPS_SYS(sys_pipe , 0)
1798 MIPS_SYS(sys_times , 1)
1799 MIPS_SYS(sys_ni_syscall , 0)
1800 MIPS_SYS(sys_brk , 1) /* 4045 */
1801 MIPS_SYS(sys_setgid , 1)
1802 MIPS_SYS(sys_getgid , 0)
1803 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */
1804 MIPS_SYS(sys_geteuid , 0)
1805 MIPS_SYS(sys_getegid , 0) /* 4050 */
1806 MIPS_SYS(sys_acct , 0)
1807 MIPS_SYS(sys_umount , 2)
1808 MIPS_SYS(sys_ni_syscall , 0)
1809 MIPS_SYS(sys_ioctl , 3)
1810 MIPS_SYS(sys_fcntl , 3) /* 4055 */
1811 MIPS_SYS(sys_ni_syscall , 2)
1812 MIPS_SYS(sys_setpgid , 2)
1813 MIPS_SYS(sys_ni_syscall , 0)
1814 MIPS_SYS(sys_olduname , 1)
1815 MIPS_SYS(sys_umask , 1) /* 4060 */
1816 MIPS_SYS(sys_chroot , 1)
1817 MIPS_SYS(sys_ustat , 2)
1818 MIPS_SYS(sys_dup2 , 2)
1819 MIPS_SYS(sys_getppid , 0)
1820 MIPS_SYS(sys_getpgrp , 0) /* 4065 */
1821 MIPS_SYS(sys_setsid , 0)
1822 MIPS_SYS(sys_sigaction , 3)
1823 MIPS_SYS(sys_sgetmask , 0)
1824 MIPS_SYS(sys_ssetmask , 1)
1825 MIPS_SYS(sys_setreuid , 2) /* 4070 */
1826 MIPS_SYS(sys_setregid , 2)
1827 MIPS_SYS(sys_sigsuspend , 0)
1828 MIPS_SYS(sys_sigpending , 1)
1829 MIPS_SYS(sys_sethostname , 2)
1830 MIPS_SYS(sys_setrlimit , 2) /* 4075 */
1831 MIPS_SYS(sys_getrlimit , 2)
1832 MIPS_SYS(sys_getrusage , 2)
1833 MIPS_SYS(sys_gettimeofday, 2)
1834 MIPS_SYS(sys_settimeofday, 2)
1835 MIPS_SYS(sys_getgroups , 2) /* 4080 */
1836 MIPS_SYS(sys_setgroups , 2)
1837 MIPS_SYS(sys_ni_syscall , 0) /* old_select */
1838 MIPS_SYS(sys_symlink , 2)
1839 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */
1840 MIPS_SYS(sys_readlink , 3) /* 4085 */
1841 MIPS_SYS(sys_uselib , 1)
1842 MIPS_SYS(sys_swapon , 2)
1843 MIPS_SYS(sys_reboot , 3)
1844 MIPS_SYS(old_readdir , 3)
1845 MIPS_SYS(old_mmap , 6) /* 4090 */
1846 MIPS_SYS(sys_munmap , 2)
1847 MIPS_SYS(sys_truncate , 2)
1848 MIPS_SYS(sys_ftruncate , 2)
1849 MIPS_SYS(sys_fchmod , 2)
1850 MIPS_SYS(sys_fchown , 3) /* 4095 */
1851 MIPS_SYS(sys_getpriority , 2)
1852 MIPS_SYS(sys_setpriority , 3)
1853 MIPS_SYS(sys_ni_syscall , 0)
1854 MIPS_SYS(sys_statfs , 2)
1855 MIPS_SYS(sys_fstatfs , 2) /* 4100 */
1856 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */
1857 MIPS_SYS(sys_socketcall , 2)
1858 MIPS_SYS(sys_syslog , 3)
1859 MIPS_SYS(sys_setitimer , 3)
1860 MIPS_SYS(sys_getitimer , 2) /* 4105 */
1861 MIPS_SYS(sys_newstat , 2)
1862 MIPS_SYS(sys_newlstat , 2)
1863 MIPS_SYS(sys_newfstat , 2)
1864 MIPS_SYS(sys_uname , 1)
1865 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */
1866 MIPS_SYS(sys_vhangup , 0)
1867 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */
1868 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */
1869 MIPS_SYS(sys_wait4 , 4)
1870 MIPS_SYS(sys_swapoff , 1) /* 4115 */
1871 MIPS_SYS(sys_sysinfo , 1)
1872 MIPS_SYS(sys_ipc , 6)
1873 MIPS_SYS(sys_fsync , 1)
1874 MIPS_SYS(sys_sigreturn , 0)
1875 MIPS_SYS(sys_clone , 6) /* 4120 */
1876 MIPS_SYS(sys_setdomainname, 2)
1877 MIPS_SYS(sys_newuname , 1)
1878 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */
1879 MIPS_SYS(sys_adjtimex , 1)
1880 MIPS_SYS(sys_mprotect , 3) /* 4125 */
1881 MIPS_SYS(sys_sigprocmask , 3)
1882 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */
1883 MIPS_SYS(sys_init_module , 5)
1884 MIPS_SYS(sys_delete_module, 1)
1885 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */
1886 MIPS_SYS(sys_quotactl , 0)
1887 MIPS_SYS(sys_getpgid , 1)
1888 MIPS_SYS(sys_fchdir , 1)
1889 MIPS_SYS(sys_bdflush , 2)
1890 MIPS_SYS(sys_sysfs , 3) /* 4135 */
1891 MIPS_SYS(sys_personality , 1)
1892 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */
1893 MIPS_SYS(sys_setfsuid , 1)
1894 MIPS_SYS(sys_setfsgid , 1)
1895 MIPS_SYS(sys_llseek , 5) /* 4140 */
1896 MIPS_SYS(sys_getdents , 3)
1897 MIPS_SYS(sys_select , 5)
1898 MIPS_SYS(sys_flock , 2)
1899 MIPS_SYS(sys_msync , 3)
1900 MIPS_SYS(sys_readv , 3) /* 4145 */
1901 MIPS_SYS(sys_writev , 3)
1902 MIPS_SYS(sys_cacheflush , 3)
1903 MIPS_SYS(sys_cachectl , 3)
1904 MIPS_SYS(sys_sysmips , 4)
1905 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */
1906 MIPS_SYS(sys_getsid , 1)
1907 MIPS_SYS(sys_fdatasync , 0)
1908 MIPS_SYS(sys_sysctl , 1)
1909 MIPS_SYS(sys_mlock , 2)
1910 MIPS_SYS(sys_munlock , 2) /* 4155 */
1911 MIPS_SYS(sys_mlockall , 1)
1912 MIPS_SYS(sys_munlockall , 0)
1913 MIPS_SYS(sys_sched_setparam, 2)
1914 MIPS_SYS(sys_sched_getparam, 2)
1915 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */
1916 MIPS_SYS(sys_sched_getscheduler, 1)
1917 MIPS_SYS(sys_sched_yield , 0)
1918 MIPS_SYS(sys_sched_get_priority_max, 1)
1919 MIPS_SYS(sys_sched_get_priority_min, 1)
1920 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */
1921 MIPS_SYS(sys_nanosleep, 2)
1922 MIPS_SYS(sys_mremap , 4)
1923 MIPS_SYS(sys_accept , 3)
1924 MIPS_SYS(sys_bind , 3)
1925 MIPS_SYS(sys_connect , 3) /* 4170 */
1926 MIPS_SYS(sys_getpeername , 3)
1927 MIPS_SYS(sys_getsockname , 3)
1928 MIPS_SYS(sys_getsockopt , 5)
1929 MIPS_SYS(sys_listen , 2)
1930 MIPS_SYS(sys_recv , 4) /* 4175 */
1931 MIPS_SYS(sys_recvfrom , 6)
1932 MIPS_SYS(sys_recvmsg , 3)
1933 MIPS_SYS(sys_send , 4)
1934 MIPS_SYS(sys_sendmsg , 3)
1935 MIPS_SYS(sys_sendto , 6) /* 4180 */
1936 MIPS_SYS(sys_setsockopt , 5)
1937 MIPS_SYS(sys_shutdown , 2)
1938 MIPS_SYS(sys_socket , 3)
1939 MIPS_SYS(sys_socketpair , 4)
1940 MIPS_SYS(sys_setresuid , 3) /* 4185 */
1941 MIPS_SYS(sys_getresuid , 3)
1942 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */
1943 MIPS_SYS(sys_poll , 3)
1944 MIPS_SYS(sys_nfsservctl , 3)
1945 MIPS_SYS(sys_setresgid , 3) /* 4190 */
1946 MIPS_SYS(sys_getresgid , 3)
1947 MIPS_SYS(sys_prctl , 5)
1948 MIPS_SYS(sys_rt_sigreturn, 0)
1949 MIPS_SYS(sys_rt_sigaction, 4)
1950 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */
1951 MIPS_SYS(sys_rt_sigpending, 2)
1952 MIPS_SYS(sys_rt_sigtimedwait, 4)
1953 MIPS_SYS(sys_rt_sigqueueinfo, 3)
1954 MIPS_SYS(sys_rt_sigsuspend, 0)
1955 MIPS_SYS(sys_pread64 , 6) /* 4200 */
1956 MIPS_SYS(sys_pwrite64 , 6)
1957 MIPS_SYS(sys_chown , 3)
1958 MIPS_SYS(sys_getcwd , 2)
1959 MIPS_SYS(sys_capget , 2)
1960 MIPS_SYS(sys_capset , 2) /* 4205 */
1961 MIPS_SYS(sys_sigaltstack , 2)
1962 MIPS_SYS(sys_sendfile , 4)
1963 MIPS_SYS(sys_ni_syscall , 0)
1964 MIPS_SYS(sys_ni_syscall , 0)
1965 MIPS_SYS(sys_mmap2 , 6) /* 4210 */
1966 MIPS_SYS(sys_truncate64 , 4)
1967 MIPS_SYS(sys_ftruncate64 , 4)
1968 MIPS_SYS(sys_stat64 , 2)
1969 MIPS_SYS(sys_lstat64 , 2)
1970 MIPS_SYS(sys_fstat64 , 2) /* 4215 */
1971 MIPS_SYS(sys_pivot_root , 2)
1972 MIPS_SYS(sys_mincore , 3)
1973 MIPS_SYS(sys_madvise , 3)
1974 MIPS_SYS(sys_getdents64 , 3)
1975 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */
1976 MIPS_SYS(sys_ni_syscall , 0)
1977 MIPS_SYS(sys_gettid , 0)
1978 MIPS_SYS(sys_readahead , 5)
1979 MIPS_SYS(sys_setxattr , 5)
1980 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */
1981 MIPS_SYS(sys_fsetxattr , 5)
1982 MIPS_SYS(sys_getxattr , 4)
1983 MIPS_SYS(sys_lgetxattr , 4)
1984 MIPS_SYS(sys_fgetxattr , 4)
1985 MIPS_SYS(sys_listxattr , 3) /* 4230 */
1986 MIPS_SYS(sys_llistxattr , 3)
1987 MIPS_SYS(sys_flistxattr , 3)
1988 MIPS_SYS(sys_removexattr , 2)
1989 MIPS_SYS(sys_lremovexattr, 2)
1990 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */
1991 MIPS_SYS(sys_tkill , 2)
1992 MIPS_SYS(sys_sendfile64 , 5)
1993 MIPS_SYS(sys_futex , 6)
1994 MIPS_SYS(sys_sched_setaffinity, 3)
1995 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */
1996 MIPS_SYS(sys_io_setup , 2)
1997 MIPS_SYS(sys_io_destroy , 1)
