]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/main.c
cpu: make cpu_generic_init() abort QEMU on error
[mirror_qemu.git] / linux-user / main.c
1 /*
2 * qemu user main
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qemu-version.h"
21 #include <sys/syscall.h>
22 #include <sys/resource.h>
23
24 #include "qapi/error.h"
25 #include "qemu.h"
26 #include "qemu/path.h"
27 #include "qemu/config-file.h"
28 #include "qemu/cutils.h"
29 #include "qemu/help_option.h"
30 #include "cpu.h"
31 #include "exec/exec-all.h"
32 #include "tcg.h"
33 #include "qemu/timer.h"
34 #include "qemu/envlist.h"
35 #include "elf.h"
36 #include "exec/log.h"
37 #include "trace/control.h"
38 #include "glib-compat.h"
39
40 char *exec_path;
41
42 int singlestep;
43 static const char *filename;
44 static const char *argv0;
45 static int gdbstub_port;
46 static envlist_t *envlist;
47 static const char *cpu_model;
48 unsigned long mmap_min_addr;
49 unsigned long guest_base;
50 int have_guest_base;
51
52 #define EXCP_DUMP(env, fmt, ...) \
53 do { \
54 CPUState *cs = ENV_GET_CPU(env); \
55 fprintf(stderr, fmt , ## __VA_ARGS__); \
56 cpu_dump_state(cs, stderr, fprintf, 0); \
57 if (qemu_log_separate()) { \
58 qemu_log(fmt, ## __VA_ARGS__); \
59 log_cpu_state(cs, 0); \
60 } \
61 } while (0)
62
63 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
64 /*
65 * When running 32-on-64 we should make sure we can fit all of the possible
66 * guest address space into a contiguous chunk of virtual host memory.
67 *
68 * This way we will never overlap with our own libraries or binaries or stack
69 * or anything else that QEMU maps.
70 */
71 # if defined(TARGET_MIPS) || defined(TARGET_NIOS2)
72 /*
73 * MIPS only supports 31 bits of virtual address space for user space.
74 * Nios2 also only supports 31 bits.
75 */
76 unsigned long reserved_va = 0x77000000;
77 # else
78 unsigned long reserved_va = 0xf7000000;
79 # endif
80 #else
81 unsigned long reserved_va;
82 #endif
83
84 static void usage(int exitcode);
85
86 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
87 const char *qemu_uname_release;
88
89 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
90 we allocate a bigger stack. Need a better solution, for example
91 by remapping the process stack directly at the right place */
92 unsigned long guest_stack_size = 8 * 1024 * 1024UL;
93
94 void gemu_log(const char *fmt, ...)
95 {
96 va_list ap;
97
98 va_start(ap, fmt);
99 vfprintf(stderr, fmt, ap);
100 va_end(ap);
101 }
102
103 #if defined(TARGET_I386)
104 int cpu_get_pic_interrupt(CPUX86State *env)
105 {
106 return -1;
107 }
108 #endif
109
110 /***********************************************************/
111 /* Helper routines for implementing atomic operations. */
112
113 /* Make sure everything is in a consistent state for calling fork(). */
114 void fork_start(void)
115 {
116 cpu_list_lock();
117 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
118 mmap_fork_start();
119 }
120
121 void fork_end(int child)
122 {
123 mmap_fork_end(child);
124 if (child) {
125 CPUState *cpu, *next_cpu;
126 /* Child processes created by fork() only have a single thread.
127 Discard information about the parent threads. */
128 CPU_FOREACH_SAFE(cpu, next_cpu) {
129 if (cpu != thread_cpu) {
130 QTAILQ_REMOVE(&cpus, cpu, node);
131 }
132 }
133 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
134 qemu_init_cpu_list();
135 gdbserver_fork(thread_cpu);
136 } else {
137 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
138 cpu_list_unlock();
139 }
140 }
141
142 #ifdef TARGET_I386
143 /***********************************************************/
144 /* CPUX86 core interface */
145
146 uint64_t cpu_get_tsc(CPUX86State *env)
147 {
148 return cpu_get_host_ticks();
149 }
150
151 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
152 int flags)
153 {
154 unsigned int e1, e2;
155 uint32_t *p;
156 e1 = (addr << 16) | (limit & 0xffff);
157 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
158 e2 |= flags;
159 p = ptr;
160 p[0] = tswap32(e1);
161 p[1] = tswap32(e2);
162 }
163
164 static uint64_t *idt_table;
165 #ifdef TARGET_X86_64
166 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
167 uint64_t addr, unsigned int sel)
168 {
169 uint32_t *p, e1, e2;
170 e1 = (addr & 0xffff) | (sel << 16);
171 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
172 p = ptr;
173 p[0] = tswap32(e1);
174 p[1] = tswap32(e2);
175 p[2] = tswap32(addr >> 32);
176 p[3] = 0;
177 }
178 /* only dpl matters as we do only user space emulation */
179 static void set_idt(int n, unsigned int dpl)
180 {
181 set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
182 }
183 #else
184 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
185 uint32_t addr, unsigned int sel)
186 {
187 uint32_t *p, e1, e2;
188 e1 = (addr & 0xffff) | (sel << 16);
189 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
190 p = ptr;
191 p[0] = tswap32(e1);
192 p[1] = tswap32(e2);
193 }
194
195 /* only dpl matters as we do only user space emulation */
196 static void set_idt(int n, unsigned int dpl)
197 {
198 set_gate(idt_table + n, 0, dpl, 0, 0);
199 }
200 #endif
201
202 void cpu_loop(CPUX86State *env)
203 {
204 CPUState *cs = CPU(x86_env_get_cpu(env));
205 int trapnr;
206 abi_ulong pc;
207 abi_ulong ret;
208 target_siginfo_t info;
209
210 for(;;) {
211 cpu_exec_start(cs);
212 trapnr = cpu_exec(cs);
213 cpu_exec_end(cs);
214 process_queued_cpu_work(cs);
215
216 switch(trapnr) {
217 case 0x80:
218 /* linux syscall from int $0x80 */
219 ret = do_syscall(env,
220 env->regs[R_EAX],
221 env->regs[R_EBX],
222 env->regs[R_ECX],
223 env->regs[R_EDX],
224 env->regs[R_ESI],
225 env->regs[R_EDI],
226 env->regs[R_EBP],
227 0, 0);
228 if (ret == -TARGET_ERESTARTSYS) {
229 env->eip -= 2;
230 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
231 env->regs[R_EAX] = ret;
232 }
233 break;
234 #ifndef TARGET_ABI32
235 case EXCP_SYSCALL:
236 /* linux syscall from syscall instruction */
237 ret = do_syscall(env,
238 env->regs[R_EAX],
239 env->regs[R_EDI],
240 env->regs[R_ESI],
241 env->regs[R_EDX],
242 env->regs[10],
243 env->regs[8],
244 env->regs[9],
245 0, 0);
246 if (ret == -TARGET_ERESTARTSYS) {
247 env->eip -= 2;
248 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
249 env->regs[R_EAX] = ret;
250 }
251 break;
252 #endif
253 case EXCP0B_NOSEG:
254 case EXCP0C_STACK:
255 info.si_signo = TARGET_SIGBUS;
256 info.si_errno = 0;
257 info.si_code = TARGET_SI_KERNEL;
258 info._sifields._sigfault._addr = 0;
259 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
260 break;
261 case EXCP0D_GPF:
262 /* XXX: potential problem if ABI32 */
263 #ifndef TARGET_X86_64
264 if (env->eflags & VM_MASK) {
265 handle_vm86_fault(env);
266 } else
267 #endif
268 {
269 info.si_signo = TARGET_SIGSEGV;
270 info.si_errno = 0;
271 info.si_code = TARGET_SI_KERNEL;
272 info._sifields._sigfault._addr = 0;
273 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
274 }
275 break;
276 case EXCP0E_PAGE:
277 info.si_signo = TARGET_SIGSEGV;
278 info.si_errno = 0;
279 if (!(env->error_code & 1))
280 info.si_code = TARGET_SEGV_MAPERR;
281 else
282 info.si_code = TARGET_SEGV_ACCERR;
283 info._sifields._sigfault._addr = env->cr[2];
284 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
285 break;
286 case EXCP00_DIVZ:
287 #ifndef TARGET_X86_64
288 if (env->eflags & VM_MASK) {
289 handle_vm86_trap(env, trapnr);
290 } else
291 #endif
292 {
293 /* division by zero */
294 info.si_signo = TARGET_SIGFPE;
295 info.si_errno = 0;
296 info.si_code = TARGET_FPE_INTDIV;
297 info._sifields._sigfault._addr = env->eip;
298 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
299 }
300 break;
301 case EXCP01_DB:
302 case EXCP03_INT3:
303 #ifndef TARGET_X86_64
304 if (env->eflags & VM_MASK) {
305 handle_vm86_trap(env, trapnr);
306 } else
307 #endif
308 {
309 info.si_signo = TARGET_SIGTRAP;
310 info.si_errno = 0;
311 if (trapnr == EXCP01_DB) {
312 info.si_code = TARGET_TRAP_BRKPT;
313 info._sifields._sigfault._addr = env->eip;
314 } else {
315 info.si_code = TARGET_SI_KERNEL;
316 info._sifields._sigfault._addr = 0;
317 }
318 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
319 }
320 break;
321 case EXCP04_INTO:
322 case EXCP05_BOUND:
323 #ifndef TARGET_X86_64
324 if (env->eflags & VM_MASK) {
325 handle_vm86_trap(env, trapnr);
326 } else
327 #endif
328 {
329 info.si_signo = TARGET_SIGSEGV;
330 info.si_errno = 0;
331 info.si_code = TARGET_SI_KERNEL;
332 info._sifields._sigfault._addr = 0;
333 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
334 }
335 break;
336 case EXCP06_ILLOP:
337 info.si_signo = TARGET_SIGILL;
338 info.si_errno = 0;
339 info.si_code = TARGET_ILL_ILLOPN;
340 info._sifields._sigfault._addr = env->eip;
341 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
342 break;
343 case EXCP_INTERRUPT:
344 /* just indicate that signals should be handled asap */
345 break;
346 case EXCP_DEBUG:
347 {
348 int sig;
349
350 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
351 if (sig)
352 {
353 info.si_signo = sig;
354 info.si_errno = 0;
355 info.si_code = TARGET_TRAP_BRKPT;
356 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
357 }
358 }
359 break;
360 case EXCP_ATOMIC:
361 cpu_exec_step_atomic(cs);
362 break;
363 default:
364 pc = env->segs[R_CS].base + env->eip;
365 EXCP_DUMP(env, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
366 (long)pc, trapnr);
367 abort();
368 }
369 process_pending_signals(env);
370 }
371 }
372 #endif
373
374 #ifdef TARGET_ARM
375
376 #define get_user_code_u32(x, gaddr, env) \
377 ({ abi_long __r = get_user_u32((x), (gaddr)); \
378 if (!__r && bswap_code(arm_sctlr_b(env))) { \
379 (x) = bswap32(x); \
380 } \
381 __r; \
382 })
383
384 #define get_user_code_u16(x, gaddr, env) \
385 ({ abi_long __r = get_user_u16((x), (gaddr)); \
386 if (!__r && bswap_code(arm_sctlr_b(env))) { \
387 (x) = bswap16(x); \
388 } \
389 __r; \
390 })
391
392 #define get_user_data_u32(x, gaddr, env) \
393 ({ abi_long __r = get_user_u32((x), (gaddr)); \
394 if (!__r && arm_cpu_bswap_data(env)) { \
395 (x) = bswap32(x); \
396 } \
397 __r; \
398 })
399
400 #define get_user_data_u16(x, gaddr, env) \
401 ({ abi_long __r = get_user_u16((x), (gaddr)); \
402 if (!__r && arm_cpu_bswap_data(env)) { \
403 (x) = bswap16(x); \
404 } \
405 __r; \
406 })
407
408 #define put_user_data_u32(x, gaddr, env) \
409 ({ typeof(x) __x = (x); \
410 if (arm_cpu_bswap_data(env)) { \
411 __x = bswap32(__x); \
412 } \
413 put_user_u32(__x, (gaddr)); \
414 })
415
416 #define put_user_data_u16(x, gaddr, env) \
417 ({ typeof(x) __x = (x); \
418 if (arm_cpu_bswap_data(env)) { \
419 __x = bswap16(__x); \
420 } \
421 put_user_u16(__x, (gaddr)); \
422 })
423
424 #ifdef TARGET_ABI32
425 /* Commpage handling -- there is no commpage for AArch64 */
426
427 /*
428 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
429 * Input:
430 * r0 = pointer to oldval
431 * r1 = pointer to newval
432 * r2 = pointer to target value
433 *
434 * Output:
435 * r0 = 0 if *ptr was changed, non-0 if no exchange happened
436 * C set if *ptr was changed, clear if no exchange happened
437 *
438 * Note segv's in kernel helpers are a bit tricky, we can set the
439 * data address sensibly but the PC address is just the entry point.
440 */
441 static void arm_kernel_cmpxchg64_helper(CPUARMState *env)
442 {
443 uint64_t oldval, newval, val;
444 uint32_t addr, cpsr;
445 target_siginfo_t info;
446
447 /* Based on the 32 bit code in do_kernel_trap */
448
449 /* XXX: This only works between threads, not between processes.
450 It's probably possible to implement this with native host
451 operations. However things like ldrex/strex are much harder so
452 there's not much point trying. */
453 start_exclusive();
454 cpsr = cpsr_read(env);
455 addr = env->regs[2];
456
457 if (get_user_u64(oldval, env->regs[0])) {
458 env->exception.vaddress = env->regs[0];
459 goto segv;
460 };
461
462 if (get_user_u64(newval, env->regs[1])) {
463 env->exception.vaddress = env->regs[1];
464 goto segv;
465 };
466
467 if (get_user_u64(val, addr)) {
468 env->exception.vaddress = addr;
469 goto segv;
470 }
471
472 if (val == oldval) {
473 val = newval;
474
475 if (put_user_u64(val, addr)) {
476 env->exception.vaddress = addr;
477 goto segv;
478 };
479
480 env->regs[0] = 0;
481 cpsr |= CPSR_C;
482 } else {
483 env->regs[0] = -1;
484 cpsr &= ~CPSR_C;
485 }
486 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
487 end_exclusive();
488 return;
489
490 segv:
491 end_exclusive();
492 /* We get the PC of the entry address - which is as good as anything,
493 on a real kernel what you get depends on which mode it uses. */
494 info.si_signo = TARGET_SIGSEGV;
495 info.si_errno = 0;
496 /* XXX: check env->error_code */
497 info.si_code = TARGET_SEGV_MAPERR;
498 info._sifields._sigfault._addr = env->exception.vaddress;
499 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
500 }
501
502 /* Handle a jump to the kernel code page. */
503 static int
504 do_kernel_trap(CPUARMState *env)
505 {
506 uint32_t addr;
507 uint32_t cpsr;
508 uint32_t val;
509
510 switch (env->regs[15]) {
511 case 0xffff0fa0: /* __kernel_memory_barrier */
512 /* ??? No-op. Will need to do better for SMP. */
513 break;
514 case 0xffff0fc0: /* __kernel_cmpxchg */
515 /* XXX: This only works between threads, not between processes.
516 It's probably possible to implement this with native host
517 operations. However things like ldrex/strex are much harder so
518 there's not much point trying. */
519 start_exclusive();
520 cpsr = cpsr_read(env);
521 addr = env->regs[2];
522 /* FIXME: This should SEGV if the access fails. */
523 if (get_user_u32(val, addr))
524 val = ~env->regs[0];
525 if (val == env->regs[0]) {
526 val = env->regs[1];
527 /* FIXME: Check for segfaults. */
528 put_user_u32(val, addr);
529 env->regs[0] = 0;
530 cpsr |= CPSR_C;
531 } else {
532 env->regs[0] = -1;
533 cpsr &= ~CPSR_C;
534 }
535 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
536 end_exclusive();
537 break;
538 case 0xffff0fe0: /* __kernel_get_tls */
539 env->regs[0] = cpu_get_tls(env);
540 break;
541 case 0xffff0f60: /* __kernel_cmpxchg64 */
542 arm_kernel_cmpxchg64_helper(env);
543 break;
544
545 default:
546 return 1;
547 }
548 /* Jump back to the caller. */
549 addr = env->regs[14];
550 if (addr & 1) {
551 env->thumb = 1;
552 addr &= ~1;
553 }
554 env->regs[15] = addr;
555
556 return 0;
557 }
558
559 void cpu_loop(CPUARMState *env)
560 {
561 CPUState *cs = CPU(arm_env_get_cpu(env));
562 int trapnr;
563 unsigned int n, insn;
564 target_siginfo_t info;
565 uint32_t addr;
566 abi_ulong ret;
567
568 for(;;) {
569 cpu_exec_start(cs);
570 trapnr = cpu_exec(cs);
571 cpu_exec_end(cs);
572 process_queued_cpu_work(cs);
573
574 switch(trapnr) {
575 case EXCP_UDEF:
576 case EXCP_NOCP:
577 case EXCP_INVSTATE:
578 {
579 TaskState *ts = cs->opaque;
580 uint32_t opcode;
581 int rc;
582
583 /* we handle the FPU emulation here, as Linux */
584 /* we get the opcode */
585 /* FIXME - what to do if get_user() fails? */
586 get_user_code_u32(opcode, env->regs[15], env);
587
588 rc = EmulateAll(opcode, &ts->fpa, env);
589 if (rc == 0) { /* illegal instruction */
590 info.si_signo = TARGET_SIGILL;
591 info.si_errno = 0;
592 info.si_code = TARGET_ILL_ILLOPN;
593 info._sifields._sigfault._addr = env->regs[15];
594 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
595 } else if (rc < 0) { /* FP exception */
596 int arm_fpe=0;
597
598 /* translate softfloat flags to FPSR flags */
599 if (-rc & float_flag_invalid)
600 arm_fpe |= BIT_IOC;
601 if (-rc & float_flag_divbyzero)
602 arm_fpe |= BIT_DZC;
603 if (-rc & float_flag_overflow)
604 arm_fpe |= BIT_OFC;
605 if (-rc & float_flag_underflow)
606 arm_fpe |= BIT_UFC;
607 if (-rc & float_flag_inexact)
608 arm_fpe |= BIT_IXC;
609
610 FPSR fpsr = ts->fpa.fpsr;
611 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
612
613 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */
614 info.si_signo = TARGET_SIGFPE;
615 info.si_errno = 0;
616
617 /* ordered by priority, least first */
618 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES;
619 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND;
620 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF;
621 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV;
622 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV;
623
624 info._sifields._sigfault._addr = env->regs[15];
625 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
626 } else {
627 env->regs[15] += 4;
628 }
629
630 /* accumulate unenabled exceptions */
631 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC))
632 fpsr |= BIT_IXC;
633 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC))
634 fpsr |= BIT_UFC;
635 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC))
636 fpsr |= BIT_OFC;
637 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC))
638 fpsr |= BIT_DZC;
639 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC))
640 fpsr |= BIT_IOC;
641 ts->fpa.fpsr=fpsr;
642 } else { /* everything OK */
643 /* increment PC */
644 env->regs[15] += 4;
645 }
646 }
647 break;
648 case EXCP_SWI:
649 case EXCP_BKPT:
650 {
651 env->eabi = 1;
652 /* system call */
653 if (trapnr == EXCP_BKPT) {
654 if (env->thumb) {
655 /* FIXME - what to do if get_user() fails? */
656 get_user_code_u16(insn, env->regs[15], env);
657 n = insn & 0xff;
658 env->regs[15] += 2;
659 } else {
660 /* FIXME - what to do if get_user() fails? */
661 get_user_code_u32(insn, env->regs[15], env);
662 n = (insn & 0xf) | ((insn >> 4) & 0xff0);
663 env->regs[15] += 4;
664 }
665 } else {
666 if (env->thumb) {
667 /* FIXME - what to do if get_user() fails? */
668 get_user_code_u16(insn, env->regs[15] - 2, env);
669 n = insn & 0xff;
670 } else {
671 /* FIXME - what to do if get_user() fails? */
672 get_user_code_u32(insn, env->regs[15] - 4, env);
673 n = insn & 0xffffff;
674 }
675 }
676
677 if (n == ARM_NR_cacheflush) {
678 /* nop */
679 } else if (n == ARM_NR_semihosting
680 || n == ARM_NR_thumb_semihosting) {
681 env->regs[0] = do_arm_semihosting (env);
682 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) {
683 /* linux syscall */
684 if (env->thumb || n == 0) {
685 n = env->regs[7];
686 } else {
687 n -= ARM_SYSCALL_BASE;
688 env->eabi = 0;
689 }
690 if ( n > ARM_NR_BASE) {
691 switch (n) {
692 case ARM_NR_cacheflush:
693 /* nop */
694 break;
695 case ARM_NR_set_tls:
696 cpu_set_tls(env, env->regs[0]);
697 env->regs[0] = 0;
698 break;
699 case ARM_NR_breakpoint:
700 env->regs[15] -= env->thumb ? 2 : 4;
701 goto excp_debug;
702 default:
703 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
704 n);
705 env->regs[0] = -TARGET_ENOSYS;
706 break;
707 }
708 } else {
709 ret = do_syscall(env,
710 n,
711 env->regs[0],
712 env->regs[1],
713 env->regs[2],
714 env->regs[3],
715 env->regs[4],
716 env->regs[5],
717 0, 0);
718 if (ret == -TARGET_ERESTARTSYS) {
719 env->regs[15] -= env->thumb ? 2 : 4;
720 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
721 env->regs[0] = ret;
722 }
723 }
724 } else {
725 goto error;
726 }
727 }
728 break;
729 case EXCP_SEMIHOST:
730 env->regs[0] = do_arm_semihosting(env);
731 break;
732 case EXCP_INTERRUPT:
733 /* just indicate that signals should be handled asap */
734 break;
735 case EXCP_PREFETCH_ABORT:
736 case EXCP_DATA_ABORT:
737 addr = env->exception.vaddress;
738 {
739 info.si_signo = TARGET_SIGSEGV;
740 info.si_errno = 0;
741 /* XXX: check env->error_code */
742 info.si_code = TARGET_SEGV_MAPERR;
743 info._sifields._sigfault._addr = addr;
744 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
745 }
746 break;
747 case EXCP_DEBUG:
748 excp_debug:
749 {
750 int sig;
751
752 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
753 if (sig)
754 {
755 info.si_signo = sig;
756 info.si_errno = 0;
757 info.si_code = TARGET_TRAP_BRKPT;
758 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
759 }
760 }
761 break;
762 case EXCP_KERNEL_TRAP:
763 if (do_kernel_trap(env))
764 goto error;
765 break;
766 case EXCP_YIELD:
767 /* nothing to do here for user-mode, just resume guest code */
768 break;
769 case EXCP_ATOMIC:
770 cpu_exec_step_atomic(cs);
771 break;
772 default:
773 error:
774 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
775 abort();
776 }
777 process_pending_signals(env);
778 }
779 }
780
781 #else
782
783 /* AArch64 main loop */
784 void cpu_loop(CPUARMState *env)
785 {
786 CPUState *cs = CPU(arm_env_get_cpu(env));
787 int trapnr, sig;
788 abi_long ret;
789 target_siginfo_t info;
790
791 for (;;) {
792 cpu_exec_start(cs);
793 trapnr = cpu_exec(cs);
794 cpu_exec_end(cs);
795 process_queued_cpu_work(cs);
796
797 switch (trapnr) {
798 case EXCP_SWI:
799 ret = do_syscall(env,
800 env->xregs[8],
801 env->xregs[0],
802 env->xregs[1],
803 env->xregs[2],
804 env->xregs[3],
805 env->xregs[4],
806 env->xregs[5],
807 0, 0);
808 if (ret == -TARGET_ERESTARTSYS) {
809 env->pc -= 4;
810 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
811 env->xregs[0] = ret;
812 }
813 break;
814 case EXCP_INTERRUPT:
815 /* just indicate that signals should be handled asap */
816 break;
817 case EXCP_UDEF:
818 info.si_signo = TARGET_SIGILL;
819 info.si_errno = 0;
820 info.si_code = TARGET_ILL_ILLOPN;
821 info._sifields._sigfault._addr = env->pc;
822 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
823 break;
824 case EXCP_PREFETCH_ABORT:
825 case EXCP_DATA_ABORT:
826 info.si_signo = TARGET_SIGSEGV;
827 info.si_errno = 0;
828 /* XXX: check env->error_code */
829 info.si_code = TARGET_SEGV_MAPERR;
830 info._sifields._sigfault._addr = env->exception.vaddress;
831 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
832 break;
833 case EXCP_DEBUG:
834 case EXCP_BKPT:
835 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
836 if (sig) {
837 info.si_signo = sig;
838 info.si_errno = 0;
839 info.si_code = TARGET_TRAP_BRKPT;
840 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
841 }
842 break;
843 case EXCP_SEMIHOST:
844 env->xregs[0] = do_arm_semihosting(env);
845 break;
846 case EXCP_YIELD:
847 /* nothing to do here for user-mode, just resume guest code */
848 break;
849 case EXCP_ATOMIC:
850 cpu_exec_step_atomic(cs);
851 break;
852 default:
853 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
854 abort();
855 }
856 process_pending_signals(env);
857 /* Exception return on AArch64 always clears the exclusive monitor,
858 * so any return to running guest code implies this.
