]> git.proxmox.com Git - mirror_qemu.git/blob - memory.c
Merge remote-tracking branch 'remotes/rth/tags/pull-tcg-20190925' into staging
[mirror_qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "cpu.h"
19 #include "exec/memory.h"
20 #include "exec/address-spaces.h"
21 #include "qapi/visitor.h"
22 #include "qemu/bitops.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qemu/qemu-print.h"
26 #include "qom/object.h"
27 #include "trace-root.h"
28
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/tcg.h"
34 #include "sysemu/accel.h"
35 #include "hw/boards.h"
36 #include "migration/vmstate.h"
37
38 //#define DEBUG_UNASSIGNED
39
40 static unsigned memory_region_transaction_depth;
41 static bool memory_region_update_pending;
42 static bool ioeventfd_update_pending;
43 bool global_dirty_log;
44
45 static QTAILQ_HEAD(, MemoryListener) memory_listeners
46 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49 = QTAILQ_HEAD_INITIALIZER(address_spaces);
50
51 static GHashTable *flat_views;
52
53 typedef struct AddrRange AddrRange;
54
55 /*
56 * Note that signed integers are needed for negative offsetting in aliases
57 * (large MemoryRegion::alias_offset).
58 */
59 struct AddrRange {
60 Int128 start;
61 Int128 size;
62 };
63
64 static AddrRange addrrange_make(Int128 start, Int128 size)
65 {
66 return (AddrRange) { start, size };
67 }
68
69 static bool addrrange_equal(AddrRange r1, AddrRange r2)
70 {
71 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
72 }
73
74 static Int128 addrrange_end(AddrRange r)
75 {
76 return int128_add(r.start, r.size);
77 }
78
79 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
80 {
81 int128_addto(&range.start, delta);
82 return range;
83 }
84
85 static bool addrrange_contains(AddrRange range, Int128 addr)
86 {
87 return int128_ge(addr, range.start)
88 && int128_lt(addr, addrrange_end(range));
89 }
90
91 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
92 {
93 return addrrange_contains(r1, r2.start)
94 || addrrange_contains(r2, r1.start);
95 }
96
97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
98 {
99 Int128 start = int128_max(r1.start, r2.start);
100 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101 return addrrange_make(start, int128_sub(end, start));
102 }
103
104 enum ListenerDirection { Forward, Reverse };
105
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
107 do { \
108 MemoryListener *_listener; \
109 \
110 switch (_direction) { \
111 case Forward: \
112 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
113 if (_listener->_callback) { \
114 _listener->_callback(_listener, ##_args); \
115 } \
116 } \
117 break; \
118 case Reverse: \
119 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
120 if (_listener->_callback) { \
121 _listener->_callback(_listener, ##_args); \
122 } \
123 } \
124 break; \
125 default: \
126 abort(); \
127 } \
128 } while (0)
129
130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131 do { \
132 MemoryListener *_listener; \
133 \
134 switch (_direction) { \
135 case Forward: \
136 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
137 if (_listener->_callback) { \
138 _listener->_callback(_listener, _section, ##_args); \
139 } \
140 } \
141 break; \
142 case Reverse: \
143 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
146 } \
147 } \
148 break; \
149 default: \
150 abort(); \
151 } \
152 } while (0)
153
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
156 do { \
157 MemoryRegionSection mrs = section_from_flat_range(fr, \
158 address_space_to_flatview(as)); \
159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
160 } while(0)
161
162 struct CoalescedMemoryRange {
163 AddrRange addr;
164 QTAILQ_ENTRY(CoalescedMemoryRange) link;
165 };
166
167 struct MemoryRegionIoeventfd {
168 AddrRange addr;
169 bool match_data;
170 uint64_t data;
171 EventNotifier *e;
172 };
173
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
175 MemoryRegionIoeventfd *b)
176 {
177 if (int128_lt(a->addr.start, b->addr.start)) {
178 return true;
179 } else if (int128_gt(a->addr.start, b->addr.start)) {
180 return false;
181 } else if (int128_lt(a->addr.size, b->addr.size)) {
182 return true;
183 } else if (int128_gt(a->addr.size, b->addr.size)) {
184 return false;
185 } else if (a->match_data < b->match_data) {
186 return true;
187 } else if (a->match_data > b->match_data) {
188 return false;
189 } else if (a->match_data) {
190 if (a->data < b->data) {
191 return true;
192 } else if (a->data > b->data) {
193 return false;
194 }
195 }
196 if (a->e < b->e) {
197 return true;
198 } else if (a->e > b->e) {
199 return false;
200 }
201 return false;
202 }
203
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
205 MemoryRegionIoeventfd *b)
206 {
207 return !memory_region_ioeventfd_before(a, b)
208 && !memory_region_ioeventfd_before(b, a);
209 }
210
211 /* Range of memory in the global map. Addresses are absolute. */
212 struct FlatRange {
213 MemoryRegion *mr;
214 hwaddr offset_in_region;
215 AddrRange addr;
216 uint8_t dirty_log_mask;
217 bool romd_mode;
218 bool readonly;
219 bool nonvolatile;
220 };
221
222 #define FOR_EACH_FLAT_RANGE(var, view) \
223 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
224
225 static inline MemoryRegionSection
226 section_from_flat_range(FlatRange *fr, FlatView *fv)
227 {
228 return (MemoryRegionSection) {
229 .mr = fr->mr,
230 .fv = fv,
231 .offset_within_region = fr->offset_in_region,
232 .size = fr->addr.size,
233 .offset_within_address_space = int128_get64(fr->addr.start),
234 .readonly = fr->readonly,
235 .nonvolatile = fr->nonvolatile,
236 };
237 }
238
239 static bool flatrange_equal(FlatRange *a, FlatRange *b)
240 {
241 return a->mr == b->mr
242 && addrrange_equal(a->addr, b->addr)
243 && a->offset_in_region == b->offset_in_region
244 && a->romd_mode == b->romd_mode
245 && a->readonly == b->readonly
246 && a->nonvolatile == b->nonvolatile;
247 }
248
249 static FlatView *flatview_new(MemoryRegion *mr_root)
250 {
251 FlatView *view;
252
253 view = g_new0(FlatView, 1);
254 view->ref = 1;
255 view->root = mr_root;
256 memory_region_ref(mr_root);
257 trace_flatview_new(view, mr_root);
258
259 return view;
260 }
261
262 /* Insert a range into a given position. Caller is responsible for maintaining
263 * sorting order.
264 */
265 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
266 {
267 if (view->nr == view->nr_allocated) {
268 view->nr_allocated = MAX(2 * view->nr, 10);
269 view->ranges = g_realloc(view->ranges,
270 view->nr_allocated * sizeof(*view->ranges));
271 }
272 memmove(view->ranges + pos + 1, view->ranges + pos,
273 (view->nr - pos) * sizeof(FlatRange));
274 view->ranges[pos] = *range;
275 memory_region_ref(range->mr);
276 ++view->nr;
277 }
278
279 static void flatview_destroy(FlatView *view)
280 {
281 int i;
282
283 trace_flatview_destroy(view, view->root);
284 if (view->dispatch) {
285 address_space_dispatch_free(view->dispatch);
286 }
287 for (i = 0; i < view->nr; i++) {
288 memory_region_unref(view->ranges[i].mr);
289 }
290 g_free(view->ranges);
291 memory_region_unref(view->root);
292 g_free(view);
293 }
294
295 static bool flatview_ref(FlatView *view)
296 {
297 return atomic_fetch_inc_nonzero(&view->ref) > 0;
298 }
299
300 void flatview_unref(FlatView *view)
301 {
302 if (atomic_fetch_dec(&view->ref) == 1) {
303 trace_flatview_destroy_rcu(view, view->root);
304 assert(view->root);
305 call_rcu(view, flatview_destroy, rcu);
306 }
307 }
308
309 static bool can_merge(FlatRange *r1, FlatRange *r2)
310 {
311 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
312 && r1->mr == r2->mr
313 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
314 r1->addr.size),
315 int128_make64(r2->offset_in_region))
316 && r1->dirty_log_mask == r2->dirty_log_mask
317 && r1->romd_mode == r2->romd_mode
318 && r1->readonly == r2->readonly
319 && r1->nonvolatile == r2->nonvolatile;
320 }
321
322 /* Attempt to simplify a view by merging adjacent ranges */
323 static void flatview_simplify(FlatView *view)
324 {
325 unsigned i, j, k;
326
327 i = 0;
328 while (i < view->nr) {
329 j = i + 1;
330 while (j < view->nr
331 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
332 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
333 ++j;
334 }
335 ++i;
336 for (k = i; k < j; k++) {
337 memory_region_unref(view->ranges[k].mr);
338 }
339 memmove(&view->ranges[i], &view->ranges[j],
340 (view->nr - j) * sizeof(view->ranges[j]));
341 view->nr -= j - i;
342 }
343 }
344
345 static bool memory_region_big_endian(MemoryRegion *mr)
346 {
347 #ifdef TARGET_WORDS_BIGENDIAN
348 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
349 #else
350 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
351 #endif
352 }
353
354 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
355 {
356 if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
357 switch (op & MO_SIZE) {
358 case MO_8:
359 break;
360 case MO_16:
361 *data = bswap16(*data);
362 break;
363 case MO_32:
364 *data = bswap32(*data);
365 break;
366 case MO_64:
367 *data = bswap64(*data);
368 break;
369 default:
370 g_assert_not_reached();
371 }
372 }
373 }
374
375 static inline void memory_region_shift_read_access(uint64_t *value,
376 signed shift,
377 uint64_t mask,
378 uint64_t tmp)
379 {
380 if (shift >= 0) {
381 *value |= (tmp & mask) << shift;
382 } else {
383 *value |= (tmp & mask) >> -shift;
384 }
385 }
386
387 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
388 signed shift,
389 uint64_t mask)
390 {
391 uint64_t tmp;
392
393 if (shift >= 0) {
394 tmp = (*value >> shift) & mask;
395 } else {
396 tmp = (*value << -shift) & mask;
397 }
398
399 return tmp;
400 }
401
402 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
403 {
404 MemoryRegion *root;
405 hwaddr abs_addr = offset;
406
407 abs_addr += mr->addr;
408 for (root = mr; root->container; ) {
409 root = root->container;
410 abs_addr += root->addr;
411 }
412
413 return abs_addr;
414 }