1998 MIPS_SYS(sys_io_getevents, 5)
1999 MIPS_SYS(sys_io_submit , 3)
2000 MIPS_SYS(sys_io_cancel , 3) /* 4245 */
2001 MIPS_SYS(sys_exit_group , 1)
2002 MIPS_SYS(sys_lookup_dcookie, 3)
2003 MIPS_SYS(sys_epoll_create, 1)
2004 MIPS_SYS(sys_epoll_ctl , 4)
2005 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */
2006 MIPS_SYS(sys_remap_file_pages, 5)
2007 MIPS_SYS(sys_set_tid_address, 1)
2008 MIPS_SYS(sys_restart_syscall, 0)
2009 MIPS_SYS(sys_fadvise64_64, 7)
2010 MIPS_SYS(sys_statfs64 , 3) /* 4255 */
2011 MIPS_SYS(sys_fstatfs64 , 2)
2012 MIPS_SYS(sys_timer_create, 3)
2013 MIPS_SYS(sys_timer_settime, 4)
2014 MIPS_SYS(sys_timer_gettime, 2)
2015 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */
2016 MIPS_SYS(sys_timer_delete, 1)
2017 MIPS_SYS(sys_clock_settime, 2)
2018 MIPS_SYS(sys_clock_gettime, 2)
2019 MIPS_SYS(sys_clock_getres, 2)
2020 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */
2021 MIPS_SYS(sys_tgkill , 3)
2022 MIPS_SYS(sys_utimes , 2)
2023 MIPS_SYS(sys_mbind , 4)
2024 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */
2025 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */
2026 MIPS_SYS(sys_mq_open , 4)
2027 MIPS_SYS(sys_mq_unlink , 1)
2028 MIPS_SYS(sys_mq_timedsend, 5)
2029 MIPS_SYS(sys_mq_timedreceive, 5)
2030 MIPS_SYS(sys_mq_notify , 2) /* 4275 */
2031 MIPS_SYS(sys_mq_getsetattr, 3)
2032 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */
2033 MIPS_SYS(sys_waitid , 4)
2034 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */
2035 MIPS_SYS(sys_add_key , 5)
2036 MIPS_SYS(sys_request_key, 4)
2037 MIPS_SYS(sys_keyctl , 5)
2038 MIPS_SYS(sys_set_thread_area, 1)
2039 MIPS_SYS(sys_inotify_init, 0)
2040 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */
2041 MIPS_SYS(sys_inotify_rm_watch, 2)
2042 MIPS_SYS(sys_migrate_pages, 4)
2043 MIPS_SYS(sys_openat, 4)
2044 MIPS_SYS(sys_mkdirat, 3)
2045 MIPS_SYS(sys_mknodat, 4) /* 4290 */
2046 MIPS_SYS(sys_fchownat, 5)
2047 MIPS_SYS(sys_futimesat, 3)
2048 MIPS_SYS(sys_fstatat64, 4)
2049 MIPS_SYS(sys_unlinkat, 3)
2050 MIPS_SYS(sys_renameat, 4) /* 4295 */
2051 MIPS_SYS(sys_linkat, 5)
2052 MIPS_SYS(sys_symlinkat, 3)
2053 MIPS_SYS(sys_readlinkat, 4)
2054 MIPS_SYS(sys_fchmodat, 3)
2055 MIPS_SYS(sys_faccessat, 3) /* 4300 */
2056 MIPS_SYS(sys_pselect6, 6)
2057 MIPS_SYS(sys_ppoll, 5)
2058 MIPS_SYS(sys_unshare, 1)
2059 MIPS_SYS(sys_splice, 4)
2060 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */
2061 MIPS_SYS(sys_tee, 4)
2062 MIPS_SYS(sys_vmsplice, 4)
2063 MIPS_SYS(sys_move_pages, 6)
2064 MIPS_SYS(sys_set_robust_list, 2)
2065 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */
2066 MIPS_SYS(sys_kexec_load, 4)
2067 MIPS_SYS(sys_getcpu, 3)
2068 MIPS_SYS(sys_epoll_pwait, 6)
2069 MIPS_SYS(sys_ioprio_set, 3)
2070 MIPS_SYS(sys_ioprio_get, 2)
2071 MIPS_SYS(sys_utimensat, 4)
2072 MIPS_SYS(sys_signalfd, 3)
2073 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */
2074 MIPS_SYS(sys_eventfd, 1)
2075 MIPS_SYS(sys_fallocate, 6) /* 4320 */
2076 MIPS_SYS(sys_timerfd_create, 2)
2077 MIPS_SYS(sys_timerfd_gettime, 2)
2078 MIPS_SYS(sys_timerfd_settime, 4)
2079 MIPS_SYS(sys_signalfd4, 4)
2080 MIPS_SYS(sys_eventfd2, 2) /* 4325 */
2081 MIPS_SYS(sys_epoll_create1, 1)
2082 MIPS_SYS(sys_dup3, 3)
2083 MIPS_SYS(sys_pipe2, 2)
2084 MIPS_SYS(sys_inotify_init1, 1)
2085 MIPS_SYS(sys_preadv, 6) /* 4330 */
2086 MIPS_SYS(sys_pwritev, 6)
2087 MIPS_SYS(sys_rt_tgsigqueueinfo, 4)
2088 MIPS_SYS(sys_perf_event_open, 5)
2089 MIPS_SYS(sys_accept4, 4)
2090 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */
2091 MIPS_SYS(sys_fanotify_init, 2)
2092 MIPS_SYS(sys_fanotify_mark, 6)
2093 MIPS_SYS(sys_prlimit64, 4)
2094 MIPS_SYS(sys_name_to_handle_at, 5)
2095 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */
2096 MIPS_SYS(sys_clock_adjtime, 2)
2097 MIPS_SYS(sys_syncfs, 1)
2098 };
2099 # undef MIPS_SYS
2100 # endif /* O32 */
2101
2102 static int do_store_exclusive(CPUMIPSState *env)
2103 {
2104 target_ulong addr;
2105 target_ulong page_addr;
2106 target_ulong val;
2107 int flags;
2108 int segv = 0;
2109 int reg;
2110 int d;
2111
2112 addr = env->lladdr;
2113 page_addr = addr & TARGET_PAGE_MASK;
2114 start_exclusive();
2115 mmap_lock();
2116 flags = page_get_flags(page_addr);
2117 if ((flags & PAGE_READ) == 0) {
2118 segv = 1;
2119 } else {
2120 reg = env->llreg & 0x1f;
2121 d = (env->llreg & 0x20) != 0;
2122 if (d) {
2123 segv = get_user_s64(val, addr);
2124 } else {
2125 segv = get_user_s32(val, addr);
2126 }
2127 if (!segv) {
2128 if (val != env->llval) {
2129 env->active_tc.gpr[reg] = 0;
2130 } else {
2131 if (d) {
2132 segv = put_user_u64(env->llnewval, addr);
2133 } else {
2134 segv = put_user_u32(env->llnewval, addr);
2135 }
2136 if (!segv) {
2137 env->active_tc.gpr[reg] = 1;
2138 }
2139 }
2140 }
2141 }
2142 env->lladdr = -1;
2143 if (!segv) {
2144 env->active_tc.PC += 4;
2145 }
2146 mmap_unlock();
2147 end_exclusive();
2148 return segv;
2149 }
2150
2151 /* Break codes */
2152 enum {
2153 BRK_OVERFLOW = 6,
2154 BRK_DIVZERO = 7
2155 };
2156
2157 static int do_break(CPUMIPSState *env, target_siginfo_t *info,
2158 unsigned int code)
2159 {
2160 int ret = -1;
2161
2162 switch (code) {
2163 case BRK_OVERFLOW:
2164 case BRK_DIVZERO:
2165 info->si_signo = TARGET_SIGFPE;
2166 info->si_errno = 0;
2167 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV;
2168 queue_signal(env, info->si_signo, &*info);
2169 ret = 0;
2170 break;
2171 default:
2172 break;
2173 }
2174
2175 return ret;
2176 }
2177
2178 void cpu_loop(CPUMIPSState *env)
2179 {
2180 CPUState *cs = CPU(mips_env_get_cpu(env));
2181 target_siginfo_t info;
2182 int trapnr;
2183 abi_long ret;
2184 # ifdef TARGET_ABI_MIPSO32
2185 unsigned int syscall_num;
2186 # endif
2187
2188 for(;;) {
2189 cpu_exec_start(cs);
2190 trapnr = cpu_mips_exec(env);
2191 cpu_exec_end(cs);
2192 switch(trapnr) {
2193 case EXCP_SYSCALL:
2194 env->active_tc.PC += 4;
2195 # ifdef TARGET_ABI_MIPSO32
2196 syscall_num = env->active_tc.gpr[2] - 4000;
2197 if (syscall_num >= sizeof(mips_syscall_args)) {
2198 ret = -TARGET_ENOSYS;
2199 } else {
2200 int nb_args;
2201 abi_ulong sp_reg;
2202 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0;
2203
2204 nb_args = mips_syscall_args[syscall_num];
2205 sp_reg = env->active_tc.gpr[29];
2206 switch (nb_args) {
2207 /* these arguments are taken from the stack */
2208 case 8:
2209 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) {
2210 goto done_syscall;
2211 }
2212 case 7:
2213 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) {
2214 goto done_syscall;
2215 }
2216 case 6:
2217 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) {
2218 goto done_syscall;
2219 }
2220 case 5:
2221 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) {
2222 goto done_syscall;
2223 }
2224 default:
2225 break;
2226 }
2227 ret = do_syscall(env, env->active_tc.gpr[2],
2228 env->active_tc.gpr[4],
2229 env->active_tc.gpr[5],
2230 env->active_tc.gpr[6],
2231 env->active_tc.gpr[7],
2232 arg5, arg6, arg7, arg8);
2233 }
2234 done_syscall:
2235 # else
2236 ret = do_syscall(env, env->active_tc.gpr[2],
2237 env->active_tc.gpr[4], env->active_tc.gpr[5],
2238 env->active_tc.gpr[6], env->active_tc.gpr[7],
2239 env->active_tc.gpr[8], env->active_tc.gpr[9],
2240 env->active_tc.gpr[10], env->active_tc.gpr[11]);
2241 # endif /* O32 */
2242 if (ret == -TARGET_QEMU_ESIGRETURN) {
2243 /* Returning from a successful sigreturn syscall.