859 */
860 env->exclusive_addr = -1;
861 }
862 }
863 #endif /* ndef TARGET_ABI32 */
864
865 #endif
866
867 #ifdef TARGET_UNICORE32
868
869 void cpu_loop(CPUUniCore32State *env)
870 {
871 CPUState *cs = CPU(uc32_env_get_cpu(env));
872 int trapnr;
873 unsigned int n, insn;
874 target_siginfo_t info;
875
876 for (;;) {
877 cpu_exec_start(cs);
878 trapnr = cpu_exec(cs);
879 cpu_exec_end(cs);
880 process_queued_cpu_work(cs);
881
882 switch (trapnr) {
883 case UC32_EXCP_PRIV:
884 {
885 /* system call */
886 get_user_u32(insn, env->regs[31] - 4);
887 n = insn & 0xffffff;
888
889 if (n >= UC32_SYSCALL_BASE) {
890 /* linux syscall */
891 n -= UC32_SYSCALL_BASE;
892 if (n == UC32_SYSCALL_NR_set_tls) {
893 cpu_set_tls(env, env->regs[0]);
894 env->regs[0] = 0;
895 } else {
896 abi_long ret = do_syscall(env,
897 n,
898 env->regs[0],
899 env->regs[1],
900 env->regs[2],
901 env->regs[3],
902 env->regs[4],
903 env->regs[5],
904 0, 0);
905 if (ret == -TARGET_ERESTARTSYS) {
906 env->regs[31] -= 4;
907 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
908 env->regs[0] = ret;
909 }
910 }
911 } else {
912 goto error;
913 }
914 }
915 break;
916 case UC32_EXCP_DTRAP:
917 case UC32_EXCP_ITRAP:
918 info.si_signo = TARGET_SIGSEGV;
919 info.si_errno = 0;
920 /* XXX: check env->error_code */
921 info.si_code = TARGET_SEGV_MAPERR;
922 info._sifields._sigfault._addr = env->cp0.c4_faultaddr;
923 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
924 break;
925 case EXCP_INTERRUPT:
926 /* just indicate that signals should be handled asap */
927 break;
928 case EXCP_DEBUG:
929 {
930 int sig;
931
932 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
933 if (sig) {
934 info.si_signo = sig;
935 info.si_errno = 0;
936 info.si_code = TARGET_TRAP_BRKPT;
937 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
938 }
939 }
940 break;
941 case EXCP_ATOMIC:
942 cpu_exec_step_atomic(cs);
943 break;
944 default:
945 goto error;
946 }
947 process_pending_signals(env);
948 }
949
950 error:
951 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
952 abort();
953 }
954 #endif
955
956 #ifdef TARGET_SPARC
957 #define SPARC64_STACK_BIAS 2047
958
959 //#define DEBUG_WIN
960
961 /* WARNING: dealing with register windows _is_ complicated. More info
962 can be found at http://www.sics.se/~psm/sparcstack.html */
963 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
964 {
965 index = (index + cwp * 16) % (16 * env->nwindows);
966 /* wrap handling : if cwp is on the last window, then we use the
967 registers 'after' the end */
968 if (index < 8 && env->cwp == env->nwindows - 1)
969 index += 16 * env->nwindows;
970 return index;
971 }
972
973 /* save the register window 'cwp1' */
974 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
975 {
976 unsigned int i;
977 abi_ulong sp_ptr;
978
979 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
980 #ifdef TARGET_SPARC64
981 if (sp_ptr & 3)
982 sp_ptr += SPARC64_STACK_BIAS;
983 #endif
984 #if defined(DEBUG_WIN)
985 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
986 sp_ptr, cwp1);
987 #endif
988 for(i = 0; i < 16; i++) {
989 /* FIXME - what to do if put_user() fails? */
990 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
991 sp_ptr += sizeof(abi_ulong);
992 }
993 }
994
995 static void save_window(CPUSPARCState *env)
996 {
997 #ifndef TARGET_SPARC64
998 unsigned int new_wim;
999 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
1000 ((1LL << env->nwindows) - 1);
1001 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1002 env->wim = new_wim;
1003 #else
1004 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1005 env->cansave++;
1006 env->canrestore--;
1007 #endif
1008 }
1009
1010 static void restore_window(CPUSPARCState *env)
1011 {
1012 #ifndef TARGET_SPARC64
1013 unsigned int new_wim;
1014 #endif
1015 unsigned int i, cwp1;
1016 abi_ulong sp_ptr;
1017
1018 #ifndef TARGET_SPARC64
1019 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
1020 ((1LL << env->nwindows) - 1);
1021 #endif
1022
1023 /* restore the invalid window */
1024 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1025 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
1026 #ifdef TARGET_SPARC64
1027 if (sp_ptr & 3)
1028 sp_ptr += SPARC64_STACK_BIAS;
1029 #endif
1030 #if defined(DEBUG_WIN)
1031 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
1032 sp_ptr, cwp1);
1033 #endif
1034 for(i = 0; i < 16; i++) {
1035 /* FIXME - what to do if get_user() fails? */
1036 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
1037 sp_ptr += sizeof(abi_ulong);
1038 }
1039 #ifdef TARGET_SPARC64
1040 env->canrestore++;
1041 if (env->cleanwin < env->nwindows - 1)
1042 env->cleanwin++;
1043 env->cansave--;
1044 #else
1045 env->wim = new_wim;
1046 #endif
1047 }
1048
1049 static void flush_windows(CPUSPARCState *env)
1050 {
1051 int offset, cwp1;
1052
1053 offset = 1;
1054 for(;;) {
1055 /* if restore would invoke restore_window(), then we can stop */
1056 cwp1 = cpu_cwp_inc(env, env->cwp + offset);
1057 #ifndef TARGET_SPARC64
1058 if (env->wim & (1 << cwp1))
1059 break;
1060 #else
1061 if (env->canrestore == 0)
1062 break;
1063 env->cansave++;
1064 env->canrestore--;
1065 #endif
1066 save_window_offset(env, cwp1);
1067 offset++;
1068 }
1069 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1070 #ifndef TARGET_SPARC64
1071 /* set wim so that restore will reload the registers */
1072 env->wim = 1 << cwp1;
1073 #endif
1074 #if defined(DEBUG_WIN)
1075 printf("flush_windows: nb=%d\n", offset - 1);
1076 #endif
1077 }
1078
1079 void cpu_loop (CPUSPARCState *env)
1080 {
1081 CPUState *cs = CPU(sparc_env_get_cpu(env));
1082 int trapnr;
1083 abi_long ret;
1084 target_siginfo_t info;
1085
1086 while (1) {
1087 cpu_exec_start(cs);
1088 trapnr = cpu_exec(cs);
1089 cpu_exec_end(cs);
1090 process_queued_cpu_work(cs);
1091
1092 /* Compute PSR before exposing state. */
1093 if (env->cc_op != CC_OP_FLAGS) {
1094 cpu_get_psr(env);
1095 }
1096
1097 switch (trapnr) {
1098 #ifndef TARGET_SPARC64
1099 case 0x88:
1100 case 0x90:
1101 #else
1102 case 0x110:
1103 case 0x16d:
1104 #endif
1105 ret = do_syscall (env, env->gregs[1],
1106 env->regwptr[0], env->regwptr[1],
1107 env->regwptr[2], env->regwptr[3],
1108 env->regwptr[4], env->regwptr[5],
1109 0, 0);
1110 if (ret == -TARGET_ERESTARTSYS || ret == -TARGET_QEMU_ESIGRETURN) {
1111 break;
1112 }
1113 if ((abi_ulong)ret >= (abi_ulong)(-515)) {
1114 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1115 env->xcc |= PSR_CARRY;
1116 #else
1117 env->psr |= PSR_CARRY;
1118 #endif
1119 ret = -ret;
1120 } else {
1121 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1122 env->xcc &= ~PSR_CARRY;
1123 #else
1124 env->psr &= ~PSR_CARRY;
1125 #endif
1126 }
1127 env->regwptr[0] = ret;
1128 /* next instruction */
1129 env->pc = env->npc;
1130 env->npc = env->npc + 4;
1131 break;
1132 case 0x83: /* flush windows */
1133 #ifdef TARGET_ABI32
1134 case 0x103:
1135 #endif
1136 flush_windows(env);
1137 /* next instruction */
1138 env->pc = env->npc;
1139 env->npc = env->npc + 4;
1140 break;
1141 #ifndef TARGET_SPARC64
1142 case TT_WIN_OVF: /* window overflow */
1143 save_window(env);
1144 break;
1145 case TT_WIN_UNF: /* window underflow */
1146 restore_window(env);
1147 break;
1148 case TT_TFAULT:
1149 case TT_DFAULT:
1150 {
1151 info.si_signo = TARGET_SIGSEGV;
1152 info.si_errno = 0;
1153 /* XXX: check env->error_code */
1154 info.si_code = TARGET_SEGV_MAPERR;
1155 info._sifields._sigfault._addr = env->mmuregs[4];
1156 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1157 }
1158 break;
1159 #else
1160 case TT_SPILL: /* window overflow */
1161 save_window(env);
1162 break;
1163 case TT_FILL: /* window underflow */
1164 restore_window(env);
1165 break;
1166 case TT_TFAULT:
1167 case TT_DFAULT:
1168 {
1169 info.si_signo = TARGET_SIGSEGV;
1170 info.si_errno = 0;
1171 /* XXX: check env->error_code */
1172 info.si_code = TARGET_SEGV_MAPERR;
1173 if (trapnr == TT_DFAULT)
1174 info._sifields._sigfault._addr = env->dmmu.mmuregs[4];
1175 else
1176 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc;
1177 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1178 }
1179 break;
1180 #ifndef TARGET_ABI32
1181 case 0x16e:
1182 flush_windows(env);
1183 sparc64_get_context(env);
1184 break;
1185 case 0x16f:
1186 flush_windows(env);
1187 sparc64_set_context(env);
1188 break;
1189 #endif
1190 #endif
1191 case EXCP_INTERRUPT:
1192 /* just indicate that signals should be handled asap */
1193 break;
1194 case TT_ILL_INSN:
1195 {
1196 info.si_signo = TARGET_SIGILL;
1197 info.si_errno = 0;
1198 info.si_code = TARGET_ILL_ILLOPC;
1199 info._sifields._sigfault._addr = env->pc;
1200 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1201 }
1202 break;
1203 case EXCP_DEBUG:
1204 {
1205 int sig;
1206
1207 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1208 if (sig)
1209 {
1210 info.si_signo = sig;
1211 info.si_errno = 0;
1212 info.si_code = TARGET_TRAP_BRKPT;
1213 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1214 }
1215 }
1216 break;
1217 case EXCP_ATOMIC:
1218 cpu_exec_step_atomic(cs);
1219 break;
1220 default:
1221 printf ("Unhandled trap: 0x%x\n", trapnr);
1222 cpu_dump_state(cs, stderr, fprintf, 0);
1223 exit(EXIT_FAILURE);
1224 }
1225 process_pending_signals (env);
1226 }
1227 }
1228
1229 #endif
1230
1231 #ifdef TARGET_PPC
1232 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env)
1233 {
1234 return cpu_get_host_ticks();
1235 }
1236
1237 uint64_t cpu_ppc_load_tbl(CPUPPCState *env)
1238 {
1239 return cpu_ppc_get_tb(env);
1240 }
1241
1242 uint32_t cpu_ppc_load_tbu(CPUPPCState *env)
1243 {
1244 return cpu_ppc_get_tb(env) >> 32;
1245 }
1246
1247 uint64_t cpu_ppc_load_atbl(CPUPPCState *env)
1248 {
1249 return cpu_ppc_get_tb(env);
1250 }
1251
1252 uint32_t cpu_ppc_load_atbu(CPUPPCState *env)
1253 {
1254 return cpu_ppc_get_tb(env) >> 32;
1255 }
1256
1257 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env)
1258 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1259
1260 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env)
1261 {
1262 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1263 }
1264
1265 /* XXX: to be fixed */
1266 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1267 {
1268 return -1;
1269 }
1270
1271 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1272 {
1273 return -1;
1274 }
1275
1276 static int do_store_exclusive(CPUPPCState *env)
1277 {
1278 target_ulong addr;
1279 target_ulong page_addr;
1280 target_ulong val, val2 __attribute__((unused)) = 0;
1281 int flags;
1282 int segv = 0;
1283
1284 addr = env->reserve_ea;
1285 page_addr = addr & TARGET_PAGE_MASK;
1286 start_exclusive();
1287 mmap_lock();
1288 flags = page_get_flags(page_addr);
1289 if ((flags & PAGE_READ) == 0) {
1290 segv = 1;
1291 } else {
1292 int reg = env->reserve_info & 0x1f;
1293 int size = env->reserve_info >> 5;
1294 int stored = 0;
1295
1296 if (addr == env->reserve_addr) {
1297 switch (size) {
1298 case 1: segv = get_user_u8(val, addr); break;
1299 case 2: segv = get_user_u16(val, addr); break;
1300 case 4: segv = get_user_u32(val, addr); break;
1301 #if defined(TARGET_PPC64)
1302 case 8: segv = get_user_u64(val, addr); break;
1303 case 16: {
1304 segv = get_user_u64(val, addr);
1305 if (!segv) {
1306 segv = get_user_u64(val2, addr + 8);
1307 }
1308 break;
1309 }
1310 #endif
1311 default: abort();
1312 }
1313 if (!segv && val == env->reserve_val) {
1314 val = env->gpr[reg];
1315 switch (size) {
1316 case 1: segv = put_user_u8(val, addr); break;
1317 case 2: segv = put_user_u16(val, addr); break;
1318 case 4: segv = put_user_u32(val, addr); break;
1319 #if defined(TARGET_PPC64)
1320 case 8: segv = put_user_u64(val, addr); break;
1321 case 16: {
1322 if (val2 == env->reserve_val2) {
1323 if (msr_le) {
1324 val2 = val;
1325 val = env->gpr[reg+1];
1326 } else {
1327 val2 = env->gpr[reg+1];
1328 }
1329 segv = put_user_u64(val, addr);
1330 if (!segv) {
1331 segv = put_user_u64(val2, addr + 8);
1332 }
1333 }
1334 break;
1335 }
1336 #endif
1337 default: abort();
1338 }
1339 if (!segv) {
1340 stored = 1;
1341 }
1342 }
1343 }
1344 env->crf[0] = (stored << 1) | xer_so;
1345 env->reserve_addr = (target_ulong)-1;
1346 }
1347 if (!segv) {
1348 env->nip += 4;
1349 }
1350 mmap_unlock();
1351 end_exclusive();
1352 return segv;
1353 }
1354
1355 void cpu_loop(CPUPPCState *env)
1356 {
1357 CPUState *cs = CPU(ppc_env_get_cpu(env));
1358 target_siginfo_t info;
1359 int trapnr;
1360 target_ulong ret;
1361
1362 for(;;) {
1363 cpu_exec_start(cs);
1364 trapnr = cpu_exec(cs);
1365 cpu_exec_end(cs);
1366 process_queued_cpu_work(cs);
1367
1368 switch(trapnr) {
1369 case POWERPC_EXCP_NONE:
1370 /* Just go on */
1371 break;
1372 case POWERPC_EXCP_CRITICAL: /* Critical input */
1373 cpu_abort(cs, "Critical interrupt while in user mode. "
1374 "Aborting\n");
1375 break;
1376 case POWERPC_EXCP_MCHECK: /* Machine check exception */
1377 cpu_abort(cs, "Machine check exception while in user mode. "
1378 "Aborting\n");
1379 break;
1380 case POWERPC_EXCP_DSI: /* Data storage exception */
1381 /* XXX: check this. Seems bugged */
1382 switch (env->error_code & 0xFF000000) {
1383 case 0x40000000:
1384 case 0x42000000:
1385 info.si_signo = TARGET_SIGSEGV;
1386 info.si_errno = 0;
1387 info.si_code = TARGET_SEGV_MAPERR;
1388 break;
1389 case 0x04000000:
1390 info.si_signo = TARGET_SIGILL;
1391 info.si_errno = 0;
1392 info.si_code = TARGET_ILL_ILLADR;
1393 break;
1394 case 0x08000000:
1395 info.si_signo = TARGET_SIGSEGV;
1396 info.si_errno = 0;
1397 info.si_code = TARGET_SEGV_ACCERR;
1398 break;
1399 default:
1400 /* Let's send a regular segfault... */
1401 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1402 env->error_code);
1403 info.si_signo = TARGET_SIGSEGV;
1404 info.si_errno = 0;
1405 info.si_code = TARGET_SEGV_MAPERR;
1406 break;
1407 }
1408 info._sifields._sigfault._addr = env->nip;
1409 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1410 break;
1411 case POWERPC_EXCP_ISI: /* Instruction storage exception */
1412 /* XXX: check this */
1413 switch (env->error_code & 0xFF000000) {
1414 case 0x40000000:
1415 info.si_signo = TARGET_SIGSEGV;
1416 info.si_errno = 0;
1417 info.si_code = TARGET_SEGV_MAPERR;
1418 break;
1419 case 0x10000000:
1420 case 0x08000000:
1421 info.si_signo = TARGET_SIGSEGV;
1422 info.si_errno = 0;
1423 info.si_code = TARGET_SEGV_ACCERR;
1424 break;
1425 default:
1426 /* Let's send a regular segfault... */
1427 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1428 env->error_code);
1429 info.si_signo = TARGET_SIGSEGV;
1430 info.si_errno = 0;
1431 info.si_code = TARGET_SEGV_MAPERR;
1432 break;
1433 }
1434 info._sifields._sigfault._addr = env->nip - 4;
1435 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1436 break;
1437 case POWERPC_EXCP_EXTERNAL: /* External input */
1438 cpu_abort(cs, "External interrupt while in user mode. "
1439 "Aborting\n");
1440 break;
1441 case POWERPC_EXCP_ALIGN: /* Alignment exception */
1442 /* XXX: check this */
1443 info.si_signo = TARGET_SIGBUS;
1444 info.si_errno = 0;
1445 info.si_code = TARGET_BUS_ADRALN;
1446 info._sifields._sigfault._addr = env->nip;
1447 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1448 break;
