]> git.proxmox.com Git - mirror_qemu.git/blob - memory.c
arm/translate-a64: treat DISAS_UPDATE as variant of DISAS_EXIT
[mirror_qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "exec/ioport.h"
23 #include "qapi/visitor.h"
24 #include "qemu/bitops.h"
25 #include "qemu/error-report.h"
26 #include "qom/object.h"
27 #include "trace-root.h"
28
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/misc/mmio_interface.h"
34 #include "hw/qdev-properties.h"
35 #include "migration/vmstate.h"
36
37 //#define DEBUG_UNASSIGNED
38
39 static unsigned memory_region_transaction_depth;
40 static bool memory_region_update_pending;
41 static bool ioeventfd_update_pending;
42 static bool global_dirty_log = false;
43
44 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
45 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
46
47 static QTAILQ_HEAD(, AddressSpace) address_spaces
48 = QTAILQ_HEAD_INITIALIZER(address_spaces);
49
50 static GHashTable *flat_views;
51
52 typedef struct AddrRange AddrRange;
53
54 /*
55 * Note that signed integers are needed for negative offsetting in aliases
56 * (large MemoryRegion::alias_offset).
57 */
58 struct AddrRange {
59 Int128 start;
60 Int128 size;
61 };
62
63 static AddrRange addrrange_make(Int128 start, Int128 size)
64 {
65 return (AddrRange) { start, size };
66 }
67
68 static bool addrrange_equal(AddrRange r1, AddrRange r2)
69 {
70 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
71 }
72
73 static Int128 addrrange_end(AddrRange r)
74 {
75 return int128_add(r.start, r.size);
76 }
77
78 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
79 {
80 int128_addto(&range.start, delta);
81 return range;
82 }
83
84 static bool addrrange_contains(AddrRange range, Int128 addr)
85 {
86 return int128_ge(addr, range.start)
87 && int128_lt(addr, addrrange_end(range));
88 }
89
90 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
91 {
92 return addrrange_contains(r1, r2.start)
93 || addrrange_contains(r2, r1.start);
94 }
95
96 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
97 {
98 Int128 start = int128_max(r1.start, r2.start);
99 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
100 return addrrange_make(start, int128_sub(end, start));
101 }
102
103 enum ListenerDirection { Forward, Reverse };
104
105 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
106 do { \
107 MemoryListener *_listener; \
108 \
109 switch (_direction) { \
110 case Forward: \
111 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
112 if (_listener->_callback) { \
113 _listener->_callback(_listener, ##_args); \
114 } \
115 } \
116 break; \
117 case Reverse: \
118 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
119 memory_listeners, link) { \
120 if (_listener->_callback) { \
121 _listener->_callback(_listener, ##_args); \
122 } \
123 } \
124 break; \
125 default: \
126 abort(); \
127 } \
128 } while (0)
129
130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131 do { \
132 MemoryListener *_listener; \
133 struct memory_listeners_as *list = &(_as)->listeners; \
134 \
135 switch (_direction) { \
136 case Forward: \
137 QTAILQ_FOREACH(_listener, list, link_as) { \
138 if (_listener->_callback) { \
139 _listener->_callback(_listener, _section, ##_args); \
140 } \
141 } \
142 break; \
143 case Reverse: \
144 QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
145 link_as) { \
146 if (_listener->_callback) { \
147 _listener->_callback(_listener, _section, ##_args); \
148 } \
149 } \
150 break; \
151 default: \
152 abort(); \
153 } \
154 } while (0)
155
156 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
157 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
158 do { \
159 MemoryRegionSection mrs = section_from_flat_range(fr, \
160 address_space_to_flatview(as)); \
161 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
162 } while(0)
163
164 struct CoalescedMemoryRange {
165 AddrRange addr;
166 QTAILQ_ENTRY(CoalescedMemoryRange) link;
167 };
168
169 struct MemoryRegionIoeventfd {
170 AddrRange addr;
171 bool match_data;
172 uint64_t data;
173 EventNotifier *e;
174 };
175
176 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
177 MemoryRegionIoeventfd b)
178 {
179 if (int128_lt(a.addr.start, b.addr.start)) {
180 return true;
181 } else if (int128_gt(a.addr.start, b.addr.start)) {
182 return false;
183 } else if (int128_lt(a.addr.size, b.addr.size)) {
184 return true;
185 } else if (int128_gt(a.addr.size, b.addr.size)) {
186 return false;
187 } else if (a.match_data < b.match_data) {
188 return true;
189 } else if (a.match_data > b.match_data) {
190 return false;
191 } else if (a.match_data) {
192 if (a.data < b.data) {
193 return true;
194 } else if (a.data > b.data) {
195 return false;
196 }
197 }
198 if (a.e < b.e) {
199 return true;
200 } else if (a.e > b.e) {
201 return false;
202 }
203 return false;
204 }
205
206 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
207 MemoryRegionIoeventfd b)
208 {
209 return !memory_region_ioeventfd_before(a, b)
210 && !memory_region_ioeventfd_before(b, a);
211 }
212
213 /* Range of memory in the global map. Addresses are absolute. */
214 struct FlatRange {
215 MemoryRegion *mr;
216 hwaddr offset_in_region;
217 AddrRange addr;
218 uint8_t dirty_log_mask;
219 bool romd_mode;
220 bool readonly;
221 };
222
223 typedef struct AddressSpaceOps AddressSpaceOps;
224
225 #define FOR_EACH_FLAT_RANGE(var, view) \
226 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
227
228 static inline MemoryRegionSection
229 section_from_flat_range(FlatRange *fr, FlatView *fv)
230 {
231 return (MemoryRegionSection) {
232 .mr = fr->mr,
233 .fv = fv,
234 .offset_within_region = fr->offset_in_region,
235 .size = fr->addr.size,
236 .offset_within_address_space = int128_get64(fr->addr.start),
237 .readonly = fr->readonly,
238 };
239 }
240
241 static bool flatrange_equal(FlatRange *a, FlatRange *b)
242 {
243 return a->mr == b->mr
244 && addrrange_equal(a->addr, b->addr)
245 && a->offset_in_region == b->offset_in_region
246 && a->romd_mode == b->romd_mode
247 && a->readonly == b->readonly;
248 }
249
250 static FlatView *flatview_new(MemoryRegion *mr_root)
251 {
252 FlatView *view;
253
254 view = g_new0(FlatView, 1);
255 view->ref = 1;
256 view->root = mr_root;
257 memory_region_ref(mr_root);
258 trace_flatview_new(view, mr_root);
259
260 return view;
261 }
262
263 /* Insert a range into a given position. Caller is responsible for maintaining
264 * sorting order.
265 */
266 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
267 {
268 if (view->nr == view->nr_allocated) {
269 view->nr_allocated = MAX(2 * view->nr, 10);
270 view->ranges = g_realloc(view->ranges,
271 view->nr_allocated * sizeof(*view->ranges));
272 }
273 memmove(view->ranges + pos + 1, view->ranges + pos,
274 (view->nr - pos) * sizeof(FlatRange));
275 view->ranges[pos] = *range;
276 memory_region_ref(range->mr);
277 ++view->nr;
278 }
279
280 static void flatview_destroy(FlatView *view)
281 {
282 int i;
283
284 trace_flatview_destroy(view, view->root);
285 if (view->dispatch) {
286 address_space_dispatch_free(view->dispatch);
287 }
288 for (i = 0; i < view->nr; i++) {
289 memory_region_unref(view->ranges[i].mr);
290 }
291 g_free(view->ranges);
292 memory_region_unref(view->root);
293 g_free(view);
294 }
295
296 static bool flatview_ref(FlatView *view)
297 {
298 return atomic_fetch_inc_nonzero(&view->ref) > 0;
299 }
300
301 static void flatview_unref(FlatView *view)
302 {
303 if (atomic_fetch_dec(&view->ref) == 1) {
304 trace_flatview_destroy_rcu(view, view->root);
305 assert(view->root);
306 call_rcu(view, flatview_destroy, rcu);
307 }
308 }
309
310 static bool can_merge(FlatRange *r1, FlatRange *r2)
311 {
312 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
313 && r1->mr == r2->mr
314 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
315 r1->addr.size),
316 int128_make64(r2->offset_in_region))
317 && r1->dirty_log_mask == r2->dirty_log_mask
318 && r1->romd_mode == r2->romd_mode
319 && r1->readonly == r2->readonly;
320 }
321
322 /* Attempt to simplify a view by merging adjacent ranges */
323 static void flatview_simplify(FlatView *view)
324 {
325 unsigned i, j;
326
327 i = 0;
328 while (i < view->nr) {
329 j = i + 1;
330 while (j < view->nr
331 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
332 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
333 ++j;
334 }
335 ++i;
336 memmove(&view->ranges[i], &view->ranges[j],
337 (view->nr - j) * sizeof(view->ranges[j]));
338 view->nr -= j - i;
339 }
340 }
341
342 static bool memory_region_big_endian(MemoryRegion *mr)
343 {
344 #ifdef TARGET_WORDS_BIGENDIAN
345 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
346 #else
347 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
348 #endif
349 }
350
351 static bool memory_region_wrong_endianness(MemoryRegion *mr)
352 {
353 #ifdef TARGET_WORDS_BIGENDIAN
354 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
355 #else
356 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
357 #endif
358 }
359
360 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
361 {
362 if (memory_region_wrong_endianness(mr)) {
363 switch (size) {
364 case 1:
365 break;
366 case 2:
367 *data = bswap16(*data);
368 break;
369 case 4:
370 *data = bswap32(*data);
371 break;
372 case 8:
373 *data = bswap64(*data);
374 break;
375 default:
376 abort();
377 }
378 }
379 }
380
381 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
382 {
383 MemoryRegion *root;
384 hwaddr abs_addr = offset;
385
386 abs_addr += mr->addr;
387 for (root = mr; root->container; ) {
388 root = root->container;
389 abs_addr += root->addr;
390 }
391
392 return abs_addr;
393 }
394
395 static int get_cpu_index(void)
396 {
397 if (current_cpu) {
398 return current_cpu->cpu_index;
399 }
400 return -1;
401 }
402
403 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
404 hwaddr addr,
405 uint64_t *value,
406 unsigned size,
407 unsigned shift,
408 uint64_t mask,
409 MemTxAttrs attrs)
410 {
411 uint64_t tmp;
412
413 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
414 if (mr->subpage) {
415 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
416 } else if (mr == &io_mem_notdirty) {
417 /* Accesses to code which has previously been translated into a TB show
418 * up in the MMIO path, as accesses to the io_mem_notdirty
419 * MemoryRegion. */
420 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
421 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
422 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
423 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
424 }
425 *value |= (tmp & mask) << shift;
426 return MEMTX_OK;
427 }
428
429 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
430 hwaddr addr,
431 uint64_t *value,
432 unsigned size,
433 unsigned shift,
434 uint64_t mask,
435 MemTxAttrs attrs)
436 {
437 uint64_t tmp;
438
439 tmp = mr->ops->read(mr->opaque, addr, size);
440 if (mr->subpage) {
441 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
442 } else if (mr == &io_mem_notdirty) {
443 /* Accesses to code which has previously been translated into a TB show