415
416 static int get_cpu_index(void)
417 {
418 if (current_cpu) {
419 return current_cpu->cpu_index;
420 }
421 return -1;
422 }
423
424 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
425 hwaddr addr,
426 uint64_t *value,
427 unsigned size,
428 signed shift,
429 uint64_t mask,
430 MemTxAttrs attrs)
431 {
432 uint64_t tmp;
433
434 tmp = mr->ops->read(mr->opaque, addr, size);
435 if (mr->subpage) {
436 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
437 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
438 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
439 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
440 }
441 memory_region_shift_read_access(value, shift, mask, tmp);
442 return MEMTX_OK;
443 }
444
445 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
446 hwaddr addr,
447 uint64_t *value,
448 unsigned size,
449 signed shift,
450 uint64_t mask,
451 MemTxAttrs attrs)
452 {
453 uint64_t tmp = 0;
454 MemTxResult r;
455
456 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
457 if (mr->subpage) {
458 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
459 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
460 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
461 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
462 }
463 memory_region_shift_read_access(value, shift, mask, tmp);
464 return r;
465 }
466
467 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
468 hwaddr addr,
469 uint64_t *value,
470 unsigned size,
471 signed shift,
472 uint64_t mask,
473 MemTxAttrs attrs)
474 {
475 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
476
477 if (mr->subpage) {
478 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
479 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
480 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
481 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
482 }
483 mr->ops->write(mr->opaque, addr, tmp, size);
484 return MEMTX_OK;
485 }
486
487 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
488 hwaddr addr,
489 uint64_t *value,
490 unsigned size,
491 signed shift,
492 uint64_t mask,
493 MemTxAttrs attrs)
494 {
495 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
496
497 if (mr->subpage) {
498 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
499 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
500 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
501 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
502 }
503 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
504 }
505
506 static MemTxResult access_with_adjusted_size(hwaddr addr,
507 uint64_t *value,
508 unsigned size,
509 unsigned access_size_min,
510 unsigned access_size_max,
511 MemTxResult (*access_fn)
512 (MemoryRegion *mr,
513 hwaddr addr,
514 uint64_t *value,
515 unsigned size,
516 signed shift,
517 uint64_t mask,
518 MemTxAttrs attrs),
519 MemoryRegion *mr,
520 MemTxAttrs attrs)
521 {
522 uint64_t access_mask;
523 unsigned access_size;
524 unsigned i;
525 MemTxResult r = MEMTX_OK;
526
527 if (!access_size_min) {
528 access_size_min = 1;
529 }
530 if (!access_size_max) {
531 access_size_max = 4;
532 }
533
534 /* FIXME: support unaligned access? */
535 access_size = MAX(MIN(size, access_size_max), access_size_min);
536 access_mask = MAKE_64BIT_MASK(0, access_size * 8);
537 if (memory_region_big_endian(mr)) {
538 for (i = 0; i < size; i += access_size) {
539 r |= access_fn(mr, addr + i, value, access_size,
540 (size - access_size - i) * 8, access_mask, attrs);
541 }
542 } else {
543 for (i = 0; i < size; i += access_size) {
544 r |= access_fn(mr, addr + i, value, access_size, i * 8,
545 access_mask, attrs);
546 }
547 }
548 return r;
549 }
550
551 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
552 {
553 AddressSpace *as;
554
555 while (mr->container) {
556 mr = mr->container;
557 }
558 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
559 if (mr == as->root) {
560 return as;
561 }
562 }
563 return NULL;
564 }
565
566 /* Render a memory region into the global view. Ranges in @view obscure
567 * ranges in @mr.
568 */
569 static void render_memory_region(FlatView *view,
570 MemoryRegion *mr,
571 Int128 base,
572 AddrRange clip,
573 bool readonly,
574 bool nonvolatile)
575 {
576 MemoryRegion *subregion;
577 unsigned i;
578 hwaddr offset_in_region;
579 Int128 remain;
580 Int128 now;
581 FlatRange fr;
582 AddrRange tmp;
583
584 if (!mr->enabled) {
585 return;
586 }
587
588 int128_addto(&base, int128_make64(mr->addr));
589 readonly |= mr->readonly;
590 nonvolatile |= mr->nonvolatile;
591
592 tmp = addrrange_make(base, mr->size);
593
594 if (!addrrange_intersects(tmp, clip)) {
595 return;
596 }
597
598 clip = addrrange_intersection(tmp, clip);
599
600 if (mr->alias) {
601 int128_subfrom(&base, int128_make64(mr->alias->addr));
602 int128_subfrom(&base, int128_make64(mr->alias_offset));
603 render_memory_region(view, mr->alias, base, clip,
604 readonly, nonvolatile);
605 return;
606 }
607
608 /* Render subregions in priority order. */
609 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
610 render_memory_region(view, subregion, base, clip,
611 readonly, nonvolatile);
612 }
613
614 if (!mr->terminates) {
615 return;
616 }
617
618 offset_in_region = int128_get64(int128_sub(clip.start, base));
619 base = clip.start;
620 remain = clip.size;
621
622 fr.mr = mr;
623 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
624 fr.romd_mode = mr->romd_mode;
625 fr.readonly = readonly;
626 fr.nonvolatile = nonvolatile;
627
628 /* Render the region itself into any gaps left by the current view. */
629 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
630 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
631 continue;
632 }
633 if (int128_lt(base, view->ranges[i].addr.start)) {
634 now = int128_min(remain,
635 int128_sub(view->ranges[i].addr.start, base));
636 fr.offset_in_region = offset_in_region;
637 fr.addr = addrrange_make(base, now);
638 flatview_insert(view, i, &fr);
639 ++i;
640 int128_addto(&base, now);
641 offset_in_region += int128_get64(now);
642 int128_subfrom(&remain, now);
643 }
644 now = int128_sub(int128_min(int128_add(base, remain),
645 addrrange_end(view->ranges[i].addr)),
646 base);
647 int128_addto(&base, now);
648 offset_in_region += int128_get64(now);
649 int128_subfrom(&remain, now);
650 }
651 if (int128_nz(remain)) {
652 fr.offset_in_region = offset_in_region;
653 fr.addr = addrrange_make(base, remain);
654 flatview_insert(view, i, &fr);
655 }
656 }
657
658 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
659 {
660 while (mr->enabled) {
661 if (mr->alias) {
662 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
663 /* The alias is included in its entirety. Use it as
664 * the "real" root, so that we can share more FlatViews.
665 */
666 mr = mr->alias;
667 continue;
668 }
669 } else if (!mr->terminates) {
670 unsigned int found = 0;
671 MemoryRegion *child, *next = NULL;
672 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
673 if (child->enabled) {
674 if (++found > 1) {
675 next = NULL;
676 break;
677 }
678 if (!child->addr && int128_ge(mr->size, child->size)) {
679 /* A child is included in its entirety. If it's the only
680 * enabled one, use it in the hope of finding an alias down the
681 * way. This will also let us share FlatViews.
682 */
683 next = child;
684 }
685 }
686 }
687 if (found == 0) {
688 return NULL;
689 }
690 if (next) {
691 mr = next;
692 continue;
693 }
694 }
695
696 return mr;
697 }
698
699 return NULL;
700 }
701
702 /* Render a memory topology into a list of disjoint absolute ranges. */
703 static FlatView *generate_memory_topology(MemoryRegion *mr)
704 {
705 int i;
706 FlatView *view;
707
708 view = flatview_new(mr);
709
710 if (mr) {
711 render_memory_region(view, mr, int128_zero(),
712 addrrange_make(int128_zero(), int128_2_64()),
713 false, false);
714 }
715 flatview_simplify(view);
716
717 view->dispatch = address_space_dispatch_new(view);
718 for (i = 0; i < view->nr; i++) {
719 MemoryRegionSection mrs =
720 section_from_flat_range(&view->ranges[i], view);
721 flatview_add_to_dispatch(view, &mrs);
722 }
723 address_space_dispatch_compact(view->dispatch);
724 g_hash_table_replace(flat_views, mr, view);
725
726 return view;
727 }
728
729 static void address_space_add_del_ioeventfds(AddressSpace *as,
730 MemoryRegionIoeventfd *fds_new,
731 unsigned fds_new_nb,
732 MemoryRegionIoeventfd *fds_old,
733 unsigned fds_old_nb)
734 {
735 unsigned iold, inew;
736 MemoryRegionIoeventfd *fd;
737 MemoryRegionSection section;
738
739 /* Generate a symmetric difference of the old and new fd sets, adding
740 * and deleting as necessary.
741 */
742
743 iold = inew = 0;
744 while (iold < fds_old_nb || inew < fds_new_nb) {
745 if (iold < fds_old_nb
746 && (inew == fds_new_nb
747 || memory_region_ioeventfd_before(&fds_old[iold],
748 &fds_new[inew]))) {
749 fd = &fds_old[iold];
750 section = (MemoryRegionSection) {
751 .fv = address_space_to_flatview(as),
752 .offset_within_address_space = int128_get64(fd->addr.start),
753 .size = fd->addr.size,
754 };
755 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
756 fd->match_data, fd->data, fd->e);
757 ++iold;
758 } else if (inew < fds_new_nb
759 && (iold == fds_old_nb
760 || memory_region_ioeventfd_before(&fds_new[inew],
761 &fds_old[iold]))) {
762 fd = &fds_new[inew];
763 section = (MemoryRegionSection) {
764 .fv = address_space_to_flatview(as),
765 .offset_within_address_space = int128_get64(fd->addr.start),
766 .size = fd->addr.size,
767 };
768 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
769 fd->match_data, fd->data, fd->e);
770 ++inew;
771 } else {
772 ++iold;
773 ++inew;
774 }
775 }
776 }
777
778 FlatView *address_space_get_flatview(AddressSpace *as)
779 {
780 FlatView *view;
781
782 rcu_read_lock();
783 do {
784 view = address_space_to_flatview(as);
785 /* If somebody has replaced as->current_map concurrently,
786 * flatview_ref returns false.