1449 case POWERPC_EXCP_PROGRAM: /* Program exception */
1450 case POWERPC_EXCP_HV_EMU: /* HV emulation */
1451 /* XXX: check this */
1452 switch (env->error_code & ~0xF) {
1453 case POWERPC_EXCP_FP:
1454 info.si_signo = TARGET_SIGFPE;
1455 info.si_errno = 0;
1456 switch (env->error_code & 0xF) {
1457 case POWERPC_EXCP_FP_OX:
1458 info.si_code = TARGET_FPE_FLTOVF;
1459 break;
1460 case POWERPC_EXCP_FP_UX:
1461 info.si_code = TARGET_FPE_FLTUND;
1462 break;
1463 case POWERPC_EXCP_FP_ZX:
1464 case POWERPC_EXCP_FP_VXZDZ:
1465 info.si_code = TARGET_FPE_FLTDIV;
1466 break;
1467 case POWERPC_EXCP_FP_XX:
1468 info.si_code = TARGET_FPE_FLTRES;
1469 break;
1470 case POWERPC_EXCP_FP_VXSOFT:
1471 info.si_code = TARGET_FPE_FLTINV;
1472 break;
1473 case POWERPC_EXCP_FP_VXSNAN:
1474 case POWERPC_EXCP_FP_VXISI:
1475 case POWERPC_EXCP_FP_VXIDI:
1476 case POWERPC_EXCP_FP_VXIMZ:
1477 case POWERPC_EXCP_FP_VXVC:
1478 case POWERPC_EXCP_FP_VXSQRT:
1479 case POWERPC_EXCP_FP_VXCVI:
1480 info.si_code = TARGET_FPE_FLTSUB;
1481 break;
1482 default:
1483 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n",
1484 env->error_code);
1485 break;
1486 }
1487 break;
1488 case POWERPC_EXCP_INVAL:
1489 info.si_signo = TARGET_SIGILL;
1490 info.si_errno = 0;
1491 switch (env->error_code & 0xF) {
1492 case POWERPC_EXCP_INVAL_INVAL:
1493 info.si_code = TARGET_ILL_ILLOPC;
1494 break;
1495 case POWERPC_EXCP_INVAL_LSWX:
1496 info.si_code = TARGET_ILL_ILLOPN;
1497 break;
1498 case POWERPC_EXCP_INVAL_SPR:
1499 info.si_code = TARGET_ILL_PRVREG;
1500 break;
1501 case POWERPC_EXCP_INVAL_FP:
1502 info.si_code = TARGET_ILL_COPROC;
1503 break;
1504 default:
1505 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n",
1506 env->error_code & 0xF);
1507 info.si_code = TARGET_ILL_ILLADR;
1508 break;
1509 }
1510 break;
1511 case POWERPC_EXCP_PRIV:
1512 info.si_signo = TARGET_SIGILL;
1513 info.si_errno = 0;
1514 switch (env->error_code & 0xF) {
1515 case POWERPC_EXCP_PRIV_OPC:
1516 info.si_code = TARGET_ILL_PRVOPC;
1517 break;
1518 case POWERPC_EXCP_PRIV_REG:
1519 info.si_code = TARGET_ILL_PRVREG;
1520 break;
1521 default:
1522 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n",
1523 env->error_code & 0xF);
1524 info.si_code = TARGET_ILL_PRVOPC;
1525 break;
1526 }
1527 break;
1528 case POWERPC_EXCP_TRAP:
1529 cpu_abort(cs, "Tried to call a TRAP\n");
1530 break;
1531 default:
1532 /* Should not happen ! */
1533 cpu_abort(cs, "Unknown program exception (%02x)\n",
1534 env->error_code);
1535 break;
1536 }
1537 info._sifields._sigfault._addr = env->nip;
1538 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1539 break;
1540 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */
1541 info.si_signo = TARGET_SIGILL;
1542 info.si_errno = 0;
1543 info.si_code = TARGET_ILL_COPROC;
1544 info._sifields._sigfault._addr = env->nip;
1545 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1546 break;
1547 case POWERPC_EXCP_SYSCALL: /* System call exception */
1548 cpu_abort(cs, "Syscall exception while in user mode. "
1549 "Aborting\n");
1550 break;
1551 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */
1552 info.si_signo = TARGET_SIGILL;
1553 info.si_errno = 0;
1554 info.si_code = TARGET_ILL_COPROC;
1555 info._sifields._sigfault._addr = env->nip;
1556 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1557 break;
1558 case POWERPC_EXCP_DECR: /* Decrementer exception */
1559 cpu_abort(cs, "Decrementer interrupt while in user mode. "
1560 "Aborting\n");
1561 break;
1562 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */
1563 cpu_abort(cs, "Fix interval timer interrupt while in user mode. "
1564 "Aborting\n");
1565 break;
1566 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */
1567 cpu_abort(cs, "Watchdog timer interrupt while in user mode. "
1568 "Aborting\n");
1569 break;
1570 case POWERPC_EXCP_DTLB: /* Data TLB error */
1571 cpu_abort(cs, "Data TLB exception while in user mode. "
1572 "Aborting\n");
1573 break;
1574 case POWERPC_EXCP_ITLB: /* Instruction TLB error */
1575 cpu_abort(cs, "Instruction TLB exception while in user mode. "
1576 "Aborting\n");
1577 break;
1578 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */
1579 info.si_signo = TARGET_SIGILL;
1580 info.si_errno = 0;
1581 info.si_code = TARGET_ILL_COPROC;
1582 info._sifields._sigfault._addr = env->nip;
1583 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1584 break;
1585 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */
1586 cpu_abort(cs, "Embedded floating-point data IRQ not handled\n");
1587 break;
1588 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */
1589 cpu_abort(cs, "Embedded floating-point round IRQ not handled\n");
1590 break;
1591 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */
1592 cpu_abort(cs, "Performance monitor exception not handled\n");
1593 break;
1594 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */
1595 cpu_abort(cs, "Doorbell interrupt while in user mode. "
1596 "Aborting\n");
1597 break;
1598 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */
1599 cpu_abort(cs, "Doorbell critical interrupt while in user mode. "
1600 "Aborting\n");
1601 break;
1602 case POWERPC_EXCP_RESET: /* System reset exception */
1603 cpu_abort(cs, "Reset interrupt while in user mode. "
1604 "Aborting\n");
1605 break;
1606 case POWERPC_EXCP_DSEG: /* Data segment exception */
1607 cpu_abort(cs, "Data segment exception while in user mode. "
1608 "Aborting\n");
1609 break;
1610 case POWERPC_EXCP_ISEG: /* Instruction segment exception */
1611 cpu_abort(cs, "Instruction segment exception "
1612 "while in user mode. Aborting\n");
1613 break;
1614 /* PowerPC 64 with hypervisor mode support */
1615 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */
1616 cpu_abort(cs, "Hypervisor decrementer interrupt "
1617 "while in user mode. Aborting\n");
1618 break;
1619 case POWERPC_EXCP_TRACE: /* Trace exception */
1620 /* Nothing to do:
1621 * we use this exception to emulate step-by-step execution mode.
1622 */
1623 break;
1624 /* PowerPC 64 with hypervisor mode support */
1625 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */
1626 cpu_abort(cs, "Hypervisor data storage exception "
1627 "while in user mode. Aborting\n");
1628 break;
1629 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */
1630 cpu_abort(cs, "Hypervisor instruction storage exception "
1631 "while in user mode. Aborting\n");
1632 break;
1633 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */
1634 cpu_abort(cs, "Hypervisor data segment exception "
1635 "while in user mode. Aborting\n");
1636 break;
1637 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */
1638 cpu_abort(cs, "Hypervisor instruction segment exception "
1639 "while in user mode. Aborting\n");
1640 break;
1641 case POWERPC_EXCP_VPU: /* Vector unavailable exception */
1642 info.si_signo = TARGET_SIGILL;
1643 info.si_errno = 0;
1644 info.si_code = TARGET_ILL_COPROC;
1645 info._sifields._sigfault._addr = env->nip;
1646 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1647 break;
1648 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */
1649 cpu_abort(cs, "Programmable interval timer interrupt "
1650 "while in user mode. Aborting\n");
1651 break;
1652 case POWERPC_EXCP_IO: /* IO error exception */
1653 cpu_abort(cs, "IO error exception while in user mode. "
1654 "Aborting\n");
1655 break;
1656 case POWERPC_EXCP_RUNM: /* Run mode exception */
1657 cpu_abort(cs, "Run mode exception while in user mode. "
1658 "Aborting\n");
1659 break;
1660 case POWERPC_EXCP_EMUL: /* Emulation trap exception */
1661 cpu_abort(cs, "Emulation trap exception not handled\n");
1662 break;
1663 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */
1664 cpu_abort(cs, "Instruction fetch TLB exception "
1665 "while in user-mode. Aborting");
1666 break;
1667 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */
1668 cpu_abort(cs, "Data load TLB exception while in user-mode. "
1669 "Aborting");
1670 break;
1671 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */
1672 cpu_abort(cs, "Data store TLB exception while in user-mode. "
1673 "Aborting");
1674 break;
1675 case POWERPC_EXCP_FPA: /* Floating-point assist exception */
1676 cpu_abort(cs, "Floating-point assist exception not handled\n");
1677 break;
1678 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */
1679 cpu_abort(cs, "Instruction address breakpoint exception "
1680 "not handled\n");
1681 break;
1682 case POWERPC_EXCP_SMI: /* System management interrupt */
1683 cpu_abort(cs, "System management interrupt while in user mode. "
1684 "Aborting\n");
1685 break;
1686 case POWERPC_EXCP_THERM: /* Thermal interrupt */
1687 cpu_abort(cs, "Thermal interrupt interrupt while in user mode. "
1688 "Aborting\n");
1689 break;
1690 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */
1691 cpu_abort(cs, "Performance monitor exception not handled\n");
1692 break;
1693 case POWERPC_EXCP_VPUA: /* Vector assist exception */
1694 cpu_abort(cs, "Vector assist exception not handled\n");
1695 break;
1696 case POWERPC_EXCP_SOFTP: /* Soft patch exception */
1697 cpu_abort(cs, "Soft patch exception not handled\n");
1698 break;
1699 case POWERPC_EXCP_MAINT: /* Maintenance exception */
1700 cpu_abort(cs, "Maintenance exception while in user mode. "
1701 "Aborting\n");
1702 break;
1703 case POWERPC_EXCP_STOP: /* stop translation */
1704 /* We did invalidate the instruction cache. Go on */
1705 break;
1706 case POWERPC_EXCP_BRANCH: /* branch instruction: */
1707 /* We just stopped because of a branch. Go on */
1708 break;
1709 case POWERPC_EXCP_SYSCALL_USER:
1710 /* system call in user-mode emulation */
1711 /* WARNING:
1712 * PPC ABI uses overflow flag in cr0 to signal an error
1713 * in syscalls.
1714 */
1715 env->crf[0] &= ~0x1;
1716 env->nip += 4;
1717 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4],
1718 env->gpr[5], env->gpr[6], env->gpr[7],
1719 env->gpr[8], 0, 0);
1720 if (ret == -TARGET_ERESTARTSYS) {
1721 env->nip -= 4;
1722 break;
1723 }
1724 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) {
1725 /* Returning from a successful sigreturn syscall.
1726 Avoid corrupting register state. */
1727 break;
1728 }
1729 if (ret > (target_ulong)(-515)) {
1730 env->crf[0] |= 0x1;
1731 ret = -ret;
1732 }
1733 env->gpr[3] = ret;
1734 break;
1735 case POWERPC_EXCP_STCX:
1736 if (do_store_exclusive(env)) {
1737 info.si_signo = TARGET_SIGSEGV;
1738 info.si_errno = 0;
1739 info.si_code = TARGET_SEGV_MAPERR;
1740 info._sifields._sigfault._addr = env->nip;
1741 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1742 }
1743 break;
1744 case EXCP_DEBUG:
1745 {
1746 int sig;
1747
1748 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1749 if (sig) {
1750 info.si_signo = sig;
1751 info.si_errno = 0;
1752 info.si_code = TARGET_TRAP_BRKPT;
1753 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1754 }
1755 }
1756 break;
1757 case EXCP_INTERRUPT:
1758 /* just indicate that signals should be handled asap */
1759 break;
1760 case EXCP_ATOMIC:
1761 cpu_exec_step_atomic(cs);
1762 break;
1763 default:
1764 cpu_abort(cs, "Unknown exception 0x%x. Aborting\n", trapnr);
1765 break;
1766 }
1767 process_pending_signals(env);
1768 }
1769 }
1770 #endif
1771
1772 #ifdef TARGET_MIPS
1773
1774 # ifdef TARGET_ABI_MIPSO32
1775 # define MIPS_SYS(name, args) args,
1776 static const uint8_t mips_syscall_args[] = {
1777 MIPS_SYS(sys_syscall , 8) /* 4000 */
1778 MIPS_SYS(sys_exit , 1)
1779 MIPS_SYS(sys_fork , 0)
1780 MIPS_SYS(sys_read , 3)
1781 MIPS_SYS(sys_write , 3)
1782 MIPS_SYS(sys_open , 3) /* 4005 */
1783 MIPS_SYS(sys_close , 1)
1784 MIPS_SYS(sys_waitpid , 3)
1785 MIPS_SYS(sys_creat , 2)
1786 MIPS_SYS(sys_link , 2)
1787 MIPS_SYS(sys_unlink , 1) /* 4010 */
1788 MIPS_SYS(sys_execve , 0)
1789 MIPS_SYS(sys_chdir , 1)
1790 MIPS_SYS(sys_time , 1)
1791 MIPS_SYS(sys_mknod , 3)
1792 MIPS_SYS(sys_chmod , 2) /* 4015 */
1793 MIPS_SYS(sys_lchown , 3)
1794 MIPS_SYS(sys_ni_syscall , 0)
1795 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */
1796 MIPS_SYS(sys_lseek , 3)
1797 MIPS_SYS(sys_getpid , 0) /* 4020 */
1798 MIPS_SYS(sys_mount , 5)
1799 MIPS_SYS(sys_umount , 1)
1800 MIPS_SYS(sys_setuid , 1)
1801 MIPS_SYS(sys_getuid , 0)
1802 MIPS_SYS(sys_stime , 1) /* 4025 */
1803 MIPS_SYS(sys_ptrace , 4)
1804 MIPS_SYS(sys_alarm , 1)
1805 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */
1806 MIPS_SYS(sys_pause , 0)
1807 MIPS_SYS(sys_utime , 2) /* 4030 */
1808 MIPS_SYS(sys_ni_syscall , 0)
1809 MIPS_SYS(sys_ni_syscall , 0)
1810 MIPS_SYS(sys_access , 2)
1811 MIPS_SYS(sys_nice , 1)
1812 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */
1813 MIPS_SYS(sys_sync , 0)
1814 MIPS_SYS(sys_kill , 2)
1815 MIPS_SYS(sys_rename , 2)
1816 MIPS_SYS(sys_mkdir , 2)
1817 MIPS_SYS(sys_rmdir , 1) /* 4040 */
1818 MIPS_SYS(sys_dup , 1)
1819 MIPS_SYS(sys_pipe , 0)
1820 MIPS_SYS(sys_times , 1)
1821 MIPS_SYS(sys_ni_syscall , 0)
1822 MIPS_SYS(sys_brk , 1) /* 4045 */
1823 MIPS_SYS(sys_setgid , 1)
1824 MIPS_SYS(sys_getgid , 0)
1825 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */
1826 MIPS_SYS(sys_geteuid , 0)
1827 MIPS_SYS(sys_getegid , 0) /* 4050 */
1828 MIPS_SYS(sys_acct , 0)
1829 MIPS_SYS(sys_umount2 , 2)
1830 MIPS_SYS(sys_ni_syscall , 0)
1831 MIPS_SYS(sys_ioctl , 3)
1832 MIPS_SYS(sys_fcntl , 3) /* 4055 */
1833 MIPS_SYS(sys_ni_syscall , 2)
1834 MIPS_SYS(sys_setpgid , 2)
1835 MIPS_SYS(sys_ni_syscall , 0)
1836 MIPS_SYS(sys_olduname , 1)
1837 MIPS_SYS(sys_umask , 1) /* 4060 */
1838 MIPS_SYS(sys_chroot , 1)
1839 MIPS_SYS(sys_ustat , 2)
1840 MIPS_SYS(sys_dup2 , 2)
1841 MIPS_SYS(sys_getppid , 0)
1842 MIPS_SYS(sys_getpgrp , 0) /* 4065 */
1843 MIPS_SYS(sys_setsid , 0)
1844 MIPS_SYS(sys_sigaction , 3)
1845 MIPS_SYS(sys_sgetmask , 0)
1846 MIPS_SYS(sys_ssetmask , 1)
1847 MIPS_SYS(sys_setreuid , 2) /* 4070 */
1848 MIPS_SYS(sys_setregid , 2)
1849 MIPS_SYS(sys_sigsuspend , 0)
1850 MIPS_SYS(sys_sigpending , 1)
1851 MIPS_SYS(sys_sethostname , 2)
1852 MIPS_SYS(sys_setrlimit , 2) /* 4075 */
1853 MIPS_SYS(sys_getrlimit , 2)
1854 MIPS_SYS(sys_getrusage , 2)
1855 MIPS_SYS(sys_gettimeofday, 2)
1856 MIPS_SYS(sys_settimeofday, 2)
1857 MIPS_SYS(sys_getgroups , 2) /* 4080 */
1858 MIPS_SYS(sys_setgroups , 2)
1859 MIPS_SYS(sys_ni_syscall , 0) /* old_select */
1860 MIPS_SYS(sys_symlink , 2)
1861 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */
1862 MIPS_SYS(sys_readlink , 3) /* 4085 */
1863 MIPS_SYS(sys_uselib , 1)
1864 MIPS_SYS(sys_swapon , 2)
1865 MIPS_SYS(sys_reboot , 3)
1866 MIPS_SYS(old_readdir , 3)
1867 MIPS_SYS(old_mmap , 6) /* 4090 */
1868 MIPS_SYS(sys_munmap , 2)
1869 MIPS_SYS(sys_truncate , 2)
1870 MIPS_SYS(sys_ftruncate , 2)
1871 MIPS_SYS(sys_fchmod , 2)
1872 MIPS_SYS(sys_fchown , 3) /* 4095 */
1873 MIPS_SYS(sys_getpriority , 2)
1874 MIPS_SYS(sys_setpriority , 3)
1875 MIPS_SYS(sys_ni_syscall , 0)
1876 MIPS_SYS(sys_statfs , 2)
1877 MIPS_SYS(sys_fstatfs , 2) /* 4100 */
1878 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */
1879 MIPS_SYS(sys_socketcall , 2)
1880 MIPS_SYS(sys_syslog , 3)
1881 MIPS_SYS(sys_setitimer , 3)
1882 MIPS_SYS(sys_getitimer , 2) /* 4105 */
1883 MIPS_SYS(sys_newstat , 2)
1884 MIPS_SYS(sys_newlstat , 2)
1885 MIPS_SYS(sys_newfstat , 2)