2244 Avoid clobbering register state. */
2245 break;
2246 }
2247 if ((abi_ulong)ret >= (abi_ulong)-1133) {
2248 env->active_tc.gpr[7] = 1; /* error flag */
2249 ret = -ret;
2250 } else {
2251 env->active_tc.gpr[7] = 0; /* error flag */
2252 }
2253 env->active_tc.gpr[2] = ret;
2254 break;
2255 case EXCP_TLBL:
2256 case EXCP_TLBS:
2257 case EXCP_AdEL:
2258 case EXCP_AdES:
2259 info.si_signo = TARGET_SIGSEGV;
2260 info.si_errno = 0;
2261 /* XXX: check env->error_code */
2262 info.si_code = TARGET_SEGV_MAPERR;
2263 info._sifields._sigfault._addr = env->CP0_BadVAddr;
2264 queue_signal(env, info.si_signo, &info);
2265 break;
2266 case EXCP_CpU:
2267 case EXCP_RI:
2268 info.si_signo = TARGET_SIGILL;
2269 info.si_errno = 0;
2270 info.si_code = 0;
2271 queue_signal(env, info.si_signo, &info);
2272 break;
2273 case EXCP_INTERRUPT:
2274 /* just indicate that signals should be handled asap */
2275 break;
2276 case EXCP_DEBUG:
2277 {
2278 int sig;
2279
2280 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2281 if (sig)
2282 {
2283 info.si_signo = sig;
2284 info.si_errno = 0;
2285 info.si_code = TARGET_TRAP_BRKPT;
2286 queue_signal(env, info.si_signo, &info);
2287 }
2288 }
2289 break;
2290 case EXCP_SC:
2291 if (do_store_exclusive(env)) {
2292 info.si_signo = TARGET_SIGSEGV;
2293 info.si_errno = 0;
2294 info.si_code = TARGET_SEGV_MAPERR;
2295 info._sifields._sigfault._addr = env->active_tc.PC;
2296 queue_signal(env, info.si_signo, &info);
2297 }
2298 break;
2299 case EXCP_DSPDIS:
2300 info.si_signo = TARGET_SIGILL;
2301 info.si_errno = 0;
2302 info.si_code = TARGET_ILL_ILLOPC;
2303 queue_signal(env, info.si_signo, &info);
2304 break;
2305 /* The code below was inspired by the MIPS Linux kernel trap
2306 * handling code in arch/mips/kernel/traps.c.
2307 */
2308 case EXCP_BREAK:
2309 {
2310 abi_ulong trap_instr;
2311 unsigned int code;
2312
2313 if (env->hflags & MIPS_HFLAG_M16) {
2314 if (env->insn_flags & ASE_MICROMIPS) {
2315 /* microMIPS mode */
2316 abi_ulong instr[2];
2317
2318 ret = get_user_u16(instr[0], env->active_tc.PC) ||
2319 get_user_u16(instr[1], env->active_tc.PC + 2);
2320
2321 trap_instr = (instr[0] << 16) | instr[1];
2322 } else {
2323 /* MIPS16e mode */
2324 ret = get_user_u16(trap_instr, env->active_tc.PC);
2325 if (ret != 0) {
2326 goto error;
2327 }
2328 code = (trap_instr >> 6) & 0x3f;
2329 if (do_break(env, &info, code) != 0) {
2330 goto error;
2331 }
2332 break;
2333 }
2334 } else {
2335 ret = get_user_ual(trap_instr, env->active_tc.PC);
2336 }
2337
2338 if (ret != 0) {
2339 goto error;
2340 }
2341
2342 /* As described in the original Linux kernel code, the
2343 * below checks on 'code' are to work around an old
2344 * assembly bug.
2345 */
2346 code = ((trap_instr >> 6) & ((1 << 20) - 1));
2347 if (code >= (1 << 10)) {
2348 code >>= 10;
2349 }
2350
2351 if (do_break(env, &info, code) != 0) {
2352 goto error;
2353 }
2354 }
2355 break;
2356 case EXCP_TRAP:
2357 {
2358 abi_ulong trap_instr;
2359 unsigned int code = 0;
2360
2361 if (env->hflags & MIPS_HFLAG_M16) {
2362 /* microMIPS mode */
2363 abi_ulong instr[2];
2364
2365 ret = get_user_u16(instr[0], env->active_tc.PC) ||
2366 get_user_u16(instr[1], env->active_tc.PC + 2);
2367
2368 trap_instr = (instr[0] << 16) | instr[1];
2369 } else {
2370 ret = get_user_ual(trap_instr, env->active_tc.PC);
2371 }
2372
2373 if (ret != 0) {
2374 goto error;
2375 }
2376
2377 /* The immediate versions don't provide a code. */
2378 if (!(trap_instr & 0xFC000000)) {
2379 if (env->hflags & MIPS_HFLAG_M16) {
2380 /* microMIPS mode */
2381 code = ((trap_instr >> 12) & ((1 << 4) - 1));
2382 } else {
2383 code = ((trap_instr >> 6) & ((1 << 10) - 1));
2384 }
2385 }
2386
2387 if (do_break(env, &info, code) != 0) {
2388 goto error;
2389 }
2390 }
2391 break;
2392 default:
2393 error:
2394 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
2395 trapnr);
2396 cpu_dump_state(cs, stderr, fprintf, 0);
2397 abort();
2398 }
2399 process_pending_signals(env);
2400 }
2401 }
2402 #endif
2403
2404 #ifdef TARGET_OPENRISC
2405
2406 void cpu_loop(CPUOpenRISCState *env)
2407 {
2408 CPUState *cs = CPU(openrisc_env_get_cpu(env));
2409 int trapnr, gdbsig;
2410
2411 for (;;) {
2412 trapnr = cpu_exec(env);
2413 gdbsig = 0;
2414
2415 switch (trapnr) {
2416 case EXCP_RESET:
2417 qemu_log("\nReset request, exit, pc is %#x\n", env->pc);
2418 exit(1);
2419 break;
2420 case EXCP_BUSERR:
2421 qemu_log("\nBus error, exit, pc is %#x\n", env->pc);
2422 gdbsig = SIGBUS;
2423 break;
2424 case EXCP_DPF:
2425 case EXCP_IPF:
2426 cpu_dump_state(cs, stderr, fprintf, 0);
2427 gdbsig = TARGET_SIGSEGV;
2428 break;
2429 case EXCP_TICK:
2430 qemu_log("\nTick time interrupt pc is %#x\n", env->pc);
2431 break;
2432 case EXCP_ALIGN:
2433 qemu_log("\nAlignment pc is %#x\n", env->pc);
2434 gdbsig = SIGBUS;
2435 break;
2436 case EXCP_ILLEGAL:
2437 qemu_log("\nIllegal instructionpc is %#x\n", env->pc);
2438 gdbsig = SIGILL;
2439 break;
2440 case EXCP_INT:
2441 qemu_log("\nExternal interruptpc is %#x\n", env->pc);
2442 break;
2443 case EXCP_DTLBMISS:
2444 case EXCP_ITLBMISS:
2445 qemu_log("\nTLB miss\n");
2446 break;
2447 case EXCP_RANGE:
2448 qemu_log("\nRange\n");
2449 gdbsig = SIGSEGV;
2450 break;
2451 case EXCP_SYSCALL:
2452 env->pc += 4; /* 0xc00; */
2453 env->gpr[11] = do_syscall(env,
2454 env->gpr[11], /* return value */
2455 env->gpr[3], /* r3 - r7 are params */
2456 env->gpr[4],
2457 env->gpr[5],
2458 env->gpr[6],
2459 env->gpr[7],
2460 env->gpr[8], 0, 0);
2461 break;
2462 case EXCP_FPE:
2463 qemu_log("\nFloating point error\n");
2464 break;
2465 case EXCP_TRAP:
2466 qemu_log("\nTrap\n");
2467 gdbsig = SIGTRAP;
2468 break;
2469 case EXCP_NR:
2470 qemu_log("\nNR\n");
2471 break;
2472 default:
2473 qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n",
2474 trapnr);
2475 cpu_dump_state(cs, stderr, fprintf, 0);
2476 gdbsig = TARGET_SIGILL;
2477 break;
2478 }
2479 if (gdbsig) {
2480 gdb_handlesig(env, gdbsig);
2481 if (gdbsig != TARGET_SIGTRAP) {
2482 exit(1);
2483 }
2484 }
2485
2486 process_pending_signals(env);
2487 }
2488 }
2489
2490 #endif /* TARGET_OPENRISC */
2491
2492 #ifdef TARGET_SH4
2493 void cpu_loop(CPUSH4State *env)
2494 {
2495 CPUState *cs = CPU(sh_env_get_cpu(env));
2496 int trapnr, ret;
2497 target_siginfo_t info;
2498
2499 while (1) {
2500 trapnr = cpu_sh4_exec (env);
2501
2502 switch (trapnr) {
2503 case 0x160:
2504 env->pc += 2;
2505 ret = do_syscall(env,
2506 env->gregs[3],
2507 env->gregs[4],
2508 env->gregs[5],
2509 env->gregs[6],
2510 env->gregs[7],
2511 env->gregs[0],
2512 env->gregs[1],
2513 0, 0);
2514 env->gregs[0] = ret;
2515 break;
2516 case EXCP_INTERRUPT:
2517 /* just indicate that signals should be handled asap */
2518 break;
2519 case EXCP_DEBUG:
2520 {
2521 int sig;
2522
2523 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2524 if (sig)
2525 {
2526 info.si_signo = sig;
2527 info.si_errno = 0;
2528 info.si_code = TARGET_TRAP_BRKPT;
2529 queue_signal(env, info.si_signo, &info);
2530 }
2531 }
2532 break;
2533 case 0xa0:
2534 case 0xc0:
2535 info.si_signo = SIGSEGV;
2536 info.si_errno = 0;
2537 info.si_code = TARGET_SEGV_MAPERR;
2538 info._sifields._sigfault._addr = env->tea;
2539 queue_signal(env, info.si_signo, &info);
2540 break;
2541
2542 default:
2543 printf ("Unhandled trap: 0x%x\n", trapnr);
2544 cpu_dump_state(cs, stderr, fprintf, 0);
2545 exit (1);
2546 }
2547 process_pending_signals (env);
2548 }
2549 }
2550 #endif
2551
2552 #ifdef TARGET_CRIS
2553 void cpu_loop(CPUCRISState *env)
2554 {
2555 CPUState *cs = CPU(cris_env_get_cpu(env));
2556 int trapnr, ret;
2557 target_siginfo_t info;
2558
2559 while (1) {
2560 trapnr = cpu_cris_exec (env);
2561 switch (trapnr) {
2562 case 0xaa:
2563 {