787 */
788 } while (!flatview_ref(view));
789 rcu_read_unlock();
790 return view;
791 }
792
793 static void address_space_update_ioeventfds(AddressSpace *as)
794 {
795 FlatView *view;
796 FlatRange *fr;
797 unsigned ioeventfd_nb = 0;
798 MemoryRegionIoeventfd *ioeventfds = NULL;
799 AddrRange tmp;
800 unsigned i;
801
802 view = address_space_get_flatview(as);
803 FOR_EACH_FLAT_RANGE(fr, view) {
804 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
805 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
806 int128_sub(fr->addr.start,
807 int128_make64(fr->offset_in_region)));
808 if (addrrange_intersects(fr->addr, tmp)) {
809 ++ioeventfd_nb;
810 ioeventfds = g_realloc(ioeventfds,
811 ioeventfd_nb * sizeof(*ioeventfds));
812 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
813 ioeventfds[ioeventfd_nb-1].addr = tmp;
814 }
815 }
816 }
817
818 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
819 as->ioeventfds, as->ioeventfd_nb);
820
821 g_free(as->ioeventfds);
822 as->ioeventfds = ioeventfds;
823 as->ioeventfd_nb = ioeventfd_nb;
824 flatview_unref(view);
825 }
826
827 /*
828 * Notify the memory listeners about the coalesced IO change events of
829 * range `cmr'. Only the part that has intersection of the specified
830 * FlatRange will be sent.
831 */
832 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
833 CoalescedMemoryRange *cmr, bool add)
834 {
835 AddrRange tmp;
836
837 tmp = addrrange_shift(cmr->addr,
838 int128_sub(fr->addr.start,
839 int128_make64(fr->offset_in_region)));
840 if (!addrrange_intersects(tmp, fr->addr)) {
841 return;
842 }
843 tmp = addrrange_intersection(tmp, fr->addr);
844
845 if (add) {
846 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
847 int128_get64(tmp.start),
848 int128_get64(tmp.size));
849 } else {
850 MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
851 int128_get64(tmp.start),
852 int128_get64(tmp.size));
853 }
854 }
855
856 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
857 {
858 CoalescedMemoryRange *cmr;
859
860 QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
861 flat_range_coalesced_io_notify(fr, as, cmr, false);
862 }
863 }
864
865 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
866 {
867 MemoryRegion *mr = fr->mr;
868 CoalescedMemoryRange *cmr;
869
870 if (QTAILQ_EMPTY(&mr->coalesced)) {
871 return;
872 }
873
874 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
875 flat_range_coalesced_io_notify(fr, as, cmr, true);
876 }
877 }
878
879 static void address_space_update_topology_pass(AddressSpace *as,
880 const FlatView *old_view,
881 const FlatView *new_view,
882 bool adding)
883 {
884 unsigned iold, inew;
885 FlatRange *frold, *frnew;
886
887 /* Generate a symmetric difference of the old and new memory maps.
888 * Kill ranges in the old map, and instantiate ranges in the new map.
889 */
890 iold = inew = 0;
891 while (iold < old_view->nr || inew < new_view->nr) {
892 if (iold < old_view->nr) {
893 frold = &old_view->ranges[iold];
894 } else {
895 frold = NULL;
896 }
897 if (inew < new_view->nr) {
898 frnew = &new_view->ranges[inew];
899 } else {
900 frnew = NULL;
901 }
902
903 if (frold
904 && (!frnew
905 || int128_lt(frold->addr.start, frnew->addr.start)
906 || (int128_eq(frold->addr.start, frnew->addr.start)
907 && !flatrange_equal(frold, frnew)))) {
908 /* In old but not in new, or in both but attributes changed. */
909
910 if (!adding) {
911 flat_range_coalesced_io_del(frold, as);
912 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
913 }
914
915 ++iold;
916 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
917 /* In both and unchanged (except logging may have changed) */
918
919 if (adding) {
920 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
921 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
922 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
923 frold->dirty_log_mask,
924 frnew->dirty_log_mask);
925 }
926 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
927 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
928 frold->dirty_log_mask,
929 frnew->dirty_log_mask);
930 }
931 }
932
933 ++iold;
934 ++inew;
935 } else {
936 /* In new */
937
938 if (adding) {
939 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
940 flat_range_coalesced_io_add(frnew, as);
941 }
942
943 ++inew;
944 }
945 }
946 }
947
948 static void flatviews_init(void)
949 {
950 static FlatView *empty_view;
951
952 if (flat_views) {
953 return;
954 }
955
956 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
957 (GDestroyNotify) flatview_unref);
958 if (!empty_view) {
959 empty_view = generate_memory_topology(NULL);
960 /* We keep it alive forever in the global variable. */
961 flatview_ref(empty_view);
962 } else {
963 g_hash_table_replace(flat_views, NULL, empty_view);
964 flatview_ref(empty_view);
965 }
966 }
967
968 static void flatviews_reset(void)
969 {
970 AddressSpace *as;
971
972 if (flat_views) {
973 g_hash_table_unref(flat_views);
974 flat_views = NULL;
975 }
976 flatviews_init();
977
978 /* Render unique FVs */
979 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
980 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
981
982 if (g_hash_table_lookup(flat_views, physmr)) {
983 continue;
984 }
985
986 generate_memory_topology(physmr);
987 }
988 }
989
990 static void address_space_set_flatview(AddressSpace *as)
991 {
992 FlatView *old_view = address_space_to_flatview(as);
993 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
994 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
995
996 assert(new_view);
997
998 if (old_view == new_view) {
999 return;
1000 }
1001
1002 if (old_view) {
1003 flatview_ref(old_view);
1004 }
1005
1006 flatview_ref(new_view);
1007
1008 if (!QTAILQ_EMPTY(&as->listeners)) {
1009 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1010
1011 if (!old_view2) {
1012 old_view2 = &tmpview;
1013 }
1014 address_space_update_topology_pass(as, old_view2, new_view, false);
1015 address_space_update_topology_pass(as, old_view2, new_view, true);
1016 }
1017
1018 /* Writes are protected by the BQL. */
1019 atomic_rcu_set(&as->current_map, new_view);
1020 if (old_view) {
1021 flatview_unref(old_view);
1022 }
1023
1024 /* Note that all the old MemoryRegions are still alive up to this
1025 * point. This relieves most MemoryListeners from the need to
1026 * ref/unref the MemoryRegions they get---unless they use them
1027 * outside the iothread mutex, in which case precise reference
1028 * counting is necessary.
1029 */
1030 if (old_view) {
1031 flatview_unref(old_view);
1032 }
1033 }
1034
1035 static void address_space_update_topology(AddressSpace *as)
1036 {
1037 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1038
1039 flatviews_init();
1040 if (!g_hash_table_lookup(flat_views, physmr)) {
1041 generate_memory_topology(physmr);
1042 }
1043 address_space_set_flatview(as);
1044 }
1045
1046 void memory_region_transaction_begin(void)
1047 {
1048 qemu_flush_coalesced_mmio_buffer();
1049 ++memory_region_transaction_depth;
1050 }
1051
1052 void memory_region_transaction_commit(void)
1053 {
1054 AddressSpace *as;
1055
1056 assert(memory_region_transaction_depth);
1057 assert(qemu_mutex_iothread_locked());
1058
1059 --memory_region_transaction_depth;
1060 if (!memory_region_transaction_depth) {
1061 if (memory_region_update_pending) {
1062 flatviews_reset();
1063
1064 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1065
1066 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1067 address_space_set_flatview(as);
1068 address_space_update_ioeventfds(as);
1069 }
1070 memory_region_update_pending = false;
1071 ioeventfd_update_pending = false;
1072 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1073 } else if (ioeventfd_update_pending) {
1074 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1075 address_space_update_ioeventfds(as);
1076 }
1077 ioeventfd_update_pending = false;
1078 }
1079 }
1080 }
1081
1082 static void memory_region_destructor_none(MemoryRegion *mr)
1083 {
1084 }
1085
1086 static void memory_region_destructor_ram(MemoryRegion *mr)
1087 {
1088 qemu_ram_free(mr->ram_block);
1089 }
1090
1091 static bool memory_region_need_escape(char c)
1092 {
1093 return c == '/' || c == '[' || c == '\\' || c == ']';
1094 }
1095
1096 static char *memory_region_escape_name(const char *name)
1097 {
1098 const char *p;
1099 char *escaped, *q;
1100 uint8_t c;
1101 size_t bytes = 0;
1102
1103 for (p = name; *p; p++) {
1104 bytes += memory_region_need_escape(*p) ? 4 : 1;
1105 }
1106 if (bytes == p - name) {
1107 return g_memdup(name, bytes + 1);
1108 }
1109
1110 escaped = g_malloc(bytes + 1);
1111 for (p = name, q = escaped; *p; p++) {
1112 c = *p;
1113 if (unlikely(memory_region_need_escape(c))) {
1114 *q++ = '\\';
1115 *q++ = 'x';
1116 *q++ = "0123456789abcdef"[c >> 4];
1117 c = "0123456789abcdef"[c & 15];
1118 }
1119 *q++ = c;
1120 }
1121 *q = 0;
1122 return escaped;
1123 }
1124
1125 static void memory_region_do_init(MemoryRegion *mr,
1126 Object *owner,
1127 const char *name,
1128 uint64_t size)
1129 {
1130 mr->size = int128_make64(size);
1131 if (size == UINT64_MAX) {
1132 mr->size = int128_2_64();
1133 }
1134 mr->name = g_strdup(name);
1135 mr->owner = owner;
1136 mr->ram_block = NULL;
1137
1138 if (name) {
1139 char *escaped_name = memory_region_escape_name(name);
1140 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1141
1142 if (!owner) {
1143 owner = container_get(qdev_get_machine(), "/unattached");
1144 }
1145
1146 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1147 object_unref(OBJECT(mr));
1148 g_free(name_array);
1149 g_free(escaped_name);
1150 }
1151 }
1152
1153 void memory_region_init(MemoryRegion *mr,
1154 Object *owner,
1155 const char *name,
1156 uint64_t size)
1157 {
1158 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1159 memory_region_do_init(mr, owner, name, size);
1160 }
1161
1162 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1163 void *opaque, Error **errp)
1164 {
1165 MemoryRegion *mr = MEMORY_REGION(obj);
1166 uint64_t value = mr->addr;
1167
1168 visit_type_uint64(v, name, &value, errp);
1169 }
1170
1171 static void memory_region_get_container(Object *obj, Visitor *v,
1172 const char *name, void *opaque,
1173 Error **errp)
1174 {
1175 MemoryRegion *mr = MEMORY_REGION(obj);