1886 MIPS_SYS(sys_uname , 1)
1887 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */
1888 MIPS_SYS(sys_vhangup , 0)
1889 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */
1890 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */
1891 MIPS_SYS(sys_wait4 , 4)
1892 MIPS_SYS(sys_swapoff , 1) /* 4115 */
1893 MIPS_SYS(sys_sysinfo , 1)
1894 MIPS_SYS(sys_ipc , 6)
1895 MIPS_SYS(sys_fsync , 1)
1896 MIPS_SYS(sys_sigreturn , 0)
1897 MIPS_SYS(sys_clone , 6) /* 4120 */
1898 MIPS_SYS(sys_setdomainname, 2)
1899 MIPS_SYS(sys_newuname , 1)
1900 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */
1901 MIPS_SYS(sys_adjtimex , 1)
1902 MIPS_SYS(sys_mprotect , 3) /* 4125 */
1903 MIPS_SYS(sys_sigprocmask , 3)
1904 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */
1905 MIPS_SYS(sys_init_module , 5)
1906 MIPS_SYS(sys_delete_module, 1)
1907 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */
1908 MIPS_SYS(sys_quotactl , 0)
1909 MIPS_SYS(sys_getpgid , 1)
1910 MIPS_SYS(sys_fchdir , 1)
1911 MIPS_SYS(sys_bdflush , 2)
1912 MIPS_SYS(sys_sysfs , 3) /* 4135 */
1913 MIPS_SYS(sys_personality , 1)
1914 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */
1915 MIPS_SYS(sys_setfsuid , 1)
1916 MIPS_SYS(sys_setfsgid , 1)
1917 MIPS_SYS(sys_llseek , 5) /* 4140 */
1918 MIPS_SYS(sys_getdents , 3)
1919 MIPS_SYS(sys_select , 5)
1920 MIPS_SYS(sys_flock , 2)
1921 MIPS_SYS(sys_msync , 3)
1922 MIPS_SYS(sys_readv , 3) /* 4145 */
1923 MIPS_SYS(sys_writev , 3)
1924 MIPS_SYS(sys_cacheflush , 3)
1925 MIPS_SYS(sys_cachectl , 3)
1926 MIPS_SYS(sys_sysmips , 4)
1927 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */
1928 MIPS_SYS(sys_getsid , 1)
1929 MIPS_SYS(sys_fdatasync , 0)
1930 MIPS_SYS(sys_sysctl , 1)
1931 MIPS_SYS(sys_mlock , 2)
1932 MIPS_SYS(sys_munlock , 2) /* 4155 */
1933 MIPS_SYS(sys_mlockall , 1)
1934 MIPS_SYS(sys_munlockall , 0)
1935 MIPS_SYS(sys_sched_setparam, 2)
1936 MIPS_SYS(sys_sched_getparam, 2)
1937 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */
1938 MIPS_SYS(sys_sched_getscheduler, 1)
1939 MIPS_SYS(sys_sched_yield , 0)
1940 MIPS_SYS(sys_sched_get_priority_max, 1)
1941 MIPS_SYS(sys_sched_get_priority_min, 1)
1942 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */
1943 MIPS_SYS(sys_nanosleep, 2)
1944 MIPS_SYS(sys_mremap , 5)
1945 MIPS_SYS(sys_accept , 3)
1946 MIPS_SYS(sys_bind , 3)
1947 MIPS_SYS(sys_connect , 3) /* 4170 */
1948 MIPS_SYS(sys_getpeername , 3)
1949 MIPS_SYS(sys_getsockname , 3)
1950 MIPS_SYS(sys_getsockopt , 5)
1951 MIPS_SYS(sys_listen , 2)
1952 MIPS_SYS(sys_recv , 4) /* 4175 */
1953 MIPS_SYS(sys_recvfrom , 6)
1954 MIPS_SYS(sys_recvmsg , 3)
1955 MIPS_SYS(sys_send , 4)
1956 MIPS_SYS(sys_sendmsg , 3)
1957 MIPS_SYS(sys_sendto , 6) /* 4180 */
1958 MIPS_SYS(sys_setsockopt , 5)
1959 MIPS_SYS(sys_shutdown , 2)
1960 MIPS_SYS(sys_socket , 3)
1961 MIPS_SYS(sys_socketpair , 4)
1962 MIPS_SYS(sys_setresuid , 3) /* 4185 */
1963 MIPS_SYS(sys_getresuid , 3)
1964 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */
1965 MIPS_SYS(sys_poll , 3)
1966 MIPS_SYS(sys_nfsservctl , 3)
1967 MIPS_SYS(sys_setresgid , 3) /* 4190 */
1968 MIPS_SYS(sys_getresgid , 3)
1969 MIPS_SYS(sys_prctl , 5)
1970 MIPS_SYS(sys_rt_sigreturn, 0)
1971 MIPS_SYS(sys_rt_sigaction, 4)
1972 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */
1973 MIPS_SYS(sys_rt_sigpending, 2)
1974 MIPS_SYS(sys_rt_sigtimedwait, 4)
1975 MIPS_SYS(sys_rt_sigqueueinfo, 3)
1976 MIPS_SYS(sys_rt_sigsuspend, 0)
1977 MIPS_SYS(sys_pread64 , 6) /* 4200 */
1978 MIPS_SYS(sys_pwrite64 , 6)
1979 MIPS_SYS(sys_chown , 3)
1980 MIPS_SYS(sys_getcwd , 2)
1981 MIPS_SYS(sys_capget , 2)
1982 MIPS_SYS(sys_capset , 2) /* 4205 */
1983 MIPS_SYS(sys_sigaltstack , 2)
1984 MIPS_SYS(sys_sendfile , 4)
1985 MIPS_SYS(sys_ni_syscall , 0)
1986 MIPS_SYS(sys_ni_syscall , 0)
1987 MIPS_SYS(sys_mmap2 , 6) /* 4210 */
1988 MIPS_SYS(sys_truncate64 , 4)
1989 MIPS_SYS(sys_ftruncate64 , 4)
1990 MIPS_SYS(sys_stat64 , 2)
1991 MIPS_SYS(sys_lstat64 , 2)
1992 MIPS_SYS(sys_fstat64 , 2) /* 4215 */
1993 MIPS_SYS(sys_pivot_root , 2)
1994 MIPS_SYS(sys_mincore , 3)
1995 MIPS_SYS(sys_madvise , 3)
1996 MIPS_SYS(sys_getdents64 , 3)
1997 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */
1998 MIPS_SYS(sys_ni_syscall , 0)
1999 MIPS_SYS(sys_gettid , 0)
2000 MIPS_SYS(sys_readahead , 5)
2001 MIPS_SYS(sys_setxattr , 5)
2002 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */
2003 MIPS_SYS(sys_fsetxattr , 5)
2004 MIPS_SYS(sys_getxattr , 4)
2005 MIPS_SYS(sys_lgetxattr , 4)
2006 MIPS_SYS(sys_fgetxattr , 4)
2007 MIPS_SYS(sys_listxattr , 3) /* 4230 */
2008 MIPS_SYS(sys_llistxattr , 3)
2009 MIPS_SYS(sys_flistxattr , 3)
2010 MIPS_SYS(sys_removexattr , 2)
2011 MIPS_SYS(sys_lremovexattr, 2)
2012 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */
2013 MIPS_SYS(sys_tkill , 2)
2014 MIPS_SYS(sys_sendfile64 , 5)
2015 MIPS_SYS(sys_futex , 6)
2016 MIPS_SYS(sys_sched_setaffinity, 3)
2017 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */
2018 MIPS_SYS(sys_io_setup , 2)
2019 MIPS_SYS(sys_io_destroy , 1)
2020 MIPS_SYS(sys_io_getevents, 5)
2021 MIPS_SYS(sys_io_submit , 3)
2022 MIPS_SYS(sys_io_cancel , 3) /* 4245 */
2023 MIPS_SYS(sys_exit_group , 1)
2024 MIPS_SYS(sys_lookup_dcookie, 3)
2025 MIPS_SYS(sys_epoll_create, 1)
2026 MIPS_SYS(sys_epoll_ctl , 4)
2027 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */
2028 MIPS_SYS(sys_remap_file_pages, 5)
2029 MIPS_SYS(sys_set_tid_address, 1)
2030 MIPS_SYS(sys_restart_syscall, 0)
2031 MIPS_SYS(sys_fadvise64_64, 7)
2032 MIPS_SYS(sys_statfs64 , 3) /* 4255 */
2033 MIPS_SYS(sys_fstatfs64 , 2)
2034 MIPS_SYS(sys_timer_create, 3)
2035 MIPS_SYS(sys_timer_settime, 4)
2036 MIPS_SYS(sys_timer_gettime, 2)
2037 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */
2038 MIPS_SYS(sys_timer_delete, 1)
2039 MIPS_SYS(sys_clock_settime, 2)
2040 MIPS_SYS(sys_clock_gettime, 2)
2041 MIPS_SYS(sys_clock_getres, 2)
2042 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */
2043 MIPS_SYS(sys_tgkill , 3)
2044 MIPS_SYS(sys_utimes , 2)
2045 MIPS_SYS(sys_mbind , 4)
2046 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */
2047 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */
2048 MIPS_SYS(sys_mq_open , 4)
2049 MIPS_SYS(sys_mq_unlink , 1)
2050 MIPS_SYS(sys_mq_timedsend, 5)
2051 MIPS_SYS(sys_mq_timedreceive, 5)
2052 MIPS_SYS(sys_mq_notify , 2) /* 4275 */
2053 MIPS_SYS(sys_mq_getsetattr, 3)
2054 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */
2055 MIPS_SYS(sys_waitid , 4)
2056 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */
2057 MIPS_SYS(sys_add_key , 5)
2058 MIPS_SYS(sys_request_key, 4)
2059 MIPS_SYS(sys_keyctl , 5)
2060 MIPS_SYS(sys_set_thread_area, 1)
2061 MIPS_SYS(sys_inotify_init, 0)
2062 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */
2063 MIPS_SYS(sys_inotify_rm_watch, 2)
2064 MIPS_SYS(sys_migrate_pages, 4)
2065 MIPS_SYS(sys_openat, 4)
2066 MIPS_SYS(sys_mkdirat, 3)
2067 MIPS_SYS(sys_mknodat, 4) /* 4290 */
2068 MIPS_SYS(sys_fchownat, 5)
2069 MIPS_SYS(sys_futimesat, 3)
2070 MIPS_SYS(sys_fstatat64, 4)
2071 MIPS_SYS(sys_unlinkat, 3)
2072 MIPS_SYS(sys_renameat, 4) /* 4295 */
2073 MIPS_SYS(sys_linkat, 5)
2074 MIPS_SYS(sys_symlinkat, 3)
2075 MIPS_SYS(sys_readlinkat, 4)
2076 MIPS_SYS(sys_fchmodat, 3)
2077 MIPS_SYS(sys_faccessat, 3) /* 4300 */
2078 MIPS_SYS(sys_pselect6, 6)
2079 MIPS_SYS(sys_ppoll, 5)
2080 MIPS_SYS(sys_unshare, 1)
2081 MIPS_SYS(sys_splice, 6)
2082 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */
2083 MIPS_SYS(sys_tee, 4)
2084 MIPS_SYS(sys_vmsplice, 4)
2085 MIPS_SYS(sys_move_pages, 6)
2086 MIPS_SYS(sys_set_robust_list, 2)
2087 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */
2088 MIPS_SYS(sys_kexec_load, 4)
2089 MIPS_SYS(sys_getcpu, 3)
2090 MIPS_SYS(sys_epoll_pwait, 6)
2091 MIPS_SYS(sys_ioprio_set, 3)
2092 MIPS_SYS(sys_ioprio_get, 2)
2093 MIPS_SYS(sys_utimensat, 4)
2094 MIPS_SYS(sys_signalfd, 3)
2095 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */
2096 MIPS_SYS(sys_eventfd, 1)
2097 MIPS_SYS(sys_fallocate, 6) /* 4320 */
2098 MIPS_SYS(sys_timerfd_create, 2)
2099 MIPS_SYS(sys_timerfd_gettime, 2)
2100 MIPS_SYS(sys_timerfd_settime, 4)
2101 MIPS_SYS(sys_signalfd4, 4)
2102 MIPS_SYS(sys_eventfd2, 2) /* 4325 */
2103 MIPS_SYS(sys_epoll_create1, 1)
2104 MIPS_SYS(sys_dup3, 3)
2105 MIPS_SYS(sys_pipe2, 2)
2106 MIPS_SYS(sys_inotify_init1, 1)
2107 MIPS_SYS(sys_preadv, 5) /* 4330 */
2108 MIPS_SYS(sys_pwritev, 5)
2109 MIPS_SYS(sys_rt_tgsigqueueinfo, 4)
2110 MIPS_SYS(sys_perf_event_open, 5)
2111 MIPS_SYS(sys_accept4, 4)
2112 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */
2113 MIPS_SYS(sys_fanotify_init, 2)
2114 MIPS_SYS(sys_fanotify_mark, 6)
2115 MIPS_SYS(sys_prlimit64, 4)
2116 MIPS_SYS(sys_name_to_handle_at, 5)
2117 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */
2118 MIPS_SYS(sys_clock_adjtime, 2)
2119 MIPS_SYS(sys_syncfs, 1)
2120 MIPS_SYS(sys_sendmmsg, 4)
2121 MIPS_SYS(sys_setns, 2)
2122 MIPS_SYS(sys_process_vm_readv, 6) /* 345 */
2123 MIPS_SYS(sys_process_vm_writev, 6)
2124 MIPS_SYS(sys_kcmp, 5)
2125 MIPS_SYS(sys_finit_module, 3)
2126 MIPS_SYS(sys_sched_setattr, 2)
2127 MIPS_SYS(sys_sched_getattr, 3) /* 350 */
2128 MIPS_SYS(sys_renameat2, 5)
2129 MIPS_SYS(sys_seccomp, 3)
2130 MIPS_SYS(sys_getrandom, 3)
2131 MIPS_SYS(sys_memfd_create, 2)
2132 MIPS_SYS(sys_bpf, 3) /* 355 */
2133 MIPS_SYS(sys_execveat, 5)
2134 MIPS_SYS(sys_userfaultfd, 1)
2135 MIPS_SYS(sys_membarrier, 2)
2136 MIPS_SYS(sys_mlock2, 3)
2137 MIPS_SYS(sys_copy_file_range, 6) /* 360 */
2138 MIPS_SYS(sys_preadv2, 6)
2139 MIPS_SYS(sys_pwritev2, 6)
2140 };
2141 # undef MIPS_SYS
2142 # endif /* O32 */
2143
2144 static int do_store_exclusive(CPUMIPSState *env)
2145 {
2146 target_ulong addr;
2147 target_ulong page_addr;
2148 target_ulong val;
2149 int flags;
2150 int segv = 0;
2151 int reg;
2152 int d;
2153
2154 addr = env->lladdr;
2155 page_addr = addr & TARGET_PAGE_MASK;
2156 start_exclusive();
2157 mmap_lock();
2158 flags = page_get_flags(page_addr);
2159 if ((flags & PAGE_READ) == 0) {
2160 segv = 1;
2161 } else {
2162 reg = env->llreg & 0x1f;
2163 d = (env->llreg & 0x20) != 0;
2164 if (d) {
2165 segv = get_user_s64(val, addr);
2166 } else {
2167 segv = get_user_s32(val, addr);
2168 }
2169 if (!segv) {
2170 if (val != env->llval) {
2171 env->active_tc.gpr[reg] = 0;
2172 } else {
2173 if (d) {
2174 segv = put_user_u64(env->llnewval, addr);
2175 } else {
2176 segv = put_user_u32(env->llnewval, addr);
2177 }
2178 if (!segv) {
2179 env->active_tc.gpr[reg] = 1;
2180 }
2181 }
2182 }
2183 }
2184 env->lladdr = -1;
2185 if (!segv) {
2186 env->active_tc.PC += 4;
2187 }
2188 mmap_unlock();
2189 end_exclusive();
2190 return segv;
2191 }
2192
2193 /* Break codes */
2194 enum {
2195 BRK_OVERFLOW = 6,
2196 BRK_DIVZERO = 7
2197 };
2198
2199 static int do_break(CPUMIPSState *env, target_siginfo_t *info,
2200 unsigned int code)
2201 {
2202 int ret = -1;
2203
2204 switch (code) {
2205 case BRK_OVERFLOW:
2206 case BRK_DIVZERO:
2207 info->si_signo = TARGET_SIGFPE;
2208 info->si_errno = 0;
2209 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV;
2210 queue_signal(env, info->si_signo, QEMU_SI_FAULT, &*info);
2211 ret = 0;
2212 break;
2213 default:
2214 info->si_signo = TARGET_SIGTRAP;
2215 info->si_errno = 0;
2216 queue_signal(env, info->si_signo, QEMU_SI_FAULT, &*info);
2217 ret = 0;
2218 break;
2219 }
2220
2221 return ret;
2222 }
2223
2224 void cpu_loop(CPUMIPSState *env)
2225 {
2226 CPUState *cs = CPU(mips_env_get_cpu(env));
2227 target_siginfo_t info;
2228 int trapnr;
2229 abi_long ret;
2230 # ifdef TARGET_ABI_MIPSO32
2231 unsigned int syscall_num;
2232 # endif
2233
2234 for(;;) {
2235 cpu_exec_start(cs);
2236 trapnr = cpu_exec(cs);
2237 cpu_exec_end(cs);
2238 process_queued_cpu_work(cs);
2239
2240 switch(trapnr) {
2241 case EXCP_SYSCALL:
2242 env->active_tc.PC += 4;
2243 # ifdef TARGET_ABI_MIPSO32
2244 syscall_num = env->active_tc.gpr[2] - 4000;
2245 if (syscall_num >= sizeof(mips_syscall_args)) {
2246 ret = -TARGET_ENOSYS;
2247 } else {
2248 int nb_args;
2249 abi_ulong sp_reg;
2250 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0;
2251
2252 nb_args = mips_syscall_args[syscall_num];
2253 sp_reg = env->active_tc.gpr[29];
2254 switch (nb_args) {
2255 /* these arguments are taken from the stack */
2256 case 8:
2257 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) {
2258 goto done_syscall;
2259 }
2260 case 7:
2261 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) {
2262 goto done_syscall;
2263 }
2264 case 6:
2265 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) {
2266 goto done_syscall;
2267 }
2268 case 5:
2269 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) {
2270 goto done_syscall;
2271 }
2272 default:
2273 break;
2274 }
2275 ret = do_syscall(env, env->active_tc.gpr[2],
2276 env->active_tc.gpr[4],
2277 env->active_tc.gpr[5],
2278 env->active_tc.gpr[6],
2279 env->active_tc.gpr[7],
2280 arg5, arg6, arg7, arg8);
2281 }
2282 done_syscall:
2283 # else
2284 ret = do_syscall(env, env->active_tc.gpr[2],
2285 env->active_tc.gpr[4], env->active_tc.gpr[5],
2286 env->active_tc.gpr[6], env->active_tc.gpr[7],
2287 env->active_tc.gpr[8], env->active_tc.gpr[9],
2288 env->active_tc.gpr[10], env->active_tc.gpr[11]);
2289 # endif /* O32 */
2290 if (ret == -TARGET_ERESTARTSYS) {
2291 env->active_tc.PC -= 4;
2292 break;
2293 }
2294 if (ret == -TARGET_QEMU_ESIGRETURN) {
2295 /* Returning from a successful sigreturn syscall.
2296 Avoid clobbering register state. */
2297 break;
2298 }
2299 if ((abi_ulong)ret >= (abi_ulong)-1133) {
2300 env->active_tc.gpr[7] = 1; /* error flag */
2301 ret = -ret;
2302 } else {
2303 env->active_tc.gpr[7] = 0; /* error flag */
2304 }
2305 env->active_tc.gpr[2] = ret;
2306 break;
2307 case EXCP_TLBL:
2308 case EXCP_TLBS:
2309 case EXCP_AdEL:
2310 case EXCP_AdES:
2311 info.si_signo = TARGET_SIGSEGV;
2312 info.si_errno = 0;
2313 /* XXX: check env->error_code */
2314 info.si_code = TARGET_SEGV_MAPERR;
2315 info._sifields._sigfault._addr = env->CP0_BadVAddr;
2316 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2317 break;
2318 case EXCP_CpU:
2319 case EXCP_RI:
2320 info.si_signo = TARGET_SIGILL;
2321 info.si_errno = 0;
2322 info.si_code = 0;
2323 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2324 break;
2325 case EXCP_INTERRUPT:
2326 /* just indicate that signals should be handled asap */
2327 break;
2328 case EXCP_DEBUG:
2329 {
2330 int sig;
2331
2332 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2333 if (sig)
2334 {
2335 info.si_signo = sig;
2336 info.si_errno = 0;
2337 info.si_code = TARGET_TRAP_BRKPT;
2338 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2339 }
2340 }
2341 break;
2342 case EXCP_SC:
2343 if (do_store_exclusive(env)) {
2344 info.si_signo = TARGET_SIGSEGV;
2345 info.si_errno = 0;
2346 info.si_code = TARGET_SEGV_MAPERR;
2347 info._sifields._sigfault._addr = env->active_tc.PC;
2348 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2349 }
2350 break;
2351 case EXCP_DSPDIS:
2352 info.si_signo = TARGET_SIGILL;
2353 info.si_errno = 0;
2354 info.si_code = TARGET_ILL_ILLOPC;
2355 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2356 break;
2357 /* The code below was inspired by the MIPS Linux kernel trap
2358 * handling code in arch/mips/kernel/traps.c.