444 * up in the MMIO path, as accesses to the io_mem_notdirty
445 * MemoryRegion. */
446 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
447 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
448 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
449 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
450 }
451 *value |= (tmp & mask) << shift;
452 return MEMTX_OK;
453 }
454
455 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
456 hwaddr addr,
457 uint64_t *value,
458 unsigned size,
459 unsigned shift,
460 uint64_t mask,
461 MemTxAttrs attrs)
462 {
463 uint64_t tmp = 0;
464 MemTxResult r;
465
466 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
467 if (mr->subpage) {
468 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
469 } else if (mr == &io_mem_notdirty) {
470 /* Accesses to code which has previously been translated into a TB show
471 * up in the MMIO path, as accesses to the io_mem_notdirty
472 * MemoryRegion. */
473 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
474 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
475 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
476 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
477 }
478 *value |= (tmp & mask) << shift;
479 return r;
480 }
481
482 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
483 hwaddr addr,
484 uint64_t *value,
485 unsigned size,
486 unsigned shift,
487 uint64_t mask,
488 MemTxAttrs attrs)
489 {
490 uint64_t tmp;
491
492 tmp = (*value >> shift) & mask;
493 if (mr->subpage) {
494 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
495 } else if (mr == &io_mem_notdirty) {
496 /* Accesses to code which has previously been translated into a TB show
497 * up in the MMIO path, as accesses to the io_mem_notdirty
498 * MemoryRegion. */
499 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
500 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
501 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
502 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
503 }
504 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
505 return MEMTX_OK;
506 }
507
508 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
509 hwaddr addr,
510 uint64_t *value,
511 unsigned size,
512 unsigned shift,
513 uint64_t mask,
514 MemTxAttrs attrs)
515 {
516 uint64_t tmp;
517
518 tmp = (*value >> shift) & mask;
519 if (mr->subpage) {
520 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
521 } else if (mr == &io_mem_notdirty) {
522 /* Accesses to code which has previously been translated into a TB show
523 * up in the MMIO path, as accesses to the io_mem_notdirty
524 * MemoryRegion. */
525 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
526 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
527 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
528 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
529 }
530 mr->ops->write(mr->opaque, addr, tmp, size);
531 return MEMTX_OK;
532 }
533
534 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
535 hwaddr addr,
536 uint64_t *value,
537 unsigned size,
538 unsigned shift,
539 uint64_t mask,
540 MemTxAttrs attrs)
541 {
542 uint64_t tmp;
543
544 tmp = (*value >> shift) & mask;
545 if (mr->subpage) {
546 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
547 } else if (mr == &io_mem_notdirty) {
548 /* Accesses to code which has previously been translated into a TB show
549 * up in the MMIO path, as accesses to the io_mem_notdirty
550 * MemoryRegion. */
551 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
552 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
553 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
554 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
555 }
556 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
557 }
558
559 static MemTxResult access_with_adjusted_size(hwaddr addr,
560 uint64_t *value,
561 unsigned size,
562 unsigned access_size_min,
563 unsigned access_size_max,
564 MemTxResult (*access_fn)
565 (MemoryRegion *mr,
566 hwaddr addr,
567 uint64_t *value,
568 unsigned size,
569 unsigned shift,
570 uint64_t mask,
571 MemTxAttrs attrs),
572 MemoryRegion *mr,
573 MemTxAttrs attrs)
574 {
575 uint64_t access_mask;
576 unsigned access_size;
577 unsigned i;
578 MemTxResult r = MEMTX_OK;
579
580 if (!access_size_min) {
581 access_size_min = 1;
582 }
583 if (!access_size_max) {
584 access_size_max = 4;
585 }
586
587 /* FIXME: support unaligned access? */
588 access_size = MAX(MIN(size, access_size_max), access_size_min);
589 access_mask = -1ULL >> (64 - access_size * 8);
590 if (memory_region_big_endian(mr)) {
591 for (i = 0; i < size; i += access_size) {
592 r |= access_fn(mr, addr + i, value, access_size,
593 (size - access_size - i) * 8, access_mask, attrs);
594 }
595 } else {
596 for (i = 0; i < size; i += access_size) {
597 r |= access_fn(mr, addr + i, value, access_size, i * 8,
598 access_mask, attrs);
599 }
600 }
601 return r;
602 }
603
604 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
605 {
606 AddressSpace *as;
607
608 while (mr->container) {
609 mr = mr->container;
610 }
611 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
612 if (mr == as->root) {
613 return as;
614 }
615 }
616 return NULL;
617 }
618
619 /* Render a memory region into the global view. Ranges in @view obscure
620 * ranges in @mr.
621 */
622 static void render_memory_region(FlatView *view,
623 MemoryRegion *mr,
624 Int128 base,
625 AddrRange clip,
626 bool readonly)
627 {
628 MemoryRegion *subregion;
629 unsigned i;
630 hwaddr offset_in_region;
631 Int128 remain;
632 Int128 now;
633 FlatRange fr;
634 AddrRange tmp;
635
636 if (!mr->enabled) {
637 return;
638 }
639
640 int128_addto(&base, int128_make64(mr->addr));
641 readonly |= mr->readonly;
642
643 tmp = addrrange_make(base, mr->size);
644
645 if (!addrrange_intersects(tmp, clip)) {
646 return;
647 }
648
649 clip = addrrange_intersection(tmp, clip);
650
651 if (mr->alias) {
652 int128_subfrom(&base, int128_make64(mr->alias->addr));
653 int128_subfrom(&base, int128_make64(mr->alias_offset));
654 render_memory_region(view, mr->alias, base, clip, readonly);
655 return;
656 }
657
658 /* Render subregions in priority order. */
659 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
660 render_memory_region(view, subregion, base, clip, readonly);
661 }
662
663 if (!mr->terminates) {
664 return;
665 }
666
667 offset_in_region = int128_get64(int128_sub(clip.start, base));
668 base = clip.start;
669 remain = clip.size;
670
671 fr.mr = mr;
672 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
673 fr.romd_mode = mr->romd_mode;
674 fr.readonly = readonly;
675
676 /* Render the region itself into any gaps left by the current view. */
677 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
678 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
679 continue;
680 }
681 if (int128_lt(base, view->ranges[i].addr.start)) {
682 now = int128_min(remain,
683 int128_sub(view->ranges[i].addr.start, base));
684 fr.offset_in_region = offset_in_region;
685 fr.addr = addrrange_make(base, now);
686 flatview_insert(view, i, &fr);
687 ++i;
688 int128_addto(&base, now);
689 offset_in_region += int128_get64(now);
690 int128_subfrom(&remain, now);
691 }
692 now = int128_sub(int128_min(int128_add(base, remain),
693 addrrange_end(view->ranges[i].addr)),
694 base);
695 int128_addto(&base, now);
696 offset_in_region += int128_get64(now);
697 int128_subfrom(&remain, now);
698 }
699 if (int128_nz(remain)) {
700 fr.offset_in_region = offset_in_region;
701 fr.addr = addrrange_make(base, remain);
702 flatview_insert(view, i, &fr);
703 }
704 }
705
706 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
707 {
708 while (mr->enabled) {
709 if (mr->alias) {
710 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
711 /* The alias is included in its entirety. Use it as
712 * the "real" root, so that we can share more FlatViews.
713 */
714 mr = mr->alias;
715 continue;
716 }
717 } else if (!mr->terminates) {
718 unsigned int found = 0;
719 MemoryRegion *child, *next = NULL;
720 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
721 if (child->enabled) {
722 if (++found > 1) {
723 next = NULL;
724 break;
725 }
726 if (!child->addr && int128_ge(mr->size, child->size)) {
727 /* A child is included in its entirety. If it's the only
728 * enabled one, use it in the hope of finding an alias down the
729 * way. This will also let us share FlatViews.
730 */
731 next = child;
732 }
733 }
734 }
735 if (found == 0) {
736 return NULL;
737 }
738 if (next) {
739 mr = next;
740 continue;
741 }
742 }
743
744 return mr;
745 }
746
747 return NULL;
748 }
749
750 /* Render a memory topology into a list of disjoint absolute ranges. */
751 static FlatView *generate_memory_topology(MemoryRegion *mr)
752 {
753 int i;
754 FlatView *view;
755
756 view = flatview_new(mr);
757
758 if (mr) {
759 render_memory_region(view, mr, int128_zero(),
760 addrrange_make(int128_zero(), int128_2_64()), false);
761 }
762 flatview_simplify(view);
763
764 view->dispatch = address_space_dispatch_new(view);
765 for (i = 0; i < view->nr; i++) {
766 MemoryRegionSection mrs =
767 section_from_flat_range(&view->ranges[i], view);
768 flatview_add_to_dispatch(view, &mrs);
769 }
770 address_space_dispatch_compact(view->dispatch);
771 g_hash_table_replace(flat_views, mr, view);
772
773 return view;
774 }
775
776 static void address_space_add_del_ioeventfds(AddressSpace *as,
777 MemoryRegionIoeventfd *fds_new,
778 unsigned fds_new_nb,
779 MemoryRegionIoeventfd *fds_old,
780 unsigned fds_old_nb)
781 {
782 unsigned iold, inew;
783 MemoryRegionIoeventfd *fd;
784 MemoryRegionSection section;
785
786 /* Generate a symmetric difference of the old and new fd sets, adding
787 * and deleting as necessary.
788 */
789
790 iold = inew = 0;
791 while (iold < fds_old_nb || inew < fds_new_nb) {
792 if (iold < fds_old_nb
793 && (inew == fds_new_nb
794 || memory_region_ioeventfd_before(fds_old[iold],
795 fds_new[inew]))) {
796 fd = &fds_old[iold];
797 section = (MemoryRegionSection) {
798 .fv = address_space_to_flatview(as),
799 .offset_within_address_space = int128_get64(fd->addr.start),
800 .size = fd->addr.size,
801 };
802 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
803 fd->match_data, fd->data, fd->e);
804 ++iold;
805 } else if (inew < fds_new_nb
806 && (iold == fds_old_nb
807 || memory_region_ioeventfd_before(fds_new[inew],
808 fds_old[iold]))) {
809 fd = &fds_new[inew];
810 section = (MemoryRegionSection) {
811 .fv = address_space_to_flatview(as),
812 .offset_within_address_space = int128_get64(fd->addr.start),
813 .size = fd->addr.size,
814 };
815 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
816 fd->match_data, fd->data, fd->e);
817 ++inew;
818 } else {
819 ++iold;
820 ++inew;
821 }
822 }
823 }
824
825 static FlatView *address_space_get_flatview(AddressSpace *as)
826 {
827 FlatView *view;
828
829 rcu_read_lock();
830 do {
831 view = address_space_to_flatview(as);
832 /* If somebody has replaced as->current_map concurrently,
833 * flatview_ref returns false.