1176 gchar *path = (gchar *)"";
1177
1178 if (mr->container) {
1179 path = object_get_canonical_path(OBJECT(mr->container));
1180 }
1181 visit_type_str(v, name, &path, errp);
1182 if (mr->container) {
1183 g_free(path);
1184 }
1185 }
1186
1187 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1188 const char *part)
1189 {
1190 MemoryRegion *mr = MEMORY_REGION(obj);
1191
1192 return OBJECT(mr->container);
1193 }
1194
1195 static void memory_region_get_priority(Object *obj, Visitor *v,
1196 const char *name, void *opaque,
1197 Error **errp)
1198 {
1199 MemoryRegion *mr = MEMORY_REGION(obj);
1200 int32_t value = mr->priority;
1201
1202 visit_type_int32(v, name, &value, errp);
1203 }
1204
1205 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1206 void *opaque, Error **errp)
1207 {
1208 MemoryRegion *mr = MEMORY_REGION(obj);
1209 uint64_t value = memory_region_size(mr);
1210
1211 visit_type_uint64(v, name, &value, errp);
1212 }
1213
1214 static void memory_region_initfn(Object *obj)
1215 {
1216 MemoryRegion *mr = MEMORY_REGION(obj);
1217 ObjectProperty *op;
1218
1219 mr->ops = &unassigned_mem_ops;
1220 mr->enabled = true;
1221 mr->romd_mode = true;
1222 mr->global_locking = true;
1223 mr->destructor = memory_region_destructor_none;
1224 QTAILQ_INIT(&mr->subregions);
1225 QTAILQ_INIT(&mr->coalesced);
1226
1227 op = object_property_add(OBJECT(mr), "container",
1228 "link<" TYPE_MEMORY_REGION ">",
1229 memory_region_get_container,
1230 NULL, /* memory_region_set_container */
1231 NULL, NULL, &error_abort);
1232 op->resolve = memory_region_resolve_container;
1233
1234 object_property_add(OBJECT(mr), "addr", "uint64",
1235 memory_region_get_addr,
1236 NULL, /* memory_region_set_addr */
1237 NULL, NULL, &error_abort);
1238 object_property_add(OBJECT(mr), "priority", "uint32",
1239 memory_region_get_priority,
1240 NULL, /* memory_region_set_priority */
1241 NULL, NULL, &error_abort);
1242 object_property_add(OBJECT(mr), "size", "uint64",
1243 memory_region_get_size,
1244 NULL, /* memory_region_set_size, */
1245 NULL, NULL, &error_abort);
1246 }
1247
1248 static void iommu_memory_region_initfn(Object *obj)
1249 {
1250 MemoryRegion *mr = MEMORY_REGION(obj);
1251
1252 mr->is_iommu = true;
1253 }
1254
1255 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1256 unsigned size)
1257 {
1258 #ifdef DEBUG_UNASSIGNED
1259 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1260 #endif
1261 if (current_cpu != NULL) {
1262 bool is_exec = current_cpu->mem_io_access_type == MMU_INST_FETCH;
1263 cpu_unassigned_access(current_cpu, addr, false, is_exec, 0, size);
1264 }
1265 return 0;
1266 }
1267
1268 static void unassigned_mem_write(void *opaque, hwaddr addr,
1269 uint64_t val, unsigned size)
1270 {
1271 #ifdef DEBUG_UNASSIGNED
1272 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1273 #endif
1274 if (current_cpu != NULL) {
1275 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1276 }
1277 }
1278
1279 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1280 unsigned size, bool is_write,
1281 MemTxAttrs attrs)
1282 {
1283 return false;
1284 }
1285
1286 const MemoryRegionOps unassigned_mem_ops = {
1287 .valid.accepts = unassigned_mem_accepts,
1288 .endianness = DEVICE_NATIVE_ENDIAN,
1289 };
1290
1291 static uint64_t memory_region_ram_device_read(void *opaque,
1292 hwaddr addr, unsigned size)
1293 {
1294 MemoryRegion *mr = opaque;
1295 uint64_t data = (uint64_t)~0;
1296
1297 switch (size) {
1298 case 1:
1299 data = *(uint8_t *)(mr->ram_block->host + addr);
1300 break;
1301 case 2:
1302 data = *(uint16_t *)(mr->ram_block->host + addr);
1303 break;
1304 case 4:
1305 data = *(uint32_t *)(mr->ram_block->host + addr);
1306 break;
1307 case 8:
1308 data = *(uint64_t *)(mr->ram_block->host + addr);
1309 break;
1310 }
1311
1312 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1313
1314 return data;
1315 }
1316
1317 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1318 uint64_t data, unsigned size)
1319 {
1320 MemoryRegion *mr = opaque;
1321
1322 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1323
1324 switch (size) {
1325 case 1:
1326 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1327 break;
1328 case 2:
1329 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1330 break;
1331 case 4:
1332 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1333 break;
1334 case 8:
1335 *(uint64_t *)(mr->ram_block->host + addr) = data;
1336 break;
1337 }
1338 }
1339
1340 static const MemoryRegionOps ram_device_mem_ops = {
1341 .read = memory_region_ram_device_read,
1342 .write = memory_region_ram_device_write,
1343 .endianness = DEVICE_HOST_ENDIAN,
1344 .valid = {
1345 .min_access_size = 1,
1346 .max_access_size = 8,
1347 .unaligned = true,
1348 },
1349 .impl = {
1350 .min_access_size = 1,
1351 .max_access_size = 8,
1352 .unaligned = true,
1353 },
1354 };
1355
1356 bool memory_region_access_valid(MemoryRegion *mr,
1357 hwaddr addr,
1358 unsigned size,
1359 bool is_write,
1360 MemTxAttrs attrs)
1361 {
1362 int access_size_min, access_size_max;
1363 int access_size, i;
1364
1365 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1366 return false;
1367 }
1368
1369 if (!mr->ops->valid.accepts) {
1370 return true;
1371 }
1372
1373 access_size_min = mr->ops->valid.min_access_size;
1374 if (!mr->ops->valid.min_access_size) {
1375 access_size_min = 1;
1376 }
1377
1378 access_size_max = mr->ops->valid.max_access_size;
1379 if (!mr->ops->valid.max_access_size) {
1380 access_size_max = 4;
1381 }
1382
1383 access_size = MAX(MIN(size, access_size_max), access_size_min);
1384 for (i = 0; i < size; i += access_size) {
1385 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1386 is_write, attrs)) {
1387 return false;
1388 }
1389 }
1390
1391 return true;
1392 }
1393
1394 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1395 hwaddr addr,
1396 uint64_t *pval,
1397 unsigned size,
1398 MemTxAttrs attrs)
1399 {
1400 *pval = 0;
1401
1402 if (mr->ops->read) {
1403 return access_with_adjusted_size(addr, pval, size,
1404 mr->ops->impl.min_access_size,
1405 mr->ops->impl.max_access_size,
1406 memory_region_read_accessor,
1407 mr, attrs);
1408 } else {
1409 return access_with_adjusted_size(addr, pval, size,
1410 mr->ops->impl.min_access_size,
1411 mr->ops->impl.max_access_size,
1412 memory_region_read_with_attrs_accessor,
1413 mr, attrs);
1414 }
1415 }
1416
1417 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1418 hwaddr addr,
1419 uint64_t *pval,
1420 MemOp op,
1421 MemTxAttrs attrs)
1422 {
1423 unsigned size = memop_size(op);
1424 MemTxResult r;
1425
1426 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1427 *pval = unassigned_mem_read(mr, addr, size);
1428 return MEMTX_DECODE_ERROR;
1429 }
1430
1431 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1432 adjust_endianness(mr, pval, op);
1433 return r;
1434 }
1435
1436 /* Return true if an eventfd was signalled */
1437 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1438 hwaddr addr,
1439 uint64_t data,
1440 unsigned size,
1441 MemTxAttrs attrs)
1442 {
1443 MemoryRegionIoeventfd ioeventfd = {
1444 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1445 .data = data,
1446 };
1447 unsigned i;
1448
1449 for (i = 0; i < mr->ioeventfd_nb; i++) {
1450 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1451 ioeventfd.e = mr->ioeventfds[i].e;
1452
1453 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1454 event_notifier_set(ioeventfd.e);
1455 return true;
1456 }
1457 }
1458
1459 return false;
1460 }
1461
1462 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1463 hwaddr addr,
1464 uint64_t data,
1465 MemOp op,
1466 MemTxAttrs attrs)
1467 {
1468 unsigned size = memop_size(op);
1469
1470 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1471 unassigned_mem_write(mr, addr, data, size);
1472 return MEMTX_DECODE_ERROR;
1473 }
1474
1475 adjust_endianness(mr, &data, op);
1476
1477 if ((!kvm_eventfds_enabled()) &&
1478 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1479 return MEMTX_OK;
1480 }
1481
1482 if (mr->ops->write) {
1483 return access_with_adjusted_size(addr, &data, size,
1484 mr->ops->impl.min_access_size,
1485 mr->ops->impl.max_access_size,
1486 memory_region_write_accessor, mr,
1487 attrs);
1488 } else {
1489 return
1490 access_with_adjusted_size(addr, &data, size,
1491 mr->ops->impl.min_access_size,
1492 mr->ops->impl.max_access_size,
1493 memory_region_write_with_attrs_accessor,
1494 mr, attrs);
1495 }
1496 }
1497
1498 void memory_region_init_io(MemoryRegion *mr,
1499 Object *owner,
1500 const MemoryRegionOps *ops,
1501 void *opaque,
1502 const char *name,
1503 uint64_t size)
1504 {
1505 memory_region_init(mr, owner, name, size);
1506 mr->ops = ops ? ops : &unassigned_mem_ops;
1507 mr->opaque = opaque;
1508 mr->terminates = true;
1509 }
1510
1511 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1512 Object *owner,
1513 const char *name,
1514 uint64_t size,
1515 Error **errp)
1516 {
1517 memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1518 }
1519
1520 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
1521 Object *owner,
1522 const char *name,
1523 uint64_t size,
1524 bool share,
1525 Error **errp)
1526 {
1527 Error *err = NULL;
1528 memory_region_init(mr, owner, name, size);
1529 mr->ram = true;
1530 mr->terminates = true;
1531 mr->destructor = memory_region_destructor_ram;
1532 mr->ram_block = qemu_ram_alloc(size, share, mr, &err);
1533 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1534 if (err) {
1535 mr->size = int128_zero();
1536 object_unparent(OBJECT(mr));
1537 error_propagate(errp, err);
1538 }
1539 }
1540
1541 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1542 Object *owner,
1543 const char *name,
1544 uint64_t size,
1545 uint64_t max_size,
1546 void (*resized)(const char*,
1547 uint64_t length,
1548 void *host),
1549 Error **errp)
1550 {
1551 Error *err = NULL;
1552 memory_region_init(mr, owner, name, size);
1553 mr->ram = true;
1554 mr->terminates = true;
1555 mr->destructor = memory_region_destructor_ram;
1556 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1557 mr, &err);
1558 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1559 if (err) {
1560 mr->size = int128_zero();
1561 object_unparent(OBJECT(mr));
1562 error_propagate(errp, err);