2359 */
2360 case EXCP_BREAK:
2361 {
2362 abi_ulong trap_instr;
2363 unsigned int code;
2364
2365 if (env->hflags & MIPS_HFLAG_M16) {
2366 if (env->insn_flags & ASE_MICROMIPS) {
2367 /* microMIPS mode */
2368 ret = get_user_u16(trap_instr, env->active_tc.PC);
2369 if (ret != 0) {
2370 goto error;
2371 }
2372
2373 if ((trap_instr >> 10) == 0x11) {
2374 /* 16-bit instruction */
2375 code = trap_instr & 0xf;
2376 } else {
2377 /* 32-bit instruction */
2378 abi_ulong instr_lo;
2379
2380 ret = get_user_u16(instr_lo,
2381 env->active_tc.PC + 2);
2382 if (ret != 0) {
2383 goto error;
2384 }
2385 trap_instr = (trap_instr << 16) | instr_lo;
2386 code = ((trap_instr >> 6) & ((1 << 20) - 1));
2387 /* Unfortunately, microMIPS also suffers from
2388 the old assembler bug... */
2389 if (code >= (1 << 10)) {
2390 code >>= 10;
2391 }
2392 }
2393 } else {
2394 /* MIPS16e mode */
2395 ret = get_user_u16(trap_instr, env->active_tc.PC);
2396 if (ret != 0) {
2397 goto error;
2398 }
2399 code = (trap_instr >> 6) & 0x3f;
2400 }
2401 } else {
2402 ret = get_user_u32(trap_instr, env->active_tc.PC);
2403 if (ret != 0) {
2404 goto error;
2405 }
2406
2407 /* As described in the original Linux kernel code, the
2408 * below checks on 'code' are to work around an old
2409 * assembly bug.
2410 */
2411 code = ((trap_instr >> 6) & ((1 << 20) - 1));
2412 if (code >= (1 << 10)) {
2413 code >>= 10;
2414 }
2415 }
2416
2417 if (do_break(env, &info, code) != 0) {
2418 goto error;
2419 }
2420 }
2421 break;
2422 case EXCP_TRAP:
2423 {
2424 abi_ulong trap_instr;
2425 unsigned int code = 0;
2426
2427 if (env->hflags & MIPS_HFLAG_M16) {
2428 /* microMIPS mode */
2429 abi_ulong instr[2];
2430
2431 ret = get_user_u16(instr[0], env->active_tc.PC) ||
2432 get_user_u16(instr[1], env->active_tc.PC + 2);
2433
2434 trap_instr = (instr[0] << 16) | instr[1];
2435 } else {
2436 ret = get_user_u32(trap_instr, env->active_tc.PC);
2437 }
2438
2439 if (ret != 0) {
2440 goto error;
2441 }
2442
2443 /* The immediate versions don't provide a code. */
2444 if (!(trap_instr & 0xFC000000)) {
2445 if (env->hflags & MIPS_HFLAG_M16) {
2446 /* microMIPS mode */
2447 code = ((trap_instr >> 12) & ((1 << 4) - 1));
2448 } else {
2449 code = ((trap_instr >> 6) & ((1 << 10) - 1));
2450 }
2451 }
2452
2453 if (do_break(env, &info, code) != 0) {
2454 goto error;
2455 }
2456 }
2457 break;
2458 case EXCP_ATOMIC:
2459 cpu_exec_step_atomic(cs);
2460 break;
2461 default:
2462 error:
2463 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
2464 abort();
2465 }
2466 process_pending_signals(env);
2467 }
2468 }
2469 #endif
2470
2471 #ifdef TARGET_NIOS2
2472
2473 void cpu_loop(CPUNios2State *env)
2474 {
2475 CPUState *cs = ENV_GET_CPU(env);
2476 Nios2CPU *cpu = NIOS2_CPU(cs);
2477 target_siginfo_t info;
2478 int trapnr, gdbsig, ret;
2479
2480 for (;;) {
2481 cpu_exec_start(cs);
2482 trapnr = cpu_exec(cs);
2483 cpu_exec_end(cs);
2484 gdbsig = 0;
2485
2486 switch (trapnr) {
2487 case EXCP_INTERRUPT:
2488 /* just indicate that signals should be handled asap */
2489 break;
2490 case EXCP_TRAP:
2491 if (env->regs[R_AT] == 0) {
2492 abi_long ret;
2493 qemu_log_mask(CPU_LOG_INT, "\nSyscall\n");
2494
2495 ret = do_syscall(env, env->regs[2],
2496 env->regs[4], env->regs[5], env->regs[6],
2497 env->regs[7], env->regs[8], env->regs[9],
2498 0, 0);
2499
2500 if (env->regs[2] == 0) { /* FIXME: syscall 0 workaround */
2501 ret = 0;
2502 }
2503
2504 env->regs[2] = abs(ret);
2505 /* Return value is 0..4096 */
2506 env->regs[7] = (ret > 0xfffffffffffff000ULL);
2507 env->regs[CR_ESTATUS] = env->regs[CR_STATUS];
2508 env->regs[CR_STATUS] &= ~0x3;
2509 env->regs[R_EA] = env->regs[R_PC] + 4;
2510 env->regs[R_PC] += 4;
2511 break;
2512 } else {
2513 qemu_log_mask(CPU_LOG_INT, "\nTrap\n");
2514
2515 env->regs[CR_ESTATUS] = env->regs[CR_STATUS];
2516 env->regs[CR_STATUS] &= ~0x3;
2517 env->regs[R_EA] = env->regs[R_PC] + 4;
2518 env->regs[R_PC] = cpu->exception_addr;
2519
2520 gdbsig = TARGET_SIGTRAP;
2521 break;
2522 }
2523 case 0xaa:
2524 switch (env->regs[R_PC]) {
2525 /*case 0x1000:*/ /* TODO:__kuser_helper_version */
2526 case 0x1004: /* __kuser_cmpxchg */
2527 start_exclusive();
2528 if (env->regs[4] & 0x3) {
2529 goto kuser_fail;
2530 }
2531 ret = get_user_u32(env->regs[2], env->regs[4]);
2532 if (ret) {
2533 end_exclusive();
2534 goto kuser_fail;
2535 }
2536 env->regs[2] -= env->regs[5];
2537 if (env->regs[2] == 0) {
2538 put_user_u32(env->regs[6], env->regs[4]);
2539 }
2540 end_exclusive();
2541 env->regs[R_PC] = env->regs[R_RA];
2542 break;
2543 /*case 0x1040:*/ /* TODO:__kuser_sigtramp */
2544 default:
2545 ;
2546 kuser_fail:
2547 info.si_signo = TARGET_SIGSEGV;
2548 info.si_errno = 0;
2549 /* TODO: check env->error_code */
2550 info.si_code = TARGET_SEGV_MAPERR;
2551 info._sifields._sigfault._addr = env->regs[R_PC];
2552 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2553 }
2554 break;
2555 default:
2556 EXCP_DUMP(env, "\nqemu: unhandled CPU exception %#x - aborting\n",
2557 trapnr);
2558 gdbsig = TARGET_SIGILL;
2559 break;
2560 }
2561 if (gdbsig) {
2562 gdb_handlesig(cs, gdbsig);
2563 if (gdbsig != TARGET_SIGTRAP) {
2564 exit(EXIT_FAILURE);
2565 }
2566 }
2567
2568 process_pending_signals(env);
2569 }
2570 }
2571
2572 #endif /* TARGET_NIOS2 */
2573
2574 #ifdef TARGET_OPENRISC
2575
2576 void cpu_loop(CPUOpenRISCState *env)
2577 {
2578 CPUState *cs = CPU(openrisc_env_get_cpu(env));
2579 int trapnr;
2580 abi_long ret;
2581 target_siginfo_t info;
2582
2583 for (;;) {
2584 cpu_exec_start(cs);
2585 trapnr = cpu_exec(cs);
2586 cpu_exec_end(cs);
2587 process_queued_cpu_work(cs);
2588
2589 switch (trapnr) {
2590 case EXCP_SYSCALL:
2591 env->pc += 4; /* 0xc00; */
2592 ret = do_syscall(env,
2593 cpu_get_gpr(env, 11), /* return value */
2594 cpu_get_gpr(env, 3), /* r3 - r7 are params */
2595 cpu_get_gpr(env, 4),
2596 cpu_get_gpr(env, 5),
2597 cpu_get_gpr(env, 6),
2598 cpu_get_gpr(env, 7),
2599 cpu_get_gpr(env, 8), 0, 0);
2600 if (ret == -TARGET_ERESTARTSYS) {
2601 env->pc -= 4;
2602 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
2603 cpu_set_gpr(env, 11, ret);
2604 }
2605 break;
2606 case EXCP_DPF:
2607 case EXCP_IPF:
2608 case EXCP_RANGE:
2609 info.si_signo = TARGET_SIGSEGV;
2610 info.si_errno = 0;
2611 info.si_code = TARGET_SEGV_MAPERR;
2612 info._sifields._sigfault._addr = env->pc;
2613 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2614 break;
2615 case EXCP_ALIGN:
2616 info.si_signo = TARGET_SIGBUS;
2617 info.si_errno = 0;
2618 info.si_code = TARGET_BUS_ADRALN;
2619 info._sifields._sigfault._addr = env->pc;
2620 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2621 break;
2622 case EXCP_ILLEGAL:
2623 info.si_signo = TARGET_SIGILL;
2624 info.si_errno = 0;
2625 info.si_code = TARGET_ILL_ILLOPC;
2626 info._sifields._sigfault._addr = env->pc;
2627 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2628 break;
2629 case EXCP_FPE:
2630 info.si_signo = TARGET_SIGFPE;
2631 info.si_errno = 0;
2632 info.si_code = 0;
2633 info._sifields._sigfault._addr = env->pc;
2634 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2635 break;
2636 case EXCP_INTERRUPT:
2637 /* We processed the pending cpu work above. */
2638 break;
2639 case EXCP_DEBUG:
2640 trapnr = gdb_handlesig(cs, TARGET_SIGTRAP);
2641 if (trapnr) {
2642 info.si_signo = trapnr;
2643 info.si_errno = 0;
2644 info.si_code = TARGET_TRAP_BRKPT;
2645 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2646 }
2647 break;
2648 case EXCP_ATOMIC:
2649 cpu_exec_step_atomic(cs);
2650 break;
2651 default:
2652 g_assert_not_reached();
2653 }
2654 process_pending_signals(env);
2655 }
2656 }
2657
2658 #endif /* TARGET_OPENRISC */
2659
2660 #ifdef TARGET_SH4
2661 void cpu_loop(CPUSH4State *env)
2662 {
2663 CPUState *cs = CPU(sh_env_get_cpu(env));
2664 int trapnr, ret;
2665 target_siginfo_t info;
2666
2667 while (1) {
2668 cpu_exec_start(cs);
2669 trapnr = cpu_exec(cs);
2670 cpu_exec_end(cs);
2671 process_queued_cpu_work(cs);
2672
2673 switch (trapnr) {
2674 case 0x160:
2675 env->pc += 2;
2676 ret = do_syscall(env,
2677 env->gregs[3],
2678 env->gregs[4],
2679 env->gregs[5],
2680 env->gregs[6],
2681 env->gregs[7],
2682 env->gregs[0],
2683 env->gregs[1],
2684 0, 0);
2685 if (ret == -TARGET_ERESTARTSYS) {
2686 env->pc -= 2;
2687 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
2688 env->gregs[0] = ret;
2689 }
2690 break;
2691 case EXCP_INTERRUPT:
2692 /* just indicate that signals should be handled asap */
2693 break;
2694 case EXCP_DEBUG:
2695 {
2696 int sig;
2697
2698 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2699 if (sig)
2700 {
2701 info.si_signo = sig;
2702 info.si_errno = 0;
2703 info.si_code = TARGET_TRAP_BRKPT;
2704 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2705 }
2706 }
2707 break;
2708 case 0xa0:
2709 case 0xc0:
2710 info.si_signo = TARGET_SIGSEGV;
2711 info.si_errno = 0;
2712 info.si_code = TARGET_SEGV_MAPERR;
2713 info._sifields._sigfault._addr = env->tea;
2714 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2715 break;
2716
2717 case EXCP_ATOMIC:
2718 cpu_exec_step_atomic(cs);
2719 break;
2720 default:
2721 printf ("Unhandled trap: 0x%x\n", trapnr);
2722 cpu_dump_state(cs, stderr, fprintf, 0);
2723 exit(EXIT_FAILURE);
2724 }
2725 process_pending_signals (env);
2726 }
2727 }
2728 #endif
2729
2730 #ifdef TARGET_CRIS
2731 void cpu_loop(CPUCRISState *env)
2732 {
2733 CPUState *cs = CPU(cris_env_get_cpu(env));
2734 int trapnr, ret;
2735 target_siginfo_t info;
2736
2737 while (1) {
2738 cpu_exec_start(cs);
2739 trapnr = cpu_exec(cs);
2740 cpu_exec_end(cs);
2741 process_queued_cpu_work(cs);
2742
2743 switch (trapnr) {
2744 case 0xaa:
2745 {
2746 info.si_signo = TARGET_SIGSEGV;
2747 info.si_errno = 0;
2748 /* XXX: check env->error_code */
2749 info.si_code = TARGET_SEGV_MAPERR;
2750 info._sifields._sigfault._addr = env->pregs[PR_EDA];
2751 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2752 }
2753 break;
2754 case EXCP_INTERRUPT:
2755 /* just indicate that signals should be handled asap */
2756 break;
2757 case EXCP_BREAK:
2758 ret = do_syscall(env,
2759 env->regs[9],
2760 env->regs[10],
2761 env->regs[11],
2762 env->regs[12],
2763 env->regs[13],
2764 env->pregs[7],
2765 env->pregs[11],
2766 0, 0);
2767 if (ret == -TARGET_ERESTARTSYS) {
2768 env->pc -= 2;
2769 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
2770 env->regs[10] = ret;
2771 }
2772 break;
2773 case EXCP_DEBUG:
2774 {
2775 int sig;
2776
2777 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2778 if (sig)
2779 {
2780 info.si_signo = sig;
2781 info.si_errno = 0;
2782 info.si_code = TARGET_TRAP_BRKPT;
2783 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2784 }
2785 }
2786 break;
2787 case EXCP_ATOMIC:
2788 cpu_exec_step_atomic(cs);
2789 break;
2790 default:
2791 printf ("Unhandled trap: 0x%x\n", trapnr);
2792 cpu_dump_state(cs, stderr, fprintf, 0);
2793 exit(EXIT_FAILURE);
2794 }
2795 process_pending_signals (env);
2796 }
2797 }
2798 #endif
2799
2800 #ifdef TARGET_MICROBLAZE
2801 void cpu_loop(CPUMBState *env)
2802 {
2803 CPUState *cs = CPU(mb_env_get_cpu(env));
2804 int trapnr, ret;
2805 target_siginfo_t info;
2806
2807 while (1) {
2808 cpu_exec_start(cs);
2809 trapnr = cpu_exec(cs);
2810 cpu_exec_end(cs);
2811 process_queued_cpu_work(cs);
2812
2813 switch (trapnr) {
2814 case 0xaa:
2815 {
2816 info.si_signo = TARGET_SIGSEGV;
2817 info.si_errno = 0;
2818 /* XXX: check env->error_code */
2819 info.si_code = TARGET_SEGV_MAPERR;
2820 info._sifields._sigfault._addr = 0;
2821 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2822 }
2823 break;
2824 case EXCP_INTERRUPT:
2825 /* just indicate that signals should be handled asap */
2826 break;
2827 case EXCP_BREAK:
2828 /* Return address is 4 bytes after the call. */
2829 env->regs[14] += 4;
2830 env->sregs[SR_PC] = env->regs[14];
2831 ret = do_syscall(env,
2832 env->regs[12],
2833 env->regs[5],
2834 env->regs[6],
2835 env->regs[7],
2836 env->regs[8],
2837 env->regs[9],
2838 env->regs[10],
2839 0, 0);
2840 if (ret == -TARGET_ERESTARTSYS) {
2841 /* Wind back to before the syscall. */
2842 env->sregs[SR_PC] -= 4;
2843 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
2844 env->regs[3] = ret;
2845 }
2846 /* All syscall exits result in guest r14 being equal to the
2847 * PC we return to, because the kernel syscall exit "rtbd" does
2848 * this. (This is true even for sigreturn(); note that r14 is
2849 * not a userspace-usable register, as the kernel may clobber it
2850 * at any point.)
2851 */
2852 env->regs[14] = env->sregs[SR_PC];
2853 break;
2854 case EXCP_HW_EXCP:
2855 env->regs[17] = env->sregs[SR_PC] + 4;
2856 if (env->iflags & D_FLAG) {
2857 env->sregs[SR_ESR] |= 1 << 12;
2858 env->sregs[SR_PC] -= 4;
2859 /* FIXME: if branch was immed, replay the imm as well. */
2860 }
2861
2862 env->iflags &= ~(IMM_FLAG | D_FLAG);
2863
2864 switch (env->sregs[SR_ESR] & 31) {
2865 case ESR_EC_DIVZERO:
2866 info.si_signo = TARGET_SIGFPE;
2867 info.si_errno = 0;
2868 info.si_code = TARGET_FPE_FLTDIV;
2869 info._sifields._sigfault._addr = 0;
2870 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2871 break;
2872 case ESR_EC_FPU:
2873 info.si_signo = TARGET_SIGFPE;
2874 info.si_errno = 0;
2875 if (env->sregs[SR_FSR] & FSR_IO) {
2876 info.si_code = TARGET_FPE_FLTINV;
2877 }
2878 if (env->sregs[SR_FSR] & FSR_DZ) {
2879 info.si_code = TARGET_FPE_FLTDIV;
2880 }
2881 info._sifields._sigfault._addr = 0;
2882 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2883 break;
2884 default:
2885 printf ("Unhandled hw-exception: 0x%x\n",
2886 env->sregs[SR_ESR] & ESR_EC_MASK);
2887 cpu_dump_state(cs, stderr, fprintf, 0);
2888 exit(EXIT_FAILURE);
2889 break;
2890 }
2891 break;
2892 case EXCP_DEBUG:
2893 {
2894 int sig;
2895
2896 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2897 if (sig)
2898 {
2899 info.si_signo = sig;
2900 info.si_errno = 0;
2901 info.si_code = TARGET_TRAP_BRKPT;
2902 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2903 }
2904 }
2905 break;
2906 case EXCP_ATOMIC:
2907 cpu_exec_step_atomic(cs);
2908 break;
2909 default:
2910 printf ("Unhandled trap: 0x%x\n", trapnr);
2911 cpu_dump_state(cs, stderr, fprintf, 0);
2912 exit(EXIT_FAILURE);
2913 }
2914 process_pending_signals (env);
2915 }
2916 }
2917 #endif
2918
2919 #ifdef TARGET_M68K
2920
2921 void cpu_loop(CPUM68KState *env)
2922 {
2923 CPUState *cs = CPU(m68k_env_get_cpu(env));
2924 int trapnr;
2925 unsigned int n;
2926 target_siginfo_t info;
2927 TaskState *ts = cs->opaque;
2928
2929 for(;;) {
2930 cpu_exec_start(cs);
2931 trapnr = cpu_exec(cs);
2932 cpu_exec_end(cs);
2933 process_queued_cpu_work(cs);
2934
2935 switch(trapnr) {
2936 case EXCP_ILLEGAL:
2937 {
2938 if (ts->sim_syscalls) {
2939 uint16_t nr;
2940 get_user_u16(nr, env->pc + 2);
2941 env->pc += 4;
2942 do_m68k_simcall(env, nr);
2943 } else {
2944 goto do_sigill;
2945 }
2946 }
2947 break;
2948 case EXCP_HALT_INSN:
2949 /* Semihosing syscall. */
2950 env->pc += 4;
2951 do_m68k_semihosting(env, env->dregs[0]);
2952 break;
2953 case EXCP_LINEA:
2954 case EXCP_LINEF:
2955 case EXCP_UNSUPPORTED:
2956 do_sigill:
2957 info.si_signo = TARGET_SIGILL;
2958 info.si_errno = 0;
2959 info.si_code = TARGET_ILL_ILLOPN;
2960 info._sifields._sigfault._addr = env->pc;
2961 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2962 break;
2963 case EXCP_DIV0:
2964 info.si_signo = TARGET_SIGFPE;
2965 info.si_errno = 0;
2966 info.si_code = TARGET_FPE_INTDIV;
2967 info._sifields._sigfault._addr = env->pc;
2968 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2969 break;
2970 case EXCP_TRAP0:
2971 {
2972 abi_long ret;
2973 ts->sim_syscalls = 0;
2974 n = env->dregs[0];
2975 env->pc += 2;
2976 ret = do_syscall(env,
2977 n,
2978 env->dregs[1],
2979 env->dregs[2],
2980 env->dregs[3],
2981 env->dregs[4],
2982 env->dregs[5],
2983 env->aregs[0],
2984 0, 0);
2985 if (ret == -TARGET_ERESTARTSYS) {
2986 env->pc -= 2;
2987 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
2988 env->dregs[0] = ret;
2989 }
2990 }
2991 break;
2992 case EXCP_INTERRUPT:
2993 /* just indicate that signals should be handled asap */
2994 break;
2995 case EXCP_ACCESS:
2996 {
2997 info.si_signo = TARGET_SIGSEGV;
2998 info.si_errno = 0;
2999 /* XXX: check env->error_code */
3000 info.si_code = TARGET_SEGV_MAPERR;
3001 info._sifields._sigfault._addr = env->mmu.ar;
3002 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3003 }
3004 break;
3005 case EXCP_DEBUG:
3006 {
3007 int sig;
3008
3009 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
3010 if (sig)
3011 {
3012 info.si_signo = sig;
3013 info.si_errno = 0;
3014 info.si_code = TARGET_TRAP_BRKPT;
3015 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3016 }
3017 }
3018 break;
3019 case EXCP_ATOMIC:
3020 cpu_exec_step_atomic(cs);
3021 break;
3022 default:
3023 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
3024 abort();
3025 }
3026 process_pending_signals(env);
3027 }
3028 }
3029 #endif /* TARGET_M68K */
3030
3031 #ifdef TARGET_ALPHA
3032 void cpu_loop(CPUAlphaState *env)
3033 {
3034 CPUState *cs = CPU(alpha_env_get_cpu(env));
3035 int trapnr;
3036 target_siginfo_t info;
3037 abi_long sysret;
3038
3039 while (1) {
3040 bool arch_interrupt = true;
3041
3042 cpu_exec_start(cs);
3043 trapnr = cpu_exec(cs);
3044 cpu_exec_end(cs);
3045 process_queued_cpu_work(cs);
3046
3047 switch (trapnr) {
3048 case EXCP_RESET:
3049 fprintf(stderr, "Reset requested. Exit\n");
3050 exit(EXIT_FAILURE);
3051 break;
3052 case EXCP_MCHK:
3053 fprintf(stderr, "Machine check exception. Exit\n");
3054 exit(EXIT_FAILURE);
3055 break;
3056 case EXCP_SMP_INTERRUPT:
3057 case EXCP_CLK_INTERRUPT:
3058 case EXCP_DEV_INTERRUPT:
3059 fprintf(stderr, "External interrupt. Exit\n");
3060 exit(EXIT_FAILURE);
3061 break;
3062 case EXCP_MMFAULT:
3063 info.si_signo = TARGET_SIGSEGV;
3064 info.si_errno = 0;
3065 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID
3066 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR);
3067 info._sifields._sigfault._addr = env->trap_arg0;
3068 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3069 break;
3070 case EXCP_UNALIGN:
3071 info.si_signo = TARGET_SIGBUS;
3072 info.si_errno = 0;
3073 info.si_code = TARGET_BUS_ADRALN;
3074 info._sifields._sigfault._addr = env->trap_arg0;
3075 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3076 break;
3077 case EXCP_OPCDEC:
3078 do_sigill:
3079 info.si_signo = TARGET_SIGILL;
3080 info.si_errno = 0;
3081 info.si_code = TARGET_ILL_ILLOPC;
3082 info._sifields._sigfault._addr = env->pc;
3083 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3084 break;
3085 case EXCP_ARITH:
3086 info.si_signo = TARGET_SIGFPE;
3087 info.si_errno = 0;
3088 info.si_code = TARGET_FPE_FLTINV;
3089 info._sifields._sigfault._addr = env->pc;
3090 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3091 break;
3092 case EXCP_FEN:
3093 /* No-op. Linux simply re-enables the FPU. */
3094 break;
3095 case EXCP_CALL_PAL:
3096 switch (env->error_code) {
3097 case 0x80:
3098 /* BPT */
3099 info.si_signo = TARGET_SIGTRAP;
3100 info.si_errno = 0;
3101 info.si_code = TARGET_TRAP_BRKPT;
3102 info._sifields._sigfault._addr = env->pc;
3103 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3104 break;
3105 case 0x81:
3106 /* BUGCHK */
3107 info.si_signo = TARGET_SIGTRAP;
3108 info.si_errno = 0;
3109 info.si_code = 0;
3110 info._sifields._sigfault._addr = env->pc;
3111 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3112 break;
3113 case 0x83:
3114 /* CALLSYS */
3115 trapnr = env->ir[IR_V0];
3116 sysret = do_syscall(env, trapnr,
3117 env->ir[IR_A0], env->ir[IR_A1],
3118 env->ir[IR_A2], env->ir[IR_A3],
3119 env->ir[IR_A4], env->ir[IR_A5],
3120 0, 0);
3121 if (sysret == -TARGET_ERESTARTSYS) {
3122 env->pc -= 4;
3123 break;
3124 }
3125 if (sysret == -TARGET_QEMU_ESIGRETURN) {
3126 break;
3127 }
3128 /* Syscall writes 0 to V0 to bypass error check, similar
3129 to how this is handled internal to Linux kernel.