2564 info.si_signo = SIGSEGV;
2565 info.si_errno = 0;
2566 /* XXX: check env->error_code */
2567 info.si_code = TARGET_SEGV_MAPERR;
2568 info._sifields._sigfault._addr = env->pregs[PR_EDA];
2569 queue_signal(env, info.si_signo, &info);
2570 }
2571 break;
2572 case EXCP_INTERRUPT:
2573 /* just indicate that signals should be handled asap */
2574 break;
2575 case EXCP_BREAK:
2576 ret = do_syscall(env,
2577 env->regs[9],
2578 env->regs[10],
2579 env->regs[11],
2580 env->regs[12],
2581 env->regs[13],
2582 env->pregs[7],
2583 env->pregs[11],
2584 0, 0);
2585 env->regs[10] = ret;
2586 break;
2587 case EXCP_DEBUG:
2588 {
2589 int sig;
2590
2591 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2592 if (sig)
2593 {
2594 info.si_signo = sig;
2595 info.si_errno = 0;
2596 info.si_code = TARGET_TRAP_BRKPT;
2597 queue_signal(env, info.si_signo, &info);
2598 }
2599 }
2600 break;
2601 default:
2602 printf ("Unhandled trap: 0x%x\n", trapnr);
2603 cpu_dump_state(cs, stderr, fprintf, 0);
2604 exit (1);
2605 }
2606 process_pending_signals (env);
2607 }
2608 }
2609 #endif
2610
2611 #ifdef TARGET_MICROBLAZE
2612 void cpu_loop(CPUMBState *env)
2613 {
2614 CPUState *cs = CPU(mb_env_get_cpu(env));
2615 int trapnr, ret;
2616 target_siginfo_t info;
2617
2618 while (1) {
2619 trapnr = cpu_mb_exec (env);
2620 switch (trapnr) {
2621 case 0xaa:
2622 {
2623 info.si_signo = SIGSEGV;
2624 info.si_errno = 0;
2625 /* XXX: check env->error_code */
2626 info.si_code = TARGET_SEGV_MAPERR;
2627 info._sifields._sigfault._addr = 0;
2628 queue_signal(env, info.si_signo, &info);
2629 }
2630 break;
2631 case EXCP_INTERRUPT:
2632 /* just indicate that signals should be handled asap */
2633 break;
2634 case EXCP_BREAK:
2635 /* Return address is 4 bytes after the call. */
2636 env->regs[14] += 4;
2637 env->sregs[SR_PC] = env->regs[14];
2638 ret = do_syscall(env,
2639 env->regs[12],
2640 env->regs[5],
2641 env->regs[6],
2642 env->regs[7],
2643 env->regs[8],
2644 env->regs[9],
2645 env->regs[10],
2646 0, 0);
2647 env->regs[3] = ret;
2648 break;
2649 case EXCP_HW_EXCP:
2650 env->regs[17] = env->sregs[SR_PC] + 4;
2651 if (env->iflags & D_FLAG) {
2652 env->sregs[SR_ESR] |= 1 << 12;
2653 env->sregs[SR_PC] -= 4;
2654 /* FIXME: if branch was immed, replay the imm as well. */
2655 }
2656
2657 env->iflags &= ~(IMM_FLAG | D_FLAG);
2658
2659 switch (env->sregs[SR_ESR] & 31) {
2660 case ESR_EC_DIVZERO:
2661 info.si_signo = SIGFPE;
2662 info.si_errno = 0;
2663 info.si_code = TARGET_FPE_FLTDIV;
2664 info._sifields._sigfault._addr = 0;
2665 queue_signal(env, info.si_signo, &info);
2666 break;
2667 case ESR_EC_FPU:
2668 info.si_signo = SIGFPE;
2669 info.si_errno = 0;
2670 if (env->sregs[SR_FSR] & FSR_IO) {
2671 info.si_code = TARGET_FPE_FLTINV;
2672 }
2673 if (env->sregs[SR_FSR] & FSR_DZ) {
2674 info.si_code = TARGET_FPE_FLTDIV;
2675 }
2676 info._sifields._sigfault._addr = 0;
2677 queue_signal(env, info.si_signo, &info);
2678 break;
2679 default:
2680 printf ("Unhandled hw-exception: 0x%x\n",
2681 env->sregs[SR_ESR] & ESR_EC_MASK);
2682 cpu_dump_state(cs, stderr, fprintf, 0);
2683 exit (1);
2684 break;
2685 }
2686 break;
2687 case EXCP_DEBUG:
2688 {
2689 int sig;
2690
2691 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2692 if (sig)
2693 {
2694 info.si_signo = sig;
2695 info.si_errno = 0;
2696 info.si_code = TARGET_TRAP_BRKPT;
2697 queue_signal(env, info.si_signo, &info);
2698 }
2699 }
2700 break;
2701 default:
2702 printf ("Unhandled trap: 0x%x\n", trapnr);
2703 cpu_dump_state(cs, stderr, fprintf, 0);
2704 exit (1);
2705 }
2706 process_pending_signals (env);
2707 }
2708 }
2709 #endif
2710
2711 #ifdef TARGET_M68K
2712
2713 void cpu_loop(CPUM68KState *env)
2714 {
2715 CPUState *cs = CPU(m68k_env_get_cpu(env));
2716 int trapnr;
2717 unsigned int n;
2718 target_siginfo_t info;
2719 TaskState *ts = env->opaque;
2720
2721 for(;;) {
2722 trapnr = cpu_m68k_exec(env);
2723 switch(trapnr) {
2724 case EXCP_ILLEGAL:
2725 {
2726 if (ts->sim_syscalls) {
2727 uint16_t nr;
2728 nr = lduw(env->pc + 2);
2729 env->pc += 4;
2730 do_m68k_simcall(env, nr);
2731 } else {
2732 goto do_sigill;
2733 }
2734 }
2735 break;
2736 case EXCP_HALT_INSN:
2737 /* Semihosing syscall. */
2738 env->pc += 4;
2739 do_m68k_semihosting(env, env->dregs[0]);
2740 break;
2741 case EXCP_LINEA:
2742 case EXCP_LINEF:
2743 case EXCP_UNSUPPORTED:
2744 do_sigill:
2745 info.si_signo = SIGILL;
2746 info.si_errno = 0;
2747 info.si_code = TARGET_ILL_ILLOPN;
2748 info._sifields._sigfault._addr = env->pc;
2749 queue_signal(env, info.si_signo, &info);
2750 break;
2751 case EXCP_TRAP0:
2752 {
2753 ts->sim_syscalls = 0;
2754 n = env->dregs[0];
2755 env->pc += 2;
2756 env->dregs[0] = do_syscall(env,
2757 n,
2758 env->dregs[1],
2759 env->dregs[2],
2760 env->dregs[3],
2761 env->dregs[4],
2762 env->dregs[5],
2763 env->aregs[0],
2764 0, 0);
2765 }
2766 break;
2767 case EXCP_INTERRUPT:
2768 /* just indicate that signals should be handled asap */
2769 break;
2770 case EXCP_ACCESS:
2771 {
2772 info.si_signo = SIGSEGV;
2773 info.si_errno = 0;
2774 /* XXX: check env->error_code */
2775 info.si_code = TARGET_SEGV_MAPERR;
2776 info._sifields._sigfault._addr = env->mmu.ar;
2777 queue_signal(env, info.si_signo, &info);
2778 }
2779 break;
2780 case EXCP_DEBUG:
2781 {
2782 int sig;
2783
2784 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2785 if (sig)
2786 {
2787 info.si_signo = sig;
2788 info.si_errno = 0;
2789 info.si_code = TARGET_TRAP_BRKPT;
2790 queue_signal(env, info.si_signo, &info);
2791 }
2792 }
2793 break;
2794 default:
2795 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
2796 trapnr);
2797 cpu_dump_state(cs, stderr, fprintf, 0);
2798 abort();
2799 }
2800 process_pending_signals(env);
2801 }
2802 }
2803 #endif /* TARGET_M68K */
2804
2805 #ifdef TARGET_ALPHA
2806 static void do_store_exclusive(CPUAlphaState *env, int reg, int quad)
2807 {
2808 target_ulong addr, val, tmp;
2809 target_siginfo_t info;
2810 int ret = 0;
2811
2812 addr = env->lock_addr;
2813 tmp = env->lock_st_addr;
2814 env->lock_addr = -1;
2815 env->lock_st_addr = 0;
2816
2817 start_exclusive();
2818 mmap_lock();
2819
2820 if (addr == tmp) {
2821 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
2822 goto do_sigsegv;
2823 }
2824
2825 if (val == env->lock_value) {
2826 tmp = env->ir[reg];
2827 if (quad ? put_user_u64(tmp, addr) : put_user_u32(tmp, addr)) {
2828 goto do_sigsegv;
2829 }
2830 ret = 1;
2831 }
2832 }
2833 env->ir[reg] = ret;
2834 env->pc += 4;
2835
2836 mmap_unlock();
2837 end_exclusive();
2838 return;
2839
2840 do_sigsegv:
2841 mmap_unlock();
2842 end_exclusive();
2843
2844 info.si_signo = TARGET_SIGSEGV;
2845 info.si_errno = 0;
2846 info.si_code = TARGET_SEGV_MAPERR;
2847 info._sifields._sigfault._addr = addr;
2848 queue_signal(env, TARGET_SIGSEGV, &info);
2849 }
2850
2851 void cpu_loop(CPUAlphaState *env)
2852 {
2853 CPUState *cs = CPU(alpha_env_get_cpu(env));
2854 int trapnr;
2855 target_siginfo_t info;
2856 abi_long sysret;
2857
2858 while (1) {
2859 trapnr = cpu_alpha_exec (env);
2860
2861 /* All of the traps imply a transition through PALcode, which
2862 implies an REI instruction has been executed. Which means
2863 that the intr_flag should be cleared. */
2864 env->intr_flag = 0;
2865
2866 switch (trapnr) {
2867 case EXCP_RESET:
2868 fprintf(stderr, "Reset requested. Exit\n");
2869 exit(1);
2870 break;
2871 case EXCP_MCHK:
2872 fprintf(stderr, "Machine check exception. Exit\n");
2873 exit(1);
2874 break;
2875 case EXCP_SMP_INTERRUPT:
2876 case EXCP_CLK_INTERRUPT:
2877 case EXCP_DEV_INTERRUPT:
2878 fprintf(stderr, "External interrupt. Exit\n");
2879 exit(1);
2880 break;
2881 case EXCP_MMFAULT:
2882 env->lock_addr = -1;
2883 info.si_signo = TARGET_SIGSEGV;