834 */
835 } while (!flatview_ref(view));
836 rcu_read_unlock();
837 return view;
838 }
839
840 static void address_space_update_ioeventfds(AddressSpace *as)
841 {
842 FlatView *view;
843 FlatRange *fr;
844 unsigned ioeventfd_nb = 0;
845 MemoryRegionIoeventfd *ioeventfds = NULL;
846 AddrRange tmp;
847 unsigned i;
848
849 view = address_space_get_flatview(as);
850 FOR_EACH_FLAT_RANGE(fr, view) {
851 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
852 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
853 int128_sub(fr->addr.start,
854 int128_make64(fr->offset_in_region)));
855 if (addrrange_intersects(fr->addr, tmp)) {
856 ++ioeventfd_nb;
857 ioeventfds = g_realloc(ioeventfds,
858 ioeventfd_nb * sizeof(*ioeventfds));
859 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
860 ioeventfds[ioeventfd_nb-1].addr = tmp;
861 }
862 }
863 }
864
865 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
866 as->ioeventfds, as->ioeventfd_nb);
867
868 g_free(as->ioeventfds);
869 as->ioeventfds = ioeventfds;
870 as->ioeventfd_nb = ioeventfd_nb;
871 flatview_unref(view);
872 }
873
874 static void address_space_update_topology_pass(AddressSpace *as,
875 const FlatView *old_view,
876 const FlatView *new_view,
877 bool adding)
878 {
879 unsigned iold, inew;
880 FlatRange *frold, *frnew;
881
882 /* Generate a symmetric difference of the old and new memory maps.
883 * Kill ranges in the old map, and instantiate ranges in the new map.
884 */
885 iold = inew = 0;
886 while (iold < old_view->nr || inew < new_view->nr) {
887 if (iold < old_view->nr) {
888 frold = &old_view->ranges[iold];
889 } else {
890 frold = NULL;
891 }
892 if (inew < new_view->nr) {
893 frnew = &new_view->ranges[inew];
894 } else {
895 frnew = NULL;
896 }
897
898 if (frold
899 && (!frnew
900 || int128_lt(frold->addr.start, frnew->addr.start)
901 || (int128_eq(frold->addr.start, frnew->addr.start)
902 && !flatrange_equal(frold, frnew)))) {
903 /* In old but not in new, or in both but attributes changed. */
904
905 if (!adding) {
906 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
907 }
908
909 ++iold;
910 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
911 /* In both and unchanged (except logging may have changed) */
912
913 if (adding) {
914 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
915 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
916 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
917 frold->dirty_log_mask,
918 frnew->dirty_log_mask);
919 }
920 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
921 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
922 frold->dirty_log_mask,
923 frnew->dirty_log_mask);
924 }
925 }
926
927 ++iold;
928 ++inew;
929 } else {
930 /* In new */
931
932 if (adding) {
933 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
934 }
935
936 ++inew;
937 }
938 }
939 }
940
941 static void flatviews_init(void)
942 {
943 static FlatView *empty_view;
944
945 if (flat_views) {
946 return;
947 }
948
949 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
950 (GDestroyNotify) flatview_unref);
951 if (!empty_view) {
952 empty_view = generate_memory_topology(NULL);
953 /* We keep it alive forever in the global variable. */
954 flatview_ref(empty_view);
955 } else {
956 g_hash_table_replace(flat_views, NULL, empty_view);
957 flatview_ref(empty_view);
958 }
959 }
960
961 static void flatviews_reset(void)
962 {
963 AddressSpace *as;
964
965 if (flat_views) {
966 g_hash_table_unref(flat_views);
967 flat_views = NULL;
968 }
969 flatviews_init();
970
971 /* Render unique FVs */
972 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
973 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
974
975 if (g_hash_table_lookup(flat_views, physmr)) {
976 continue;
977 }
978
979 generate_memory_topology(physmr);
980 }
981 }
982
983 static void address_space_set_flatview(AddressSpace *as)
984 {
985 FlatView *old_view = address_space_to_flatview(as);
986 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
987 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
988
989 assert(new_view);
990
991 if (old_view == new_view) {
992 return;
993 }
994
995 if (old_view) {
996 flatview_ref(old_view);
997 }
998
999 flatview_ref(new_view);
1000
1001 if (!QTAILQ_EMPTY(&as->listeners)) {
1002 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1003
1004 if (!old_view2) {
1005 old_view2 = &tmpview;
1006 }
1007 address_space_update_topology_pass(as, old_view2, new_view, false);
1008 address_space_update_topology_pass(as, old_view2, new_view, true);
1009 }
1010
1011 /* Writes are protected by the BQL. */
1012 atomic_rcu_set(&as->current_map, new_view);
1013 if (old_view) {
1014 flatview_unref(old_view);
1015 }
1016
1017 /* Note that all the old MemoryRegions are still alive up to this
1018 * point. This relieves most MemoryListeners from the need to
1019 * ref/unref the MemoryRegions they get---unless they use them
1020 * outside the iothread mutex, in which case precise reference
1021 * counting is necessary.
1022 */
1023 if (old_view) {
1024 flatview_unref(old_view);
1025 }
1026 }
1027
1028 static void address_space_update_topology(AddressSpace *as)
1029 {
1030 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1031
1032 flatviews_init();
1033 if (!g_hash_table_lookup(flat_views, physmr)) {
1034 generate_memory_topology(physmr);
1035 }
1036 address_space_set_flatview(as);
1037 }
1038
1039 void memory_region_transaction_begin(void)
1040 {
1041 qemu_flush_coalesced_mmio_buffer();
1042 ++memory_region_transaction_depth;
1043 }
1044
1045 void memory_region_transaction_commit(void)
1046 {
1047 AddressSpace *as;
1048
1049 assert(memory_region_transaction_depth);
1050 assert(qemu_mutex_iothread_locked());
1051
1052 --memory_region_transaction_depth;
1053 if (!memory_region_transaction_depth) {
1054 if (memory_region_update_pending) {
1055 flatviews_reset();
1056
1057 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1058
1059 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1060 address_space_set_flatview(as);
1061 address_space_update_ioeventfds(as);
1062 }
1063 memory_region_update_pending = false;
1064 ioeventfd_update_pending = false;
1065 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1066 } else if (ioeventfd_update_pending) {
1067 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1068 address_space_update_ioeventfds(as);
1069 }
1070 ioeventfd_update_pending = false;
1071 }
1072 }
1073 }
1074
1075 static void memory_region_destructor_none(MemoryRegion *mr)
1076 {
1077 }
1078
1079 static void memory_region_destructor_ram(MemoryRegion *mr)
1080 {
1081 qemu_ram_free(mr->ram_block);
1082 }
1083
1084 static bool memory_region_need_escape(char c)
1085 {
1086 return c == '/' || c == '[' || c == '\\' || c == ']';
1087 }
1088
1089 static char *memory_region_escape_name(const char *name)
1090 {
1091 const char *p;
1092 char *escaped, *q;
1093 uint8_t c;
1094 size_t bytes = 0;
1095
1096 for (p = name; *p; p++) {
1097 bytes += memory_region_need_escape(*p) ? 4 : 1;
1098 }
1099 if (bytes == p - name) {
1100 return g_memdup(name, bytes + 1);
1101 }
1102
1103 escaped = g_malloc(bytes + 1);
1104 for (p = name, q = escaped; *p; p++) {
1105 c = *p;
1106 if (unlikely(memory_region_need_escape(c))) {
1107 *q++ = '\\';
1108 *q++ = 'x';
1109 *q++ = "0123456789abcdef"[c >> 4];
1110 c = "0123456789abcdef"[c & 15];
1111 }
1112 *q++ = c;
1113 }
1114 *q = 0;
1115 return escaped;
1116 }
1117
1118 static void memory_region_do_init(MemoryRegion *mr,
1119 Object *owner,
1120 const char *name,
1121 uint64_t size)
1122 {
1123 mr->size = int128_make64(size);
1124 if (size == UINT64_MAX) {
1125 mr->size = int128_2_64();
1126 }
1127 mr->name = g_strdup(name);
1128 mr->owner = owner;
1129 mr->ram_block = NULL;
1130
1131 if (name) {
1132 char *escaped_name = memory_region_escape_name(name);
1133 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1134
1135 if (!owner) {
1136 owner = container_get(qdev_get_machine(), "/unattached");
1137 }
1138
1139 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1140 object_unref(OBJECT(mr));
1141 g_free(name_array);
1142 g_free(escaped_name);
1143 }
1144 }
1145
1146 void memory_region_init(MemoryRegion *mr,
1147 Object *owner,
1148 const char *name,
1149 uint64_t size)
1150 {
1151 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1152 memory_region_do_init(mr, owner, name, size);
1153 }
1154
1155 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1156 void *opaque, Error **errp)
1157 {
1158 MemoryRegion *mr = MEMORY_REGION(obj);
1159 uint64_t value = mr->addr;
1160
1161 visit_type_uint64(v, name, &value, errp);
1162 }
1163
1164 static void memory_region_get_container(Object *obj, Visitor *v,
1165 const char *name, void *opaque,
1166 Error **errp)
1167 {
1168 MemoryRegion *mr = MEMORY_REGION(obj);
1169 gchar *path = (gchar *)"";
1170
1171 if (mr->container) {
1172 path = object_get_canonical_path(OBJECT(mr->container));
1173 }
1174 visit_type_str(v, name, &path, errp);
1175 if (mr->container) {
1176 g_free(path);
1177 }
1178 }
1179
1180 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1181 const char *part)
1182 {
1183 MemoryRegion *mr = MEMORY_REGION(obj);
1184
1185 return OBJECT(mr->container);
1186 }
1187
1188 static void memory_region_get_priority(Object *obj, Visitor *v,
1189 const char *name, void *opaque,
1190 Error **errp)
1191 {
1192 MemoryRegion *mr = MEMORY_REGION(obj);
1193 int32_t value = mr->priority;
1194
1195 visit_type_int32(v, name, &value, errp);
1196 }
1197
1198 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1199 void *opaque, Error **errp)
1200 {
1201 MemoryRegion *mr = MEMORY_REGION(obj);
1202 uint64_t value = memory_region_size(mr);
1203
1204 visit_type_uint64(v, name, &value, errp);
1205 }
1206
1207 static void memory_region_initfn(Object *obj)
1208 {
1209 MemoryRegion *mr = MEMORY_REGION(obj);
1210 ObjectProperty *op;
1211
1212 mr->ops = &unassigned_mem_ops;
1213 mr->enabled = true;
1214 mr->romd_mode = true;
1215 mr->global_locking = true;
1216 mr->destructor = memory_region_destructor_none;
1217 QTAILQ_INIT(&mr->subregions);
1218 QTAILQ_INIT(&mr->coalesced);
1219
1220 op = object_property_add(OBJECT(mr), "container",
1221 "link<" TYPE_MEMORY_REGION ">",
1222 memory_region_get_container,
1223 NULL, /* memory_region_set_container */
1224 NULL, NULL, &error_abort);
1225 op->resolve = memory_region_resolve_container;
1226
1227 object_property_add(OBJECT(mr), "addr", "uint64",
1228 memory_region_get_addr,
1229 NULL, /* memory_region_set_addr */
1230 NULL, NULL, &error_abort);
1231 object_property_add(OBJECT(mr), "priority", "uint32",
1232 memory_region_get_priority,
1233 NULL, /* memory_region_set_priority */
1234 NULL, NULL, &error_abort);
1235 object_property_add(OBJECT(mr), "size", "uint64",
1236 memory_region_get_size,
1237 NULL, /* memory_region_set_size, */
1238 NULL, NULL, &error_abort);
1239 }
1240
1241 static void iommu_memory_region_initfn(Object *obj)
1242 {
1243 MemoryRegion *mr = MEMORY_REGION(obj);
1244
1245 mr->is_iommu = true;
1246 }
1247
1248 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1249 unsigned size)
1250 {
1251 #ifdef DEBUG_UNASSIGNED
1252 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1253 #endif
1254 if (current_cpu != NULL) {
1255 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1256 }
1257 return 0;