1563 }
1564 }
1565
1566 #ifdef CONFIG_POSIX
1567 void memory_region_init_ram_from_file(MemoryRegion *mr,
1568 struct Object *owner,
1569 const char *name,
1570 uint64_t size,
1571 uint64_t align,
1572 uint32_t ram_flags,
1573 const char *path,
1574 Error **errp)
1575 {
1576 Error *err = NULL;
1577 memory_region_init(mr, owner, name, size);
1578 mr->ram = true;
1579 mr->terminates = true;
1580 mr->destructor = memory_region_destructor_ram;
1581 mr->align = align;
1582 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path, &err);
1583 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1584 if (err) {
1585 mr->size = int128_zero();
1586 object_unparent(OBJECT(mr));
1587 error_propagate(errp, err);
1588 }
1589 }
1590
1591 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1592 struct Object *owner,
1593 const char *name,
1594 uint64_t size,
1595 bool share,
1596 int fd,
1597 Error **errp)
1598 {
1599 Error *err = NULL;
1600 memory_region_init(mr, owner, name, size);
1601 mr->ram = true;
1602 mr->terminates = true;
1603 mr->destructor = memory_region_destructor_ram;
1604 mr->ram_block = qemu_ram_alloc_from_fd(size, mr,
1605 share ? RAM_SHARED : 0,
1606 fd, &err);
1607 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1608 if (err) {
1609 mr->size = int128_zero();
1610 object_unparent(OBJECT(mr));
1611 error_propagate(errp, err);
1612 }
1613 }
1614 #endif
1615
1616 void memory_region_init_ram_ptr(MemoryRegion *mr,
1617 Object *owner,
1618 const char *name,
1619 uint64_t size,
1620 void *ptr)
1621 {
1622 memory_region_init(mr, owner, name, size);
1623 mr->ram = true;
1624 mr->terminates = true;
1625 mr->destructor = memory_region_destructor_ram;
1626 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1627
1628 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1629 assert(ptr != NULL);
1630 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1631 }
1632
1633 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1634 Object *owner,
1635 const char *name,
1636 uint64_t size,
1637 void *ptr)
1638 {
1639 memory_region_init(mr, owner, name, size);
1640 mr->ram = true;
1641 mr->terminates = true;
1642 mr->ram_device = true;
1643 mr->ops = &ram_device_mem_ops;
1644 mr->opaque = mr;
1645 mr->destructor = memory_region_destructor_ram;
1646 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1647 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1648 assert(ptr != NULL);
1649 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1650 }
1651
1652 void memory_region_init_alias(MemoryRegion *mr,
1653 Object *owner,
1654 const char *name,
1655 MemoryRegion *orig,
1656 hwaddr offset,
1657 uint64_t size)
1658 {
1659 memory_region_init(mr, owner, name, size);
1660 mr->alias = orig;
1661 mr->alias_offset = offset;
1662 }
1663
1664 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1665 struct Object *owner,
1666 const char *name,
1667 uint64_t size,
1668 Error **errp)
1669 {
1670 Error *err = NULL;
1671 memory_region_init(mr, owner, name, size);
1672 mr->ram = true;
1673 mr->readonly = true;
1674 mr->terminates = true;
1675 mr->destructor = memory_region_destructor_ram;
1676 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1677 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1678 if (err) {
1679 mr->size = int128_zero();
1680 object_unparent(OBJECT(mr));
1681 error_propagate(errp, err);
1682 }
1683 }
1684
1685 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1686 Object *owner,
1687 const MemoryRegionOps *ops,
1688 void *opaque,
1689 const char *name,
1690 uint64_t size,
1691 Error **errp)
1692 {
1693 Error *err = NULL;
1694 assert(ops);
1695 memory_region_init(mr, owner, name, size);
1696 mr->ops = ops;
1697 mr->opaque = opaque;
1698 mr->terminates = true;
1699 mr->rom_device = true;
1700 mr->destructor = memory_region_destructor_ram;
1701 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1702 if (err) {
1703 mr->size = int128_zero();
1704 object_unparent(OBJECT(mr));
1705 error_propagate(errp, err);
1706 }
1707 }
1708
1709 void memory_region_init_iommu(void *_iommu_mr,
1710 size_t instance_size,
1711 const char *mrtypename,
1712 Object *owner,
1713 const char *name,
1714 uint64_t size)
1715 {
1716 struct IOMMUMemoryRegion *iommu_mr;
1717 struct MemoryRegion *mr;
1718
1719 object_initialize(_iommu_mr, instance_size, mrtypename);
1720 mr = MEMORY_REGION(_iommu_mr);
1721 memory_region_do_init(mr, owner, name, size);
1722 iommu_mr = IOMMU_MEMORY_REGION(mr);
1723 mr->terminates = true; /* then re-forwards */
1724 QLIST_INIT(&iommu_mr->iommu_notify);
1725 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1726 }
1727
1728 static void memory_region_finalize(Object *obj)
1729 {
1730 MemoryRegion *mr = MEMORY_REGION(obj);
1731
1732 assert(!mr->container);
1733
1734 /* We know the region is not visible in any address space (it
1735 * does not have a container and cannot be a root either because
1736 * it has no references, so we can blindly clear mr->enabled.
1737 * memory_region_set_enabled instead could trigger a transaction
1738 * and cause an infinite loop.
1739 */
1740 mr->enabled = false;
1741 memory_region_transaction_begin();
1742 while (!QTAILQ_EMPTY(&mr->subregions)) {
1743 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1744 memory_region_del_subregion(mr, subregion);
1745 }
1746 memory_region_transaction_commit();
1747
1748 mr->destructor(mr);
1749 memory_region_clear_coalescing(mr);
1750 g_free((char *)mr->name);
1751 g_free(mr->ioeventfds);
1752 }
1753
1754 Object *memory_region_owner(MemoryRegion *mr)
1755 {
1756 Object *obj = OBJECT(mr);
1757 return obj->parent;
1758 }
1759
1760 void memory_region_ref(MemoryRegion *mr)
1761 {
1762 /* MMIO callbacks most likely will access data that belongs
1763 * to the owner, hence the need to ref/unref the owner whenever
1764 * the memory region is in use.
1765 *
1766 * The memory region is a child of its owner. As long as the
1767 * owner doesn't call unparent itself on the memory region,
1768 * ref-ing the owner will also keep the memory region alive.
1769 * Memory regions without an owner are supposed to never go away;
1770 * we do not ref/unref them because it slows down DMA sensibly.
1771 */
1772 if (mr && mr->owner) {
1773 object_ref(mr->owner);
1774 }
1775 }
1776
1777 void memory_region_unref(MemoryRegion *mr)
1778 {
1779 if (mr && mr->owner) {
1780 object_unref(mr->owner);
1781 }
1782 }
1783
1784 uint64_t memory_region_size(MemoryRegion *mr)
1785 {
1786 if (int128_eq(mr->size, int128_2_64())) {
1787 return UINT64_MAX;
1788 }
1789 return int128_get64(mr->size);
1790 }
1791
1792 const char *memory_region_name(const MemoryRegion *mr)
1793 {
1794 if (!mr->name) {
1795 ((MemoryRegion *)mr)->name =
1796 object_get_canonical_path_component(OBJECT(mr));
1797 }
1798 return mr->name;
1799 }
1800
1801 bool memory_region_is_ram_device(MemoryRegion *mr)
1802 {
1803 return mr->ram_device;
1804 }
1805
1806 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1807 {
1808 uint8_t mask = mr->dirty_log_mask;
1809 if (global_dirty_log && mr->ram_block) {
1810 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1811 }
1812 return mask;
1813 }
1814
1815 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1816 {
1817 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1818 }
1819
1820 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr)
1821 {
1822 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1823 IOMMUNotifier *iommu_notifier;
1824 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1825
1826 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1827 flags |= iommu_notifier->notifier_flags;
1828 }
1829
1830 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1831 imrc->notify_flag_changed(iommu_mr,
1832 iommu_mr->iommu_notify_flags,
1833 flags);
1834 }
1835
1836 iommu_mr->iommu_notify_flags = flags;
1837 }
1838
1839 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1840 IOMMUNotifier *n)
1841 {
1842 IOMMUMemoryRegion *iommu_mr;
1843
1844 if (mr->alias) {
1845 memory_region_register_iommu_notifier(mr->alias, n);
1846 return;
1847 }
1848
1849 /* We need to register for at least one bitfield */
1850 iommu_mr = IOMMU_MEMORY_REGION(mr);
1851 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1852 assert(n->start <= n->end);
1853 assert(n->iommu_idx >= 0 &&
1854 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1855
1856 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1857 memory_region_update_iommu_notify_flags(iommu_mr);
1858 }
1859
1860 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1861 {
1862 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1863
1864 if (imrc->get_min_page_size) {
1865 return imrc->get_min_page_size(iommu_mr);
1866 }
1867 return TARGET_PAGE_SIZE;
1868 }
1869
1870 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1871 {
1872 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1873 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1874 hwaddr addr, granularity;
1875 IOMMUTLBEntry iotlb;
1876
1877 /* If the IOMMU has its own replay callback, override */
1878 if (imrc->replay) {
1879 imrc->replay(iommu_mr, n);
1880 return;
1881 }
1882
1883 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1884
1885 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1886 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1887 if (iotlb.perm != IOMMU_NONE) {
1888 n->notify(n, &iotlb);
1889 }
1890
1891 /* if (2^64 - MR size) < granularity, it's possible to get an
1892 * infinite loop here. This should catch such a wraparound */
1893 if ((addr + granularity) < addr) {
1894 break;
1895 }
1896 }
1897 }
1898
1899 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1900 IOMMUNotifier *n)
1901 {
1902 IOMMUMemoryRegion *iommu_mr;
1903
1904 if (mr->alias) {
1905 memory_region_unregister_iommu_notifier(mr->alias, n);
1906 return;
1907 }
1908 QLIST_REMOVE(n, node);
1909 iommu_mr = IOMMU_MEMORY_REGION(mr);
1910 memory_region_update_iommu_notify_flags(iommu_mr);
1911 }
1912
1913 void memory_region_notify_one(IOMMUNotifier *notifier,
1914 IOMMUTLBEntry *entry)
1915 {
1916 IOMMUNotifierFlag request_flags;
1917 hwaddr entry_end = entry->iova + entry->addr_mask;
1918
1919 /*
1920 * Skip the notification if the notification does not overlap
1921 * with registered range.
