]> git.proxmox.com Git - mirror_qemu.git/blob - memory.c
Merge remote-tracking branch 'remotes/juanquintela/tags/fail-pull-request' into staging
[mirror_qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "cpu.h"
19 #include "exec/memory.h"
20 #include "exec/address-spaces.h"
21 #include "qapi/visitor.h"
22 #include "qemu/bitops.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qemu/qemu-print.h"
26 #include "qom/object.h"
27 #include "trace-root.h"
28
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/tcg.h"
34 #include "sysemu/accel.h"
35 #include "hw/boards.h"
36 #include "migration/vmstate.h"
37
38 //#define DEBUG_UNASSIGNED
39
40 static unsigned memory_region_transaction_depth;
41 static bool memory_region_update_pending;
42 static bool ioeventfd_update_pending;
43 bool global_dirty_log;
44
45 static QTAILQ_HEAD(, MemoryListener) memory_listeners
46 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49 = QTAILQ_HEAD_INITIALIZER(address_spaces);
50
51 static GHashTable *flat_views;
52
53 typedef struct AddrRange AddrRange;
54
55 /*
56 * Note that signed integers are needed for negative offsetting in aliases
57 * (large MemoryRegion::alias_offset).
58 */
59 struct AddrRange {
60 Int128 start;
61 Int128 size;
62 };
63
64 static AddrRange addrrange_make(Int128 start, Int128 size)
65 {
66 return (AddrRange) { start, size };
67 }
68
69 static bool addrrange_equal(AddrRange r1, AddrRange r2)
70 {
71 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
72 }
73
74 static Int128 addrrange_end(AddrRange r)
75 {
76 return int128_add(r.start, r.size);
77 }
78
79 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
80 {
81 int128_addto(&range.start, delta);
82 return range;
83 }
84
85 static bool addrrange_contains(AddrRange range, Int128 addr)
86 {
87 return int128_ge(addr, range.start)
88 && int128_lt(addr, addrrange_end(range));
89 }
90
91 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
92 {
93 return addrrange_contains(r1, r2.start)
94 || addrrange_contains(r2, r1.start);
95 }
96
97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
98 {
99 Int128 start = int128_max(r1.start, r2.start);
100 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101 return addrrange_make(start, int128_sub(end, start));
102 }
103
104 enum ListenerDirection { Forward, Reverse };
105
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
107 do { \
108 MemoryListener *_listener; \
109 \
110 switch (_direction) { \
111 case Forward: \
112 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
113 if (_listener->_callback) { \
114 _listener->_callback(_listener, ##_args); \
115 } \
116 } \
117 break; \
118 case Reverse: \
119 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
120 if (_listener->_callback) { \
121 _listener->_callback(_listener, ##_args); \
122 } \
123 } \
124 break; \
125 default: \
126 abort(); \
127 } \
128 } while (0)
129
130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131 do { \
132 MemoryListener *_listener; \
133 \
134 switch (_direction) { \
135 case Forward: \
136 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
137 if (_listener->_callback) { \
138 _listener->_callback(_listener, _section, ##_args); \
139 } \
140 } \
141 break; \
142 case Reverse: \
143 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
146 } \
147 } \
148 break; \
149 default: \
150 abort(); \
151 } \
152 } while (0)
153
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
156 do { \
157 MemoryRegionSection mrs = section_from_flat_range(fr, \
158 address_space_to_flatview(as)); \
159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
160 } while(0)
161
162 struct CoalescedMemoryRange {
163 AddrRange addr;
164 QTAILQ_ENTRY(CoalescedMemoryRange) link;
165 };
166
167 struct MemoryRegionIoeventfd {
168 AddrRange addr;
169 bool match_data;
170 uint64_t data;
171 EventNotifier *e;
172 };
173
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
175 MemoryRegionIoeventfd *b)
176 {
177 if (int128_lt(a->addr.start, b->addr.start)) {
178 return true;
179 } else if (int128_gt(a->addr.start, b->addr.start)) {
180 return false;
181 } else if (int128_lt(a->addr.size, b->addr.size)) {
182 return true;
183 } else if (int128_gt(a->addr.size, b->addr.size)) {
184 return false;
185 } else if (a->match_data < b->match_data) {
186 return true;
187 } else if (a->match_data > b->match_data) {
188 return false;
189 } else if (a->match_data) {
190 if (a->data < b->data) {
191 return true;
192 } else if (a->data > b->data) {
193 return false;
194 }
195 }
196 if (a->e < b->e) {
197 return true;
198 } else if (a->e > b->e) {
199 return false;
200 }
201 return false;
202 }
203
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
205 MemoryRegionIoeventfd *b)
206 {
207 return !memory_region_ioeventfd_before(a, b)
208 && !memory_region_ioeventfd_before(b, a);
209 }
210
211 /* Range of memory in the global map. Addresses are absolute. */
212 struct FlatRange {
213 MemoryRegion *mr;
214 hwaddr offset_in_region;
215 AddrRange addr;
216 uint8_t dirty_log_mask;
217 bool romd_mode;
218 bool readonly;
219 bool nonvolatile;
220 };
221
222 #define FOR_EACH_FLAT_RANGE(var, view) \
223 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
224
225 static inline MemoryRegionSection
226 section_from_flat_range(FlatRange *fr, FlatView *fv)
227 {
228 return (MemoryRegionSection) {
229 .mr = fr->mr,
230 .fv = fv,
231 .offset_within_region = fr->offset_in_region,
232 .size = fr->addr.size,
233 .offset_within_address_space = int128_get64(fr->addr.start),
234 .readonly = fr->readonly,
235 .nonvolatile = fr->nonvolatile,
236 };
237 }
238
239 static bool flatrange_equal(FlatRange *a, FlatRange *b)
240 {
241 return a->mr == b->mr
242 && addrrange_equal(a->addr, b->addr)
243 && a->offset_in_region == b->offset_in_region
244 && a->romd_mode == b->romd_mode
245 && a->readonly == b->readonly
246 && a->nonvolatile == b->nonvolatile;
247 }
248
249 static FlatView *flatview_new(MemoryRegion *mr_root)
250 {
251 FlatView *view;
252
253 view = g_new0(FlatView, 1);
254 view->ref = 1;
255 view->root = mr_root;
256 memory_region_ref(mr_root);
257 trace_flatview_new(view, mr_root);
258
259 return view;
260 }
261
262 /* Insert a range into a given position. Caller is responsible for maintaining
263 * sorting order.
264 */
265 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
266 {
267 if (view->nr == view->nr_allocated) {
268 view->nr_allocated = MAX(2 * view->nr, 10);
269 view->ranges = g_realloc(view->ranges,
270 view->nr_allocated * sizeof(*view->ranges));
271 }
272 memmove(view->ranges + pos + 1, view->ranges + pos,
273 (view->nr - pos) * sizeof(FlatRange));
274 view->ranges[pos] = *range;
275 memory_region_ref(range->mr);
276 ++view->nr;
277 }
278
279 static void flatview_destroy(FlatView *view)
280 {
281 int i;
282
283 trace_flatview_destroy(view, view->root);
284 if (view->dispatch) {
285 address_space_dispatch_free(view->dispatch);
286 }
287 for (i = 0; i < view->nr; i++) {
288 memory_region_unref(view->ranges[i].mr);
289 }
290 g_free(view->ranges);
291 memory_region_unref(view->root);
292 g_free(view);
293 }
294
295 static bool flatview_ref(FlatView *view)
296 {
297 return atomic_fetch_inc_nonzero(&view->ref) > 0;
298 }
299
300 void flatview_unref(FlatView *view)
301 {
302 if (atomic_fetch_dec(&view->ref) == 1) {
303 trace_flatview_destroy_rcu(view, view->root);
304 assert(view->root);
305 call_rcu(view, flatview_destroy, rcu);
306 }
307 }
308
309 static bool can_merge(FlatRange *r1, FlatRange *r2)
310 {
311 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
312 && r1->mr == r2->mr
313 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
314 r1->addr.size),
315 int128_make64(r2->offset_in_region))
316 && r1->dirty_log_mask == r2->dirty_log_mask
317 && r1->romd_mode == r2->romd_mode
318 && r1->readonly == r2->readonly
319 && r1->nonvolatile == r2->nonvolatile;
320 }
321
322 /* Attempt to simplify a view by merging adjacent ranges */
323 static void flatview_simplify(FlatView *view)
324 {
325 unsigned i, j, k;
326
327 i = 0;
328 while (i < view->nr) {
329 j = i + 1;
330 while (j < view->nr
331 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
332 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
333 ++j;
334 }
335 ++i;
336 for (k = i; k < j; k++) {
337 memory_region_unref(view->ranges[k].mr);
338 }
339 memmove(&view->ranges[i], &view->ranges[j],
340 (view->nr - j) * sizeof(view->ranges[j]));
341 view->nr -= j - i;
342 }
343 }
344
345 static bool memory_region_big_endian(MemoryRegion *mr)
346 {
347 #ifdef TARGET_WORDS_BIGENDIAN
348 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
349 #else
350 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
351 #endif
352 }
353
354 static bool memory_region_wrong_endianness(MemoryRegion *mr)
355 {
356 #ifdef TARGET_WORDS_BIGENDIAN
357 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
358 #else
359 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
360 #endif
361 }
362
363 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
364 {
365 if (memory_region_wrong_endianness(mr)) {
366 switch (size) {
367 case 1:
368 break;
369 case 2:
370 *data = bswap16(*data);
371 break;
372 case 4:
373 *data = bswap32(*data);
374 break;
375 case 8:
376 *data = bswap64(*data);
377 break;
378 default:
379 abort();
380 }
381 }
382 }
383
384 static inline void memory_region_shift_read_access(uint64_t *value,
385 signed shift,
386 uint64_t mask,
387 uint64_t tmp)
388 {
389 if (shift >= 0) {
390 *value |= (tmp & mask) << shift;
391 } else {
392 *value |= (tmp & mask) >> -shift;
393 }
394 }
395
396 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
397 signed shift,
398 uint64_t mask)
399 {
400 uint64_t tmp;
401
402 if (shift >= 0) {
403 tmp = (*value >> shift) & mask;
404 } else {
405 tmp = (*value << -shift) & mask;
406 }
407
408 return tmp;
409 }
410
411 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
412 {
413 MemoryRegion *root;
414 hwaddr abs_addr = offset;
415
416 abs_addr += mr->addr;
417 for (root = mr; root->container; ) {
418 root = root->container;
419 abs_addr += root->addr;
420 }
421
422 return abs_addr;
423 }
424
425 static int get_cpu_index(void)
426 {
427 if (current_cpu) {
428 return current_cpu->cpu_index;
429 }
430 return -1;
431 }
432
433 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
434 hwaddr addr,
435 uint64_t *value,
436 unsigned size,
437 signed shift,
438 uint64_t mask,
439 MemTxAttrs attrs)
440 {
441 uint64_t tmp;
442
443 tmp = mr->ops->read(mr->opaque, addr, size);
444 if (mr->subpage) {
445 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
446 } else if (mr == &io_mem_notdirty) {
447 /* Accesses to code which has previously been translated into a TB show
448 * up in the MMIO path, as accesses to the io_mem_notdirty
449 * MemoryRegion. */
450 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
451 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
452 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
453 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
454 }
455 memory_region_shift_read_access(value, shift, mask, tmp);
456 return MEMTX_OK;
457 }
458
459 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