1258 }
1259
1260 static void unassigned_mem_write(void *opaque, hwaddr addr,
1261 uint64_t val, unsigned size)
1262 {
1263 #ifdef DEBUG_UNASSIGNED
1264 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1265 #endif
1266 if (current_cpu != NULL) {
1267 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1268 }
1269 }
1270
1271 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1272 unsigned size, bool is_write)
1273 {
1274 return false;
1275 }
1276
1277 const MemoryRegionOps unassigned_mem_ops = {
1278 .valid.accepts = unassigned_mem_accepts,
1279 .endianness = DEVICE_NATIVE_ENDIAN,
1280 };
1281
1282 static uint64_t memory_region_ram_device_read(void *opaque,
1283 hwaddr addr, unsigned size)
1284 {
1285 MemoryRegion *mr = opaque;
1286 uint64_t data = (uint64_t)~0;
1287
1288 switch (size) {
1289 case 1:
1290 data = *(uint8_t *)(mr->ram_block->host + addr);
1291 break;
1292 case 2:
1293 data = *(uint16_t *)(mr->ram_block->host + addr);
1294 break;
1295 case 4:
1296 data = *(uint32_t *)(mr->ram_block->host + addr);
1297 break;
1298 case 8:
1299 data = *(uint64_t *)(mr->ram_block->host + addr);
1300 break;
1301 }
1302
1303 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1304
1305 return data;
1306 }
1307
1308 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1309 uint64_t data, unsigned size)
1310 {
1311 MemoryRegion *mr = opaque;
1312
1313 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1314
1315 switch (size) {
1316 case 1:
1317 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1318 break;
1319 case 2:
1320 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1321 break;
1322 case 4:
1323 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1324 break;
1325 case 8:
1326 *(uint64_t *)(mr->ram_block->host + addr) = data;
1327 break;
1328 }
1329 }
1330
1331 static const MemoryRegionOps ram_device_mem_ops = {
1332 .read = memory_region_ram_device_read,
1333 .write = memory_region_ram_device_write,
1334 .endianness = DEVICE_HOST_ENDIAN,
1335 .valid = {
1336 .min_access_size = 1,
1337 .max_access_size = 8,
1338 .unaligned = true,
1339 },
1340 .impl = {
1341 .min_access_size = 1,
1342 .max_access_size = 8,
1343 .unaligned = true,
1344 },
1345 };
1346
1347 bool memory_region_access_valid(MemoryRegion *mr,
1348 hwaddr addr,
1349 unsigned size,
1350 bool is_write)
1351 {
1352 int access_size_min, access_size_max;
1353 int access_size, i;
1354
1355 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1356 return false;
1357 }
1358
1359 if (!mr->ops->valid.accepts) {
1360 return true;
1361 }
1362
1363 access_size_min = mr->ops->valid.min_access_size;
1364 if (!mr->ops->valid.min_access_size) {
1365 access_size_min = 1;
1366 }
1367
1368 access_size_max = mr->ops->valid.max_access_size;
1369 if (!mr->ops->valid.max_access_size) {
1370 access_size_max = 4;
1371 }
1372
1373 access_size = MAX(MIN(size, access_size_max), access_size_min);
1374 for (i = 0; i < size; i += access_size) {
1375 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1376 is_write)) {
1377 return false;
1378 }
1379 }
1380
1381 return true;
1382 }
1383
1384 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1385 hwaddr addr,
1386 uint64_t *pval,
1387 unsigned size,
1388 MemTxAttrs attrs)
1389 {
1390 *pval = 0;
1391
1392 if (mr->ops->read) {
1393 return access_with_adjusted_size(addr, pval, size,
1394 mr->ops->impl.min_access_size,
1395 mr->ops->impl.max_access_size,
1396 memory_region_read_accessor,
1397 mr, attrs);
1398 } else if (mr->ops->read_with_attrs) {
1399 return access_with_adjusted_size(addr, pval, size,
1400 mr->ops->impl.min_access_size,
1401 mr->ops->impl.max_access_size,
1402 memory_region_read_with_attrs_accessor,
1403 mr, attrs);
1404 } else {
1405 return access_with_adjusted_size(addr, pval, size, 1, 4,
1406 memory_region_oldmmio_read_accessor,
1407 mr, attrs);
1408 }
1409 }
1410
1411 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1412 hwaddr addr,
1413 uint64_t *pval,
1414 unsigned size,
1415 MemTxAttrs attrs)
1416 {
1417 MemTxResult r;
1418
1419 if (!memory_region_access_valid(mr, addr, size, false)) {
1420 *pval = unassigned_mem_read(mr, addr, size);
1421 return MEMTX_DECODE_ERROR;
1422 }
1423
1424 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1425 adjust_endianness(mr, pval, size);
1426 return r;
1427 }
1428
1429 /* Return true if an eventfd was signalled */
1430 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1431 hwaddr addr,
1432 uint64_t data,
1433 unsigned size,
1434 MemTxAttrs attrs)
1435 {
1436 MemoryRegionIoeventfd ioeventfd = {
1437 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1438 .data = data,
1439 };
1440 unsigned i;
1441
1442 for (i = 0; i < mr->ioeventfd_nb; i++) {
1443 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1444 ioeventfd.e = mr->ioeventfds[i].e;
1445
1446 if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1447 event_notifier_set(ioeventfd.e);
1448 return true;
1449 }
1450 }
1451
1452 return false;
1453 }
1454
1455 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1456 hwaddr addr,
1457 uint64_t data,
1458 unsigned size,
1459 MemTxAttrs attrs)
1460 {
1461 if (!memory_region_access_valid(mr, addr, size, true)) {
1462 unassigned_mem_write(mr, addr, data, size);
1463 return MEMTX_DECODE_ERROR;
1464 }
1465
1466 adjust_endianness(mr, &data, size);
1467
1468 if ((!kvm_eventfds_enabled()) &&
1469 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1470 return MEMTX_OK;
1471 }
1472
1473 if (mr->ops->write) {
1474 return access_with_adjusted_size(addr, &data, size,
1475 mr->ops->impl.min_access_size,
1476 mr->ops->impl.max_access_size,
1477 memory_region_write_accessor, mr,
1478 attrs);
1479 } else if (mr->ops->write_with_attrs) {
1480 return
1481 access_with_adjusted_size(addr, &data, size,
1482 mr->ops->impl.min_access_size,
1483 mr->ops->impl.max_access_size,
1484 memory_region_write_with_attrs_accessor,
1485 mr, attrs);
1486 } else {
1487 return access_with_adjusted_size(addr, &data, size, 1, 4,
1488 memory_region_oldmmio_write_accessor,
1489 mr, attrs);
1490 }
1491 }
1492
1493 void memory_region_init_io(MemoryRegion *mr,
1494 Object *owner,
1495 const MemoryRegionOps *ops,
1496 void *opaque,
1497 const char *name,
1498 uint64_t size)
1499 {
1500 memory_region_init(mr, owner, name, size);
1501 mr->ops = ops ? ops : &unassigned_mem_ops;
1502 mr->opaque = opaque;
1503 mr->terminates = true;
1504 }
1505
1506 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1507 Object *owner,
1508 const char *name,
1509 uint64_t size,
1510 Error **errp)
1511 {
1512 memory_region_init(mr, owner, name, size);
1513 mr->ram = true;
1514 mr->terminates = true;
1515 mr->destructor = memory_region_destructor_ram;
1516 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1517 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1518 }
1519
1520 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1521 Object *owner,
1522 const char *name,
1523 uint64_t size,
1524 uint64_t max_size,
1525 void (*resized)(const char*,
1526 uint64_t length,
1527 void *host),
1528 Error **errp)
1529 {
1530 memory_region_init(mr, owner, name, size);
1531 mr->ram = true;
1532 mr->terminates = true;
1533 mr->destructor = memory_region_destructor_ram;
1534 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1535 mr, errp);
1536 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1537 }
1538
1539 #ifdef __linux__
1540 void memory_region_init_ram_from_file(MemoryRegion *mr,
1541 struct Object *owner,
1542 const char *name,
1543 uint64_t size,
1544 bool share,
1545 const char *path,
1546 Error **errp)
1547 {
1548 memory_region_init(mr, owner, name, size);
1549 mr->ram = true;
1550 mr->terminates = true;
1551 mr->destructor = memory_region_destructor_ram;
1552 mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1553 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1554 }
1555
1556 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1557 struct Object *owner,
1558 const char *name,
1559 uint64_t size,
1560 bool share,
1561 int fd,
1562 Error **errp)
1563 {
1564 memory_region_init(mr, owner, name, size);
1565 mr->ram = true;
1566 mr->terminates = true;
1567 mr->destructor = memory_region_destructor_ram;
1568 mr->ram_block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
1569 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1570 }
1571 #endif
1572
1573 void memory_region_init_ram_ptr(MemoryRegion *mr,
1574 Object *owner,
1575 const char *name,
1576 uint64_t size,
1577 void *ptr)
1578 {
1579 memory_region_init(mr, owner, name, size);
1580 mr->ram = true;
1581 mr->terminates = true;
1582 mr->destructor = memory_region_destructor_ram;
1583 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1584
1585 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1586 assert(ptr != NULL);
1587 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1588 }
1589
1590 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1591 Object *owner,
1592 const char *name,
1593 uint64_t size,
1594 void *ptr)
1595 {
1596 memory_region_init_ram_ptr(mr, owner, name, size, ptr);
1597 mr->ram_device = true;
1598 mr->ops = &ram_device_mem_ops;
1599 mr->opaque = mr;
1600 }
1601
1602 void memory_region_init_alias(MemoryRegion *mr,
1603 Object *owner,
1604 const char *name,
1605 MemoryRegion *orig,
1606 hwaddr offset,
1607 uint64_t size)
1608 {
1609 memory_region_init(mr, owner, name, size);
1610 mr->alias = orig;
1611 mr->alias_offset = offset;
1612 }
1613
1614 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1615 struct Object *owner,
1616 const char *name,
1617 uint64_t size,
1618 Error **errp)
1619 {
1620 memory_region_init(mr, owner, name, size);
1621 mr->ram = true;
1622 mr->readonly = true;
1623 mr->terminates = true;
1624 mr->destructor = memory_region_destructor_ram;
1625 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1626 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1627 }
1628
1629 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1630 Object *owner,
1631 const MemoryRegionOps *ops,
1632 void *opaque,
1633 const char *name,
1634 uint64_t size,
1635 Error **errp)
1636 {
1637 assert(ops);
1638 memory_region_init(mr, owner, name, size);
1639 mr->ops = ops;
1640 mr->opaque = opaque;
1641 mr->terminates = true;
1642 mr->rom_device = true;
1643 mr->destructor = memory_region_destructor_ram;
1644 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1645 }
1646
1647 void memory_region_init_iommu(void *_iommu_mr,
1648 size_t instance_size,
1649 const char *mrtypename,
1650 Object *owner,
1651 const char *name,
1652 uint64_t size)
1653 {
1654 struct IOMMUMemoryRegion *iommu_mr;
1655 struct MemoryRegion *mr;
1656
1657 object_initialize(_iommu_mr, instance_size, mrtypename);
1658 mr = MEMORY_REGION(_iommu_mr);
1659 memory_region_do_init(mr, owner, name, size);
1660 iommu_mr = IOMMU_MEMORY_REGION(mr);
1661 mr->terminates = true; /* then re-forwards */
1662 QLIST_INIT(&iommu_mr->iommu_notify);
1663 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1664 }
1665
1666 static void memory_region_finalize(Object *obj)
1667 {
1668 MemoryRegion *mr = MEMORY_REGION(obj);
1669
1670 assert(!mr->container);
1671
1672 /* We know the region is not visible in any address space (it
1673 * does not have a container and cannot be a root either because
1674 * it has no references, so we can blindly clear mr->enabled.