1922 */
1923 if (notifier->start > entry_end || notifier->end < entry->iova) {
1924 return;
1925 }
1926
1927 assert(entry->iova >= notifier->start && entry_end <= notifier->end);
1928
1929 if (entry->perm & IOMMU_RW) {
1930 request_flags = IOMMU_NOTIFIER_MAP;
1931 } else {
1932 request_flags = IOMMU_NOTIFIER_UNMAP;
1933 }
1934
1935 if (notifier->notifier_flags & request_flags) {
1936 notifier->notify(notifier, entry);
1937 }
1938 }
1939
1940 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1941 int iommu_idx,
1942 IOMMUTLBEntry entry)
1943 {
1944 IOMMUNotifier *iommu_notifier;
1945
1946 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1947
1948 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1949 if (iommu_notifier->iommu_idx == iommu_idx) {
1950 memory_region_notify_one(iommu_notifier, &entry);
1951 }
1952 }
1953 }
1954
1955 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1956 enum IOMMUMemoryRegionAttr attr,
1957 void *data)
1958 {
1959 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1960
1961 if (!imrc->get_attr) {
1962 return -EINVAL;
1963 }
1964
1965 return imrc->get_attr(iommu_mr, attr, data);
1966 }
1967
1968 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1969 MemTxAttrs attrs)
1970 {
1971 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1972
1973 if (!imrc->attrs_to_index) {
1974 return 0;
1975 }
1976
1977 return imrc->attrs_to_index(iommu_mr, attrs);
1978 }
1979
1980 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
1981 {
1982 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1983
1984 if (!imrc->num_indexes) {
1985 return 1;
1986 }
1987
1988 return imrc->num_indexes(iommu_mr);
1989 }
1990
1991 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1992 {
1993 uint8_t mask = 1 << client;
1994 uint8_t old_logging;
1995
1996 assert(client == DIRTY_MEMORY_VGA);
1997 old_logging = mr->vga_logging_count;
1998 mr->vga_logging_count += log ? 1 : -1;
1999 if (!!old_logging == !!mr->vga_logging_count) {
2000 return;
2001 }
2002
2003 memory_region_transaction_begin();
2004 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2005 memory_region_update_pending |= mr->enabled;
2006 memory_region_transaction_commit();
2007 }
2008
2009 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2010 hwaddr size)
2011 {
2012 assert(mr->ram_block);
2013 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2014 size,
2015 memory_region_get_dirty_log_mask(mr));
2016 }
2017
2018 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2019 {
2020 MemoryListener *listener;
2021 AddressSpace *as;
2022 FlatView *view;
2023 FlatRange *fr;
2024
2025 /* If the same address space has multiple log_sync listeners, we
2026 * visit that address space's FlatView multiple times. But because
2027 * log_sync listeners are rare, it's still cheaper than walking each
2028 * address space once.
2029 */
2030 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2031 if (!listener->log_sync) {
2032 continue;
2033 }
2034 as = listener->address_space;
2035 view = address_space_get_flatview(as);
2036 FOR_EACH_FLAT_RANGE(fr, view) {
2037 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2038 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2039 listener->log_sync(listener, &mrs);
2040 }
2041 }
2042 flatview_unref(view);
2043 }
2044 }
2045
2046 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2047 hwaddr len)
2048 {
2049 MemoryRegionSection mrs;
2050 MemoryListener *listener;
2051 AddressSpace *as;
2052 FlatView *view;
2053 FlatRange *fr;
2054 hwaddr sec_start, sec_end, sec_size;
2055
2056 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2057 if (!listener->log_clear) {
2058 continue;
2059 }
2060 as = listener->address_space;
2061 view = address_space_get_flatview(as);
2062 FOR_EACH_FLAT_RANGE(fr, view) {
2063 if (!fr->dirty_log_mask || fr->mr != mr) {
2064 /*
2065 * Clear dirty bitmap operation only applies to those
2066 * regions whose dirty logging is at least enabled
2067 */
2068 continue;
2069 }
2070
2071 mrs = section_from_flat_range(fr, view);
2072
2073 sec_start = MAX(mrs.offset_within_region, start);
2074 sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2075 sec_end = MIN(sec_end, start + len);
2076
2077 if (sec_start >= sec_end) {
2078 /*
2079 * If this memory region section has no intersection
2080 * with the requested range, skip.
2081 */
2082 continue;
2083 }
2084
2085 /* Valid case; shrink the section if needed */
2086 mrs.offset_within_address_space +=
2087 sec_start - mrs.offset_within_region;
2088 mrs.offset_within_region = sec_start;
2089 sec_size = sec_end - sec_start;
2090 mrs.size = int128_make64(sec_size);
2091 listener->log_clear(listener, &mrs);
2092 }
2093 flatview_unref(view);
2094 }
2095 }
2096
2097 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2098 hwaddr addr,
2099 hwaddr size,
2100 unsigned client)
2101 {
2102 DirtyBitmapSnapshot *snapshot;
2103 assert(mr->ram_block);
2104 memory_region_sync_dirty_bitmap(mr);
2105 snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2106 memory_global_after_dirty_log_sync();
2107 return snapshot;
2108 }
2109
2110 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2111 hwaddr addr, hwaddr size)
2112 {
2113 assert(mr->ram_block);
2114 return cpu_physical_memory_snapshot_get_dirty(snap,
2115 memory_region_get_ram_addr(mr) + addr, size);
2116 }
2117
2118 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2119 {
2120 if (mr->readonly != readonly) {
2121 memory_region_transaction_begin();
2122 mr->readonly = readonly;
2123 memory_region_update_pending |= mr->enabled;
2124 memory_region_transaction_commit();
2125 }
2126 }
2127
2128 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2129 {
2130 if (mr->nonvolatile != nonvolatile) {
2131 memory_region_transaction_begin();
2132 mr->nonvolatile = nonvolatile;
2133 memory_region_update_pending |= mr->enabled;
2134 memory_region_transaction_commit();
2135 }
2136 }
2137
2138 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2139 {
2140 if (mr->romd_mode != romd_mode) {
2141 memory_region_transaction_begin();
2142 mr->romd_mode = romd_mode;
2143 memory_region_update_pending |= mr->enabled;
2144 memory_region_transaction_commit();
2145 }
2146 }
2147
2148 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2149 hwaddr size, unsigned client)
2150 {
2151 assert(mr->ram_block);
2152 cpu_physical_memory_test_and_clear_dirty(
2153 memory_region_get_ram_addr(mr) + addr, size, client);
2154 }
2155
2156 int memory_region_get_fd(MemoryRegion *mr)
2157 {
2158 int fd;
2159
2160 rcu_read_lock();
2161 while (mr->alias) {
2162 mr = mr->alias;
2163 }
2164 fd = mr->ram_block->fd;
2165 rcu_read_unlock();
2166
2167 return fd;
2168 }
2169
2170 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2171 {
2172 void *ptr;
2173 uint64_t offset = 0;
2174
2175 rcu_read_lock();
2176 while (mr->alias) {
2177 offset += mr->alias_offset;
2178 mr = mr->alias;
2179 }
2180 assert(mr->ram_block);
2181 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2182 rcu_read_unlock();
2183
2184 return ptr;
2185 }
2186
2187 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2188 {
2189 RAMBlock *block;
2190
2191 block = qemu_ram_block_from_host(ptr, false, offset);
2192 if (!block) {
2193 return NULL;
2194 }
2195
2196 return block->mr;
2197 }
2198
2199 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2200 {
2201 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2202 }
2203
2204 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2205 {
2206 assert(mr->ram_block);
2207
2208 qemu_ram_resize(mr->ram_block, newsize, errp);
2209 }
2210
2211 /*
2212 * Call proper memory listeners about the change on the newly
2213 * added/removed CoalescedMemoryRange.