460 hwaddr addr,
461 uint64_t *value,
462 unsigned size,
463 signed shift,
464 uint64_t mask,
465 MemTxAttrs attrs)
466 {
467 uint64_t tmp = 0;
468 MemTxResult r;
469
470 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
471 if (mr->subpage) {
472 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
473 } else if (mr == &io_mem_notdirty) {
474 /* Accesses to code which has previously been translated into a TB show
475 * up in the MMIO path, as accesses to the io_mem_notdirty
476 * MemoryRegion. */
477 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
478 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
479 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
480 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
481 }
482 memory_region_shift_read_access(value, shift, mask, tmp);
483 return r;
484 }
485
486 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
487 hwaddr addr,
488 uint64_t *value,
489 unsigned size,
490 signed shift,
491 uint64_t mask,
492 MemTxAttrs attrs)
493 {
494 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
495
496 if (mr->subpage) {
497 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
498 } else if (mr == &io_mem_notdirty) {
499 /* Accesses to code which has previously been translated into a TB show
500 * up in the MMIO path, as accesses to the io_mem_notdirty
501 * MemoryRegion. */
502 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
503 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
504 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
505 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
506 }
507 mr->ops->write(mr->opaque, addr, tmp, size);
508 return MEMTX_OK;
509 }
510
511 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
512 hwaddr addr,
513 uint64_t *value,
514 unsigned size,
515 signed shift,
516 uint64_t mask,
517 MemTxAttrs attrs)
518 {
519 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
520
521 if (mr->subpage) {
522 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
523 } else if (mr == &io_mem_notdirty) {
524 /* Accesses to code which has previously been translated into a TB show
525 * up in the MMIO path, as accesses to the io_mem_notdirty
526 * MemoryRegion. */
527 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
528 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
529 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
530 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
531 }
532 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
533 }
534
535 static MemTxResult access_with_adjusted_size(hwaddr addr,
536 uint64_t *value,
537 unsigned size,
538 unsigned access_size_min,
539 unsigned access_size_max,
540 MemTxResult (*access_fn)
541 (MemoryRegion *mr,
542 hwaddr addr,
543 uint64_t *value,
544 unsigned size,
545 signed shift,
546 uint64_t mask,
547 MemTxAttrs attrs),
548 MemoryRegion *mr,
549 MemTxAttrs attrs)
550 {
551 uint64_t access_mask;
552 unsigned access_size;
553 unsigned i;
554 MemTxResult r = MEMTX_OK;
555
556 if (!access_size_min) {
557 access_size_min = 1;
558 }
559 if (!access_size_max) {
560 access_size_max = 4;
561 }
562
563 /* FIXME: support unaligned access? */
564 access_size = MAX(MIN(size, access_size_max), access_size_min);
565 access_mask = MAKE_64BIT_MASK(0, access_size * 8);
566 if (memory_region_big_endian(mr)) {
567 for (i = 0; i < size; i += access_size) {
568 r |= access_fn(mr, addr + i, value, access_size,
569 (size - access_size - i) * 8, access_mask, attrs);
570 }
571 } else {
572 for (i = 0; i < size; i += access_size) {
573 r |= access_fn(mr, addr + i, value, access_size, i * 8,
574 access_mask, attrs);
575 }
576 }
577 return r;
578 }
579
580 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
581 {
582 AddressSpace *as;
583
584 while (mr->container) {
585 mr = mr->container;
586 }
587 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
588 if (mr == as->root) {
589 return as;
590 }
591 }
592 return NULL;
593 }
594
595 /* Render a memory region into the global view. Ranges in @view obscure
596 * ranges in @mr.
597 */
598 static void render_memory_region(FlatView *view,
599 MemoryRegion *mr,
600 Int128 base,
601 AddrRange clip,
602 bool readonly,
603 bool nonvolatile)
604 {
605 MemoryRegion *subregion;
606 unsigned i;
607 hwaddr offset_in_region;
608 Int128 remain;
609 Int128 now;
610 FlatRange fr;
611 AddrRange tmp;
612
613 if (!mr->enabled) {
614 return;
615 }
616
617 int128_addto(&base, int128_make64(mr->addr));
618 readonly |= mr->readonly;
619 nonvolatile |= mr->nonvolatile;
620
621 tmp = addrrange_make(base, mr->size);
622
623 if (!addrrange_intersects(tmp, clip)) {
624 return;
625 }
626
627 clip = addrrange_intersection(tmp, clip);
628
629 if (mr->alias) {
630 int128_subfrom(&base, int128_make64(mr->alias->addr));
631 int128_subfrom(&base, int128_make64(mr->alias_offset));
632 render_memory_region(view, mr->alias, base, clip,
633 readonly, nonvolatile);
634 return;
635 }
636
637 /* Render subregions in priority order. */
638 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
639 render_memory_region(view, subregion, base, clip,
640 readonly, nonvolatile);
641 }
642
643 if (!mr->terminates) {
644 return;
645 }
646
647 offset_in_region = int128_get64(int128_sub(clip.start, base));
648 base = clip.start;
649 remain = clip.size;
650
651 fr.mr = mr;
652 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
653 fr.romd_mode = mr->romd_mode;
654 fr.readonly = readonly;
655 fr.nonvolatile = nonvolatile;
656
657 /* Render the region itself into any gaps left by the current view. */
658 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
659 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
660 continue;
661 }
662 if (int128_lt(base, view->ranges[i].addr.start)) {
663 now = int128_min(remain,
664 int128_sub(view->ranges[i].addr.start, base));
665 fr.offset_in_region = offset_in_region;
666 fr.addr = addrrange_make(base, now);
667 flatview_insert(view, i, &fr);
668 ++i;
669 int128_addto(&base, now);
670 offset_in_region += int128_get64(now);
671 int128_subfrom(&remain, now);
672 }
673 now = int128_sub(int128_min(int128_add(base, remain),
674 addrrange_end(view->ranges[i].addr)),
675 base);
676 int128_addto(&base, now);
677 offset_in_region += int128_get64(now);
678 int128_subfrom(&remain, now);
679 }
680 if (int128_nz(remain)) {
681 fr.offset_in_region = offset_in_region;
682 fr.addr = addrrange_make(base, remain);
683 flatview_insert(view, i, &fr);
684 }
685 }
686
687 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
688 {
689 while (mr->enabled) {
690 if (mr->alias) {
691 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
692 /* The alias is included in its entirety. Use it as
693 * the "real" root, so that we can share more FlatViews.
694 */
695 mr = mr->alias;
696 continue;
697 }
698 } else if (!mr->terminates) {
699 unsigned int found = 0;
700 MemoryRegion *child, *next = NULL;
701 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
702 if (child->enabled) {
703 if (++found > 1) {
704 next = NULL;
705 break;
706 }
707 if (!child->addr && int128_ge(mr->size, child->size)) {
708 /* A child is included in its entirety. If it's the only
709 * enabled one, use it in the hope of finding an alias down the
710 * way. This will also let us share FlatViews.
711 */
712 next = child;
713 }
714 }
715 }
716 if (found == 0) {
717 return NULL;
718 }
719 if (next) {
720 mr = next;
721 continue;
722 }
723 }
724
725 return mr;
726 }
727
728 return NULL;
729 }
730
731 /* Render a memory topology into a list of disjoint absolute ranges. */
732 static FlatView *generate_memory_topology(MemoryRegion *mr)
733 {
734 int i;
735 FlatView *view;
736
737 view = flatview_new(mr);
738
739 if (mr) {
740 render_memory_region(view, mr, int128_zero(),
741 addrrange_make(int128_zero(), int128_2_64()),
742 false, false);
743 }
744 flatview_simplify(view);
745
746 view->dispatch = address_space_dispatch_new(view);
747 for (i = 0; i < view->nr; i++) {
748 MemoryRegionSection mrs =
749 section_from_flat_range(&view->ranges[i], view);
750 flatview_add_to_dispatch(view, &mrs);
751 }
752 address_space_dispatch_compact(view->dispatch);
753 g_hash_table_replace(flat_views, mr, view);
754
755 return view;
756 }
757
758 static void address_space_add_del_ioeventfds(AddressSpace *as,
759 MemoryRegionIoeventfd *fds_new,
760 unsigned fds_new_nb,
761 MemoryRegionIoeventfd *fds_old,
762 unsigned fds_old_nb)
763 {
764 unsigned iold, inew;
765 MemoryRegionIoeventfd *fd;
766 MemoryRegionSection section;
767
768 /* Generate a symmetric difference of the old and new fd sets, adding
769 * and deleting as necessary.
770 */
771
772 iold = inew = 0;
773 while (iold < fds_old_nb || inew < fds_new_nb) {
774 if (iold < fds_old_nb
775 && (inew == fds_new_nb
776 || memory_region_ioeventfd_before(&fds_old[iold],
777 &fds_new[inew]))) {
778 fd = &fds_old[iold];
779 section = (MemoryRegionSection) {
780 .fv = address_space_to_flatview(as),
781 .offset_within_address_space = int128_get64(fd->addr.start),
782 .size = fd->addr.size,
783 };
784 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
785 fd->match_data, fd->data, fd->e);
786 ++iold;
787 } else if (inew < fds_new_nb
788 && (iold == fds_old_nb
789 || memory_region_ioeventfd_before(&fds_new[inew],
790 &fds_old[iold]))) {
791 fd = &fds_new[inew];
792 section = (MemoryRegionSection) {
793 .fv = address_space_to_flatview(as),
794 .offset_within_address_space = int128_get64(fd->addr.start),
795 .size = fd->addr.size,
796 };
797 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
798 fd->match_data, fd->data, fd->e);
799 ++inew;
800 } else {
801 ++iold;
802 ++inew;
803 }
804 }
805 }
806
807 FlatView *address_space_get_flatview(AddressSpace *as)
808 {
809 FlatView *view;
810
811 rcu_read_lock();
812 do {
813 view = address_space_to_flatview(as);
814 /* If somebody has replaced as->current_map concurrently,
815 * flatview_ref returns false.
816 */
817 } while (!flatview_ref(view));
818 rcu_read_unlock();
819 return view;
820 }
821
822 static void address_space_update_ioeventfds(AddressSpace *as)
823 {
824 FlatView *view;
825 FlatRange *fr;
826 unsigned ioeventfd_nb = 0;
827 MemoryRegionIoeventfd *ioeventfds = NULL;
828 AddrRange tmp;
829 unsigned i;
830
831 view = address_space_get_flatview(as);
832 FOR_EACH_FLAT_RANGE(fr, view) {
833 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
834 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
835 int128_sub(fr->addr.start,
836 int128_make64(fr->offset_in_region)));
837 if (addrrange_intersects(fr->addr, tmp)) {
838 ++ioeventfd_nb;
839 ioeventfds = g_realloc(ioeventfds,
840 ioeventfd_nb * sizeof(*ioeventfds));
841 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
842 ioeventfds[ioeventfd_nb-1].addr = tmp;
843 }
844 }
845 }
846
847 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
848 as->ioeventfds, as->ioeventfd_nb);
849
850 g_free(as->ioeventfds);
851 as->ioeventfds = ioeventfds;
852 as->ioeventfd_nb = ioeventfd_nb;
853 flatview_unref(view);
854 }
855
856 /*
857 * Notify the memory listeners about the coalesced IO change events of
858 * range `cmr'. Only the part that has intersection of the specified
859 * FlatRange will be sent.