2884 info.si_errno = 0;
2885 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID
2886 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR);
2887 info._sifields._sigfault._addr = env->trap_arg0;
2888 queue_signal(env, info.si_signo, &info);
2889 break;
2890 case EXCP_UNALIGN:
2891 env->lock_addr = -1;
2892 info.si_signo = TARGET_SIGBUS;
2893 info.si_errno = 0;
2894 info.si_code = TARGET_BUS_ADRALN;
2895 info._sifields._sigfault._addr = env->trap_arg0;
2896 queue_signal(env, info.si_signo, &info);
2897 break;
2898 case EXCP_OPCDEC:
2899 do_sigill:
2900 env->lock_addr = -1;
2901 info.si_signo = TARGET_SIGILL;
2902 info.si_errno = 0;
2903 info.si_code = TARGET_ILL_ILLOPC;
2904 info._sifields._sigfault._addr = env->pc;
2905 queue_signal(env, info.si_signo, &info);
2906 break;
2907 case EXCP_ARITH:
2908 env->lock_addr = -1;
2909 info.si_signo = TARGET_SIGFPE;
2910 info.si_errno = 0;
2911 info.si_code = TARGET_FPE_FLTINV;
2912 info._sifields._sigfault._addr = env->pc;
2913 queue_signal(env, info.si_signo, &info);
2914 break;
2915 case EXCP_FEN:
2916 /* No-op. Linux simply re-enables the FPU. */
2917 break;
2918 case EXCP_CALL_PAL:
2919 env->lock_addr = -1;
2920 switch (env->error_code) {
2921 case 0x80:
2922 /* BPT */
2923 info.si_signo = TARGET_SIGTRAP;
2924 info.si_errno = 0;
2925 info.si_code = TARGET_TRAP_BRKPT;
2926 info._sifields._sigfault._addr = env->pc;
2927 queue_signal(env, info.si_signo, &info);
2928 break;
2929 case 0x81:
2930 /* BUGCHK */
2931 info.si_signo = TARGET_SIGTRAP;
2932 info.si_errno = 0;
2933 info.si_code = 0;
2934 info._sifields._sigfault._addr = env->pc;
2935 queue_signal(env, info.si_signo, &info);
2936 break;
2937 case 0x83:
2938 /* CALLSYS */
2939 trapnr = env->ir[IR_V0];
2940 sysret = do_syscall(env, trapnr,
2941 env->ir[IR_A0], env->ir[IR_A1],
2942 env->ir[IR_A2], env->ir[IR_A3],
2943 env->ir[IR_A4], env->ir[IR_A5],
2944 0, 0);
2945 if (trapnr == TARGET_NR_sigreturn
2946 || trapnr == TARGET_NR_rt_sigreturn) {
2947 break;
2948 }
2949 /* Syscall writes 0 to V0 to bypass error check, similar
2950 to how this is handled internal to Linux kernel.
2951 (Ab)use trapnr temporarily as boolean indicating error. */
2952 trapnr = (env->ir[IR_V0] != 0 && sysret < 0);
2953 env->ir[IR_V0] = (trapnr ? -sysret : sysret);
2954 env->ir[IR_A3] = trapnr;
2955 break;
2956 case 0x86:
2957 /* IMB */
2958 /* ??? We can probably elide the code using page_unprotect
2959 that is checking for self-modifying code. Instead we
2960 could simply call tb_flush here. Until we work out the
2961 changes required to turn off the extra write protection,
2962 this can be a no-op. */
2963 break;
2964 case 0x9E:
2965 /* RDUNIQUE */
2966 /* Handled in the translator for usermode. */
2967 abort();
2968 case 0x9F:
2969 /* WRUNIQUE */
2970 /* Handled in the translator for usermode. */
2971 abort();
2972 case 0xAA:
2973 /* GENTRAP */
2974 info.si_signo = TARGET_SIGFPE;
2975 switch (env->ir[IR_A0]) {
2976 case TARGET_GEN_INTOVF:
2977 info.si_code = TARGET_FPE_INTOVF;
2978 break;
2979 case TARGET_GEN_INTDIV:
2980 info.si_code = TARGET_FPE_INTDIV;
2981 break;
2982 case TARGET_GEN_FLTOVF:
2983 info.si_code = TARGET_FPE_FLTOVF;
2984 break;
2985 case TARGET_GEN_FLTUND:
2986 info.si_code = TARGET_FPE_FLTUND;
2987 break;
2988 case TARGET_GEN_FLTINV:
2989 info.si_code = TARGET_FPE_FLTINV;
2990 break;
2991 case TARGET_GEN_FLTINE:
2992 info.si_code = TARGET_FPE_FLTRES;
2993 break;
2994 case TARGET_GEN_ROPRAND:
2995 info.si_code = 0;
2996 break;
2997 default:
2998 info.si_signo = TARGET_SIGTRAP;
2999 info.si_code = 0;
3000 break;
3001 }
3002 info.si_errno = 0;
3003 info._sifields._sigfault._addr = env->pc;
3004 queue_signal(env, info.si_signo, &info);
3005 break;
3006 default:
3007 goto do_sigill;
3008 }
3009 break;
3010 case EXCP_DEBUG:
3011 info.si_signo = gdb_handlesig (env, TARGET_SIGTRAP);
3012 if (info.si_signo) {
3013 env->lock_addr = -1;
3014 info.si_errno = 0;
3015 info.si_code = TARGET_TRAP_BRKPT;
3016 queue_signal(env, info.si_signo, &info);
3017 }
3018 break;
3019 case EXCP_STL_C:
3020 case EXCP_STQ_C:
3021 do_store_exclusive(env, env->error_code, trapnr - EXCP_STL_C);
3022 break;
3023 case EXCP_INTERRUPT:
3024 /* Just indicate that signals should be handled asap. */
3025 break;
3026 default:
3027 printf ("Unhandled trap: 0x%x\n", trapnr);
3028 cpu_dump_state(cs, stderr, fprintf, 0);
3029 exit (1);
3030 }
3031 process_pending_signals (env);
3032 }
3033 }
3034 #endif /* TARGET_ALPHA */
3035
3036 #ifdef TARGET_S390X
3037 void cpu_loop(CPUS390XState *env)
3038 {
3039 CPUState *cs = CPU(s390_env_get_cpu(env));
3040 int trapnr, n, sig;
3041 target_siginfo_t info;
3042 target_ulong addr;
3043
3044 while (1) {
3045 trapnr = cpu_s390x_exec(env);
3046 switch (trapnr) {
3047 case EXCP_INTERRUPT:
3048 /* Just indicate that signals should be handled asap. */
3049 break;
3050
3051 case EXCP_SVC:
3052 n = env->int_svc_code;
3053 if (!n) {
3054 /* syscalls > 255 */
3055 n = env->regs[1];
3056 }
3057 env->psw.addr += env->int_svc_ilen;
3058 env->regs[2] = do_syscall(env, n, env->regs[2], env->regs[3],
3059 env->regs[4], env->regs[5],
3060 env->regs[6], env->regs[7], 0, 0);
3061 break;
3062
3063 case EXCP_DEBUG:
3064 sig = gdb_handlesig(env, TARGET_SIGTRAP);
3065 if (sig) {
3066 n = TARGET_TRAP_BRKPT;
3067 goto do_signal_pc;
3068 }
3069 break;
3070 case EXCP_PGM:
3071 n = env->int_pgm_code;
3072 switch (n) {
3073 case PGM_OPERATION:
3074 case PGM_PRIVILEGED:
3075 sig = SIGILL;
3076 n = TARGET_ILL_ILLOPC;
3077 goto do_signal_pc;
3078 case PGM_PROTECTION:
3079 case PGM_ADDRESSING:
3080 sig = SIGSEGV;
3081 /* XXX: check env->error_code */
3082 n = TARGET_SEGV_MAPERR;
3083 addr = env->__excp_addr;
3084 goto do_signal;
3085 case PGM_EXECUTE:
3086 case PGM_SPECIFICATION:
3087 case PGM_SPECIAL_OP:
3088 case PGM_OPERAND:
3089 do_sigill_opn:
3090 sig = SIGILL;
3091 n = TARGET_ILL_ILLOPN;
3092 goto do_signal_pc;
3093
3094 case PGM_FIXPT_OVERFLOW:
3095 sig = SIGFPE;
3096 n = TARGET_FPE_INTOVF;
3097 goto do_signal_pc;
3098 case PGM_FIXPT_DIVIDE:
3099 sig = SIGFPE;
3100 n = TARGET_FPE_INTDIV;
3101 goto do_signal_pc;
3102
3103 case PGM_DATA:
3104 n = (env->fpc >> 8) & 0xff;
3105 if (n == 0xff) {
3106 /* compare-and-trap */
3107 goto do_sigill_opn;
3108 } else {
3109 /* An IEEE exception, simulated or otherwise. */
3110 if (n & 0x80) {
3111 n = TARGET_FPE_FLTINV;
3112 } else if (n & 0x40) {
3113 n = TARGET_FPE_FLTDIV;
3114 } else if (n & 0x20) {
3115 n = TARGET_FPE_FLTOVF;
3116 } else if (n & 0x10) {
3117 n = TARGET_FPE_FLTUND;
3118 } else if (n & 0x08) {
3119 n = TARGET_FPE_FLTRES;
3120 } else {
3121 /* ??? Quantum exception; BFP, DFP error. */
3122 goto do_sigill_opn;
3123 }
3124 sig = SIGFPE;
3125 goto do_signal_pc;
3126 }
3127
3128 default:
3129 fprintf(stderr, "Unhandled program exception: %#x\n", n);
3130 cpu_dump_state(cs, stderr, fprintf, 0);
3131 exit(1);
3132 }
3133 break;
3134
3135 do_signal_pc:
3136 addr = env->psw.addr;
3137 do_signal:
3138 info.si_signo = sig;
3139 info.si_errno = 0;
3140 info.si_code = n;
3141 info._sifields._sigfault._addr = addr;
3142 queue_signal(env, info.si_signo, &info);
3143 break;
3144
3145 default:
3146 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr);
3147 cpu_dump_state(cs, stderr, fprintf, 0);
3148 exit(1);
3149 }
3150 process_pending_signals (env);
3151 }
3152 }
3153
3154 #endif /* TARGET_S390X */
3155
3156 THREAD CPUState *thread_cpu;
3157
3158 void task_settid(TaskState *ts)
3159 {
3160 if (ts->ts_tid == 0) {
3161 ts->ts_tid = (pid_t)syscall(SYS_gettid);
3162 }
3163 }
3164
3165 void stop_all_tasks(void)
3166 {
3167 /*
3168 * We trust that when using NPTL, start_exclusive()
3169 * handles thread stopping correctly.