2214 */
2215 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2216 CoalescedMemoryRange *cmr,
2217 bool add)
2218 {
2219 AddressSpace *as;
2220 FlatView *view;
2221 FlatRange *fr;
2222
2223 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2224 view = address_space_get_flatview(as);
2225 FOR_EACH_FLAT_RANGE(fr, view) {
2226 if (fr->mr == mr) {
2227 flat_range_coalesced_io_notify(fr, as, cmr, add);
2228 }
2229 }
2230 flatview_unref(view);
2231 }
2232 }
2233
2234 void memory_region_set_coalescing(MemoryRegion *mr)
2235 {
2236 memory_region_clear_coalescing(mr);
2237 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2238 }
2239
2240 void memory_region_add_coalescing(MemoryRegion *mr,
2241 hwaddr offset,
2242 uint64_t size)
2243 {
2244 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2245
2246 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2247 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2248 memory_region_update_coalesced_range(mr, cmr, true);
2249 memory_region_set_flush_coalesced(mr);
2250 }
2251
2252 void memory_region_clear_coalescing(MemoryRegion *mr)
2253 {
2254 CoalescedMemoryRange *cmr;
2255
2256 if (QTAILQ_EMPTY(&mr->coalesced)) {
2257 return;
2258 }
2259
2260 qemu_flush_coalesced_mmio_buffer();
2261 mr->flush_coalesced_mmio = false;
2262
2263 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2264 cmr = QTAILQ_FIRST(&mr->coalesced);
2265 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2266 memory_region_update_coalesced_range(mr, cmr, false);
2267 g_free(cmr);
2268 }
2269 }
2270
2271 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2272 {
2273 mr->flush_coalesced_mmio = true;
2274 }
2275
2276 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2277 {
2278 qemu_flush_coalesced_mmio_buffer();
2279 if (QTAILQ_EMPTY(&mr->coalesced)) {
2280 mr->flush_coalesced_mmio = false;
2281 }
2282 }
2283
2284 void memory_region_clear_global_locking(MemoryRegion *mr)
2285 {
2286 mr->global_locking = false;
2287 }
2288
2289 static bool userspace_eventfd_warning;
2290
2291 void memory_region_add_eventfd(MemoryRegion *mr,
2292 hwaddr addr,
2293 unsigned size,
2294 bool match_data,
2295 uint64_t data,
2296 EventNotifier *e)
2297 {
2298 MemoryRegionIoeventfd mrfd = {
2299 .addr.start = int128_make64(addr),
2300 .addr.size = int128_make64(size),
2301 .match_data = match_data,
2302 .data = data,
2303 .e = e,
2304 };
2305 unsigned i;
2306
2307 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2308 userspace_eventfd_warning))) {
2309 userspace_eventfd_warning = true;
2310 error_report("Using eventfd without MMIO binding in KVM. "
2311 "Suboptimal performance expected");
2312 }
2313
2314 if (size) {
2315 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2316 }
2317 memory_region_transaction_begin();
2318 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2319 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2320 break;
2321 }
2322 }
2323 ++mr->ioeventfd_nb;
2324 mr->ioeventfds = g_realloc(mr->ioeventfds,
2325 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2326 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2327 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2328 mr->ioeventfds[i] = mrfd;
2329 ioeventfd_update_pending |= mr->enabled;
2330 memory_region_transaction_commit();
2331 }
2332
2333 void memory_region_del_eventfd(MemoryRegion *mr,
2334 hwaddr addr,
2335 unsigned size,
2336 bool match_data,
2337 uint64_t data,
2338 EventNotifier *e)
2339 {
2340 MemoryRegionIoeventfd mrfd = {
2341 .addr.start = int128_make64(addr),
2342 .addr.size = int128_make64(size),
2343 .match_data = match_data,
2344 .data = data,
2345 .e = e,
2346 };
2347 unsigned i;
2348
2349 if (size) {
2350 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2351 }
2352 memory_region_transaction_begin();
2353 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2354 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2355 break;
2356 }
2357 }
2358 assert(i != mr->ioeventfd_nb);
2359 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2360 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2361 --mr->ioeventfd_nb;
2362 mr->ioeventfds = g_realloc(mr->ioeventfds,
2363 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2364 ioeventfd_update_pending |= mr->enabled;
2365 memory_region_transaction_commit();
2366 }
2367
2368 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2369 {
2370 MemoryRegion *mr = subregion->container;
2371 MemoryRegion *other;
2372
2373 memory_region_transaction_begin();
2374
2375 memory_region_ref(subregion);
2376 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2377 if (subregion->priority >= other->priority) {
2378 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2379 goto done;
2380 }
2381 }
2382 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2383 done:
2384 memory_region_update_pending |= mr->enabled && subregion->enabled;
2385 memory_region_transaction_commit();
2386 }
2387
2388 static void memory_region_add_subregion_common(MemoryRegion *mr,
2389 hwaddr offset,
2390 MemoryRegion *subregion)
2391 {
2392 assert(!subregion->container);
2393 subregion->container = mr;
2394 subregion->addr = offset;
2395 memory_region_update_container_subregions(subregion);
2396 }
2397
2398 void memory_region_add_subregion(MemoryRegion *mr,
2399 hwaddr offset,
2400 MemoryRegion *subregion)
2401 {
2402 subregion->priority = 0;
2403 memory_region_add_subregion_common(mr, offset, subregion);
2404 }
2405
2406 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2407 hwaddr offset,
2408 MemoryRegion *subregion,
2409 int priority)
2410 {
2411 subregion->priority = priority;
2412 memory_region_add_subregion_common(mr, offset, subregion);
2413 }
2414
2415 void memory_region_del_subregion(MemoryRegion *mr,
2416 MemoryRegion *subregion)
2417 {
2418 memory_region_transaction_begin();
2419 assert(subregion->container == mr);
2420 subregion->container = NULL;
2421 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2422 memory_region_unref(subregion);
2423 memory_region_update_pending |= mr->enabled && subregion->enabled;
2424 memory_region_transaction_commit();
2425 }
2426
2427 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2428 {
2429 if (enabled == mr->enabled) {
2430 return;
2431 }
2432 memory_region_transaction_begin();
2433 mr->enabled = enabled;
2434 memory_region_update_pending = true;
2435 memory_region_transaction_commit();
2436 }
2437
2438 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2439 {
2440 Int128 s = int128_make64(size);
2441
2442 if (size == UINT64_MAX) {
2443 s = int128_2_64();
2444 }
2445 if (int128_eq(s, mr->size)) {
2446 return;
2447 }
2448 memory_region_transaction_begin();
2449 mr->size = s;
2450 memory_region_update_pending = true;
2451 memory_region_transaction_commit();
2452 }
2453
2454 static void memory_region_readd_subregion(MemoryRegion *mr)
2455 {
2456 MemoryRegion *container = mr->container;
2457
2458 if (container) {
2459 memory_region_transaction_begin();
2460 memory_region_ref(mr);
2461 memory_region_del_subregion(container, mr);
2462 mr->container = container;
2463 memory_region_update_container_subregions(mr);
2464 memory_region_unref(mr);
2465 memory_region_transaction_commit();
2466 }
2467 }
2468
2469 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2470 {
2471 if (addr != mr->addr) {
2472 mr->addr = addr;
2473 memory_region_readd_subregion(mr);
2474 }
2475 }
2476
2477 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2478 {
2479 assert(mr->alias);
2480
2481 if (offset == mr->alias_offset) {
2482 return;
2483 }
2484
2485 memory_region_transaction_begin();
2486 mr->alias_offset = offset;
2487 memory_region_update_pending |= mr->enabled;
2488 memory_region_transaction_commit();
2489 }
2490
2491 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2492 {
2493 return mr->align;
2494 }
2495
2496 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2497 {
2498 const AddrRange *addr = addr_;
2499 const FlatRange *fr = fr_;
2500
2501 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2502 return -1;
2503 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2504 return 1;
2505 }
2506 return 0;
2507 }
2508
2509 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2510 {
2511 return bsearch(&addr, view->ranges, view->nr,
2512 sizeof(FlatRange), cmp_flatrange_addr);
2513 }
2514
2515 bool memory_region_is_mapped(MemoryRegion *mr)
2516 {
2517 return mr->container ? true : false;
2518 }
2519
2520 /* Same as memory_region_find, but it does not add a reference to the
2521 * returned region. It must be called from an RCU critical section.