860 */
861 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
862 CoalescedMemoryRange *cmr, bool add)
863 {
864 AddrRange tmp;
865
866 tmp = addrrange_shift(cmr->addr,
867 int128_sub(fr->addr.start,
868 int128_make64(fr->offset_in_region)));
869 if (!addrrange_intersects(tmp, fr->addr)) {
870 return;
871 }
872 tmp = addrrange_intersection(tmp, fr->addr);
873
874 if (add) {
875 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
876 int128_get64(tmp.start),
877 int128_get64(tmp.size));
878 } else {
879 MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
880 int128_get64(tmp.start),
881 int128_get64(tmp.size));
882 }
883 }
884
885 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
886 {
887 CoalescedMemoryRange *cmr;
888
889 QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
890 flat_range_coalesced_io_notify(fr, as, cmr, false);
891 }
892 }
893
894 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
895 {
896 MemoryRegion *mr = fr->mr;
897 CoalescedMemoryRange *cmr;
898
899 if (QTAILQ_EMPTY(&mr->coalesced)) {
900 return;
901 }
902
903 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
904 flat_range_coalesced_io_notify(fr, as, cmr, true);
905 }
906 }
907
908 static void address_space_update_topology_pass(AddressSpace *as,
909 const FlatView *old_view,
910 const FlatView *new_view,
911 bool adding)
912 {
913 unsigned iold, inew;
914 FlatRange *frold, *frnew;
915
916 /* Generate a symmetric difference of the old and new memory maps.
917 * Kill ranges in the old map, and instantiate ranges in the new map.
918 */
919 iold = inew = 0;
920 while (iold < old_view->nr || inew < new_view->nr) {
921 if (iold < old_view->nr) {
922 frold = &old_view->ranges[iold];
923 } else {
924 frold = NULL;
925 }
926 if (inew < new_view->nr) {
927 frnew = &new_view->ranges[inew];
928 } else {
929 frnew = NULL;
930 }
931
932 if (frold
933 && (!frnew
934 || int128_lt(frold->addr.start, frnew->addr.start)
935 || (int128_eq(frold->addr.start, frnew->addr.start)
936 && !flatrange_equal(frold, frnew)))) {
937 /* In old but not in new, or in both but attributes changed. */
938
939 if (!adding) {
940 flat_range_coalesced_io_del(frold, as);
941 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
942 }
943
944 ++iold;
945 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
946 /* In both and unchanged (except logging may have changed) */
947
948 if (adding) {
949 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
950 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
951 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
952 frold->dirty_log_mask,
953 frnew->dirty_log_mask);
954 }
955 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
956 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
957 frold->dirty_log_mask,
958 frnew->dirty_log_mask);
959 }
960 }
961
962 ++iold;
963 ++inew;
964 } else {
965 /* In new */
966
967 if (adding) {
968 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
969 flat_range_coalesced_io_add(frnew, as);
970 }
971
972 ++inew;
973 }
974 }
975 }
976
977 static void flatviews_init(void)
978 {
979 static FlatView *empty_view;
980
981 if (flat_views) {
982 return;
983 }
984
985 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
986 (GDestroyNotify) flatview_unref);
987 if (!empty_view) {
988 empty_view = generate_memory_topology(NULL);
989 /* We keep it alive forever in the global variable. */
990 flatview_ref(empty_view);
991 } else {
992 g_hash_table_replace(flat_views, NULL, empty_view);
993 flatview_ref(empty_view);
994 }
995 }
996
997 static void flatviews_reset(void)
998 {
999 AddressSpace *as;
1000
1001 if (flat_views) {
1002 g_hash_table_unref(flat_views);
1003 flat_views = NULL;
1004 }
1005 flatviews_init();
1006
1007 /* Render unique FVs */
1008 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1009 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1010
1011 if (g_hash_table_lookup(flat_views, physmr)) {
1012 continue;
1013 }
1014
1015 generate_memory_topology(physmr);
1016 }
1017 }
1018
1019 static void address_space_set_flatview(AddressSpace *as)
1020 {
1021 FlatView *old_view = address_space_to_flatview(as);
1022 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1023 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1024
1025 assert(new_view);
1026
1027 if (old_view == new_view) {
1028 return;
1029 }
1030
1031 if (old_view) {
1032 flatview_ref(old_view);
1033 }
1034
1035 flatview_ref(new_view);
1036
1037 if (!QTAILQ_EMPTY(&as->listeners)) {
1038 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1039
1040 if (!old_view2) {
1041 old_view2 = &tmpview;
1042 }
1043 address_space_update_topology_pass(as, old_view2, new_view, false);
1044 address_space_update_topology_pass(as, old_view2, new_view, true);
1045 }
1046
1047 /* Writes are protected by the BQL. */
1048 atomic_rcu_set(&as->current_map, new_view);
1049 if (old_view) {
1050 flatview_unref(old_view);
1051 }
1052
1053 /* Note that all the old MemoryRegions are still alive up to this
1054 * point. This relieves most MemoryListeners from the need to
1055 * ref/unref the MemoryRegions they get---unless they use them
1056 * outside the iothread mutex, in which case precise reference
1057 * counting is necessary.
1058 */
1059 if (old_view) {
1060 flatview_unref(old_view);
1061 }
1062 }
1063
1064 static void address_space_update_topology(AddressSpace *as)
1065 {
1066 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1067
1068 flatviews_init();
1069 if (!g_hash_table_lookup(flat_views, physmr)) {
1070 generate_memory_topology(physmr);
1071 }
1072 address_space_set_flatview(as);
1073 }
1074
1075 void memory_region_transaction_begin(void)
1076 {
1077 qemu_flush_coalesced_mmio_buffer();
1078 ++memory_region_transaction_depth;
1079 }
1080
1081 void memory_region_transaction_commit(void)
1082 {
1083 AddressSpace *as;
1084
1085 assert(memory_region_transaction_depth);
1086 assert(qemu_mutex_iothread_locked());
1087
1088 --memory_region_transaction_depth;
1089 if (!memory_region_transaction_depth) {
1090 if (memory_region_update_pending) {
1091 flatviews_reset();
1092
1093 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1094
1095 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1096 address_space_set_flatview(as);
1097 address_space_update_ioeventfds(as);
1098 }
1099 memory_region_update_pending = false;
1100 ioeventfd_update_pending = false;
1101 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1102 } else if (ioeventfd_update_pending) {
1103 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1104 address_space_update_ioeventfds(as);
1105 }
1106 ioeventfd_update_pending = false;
1107 }
1108 }
1109 }
1110
1111 static void memory_region_destructor_none(MemoryRegion *mr)
1112 {
1113 }
1114
1115 static void memory_region_destructor_ram(MemoryRegion *mr)
1116 {
1117 qemu_ram_free(mr->ram_block);
1118 }
1119
1120 static bool memory_region_need_escape(char c)
1121 {
1122 return c == '/' || c == '[' || c == '\\' || c == ']';
1123 }
1124
1125 static char *memory_region_escape_name(const char *name)
1126 {
1127 const char *p;
1128 char *escaped, *q;
1129 uint8_t c;
1130 size_t bytes = 0;
1131
1132 for (p = name; *p; p++) {
1133 bytes += memory_region_need_escape(*p) ? 4 : 1;
1134 }
1135 if (bytes == p - name) {
1136 return g_memdup(name, bytes + 1);
1137 }
1138
1139 escaped = g_malloc(bytes + 1);
1140 for (p = name, q = escaped; *p; p++) {
1141 c = *p;
1142 if (unlikely(memory_region_need_escape(c))) {
1143 *q++ = '\\';
1144 *q++ = 'x';
1145 *q++ = "0123456789abcdef"[c >> 4];
1146 c = "0123456789abcdef"[c & 15];
1147 }
1148 *q++ = c;
1149 }
1150 *q = 0;
1151 return escaped;
1152 }
1153
1154 static void memory_region_do_init(MemoryRegion *mr,
1155 Object *owner,
1156 const char *name,
1157 uint64_t size)
1158 {
1159 mr->size = int128_make64(size);
1160 if (size == UINT64_MAX) {
1161 mr->size = int128_2_64();
1162 }
1163 mr->name = g_strdup(name);
1164 mr->owner = owner;
1165 mr->ram_block = NULL;
1166
1167 if (name) {
1168 char *escaped_name = memory_region_escape_name(name);
1169 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1170
1171 if (!owner) {
1172 owner = container_get(qdev_get_machine(), "/unattached");
1173 }
1174
1175 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1176 object_unref(OBJECT(mr));
1177 g_free(name_array);
1178 g_free(escaped_name);
1179 }
1180 }
1181
1182 void memory_region_init(MemoryRegion *mr,
1183 Object *owner,
1184 const char *name,
1185 uint64_t size)
1186 {
1187 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1188 memory_region_do_init(mr, owner, name, size);
1189 }
1190
1191 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1192 void *opaque, Error **errp)
1193 {
1194 MemoryRegion *mr = MEMORY_REGION(obj);
1195 uint64_t value = mr->addr;
1196
1197 visit_type_uint64(v, name, &value, errp);
1198 }
1199
1200 static void memory_region_get_container(Object *obj, Visitor *v,
1201 const char *name, void *opaque,
1202 Error **errp)
1203 {
1204 MemoryRegion *mr = MEMORY_REGION(obj);
1205 gchar *path = (gchar *)"";
1206
1207 if (mr->container) {
1208 path = object_get_canonical_path(OBJECT(mr->container));
1209 }
1210 visit_type_str(v, name, &path, errp);
1211 if (mr->container) {
1212 g_free(path);
1213 }
1214 }
1215
1216 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1217 const char *part)
1218 {
1219 MemoryRegion *mr = MEMORY_REGION(obj);
1220
1221 return OBJECT(mr->container);
1222 }
1223
1224 static void memory_region_get_priority(Object *obj, Visitor *v,
1225 const char *name, void *opaque,
1226 Error **errp)
1227 {
1228 MemoryRegion *mr = MEMORY_REGION(obj);
1229 int32_t value = mr->priority;
1230
1231 visit_type_int32(v, name, &value, errp);
1232 }
1233
1234 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1235 void *opaque, Error **errp)
1236 {
1237 MemoryRegion *mr = MEMORY_REGION(obj);
1238 uint64_t value = memory_region_size(mr);
1239
1240 visit_type_uint64(v, name, &value, errp);
1241 }
1242
1243 static void memory_region_initfn(Object *obj)
1244 {
1245 MemoryRegion *mr = MEMORY_REGION(obj);
1246 ObjectProperty *op;
1247
1248 mr->ops = &unassigned_mem_ops;
1249 mr->enabled = true;
1250 mr->romd_mode = true;
1251 mr->global_locking = true;
1252 mr->destructor = memory_region_destructor_none;
1253 QTAILQ_INIT(&mr->subregions);
1254 QTAILQ_INIT(&mr->coalesced);
1255
1256 op = object_property_add(OBJECT(mr), "container",
1257 "link<" TYPE_MEMORY_REGION ">",
1258 memory_region_get_container,
1259 NULL, /* memory_region_set_container */
1260 NULL, NULL, &error_abort);
1261 op->resolve = memory_region_resolve_container;
1262
1263 object_property_add(OBJECT(mr), "addr", "uint64",
1264 memory_region_get_addr,
1265 NULL, /* memory_region_set_addr */
1266 NULL, NULL, &error_abort);
1267 object_property_add(OBJECT(mr), "priority", "uint32",
1268 memory_region_get_priority,
1269 NULL, /* memory_region_set_priority */
1270 NULL, NULL, &error_abort);
1271 object_property_add(OBJECT(mr), "size", "uint64",
1272 memory_region_get_size,
1273 NULL, /* memory_region_set_size, */
1274 NULL, NULL, &error_abort);
1275 }
1276
1277 static void iommu_memory_region_initfn(Object *obj)
1278 {
1279 MemoryRegion *mr = MEMORY_REGION(obj);
1280
1281 mr->is_iommu = true;
1282 }
1283
1284 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1285 unsigned size)
1286 {
1287 #ifdef DEBUG_UNASSIGNED
1288 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1289 #endif
1290 if (current_cpu != NULL) {
1291 bool is_exec = current_cpu->mem_io_access_type == MMU_INST_FETCH;
1292 cpu_unassigned_access(current_cpu, addr, false, is_exec, 0, size);
1293 }
1294 return 0;
1295 }
1296
1297 static void unassigned_mem_write(void *opaque, hwaddr addr,
1298 uint64_t val, unsigned size)
1299 {
1300 #ifdef DEBUG_UNASSIGNED
1301 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1302 #endif
1303 if (current_cpu != NULL) {
1304 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1305 }
1306 }
1307
1308 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1309 unsigned size, bool is_write,
1310 MemTxAttrs attrs)
1311 {