3170 */
3171 start_exclusive();
3172 }
3173
3174 /* Assumes contents are already zeroed. */
3175 void init_task_state(TaskState *ts)
3176 {
3177 int i;
3178
3179 ts->used = 1;
3180 ts->first_free = ts->sigqueue_table;
3181 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
3182 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
3183 }
3184 ts->sigqueue_table[i].next = NULL;
3185 }
3186
3187 static void handle_arg_help(const char *arg)
3188 {
3189 usage();
3190 }
3191
3192 static void handle_arg_log(const char *arg)
3193 {
3194 int mask;
3195
3196 mask = qemu_str_to_log_mask(arg);
3197 if (!mask) {
3198 qemu_print_log_usage(stdout);
3199 exit(1);
3200 }
3201 qemu_set_log(mask);
3202 }
3203
3204 static void handle_arg_log_filename(const char *arg)
3205 {
3206 qemu_set_log_filename(arg);
3207 }
3208
3209 static void handle_arg_set_env(const char *arg)
3210 {
3211 char *r, *p, *token;
3212 r = p = strdup(arg);
3213 while ((token = strsep(&p, ",")) != NULL) {
3214 if (envlist_setenv(envlist, token) != 0) {
3215 usage();
3216 }
3217 }
3218 free(r);
3219 }
3220
3221 static void handle_arg_unset_env(const char *arg)
3222 {
3223 char *r, *p, *token;
3224 r = p = strdup(arg);
3225 while ((token = strsep(&p, ",")) != NULL) {
3226 if (envlist_unsetenv(envlist, token) != 0) {
3227 usage();
3228 }
3229 }
3230 free(r);
3231 }
3232
3233 static void handle_arg_argv0(const char *arg)
3234 {
3235 argv0 = strdup(arg);
3236 }
3237
3238 static void handle_arg_stack_size(const char *arg)
3239 {
3240 char *p;
3241 guest_stack_size = strtoul(arg, &p, 0);
3242 if (guest_stack_size == 0) {
3243 usage();
3244 }
3245
3246 if (*p == 'M') {
3247 guest_stack_size *= 1024 * 1024;
3248 } else if (*p == 'k' || *p == 'K') {
3249 guest_stack_size *= 1024;
3250 }
3251 }
3252
3253 static void handle_arg_ld_prefix(const char *arg)
3254 {
3255 interp_prefix = strdup(arg);
3256 }
3257
3258 static void handle_arg_pagesize(const char *arg)
3259 {
3260 qemu_host_page_size = atoi(arg);
3261 if (qemu_host_page_size == 0 ||
3262 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
3263 fprintf(stderr, "page size must be a power of two\n");
3264 exit(1);
3265 }
3266 }
3267
3268 static void handle_arg_gdb(const char *arg)
3269 {
3270 gdbstub_port = atoi(arg);
3271 }
3272
3273 static void handle_arg_uname(const char *arg)
3274 {
3275 qemu_uname_release = strdup(arg);
3276 }
3277
3278 static void handle_arg_cpu(const char *arg)
3279 {
3280 cpu_model = strdup(arg);
3281 if (cpu_model == NULL || is_help_option(cpu_model)) {
3282 /* XXX: implement xxx_cpu_list for targets that still miss it */
3283 #if defined(cpu_list)
3284 cpu_list(stdout, &fprintf);
3285 #endif
3286 exit(1);
3287 }
3288 }
3289
3290 #if defined(CONFIG_USE_GUEST_BASE)
3291 static void handle_arg_guest_base(const char *arg)
3292 {
3293 guest_base = strtol(arg, NULL, 0);
3294 have_guest_base = 1;
3295 }
3296
3297 static void handle_arg_reserved_va(const char *arg)
3298 {
3299 char *p;
3300 int shift = 0;
3301 reserved_va = strtoul(arg, &p, 0);
3302 switch (*p) {
3303 case 'k':
3304 case 'K':
3305 shift = 10;
3306 break;
3307 case 'M':
3308 shift = 20;
3309 break;
3310 case 'G':
3311 shift = 30;
3312 break;
3313 }
3314 if (shift) {
3315 unsigned long unshifted = reserved_va;
3316 p++;
3317 reserved_va <<= shift;
3318 if (((reserved_va >> shift) != unshifted)
3319 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3320 || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS))
3321 #endif
3322 ) {
3323 fprintf(stderr, "Reserved virtual address too big\n");
3324 exit(1);
3325 }
3326 }
3327 if (*p) {
3328 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p);
3329 exit(1);
3330 }
3331 }
3332 #endif
3333
3334 static void handle_arg_singlestep(const char *arg)
3335 {
3336 singlestep = 1;
3337 }
3338
3339 static void handle_arg_strace(const char *arg)
3340 {
3341 do_strace = 1;
3342 }
3343
3344 static void handle_arg_version(const char *arg)
3345 {
3346 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION
3347 ", Copyright (c) 2003-2008 Fabrice Bellard\n");
3348 exit(0);
3349 }
3350
3351 struct qemu_argument {
3352 const char *argv;
3353 const char *env;
3354 bool has_arg;
3355 void (*handle_opt)(const char *arg);
3356 const char *example;
3357 const char *help;
3358 };
3359
3360 static const struct qemu_argument arg_table[] = {
3361 {"h", "", false, handle_arg_help,
3362 "", "print this help"},
3363 {"g", "QEMU_GDB", true, handle_arg_gdb,
3364 "port", "wait gdb connection to 'port'"},
3365 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix,
3366 "path", "set the elf interpreter prefix to 'path'"},
3367 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size,
3368 "size", "set the stack size to 'size' bytes"},
3369 {"cpu", "QEMU_CPU", true, handle_arg_cpu,
3370 "model", "select CPU (-cpu help for list)"},
3371 {"E", "QEMU_SET_ENV", true, handle_arg_set_env,
3372 "var=value", "sets targets environment variable (see below)"},
3373 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env,
3374 "var", "unsets targets environment variable (see below)"},
3375 {"0", "QEMU_ARGV0", true, handle_arg_argv0,
3376 "argv0", "forces target process argv[0] to be 'argv0'"},
3377 {"r", "QEMU_UNAME", true, handle_arg_uname,
3378 "uname", "set qemu uname release string to 'uname'"},
3379 #if defined(CONFIG_USE_GUEST_BASE)
3380 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base,
3381 "address", "set guest_base address to 'address'"},
3382 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va,
3383 "size", "reserve 'size' bytes for guest virtual address space"},
3384 #endif
3385 {"d", "QEMU_LOG", true, handle_arg_log,
3386 "item[,...]", "enable logging of specified items "
3387 "(use '-d help' for a list of items)"},
3388 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename,
3389 "logfile", "write logs to 'logfile' (default stderr)"},
3390 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize,
3391 "pagesize", "set the host page size to 'pagesize'"},
3392 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep,
3393 "", "run in singlestep mode"},
3394 {"strace", "QEMU_STRACE", false, handle_arg_strace,
3395 "", "log system calls"},
3396 {"version", "QEMU_VERSION", false, handle_arg_version,
3397 "", "display version information and exit"},
3398 {NULL, NULL, false, NULL, NULL, NULL}
3399 };
3400
3401 static void usage(void)
3402 {
3403 const struct qemu_argument *arginfo;
3404 int maxarglen;
3405 int maxenvlen;
3406
3407 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
3408 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n"
3409 "\n"
3410 "Options and associated environment variables:\n"
3411 "\n");
3412
3413 /* Calculate column widths. We must always have at least enough space
3414 * for the column header.