3130 (Ab)use trapnr temporarily as boolean indicating error. */
3131 trapnr = (env->ir[IR_V0] != 0 && sysret < 0);
3132 env->ir[IR_V0] = (trapnr ? -sysret : sysret);
3133 env->ir[IR_A3] = trapnr;
3134 break;
3135 case 0x86:
3136 /* IMB */
3137 /* ??? We can probably elide the code using page_unprotect
3138 that is checking for self-modifying code. Instead we
3139 could simply call tb_flush here. Until we work out the
3140 changes required to turn off the extra write protection,
3141 this can be a no-op. */
3142 break;
3143 case 0x9E:
3144 /* RDUNIQUE */
3145 /* Handled in the translator for usermode. */
3146 abort();
3147 case 0x9F:
3148 /* WRUNIQUE */
3149 /* Handled in the translator for usermode. */
3150 abort();
3151 case 0xAA:
3152 /* GENTRAP */
3153 info.si_signo = TARGET_SIGFPE;
3154 switch (env->ir[IR_A0]) {
3155 case TARGET_GEN_INTOVF:
3156 info.si_code = TARGET_FPE_INTOVF;
3157 break;
3158 case TARGET_GEN_INTDIV:
3159 info.si_code = TARGET_FPE_INTDIV;
3160 break;
3161 case TARGET_GEN_FLTOVF:
3162 info.si_code = TARGET_FPE_FLTOVF;
3163 break;
3164 case TARGET_GEN_FLTUND:
3165 info.si_code = TARGET_FPE_FLTUND;
3166 break;
3167 case TARGET_GEN_FLTINV:
3168 info.si_code = TARGET_FPE_FLTINV;
3169 break;
3170 case TARGET_GEN_FLTINE:
3171 info.si_code = TARGET_FPE_FLTRES;
3172 break;
3173 case TARGET_GEN_ROPRAND:
3174 info.si_code = 0;
3175 break;
3176 default:
3177 info.si_signo = TARGET_SIGTRAP;
3178 info.si_code = 0;
3179 break;
3180 }
3181 info.si_errno = 0;
3182 info._sifields._sigfault._addr = env->pc;
3183 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3184 break;
3185 default:
3186 goto do_sigill;
3187 }
3188 break;
3189 case EXCP_DEBUG:
3190 info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP);
3191 if (info.si_signo) {
3192 info.si_errno = 0;
3193 info.si_code = TARGET_TRAP_BRKPT;
3194 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3195 } else {
3196 arch_interrupt = false;
3197 }
3198 break;
3199 case EXCP_INTERRUPT:
3200 /* Just indicate that signals should be handled asap. */
3201 break;
3202 case EXCP_ATOMIC:
3203 cpu_exec_step_atomic(cs);
3204 arch_interrupt = false;
3205 break;
3206 default:
3207 printf ("Unhandled trap: 0x%x\n", trapnr);
3208 cpu_dump_state(cs, stderr, fprintf, 0);
3209 exit(EXIT_FAILURE);
3210 }
3211 process_pending_signals (env);
3212
3213 /* Most of the traps imply a transition through PALcode, which
3214 implies an REI instruction has been executed. Which means
3215 that RX and LOCK_ADDR should be cleared. But there are a
3216 few exceptions for traps internal to QEMU. */
3217 if (arch_interrupt) {
3218 env->flags &= ~ENV_FLAG_RX_FLAG;
3219 env->lock_addr = -1;
3220 }
3221 }
3222 }
3223 #endif /* TARGET_ALPHA */
3224
3225 #ifdef TARGET_S390X
3226 void cpu_loop(CPUS390XState *env)
3227 {
3228 CPUState *cs = CPU(s390_env_get_cpu(env));
3229 int trapnr, n, sig;
3230 target_siginfo_t info;
3231 target_ulong addr;
3232 abi_long ret;
3233
3234 while (1) {
3235 cpu_exec_start(cs);
3236 trapnr = cpu_exec(cs);
3237 cpu_exec_end(cs);
3238 process_queued_cpu_work(cs);
3239
3240 switch (trapnr) {
3241 case EXCP_INTERRUPT:
3242 /* Just indicate that signals should be handled asap. */
3243 break;
3244
3245 case EXCP_SVC:
3246 n = env->int_svc_code;
3247 if (!n) {
3248 /* syscalls > 255 */
3249 n = env->regs[1];
3250 }
3251 env->psw.addr += env->int_svc_ilen;
3252 ret = do_syscall(env, n, env->regs[2], env->regs[3],
3253 env->regs[4], env->regs[5],
3254 env->regs[6], env->regs[7], 0, 0);
3255 if (ret == -TARGET_ERESTARTSYS) {
3256 env->psw.addr -= env->int_svc_ilen;
3257 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
3258 env->regs[2] = ret;
3259 }
3260 break;
3261
3262 case EXCP_DEBUG:
3263 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
3264 if (sig) {
3265 n = TARGET_TRAP_BRKPT;
3266 goto do_signal_pc;
3267 }
3268 break;
3269 case EXCP_PGM:
3270 n = env->int_pgm_code;
3271 switch (n) {
3272 case PGM_OPERATION:
3273 case PGM_PRIVILEGED:
3274 sig = TARGET_SIGILL;
3275 n = TARGET_ILL_ILLOPC;
3276 goto do_signal_pc;
3277 case PGM_PROTECTION:
3278 case PGM_ADDRESSING:
3279 sig = TARGET_SIGSEGV;
3280 /* XXX: check env->error_code */
3281 n = TARGET_SEGV_MAPERR;
3282 addr = env->__excp_addr;
3283 goto do_signal;
3284 case PGM_EXECUTE:
3285 case PGM_SPECIFICATION:
3286 case PGM_SPECIAL_OP:
3287 case PGM_OPERAND:
3288 do_sigill_opn:
3289 sig = TARGET_SIGILL;
3290 n = TARGET_ILL_ILLOPN;
3291 goto do_signal_pc;
3292
3293 case PGM_FIXPT_OVERFLOW:
3294 sig = TARGET_SIGFPE;
3295 n = TARGET_FPE_INTOVF;
3296 goto do_signal_pc;
3297 case PGM_FIXPT_DIVIDE:
3298 sig = TARGET_SIGFPE;
3299 n = TARGET_FPE_INTDIV;
3300 goto do_signal_pc;
3301
3302 case PGM_DATA:
3303 n = (env->fpc >> 8) & 0xff;
3304 if (n == 0xff) {
3305 /* compare-and-trap */
3306 goto do_sigill_opn;
3307 } else {
3308 /* An IEEE exception, simulated or otherwise. */
3309 if (n & 0x80) {
3310 n = TARGET_FPE_FLTINV;
3311 } else if (n & 0x40) {
3312 n = TARGET_FPE_FLTDIV;
3313 } else if (n & 0x20) {
3314 n = TARGET_FPE_FLTOVF;
3315 } else if (n & 0x10) {
3316 n = TARGET_FPE_FLTUND;
3317 } else if (n & 0x08) {
3318 n = TARGET_FPE_FLTRES;
3319 } else {
3320 /* ??? Quantum exception; BFP, DFP error. */
3321 goto do_sigill_opn;
3322 }
3323 sig = TARGET_SIGFPE;
3324 goto do_signal_pc;
3325 }
3326
3327 default:
3328 fprintf(stderr, "Unhandled program exception: %#x\n", n);
3329 cpu_dump_state(cs, stderr, fprintf, 0);
3330 exit(EXIT_FAILURE);
3331 }
3332 break;
3333
3334 do_signal_pc:
3335 addr = env->psw.addr;
3336 do_signal:
3337 info.si_signo = sig;
3338 info.si_errno = 0;
3339 info.si_code = n;
3340 info._sifields._sigfault._addr = addr;
3341 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3342 break;
3343
3344 case EXCP_ATOMIC:
3345 cpu_exec_step_atomic(cs);
3346 break;
3347 default:
3348 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr);
3349 cpu_dump_state(cs, stderr, fprintf, 0);
3350 exit(EXIT_FAILURE);
3351 }
3352 process_pending_signals (env);
3353 }
3354 }
3355
3356 #endif /* TARGET_S390X */
3357
3358 #ifdef TARGET_TILEGX
3359
3360 static void gen_sigill_reg(CPUTLGState *env)
3361 {
3362 target_siginfo_t info;
3363
3364 info.si_signo = TARGET_SIGILL;
3365 info.si_errno = 0;
3366 info.si_code = TARGET_ILL_PRVREG;
3367 info._sifields._sigfault._addr = env->pc;
3368 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3369 }
3370
3371 static void do_signal(CPUTLGState *env, int signo, int sigcode)
3372 {
3373 target_siginfo_t info;
3374
3375 info.si_signo = signo;
3376 info.si_errno = 0;
3377 info._sifields._sigfault._addr = env->pc;
3378
3379 if (signo == TARGET_SIGSEGV) {
3380 /* The passed in sigcode is a dummy; check for a page mapping
3381 and pass either MAPERR or ACCERR. */
3382 target_ulong addr = env->excaddr;
3383 info._sifields._sigfault._addr = addr;
3384 if (page_check_range(addr, 1, PAGE_VALID) < 0) {
3385 sigcode = TARGET_SEGV_MAPERR;
3386 } else {
3387 sigcode = TARGET_SEGV_ACCERR;
3388 }
3389 }
3390 info.si_code = sigcode;
3391
3392 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3393 }
3394
3395 static void gen_sigsegv_maperr(CPUTLGState *env, target_ulong addr)
3396 {
3397 env->excaddr = addr;
3398 do_signal(env, TARGET_SIGSEGV, 0);
3399 }
3400
3401 static void set_regval(CPUTLGState *env, uint8_t reg, uint64_t val)
3402 {
3403 if (unlikely(reg >= TILEGX_R_COUNT)) {
3404 switch (reg) {
3405 case TILEGX_R_SN:
3406 case TILEGX_R_ZERO:
3407 return;
3408 case TILEGX_R_IDN0:
3409 case TILEGX_R_IDN1:
3410 case TILEGX_R_UDN0:
3411 case TILEGX_R_UDN1:
3412 case TILEGX_R_UDN2:
3413 case TILEGX_R_UDN3:
3414 gen_sigill_reg(env);
3415 return;
3416 default:
3417 g_assert_not_reached();
3418 }
3419 }
3420 env->regs[reg] = val;
3421 }
3422
3423 /*
3424 * Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in
3425 * memory at the address held in the first source register. If the values are
3426 * not equal, then no memory operation is performed. If the values are equal,
3427 * the 8-byte quantity from the second source register is written into memory
3428 * at the address held in the first source register. In either case, the result
3429 * of the instruction is the value read from memory. The compare and write to
3430 * memory are atomic and thus can be used for synchronization purposes. This
3431 * instruction only operates for addresses aligned to a 8-byte boundary.
3432 * Unaligned memory access causes an Unaligned Data Reference interrupt.
3433 *
3434 * Functional Description (64-bit)
3435 * uint64_t memVal = memoryReadDoubleWord (rf[SrcA]);
3436 * rf[Dest] = memVal;
3437 * if (memVal == SPR[CmpValueSPR])
3438 * memoryWriteDoubleWord (rf[SrcA], rf[SrcB]);
3439 *
3440 * Functional Description (32-bit)
3441 * uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA]));
3442 * rf[Dest] = memVal;
3443 * if (memVal == signExtend32 (SPR[CmpValueSPR]))
3444 * memoryWriteWord (rf[SrcA], rf[SrcB]);
3445 *
3446 *
3447 * This function also processes exch and exch4 which need not process SPR.