1312 return false;
1313 }
1314
1315 const MemoryRegionOps unassigned_mem_ops = {
1316 .valid.accepts = unassigned_mem_accepts,
1317 .endianness = DEVICE_NATIVE_ENDIAN,
1318 };
1319
1320 static uint64_t memory_region_ram_device_read(void *opaque,
1321 hwaddr addr, unsigned size)
1322 {
1323 MemoryRegion *mr = opaque;
1324 uint64_t data = (uint64_t)~0;
1325
1326 switch (size) {
1327 case 1:
1328 data = *(uint8_t *)(mr->ram_block->host + addr);
1329 break;
1330 case 2:
1331 data = *(uint16_t *)(mr->ram_block->host + addr);
1332 break;
1333 case 4:
1334 data = *(uint32_t *)(mr->ram_block->host + addr);
1335 break;
1336 case 8:
1337 data = *(uint64_t *)(mr->ram_block->host + addr);
1338 break;
1339 }
1340
1341 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1342
1343 return data;
1344 }
1345
1346 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1347 uint64_t data, unsigned size)
1348 {
1349 MemoryRegion *mr = opaque;
1350
1351 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1352
1353 switch (size) {
1354 case 1:
1355 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1356 break;
1357 case 2:
1358 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1359 break;
1360 case 4:
1361 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1362 break;
1363 case 8:
1364 *(uint64_t *)(mr->ram_block->host + addr) = data;
1365 break;
1366 }
1367 }
1368
1369 static const MemoryRegionOps ram_device_mem_ops = {
1370 .read = memory_region_ram_device_read,
1371 .write = memory_region_ram_device_write,
1372 .endianness = DEVICE_HOST_ENDIAN,
1373 .valid = {
1374 .min_access_size = 1,
1375 .max_access_size = 8,
1376 .unaligned = true,
1377 },
1378 .impl = {
1379 .min_access_size = 1,
1380 .max_access_size = 8,
1381 .unaligned = true,
1382 },
1383 };
1384
1385 bool memory_region_access_valid(MemoryRegion *mr,
1386 hwaddr addr,
1387 unsigned size,
1388 bool is_write,
1389 MemTxAttrs attrs)
1390 {
1391 int access_size_min, access_size_max;
1392 int access_size, i;
1393
1394 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1395 return false;
1396 }
1397
1398 if (!mr->ops->valid.accepts) {
1399 return true;
1400 }
1401
1402 access_size_min = mr->ops->valid.min_access_size;
1403 if (!mr->ops->valid.min_access_size) {
1404 access_size_min = 1;
1405 }
1406
1407 access_size_max = mr->ops->valid.max_access_size;
1408 if (!mr->ops->valid.max_access_size) {
1409 access_size_max = 4;
1410 }
1411
1412 access_size = MAX(MIN(size, access_size_max), access_size_min);
1413 for (i = 0; i < size; i += access_size) {
1414 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1415 is_write, attrs)) {
1416 return false;
1417 }
1418 }
1419
1420 return true;
1421 }
1422
1423 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1424 hwaddr addr,
1425 uint64_t *pval,
1426 unsigned size,
1427 MemTxAttrs attrs)
1428 {
1429 *pval = 0;
1430
1431 if (mr->ops->read) {
1432 return access_with_adjusted_size(addr, pval, size,
1433 mr->ops->impl.min_access_size,
1434 mr->ops->impl.max_access_size,
1435 memory_region_read_accessor,
1436 mr, attrs);
1437 } else {
1438 return access_with_adjusted_size(addr, pval, size,
1439 mr->ops->impl.min_access_size,
1440 mr->ops->impl.max_access_size,
1441 memory_region_read_with_attrs_accessor,
1442 mr, attrs);
1443 }
1444 }
1445
1446 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1447 hwaddr addr,
1448 uint64_t *pval,
1449 unsigned size,
1450 MemTxAttrs attrs)
1451 {
1452 MemTxResult r;
1453
1454 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1455 *pval = unassigned_mem_read(mr, addr, size);
1456 return MEMTX_DECODE_ERROR;
1457 }
1458
1459 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1460 adjust_endianness(mr, pval, size);
1461 return r;
1462 }
1463
1464 /* Return true if an eventfd was signalled */
1465 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1466 hwaddr addr,
1467 uint64_t data,
1468 unsigned size,
1469 MemTxAttrs attrs)
1470 {
1471 MemoryRegionIoeventfd ioeventfd = {
1472 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1473 .data = data,
1474 };
1475 unsigned i;
1476
1477 for (i = 0; i < mr->ioeventfd_nb; i++) {
1478 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1479 ioeventfd.e = mr->ioeventfds[i].e;
1480
1481 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1482 event_notifier_set(ioeventfd.e);
1483 return true;
1484 }
1485 }
1486
1487 return false;
1488 }
1489
1490 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1491 hwaddr addr,
1492 uint64_t data,
1493 unsigned size,
1494 MemTxAttrs attrs)
1495 {
1496 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1497 unassigned_mem_write(mr, addr, data, size);
1498 return MEMTX_DECODE_ERROR;
1499 }
1500
1501 adjust_endianness(mr, &data, size);
1502
1503 if ((!kvm_eventfds_enabled()) &&
1504 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1505 return MEMTX_OK;
1506 }
1507
1508 if (mr->ops->write) {
1509 return access_with_adjusted_size(addr, &data, size,
1510 mr->ops->impl.min_access_size,
1511 mr->ops->impl.max_access_size,
1512 memory_region_write_accessor, mr,
1513 attrs);
1514 } else {
1515 return
1516 access_with_adjusted_size(addr, &data, size,
1517 mr->ops->impl.min_access_size,
1518 mr->ops->impl.max_access_size,
1519 memory_region_write_with_attrs_accessor,
1520 mr, attrs);
1521 }
1522 }
1523
1524 void memory_region_init_io(MemoryRegion *mr,
1525 Object *owner,
1526 const MemoryRegionOps *ops,
1527 void *opaque,
1528 const char *name,
1529 uint64_t size)
1530 {
1531 memory_region_init(mr, owner, name, size);
1532 mr->ops = ops ? ops : &unassigned_mem_ops;
1533 mr->opaque = opaque;
1534 mr->terminates = true;
1535 }
1536
1537 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1538 Object *owner,
1539 const char *name,
1540 uint64_t size,
1541 Error **errp)
1542 {
1543 memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1544 }
1545
1546 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
1547 Object *owner,
1548 const char *name,
1549 uint64_t size,
1550 bool share,
1551 Error **errp)
1552 {
1553 Error *err = NULL;
1554 memory_region_init(mr, owner, name, size);
1555 mr->ram = true;
1556 mr->terminates = true;
1557 mr->destructor = memory_region_destructor_ram;
1558 mr->ram_block = qemu_ram_alloc(size, share, mr, &err);
1559 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1560 if (err) {
1561 mr->size = int128_zero();
1562 object_unparent(OBJECT(mr));
1563 error_propagate(errp, err);
1564 }
1565 }
1566
1567 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1568 Object *owner,
1569 const char *name,
1570 uint64_t size,
1571 uint64_t max_size,
1572 void (*resized)(const char*,
1573 uint64_t length,
1574 void *host),
1575 Error **errp)
1576 {
1577 Error *err = NULL;
1578 memory_region_init(mr, owner, name, size);
1579 mr->ram = true;
1580 mr->terminates = true;
1581 mr->destructor = memory_region_destructor_ram;
1582 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1583 mr, &err);
1584 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1585 if (err) {
1586 mr->size = int128_zero();
1587 object_unparent(OBJECT(mr));
1588 error_propagate(errp, err);
1589 }
1590 }
1591
1592 #ifdef CONFIG_POSIX
1593 void memory_region_init_ram_from_file(MemoryRegion *mr,
1594 struct Object *owner,
1595 const char *name,
1596 uint64_t size,
1597 uint64_t align,
1598 uint32_t ram_flags,
1599 const char *path,
1600 Error **errp)
1601 {
1602 Error *err = NULL;
1603 memory_region_init(mr, owner, name, size);
1604 mr->ram = true;
1605 mr->terminates = true;
1606 mr->destructor = memory_region_destructor_ram;
1607 mr->align = align;
1608 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path, &err);
1609 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1610 if (err) {
1611 mr->size = int128_zero();
1612 object_unparent(OBJECT(mr));
1613 error_propagate(errp, err);
1614 }
1615 }
1616
1617 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1618 struct Object *owner,
1619 const char *name,
1620 uint64_t size,
1621 bool share,
1622 int fd,
1623 Error **errp)
1624 {
1625 Error *err = NULL;
1626 memory_region_init(mr, owner, name, size);
1627 mr->ram = true;
1628 mr->terminates = true;
1629 mr->destructor = memory_region_destructor_ram;
1630 mr->ram_block = qemu_ram_alloc_from_fd(size, mr,
1631 share ? RAM_SHARED : 0,
1632 fd, &err);
1633 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1634 if (err) {
1635 mr->size = int128_zero();
1636 object_unparent(OBJECT(mr));
1637 error_propagate(errp, err);
1638 }
1639 }
1640 #endif
1641
1642 void memory_region_init_ram_ptr(MemoryRegion *mr,
1643 Object *owner,
1644 const char *name,
1645 uint64_t size,
1646 void *ptr)
1647 {
1648 memory_region_init(mr, owner, name, size);
1649 mr->ram = true;
1650 mr->terminates = true;
1651 mr->destructor = memory_region_destructor_ram;
1652 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1653
1654 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1655 assert(ptr != NULL);
1656 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1657 }
1658
1659 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1660 Object *owner,
1661 const char *name,
1662 uint64_t size,
1663 void *ptr)
1664 {
1665 memory_region_init(mr, owner, name, size);
1666 mr->ram = true;
1667 mr->terminates = true;
1668 mr->ram_device = true;
1669 mr->ops = &ram_device_mem_ops;
1670 mr->opaque = mr;
1671 mr->destructor = memory_region_destructor_ram;
1672 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1673 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1674 assert(ptr != NULL);
1675 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1676 }
1677
1678 void memory_region_init_alias(MemoryRegion *mr,
1679 Object *owner,
1680 const char *name,
1681 MemoryRegion *orig,
1682 hwaddr offset,
1683 uint64_t size)
1684 {
1685 memory_region_init(mr, owner, name, size);
1686 mr->alias = orig;
1687 mr->alias_offset = offset;
1688 }
1689
1690 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1691 struct Object *owner,
1692 const char *name,
1693 uint64_t size,
1694 Error **errp)
1695 {
1696 Error *err = NULL;
1697 memory_region_init(mr, owner, name, size);
1698 mr->ram = true;
1699 mr->readonly = true;
1700 mr->terminates = true;
1701 mr->destructor = memory_region_destructor_ram;
1702 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1703 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1704 if (err) {
1705 mr->size = int128_zero();
1706 object_unparent(OBJECT(mr));
1707 error_propagate(errp, err);
1708 }
1709 }
1710
1711 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1712 Object *owner,
1713 const MemoryRegionOps *ops,
1714 void *opaque,
1715 const char *name,
1716 uint64_t size,
1717 Error **errp)
1718 {
1719 Error *err = NULL;
1720 assert(ops);
1721 memory_region_init(mr, owner, name, size);
1722 mr->ops = ops;
1723 mr->opaque = opaque;
1724 mr->terminates = true;
1725 mr->rom_device = true;
1726 mr->destructor = memory_region_destructor_ram;
1727 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1728 if (err) {
1729 mr->size = int128_zero();
1730 object_unparent(OBJECT(mr));
1731 error_propagate(errp, err);
1732 }
1733 }
1734
1735 void memory_region_init_iommu(void *_iommu_mr,
1736 size_t instance_size,
1737 const char *mrtypename,
1738 Object *owner,
1739 const char *name,
1740 uint64_t size)
1741 {
1742 struct IOMMUMemoryRegion *iommu_mr;
1743 struct MemoryRegion *mr;
1744
1745 object_initialize(_iommu_mr, instance_size, mrtypename);
1746 mr = MEMORY_REGION(_iommu_mr);
1747 memory_region_do_init(mr, owner, name, size);
1748 iommu_mr = IOMMU_MEMORY_REGION(mr);
1749 mr->terminates = true; /* then re-forwards */
1750 QLIST_INIT(&iommu_mr->iommu_notify);
1751 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1752 }
1753
1754 static void memory_region_finalize(Object *obj)
1755 {
1756 MemoryRegion *mr = MEMORY_REGION(obj);
1757
1758 assert(!mr->container);
1759
1760 /* We know the region is not visible in any address space (it
1761 * does not have a container and cannot be a root either because
1762 * it has no references, so we can blindly clear mr->enabled.