3415 */
3416 maxarglen = strlen("Argument");
3417 maxenvlen = strlen("Env-variable");
3418
3419 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3420 int arglen = strlen(arginfo->argv);
3421 if (arginfo->has_arg) {
3422 arglen += strlen(arginfo->example) + 1;
3423 }
3424 if (strlen(arginfo->env) > maxenvlen) {
3425 maxenvlen = strlen(arginfo->env);
3426 }
3427 if (arglen > maxarglen) {
3428 maxarglen = arglen;
3429 }
3430 }
3431
3432 printf("%-*s %-*s Description\n", maxarglen+1, "Argument",
3433 maxenvlen, "Env-variable");
3434
3435 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3436 if (arginfo->has_arg) {
3437 printf("-%s %-*s %-*s %s\n", arginfo->argv,
3438 (int)(maxarglen - strlen(arginfo->argv) - 1),
3439 arginfo->example, maxenvlen, arginfo->env, arginfo->help);
3440 } else {
3441 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv,
3442 maxenvlen, arginfo->env,
3443 arginfo->help);
3444 }
3445 }
3446
3447 printf("\n"
3448 "Defaults:\n"
3449 "QEMU_LD_PREFIX = %s\n"
3450 "QEMU_STACK_SIZE = %ld byte\n",
3451 interp_prefix,
3452 guest_stack_size);
3453
3454 printf("\n"
3455 "You can use -E and -U options or the QEMU_SET_ENV and\n"
3456 "QEMU_UNSET_ENV environment variables to set and unset\n"
3457 "environment variables for the target process.\n"
3458 "It is possible to provide several variables by separating them\n"
3459 "by commas in getsubopt(3) style. Additionally it is possible to\n"
3460 "provide the -E and -U options multiple times.\n"
3461 "The following lines are equivalent:\n"
3462 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
3463 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
3464 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
3465 "Note that if you provide several changes to a single variable\n"
3466 "the last change will stay in effect.\n");
3467
3468 exit(1);
3469 }
3470
3471 static int parse_args(int argc, char **argv)
3472 {
3473 const char *r;
3474 int optind;
3475 const struct qemu_argument *arginfo;
3476
3477 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3478 if (arginfo->env == NULL) {
3479 continue;
3480 }
3481
3482 r = getenv(arginfo->env);
3483 if (r != NULL) {
3484 arginfo->handle_opt(r);
3485 }
3486 }
3487
3488 optind = 1;
3489 for (;;) {
3490 if (optind >= argc) {
3491 break;
3492 }
3493 r = argv[optind];
3494 if (r[0] != '-') {
3495 break;
3496 }
3497 optind++;
3498 r++;
3499 if (!strcmp(r, "-")) {
3500 break;
3501 }
3502
3503 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3504 if (!strcmp(r, arginfo->argv)) {
3505 if (arginfo->has_arg) {
3506 if (optind >= argc) {
3507 usage();
3508 }
3509 arginfo->handle_opt(argv[optind]);
3510 optind++;
3511 } else {
3512 arginfo->handle_opt(NULL);
3513 }
3514 break;
3515 }
3516 }
3517
3518 /* no option matched the current argv */
3519 if (arginfo->handle_opt == NULL) {
3520 usage();
3521 }
3522 }
3523
3524 if (optind >= argc) {
3525 usage();
3526 }
3527
3528 filename = argv[optind];
3529 exec_path = argv[optind];
3530
3531 return optind;
3532 }
3533
3534 int main(int argc, char **argv, char **envp)
3535 {
3536 struct target_pt_regs regs1, *regs = &regs1;
3537 struct image_info info1, *info = &info1;
3538 struct linux_binprm bprm;
3539 TaskState *ts;
3540 CPUArchState *env;
3541 int optind;
3542 char **target_environ, **wrk;
3543 char **target_argv;
3544 int target_argc;
3545 int i;
3546 int ret;
3547
3548 module_call_init(MODULE_INIT_QOM);
3549
3550 qemu_cache_utils_init(envp);
3551
3552 if ((envlist = envlist_create()) == NULL) {
3553 (void) fprintf(stderr, "Unable to allocate envlist\n");
3554 exit(1);
3555 }
3556
3557 /* add current environment into the list */
3558 for (wrk = environ; *wrk != NULL; wrk++) {
3559 (void) envlist_setenv(envlist, *wrk);
3560 }
3561
3562 /* Read the stack limit from the kernel. If it's "unlimited",
3563 then we can do little else besides use the default. */
3564 {
3565 struct rlimit lim;
3566 if (getrlimit(RLIMIT_STACK, &lim) == 0
3567 && lim.rlim_cur != RLIM_INFINITY
3568 && lim.rlim_cur == (target_long)lim.rlim_cur) {
3569 guest_stack_size = lim.rlim_cur;
3570 }
3571 }
3572
3573 cpu_model = NULL;
3574 #if defined(cpudef_setup)
3575 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */
3576 #endif
3577
3578 optind = parse_args(argc, argv);
3579
3580 /* Zero out regs */
3581 memset(regs, 0, sizeof(struct target_pt_regs));
3582
3583 /* Zero out image_info */
3584 memset(info, 0, sizeof(struct image_info));
3585
3586 memset(&bprm, 0, sizeof (bprm));
3587
3588 /* Scan interp_prefix dir for replacement files. */
3589 init_paths(interp_prefix);
3590
3591 if (cpu_model == NULL) {
3592 #if defined(TARGET_I386)
3593 #ifdef TARGET_X86_64
3594 cpu_model = "qemu64";
3595 #else
3596 cpu_model = "qemu32";
3597 #endif
3598 #elif defined(TARGET_ARM)
3599 cpu_model = "any";
3600 #elif defined(TARGET_UNICORE32)
3601 cpu_model = "any";
3602 #elif defined(TARGET_M68K)
3603 cpu_model = "any";
3604 #elif defined(TARGET_SPARC)
3605 #ifdef TARGET_SPARC64
3606 cpu_model = "TI UltraSparc II";
3607 #else
3608 cpu_model = "Fujitsu MB86904";
3609 #endif
3610 #elif defined(TARGET_MIPS)
3611 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
3612 cpu_model = "20Kc";
3613 #else
3614 cpu_model = "24Kf";
3615 #endif
3616 #elif defined TARGET_OPENRISC
3617 cpu_model = "or1200";
3618 #elif defined(TARGET_PPC)
3619 #ifdef TARGET_PPC64
3620 cpu_model = "970fx";
3621 #else
3622 cpu_model = "750";
3623 #endif
3624 #else
3625 cpu_model = "any";
3626 #endif
3627 }
3628 tcg_exec_init(0);
3629 cpu_exec_init_all();
3630 /* NOTE: we need to init the CPU at this stage to get
3631 qemu_host_page_size */
3632 env = cpu_init(cpu_model);
3633 if (!env) {
3634 fprintf(stderr, "Unable to find CPU definition\n");
3635 exit(1);
3636 }
3637 cpu_reset(ENV_GET_CPU(env));
3638
3639 thread_cpu = ENV_GET_CPU(env);
3640
3641 if (getenv("QEMU_STRACE")) {
3642 do_strace = 1;
3643 }
3644
3645 target_environ = envlist_to_environ(envlist, NULL);
3646 envlist_free(envlist);
3647
3648 #if defined(CONFIG_USE_GUEST_BASE)
3649 /*
3650 * Now that page sizes are configured in cpu_init() we can do
3651 * proper page alignment for guest_base.
3652 */
3653 guest_base = HOST_PAGE_ALIGN(guest_base);
3654
3655 if (reserved_va || have_guest_base) {
3656 guest_base = init_guest_space(guest_base, reserved_va, 0,
3657 have_guest_base);
3658 if (guest_base == (unsigned long)-1) {
3659 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address "
3660 "space for use as guest address space (check your virtual "
3661 "memory ulimit setting or reserve less using -R option)\n",
3662 reserved_va);
3663 exit(1);
3664 }
3665
3666 if (reserved_va) {
3667 mmap_next_start = reserved_va;
3668 }
3669 }
3670 #endif /* CONFIG_USE_GUEST_BASE */
3671
3672 /*
3673 * Read in mmap_min_addr kernel parameter. This value is used
3674 * When loading the ELF image to determine whether guest_base
3675 * is needed. It is also used in mmap_find_vma.
3676 */
3677 {
3678 FILE *fp;
3679
3680 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
3681 unsigned long tmp;
3682 if (fscanf(fp, "%lu", &tmp) == 1) {
3683 mmap_min_addr = tmp;
3684 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr);
3685 }
3686 fclose(fp);
3687 }
3688 }
3689
3690 /*
3691 * Prepare copy of argv vector for target.
3692 */
3693 target_argc = argc - optind;
3694 target_argv = calloc(target_argc + 1, sizeof (char *));
3695 if (target_argv == NULL) {
3696 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n");
3697 exit(1);
3698 }
3699
3700 /*
3701 * If argv0 is specified (using '-0' switch) we replace
3702 * argv[0] pointer with the given one.