1675 * memory_region_set_enabled instead could trigger a transaction
1676 * and cause an infinite loop.
1677 */
1678 mr->enabled = false;
1679 memory_region_transaction_begin();
1680 while (!QTAILQ_EMPTY(&mr->subregions)) {
1681 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1682 memory_region_del_subregion(mr, subregion);
1683 }
1684 memory_region_transaction_commit();
1685
1686 mr->destructor(mr);
1687 memory_region_clear_coalescing(mr);
1688 g_free((char *)mr->name);
1689 g_free(mr->ioeventfds);
1690 }
1691
1692 Object *memory_region_owner(MemoryRegion *mr)
1693 {
1694 Object *obj = OBJECT(mr);
1695 return obj->parent;
1696 }
1697
1698 void memory_region_ref(MemoryRegion *mr)
1699 {
1700 /* MMIO callbacks most likely will access data that belongs
1701 * to the owner, hence the need to ref/unref the owner whenever
1702 * the memory region is in use.
1703 *
1704 * The memory region is a child of its owner. As long as the
1705 * owner doesn't call unparent itself on the memory region,
1706 * ref-ing the owner will also keep the memory region alive.
1707 * Memory regions without an owner are supposed to never go away;
1708 * we do not ref/unref them because it slows down DMA sensibly.
1709 */
1710 if (mr && mr->owner) {
1711 object_ref(mr->owner);
1712 }
1713 }
1714
1715 void memory_region_unref(MemoryRegion *mr)
1716 {
1717 if (mr && mr->owner) {
1718 object_unref(mr->owner);
1719 }
1720 }
1721
1722 uint64_t memory_region_size(MemoryRegion *mr)
1723 {
1724 if (int128_eq(mr->size, int128_2_64())) {
1725 return UINT64_MAX;
1726 }
1727 return int128_get64(mr->size);
1728 }
1729
1730 const char *memory_region_name(const MemoryRegion *mr)
1731 {
1732 if (!mr->name) {
1733 ((MemoryRegion *)mr)->name =
1734 object_get_canonical_path_component(OBJECT(mr));
1735 }
1736 return mr->name;
1737 }
1738
1739 bool memory_region_is_ram_device(MemoryRegion *mr)
1740 {
1741 return mr->ram_device;
1742 }
1743
1744 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1745 {
1746 uint8_t mask = mr->dirty_log_mask;
1747 if (global_dirty_log && mr->ram_block) {
1748 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1749 }
1750 return mask;
1751 }
1752
1753 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1754 {
1755 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1756 }
1757
1758 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr)
1759 {
1760 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1761 IOMMUNotifier *iommu_notifier;
1762 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1763
1764 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1765 flags |= iommu_notifier->notifier_flags;
1766 }
1767
1768 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1769 imrc->notify_flag_changed(iommu_mr,
1770 iommu_mr->iommu_notify_flags,
1771 flags);
1772 }
1773
1774 iommu_mr->iommu_notify_flags = flags;
1775 }
1776
1777 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1778 IOMMUNotifier *n)
1779 {
1780 IOMMUMemoryRegion *iommu_mr;
1781
1782 if (mr->alias) {
1783 memory_region_register_iommu_notifier(mr->alias, n);
1784 return;
1785 }
1786
1787 /* We need to register for at least one bitfield */
1788 iommu_mr = IOMMU_MEMORY_REGION(mr);
1789 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1790 assert(n->start <= n->end);
1791 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1792 memory_region_update_iommu_notify_flags(iommu_mr);
1793 }
1794
1795 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1796 {
1797 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1798
1799 if (imrc->get_min_page_size) {
1800 return imrc->get_min_page_size(iommu_mr);
1801 }
1802 return TARGET_PAGE_SIZE;
1803 }
1804
1805 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1806 {
1807 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1808 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1809 hwaddr addr, granularity;
1810 IOMMUTLBEntry iotlb;
1811
1812 /* If the IOMMU has its own replay callback, override */
1813 if (imrc->replay) {
1814 imrc->replay(iommu_mr, n);
1815 return;
1816 }
1817
1818 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1819
1820 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1821 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE);
1822 if (iotlb.perm != IOMMU_NONE) {
1823 n->notify(n, &iotlb);
1824 }
1825
1826 /* if (2^64 - MR size) < granularity, it's possible to get an
1827 * infinite loop here. This should catch such a wraparound */
1828 if ((addr + granularity) < addr) {
1829 break;
1830 }
1831 }
1832 }
1833
1834 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr)
1835 {
1836 IOMMUNotifier *notifier;
1837
1838 IOMMU_NOTIFIER_FOREACH(notifier, iommu_mr) {
1839 memory_region_iommu_replay(iommu_mr, notifier);
1840 }
1841 }
1842
1843 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1844 IOMMUNotifier *n)
1845 {
1846 IOMMUMemoryRegion *iommu_mr;
1847
1848 if (mr->alias) {
1849 memory_region_unregister_iommu_notifier(mr->alias, n);
1850 return;
1851 }
1852 QLIST_REMOVE(n, node);
1853 iommu_mr = IOMMU_MEMORY_REGION(mr);
1854 memory_region_update_iommu_notify_flags(iommu_mr);
1855 }
1856
1857 void memory_region_notify_one(IOMMUNotifier *notifier,
1858 IOMMUTLBEntry *entry)
1859 {
1860 IOMMUNotifierFlag request_flags;
1861
1862 /*
1863 * Skip the notification if the notification does not overlap
1864 * with registered range.
1865 */
1866 if (notifier->start > entry->iova + entry->addr_mask ||
1867 notifier->end < entry->iova) {
1868 return;
1869 }
1870
1871 if (entry->perm & IOMMU_RW) {
1872 request_flags = IOMMU_NOTIFIER_MAP;
1873 } else {
1874 request_flags = IOMMU_NOTIFIER_UNMAP;
1875 }
1876
1877 if (notifier->notifier_flags & request_flags) {
1878 notifier->notify(notifier, entry);
1879 }
1880 }
1881
1882 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1883 IOMMUTLBEntry entry)
1884 {
1885 IOMMUNotifier *iommu_notifier;
1886
1887 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1888
1889 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1890 memory_region_notify_one(iommu_notifier, &entry);
1891 }
1892 }
1893
1894 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1895 {
1896 uint8_t mask = 1 << client;
1897 uint8_t old_logging;
1898
1899 assert(client == DIRTY_MEMORY_VGA);
1900 old_logging = mr->vga_logging_count;
1901 mr->vga_logging_count += log ? 1 : -1;
1902 if (!!old_logging == !!mr->vga_logging_count) {
1903 return;
1904 }
1905
1906 memory_region_transaction_begin();
1907 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1908 memory_region_update_pending |= mr->enabled;
1909 memory_region_transaction_commit();
1910 }
1911
1912 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1913 hwaddr size, unsigned client)
1914 {
1915 assert(mr->ram_block);
1916 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1917 size, client);
1918 }
1919
1920 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1921 hwaddr size)
1922 {
1923 assert(mr->ram_block);
1924 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1925 size,
1926 memory_region_get_dirty_log_mask(mr));
1927 }
1928
1929 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1930 hwaddr size, unsigned client)
1931 {
1932 assert(mr->ram_block);
1933 return cpu_physical_memory_test_and_clear_dirty(
1934 memory_region_get_ram_addr(mr) + addr, size, client);
1935 }
1936
1937 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1938 hwaddr addr,
1939 hwaddr size,
1940 unsigned client)
1941 {
1942 assert(mr->ram_block);
1943 return cpu_physical_memory_snapshot_and_clear_dirty(
1944 memory_region_get_ram_addr(mr) + addr, size, client);
1945 }
1946
1947 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
1948 hwaddr addr, hwaddr size)
1949 {
1950 assert(mr->ram_block);
1951 return cpu_physical_memory_snapshot_get_dirty(snap,
1952 memory_region_get_ram_addr(mr) + addr, size);
1953 }
1954
1955 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1956 {
1957 MemoryListener *listener;
1958 AddressSpace *as;
1959 FlatView *view;
1960 FlatRange *fr;
1961
1962 /* If the same address space has multiple log_sync listeners, we
1963 * visit that address space's FlatView multiple times. But because
1964 * log_sync listeners are rare, it's still cheaper than walking each
1965 * address space once.