1763 * memory_region_set_enabled instead could trigger a transaction
1764 * and cause an infinite loop.
1765 */
1766 mr->enabled = false;
1767 memory_region_transaction_begin();
1768 while (!QTAILQ_EMPTY(&mr->subregions)) {
1769 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1770 memory_region_del_subregion(mr, subregion);
1771 }
1772 memory_region_transaction_commit();
1773
1774 mr->destructor(mr);
1775 memory_region_clear_coalescing(mr);
1776 g_free((char *)mr->name);
1777 g_free(mr->ioeventfds);
1778 }
1779
1780 Object *memory_region_owner(MemoryRegion *mr)
1781 {
1782 Object *obj = OBJECT(mr);
1783 return obj->parent;
1784 }
1785
1786 void memory_region_ref(MemoryRegion *mr)
1787 {
1788 /* MMIO callbacks most likely will access data that belongs
1789 * to the owner, hence the need to ref/unref the owner whenever
1790 * the memory region is in use.
1791 *
1792 * The memory region is a child of its owner. As long as the
1793 * owner doesn't call unparent itself on the memory region,
1794 * ref-ing the owner will also keep the memory region alive.
1795 * Memory regions without an owner are supposed to never go away;
1796 * we do not ref/unref them because it slows down DMA sensibly.
1797 */
1798 if (mr && mr->owner) {
1799 object_ref(mr->owner);
1800 }
1801 }
1802
1803 void memory_region_unref(MemoryRegion *mr)
1804 {
1805 if (mr && mr->owner) {
1806 object_unref(mr->owner);
1807 }
1808 }
1809
1810 uint64_t memory_region_size(MemoryRegion *mr)
1811 {
1812 if (int128_eq(mr->size, int128_2_64())) {
1813 return UINT64_MAX;
1814 }
1815 return int128_get64(mr->size);
1816 }
1817
1818 const char *memory_region_name(const MemoryRegion *mr)
1819 {
1820 if (!mr->name) {
1821 ((MemoryRegion *)mr)->name =
1822 object_get_canonical_path_component(OBJECT(mr));
1823 }
1824 return mr->name;
1825 }
1826
1827 bool memory_region_is_ram_device(MemoryRegion *mr)
1828 {
1829 return mr->ram_device;
1830 }
1831
1832 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1833 {
1834 uint8_t mask = mr->dirty_log_mask;
1835 if (global_dirty_log && mr->ram_block) {
1836 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1837 }
1838 return mask;
1839 }
1840
1841 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1842 {
1843 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1844 }
1845
1846 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr)
1847 {
1848 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1849 IOMMUNotifier *iommu_notifier;
1850 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1851
1852 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1853 flags |= iommu_notifier->notifier_flags;
1854 }
1855
1856 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1857 imrc->notify_flag_changed(iommu_mr,
1858 iommu_mr->iommu_notify_flags,
1859 flags);
1860 }
1861
1862 iommu_mr->iommu_notify_flags = flags;
1863 }
1864
1865 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1866 IOMMUNotifier *n)
1867 {
1868 IOMMUMemoryRegion *iommu_mr;
1869
1870 if (mr->alias) {
1871 memory_region_register_iommu_notifier(mr->alias, n);
1872 return;
1873 }
1874
1875 /* We need to register for at least one bitfield */
1876 iommu_mr = IOMMU_MEMORY_REGION(mr);
1877 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1878 assert(n->start <= n->end);
1879 assert(n->iommu_idx >= 0 &&
1880 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1881
1882 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1883 memory_region_update_iommu_notify_flags(iommu_mr);
1884 }
1885
1886 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1887 {
1888 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1889
1890 if (imrc->get_min_page_size) {
1891 return imrc->get_min_page_size(iommu_mr);
1892 }
1893 return TARGET_PAGE_SIZE;
1894 }
1895
1896 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1897 {
1898 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1899 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1900 hwaddr addr, granularity;
1901 IOMMUTLBEntry iotlb;
1902
1903 /* If the IOMMU has its own replay callback, override */
1904 if (imrc->replay) {
1905 imrc->replay(iommu_mr, n);
1906 return;
1907 }
1908
1909 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1910
1911 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1912 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1913 if (iotlb.perm != IOMMU_NONE) {
1914 n->notify(n, &iotlb);
1915 }
1916
1917 /* if (2^64 - MR size) < granularity, it's possible to get an
1918 * infinite loop here. This should catch such a wraparound */
1919 if ((addr + granularity) < addr) {
1920 break;
1921 }
1922 }
1923 }
1924
1925 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1926 IOMMUNotifier *n)
1927 {
1928 IOMMUMemoryRegion *iommu_mr;
1929
1930 if (mr->alias) {
1931 memory_region_unregister_iommu_notifier(mr->alias, n);
1932 return;
1933 }
1934 QLIST_REMOVE(n, node);
1935 iommu_mr = IOMMU_MEMORY_REGION(mr);
1936 memory_region_update_iommu_notify_flags(iommu_mr);
1937 }
1938
1939 void memory_region_notify_one(IOMMUNotifier *notifier,
1940 IOMMUTLBEntry *entry)
1941 {
1942 IOMMUNotifierFlag request_flags;
1943 hwaddr entry_end = entry->iova + entry->addr_mask;
1944
1945 /*
1946 * Skip the notification if the notification does not overlap
1947 * with registered range.
1948 */
1949 if (notifier->start > entry_end || notifier->end < entry->iova) {
1950 return;
1951 }
1952
1953 assert(entry->iova >= notifier->start && entry_end <= notifier->end);
1954
1955 if (entry->perm & IOMMU_RW) {
1956 request_flags = IOMMU_NOTIFIER_MAP;
1957 } else {
1958 request_flags = IOMMU_NOTIFIER_UNMAP;
1959 }
1960
1961 if (notifier->notifier_flags & request_flags) {
1962 notifier->notify(notifier, entry);
1963 }
1964 }
1965
1966 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1967 int iommu_idx,
1968 IOMMUTLBEntry entry)
1969 {
1970 IOMMUNotifier *iommu_notifier;
1971
1972 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1973
1974 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1975 if (iommu_notifier->iommu_idx == iommu_idx) {
1976 memory_region_notify_one(iommu_notifier, &entry);
1977 }
1978 }
1979 }
1980
1981 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1982 enum IOMMUMemoryRegionAttr attr,
1983 void *data)
1984 {
1985 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1986
1987 if (!imrc->get_attr) {
1988 return -EINVAL;
1989 }
1990
1991 return imrc->get_attr(iommu_mr, attr, data);
1992 }
1993
1994 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1995 MemTxAttrs attrs)
1996 {
1997 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1998
1999 if (!imrc->attrs_to_index) {
2000 return 0;
2001 }
2002
2003 return imrc->attrs_to_index(iommu_mr, attrs);
2004 }
2005
2006 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2007 {
2008 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2009
2010 if (!imrc->num_indexes) {
2011 return 1;
2012 }
2013
2014 return imrc->num_indexes(iommu_mr);
2015 }
2016
2017 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2018 {
2019 uint8_t mask = 1 << client;
2020 uint8_t old_logging;
2021
2022 assert(client == DIRTY_MEMORY_VGA);
2023 old_logging = mr->vga_logging_count;
2024 mr->vga_logging_count += log ? 1 : -1;
2025 if (!!old_logging == !!mr->vga_logging_count) {
2026 return;
2027 }
2028
2029 memory_region_transaction_begin();
2030 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2031 memory_region_update_pending |= mr->enabled;
2032 memory_region_transaction_commit();
2033 }
2034
2035 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2036 hwaddr size)
2037 {
2038 assert(mr->ram_block);
2039 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2040 size,
2041 memory_region_get_dirty_log_mask(mr));
2042 }
2043
2044 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2045 {
2046 MemoryListener *listener;
2047 AddressSpace *as;
2048 FlatView *view;
2049 FlatRange *fr;
2050
2051 /* If the same address space has multiple log_sync listeners, we
2052 * visit that address space's FlatView multiple times. But because
2053 * log_sync listeners are rare, it's still cheaper than walking each
2054 * address space once.
2055 */
2056 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2057 if (!listener->log_sync) {
2058 continue;
2059 }
2060 as = listener->address_space;
2061 view = address_space_get_flatview(as);
2062 FOR_EACH_FLAT_RANGE(fr, view) {
2063 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2064 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2065 listener->log_sync(listener, &mrs);
2066 }
2067 }
2068 flatview_unref(view);
2069 }
2070 }
2071
2072 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2073 hwaddr len)
2074 {
2075 MemoryRegionSection mrs;
2076 MemoryListener *listener;
2077 AddressSpace *as;
2078 FlatView *view;
2079 FlatRange *fr;
2080 hwaddr sec_start, sec_end, sec_size;
2081
2082 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2083 if (!listener->log_clear) {
2084 continue;
2085 }
2086 as = listener->address_space;
2087 view = address_space_get_flatview(as);
2088 FOR_EACH_FLAT_RANGE(fr, view) {
2089 if (!fr->dirty_log_mask || fr->mr != mr) {
2090 /*
2091 * Clear dirty bitmap operation only applies to those
2092 * regions whose dirty logging is at least enabled
2093 */
2094 continue;
2095 }
2096
2097 mrs = section_from_flat_range(fr, view);
2098
2099 sec_start = MAX(mrs.offset_within_region, start);
2100 sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2101 sec_end = MIN(sec_end, start + len);
2102
2103 if (sec_start >= sec_end) {
2104 /*
2105 * If this memory region section has no intersection
2106 * with the requested range, skip.