3448 */
3449 static void do_exch(CPUTLGState *env, bool quad, bool cmp)
3450 {
3451 target_ulong addr;
3452 target_long val, sprval;
3453
3454 start_exclusive();
3455
3456 addr = env->atomic_srca;
3457 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
3458 goto sigsegv_maperr;
3459 }
3460
3461 if (cmp) {
3462 if (quad) {
3463 sprval = env->spregs[TILEGX_SPR_CMPEXCH];
3464 } else {
3465 sprval = sextract64(env->spregs[TILEGX_SPR_CMPEXCH], 0, 32);
3466 }
3467 }
3468
3469 if (!cmp || val == sprval) {
3470 target_long valb = env->atomic_srcb;
3471 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) {
3472 goto sigsegv_maperr;
3473 }
3474 }
3475
3476 set_regval(env, env->atomic_dstr, val);
3477 end_exclusive();
3478 return;
3479
3480 sigsegv_maperr:
3481 end_exclusive();
3482 gen_sigsegv_maperr(env, addr);
3483 }
3484
3485 static void do_fetch(CPUTLGState *env, int trapnr, bool quad)
3486 {
3487 int8_t write = 1;
3488 target_ulong addr;
3489 target_long val, valb;
3490
3491 start_exclusive();
3492
3493 addr = env->atomic_srca;
3494 valb = env->atomic_srcb;
3495 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
3496 goto sigsegv_maperr;
3497 }
3498
3499 switch (trapnr) {
3500 case TILEGX_EXCP_OPCODE_FETCHADD:
3501 case TILEGX_EXCP_OPCODE_FETCHADD4:
3502 valb += val;
3503 break;
3504 case TILEGX_EXCP_OPCODE_FETCHADDGEZ:
3505 valb += val;
3506 if (valb < 0) {
3507 write = 0;
3508 }
3509 break;
3510 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4:
3511 valb += val;
3512 if ((int32_t)valb < 0) {
3513 write = 0;
3514 }
3515 break;
3516 case TILEGX_EXCP_OPCODE_FETCHAND:
3517 case TILEGX_EXCP_OPCODE_FETCHAND4:
3518 valb &= val;
3519 break;
3520 case TILEGX_EXCP_OPCODE_FETCHOR:
3521 case TILEGX_EXCP_OPCODE_FETCHOR4:
3522 valb |= val;
3523 break;
3524 default:
3525 g_assert_not_reached();
3526 }
3527
3528 if (write) {
3529 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) {
3530 goto sigsegv_maperr;
3531 }
3532 }
3533
3534 set_regval(env, env->atomic_dstr, val);
3535 end_exclusive();
3536 return;
3537
3538 sigsegv_maperr:
3539 end_exclusive();
3540 gen_sigsegv_maperr(env, addr);
3541 }
3542
3543 void cpu_loop(CPUTLGState *env)
3544 {
3545 CPUState *cs = CPU(tilegx_env_get_cpu(env));
3546 int trapnr;
3547
3548 while (1) {
3549 cpu_exec_start(cs);
3550 trapnr = cpu_exec(cs);
3551 cpu_exec_end(cs);
3552 process_queued_cpu_work(cs);
3553
3554 switch (trapnr) {
3555 case TILEGX_EXCP_SYSCALL:
3556 {
3557 abi_ulong ret = do_syscall(env, env->regs[TILEGX_R_NR],
3558 env->regs[0], env->regs[1],
3559 env->regs[2], env->regs[3],
3560 env->regs[4], env->regs[5],
3561 env->regs[6], env->regs[7]);
3562 if (ret == -TARGET_ERESTARTSYS) {
3563 env->pc -= 8;
3564 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
3565 env->regs[TILEGX_R_RE] = ret;
3566 env->regs[TILEGX_R_ERR] = TILEGX_IS_ERRNO(ret) ? -ret : 0;
3567 }
3568 break;
3569 }
3570 case TILEGX_EXCP_OPCODE_EXCH:
3571 do_exch(env, true, false);
3572 break;
3573 case TILEGX_EXCP_OPCODE_EXCH4:
3574 do_exch(env, false, false);
3575 break;
3576 case TILEGX_EXCP_OPCODE_CMPEXCH:
3577 do_exch(env, true, true);
3578 break;
3579 case TILEGX_EXCP_OPCODE_CMPEXCH4:
3580 do_exch(env, false, true);
3581 break;
3582 case TILEGX_EXCP_OPCODE_FETCHADD:
3583 case TILEGX_EXCP_OPCODE_FETCHADDGEZ:
3584 case TILEGX_EXCP_OPCODE_FETCHAND:
3585 case TILEGX_EXCP_OPCODE_FETCHOR:
3586 do_fetch(env, trapnr, true);
3587 break;
3588 case TILEGX_EXCP_OPCODE_FETCHADD4:
3589 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4:
3590 case TILEGX_EXCP_OPCODE_FETCHAND4:
3591 case TILEGX_EXCP_OPCODE_FETCHOR4:
3592 do_fetch(env, trapnr, false);
3593 break;
3594 case TILEGX_EXCP_SIGNAL:
3595 do_signal(env, env->signo, env->sigcode);
3596 break;
3597 case TILEGX_EXCP_REG_IDN_ACCESS:
3598 case TILEGX_EXCP_REG_UDN_ACCESS:
3599 gen_sigill_reg(env);
3600 break;
3601 case EXCP_ATOMIC:
3602 cpu_exec_step_atomic(cs);
3603 break;
3604 default:
3605 fprintf(stderr, "trapnr is %d[0x%x].\n", trapnr, trapnr);
3606 g_assert_not_reached();
3607 }
3608 process_pending_signals(env);
3609 }
3610 }
3611
3612 #endif
3613
3614 #ifdef TARGET_HPPA
3615
3616 static abi_ulong hppa_lws(CPUHPPAState *env)
3617 {
3618 uint32_t which = env->gr[20];
3619 abi_ulong addr = env->gr[26];
3620 abi_ulong old = env->gr[25];
3621 abi_ulong new = env->gr[24];
3622 abi_ulong size, ret;
3623
3624 switch (which) {
3625 default:
3626 return -TARGET_ENOSYS;
3627
3628 case 0: /* elf32 atomic 32bit cmpxchg */
3629 if ((addr & 3) || !access_ok(VERIFY_WRITE, addr, 4)) {
3630 return -TARGET_EFAULT;
3631 }
3632 old = tswap32(old);
3633 new = tswap32(new);
3634 ret = atomic_cmpxchg((uint32_t *)g2h(addr), old, new);
3635 ret = tswap32(ret);
3636 break;
3637
3638 case 2: /* elf32 atomic "new" cmpxchg */
3639 size = env->gr[23];
3640 if (size >= 4) {
3641 return -TARGET_ENOSYS;
3642 }
3643 if (((addr | old | new) & ((1 << size) - 1))
3644 || !access_ok(VERIFY_WRITE, addr, 1 << size)
3645 || !access_ok(VERIFY_READ, old, 1 << size)
3646 || !access_ok(VERIFY_READ, new, 1 << size)) {
3647 return -TARGET_EFAULT;
3648 }
3649 /* Note that below we use host-endian loads so that the cmpxchg
3650 can be host-endian as well. */
3651 switch (size) {
3652 case 0:
3653 old = *(uint8_t *)g2h(old);
3654 new = *(uint8_t *)g2h(new);
3655 ret = atomic_cmpxchg((uint8_t *)g2h(addr), old, new);
3656 ret = ret != old;
3657 break;
3658 case 1:
3659 old = *(uint16_t *)g2h(old);
3660 new = *(uint16_t *)g2h(new);
3661 ret = atomic_cmpxchg((uint16_t *)g2h(addr), old, new);
3662 ret = ret != old;
3663 break;
3664 case 2:
3665 old = *(uint32_t *)g2h(old);
3666 new = *(uint32_t *)g2h(new);
3667 ret = atomic_cmpxchg((uint32_t *)g2h(addr), old, new);
3668 ret = ret != old;
3669 break;
3670 case 3:
3671 {
3672 uint64_t o64, n64, r64;
3673 o64 = *(uint64_t *)g2h(old);
3674 n64 = *(uint64_t *)g2h(new);
3675 #ifdef CONFIG_ATOMIC64
3676 r64 = atomic_cmpxchg__nocheck((uint64_t *)g2h(addr), o64, n64);
3677 ret = r64 != o64;
3678 #else
3679 start_exclusive();
3680 r64 = *(uint64_t *)g2h(addr);
3681 ret = 1;
3682 if (r64 == o64) {
3683 *(uint64_t *)g2h(addr) = n64;
3684 ret = 0;
3685 }
3686 end_exclusive();
3687 #endif
3688 }
3689 break;
3690 }
3691 break;
3692 }
3693
3694 env->gr[28] = ret;
3695 return 0;
3696 }
3697
3698 void cpu_loop(CPUHPPAState *env)
3699 {
3700 CPUState *cs = CPU(hppa_env_get_cpu(env));
3701 target_siginfo_t info;
3702 abi_ulong ret;
3703 int trapnr;
3704
3705 while (1) {
3706 cpu_exec_start(cs);
3707 trapnr = cpu_exec(cs);
3708 cpu_exec_end(cs);
3709 process_queued_cpu_work(cs);
3710
3711 switch (trapnr) {
3712 case EXCP_SYSCALL:
3713 ret = do_syscall(env, env->gr[20],
3714 env->gr[26], env->gr[25],
3715 env->gr[24], env->gr[23],
3716 env->gr[22], env->gr[21], 0, 0);
3717 switch (ret) {
3718 default:
3719 env->gr[28] = ret;
3720 /* We arrived here by faking the gateway page. Return. */
3721 env->iaoq_f = env->gr[31];
3722 env->iaoq_b = env->gr[31] + 4;
3723 break;
3724 case -TARGET_ERESTARTSYS:
3725 case -TARGET_QEMU_ESIGRETURN:
3726 break;
3727 }
3728 break;
3729 case EXCP_SYSCALL_LWS:
3730 env->gr[21] = hppa_lws(env);
3731 /* We arrived here by faking the gateway page. Return. */
3732 env->iaoq_f = env->gr[31];
3733 env->iaoq_b = env->gr[31] + 4;
3734 break;
3735 case EXCP_SIGSEGV:
3736 info.si_signo = TARGET_SIGSEGV;
3737 info.si_errno = 0;
3738 info.si_code = TARGET_SEGV_ACCERR;
3739 info._sifields._sigfault._addr = env->ior;
3740 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3741 break;
3742 case EXCP_SIGILL:
3743 info.si_signo = TARGET_SIGILL;
3744 info.si_errno = 0;
3745 info.si_code = TARGET_ILL_ILLOPN;
3746 info._sifields._sigfault._addr = env->iaoq_f;
3747 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3748 break;
3749 case EXCP_SIGFPE:
3750 info.si_signo = TARGET_SIGFPE;
3751 info.si_errno = 0;
3752 info.si_code = 0;
3753 info._sifields._sigfault._addr = env->iaoq_f;
3754 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3755 break;
3756 case EXCP_DEBUG:
3757 trapnr = gdb_handlesig(cs, TARGET_SIGTRAP);
3758 if (trapnr) {
3759 info.si_signo = trapnr;
3760 info.si_errno = 0;
3761 info.si_code = TARGET_TRAP_BRKPT;
3762 queue_signal(env, trapnr, QEMU_SI_FAULT, &info);
3763 }
3764 break;
3765 case EXCP_INTERRUPT:
3766 /* just indicate that signals should be handled asap */
3767 break;
3768 default:
3769 g_assert_not_reached();
3770 }
3771 process_pending_signals(env);
3772 }
3773 }
3774
3775 #endif /* TARGET_HPPA */
3776
3777 THREAD CPUState *thread_cpu;
3778
3779 bool qemu_cpu_is_self(CPUState *cpu)
3780 {
3781 return thread_cpu == cpu;
3782 }
3783
3784 void qemu_cpu_kick(CPUState *cpu)
3785 {
3786 cpu_exit(cpu);
3787 }
3788
3789 void task_settid(TaskState *ts)
3790 {
3791 if (ts->ts_tid == 0) {
3792 ts->ts_tid = (pid_t)syscall(SYS_gettid);
3793 }
3794 }
3795
3796 void stop_all_tasks(void)
3797 {
3798 /*
3799 * We trust that when using NPTL, start_exclusive()
3800 * handles thread stopping correctly.
3801 */
3802 start_exclusive();
3803 }
3804
3805 /* Assumes contents are already zeroed. */
3806 void init_task_state(TaskState *ts)
3807 {
3808 ts->used = 1;
3809 }
3810
3811 CPUArchState *cpu_copy(CPUArchState *env)
3812 {
3813 CPUState *cpu = ENV_GET_CPU(env);
3814 CPUState *new_cpu = cpu_init(cpu_model);
3815 CPUArchState *new_env = new_cpu->env_ptr;
3816 CPUBreakpoint *bp;
3817 CPUWatchpoint *wp;
3818
3819 /* Reset non arch specific state */
3820 cpu_reset(new_cpu);
3821
3822 memcpy(new_env, env, sizeof(CPUArchState));
3823
3824 /* Clone all break/watchpoints.
3825 Note: Once we support ptrace with hw-debug register access, make sure
3826 BP_CPU break/watchpoints are handled correctly on clone. */
3827 QTAILQ_INIT(&new_cpu->breakpoints);
3828 QTAILQ_INIT(&new_cpu->watchpoints);
3829 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
3830 cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL);
3831 }
3832 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
3833 cpu_watchpoint_insert(new_cpu, wp->vaddr, wp->len, wp->flags, NULL);
3834 }
3835
3836 return new_env;
3837 }
3838
3839 static void handle_arg_help(const char *arg)
3840 {
3841 usage(EXIT_SUCCESS);
3842 }
3843
3844 static void handle_arg_log(const char *arg)
3845 {
3846 int mask;
3847
3848 mask = qemu_str_to_log_mask(arg);
3849 if (!mask) {
3850 qemu_print_log_usage(stdout);
3851 exit(EXIT_FAILURE);
3852 }
3853 qemu_log_needs_buffers();
3854 qemu_set_log(mask);
3855 }
3856
3857 static void handle_arg_log_filename(const char *arg)
3858 {
3859 qemu_set_log_filename(arg, &error_fatal);
3860 }
3861
3862 static void handle_arg_set_env(const char *arg)
3863 {
3864 char *r, *p, *token;
3865 r = p = strdup(arg);
3866 while ((token = strsep(&p, ",")) != NULL) {
3867 if (envlist_setenv(envlist, token) != 0) {
3868 usage(EXIT_FAILURE);
3869 }
3870 }
3871 free(r);
3872 }
3873
3874 static void handle_arg_unset_env(const char *arg)
3875 {
3876 char *r, *p, *token;
3877 r = p = strdup(arg);
3878 while ((token = strsep(&p, ",")) != NULL) {
3879 if (envlist_unsetenv(envlist, token) != 0) {
3880 usage(EXIT_FAILURE);
3881 }
3882 }
3883 free(r);
3884 }
3885
3886 static void handle_arg_argv0(const char *arg)
3887 {
3888 argv0 = strdup(arg);
3889 }
3890
3891 static void handle_arg_stack_size(const char *arg)
3892 {
3893 char *p;
3894 guest_stack_size = strtoul(arg, &p, 0);
3895 if (guest_stack_size == 0) {
3896 usage(EXIT_FAILURE);
3897 }
3898
3899 if (*p == 'M') {
3900 guest_stack_size *= 1024 * 1024;
3901 } else if (*p == 'k' || *p == 'K') {
3902 guest_stack_size *= 1024;
3903 }
3904 }
3905
3906 static void handle_arg_ld_prefix(const char *arg)
3907 {
3908 interp_prefix = strdup(arg);
3909 }
3910
3911 static void handle_arg_pagesize(const char *arg)
3912 {
3913 qemu_host_page_size = atoi(arg);
3914 if (qemu_host_page_size == 0 ||
3915 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
3916 fprintf(stderr, "page size must be a power of two\n");
3917 exit(EXIT_FAILURE);
3918 }
3919 }
3920
3921 static void handle_arg_randseed(const char *arg)
3922 {
3923 unsigned long long seed;
3924
3925 if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) {
3926 fprintf(stderr, "Invalid seed number: %s\n", arg);
3927 exit(EXIT_FAILURE);
3928 }
3929 srand(seed);
3930 }
3931
3932 static void handle_arg_gdb(const char *arg)
3933 {
3934 gdbstub_port = atoi(arg);
3935 }
3936
3937 static void handle_arg_uname(const char *arg)
3938 {
3939 qemu_uname_release = strdup(arg);
3940 }
3941
3942 static void handle_arg_cpu(const char *arg)
3943 {
3944 cpu_model = strdup(arg);
3945 if (cpu_model == NULL || is_help_option(cpu_model)) {
3946 /* XXX: implement xxx_cpu_list for targets that still miss it */
3947 #if defined(cpu_list)
3948 cpu_list(stdout, &fprintf);
3949 #endif
3950 exit(EXIT_FAILURE);
3951 }
3952 }
3953
3954 static void handle_arg_guest_base(const char *arg)
3955 {
3956 guest_base = strtol(arg, NULL, 0);
3957 have_guest_base = 1;
3958 }
3959
3960 static void handle_arg_reserved_va(const char *arg)
3961 {
3962 char *p;
3963 int shift = 0;
3964 reserved_va = strtoul(arg, &p, 0);
3965 switch (*p) {
3966 case 'k':
3967 case 'K':
3968 shift = 10;
3969 break;
3970 case 'M':
3971 shift = 20;
3972 break;
3973 case 'G':
3974 shift = 30;
3975 break;
3976 }
3977 if (shift) {
3978 unsigned long unshifted = reserved_va;
3979 p++;
3980 reserved_va <<= shift;
3981 if (((reserved_va >> shift) != unshifted)
3982 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3983 || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS))
3984 #endif
3985 ) {
3986 fprintf(stderr, "Reserved virtual address too big\n");
3987 exit(EXIT_FAILURE);
3988 }
3989 }
3990 if (*p) {
3991 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p);
3992 exit(EXIT_FAILURE);
3993 }
3994 }
3995
3996 static void handle_arg_singlestep(const char *arg)
3997 {
3998 singlestep = 1;
3999 }
4000
4001 static void handle_arg_strace(const char *arg)
4002 {
4003 do_strace = 1;
4004 }
4005
4006 static void handle_arg_version(const char *arg)
4007 {
4008 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION
4009 "\n" QEMU_COPYRIGHT "\n");
4010 exit(EXIT_SUCCESS);
4011 }
4012
4013 static char *trace_file;
4014 static void handle_arg_trace(const char *arg)
4015 {
4016 g_free(trace_file);
4017 trace_file = trace_opt_parse(arg);
4018 }
4019
4020 struct qemu_argument {
4021 const char *argv;
4022 const char *env;
4023 bool has_arg;
4024 void (*handle_opt)(const char *arg);
4025 const char *example;
4026 const char *help;
4027 };
4028
4029 static const struct qemu_argument arg_table[] = {
4030 {"h", "", false, handle_arg_help,
4031 "", "print this help"},
4032 {"help", "", false, handle_arg_help,
4033 "", ""},
4034 {"g", "QEMU_GDB", true, handle_arg_gdb,
4035 "port", "wait gdb connection to 'port'"},
4036 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix,
4037 "path", "set the elf interpreter prefix to 'path'"},
4038 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size,
4039 "size", "set the stack size to 'size' bytes"},
4040 {"cpu", "QEMU_CPU", true, handle_arg_cpu,
4041 "model", "select CPU (-cpu help for list)"},
4042 {"E", "QEMU_SET_ENV", true, handle_arg_set_env,
4043 "var=value", "sets targets environment variable (see below)"},
4044 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env,
4045 "var", "unsets targets environment variable (see below)"},
4046 {"0", "QEMU_ARGV0", true, handle_arg_argv0,
4047 "argv0", "forces target process argv[0] to be 'argv0'"},
4048 {"r", "QEMU_UNAME", true, handle_arg_uname,
4049 "uname", "set qemu uname release string to 'uname'"},
4050 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base,
4051 "address", "set guest_base address to 'address'"},
4052 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va,
4053 "size", "reserve 'size' bytes for guest virtual address space"},
4054 {"d", "QEMU_LOG", true, handle_arg_log,
4055 "item[,...]", "enable logging of specified items "
4056 "(use '-d help' for a list of items)"},
4057 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename,
4058 "logfile", "write logs to 'logfile' (default stderr)"},
4059 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize,
4060 "pagesize", "set the host page size to 'pagesize'"},
4061 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep,
4062 "", "run in singlestep mode"},
4063 {"strace", "QEMU_STRACE", false, handle_arg_strace,
4064 "", "log system calls"},
4065 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed,
4066 "", "Seed for pseudo-random number generator"},
4067 {"trace", "QEMU_TRACE", true, handle_arg_trace,
4068 "", "[[enable=]<pattern>][,events=<file>][,file=<file>]"},
4069 {"version", "QEMU_VERSION", false, handle_arg_version,
4070 "", "display version information and exit"},
4071 {NULL, NULL, false, NULL, NULL, NULL}
4072 };
4073
4074 static void usage(int exitcode)
4075 {
4076 const struct qemu_argument *arginfo;
4077 int maxarglen;
4078 int maxenvlen;
4079
4080 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
4081 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n"
4082 "\n"
4083 "Options and associated environment variables:\n"
4084 "\n");
4085
4086 /* Calculate column widths. We must always have at least enough space
4087 * for the column header.
4088 */
4089 maxarglen = strlen("Argument");
4090 maxenvlen = strlen("Env-variable");
4091
4092 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
4093 int arglen = strlen(arginfo->argv);
4094 if (arginfo->has_arg) {
4095 arglen += strlen(arginfo->example) + 1;
4096 }
4097 if (strlen(arginfo->env) > maxenvlen) {
4098 maxenvlen = strlen(arginfo->env);
4099 }
4100 if (arglen > maxarglen) {
4101 maxarglen = arglen;
4102 }
4103 }
4104
4105 printf("%-*s %-*s Description\n", maxarglen+1, "Argument",
4106 maxenvlen, "Env-variable");
4107
4108 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
4109 if (arginfo->has_arg) {
4110 printf("-%s %-*s %-*s %s\n", arginfo->argv,
4111 (int)(maxarglen - strlen(arginfo->argv) - 1),
4112 arginfo->example, maxenvlen, arginfo->env, arginfo->help);
4113 } else {
4114 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv,
4115 maxenvlen, arginfo->env,
4116 arginfo->help);
4117 }
4118 }
4119
4120 printf("\n"
4121 "Defaults:\n"
4122 "QEMU_LD_PREFIX = %s\n"
4123 "QEMU_STACK_SIZE = %ld byte\n",
4124 interp_prefix,
4125 guest_stack_size);
4126
4127 printf("\n"
4128 "You can use -E and -U options or the QEMU_SET_ENV and\n"
4129 "QEMU_UNSET_ENV environment variables to set and unset\n"
4130 "environment variables for the target process.\n"
4131 "It is possible to provide several variables by separating them\n"
4132 "by commas in getsubopt(3) style. Additionally it is possible to\n"
4133 "provide the -E and -U options multiple times.\n"
4134 "The following lines are equivalent:\n"
4135 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
4136 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
4137 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
4138 "Note that if you provide several changes to a single variable\n"
4139 "the last change will stay in effect.\n"
4140 "\n"
4141 QEMU_HELP_BOTTOM "\n");
4142
4143 exit(exitcode);
4144 }
4145
4146 static int parse_args(int argc, char **argv)
4147 {
4148 const char *r;
4149 int optind;
4150 const struct qemu_argument *arginfo;
4151
4152 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
4153 if (arginfo->env == NULL) {
4154 continue;
4155 }
4156
4157 r = getenv(arginfo->env);
4158 if (r != NULL) {
4159 arginfo->handle_opt(r);
4160 }
4161 }
4162
4163 optind = 1;
4164 for (;;) {
4165 if (optind >= argc) {
4166 break;
4167 }
4168 r = argv[optind];
4169 if (r[0] != '-') {
4170 break;
4171 }
4172 optind++;
4173 r++;
4174 if (!strcmp(r, "-")) {
4175 break;
4176 }
4177 /* Treat --foo the same as -foo. */
4178 if (r[0] == '-') {
4179 r++;
4180 }
4181
4182 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
4183 if (!strcmp(r, arginfo->argv)) {
4184 if (arginfo->has_arg) {
4185 if (optind >= argc) {
4186 (void) fprintf(stderr,
4187 "qemu: missing argument for option '%s'\n", r);
4188 exit(EXIT_FAILURE);
4189 }
4190 arginfo->handle_opt(argv[optind]);
4191 optind++;
4192 } else {
4193 arginfo->handle_opt(NULL);
4194 }
4195 break;
4196 }
4197 }
4198
4199 /* no option matched the current argv */
4200 if (arginfo->handle_opt == NULL) {
4201 (void) fprintf(stderr, "qemu: unknown option '%s'\n", r);
4202 exit(EXIT_FAILURE);
4203 }
4204 }
4205
4206 if (optind >= argc) {
4207 (void) fprintf(stderr, "qemu: no user program specified\n");
4208 exit(EXIT_FAILURE);
4209 }
4210
4211 filename = argv[optind];
4212 exec_path = argv[optind];
4213
4214 return optind;
4215 }
4216
4217 int main(int argc, char **argv, char **envp)
4218 {
4219 struct target_pt_regs regs1, *regs = &regs1;
4220 struct image_info info1, *info = &info1;
4221 struct linux_binprm bprm;
4222 TaskState *ts;
4223 CPUArchState *env;
4224 CPUState *cpu;
4225 int optind;
4226 char **target_environ, **wrk;
4227 char **target_argv;
4228 int target_argc;
4229 int i;
4230 int ret;
4231 int execfd;
4232
4233 module_call_init(MODULE_INIT_TRACE);
4234 qemu_init_cpu_list();
4235 module_call_init(MODULE_INIT_QOM);
4236
4237 envlist = envlist_create();
4238
4239 /* add current environment into the list */
4240 for (wrk = environ; *wrk != NULL; wrk++) {
4241 (void) envlist_setenv(envlist, *wrk);
4242 }
4243
4244 /* Read the stack limit from the kernel. If it's "unlimited",
4245 then we can do little else besides use the default. */
4246 {
4247 struct rlimit lim;
4248 if (getrlimit(RLIMIT_STACK, &lim) == 0
4249 && lim.rlim_cur != RLIM_INFINITY
4250 && lim.rlim_cur == (target_long)lim.rlim_cur) {
4251 guest_stack_size = lim.rlim_cur;
4252 }
4253 }
4254
4255 cpu_model = NULL;
4256
4257 srand(time(NULL));
4258
4259 qemu_add_opts(&qemu_trace_opts);
4260
4261 optind = parse_args(argc, argv);
4262
4263 if (!trace_init_backends()) {
4264 exit(1);
4265 }
4266 trace_init_file(trace_file);
4267
4268 /* Zero out regs */
4269 memset(regs, 0, sizeof(struct target_pt_regs));
4270
4271 /* Zero out image_info */
4272 memset(info, 0, sizeof(struct image_info));
4273
4274 memset(&bprm, 0, sizeof (bprm));
4275
4276 /* Scan interp_prefix dir for replacement files. */
4277 init_paths(interp_prefix);
4278
4279 init_qemu_uname_release();
4280
4281 if (cpu_model == NULL) {
4282 #if defined(TARGET_I386)
4283 #ifdef TARGET_X86_64
4284 cpu_model = "qemu64";
4285 #else
4286 cpu_model = "qemu32";
4287 #endif
4288 #elif defined(TARGET_ARM)
4289 cpu_model = "any";
4290 #elif defined(TARGET_UNICORE32)
4291 cpu_model = "any";
4292 #elif defined(TARGET_M68K)
4293 cpu_model = "any";
4294 #elif defined(TARGET_SPARC)
4295 #ifdef TARGET_SPARC64
4296 cpu_model = "TI UltraSparc II";
4297 #else
4298 cpu_model = "Fujitsu MB86904";
4299 #endif
4300 #elif defined(TARGET_MIPS)
4301 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
4302 cpu_model = "5KEf";
4303 #else
4304 cpu_model = "24Kf";
4305 #endif
4306 #elif defined TARGET_OPENRISC
4307 cpu_model = "or1200";
4308 #elif defined(TARGET_PPC)
4309 # ifdef TARGET_PPC64
4310 cpu_model = "POWER8";
4311 # else
4312 cpu_model = "750";
4313 # endif
4314 #elif defined TARGET_SH4
4315 cpu_model = TYPE_SH7785_CPU;
4316 #elif defined TARGET_S390X
4317 cpu_model = "qemu";
4318 #else
4319 cpu_model = "any";
4320 #endif
4321 }
4322 tcg_exec_init(0);
4323 /* NOTE: we need to init the CPU at this stage to get
4324 qemu_host_page_size */
4325 cpu = cpu_init(cpu_model);
4326 env = cpu->env_ptr;
4327 cpu_reset(cpu);
4328
4329 thread_cpu = cpu;
4330
4331 if (getenv("QEMU_STRACE")) {
4332 do_strace = 1;
4333 }
4334
4335 if (getenv("QEMU_RAND_SEED")) {
4336 handle_arg_randseed(getenv("QEMU_RAND_SEED"));
4337 }
4338
4339 target_environ = envlist_to_environ(envlist, NULL);
4340 envlist_free(envlist);
4341
4342 /*
4343 * Now that page sizes are configured in cpu_init() we can do
4344 * proper page alignment for guest_base.