1966 */
1967 QTAILQ_FOREACH(listener, &memory_listeners, link) {
1968 if (!listener->log_sync) {
1969 continue;
1970 }
1971 as = listener->address_space;
1972 view = address_space_get_flatview(as);
1973 FOR_EACH_FLAT_RANGE(fr, view) {
1974 if (fr->mr == mr) {
1975 MemoryRegionSection mrs = section_from_flat_range(fr, view);
1976 listener->log_sync(listener, &mrs);
1977 }
1978 }
1979 flatview_unref(view);
1980 }
1981 }
1982
1983 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1984 {
1985 if (mr->readonly != readonly) {
1986 memory_region_transaction_begin();
1987 mr->readonly = readonly;
1988 memory_region_update_pending |= mr->enabled;
1989 memory_region_transaction_commit();
1990 }
1991 }
1992
1993 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1994 {
1995 if (mr->romd_mode != romd_mode) {
1996 memory_region_transaction_begin();
1997 mr->romd_mode = romd_mode;
1998 memory_region_update_pending |= mr->enabled;
1999 memory_region_transaction_commit();
2000 }
2001 }
2002
2003 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2004 hwaddr size, unsigned client)
2005 {
2006 assert(mr->ram_block);
2007 cpu_physical_memory_test_and_clear_dirty(
2008 memory_region_get_ram_addr(mr) + addr, size, client);
2009 }
2010
2011 int memory_region_get_fd(MemoryRegion *mr)
2012 {
2013 int fd;
2014
2015 rcu_read_lock();
2016 while (mr->alias) {
2017 mr = mr->alias;
2018 }
2019 fd = mr->ram_block->fd;
2020 rcu_read_unlock();
2021
2022 return fd;
2023 }
2024
2025 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2026 {
2027 void *ptr;
2028 uint64_t offset = 0;
2029
2030 rcu_read_lock();
2031 while (mr->alias) {
2032 offset += mr->alias_offset;
2033 mr = mr->alias;
2034 }
2035 assert(mr->ram_block);
2036 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2037 rcu_read_unlock();
2038
2039 return ptr;
2040 }
2041
2042 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2043 {
2044 RAMBlock *block;
2045
2046 block = qemu_ram_block_from_host(ptr, false, offset);
2047 if (!block) {
2048 return NULL;
2049 }
2050
2051 return block->mr;
2052 }
2053
2054 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2055 {
2056 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2057 }
2058
2059 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2060 {
2061 assert(mr->ram_block);
2062
2063 qemu_ram_resize(mr->ram_block, newsize, errp);
2064 }
2065
2066 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
2067 {
2068 FlatView *view;
2069 FlatRange *fr;
2070 CoalescedMemoryRange *cmr;
2071 AddrRange tmp;
2072 MemoryRegionSection section;
2073
2074 view = address_space_get_flatview(as);
2075 FOR_EACH_FLAT_RANGE(fr, view) {
2076 if (fr->mr == mr) {
2077 section = (MemoryRegionSection) {
2078 .fv = view,
2079 .offset_within_address_space = int128_get64(fr->addr.start),
2080 .size = fr->addr.size,
2081 };
2082
2083 MEMORY_LISTENER_CALL(as, coalesced_mmio_del, Reverse, &section,
2084 int128_get64(fr->addr.start),
2085 int128_get64(fr->addr.size));
2086 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
2087 tmp = addrrange_shift(cmr->addr,
2088 int128_sub(fr->addr.start,
2089 int128_make64(fr->offset_in_region)));
2090 if (!addrrange_intersects(tmp, fr->addr)) {
2091 continue;
2092 }
2093 tmp = addrrange_intersection(tmp, fr->addr);
2094 MEMORY_LISTENER_CALL(as, coalesced_mmio_add, Forward, &section,
2095 int128_get64(tmp.start),
2096 int128_get64(tmp.size));
2097 }
2098 }
2099 }
2100 flatview_unref(view);
2101 }
2102
2103 static void memory_region_update_coalesced_range(MemoryRegion *mr)
2104 {
2105 AddressSpace *as;
2106
2107 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2108 memory_region_update_coalesced_range_as(mr, as);
2109 }
2110 }
2111
2112 void memory_region_set_coalescing(MemoryRegion *mr)
2113 {
2114 memory_region_clear_coalescing(mr);
2115 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2116 }
2117
2118 void memory_region_add_coalescing(MemoryRegion *mr,
2119 hwaddr offset,
2120 uint64_t size)
2121 {
2122 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2123
2124 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2125 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2126 memory_region_update_coalesced_range(mr);
2127 memory_region_set_flush_coalesced(mr);
2128 }
2129
2130 void memory_region_clear_coalescing(MemoryRegion *mr)
2131 {
2132 CoalescedMemoryRange *cmr;
2133 bool updated = false;
2134
2135 qemu_flush_coalesced_mmio_buffer();
2136 mr->flush_coalesced_mmio = false;
2137
2138 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2139 cmr = QTAILQ_FIRST(&mr->coalesced);
2140 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2141 g_free(cmr);
2142 updated = true;
2143 }
2144
2145 if (updated) {
2146 memory_region_update_coalesced_range(mr);
2147 }
2148 }
2149
2150 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2151 {
2152 mr->flush_coalesced_mmio = true;
2153 }
2154
2155 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2156 {
2157 qemu_flush_coalesced_mmio_buffer();
2158 if (QTAILQ_EMPTY(&mr->coalesced)) {
2159 mr->flush_coalesced_mmio = false;
2160 }
2161 }
2162
2163 void memory_region_set_global_locking(MemoryRegion *mr)
2164 {
2165 mr->global_locking = true;
2166 }
2167
2168 void memory_region_clear_global_locking(MemoryRegion *mr)
2169 {
2170 mr->global_locking = false;
2171 }
2172
2173 static bool userspace_eventfd_warning;
2174
2175 void memory_region_add_eventfd(MemoryRegion *mr,
2176 hwaddr addr,
2177 unsigned size,
2178 bool match_data,
2179 uint64_t data,
2180 EventNotifier *e)
2181 {
2182 MemoryRegionIoeventfd mrfd = {
2183 .addr.start = int128_make64(addr),
2184 .addr.size = int128_make64(size),
2185 .match_data = match_data,
2186 .data = data,
2187 .e = e,
2188 };
2189 unsigned i;
2190
2191 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2192 userspace_eventfd_warning))) {
2193 userspace_eventfd_warning = true;
2194 error_report("Using eventfd without MMIO binding in KVM. "
2195 "Suboptimal performance expected");
2196 }
2197
2198 if (size) {
2199 adjust_endianness(mr, &mrfd.data, size);
2200 }
2201 memory_region_transaction_begin();
2202 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2203 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
2204 break;
2205 }
2206 }
2207 ++mr->ioeventfd_nb;
2208 mr->ioeventfds = g_realloc(mr->ioeventfds,
2209 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2210 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2211 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2212 mr->ioeventfds[i] = mrfd;
2213 ioeventfd_update_pending |= mr->enabled;
2214 memory_region_transaction_commit();
2215 }
2216
2217 void memory_region_del_eventfd(MemoryRegion *mr,
2218 hwaddr addr,
2219 unsigned size,
2220 bool match_data,
2221 uint64_t data,
2222 EventNotifier *e)
2223 {
2224 MemoryRegionIoeventfd mrfd = {
2225 .addr.start = int128_make64(addr),
2226 .addr.size = int128_make64(size),
2227 .match_data = match_data,
2228 .data = data,
2229 .e = e,
2230 };
2231 unsigned i;
2232
2233 if (size) {
2234 adjust_endianness(mr, &mrfd.data, size);
2235 }
2236 memory_region_transaction_begin();
2237 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2238 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
2239 break;
2240 }
2241 }
2242 assert(i != mr->ioeventfd_nb);
2243 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2244 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2245 --mr->ioeventfd_nb;
2246 mr->ioeventfds = g_realloc(mr->ioeventfds,
2247 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2248 ioeventfd_update_pending |= mr->enabled;
2249 memory_region_transaction_commit();
2250 }
2251
2252 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2253 {
2254 MemoryRegion *mr = subregion->container;
2255 MemoryRegion *other;
2256
2257 memory_region_transaction_begin();
2258
2259 memory_region_ref(subregion);
2260 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2261 if (subregion->priority >= other->priority) {
2262 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2263 goto done;
2264 }
2265 }
2266 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2267 done:
2268 memory_region_update_pending |= mr->enabled && subregion->enabled;
2269 memory_region_transaction_commit();
2270 }
2271
2272 static void memory_region_add_subregion_common(MemoryRegion *mr,
2273 hwaddr offset,
2274 MemoryRegion *subregion)
2275 {
2276 assert(!subregion->container);
2277 subregion->container = mr;
2278 subregion->addr = offset;
2279 memory_region_update_container_subregions(subregion);
2280 }
2281
2282 void memory_region_add_subregion(MemoryRegion *mr,
2283 hwaddr offset,
2284 MemoryRegion *subregion)
2285 {
2286 subregion->priority = 0;
2287 memory_region_add_subregion_common(mr, offset, subregion);
2288 }
2289
2290 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2291 hwaddr offset,
2292 MemoryRegion *subregion,
2293 int priority)
2294 {
2295 subregion->priority = priority;
2296 memory_region_add_subregion_common(mr, offset, subregion);
2297 }
2298
2299 void memory_region_del_subregion(MemoryRegion *mr,
2300 MemoryRegion *subregion)
2301 {
2302 memory_region_transaction_begin();
2303 assert(subregion->container == mr);
2304 subregion->container = NULL;
2305 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2306 memory_region_unref(subregion);
2307 memory_region_update_pending |= mr->enabled && subregion->enabled;
2308 memory_region_transaction_commit();
2309 }
2310
2311 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2312 {
2313 if (enabled == mr->enabled) {
2314 return;
2315 }
2316 memory_region_transaction_begin();
2317 mr->enabled = enabled;
2318 memory_region_update_pending = true;
2319 memory_region_transaction_commit();
2320 }
2321
2322 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2323 {
2324 Int128 s = int128_make64(size);
2325
2326 if (size == UINT64_MAX) {
2327 s = int128_2_64();
2328 }
2329 if (int128_eq(s, mr->size)) {
2330 return;
2331 }
2332 memory_region_transaction_begin();
2333 mr->size = s;
2334 memory_region_update_pending = true;
2335 memory_region_transaction_commit();
2336 }
2337
2338 static void memory_region_readd_subregion(MemoryRegion *mr)
2339 {
2340 MemoryRegion *container = mr->container;
2341
2342 if (container) {
2343 memory_region_transaction_begin();
2344 memory_region_ref(mr);
2345 memory_region_del_subregion(container, mr);
2346 mr->container = container;
2347 memory_region_update_container_subregions(mr);
2348 memory_region_unref(mr);
2349 memory_region_transaction_commit();
2350 }
2351 }
2352
2353 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2354 {
2355 if (addr != mr->addr) {
2356 mr->addr = addr;
2357 memory_region_readd_subregion(mr);
2358 }
2359 }
2360
2361 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2362 {
2363 assert(mr->alias);
2364
2365 if (offset == mr->alias_offset) {
2366 return;
2367 }
2368
2369 memory_region_transaction_begin();
2370 mr->alias_offset = offset;
2371 memory_region_update_pending |= mr->enabled;
2372 memory_region_transaction_commit();
2373 }
2374
2375 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2376 {
2377 return mr->align;
2378 }
2379
2380 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2381 {
2382 const AddrRange *addr = addr_;
2383 const FlatRange *fr = fr_;
2384
2385 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2386 return -1;
2387 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2388 return 1;
2389 }
2390 return 0;
2391 }
2392
2393 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2394 {
2395 return bsearch(&addr, view->ranges, view->nr,
2396 sizeof(FlatRange), cmp_flatrange_addr);
2397 }
2398
2399 bool memory_region_is_mapped(MemoryRegion *mr)
2400 {
2401 return mr->container ? true : false;
2402 }
2403
2404 /* Same as memory_region_find, but it does not add a reference to the
2405 * returned region. It must be called from an RCU critical section.