2107 */
2108 continue;
2109 }
2110
2111 /* Valid case; shrink the section if needed */
2112 mrs.offset_within_address_space +=
2113 sec_start - mrs.offset_within_region;
2114 mrs.offset_within_region = sec_start;
2115 sec_size = sec_end - sec_start;
2116 mrs.size = int128_make64(sec_size);
2117 listener->log_clear(listener, &mrs);
2118 }
2119 flatview_unref(view);
2120 }
2121 }
2122
2123 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2124 hwaddr addr,
2125 hwaddr size,
2126 unsigned client)
2127 {
2128 DirtyBitmapSnapshot *snapshot;
2129 assert(mr->ram_block);
2130 memory_region_sync_dirty_bitmap(mr);
2131 snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2132 memory_global_after_dirty_log_sync();
2133 return snapshot;
2134 }
2135
2136 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2137 hwaddr addr, hwaddr size)
2138 {
2139 assert(mr->ram_block);
2140 return cpu_physical_memory_snapshot_get_dirty(snap,
2141 memory_region_get_ram_addr(mr) + addr, size);
2142 }
2143
2144 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2145 {
2146 if (mr->readonly != readonly) {
2147 memory_region_transaction_begin();
2148 mr->readonly = readonly;
2149 memory_region_update_pending |= mr->enabled;
2150 memory_region_transaction_commit();
2151 }
2152 }
2153
2154 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2155 {
2156 if (mr->nonvolatile != nonvolatile) {
2157 memory_region_transaction_begin();
2158 mr->nonvolatile = nonvolatile;
2159 memory_region_update_pending |= mr->enabled;
2160 memory_region_transaction_commit();
2161 }
2162 }
2163
2164 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2165 {
2166 if (mr->romd_mode != romd_mode) {
2167 memory_region_transaction_begin();
2168 mr->romd_mode = romd_mode;
2169 memory_region_update_pending |= mr->enabled;
2170 memory_region_transaction_commit();
2171 }
2172 }
2173
2174 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2175 hwaddr size, unsigned client)
2176 {
2177 assert(mr->ram_block);
2178 cpu_physical_memory_test_and_clear_dirty(
2179 memory_region_get_ram_addr(mr) + addr, size, client);
2180 }
2181
2182 int memory_region_get_fd(MemoryRegion *mr)
2183 {
2184 int fd;
2185
2186 rcu_read_lock();
2187 while (mr->alias) {
2188 mr = mr->alias;
2189 }
2190 fd = mr->ram_block->fd;
2191 rcu_read_unlock();
2192
2193 return fd;
2194 }
2195
2196 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2197 {
2198 void *ptr;
2199 uint64_t offset = 0;
2200
2201 rcu_read_lock();
2202 while (mr->alias) {
2203 offset += mr->alias_offset;
2204 mr = mr->alias;
2205 }
2206 assert(mr->ram_block);
2207 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2208 rcu_read_unlock();
2209
2210 return ptr;
2211 }
2212
2213 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2214 {
2215 RAMBlock *block;
2216
2217 block = qemu_ram_block_from_host(ptr, false, offset);
2218 if (!block) {
2219 return NULL;
2220 }
2221
2222 return block->mr;
2223 }
2224
2225 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2226 {
2227 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2228 }
2229
2230 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2231 {
2232 assert(mr->ram_block);
2233
2234 qemu_ram_resize(mr->ram_block, newsize, errp);
2235 }
2236
2237 /*
2238 * Call proper memory listeners about the change on the newly
2239 * added/removed CoalescedMemoryRange.
2240 */
2241 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2242 CoalescedMemoryRange *cmr,
2243 bool add)
2244 {
2245 AddressSpace *as;
2246 FlatView *view;
2247 FlatRange *fr;
2248
2249 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2250 view = address_space_get_flatview(as);
2251 FOR_EACH_FLAT_RANGE(fr, view) {
2252 if (fr->mr == mr) {
2253 flat_range_coalesced_io_notify(fr, as, cmr, add);
2254 }
2255 }
2256 flatview_unref(view);
2257 }
2258 }
2259
2260 void memory_region_set_coalescing(MemoryRegion *mr)
2261 {
2262 memory_region_clear_coalescing(mr);
2263 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2264 }
2265
2266 void memory_region_add_coalescing(MemoryRegion *mr,
2267 hwaddr offset,
2268 uint64_t size)
2269 {
2270 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2271
2272 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2273 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2274 memory_region_update_coalesced_range(mr, cmr, true);
2275 memory_region_set_flush_coalesced(mr);
2276 }
2277
2278 void memory_region_clear_coalescing(MemoryRegion *mr)
2279 {
2280 CoalescedMemoryRange *cmr;
2281
2282 if (QTAILQ_EMPTY(&mr->coalesced)) {
2283 return;
2284 }
2285
2286 qemu_flush_coalesced_mmio_buffer();
2287 mr->flush_coalesced_mmio = false;
2288
2289 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2290 cmr = QTAILQ_FIRST(&mr->coalesced);
2291 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2292 memory_region_update_coalesced_range(mr, cmr, false);
2293 g_free(cmr);
2294 }
2295 }
2296
2297 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2298 {
2299 mr->flush_coalesced_mmio = true;
2300 }
2301
2302 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2303 {
2304 qemu_flush_coalesced_mmio_buffer();
2305 if (QTAILQ_EMPTY(&mr->coalesced)) {
2306 mr->flush_coalesced_mmio = false;
2307 }
2308 }
2309
2310 void memory_region_clear_global_locking(MemoryRegion *mr)
2311 {
2312 mr->global_locking = false;
2313 }
2314
2315 static bool userspace_eventfd_warning;
2316
2317 void memory_region_add_eventfd(MemoryRegion *mr,
2318 hwaddr addr,
2319 unsigned size,
2320 bool match_data,
2321 uint64_t data,
2322 EventNotifier *e)
2323 {
2324 MemoryRegionIoeventfd mrfd = {
2325 .addr.start = int128_make64(addr),
2326 .addr.size = int128_make64(size),
2327 .match_data = match_data,
2328 .data = data,
2329 .e = e,
2330 };
2331 unsigned i;
2332
2333 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2334 userspace_eventfd_warning))) {
2335 userspace_eventfd_warning = true;
2336 error_report("Using eventfd without MMIO binding in KVM. "
2337 "Suboptimal performance expected");
2338 }
2339
2340 if (size) {
2341 adjust_endianness(mr, &mrfd.data, size);
2342 }
2343 memory_region_transaction_begin();
2344 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2345 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2346 break;
2347 }
2348 }
2349 ++mr->ioeventfd_nb;
2350 mr->ioeventfds = g_realloc(mr->ioeventfds,
2351 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2352 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2353 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2354 mr->ioeventfds[i] = mrfd;
2355 ioeventfd_update_pending |= mr->enabled;
2356 memory_region_transaction_commit();
2357 }
2358
2359 void memory_region_del_eventfd(MemoryRegion *mr,
2360 hwaddr addr,
2361 unsigned size,
2362 bool match_data,
2363 uint64_t data,
2364 EventNotifier *e)
2365 {
2366 MemoryRegionIoeventfd mrfd = {
2367 .addr.start = int128_make64(addr),
2368 .addr.size = int128_make64(size),
2369 .match_data = match_data,
2370 .data = data,
2371 .e = e,
2372 };
2373 unsigned i;
2374
2375 if (size) {
2376 adjust_endianness(mr, &mrfd.data, size);
2377 }
2378 memory_region_transaction_begin();
2379 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2380 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2381 break;
2382 }
2383 }
2384 assert(i != mr->ioeventfd_nb);
2385 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2386 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2387 --mr->ioeventfd_nb;
2388 mr->ioeventfds = g_realloc(mr->ioeventfds,
2389 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2390 ioeventfd_update_pending |= mr->enabled;
2391 memory_region_transaction_commit();
2392 }
2393
2394 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2395 {
2396 MemoryRegion *mr = subregion->container;
2397 MemoryRegion *other;
2398
2399 memory_region_transaction_begin();
2400
2401 memory_region_ref(subregion);
2402 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2403 if (subregion->priority >= other->priority) {
2404 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2405 goto done;
2406 }
2407 }
2408 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2409 done:
2410 memory_region_update_pending |= mr->enabled && subregion->enabled;
2411 memory_region_transaction_commit();
2412 }
2413
2414 static void memory_region_add_subregion_common(MemoryRegion *mr,
2415 hwaddr offset,
2416 MemoryRegion *subregion)
2417 {
2418 assert(!subregion->container);
2419 subregion->container = mr;
2420 subregion->addr = offset;
2421 memory_region_update_container_subregions(subregion);
2422 }
2423
2424 void memory_region_add_subregion(MemoryRegion *mr,
2425 hwaddr offset,
2426 MemoryRegion *subregion)
2427 {
2428 subregion->priority = 0;
2429 memory_region_add_subregion_common(mr, offset, subregion);
2430 }
2431
2432 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2433 hwaddr offset,
2434 MemoryRegion *subregion,
2435 int priority)
2436 {
2437 subregion->priority = priority;
2438 memory_region_add_subregion_common(mr, offset, subregion);
2439 }
2440
2441 void memory_region_del_subregion(MemoryRegion *mr,
2442 MemoryRegion *subregion)
2443 {
2444 memory_region_transaction_begin();
2445 assert(subregion->container == mr);
2446 subregion->container = NULL;
2447 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2448 memory_region_unref(subregion);
2449 memory_region_update_pending |= mr->enabled && subregion->enabled;
2450 memory_region_transaction_commit();
2451 }
2452
2453 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2454 {
2455 if (enabled == mr->enabled) {
2456 return;
2457 }
2458 memory_region_transaction_begin();
2459 mr->enabled = enabled;
2460 memory_region_update_pending = true;
2461 memory_region_transaction_commit();
2462 }
2463
2464 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2465 {
2466 Int128 s = int128_make64(size);
2467
2468 if (size == UINT64_MAX) {
2469 s = int128_2_64();
2470 }
2471 if (int128_eq(s, mr->size)) {
2472 return;
2473 }
2474 memory_region_transaction_begin();
2475 mr->size = s;
2476 memory_region_update_pending = true;
2477 memory_region_transaction_commit();
2478 }
2479
2480 static void memory_region_readd_subregion(MemoryRegion *mr)
2481 {
2482 MemoryRegion *container = mr->container;
2483
2484 if (container) {
2485 memory_region_transaction_begin();
2486 memory_region_ref(mr);
2487 memory_region_del_subregion(container, mr);
2488 mr->container = container;
2489 memory_region_update_container_subregions(mr);
2490 memory_region_unref(mr);
2491 memory_region_transaction_commit();
2492 }
2493 }
2494
2495 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2496 {
2497 if (addr != mr->addr) {
2498 mr->addr = addr;
2499 memory_region_readd_subregion(mr);
2500 }
2501 }
2502
2503 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2504 {
2505 assert(mr->alias);
2506
2507 if (offset == mr->alias_offset) {
2508 return;
2509 }
2510
2511 memory_region_transaction_begin();
2512 mr->alias_offset = offset;
2513 memory_region_update_pending |= mr->enabled;
2514 memory_region_transaction_commit();
2515 }
2516
2517 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2518 {
2519 return mr->align;
2520 }
2521
2522 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2523 {
2524 const AddrRange *addr = addr_;
2525 const FlatRange *fr = fr_;
2526
2527 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2528 return -1;
2529 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2530 return 1;
2531 }
2532 return 0;
2533 }
2534
2535 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2536 {
2537 return bsearch(&addr, view->ranges, view->nr,
2538 sizeof(FlatRange), cmp_flatrange_addr);
2539 }
2540
2541 bool memory_region_is_mapped(MemoryRegion *mr)
2542 {
2543 return mr->container ? true : false;
2544 }
2545
2546 /* Same as memory_region_find, but it does not add a reference to the
2547 * returned region. It must be called from an RCU critical section.