3703 */
3704 i = 0;
3705 if (argv0 != NULL) {
3706 target_argv[i++] = strdup(argv0);
3707 }
3708 for (; i < target_argc; i++) {
3709 target_argv[i] = strdup(argv[optind + i]);
3710 }
3711 target_argv[target_argc] = NULL;
3712
3713 ts = g_malloc0 (sizeof(TaskState));
3714 init_task_state(ts);
3715 /* build Task State */
3716 ts->info = info;
3717 ts->bprm = &bprm;
3718 env->opaque = ts;
3719 task_settid(ts);
3720
3721 ret = loader_exec(filename, target_argv, target_environ, regs,
3722 info, &bprm);
3723 if (ret != 0) {
3724 printf("Error while loading %s: %s\n", filename, strerror(-ret));
3725 _exit(1);
3726 }
3727
3728 for (wrk = target_environ; *wrk; wrk++) {
3729 free(*wrk);
3730 }
3731
3732 free(target_environ);
3733
3734 if (qemu_log_enabled()) {
3735 #if defined(CONFIG_USE_GUEST_BASE)
3736 qemu_log("guest_base 0x%lx\n", guest_base);
3737 #endif
3738 log_page_dump();
3739
3740 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
3741 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code);
3742 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n",
3743 info->start_code);
3744 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n",
3745 info->start_data);
3746 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data);
3747 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
3748 info->start_stack);
3749 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk);
3750 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry);
3751 }
3752
3753 target_set_brk(info->brk);
3754 syscall_init();
3755 signal_init();
3756
3757 #if defined(CONFIG_USE_GUEST_BASE)
3758 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
3759 generating the prologue until now so that the prologue can take
3760 the real value of GUEST_BASE into account. */
3761 tcg_prologue_init(&tcg_ctx);
3762 #endif
3763
3764 #if defined(TARGET_I386)
3765 cpu_x86_set_cpl(env, 3);
3766
3767 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
3768 env->hflags |= HF_PE_MASK;
3769 if (env->features[FEAT_1_EDX] & CPUID_SSE) {
3770 env->cr[4] |= CR4_OSFXSR_MASK;
3771 env->hflags |= HF_OSFXSR_MASK;
3772 }
3773 #ifndef TARGET_ABI32
3774 /* enable 64 bit mode if possible */
3775 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
3776 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
3777 exit(1);
3778 }
3779 env->cr[4] |= CR4_PAE_MASK;
3780 env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
3781 env->hflags |= HF_LMA_MASK;
3782 #endif
3783
3784 /* flags setup : we activate the IRQs by default as in user mode */
3785 env->eflags |= IF_MASK;
3786
3787 /* linux register setup */
3788 #ifndef TARGET_ABI32
3789 env->regs[R_EAX] = regs->rax;
3790 env->regs[R_EBX] = regs->rbx;
3791 env->regs[R_ECX] = regs->rcx;
3792 env->regs[R_EDX] = regs->rdx;
3793 env->regs[R_ESI] = regs->rsi;
3794 env->regs[R_EDI] = regs->rdi;
3795 env->regs[R_EBP] = regs->rbp;
3796 env->regs[R_ESP] = regs->rsp;
3797 env->eip = regs->rip;
3798 #else
3799 env->regs[R_EAX] = regs->eax;
3800 env->regs[R_EBX] = regs->ebx;
3801 env->regs[R_ECX] = regs->ecx;
3802 env->regs[R_EDX] = regs->edx;
3803 env->regs[R_ESI] = regs->esi;
3804 env->regs[R_EDI] = regs->edi;
3805 env->regs[R_EBP] = regs->ebp;
3806 env->regs[R_ESP] = regs->esp;
3807 env->eip = regs->eip;
3808 #endif
3809
3810 /* linux interrupt setup */
3811 #ifndef TARGET_ABI32
3812 env->idt.limit = 511;
3813 #else
3814 env->idt.limit = 255;
3815 #endif
3816 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
3817 PROT_READ|PROT_WRITE,
3818 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
3819 idt_table = g2h(env->idt.base);
3820 set_idt(0, 0);
3821 set_idt(1, 0);
3822 set_idt(2, 0);
3823 set_idt(3, 3);
3824 set_idt(4, 3);
3825 set_idt(5, 0);
3826 set_idt(6, 0);
3827 set_idt(7, 0);
3828 set_idt(8, 0);
3829 set_idt(9, 0);
3830 set_idt(10, 0);
3831 set_idt(11, 0);
3832 set_idt(12, 0);
3833 set_idt(13, 0);
3834 set_idt(14, 0);
3835 set_idt(15, 0);
3836 set_idt(16, 0);
3837 set_idt(17, 0);
3838 set_idt(18, 0);
3839 set_idt(19, 0);
3840 set_idt(0x80, 3);
3841
3842 /* linux segment setup */
3843 {
3844 uint64_t *gdt_table;
3845 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
3846 PROT_READ|PROT_WRITE,
3847 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
3848 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
3849 gdt_table = g2h(env->gdt.base);
3850 #ifdef TARGET_ABI32
3851 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
3852 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
3853 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
3854 #else
3855 /* 64 bit code segment */
3856 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
3857 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
3858 DESC_L_MASK |
3859 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
3860 #endif
3861 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
3862 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
3863 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
3864 }
3865 cpu_x86_load_seg(env, R_CS, __USER_CS);
3866 cpu_x86_load_seg(env, R_SS, __USER_DS);
3867 #ifdef TARGET_ABI32
3868 cpu_x86_load_seg(env, R_DS, __USER_DS);
3869 cpu_x86_load_seg(env, R_ES, __USER_DS);
3870 cpu_x86_load_seg(env, R_FS, __USER_DS);
3871 cpu_x86_load_seg(env, R_GS, __USER_DS);
3872 /* This hack makes Wine work... */
3873 env->segs[R_FS].selector = 0;
3874 #else
3875 cpu_x86_load_seg(env, R_DS, 0);
3876 cpu_x86_load_seg(env, R_ES, 0);
3877 cpu_x86_load_seg(env, R_FS, 0);
3878 cpu_x86_load_seg(env, R_GS, 0);
3879 #endif
3880 #elif defined(TARGET_ARM)
3881 {
3882 int i;
3883 cpsr_write(env, regs->uregs[16], 0xffffffff);
3884 for(i = 0; i < 16; i++) {
3885 env->regs[i] = regs->uregs[i];
3886 }
3887 /* Enable BE8. */
3888 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4
3889 && (info->elf_flags & EF_ARM_BE8)) {
3890 env->bswap_code = 1;
3891 }
3892 }
3893 #elif defined(TARGET_UNICORE32)
3894 {
3895 int i;
3896 cpu_asr_write(env, regs->uregs[32], 0xffffffff);
3897 for (i = 0; i < 32; i++) {
3898 env->regs[i] = regs->uregs[i];
3899 }
3900 }
3901 #elif defined(TARGET_SPARC)
3902 {
3903 int i;
3904 env->pc = regs->pc;
3905 env->npc = regs->npc;
3906 env->y = regs->y;
3907 for(i = 0; i < 8; i++)
3908 env->gregs[i] = regs->u_regs[i];
3909 for(i = 0; i < 8; i++)
3910 env->regwptr[i] = regs->u_regs[i + 8];
3911 }
3912 #elif defined(TARGET_PPC)
3913 {
3914 int i;
3915
3916 #if defined(TARGET_PPC64)
3917 #if defined(TARGET_ABI32)
3918 env->msr &= ~((target_ulong)1 << MSR_SF);
3919 #else
3920 env->msr |= (target_ulong)1 << MSR_SF;
3921 #endif
3922 #endif
3923 env->nip = regs->nip;
3924 for(i = 0; i < 32; i++) {
3925 env->gpr[i] = regs->gpr[i];
3926 }
3927 }
3928 #elif defined(TARGET_M68K)
3929 {
3930 env->pc = regs->pc;
3931 env->dregs[0] = regs->d0;
3932 env->dregs[1] = regs->d1;
3933 env->dregs[2] = regs->d2;
3934 env->dregs[3] = regs->d3;
3935 env->dregs[4] = regs->d4;
3936 env->dregs[5] = regs->d5;
3937 env->dregs[6] = regs->d6;
3938 env->dregs[7] = regs->d7;
3939 env->aregs[0] = regs->a0;
3940 env->aregs[1] = regs->a1;
3941 env->aregs[2] = regs->a2;
3942 env->aregs[3] = regs->a3;
3943 env->aregs[4] = regs->a4;
3944 env->aregs[5] = regs->a5;
3945 env->aregs[6] = regs->a6;
3946 env->aregs[7] = regs->usp;
3947 env->sr = regs->sr;
3948 ts->sim_syscalls = 1;
3949 }
3950 #elif defined(TARGET_MICROBLAZE)
3951 {
3952 env->regs[0] = regs->r0;
3953 env->regs[1] = regs->r1;
3954 env->regs[2] = regs->r2;
3955 env->regs[3] = regs->r3;
3956 env->regs[4] = regs->r4;
3957 env->regs[5] = regs->r5;
3958 env->regs[6] = regs->r6;
3959 env->regs[7] = regs->r7;
3960 env->regs[8] = regs->r8;
3961 env->regs[9] = regs->r9;
3962 env->regs[10] = regs->r10;
3963 env->regs[11] = regs->r11;
3964 env->regs[12] = regs->r12;
3965 env->regs[13] = regs->r13;
3966 env->regs[14] = regs->r14;
3967 env->regs[15] = regs->r15;
3968 env->regs[16] = regs->r16;
3969 env->regs[17] = regs->r17;
3970 env->regs[18] = regs->r18;
3971 env->regs[19] = regs->r19;
3972 env->regs[20] = regs->r20;
3973 env->regs[21] = regs->r21;
3974 env->regs[22] = regs->r22;
3975 env->regs[23] = regs->r23;
3976 env->regs[24] = regs->r24;
3977 env->regs[25] = regs->r25;
3978 env->regs[26] = regs->r26;
3979 env->regs[27] = regs->r27;
3980 env->regs[28] = regs->r28;
3981 env->regs[29] = regs->r29;
3982 env->regs[30] = regs->r30;
3983 env->regs[31] = regs->r31;
3984 env->sregs[SR_PC] = regs->pc;
3985 }
3986 #elif defined(TARGET_MIPS)
3987 {
3988 int i;
3989
3990 for(i = 0; i < 32; i++) {
3991 env->active_tc.gpr[i] = regs->regs[i];
3992 }
3993 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1;
3994 if (regs->cp0_epc & 1) {
3995 env->hflags |= MIPS_HFLAG_M16;
3996 }
3997 }
3998 #elif defined(TARGET_OPENRISC)
3999 {
4000 int i;
4001
4002 for (i = 0; i < 32; i++) {
4003 env->gpr[i] = regs->gpr[i];
4004 }
4005
4006 env->sr = regs->sr;
4007 env->pc = regs->pc;
4008 }
4009 #elif defined(TARGET_SH4)
4010 {
4011 int i;
4012
4013 for(i = 0; i < 16; i++) {
4014 env->gregs[i] = regs->regs[i];
4015 }
4016 env->pc = regs->pc;
4017 }
4018 #elif defined(TARGET_ALPHA)
4019 {
4020 int i;
4021
4022 for(i = 0; i < 28; i++) {
4023 env->ir[i] = ((abi_ulong *)regs)[i];
4024 }
4025 env->ir[IR_SP] = regs->usp;
4026 env->pc = regs->pc;
4027 }
4028 #elif defined(TARGET_CRIS)
4029 {
4030 env->regs[0] = regs->r0;
4031 env->regs[1] = regs->r1;
4032 env->regs[2] = regs->r2;
4033 env->regs[3] = regs->r3;
4034 env->regs[4] = regs->r4;
4035 env->regs[5] = regs->r5;
4036 env->regs[6] = regs->r6;
4037 env->regs[7] = regs->r7;
4038 env->regs[8] = regs->r8;
4039 env->regs[9] = regs->r9;
4040 env->regs[10] = regs->r10;
4041 env->regs[11] = regs->r11;
4042 env->regs[12] = regs->r12;
4043 env->regs[13] = regs->r13;
4044 env->regs[14] = info->start_stack;
4045 env->regs[15] = regs->acr;
4046 env->pc = regs->erp;
4047 }
4048 #elif defined(TARGET_S390X)
4049 {
4050 int i;
4051 for (i = 0; i < 16; i++) {
4052 env->regs[i] = regs->gprs[i];
4053 }
4054 env->psw.mask = regs->psw.mask;
4055 env->psw.addr = regs->psw.addr;
4056 }
4057 #else
4058 #error unsupported target CPU
4059 #endif
4060
4061 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4062 ts->stack_base = info->start_stack;
4063 ts->heap_base = info->brk;
4064 /* This will be filled in on the first SYS_HEAPINFO call. */
4065 ts->heap_limit = 0;
4066 #endif
4067
4068 if (gdbstub_port) {
4069 if (gdbserver_start(gdbstub_port) < 0) {
4070 fprintf(stderr, "qemu: could not open gdbserver on port %d\n",
4071 gdbstub_port);
4072 exit(1);
4073 }
4074 gdb_handlesig(env, 0);
4075 }
4076 cpu_loop(env);
4077 /* never exits */
4078 return 0;
4079 }