2406 */
2407 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2408 hwaddr addr, uint64_t size)
2409 {
2410 MemoryRegionSection ret = { .mr = NULL };
2411 MemoryRegion *root;
2412 AddressSpace *as;
2413 AddrRange range;
2414 FlatView *view;
2415 FlatRange *fr;
2416
2417 addr += mr->addr;
2418 for (root = mr; root->container; ) {
2419 root = root->container;
2420 addr += root->addr;
2421 }
2422
2423 as = memory_region_to_address_space(root);
2424 if (!as) {
2425 return ret;
2426 }
2427 range = addrrange_make(int128_make64(addr), int128_make64(size));
2428
2429 view = address_space_to_flatview(as);
2430 fr = flatview_lookup(view, range);
2431 if (!fr) {
2432 return ret;
2433 }
2434
2435 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2436 --fr;
2437 }
2438
2439 ret.mr = fr->mr;
2440 ret.fv = view;
2441 range = addrrange_intersection(range, fr->addr);
2442 ret.offset_within_region = fr->offset_in_region;
2443 ret.offset_within_region += int128_get64(int128_sub(range.start,
2444 fr->addr.start));
2445 ret.size = range.size;
2446 ret.offset_within_address_space = int128_get64(range.start);
2447 ret.readonly = fr->readonly;
2448 return ret;
2449 }
2450
2451 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2452 hwaddr addr, uint64_t size)
2453 {
2454 MemoryRegionSection ret;
2455 rcu_read_lock();
2456 ret = memory_region_find_rcu(mr, addr, size);
2457 if (ret.mr) {
2458 memory_region_ref(ret.mr);
2459 }
2460 rcu_read_unlock();
2461 return ret;
2462 }
2463
2464 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2465 {
2466 MemoryRegion *mr;
2467
2468 rcu_read_lock();
2469 mr = memory_region_find_rcu(container, addr, 1).mr;
2470 rcu_read_unlock();
2471 return mr && mr != container;
2472 }
2473
2474 void memory_global_dirty_log_sync(void)
2475 {
2476 MemoryListener *listener;
2477 AddressSpace *as;
2478 FlatView *view;
2479 FlatRange *fr;
2480
2481 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2482 if (!listener->log_sync) {
2483 continue;
2484 }
2485 as = listener->address_space;
2486 view = address_space_get_flatview(as);
2487 FOR_EACH_FLAT_RANGE(fr, view) {
2488 if (fr->dirty_log_mask) {
2489 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2490
2491 listener->log_sync(listener, &mrs);
2492 }
2493 }
2494 flatview_unref(view);
2495 }
2496 }
2497
2498 static VMChangeStateEntry *vmstate_change;
2499
2500 void memory_global_dirty_log_start(void)
2501 {
2502 if (vmstate_change) {
2503 qemu_del_vm_change_state_handler(vmstate_change);
2504 vmstate_change = NULL;
2505 }
2506
2507 global_dirty_log = true;
2508
2509 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2510
2511 /* Refresh DIRTY_LOG_MIGRATION bit. */
2512 memory_region_transaction_begin();
2513 memory_region_update_pending = true;
2514 memory_region_transaction_commit();
2515 }
2516
2517 static void memory_global_dirty_log_do_stop(void)
2518 {
2519 global_dirty_log = false;
2520
2521 /* Refresh DIRTY_LOG_MIGRATION bit. */
2522 memory_region_transaction_begin();
2523 memory_region_update_pending = true;
2524 memory_region_transaction_commit();
2525
2526 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2527 }
2528
2529 static void memory_vm_change_state_handler(void *opaque, int running,
2530 RunState state)
2531 {
2532 if (running) {
2533 memory_global_dirty_log_do_stop();
2534
2535 if (vmstate_change) {
2536 qemu_del_vm_change_state_handler(vmstate_change);
2537 vmstate_change = NULL;
2538 }
2539 }
2540 }
2541
2542 void memory_global_dirty_log_stop(void)
2543 {
2544 if (!runstate_is_running()) {
2545 if (vmstate_change) {
2546 return;
2547 }
2548 vmstate_change = qemu_add_vm_change_state_handler(
2549 memory_vm_change_state_handler, NULL);
2550 return;
2551 }
2552
2553 memory_global_dirty_log_do_stop();
2554 }
2555
2556 static void listener_add_address_space(MemoryListener *listener,
2557 AddressSpace *as)
2558 {
2559 FlatView *view;
2560 FlatRange *fr;
2561
2562 if (listener->begin) {
2563 listener->begin(listener);
2564 }
2565 if (global_dirty_log) {
2566 if (listener->log_global_start) {
2567 listener->log_global_start(listener);
2568 }
2569 }
2570
2571 view = address_space_get_flatview(as);
2572 FOR_EACH_FLAT_RANGE(fr, view) {
2573 MemoryRegionSection section = section_from_flat_range(fr, view);
2574
2575 if (listener->region_add) {
2576 listener->region_add(listener, &section);
2577 }
2578 if (fr->dirty_log_mask && listener->log_start) {
2579 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2580 }
2581 }
2582 if (listener->commit) {
2583 listener->commit(listener);
2584 }
2585 flatview_unref(view);
2586 }
2587
2588 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2589 {
2590 MemoryListener *other = NULL;
2591
2592 listener->address_space = as;
2593 if (QTAILQ_EMPTY(&memory_listeners)
2594 || listener->priority >= QTAILQ_LAST(&memory_listeners,
2595 memory_listeners)->priority) {
2596 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2597 } else {
2598 QTAILQ_FOREACH(other, &memory_listeners, link) {
2599 if (listener->priority < other->priority) {
2600 break;
2601 }
2602 }
2603 QTAILQ_INSERT_BEFORE(other, listener, link);
2604 }
2605
2606 if (QTAILQ_EMPTY(&as->listeners)
2607 || listener->priority >= QTAILQ_LAST(&as->listeners,
2608 memory_listeners)->priority) {
2609 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2610 } else {
2611 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2612 if (listener->priority < other->priority) {
2613 break;
2614 }
2615 }
2616 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2617 }
2618
2619 listener_add_address_space(listener, as);
2620 }
2621
2622 void memory_listener_unregister(MemoryListener *listener)
2623 {
2624 if (!listener->address_space) {
2625 return;
2626 }
2627
2628 QTAILQ_REMOVE(&memory_listeners, listener, link);
2629 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2630 listener->address_space = NULL;
2631 }
2632
2633 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr)
2634 {
2635 void *host;
2636 unsigned size = 0;
2637 unsigned offset = 0;
2638 Object *new_interface;
2639
2640 if (!mr || !mr->ops->request_ptr) {
2641 return false;
2642 }
2643
2644 /*
2645 * Avoid an update if the request_ptr call
2646 * memory_region_invalidate_mmio_ptr which seems to be likely when we use
2647 * a cache.
2648 */
2649 memory_region_transaction_begin();
2650
2651 host = mr->ops->request_ptr(mr->opaque, addr - mr->addr, &size, &offset);
2652
2653 if (!host || !size) {
2654 memory_region_transaction_commit();
2655 return false;
2656 }
2657
2658 new_interface = object_new("mmio_interface");
2659 qdev_prop_set_uint64(DEVICE(new_interface), "start", offset);
2660 qdev_prop_set_uint64(DEVICE(new_interface), "end", offset + size - 1);
2661 qdev_prop_set_bit(DEVICE(new_interface), "ro", true);
2662 qdev_prop_set_ptr(DEVICE(new_interface), "host_ptr", host);
2663 qdev_prop_set_ptr(DEVICE(new_interface), "subregion", mr);
2664 object_property_set_bool(OBJECT(new_interface), true, "realized", NULL);
2665
2666 memory_region_transaction_commit();
2667 return true;
2668 }
2669
2670 typedef struct MMIOPtrInvalidate {
2671 MemoryRegion *mr;
2672 hwaddr offset;
2673 unsigned size;
2674 int busy;
2675 int allocated;
2676 } MMIOPtrInvalidate;
2677
2678 #define MAX_MMIO_INVALIDATE 10
2679 static MMIOPtrInvalidate mmio_ptr_invalidate_list[MAX_MMIO_INVALIDATE];
2680
2681 static void memory_region_do_invalidate_mmio_ptr(CPUState *cpu,
2682 run_on_cpu_data data)
2683 {
2684 MMIOPtrInvalidate *invalidate_data = (MMIOPtrInvalidate *)data.host_ptr;
2685 MemoryRegion *mr = invalidate_data->mr;
2686 hwaddr offset = invalidate_data->offset;
2687 unsigned size = invalidate_data->size;
2688 MemoryRegionSection section = memory_region_find(mr, offset, size);
2689
2690 qemu_mutex_lock_iothread();
2691
2692 /* Reset dirty so this doesn't happen later. */
2693 cpu_physical_memory_test_and_clear_dirty(offset, size, 1);
2694
2695 if (section.mr != mr) {
2696 /* memory_region_find add a ref on section.mr */
2697 memory_region_unref(section.mr);
2698 if (MMIO_INTERFACE(section.mr->owner)) {
2699 /* We found the interface just drop it. */
2700 object_property_set_bool(section.mr->owner, false, "realized",
2701 NULL);
2702 object_unref(section.mr->owner);
2703 object_unparent(section.mr->owner);
2704 }
2705 }
2706
2707 qemu_mutex_unlock_iothread();
2708
2709 if (invalidate_data->allocated) {
2710 g_free(invalidate_data);
2711 } else {
2712 invalidate_data->busy = 0;
2713 }
2714 }
2715
2716 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
2717 unsigned size)
2718 {
2719 size_t i;
2720 MMIOPtrInvalidate *invalidate_data = NULL;
2721
2722 for (i = 0; i < MAX_MMIO_INVALIDATE; i++) {
2723 if (atomic_cmpxchg(&(mmio_ptr_invalidate_list[i].busy), 0, 1) == 0) {
2724 invalidate_data = &mmio_ptr_invalidate_list[i];
2725 break;
2726 }
2727 }
2728
2729 if (!invalidate_data) {
2730 invalidate_data = g_malloc0(sizeof(MMIOPtrInvalidate));
2731 invalidate_data->allocated = 1;
2732 }
2733
2734 invalidate_data->mr = mr;
2735 invalidate_data->offset = offset;
2736 invalidate_data->size = size;
2737
2738 async_safe_run_on_cpu(first_cpu, memory_region_do_invalidate_mmio_ptr,
2739 RUN_ON_CPU_HOST_PTR(invalidate_data));
2740 }
2741
2742 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2743 {
2744 memory_region_ref(root);
2745 as->root = root;
2746 as->current_map = NULL;
2747 as->ioeventfd_nb = 0;
2748 as->ioeventfds = NULL;
2749 QTAILQ_INIT(&as->listeners);
2750 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2751 as->name = g_strdup(name ? name : "anonymous");
2752 address_space_update_topology(as);
2753 address_space_update_ioeventfds(as);
2754 }
2755
2756 static void do_address_space_destroy(AddressSpace *as)
2757 {
2758 assert(QTAILQ_EMPTY(&as->listeners));
2759
2760 flatview_unref(as->current_map);
2761 g_free(as->name);
2762 g_free(as->ioeventfds);
2763 memory_region_unref(as->root);
2764 }
2765
2766 void address_space_destroy(AddressSpace *as)
2767 {
2768 MemoryRegion *root = as->root;
2769
2770 /* Flush out anything from MemoryListeners listening in on this */
2771 memory_region_transaction_begin();
2772 as->root = NULL;
2773 memory_region_transaction_commit();
2774 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2775
2776 /* At this point, as->dispatch and as->current_map are dummy
2777 * entries that the guest should never use. Wait for the old
2778 * values to expire before freeing the data.