2548 */
2549 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2550 hwaddr addr, uint64_t size)
2551 {
2552 MemoryRegionSection ret = { .mr = NULL };
2553 MemoryRegion *root;
2554 AddressSpace *as;
2555 AddrRange range;
2556 FlatView *view;
2557 FlatRange *fr;
2558
2559 addr += mr->addr;
2560 for (root = mr; root->container; ) {
2561 root = root->container;
2562 addr += root->addr;
2563 }
2564
2565 as = memory_region_to_address_space(root);
2566 if (!as) {
2567 return ret;
2568 }
2569 range = addrrange_make(int128_make64(addr), int128_make64(size));
2570
2571 view = address_space_to_flatview(as);
2572 fr = flatview_lookup(view, range);
2573 if (!fr) {
2574 return ret;
2575 }
2576
2577 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2578 --fr;
2579 }
2580
2581 ret.mr = fr->mr;
2582 ret.fv = view;
2583 range = addrrange_intersection(range, fr->addr);
2584 ret.offset_within_region = fr->offset_in_region;
2585 ret.offset_within_region += int128_get64(int128_sub(range.start,
2586 fr->addr.start));
2587 ret.size = range.size;
2588 ret.offset_within_address_space = int128_get64(range.start);
2589 ret.readonly = fr->readonly;
2590 ret.nonvolatile = fr->nonvolatile;
2591 return ret;
2592 }
2593
2594 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2595 hwaddr addr, uint64_t size)
2596 {
2597 MemoryRegionSection ret;
2598 rcu_read_lock();
2599 ret = memory_region_find_rcu(mr, addr, size);
2600 if (ret.mr) {
2601 memory_region_ref(ret.mr);
2602 }
2603 rcu_read_unlock();
2604 return ret;
2605 }
2606
2607 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2608 {
2609 MemoryRegion *mr;
2610
2611 rcu_read_lock();
2612 mr = memory_region_find_rcu(container, addr, 1).mr;
2613 rcu_read_unlock();
2614 return mr && mr != container;
2615 }
2616
2617 void memory_global_dirty_log_sync(void)
2618 {
2619 memory_region_sync_dirty_bitmap(NULL);
2620 }
2621
2622 void memory_global_after_dirty_log_sync(void)
2623 {
2624 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2625 }
2626
2627 static VMChangeStateEntry *vmstate_change;
2628
2629 void memory_global_dirty_log_start(void)
2630 {
2631 if (vmstate_change) {
2632 qemu_del_vm_change_state_handler(vmstate_change);
2633 vmstate_change = NULL;
2634 }
2635
2636 global_dirty_log = true;
2637
2638 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2639
2640 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2641 memory_region_transaction_begin();
2642 memory_region_update_pending = true;
2643 memory_region_transaction_commit();
2644 }
2645
2646 static void memory_global_dirty_log_do_stop(void)
2647 {
2648 global_dirty_log = false;
2649
2650 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2651 memory_region_transaction_begin();
2652 memory_region_update_pending = true;
2653 memory_region_transaction_commit();
2654
2655 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2656 }
2657
2658 static void memory_vm_change_state_handler(void *opaque, int running,
2659 RunState state)
2660 {
2661 if (running) {
2662 memory_global_dirty_log_do_stop();
2663
2664 if (vmstate_change) {
2665 qemu_del_vm_change_state_handler(vmstate_change);
2666 vmstate_change = NULL;
2667 }
2668 }
2669 }
2670
2671 void memory_global_dirty_log_stop(void)
2672 {
2673 if (!runstate_is_running()) {
2674 if (vmstate_change) {
2675 return;
2676 }
2677 vmstate_change = qemu_add_vm_change_state_handler(
2678 memory_vm_change_state_handler, NULL);
2679 return;
2680 }
2681
2682 memory_global_dirty_log_do_stop();
2683 }
2684
2685 static void listener_add_address_space(MemoryListener *listener,
2686 AddressSpace *as)
2687 {
2688 FlatView *view;
2689 FlatRange *fr;
2690
2691 if (listener->begin) {
2692 listener->begin(listener);
2693 }
2694 if (global_dirty_log) {
2695 if (listener->log_global_start) {
2696 listener->log_global_start(listener);
2697 }
2698 }
2699
2700 view = address_space_get_flatview(as);
2701 FOR_EACH_FLAT_RANGE(fr, view) {
2702 MemoryRegionSection section = section_from_flat_range(fr, view);
2703
2704 if (listener->region_add) {
2705 listener->region_add(listener, &section);
2706 }
2707 if (fr->dirty_log_mask && listener->log_start) {
2708 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2709 }
2710 }
2711 if (listener->commit) {
2712 listener->commit(listener);
2713 }
2714 flatview_unref(view);
2715 }
2716
2717 static void listener_del_address_space(MemoryListener *listener,
2718 AddressSpace *as)
2719 {
2720 FlatView *view;
2721 FlatRange *fr;
2722
2723 if (listener->begin) {
2724 listener->begin(listener);
2725 }
2726 view = address_space_get_flatview(as);
2727 FOR_EACH_FLAT_RANGE(fr, view) {
2728 MemoryRegionSection section = section_from_flat_range(fr, view);
2729
2730 if (fr->dirty_log_mask && listener->log_stop) {
2731 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2732 }
2733 if (listener->region_del) {
2734 listener->region_del(listener, &section);
2735 }
2736 }
2737 if (listener->commit) {
2738 listener->commit(listener);
2739 }
2740 flatview_unref(view);
2741 }
2742
2743 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2744 {
2745 MemoryListener *other = NULL;
2746
2747 listener->address_space = as;
2748 if (QTAILQ_EMPTY(&memory_listeners)
2749 || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
2750 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2751 } else {
2752 QTAILQ_FOREACH(other, &memory_listeners, link) {
2753 if (listener->priority < other->priority) {
2754 break;
2755 }
2756 }
2757 QTAILQ_INSERT_BEFORE(other, listener, link);
2758 }
2759
2760 if (QTAILQ_EMPTY(&as->listeners)
2761 || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
2762 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2763 } else {
2764 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2765 if (listener->priority < other->priority) {
2766 break;
2767 }
2768 }
2769 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2770 }
2771
2772 listener_add_address_space(listener, as);
2773 }
2774
2775 void memory_listener_unregister(MemoryListener *listener)
2776 {
2777 if (!listener->address_space) {
2778 return;
2779 }
2780
2781 listener_del_address_space(listener, listener->address_space);
2782 QTAILQ_REMOVE(&memory_listeners, listener, link);
2783 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2784 listener->address_space = NULL;
2785 }
2786
2787 void address_space_remove_listeners(AddressSpace *as)
2788 {
2789 while (!QTAILQ_EMPTY(&as->listeners)) {
2790 memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
2791 }
2792 }
2793
2794 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2795 {
2796 memory_region_ref(root);
2797 as->root = root;
2798 as->current_map = NULL;
2799 as->ioeventfd_nb = 0;
2800 as->ioeventfds = NULL;
2801 QTAILQ_INIT(&as->listeners);
2802 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2803 as->name = g_strdup(name ? name : "anonymous");
2804 address_space_update_topology(as);
2805 address_space_update_ioeventfds(as);
2806 }
2807
2808 static void do_address_space_destroy(AddressSpace *as)
2809 {
2810 assert(QTAILQ_EMPTY(&as->listeners));
2811
2812 flatview_unref(as->current_map);
2813 g_free(as->name);
2814 g_free(as->ioeventfds);
2815 memory_region_unref(as->root);
2816 }
2817
2818 void address_space_destroy(AddressSpace *as)
2819 {
2820 MemoryRegion *root = as->root;
2821
2822 /* Flush out anything from MemoryListeners listening in on this */
2823 memory_region_transaction_begin();
2824 as->root = NULL;
2825 memory_region_transaction_commit();
2826 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2827
2828 /* At this point, as->dispatch and as->current_map are dummy
2829 * entries that the guest should never use. Wait for the old
2830 * values to expire before freeing the data.
2831 */
2832 as->root = root;
2833 call_rcu(as, do_address_space_destroy, rcu);
2834 }
2835
2836 static const char *memory_region_type(MemoryRegion *mr)
2837 {
2838 if (memory_region_is_ram_device(mr)) {
2839 return "ramd";
2840 } else if (memory_region_is_romd(mr)) {
2841 return "romd";
2842 } else if (memory_region_is_rom(mr)) {
2843 return "rom";
2844 } else if (memory_region_is_ram(mr)) {
2845 return "ram";
2846 } else {
2847 return "i/o";
2848 }
2849 }
2850
2851 typedef struct MemoryRegionList MemoryRegionList;
2852
2853 struct MemoryRegionList {
2854 const MemoryRegion *mr;
2855 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2856 };
2857
2858 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
2859
2860 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2861 int128_sub((size), int128_one())) : 0)
2862 #define MTREE_INDENT " "
2863
2864 static void mtree_expand_owner(const char *label, Object *obj)
2865 {
2866 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
2867
2868 qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
2869 if (dev && dev->id) {
2870 qemu_printf(" id=%s", dev->id);
2871 } else {
2872 gchar *canonical_path = object_get_canonical_path(obj);
2873 if (canonical_path) {
2874 qemu_printf(" path=%s", canonical_path);
2875 g_free(canonical_path);
2876 } else {
2877 qemu_printf(" type=%s", object_get_typename(obj));
2878 }
2879 }
2880 qemu_printf("}");
2881 }
2882
2883 static void mtree_print_mr_owner(const MemoryRegion *mr)
2884 {
2885 Object *owner = mr->owner;
2886 Object *parent = memory_region_owner((MemoryRegion *)mr);
2887
2888 if (!owner && !parent) {
2889 qemu_printf(" orphan");
2890 return;
2891 }
2892 if (owner) {
2893 mtree_expand_owner("owner", owner);
2894 }
2895 if (parent && parent != owner) {
2896 mtree_expand_owner("parent", parent);
2897 }
2898 }
2899
2900 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
2901 hwaddr base,
2902 MemoryRegionListHead *alias_print_queue,
2903 bool owner)
2904 {
2905 MemoryRegionList *new_ml, *ml, *next_ml;
2906 MemoryRegionListHead submr_print_queue;
2907 const MemoryRegion *submr;
2908 unsigned int i;
2909 hwaddr cur_start, cur_end;
2910
2911 if (!mr) {
2912 return;
2913 }
2914
2915 for (i = 0; i < level; i++) {
2916 qemu_printf(MTREE_INDENT);
2917 }
2918
2919 cur_start = base + mr->addr;
2920 cur_end = cur_start + MR_SIZE(mr->size);
2921
2922 /*
2923 * Try to detect overflow of memory region. This should never
2924 * happen normally. When it happens, we dump something to warn the
2925 * user who is observing this.