4345 */
4346 guest_base = HOST_PAGE_ALIGN(guest_base);
4347
4348 if (reserved_va || have_guest_base) {
4349 guest_base = init_guest_space(guest_base, reserved_va, 0,
4350 have_guest_base);
4351 if (guest_base == (unsigned long)-1) {
4352 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address "
4353 "space for use as guest address space (check your virtual "
4354 "memory ulimit setting or reserve less using -R option)\n",
4355 reserved_va);
4356 exit(EXIT_FAILURE);
4357 }
4358
4359 if (reserved_va) {
4360 mmap_next_start = reserved_va;
4361 }
4362 }
4363
4364 /*
4365 * Read in mmap_min_addr kernel parameter. This value is used
4366 * When loading the ELF image to determine whether guest_base
4367 * is needed. It is also used in mmap_find_vma.
4368 */
4369 {
4370 FILE *fp;
4371
4372 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
4373 unsigned long tmp;
4374 if (fscanf(fp, "%lu", &tmp) == 1) {
4375 mmap_min_addr = tmp;
4376 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr);
4377 }
4378 fclose(fp);
4379 }
4380 }
4381
4382 /*
4383 * Prepare copy of argv vector for target.
4384 */
4385 target_argc = argc - optind;
4386 target_argv = calloc(target_argc + 1, sizeof (char *));
4387 if (target_argv == NULL) {
4388 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n");
4389 exit(EXIT_FAILURE);
4390 }
4391
4392 /*
4393 * If argv0 is specified (using '-0' switch) we replace
4394 * argv[0] pointer with the given one.
4395 */
4396 i = 0;
4397 if (argv0 != NULL) {
4398 target_argv[i++] = strdup(argv0);
4399 }
4400 for (; i < target_argc; i++) {
4401 target_argv[i] = strdup(argv[optind + i]);
4402 }
4403 target_argv[target_argc] = NULL;
4404
4405 ts = g_new0(TaskState, 1);
4406 init_task_state(ts);
4407 /* build Task State */
4408 ts->info = info;
4409 ts->bprm = &bprm;
4410 cpu->opaque = ts;
4411 task_settid(ts);
4412
4413 execfd = qemu_getauxval(AT_EXECFD);
4414 if (execfd == 0) {
4415 execfd = open(filename, O_RDONLY);
4416 if (execfd < 0) {
4417 printf("Error while loading %s: %s\n", filename, strerror(errno));
4418 _exit(EXIT_FAILURE);
4419 }
4420 }
4421
4422 ret = loader_exec(execfd, filename, target_argv, target_environ, regs,
4423 info, &bprm);
4424 if (ret != 0) {
4425 printf("Error while loading %s: %s\n", filename, strerror(-ret));
4426 _exit(EXIT_FAILURE);
4427 }
4428
4429 for (wrk = target_environ; *wrk; wrk++) {
4430 g_free(*wrk);
4431 }
4432
4433 g_free(target_environ);
4434
4435 if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
4436 qemu_log("guest_base 0x%lx\n", guest_base);
4437 log_page_dump();
4438
4439 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
4440 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code);
4441 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", info->start_code);
4442 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", info->start_data);
4443 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data);
4444 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", info->start_stack);
4445 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk);
4446 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry);
4447 qemu_log("argv_start 0x" TARGET_ABI_FMT_lx "\n", info->arg_start);
4448 qemu_log("env_start 0x" TARGET_ABI_FMT_lx "\n",
4449 info->arg_end + (abi_ulong)sizeof(abi_ulong));
4450 qemu_log("auxv_start 0x" TARGET_ABI_FMT_lx "\n", info->saved_auxv);
4451 }
4452
4453 target_set_brk(info->brk);
4454 syscall_init();
4455 signal_init();
4456
4457 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
4458 generating the prologue until now so that the prologue can take
4459 the real value of GUEST_BASE into account. */
4460 tcg_prologue_init(&tcg_ctx);
4461
4462 #if defined(TARGET_I386)
4463 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
4464 env->hflags |= HF_PE_MASK | HF_CPL_MASK;
4465 if (env->features[FEAT_1_EDX] & CPUID_SSE) {
4466 env->cr[4] |= CR4_OSFXSR_MASK;
4467 env->hflags |= HF_OSFXSR_MASK;
4468 }
4469 #ifndef TARGET_ABI32
4470 /* enable 64 bit mode if possible */
4471 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
4472 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
4473 exit(EXIT_FAILURE);
4474 }
4475 env->cr[4] |= CR4_PAE_MASK;
4476 env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
4477 env->hflags |= HF_LMA_MASK;
4478 #endif
4479
4480 /* flags setup : we activate the IRQs by default as in user mode */
4481 env->eflags |= IF_MASK;
4482
4483 /* linux register setup */
4484 #ifndef TARGET_ABI32
4485 env->regs[R_EAX] = regs->rax;
4486 env->regs[R_EBX] = regs->rbx;
4487 env->regs[R_ECX] = regs->rcx;
4488 env->regs[R_EDX] = regs->rdx;
4489 env->regs[R_ESI] = regs->rsi;
4490 env->regs[R_EDI] = regs->rdi;
4491 env->regs[R_EBP] = regs->rbp;
4492 env->regs[R_ESP] = regs->rsp;
4493 env->eip = regs->rip;
4494 #else
4495 env->regs[R_EAX] = regs->eax;
4496 env->regs[R_EBX] = regs->ebx;
4497 env->regs[R_ECX] = regs->ecx;
4498 env->regs[R_EDX] = regs->edx;
4499 env->regs[R_ESI] = regs->esi;
4500 env->regs[R_EDI] = regs->edi;
4501 env->regs[R_EBP] = regs->ebp;
4502 env->regs[R_ESP] = regs->esp;
4503 env->eip = regs->eip;
4504 #endif
4505
4506 /* linux interrupt setup */
4507 #ifndef TARGET_ABI32
4508 env->idt.limit = 511;
4509 #else
4510 env->idt.limit = 255;
4511 #endif
4512 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
4513 PROT_READ|PROT_WRITE,
4514 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
4515 idt_table = g2h(env->idt.base);
4516 set_idt(0, 0);
4517 set_idt(1, 0);
4518 set_idt(2, 0);
4519 set_idt(3, 3);
4520 set_idt(4, 3);
4521 set_idt(5, 0);
4522 set_idt(6, 0);
4523 set_idt(7, 0);
4524 set_idt(8, 0);
4525 set_idt(9, 0);
4526 set_idt(10, 0);
4527 set_idt(11, 0);
4528 set_idt(12, 0);
4529 set_idt(13, 0);
4530 set_idt(14, 0);
4531 set_idt(15, 0);
4532 set_idt(16, 0);
4533 set_idt(17, 0);
4534 set_idt(18, 0);
4535 set_idt(19, 0);
4536 set_idt(0x80, 3);
4537
4538 /* linux segment setup */
4539 {
4540 uint64_t *gdt_table;
4541 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
4542 PROT_READ|PROT_WRITE,
4543 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
4544 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
4545 gdt_table = g2h(env->gdt.base);
4546 #ifdef TARGET_ABI32
4547 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
4548 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4549 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
4550 #else
4551 /* 64 bit code segment */
4552 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
4553 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4554 DESC_L_MASK |
4555 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
4556 #endif
4557 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
4558 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4559 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
4560 }
4561 cpu_x86_load_seg(env, R_CS, __USER_CS);
4562 cpu_x86_load_seg(env, R_SS, __USER_DS);
4563 #ifdef TARGET_ABI32
4564 cpu_x86_load_seg(env, R_DS, __USER_DS);
4565 cpu_x86_load_seg(env, R_ES, __USER_DS);
4566 cpu_x86_load_seg(env, R_FS, __USER_DS);
4567 cpu_x86_load_seg(env, R_GS, __USER_DS);
4568 /* This hack makes Wine work... */
4569 env->segs[R_FS].selector = 0;
4570 #else
4571 cpu_x86_load_seg(env, R_DS, 0);
4572 cpu_x86_load_seg(env, R_ES, 0);
4573 cpu_x86_load_seg(env, R_FS, 0);
4574 cpu_x86_load_seg(env, R_GS, 0);
4575 #endif
4576 #elif defined(TARGET_AARCH64)
4577 {
4578 int i;
4579
4580 if (!(arm_feature(env, ARM_FEATURE_AARCH64))) {
4581 fprintf(stderr,
4582 "The selected ARM CPU does not support 64 bit mode\n");
4583 exit(EXIT_FAILURE);
4584 }
4585
4586 for (i = 0; i < 31; i++) {
4587 env->xregs[i] = regs->regs[i];
4588 }
4589 env->pc = regs->pc;
4590 env->xregs[31] = regs->sp;
4591 }
4592 #elif defined(TARGET_ARM)
4593 {
4594 int i;
4595 cpsr_write(env, regs->uregs[16], CPSR_USER | CPSR_EXEC,
4596 CPSRWriteByInstr);
4597 for(i = 0; i < 16; i++) {
4598 env->regs[i] = regs->uregs[i];
4599 }
4600 #ifdef TARGET_WORDS_BIGENDIAN
4601 /* Enable BE8. */
4602 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4
4603 && (info->elf_flags & EF_ARM_BE8)) {
4604 env->uncached_cpsr |= CPSR_E;
4605 env->cp15.sctlr_el[1] |= SCTLR_E0E;
4606 } else {
4607 env->cp15.sctlr_el[1] |= SCTLR_B;
4608 }
4609 #endif
4610 }
4611 #elif defined(TARGET_UNICORE32)
4612 {
4613 int i;
4614 cpu_asr_write(env, regs->uregs[32], 0xffffffff);
4615 for (i = 0; i < 32; i++) {
4616 env->regs[i] = regs->uregs[i];
4617 }
4618 }
4619 #elif defined(TARGET_SPARC)
4620 {
4621 int i;
4622 env->pc = regs->pc;
4623 env->npc = regs->npc;
4624 env->y = regs->y;
4625 for(i = 0; i < 8; i++)
4626 env->gregs[i] = regs->u_regs[i];
4627 for(i = 0; i < 8; i++)
4628 env->regwptr[i] = regs->u_regs[i + 8];
4629 }
4630 #elif defined(TARGET_PPC)
4631 {
4632 int i;
4633
4634 #if defined(TARGET_PPC64)
4635 int flag = (env->insns_flags2 & PPC2_BOOKE206) ? MSR_CM : MSR_SF;
4636 #if defined(TARGET_ABI32)
4637 env->msr &= ~((target_ulong)1 << flag);
4638 #else
4639 env->msr |= (target_ulong)1 << flag;
4640 #endif
4641 #endif
4642 env->nip = regs->nip;
4643 for(i = 0; i < 32; i++) {
4644 env->gpr[i] = regs->gpr[i];
4645 }
4646 }
4647 #elif defined(TARGET_M68K)
4648 {
4649 env->pc = regs->pc;
4650 env->dregs[0] = regs->d0;
4651 env->dregs[1] = regs->d1;
4652 env->dregs[2] = regs->d2;
4653 env->dregs[3] = regs->d3;
4654 env->dregs[4] = regs->d4;
4655 env->dregs[5] = regs->d5;
4656 env->dregs[6] = regs->d6;
4657 env->dregs[7] = regs->d7;
4658 env->aregs[0] = regs->a0;
4659 env->aregs[1] = regs->a1;
4660 env->aregs[2] = regs->a2;
4661 env->aregs[3] = regs->a3;
4662 env->aregs[4] = regs->a4;
4663 env->aregs[5] = regs->a5;
4664 env->aregs[6] = regs->a6;
4665 env->aregs[7] = regs->usp;
4666 env->sr = regs->sr;
4667 ts->sim_syscalls = 1;
4668 }
4669 #elif defined(TARGET_MICROBLAZE)
4670 {
4671 env->regs[0] = regs->r0;
4672 env->regs[1] = regs->r1;
4673 env->regs[2] = regs->r2;
4674 env->regs[3] = regs->r3;
4675 env->regs[4] = regs->r4;
4676 env->regs[5] = regs->r5;
4677 env->regs[6] = regs->r6;
4678 env->regs[7] = regs->r7;
4679 env->regs[8] = regs->r8;
4680 env->regs[9] = regs->r9;
4681 env->regs[10] = regs->r10;
4682 env->regs[11] = regs->r11;
4683 env->regs[12] = regs->r12;
4684 env->regs[13] = regs->r13;
4685 env->regs[14] = regs->r14;
4686 env->regs[15] = regs->r15;
4687 env->regs[16] = regs->r16;
4688 env->regs[17] = regs->r17;
4689 env->regs[18] = regs->r18;
4690 env->regs[19] = regs->r19;
4691 env->regs[20] = regs->r20;
4692 env->regs[21] = regs->r21;
4693 env->regs[22] = regs->r22;
4694 env->regs[23] = regs->r23;
4695 env->regs[24] = regs->r24;
4696 env->regs[25] = regs->r25;
4697 env->regs[26] = regs->r26;
4698 env->regs[27] = regs->r27;
4699 env->regs[28] = regs->r28;
4700 env->regs[29] = regs->r29;
4701 env->regs[30] = regs->r30;
4702 env->regs[31] = regs->r31;
4703 env->sregs[SR_PC] = regs->pc;
4704 }
4705 #elif defined(TARGET_MIPS)
4706 {
4707 int i;
4708
4709 for(i = 0; i < 32; i++) {
4710 env->active_tc.gpr[i] = regs->regs[i];
4711 }
4712 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1;
4713 if (regs->cp0_epc & 1) {
4714 env->hflags |= MIPS_HFLAG_M16;
4715 }
4716 if (((info->elf_flags & EF_MIPS_NAN2008) != 0) !=
4717 ((env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) != 0)) {
4718 if ((env->active_fpu.fcr31_rw_bitmask &
4719 (1 << FCR31_NAN2008)) == 0) {
4720 fprintf(stderr, "ELF binary's NaN mode not supported by CPU\n");
4721 exit(1);
4722 }
4723 if ((info->elf_flags & EF_MIPS_NAN2008) != 0) {
4724 env->active_fpu.fcr31 |= (1 << FCR31_NAN2008);
4725 } else {
4726 env->active_fpu.fcr31 &= ~(1 << FCR31_NAN2008);
4727 }
4728 restore_snan_bit_mode(env);
4729 }
4730 }
4731 #elif defined(TARGET_NIOS2)
4732 {
4733 env->regs[0] = 0;
4734 env->regs[1] = regs->r1;
4735 env->regs[2] = regs->r2;
4736 env->regs[3] = regs->r3;
4737 env->regs[4] = regs->r4;
4738 env->regs[5] = regs->r5;
4739 env->regs[6] = regs->r6;
4740 env->regs[7] = regs->r7;
4741 env->regs[8] = regs->r8;
4742 env->regs[9] = regs->r9;
4743 env->regs[10] = regs->r10;
4744 env->regs[11] = regs->r11;
4745 env->regs[12] = regs->r12;
4746 env->regs[13] = regs->r13;
4747 env->regs[14] = regs->r14;
4748 env->regs[15] = regs->r15;
4749 /* TODO: unsigned long orig_r2; */
4750 env->regs[R_RA] = regs->ra;
4751 env->regs[R_FP] = regs->fp;
4752 env->regs[R_SP] = regs->sp;
4753 env->regs[R_GP] = regs->gp;
4754 env->regs[CR_ESTATUS] = regs->estatus;
4755 env->regs[R_EA] = regs->ea;
4756 /* TODO: unsigned long orig_r7; */
4757
4758 /* Emulate eret when starting thread. */
4759 env->regs[R_PC] = regs->ea;
4760 }
4761 #elif defined(TARGET_OPENRISC)
4762 {
4763 int i;
4764
4765 for (i = 0; i < 32; i++) {
4766 cpu_set_gpr(env, i, regs->gpr[i]);
4767 }
4768 env->pc = regs->pc;
4769 cpu_set_sr(env, regs->sr);
4770 }
4771 #elif defined(TARGET_SH4)
4772 {
4773 int i;
4774
4775 for(i = 0; i < 16; i++) {
4776 env->gregs[i] = regs->regs[i];
4777 }
4778 env->pc = regs->pc;
4779 }
4780 #elif defined(TARGET_ALPHA)
4781 {
4782 int i;
4783
4784 for(i = 0; i < 28; i++) {
4785 env->ir[i] = ((abi_ulong *)regs)[i];
4786 }
4787 env->ir[IR_SP] = regs->usp;
4788 env->pc = regs->pc;
4789 }
4790 #elif defined(TARGET_CRIS)
4791 {
4792 env->regs[0] = regs->r0;
4793 env->regs[1] = regs->r1;
4794 env->regs[2] = regs->r2;
4795 env->regs[3] = regs->r3;
4796 env->regs[4] = regs->r4;
4797 env->regs[5] = regs->r5;
4798 env->regs[6] = regs->r6;
4799 env->regs[7] = regs->r7;
4800 env->regs[8] = regs->r8;
4801 env->regs[9] = regs->r9;
4802 env->regs[10] = regs->r10;
4803 env->regs[11] = regs->r11;
4804 env->regs[12] = regs->r12;
4805 env->regs[13] = regs->r13;
4806 env->regs[14] = info->start_stack;
4807 env->regs[15] = regs->acr;
4808 env->pc = regs->erp;
4809 }
4810 #elif defined(TARGET_S390X)
4811 {
4812 int i;
4813 for (i = 0; i < 16; i++) {
4814 env->regs[i] = regs->gprs[i];
4815 }
4816 env->psw.mask = regs->psw.mask;
4817 env->psw.addr = regs->psw.addr;
4818 }
4819 #elif defined(TARGET_TILEGX)
4820 {
4821 int i;
4822 for (i = 0; i < TILEGX_R_COUNT; i++) {
4823 env->regs[i] = regs->regs[i];
4824 }
4825 for (i = 0; i < TILEGX_SPR_COUNT; i++) {
4826 env->spregs[i] = 0;
4827 }
4828 env->pc = regs->pc;
4829 }
4830 #elif defined(TARGET_HPPA)
4831 {
4832 int i;
4833 for (i = 1; i < 32; i++) {
4834 env->gr[i] = regs->gr[i];
4835 }
4836 env->iaoq_f = regs->iaoq[0];
4837 env->iaoq_b = regs->iaoq[1];
4838 }
4839 #else
4840 #error unsupported target CPU
4841 #endif
4842
4843 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4844 ts->stack_base = info->start_stack;
4845 ts->heap_base = info->brk;
4846 /* This will be filled in on the first SYS_HEAPINFO call. */
4847 ts->heap_limit = 0;
4848 #endif
4849
4850 if (gdbstub_port) {
4851 if (gdbserver_start(gdbstub_port) < 0) {
4852 fprintf(stderr, "qemu: could not open gdbserver on port %d\n",
4853 gdbstub_port);
4854 exit(EXIT_FAILURE);
4855 }
4856 gdb_handlesig(cpu, 0);
4857 }
4858 cpu_loop(env);
4859 /* never exits */
4860 return 0;
4861 }