2779 */
2780 as->root = root;
2781 call_rcu(as, do_address_space_destroy, rcu);
2782 }
2783
2784 static const char *memory_region_type(MemoryRegion *mr)
2785 {
2786 if (memory_region_is_ram_device(mr)) {
2787 return "ramd";
2788 } else if (memory_region_is_romd(mr)) {
2789 return "romd";
2790 } else if (memory_region_is_rom(mr)) {
2791 return "rom";
2792 } else if (memory_region_is_ram(mr)) {
2793 return "ram";
2794 } else {
2795 return "i/o";
2796 }
2797 }
2798
2799 typedef struct MemoryRegionList MemoryRegionList;
2800
2801 struct MemoryRegionList {
2802 const MemoryRegion *mr;
2803 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2804 };
2805
2806 typedef QTAILQ_HEAD(mrqueue, MemoryRegionList) MemoryRegionListHead;
2807
2808 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2809 int128_sub((size), int128_one())) : 0)
2810 #define MTREE_INDENT " "
2811
2812 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2813 const MemoryRegion *mr, unsigned int level,
2814 hwaddr base,
2815 MemoryRegionListHead *alias_print_queue)
2816 {
2817 MemoryRegionList *new_ml, *ml, *next_ml;
2818 MemoryRegionListHead submr_print_queue;
2819 const MemoryRegion *submr;
2820 unsigned int i;
2821 hwaddr cur_start, cur_end;
2822
2823 if (!mr) {
2824 return;
2825 }
2826
2827 for (i = 0; i < level; i++) {
2828 mon_printf(f, MTREE_INDENT);
2829 }
2830
2831 cur_start = base + mr->addr;
2832 cur_end = cur_start + MR_SIZE(mr->size);
2833
2834 /*
2835 * Try to detect overflow of memory region. This should never
2836 * happen normally. When it happens, we dump something to warn the
2837 * user who is observing this.
2838 */
2839 if (cur_start < base || cur_end < cur_start) {
2840 mon_printf(f, "[DETECTED OVERFLOW!] ");
2841 }
2842
2843 if (mr->alias) {
2844 MemoryRegionList *ml;
2845 bool found = false;
2846
2847 /* check if the alias is already in the queue */
2848 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2849 if (ml->mr == mr->alias) {
2850 found = true;
2851 }
2852 }
2853
2854 if (!found) {
2855 ml = g_new(MemoryRegionList, 1);
2856 ml->mr = mr->alias;
2857 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2858 }
2859 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2860 " (prio %d, %s): alias %s @%s " TARGET_FMT_plx
2861 "-" TARGET_FMT_plx "%s\n",
2862 cur_start, cur_end,
2863 mr->priority,
2864 memory_region_type((MemoryRegion *)mr),
2865 memory_region_name(mr),
2866 memory_region_name(mr->alias),
2867 mr->alias_offset,
2868 mr->alias_offset + MR_SIZE(mr->size),
2869 mr->enabled ? "" : " [disabled]");
2870 } else {
2871 mon_printf(f,
2872 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s): %s%s\n",
2873 cur_start, cur_end,
2874 mr->priority,
2875 memory_region_type((MemoryRegion *)mr),
2876 memory_region_name(mr),
2877 mr->enabled ? "" : " [disabled]");
2878 }
2879
2880 QTAILQ_INIT(&submr_print_queue);
2881
2882 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2883 new_ml = g_new(MemoryRegionList, 1);
2884 new_ml->mr = submr;
2885 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2886 if (new_ml->mr->addr < ml->mr->addr ||
2887 (new_ml->mr->addr == ml->mr->addr &&
2888 new_ml->mr->priority > ml->mr->priority)) {
2889 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
2890 new_ml = NULL;
2891 break;
2892 }
2893 }
2894 if (new_ml) {
2895 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
2896 }
2897 }
2898
2899 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2900 mtree_print_mr(mon_printf, f, ml->mr, level + 1, cur_start,
2901 alias_print_queue);
2902 }
2903
2904 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
2905 g_free(ml);
2906 }
2907 }
2908
2909 struct FlatViewInfo {
2910 fprintf_function mon_printf;
2911 void *f;
2912 int counter;
2913 bool dispatch_tree;
2914 };
2915
2916 static void mtree_print_flatview(gpointer key, gpointer value,
2917 gpointer user_data)
2918 {
2919 FlatView *view = key;
2920 GArray *fv_address_spaces = value;
2921 struct FlatViewInfo *fvi = user_data;
2922 fprintf_function p = fvi->mon_printf;
2923 void *f = fvi->f;
2924 FlatRange *range = &view->ranges[0];
2925 MemoryRegion *mr;
2926 int n = view->nr;
2927 int i;
2928 AddressSpace *as;
2929
2930 p(f, "FlatView #%d\n", fvi->counter);
2931 ++fvi->counter;
2932
2933 for (i = 0; i < fv_address_spaces->len; ++i) {
2934 as = g_array_index(fv_address_spaces, AddressSpace*, i);
2935 p(f, " AS \"%s\", root: %s", as->name, memory_region_name(as->root));
2936 if (as->root->alias) {
2937 p(f, ", alias %s", memory_region_name(as->root->alias));
2938 }
2939 p(f, "\n");
2940 }
2941
2942 p(f, " Root memory region: %s\n",
2943 view->root ? memory_region_name(view->root) : "(none)");
2944
2945 if (n <= 0) {
2946 p(f, MTREE_INDENT "No rendered FlatView\n\n");
2947 return;
2948 }
2949
2950 while (n--) {
2951 mr = range->mr;
2952 if (range->offset_in_region) {
2953 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2954 TARGET_FMT_plx " (prio %d, %s): %s @" TARGET_FMT_plx "\n",
2955 int128_get64(range->addr.start),
2956 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2957 mr->priority,
2958 range->readonly ? "rom" : memory_region_type(mr),
2959 memory_region_name(mr),
2960 range->offset_in_region);
2961 } else {
2962 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2963 TARGET_FMT_plx " (prio %d, %s): %s\n",
2964 int128_get64(range->addr.start),
2965 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2966 mr->priority,
2967 range->readonly ? "rom" : memory_region_type(mr),
2968 memory_region_name(mr));
2969 }
2970 range++;
2971 }
2972
2973 #if !defined(CONFIG_USER_ONLY)
2974 if (fvi->dispatch_tree && view->root) {
2975 mtree_print_dispatch(p, f, view->dispatch, view->root);
2976 }
2977 #endif
2978
2979 p(f, "\n");
2980 }
2981
2982 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
2983 gpointer user_data)
2984 {
2985 FlatView *view = key;
2986 GArray *fv_address_spaces = value;
2987
2988 g_array_unref(fv_address_spaces);
2989 flatview_unref(view);
2990
2991 return true;
2992 }
2993
2994 void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
2995 bool dispatch_tree)
2996 {
2997 MemoryRegionListHead ml_head;
2998 MemoryRegionList *ml, *ml2;
2999 AddressSpace *as;
3000
3001 if (flatview) {
3002 FlatView *view;
3003 struct FlatViewInfo fvi = {
3004 .mon_printf = mon_printf,
3005 .f = f,
3006 .counter = 0,
3007 .dispatch_tree = dispatch_tree
3008 };
3009 GArray *fv_address_spaces;
3010 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3011
3012 /* Gather all FVs in one table */
3013 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3014 view = address_space_get_flatview(as);
3015
3016 fv_address_spaces = g_hash_table_lookup(views, view);
3017 if (!fv_address_spaces) {
3018 fv_address_spaces = g_array_new(false, false, sizeof(as));
3019 g_hash_table_insert(views, view, fv_address_spaces);
3020 }
3021
3022 g_array_append_val(fv_address_spaces, as);
3023 }
3024
3025 /* Print */
3026 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3027
3028 /* Free */
3029 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3030 g_hash_table_unref(views);
3031
3032 return;
3033 }
3034
3035 QTAILQ_INIT(&ml_head);
3036
3037 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3038 mon_printf(f, "address-space: %s\n", as->name);
3039 mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
3040 mon_printf(f, "\n");
3041 }
3042
3043 /* print aliased regions */
3044 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3045 mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
3046 mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
3047 mon_printf(f, "\n");
3048 }
3049
3050 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3051 g_free(ml);
3052 }
3053 }
3054
3055 void memory_region_init_ram(MemoryRegion *mr,
3056 struct Object *owner,
3057 const char *name,
3058 uint64_t size,
3059 Error **errp)
3060 {
3061 DeviceState *owner_dev;
3062 Error *err = NULL;
3063
3064 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3065 if (err) {
3066 error_propagate(errp, err);
3067 return;
3068 }
3069 /* This will assert if owner is neither NULL nor a DeviceState.
3070 * We only want the owner here for the purposes of defining a
3071 * unique name for migration. TODO: Ideally we should implement
3072 * a naming scheme for Objects which are not DeviceStates, in
3073 * which case we can relax this restriction.
3074 */
3075 owner_dev = DEVICE(owner);
3076 vmstate_register_ram(mr, owner_dev);
3077 }
3078
3079 void memory_region_init_rom(MemoryRegion *mr,
3080 struct Object *owner,
3081 const char *name,
3082 uint64_t size,
3083 Error **errp)
3084 {
3085 DeviceState *owner_dev;
3086 Error *err = NULL;
3087
3088 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3089 if (err) {
3090 error_propagate(errp, err);
3091 return;
3092 }
3093 /* This will assert if owner is neither NULL nor a DeviceState.
3094 * We only want the owner here for the purposes of defining a
3095 * unique name for migration. TODO: Ideally we should implement
3096 * a naming scheme for Objects which are not DeviceStates, in
3097 * which case we can relax this restriction.
3098 */
3099 owner_dev = DEVICE(owner);
3100 vmstate_register_ram(mr, owner_dev);
3101 }
3102
3103 void memory_region_init_rom_device(MemoryRegion *mr,
3104 struct Object *owner,
3105 const MemoryRegionOps *ops,
3106 void *opaque,
3107 const char *name,
3108 uint64_t size,
3109 Error **errp)
3110 {
3111 DeviceState *owner_dev;
3112 Error *err = NULL;
3113
3114 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3115 name, size, &err);
3116 if (err) {
3117 error_propagate(errp, err);
3118 return;
3119 }
3120 /* This will assert if owner is neither NULL nor a DeviceState.
3121 * We only want the owner here for the purposes of defining a
3122 * unique name for migration. TODO: Ideally we should implement
3123 * a naming scheme for Objects which are not DeviceStates, in
3124 * which case we can relax this restriction.
3125 */
3126 owner_dev = DEVICE(owner);
3127 vmstate_register_ram(mr, owner_dev);
3128 }
3129
3130 static const TypeInfo memory_region_info = {
3131 .parent = TYPE_OBJECT,
3132 .name = TYPE_MEMORY_REGION,
3133 .instance_size = sizeof(MemoryRegion),
3134 .instance_init = memory_region_initfn,
3135 .instance_finalize = memory_region_finalize,
3136 };
3137
3138 static const TypeInfo iommu_memory_region_info = {
3139 .parent = TYPE_MEMORY_REGION,
3140 .name = TYPE_IOMMU_MEMORY_REGION,
3141 .class_size = sizeof(IOMMUMemoryRegionClass),
3142 .instance_size = sizeof(IOMMUMemoryRegion),
3143 .instance_init = iommu_memory_region_initfn,
3144 .abstract = true,
3145 };
3146
3147 static void memory_register_types(void)
3148 {
3149 type_register_static(&memory_region_info);
3150 type_register_static(&iommu_memory_region_info);
3151 }
3152
3153 type_init(memory_register_types)