2926 */
2927 if (cur_start < base || cur_end < cur_start) {
2928 qemu_printf("[DETECTED OVERFLOW!] ");
2929 }
2930
2931 if (mr->alias) {
2932 MemoryRegionList *ml;
2933 bool found = false;
2934
2935 /* check if the alias is already in the queue */
2936 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2937 if (ml->mr == mr->alias) {
2938 found = true;
2939 }
2940 }
2941
2942 if (!found) {
2943 ml = g_new(MemoryRegionList, 1);
2944 ml->mr = mr->alias;
2945 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2946 }
2947 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2948 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2949 "-" TARGET_FMT_plx "%s",
2950 cur_start, cur_end,
2951 mr->priority,
2952 mr->nonvolatile ? "nv-" : "",
2953 memory_region_type((MemoryRegion *)mr),
2954 memory_region_name(mr),
2955 memory_region_name(mr->alias),
2956 mr->alias_offset,
2957 mr->alias_offset + MR_SIZE(mr->size),
2958 mr->enabled ? "" : " [disabled]");
2959 if (owner) {
2960 mtree_print_mr_owner(mr);
2961 }
2962 } else {
2963 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2964 " (prio %d, %s%s): %s%s",
2965 cur_start, cur_end,
2966 mr->priority,
2967 mr->nonvolatile ? "nv-" : "",
2968 memory_region_type((MemoryRegion *)mr),
2969 memory_region_name(mr),
2970 mr->enabled ? "" : " [disabled]");
2971 if (owner) {
2972 mtree_print_mr_owner(mr);
2973 }
2974 }
2975 qemu_printf("\n");
2976
2977 QTAILQ_INIT(&submr_print_queue);
2978
2979 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2980 new_ml = g_new(MemoryRegionList, 1);
2981 new_ml->mr = submr;
2982 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2983 if (new_ml->mr->addr < ml->mr->addr ||
2984 (new_ml->mr->addr == ml->mr->addr &&
2985 new_ml->mr->priority > ml->mr->priority)) {
2986 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
2987 new_ml = NULL;
2988 break;
2989 }
2990 }
2991 if (new_ml) {
2992 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
2993 }
2994 }
2995
2996 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2997 mtree_print_mr(ml->mr, level + 1, cur_start,
2998 alias_print_queue, owner);
2999 }
3000
3001 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3002 g_free(ml);
3003 }
3004 }
3005
3006 struct FlatViewInfo {
3007 int counter;
3008 bool dispatch_tree;
3009 bool owner;
3010 AccelClass *ac;
3011 const char *ac_name;
3012 };
3013
3014 static void mtree_print_flatview(gpointer key, gpointer value,
3015 gpointer user_data)
3016 {
3017 FlatView *view = key;
3018 GArray *fv_address_spaces = value;
3019 struct FlatViewInfo *fvi = user_data;
3020 FlatRange *range = &view->ranges[0];
3021 MemoryRegion *mr;
3022 int n = view->nr;
3023 int i;
3024 AddressSpace *as;
3025
3026 qemu_printf("FlatView #%d\n", fvi->counter);
3027 ++fvi->counter;
3028
3029 for (i = 0; i < fv_address_spaces->len; ++i) {
3030 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3031 qemu_printf(" AS \"%s\", root: %s",
3032 as->name, memory_region_name(as->root));
3033 if (as->root->alias) {
3034 qemu_printf(", alias %s", memory_region_name(as->root->alias));
3035 }
3036 qemu_printf("\n");
3037 }
3038
3039 qemu_printf(" Root memory region: %s\n",
3040 view->root ? memory_region_name(view->root) : "(none)");
3041
3042 if (n <= 0) {
3043 qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3044 return;
3045 }
3046
3047 while (n--) {
3048 mr = range->mr;
3049 if (range->offset_in_region) {
3050 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3051 " (prio %d, %s%s): %s @" TARGET_FMT_plx,
3052 int128_get64(range->addr.start),
3053 int128_get64(range->addr.start)
3054 + MR_SIZE(range->addr.size),
3055 mr->priority,
3056 range->nonvolatile ? "nv-" : "",
3057 range->readonly ? "rom" : memory_region_type(mr),
3058 memory_region_name(mr),
3059 range->offset_in_region);
3060 } else {
3061 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3062 " (prio %d, %s%s): %s",
3063 int128_get64(range->addr.start),
3064 int128_get64(range->addr.start)
3065 + MR_SIZE(range->addr.size),
3066 mr->priority,
3067 range->nonvolatile ? "nv-" : "",
3068 range->readonly ? "rom" : memory_region_type(mr),
3069 memory_region_name(mr));
3070 }
3071 if (fvi->owner) {
3072 mtree_print_mr_owner(mr);
3073 }
3074
3075 if (fvi->ac) {
3076 for (i = 0; i < fv_address_spaces->len; ++i) {
3077 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3078 if (fvi->ac->has_memory(current_machine, as,
3079 int128_get64(range->addr.start),
3080 MR_SIZE(range->addr.size) + 1)) {
3081 qemu_printf(" %s", fvi->ac_name);
3082 }
3083 }
3084 }
3085 qemu_printf("\n");
3086 range++;
3087 }
3088
3089 #if !defined(CONFIG_USER_ONLY)
3090 if (fvi->dispatch_tree && view->root) {
3091 mtree_print_dispatch(view->dispatch, view->root);
3092 }
3093 #endif
3094
3095 qemu_printf("\n");
3096 }
3097
3098 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3099 gpointer user_data)
3100 {
3101 FlatView *view = key;
3102 GArray *fv_address_spaces = value;
3103
3104 g_array_unref(fv_address_spaces);
3105 flatview_unref(view);
3106
3107 return true;
3108 }
3109
3110 void mtree_info(bool flatview, bool dispatch_tree, bool owner)
3111 {
3112 MemoryRegionListHead ml_head;
3113 MemoryRegionList *ml, *ml2;
3114 AddressSpace *as;
3115
3116 if (flatview) {
3117 FlatView *view;
3118 struct FlatViewInfo fvi = {
3119 .counter = 0,
3120 .dispatch_tree = dispatch_tree,
3121 .owner = owner,
3122 };
3123 GArray *fv_address_spaces;
3124 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3125 AccelClass *ac = ACCEL_GET_CLASS(current_machine->accelerator);
3126
3127 if (ac->has_memory) {
3128 fvi.ac = ac;
3129 fvi.ac_name = current_machine->accel ? current_machine->accel :
3130 object_class_get_name(OBJECT_CLASS(ac));
3131 }
3132
3133 /* Gather all FVs in one table */
3134 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3135 view = address_space_get_flatview(as);
3136
3137 fv_address_spaces = g_hash_table_lookup(views, view);
3138 if (!fv_address_spaces) {
3139 fv_address_spaces = g_array_new(false, false, sizeof(as));
3140 g_hash_table_insert(views, view, fv_address_spaces);
3141 }
3142
3143 g_array_append_val(fv_address_spaces, as);
3144 }
3145
3146 /* Print */
3147 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3148
3149 /* Free */
3150 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3151 g_hash_table_unref(views);
3152
3153 return;
3154 }
3155
3156 QTAILQ_INIT(&ml_head);
3157
3158 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3159 qemu_printf("address-space: %s\n", as->name);
3160 mtree_print_mr(as->root, 1, 0, &ml_head, owner);
3161 qemu_printf("\n");
3162 }
3163
3164 /* print aliased regions */
3165 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3166 qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3167 mtree_print_mr(ml->mr, 1, 0, &ml_head, owner);
3168 qemu_printf("\n");
3169 }
3170
3171 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3172 g_free(ml);
3173 }
3174 }
3175
3176 void memory_region_init_ram(MemoryRegion *mr,
3177 struct Object *owner,
3178 const char *name,
3179 uint64_t size,
3180 Error **errp)
3181 {
3182 DeviceState *owner_dev;
3183 Error *err = NULL;
3184
3185 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3186 if (err) {
3187 error_propagate(errp, err);
3188 return;
3189 }
3190 /* This will assert if owner is neither NULL nor a DeviceState.
3191 * We only want the owner here for the purposes of defining a
3192 * unique name for migration. TODO: Ideally we should implement
3193 * a naming scheme for Objects which are not DeviceStates, in
3194 * which case we can relax this restriction.
3195 */
3196 owner_dev = DEVICE(owner);
3197 vmstate_register_ram(mr, owner_dev);
3198 }
3199
3200 void memory_region_init_rom(MemoryRegion *mr,
3201 struct Object *owner,
3202 const char *name,
3203 uint64_t size,
3204 Error **errp)
3205 {
3206 DeviceState *owner_dev;
3207 Error *err = NULL;
3208
3209 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3210 if (err) {
3211 error_propagate(errp, err);
3212 return;
3213 }
3214 /* This will assert if owner is neither NULL nor a DeviceState.
3215 * We only want the owner here for the purposes of defining a
3216 * unique name for migration. TODO: Ideally we should implement
3217 * a naming scheme for Objects which are not DeviceStates, in
3218 * which case we can relax this restriction.
3219 */
3220 owner_dev = DEVICE(owner);
3221 vmstate_register_ram(mr, owner_dev);
3222 }
3223
3224 void memory_region_init_rom_device(MemoryRegion *mr,
3225 struct Object *owner,
3226 const MemoryRegionOps *ops,
3227 void *opaque,
3228 const char *name,
3229 uint64_t size,
3230 Error **errp)
3231 {
3232 DeviceState *owner_dev;
3233 Error *err = NULL;
3234
3235 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3236 name, size, &err);
3237 if (err) {
3238 error_propagate(errp, err);
3239 return;
3240 }
3241 /* This will assert if owner is neither NULL nor a DeviceState.
3242 * We only want the owner here for the purposes of defining a
3243 * unique name for migration. TODO: Ideally we should implement
3244 * a naming scheme for Objects which are not DeviceStates, in
3245 * which case we can relax this restriction.
3246 */
3247 owner_dev = DEVICE(owner);
3248 vmstate_register_ram(mr, owner_dev);
3249 }
3250
3251 static const TypeInfo memory_region_info = {
3252 .parent = TYPE_OBJECT,
3253 .name = TYPE_MEMORY_REGION,
3254 .class_size = sizeof(MemoryRegionClass),
3255 .instance_size = sizeof(MemoryRegion),
3256 .instance_init = memory_region_initfn,
3257 .instance_finalize = memory_region_finalize,
3258 };
3259
3260 static const TypeInfo iommu_memory_region_info = {
3261 .parent = TYPE_MEMORY_REGION,
3262 .name = TYPE_IOMMU_MEMORY_REGION,
3263 .class_size = sizeof(IOMMUMemoryRegionClass),
3264 .instance_size = sizeof(IOMMUMemoryRegion),
3265 .instance_init = iommu_memory_region_initfn,
3266 .abstract = true,
3267 };
3268
3269 static void memory_register_types(void)
3270 {
3271 type_register_static(&memory_region_info);
3272 type_register_static(&iommu_memory_region_info);
3273 }
3274
3275 type_init(memory_register_types)