2522 */
2523 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2524 hwaddr addr, uint64_t size)
2525 {
2526 MemoryRegionSection ret = { .mr = NULL };
2527 MemoryRegion *root;
2528 AddressSpace *as;
2529 AddrRange range;
2530 FlatView *view;
2531 FlatRange *fr;
2532
2533 addr += mr->addr;
2534 for (root = mr; root->container; ) {
2535 root = root->container;
2536 addr += root->addr;
2537 }
2538
2539 as = memory_region_to_address_space(root);
2540 if (!as) {
2541 return ret;
2542 }
2543 range = addrrange_make(int128_make64(addr), int128_make64(size));
2544
2545 view = address_space_to_flatview(as);
2546 fr = flatview_lookup(view, range);
2547 if (!fr) {
2548 return ret;
2549 }
2550
2551 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2552 --fr;
2553 }
2554
2555 ret.mr = fr->mr;
2556 ret.fv = view;
2557 range = addrrange_intersection(range, fr->addr);
2558 ret.offset_within_region = fr->offset_in_region;
2559 ret.offset_within_region += int128_get64(int128_sub(range.start,
2560 fr->addr.start));
2561 ret.size = range.size;
2562 ret.offset_within_address_space = int128_get64(range.start);
2563 ret.readonly = fr->readonly;
2564 ret.nonvolatile = fr->nonvolatile;
2565 return ret;
2566 }
2567
2568 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2569 hwaddr addr, uint64_t size)
2570 {
2571 MemoryRegionSection ret;
2572 rcu_read_lock();
2573 ret = memory_region_find_rcu(mr, addr, size);
2574 if (ret.mr) {
2575 memory_region_ref(ret.mr);
2576 }
2577 rcu_read_unlock();
2578 return ret;
2579 }
2580
2581 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2582 {
2583 MemoryRegion *mr;
2584
2585 rcu_read_lock();
2586 mr = memory_region_find_rcu(container, addr, 1).mr;
2587 rcu_read_unlock();
2588 return mr && mr != container;
2589 }
2590
2591 void memory_global_dirty_log_sync(void)
2592 {
2593 memory_region_sync_dirty_bitmap(NULL);
2594 }
2595
2596 void memory_global_after_dirty_log_sync(void)
2597 {
2598 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2599 }
2600
2601 static VMChangeStateEntry *vmstate_change;
2602
2603 void memory_global_dirty_log_start(void)
2604 {
2605 if (vmstate_change) {
2606 qemu_del_vm_change_state_handler(vmstate_change);
2607 vmstate_change = NULL;
2608 }
2609
2610 global_dirty_log = true;
2611
2612 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2613
2614 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2615 memory_region_transaction_begin();
2616 memory_region_update_pending = true;
2617 memory_region_transaction_commit();
2618 }
2619
2620 static void memory_global_dirty_log_do_stop(void)
2621 {
2622 global_dirty_log = false;
2623
2624 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2625 memory_region_transaction_begin();
2626 memory_region_update_pending = true;
2627 memory_region_transaction_commit();
2628
2629 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2630 }
2631
2632 static void memory_vm_change_state_handler(void *opaque, int running,
2633 RunState state)
2634 {
2635 if (running) {
2636 memory_global_dirty_log_do_stop();
2637
2638 if (vmstate_change) {
2639 qemu_del_vm_change_state_handler(vmstate_change);
2640 vmstate_change = NULL;
2641 }
2642 }
2643 }
2644
2645 void memory_global_dirty_log_stop(void)
2646 {
2647 if (!runstate_is_running()) {
2648 if (vmstate_change) {
2649 return;
2650 }
2651 vmstate_change = qemu_add_vm_change_state_handler(
2652 memory_vm_change_state_handler, NULL);
2653 return;
2654 }
2655
2656 memory_global_dirty_log_do_stop();
2657 }
2658
2659 static void listener_add_address_space(MemoryListener *listener,
2660 AddressSpace *as)
2661 {
2662 FlatView *view;
2663 FlatRange *fr;
2664
2665 if (listener->begin) {
2666 listener->begin(listener);
2667 }
2668 if (global_dirty_log) {
2669 if (listener->log_global_start) {
2670 listener->log_global_start(listener);
2671 }
2672 }
2673
2674 view = address_space_get_flatview(as);
2675 FOR_EACH_FLAT_RANGE(fr, view) {
2676 MemoryRegionSection section = section_from_flat_range(fr, view);
2677
2678 if (listener->region_add) {
2679 listener->region_add(listener, &section);
2680 }
2681 if (fr->dirty_log_mask && listener->log_start) {
2682 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2683 }
2684 }
2685 if (listener->commit) {
2686 listener->commit(listener);
2687 }
2688 flatview_unref(view);
2689 }
2690
2691 static void listener_del_address_space(MemoryListener *listener,
2692 AddressSpace *as)
2693 {
2694 FlatView *view;
2695 FlatRange *fr;
2696
2697 if (listener->begin) {
2698 listener->begin(listener);
2699 }
2700 view = address_space_get_flatview(as);
2701 FOR_EACH_FLAT_RANGE(fr, view) {
2702 MemoryRegionSection section = section_from_flat_range(fr, view);
2703
2704 if (fr->dirty_log_mask && listener->log_stop) {
2705 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2706 }
2707 if (listener->region_del) {
2708 listener->region_del(listener, &section);
2709 }
2710 }
2711 if (listener->commit) {
2712 listener->commit(listener);
2713 }
2714 flatview_unref(view);
2715 }
2716
2717 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2718 {
2719 MemoryListener *other = NULL;
2720
2721 listener->address_space = as;
2722 if (QTAILQ_EMPTY(&memory_listeners)
2723 || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
2724 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2725 } else {
2726 QTAILQ_FOREACH(other, &memory_listeners, link) {
2727 if (listener->priority < other->priority) {
2728 break;
2729 }
2730 }
2731 QTAILQ_INSERT_BEFORE(other, listener, link);
2732 }
2733
2734 if (QTAILQ_EMPTY(&as->listeners)
2735 || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
2736 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2737 } else {
2738 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2739 if (listener->priority < other->priority) {
2740 break;
2741 }
2742 }
2743 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2744 }
2745
2746 listener_add_address_space(listener, as);
2747 }
2748
2749 void memory_listener_unregister(MemoryListener *listener)
2750 {
2751 if (!listener->address_space) {
2752 return;
2753 }
2754
2755 listener_del_address_space(listener, listener->address_space);
2756 QTAILQ_REMOVE(&memory_listeners, listener, link);
2757 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2758 listener->address_space = NULL;
2759 }
2760
2761 void address_space_remove_listeners(AddressSpace *as)
2762 {
2763 while (!QTAILQ_EMPTY(&as->listeners)) {
2764 memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
2765 }
2766 }
2767
2768 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2769 {
2770 memory_region_ref(root);
2771 as->root = root;
2772 as->current_map = NULL;
2773 as->ioeventfd_nb = 0;
2774 as->ioeventfds = NULL;
2775 QTAILQ_INIT(&as->listeners);
2776 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2777 as->name = g_strdup(name ? name : "anonymous");
2778 address_space_update_topology(as);
2779 address_space_update_ioeventfds(as);
2780 }
2781
2782 static void do_address_space_destroy(AddressSpace *as)
2783 {
2784 assert(QTAILQ_EMPTY(&as->listeners));
2785
2786 flatview_unref(as->current_map);
2787 g_free(as->name);
2788 g_free(as->ioeventfds);
2789 memory_region_unref(as->root);
2790 }
2791
2792 void address_space_destroy(AddressSpace *as)
2793 {
2794 MemoryRegion *root = as->root;
2795
2796 /* Flush out anything from MemoryListeners listening in on this */
2797 memory_region_transaction_begin();
2798 as->root = NULL;
2799 memory_region_transaction_commit();
2800 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2801
2802 /* At this point, as->dispatch and as->current_map are dummy
2803 * entries that the guest should never use. Wait for the old
2804 * values to expire before freeing the data.
2805 */
2806 as->root = root;
2807 call_rcu(as, do_address_space_destroy, rcu);
2808 }
2809
2810 static const char *memory_region_type(MemoryRegion *mr)
2811 {
2812 if (memory_region_is_ram_device(mr)) {
2813 return "ramd";
2814 } else if (memory_region_is_romd(mr)) {
2815 return "romd";
2816 } else if (memory_region_is_rom(mr)) {
2817 return "rom";
2818 } else if (memory_region_is_ram(mr)) {
2819 return "ram";
2820 } else {
2821 return "i/o";
2822 }
2823 }
2824
2825 typedef struct MemoryRegionList MemoryRegionList;
2826
2827 struct MemoryRegionList {
2828 const MemoryRegion *mr;
2829 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2830 };
2831
2832 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
2833
2834 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2835 int128_sub((size), int128_one())) : 0)
2836 #define MTREE_INDENT " "
2837
2838 static void mtree_expand_owner(const char *label, Object *obj)
2839 {
2840 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
2841
2842 qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
2843 if (dev && dev->id) {
2844 qemu_printf(" id=%s", dev->id);
2845 } else {
2846 gchar *canonical_path = object_get_canonical_path(obj);
2847 if (canonical_path) {
2848 qemu_printf(" path=%s", canonical_path);
2849 g_free(canonical_path);
2850 } else {
2851 qemu_printf(" type=%s", object_get_typename(obj));
2852 }
2853 }
2854 qemu_printf("}");
2855 }
2856
2857 static void mtree_print_mr_owner(const MemoryRegion *mr)
2858 {
2859 Object *owner = mr->owner;
2860 Object *parent = memory_region_owner((MemoryRegion *)mr);
2861
2862 if (!owner && !parent) {
2863 qemu_printf(" orphan");
2864 return;
2865 }
2866 if (owner) {
2867 mtree_expand_owner("owner", owner);
2868 }
2869 if (parent && parent != owner) {
2870 mtree_expand_owner("parent", parent);
2871 }
2872 }
2873
2874 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
2875 hwaddr base,
2876 MemoryRegionListHead *alias_print_queue,
2877 bool owner)
2878 {
2879 MemoryRegionList *new_ml, *ml, *next_ml;
2880 MemoryRegionListHead submr_print_queue;
2881 const MemoryRegion *submr;
2882 unsigned int i;
2883 hwaddr cur_start, cur_end;
2884
2885 if (!mr) {
2886 return;
2887 }
2888
2889 for (i = 0; i < level; i++) {
2890 qemu_printf(MTREE_INDENT);
2891 }
2892
2893 cur_start = base + mr->addr;
2894 cur_end = cur_start + MR_SIZE(mr->size);
2895
2896 /*
2897 * Try to detect overflow of memory region. This should never
2898 * happen normally. When it happens, we dump something to warn the
2899 * user who is observing this.
2900 */
2901 if (cur_start < base || cur_end < cur_start) {
2902 qemu_printf("[DETECTED OVERFLOW!] ");
2903 }
2904
2905 if (mr->alias) {
2906 MemoryRegionList *ml;
2907 bool found = false;
2908
2909 /* check if the alias is already in the queue */
2910 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2911 if (ml->mr == mr->alias) {
2912 found = true;
2913 }
2914 }
2915
2916 if (!found) {
2917 ml = g_new(MemoryRegionList, 1);
2918 ml->mr = mr->alias;
2919 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2920 }
2921 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2922 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2923 "-" TARGET_FMT_plx "%s",
2924 cur_start, cur_end,
2925 mr->priority,
2926 mr->nonvolatile ? "nv-" : "",
2927 memory_region_type((MemoryRegion *)mr),
2928 memory_region_name(mr),
2929 memory_region_name(mr->alias),
2930 mr->alias_offset,
2931 mr->alias_offset + MR_SIZE(mr->size),
2932 mr->enabled ? "" : " [disabled]");
2933 if (owner) {
2934 mtree_print_mr_owner(mr);
2935 }
2936 } else {
2937 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2938 " (prio %d, %s%s): %s%s",
2939 cur_start, cur_end,
2940 mr->priority,
2941 mr->nonvolatile ? "nv-" : "",
2942 memory_region_type((MemoryRegion *)mr),
2943 memory_region_name(mr),
2944 mr->enabled ? "" : " [disabled]");
2945 if (owner) {
2946 mtree_print_mr_owner(mr);
2947 }
2948 }
2949 qemu_printf("\n");
2950
2951 QTAILQ_INIT(&submr_print_queue);
2952
2953 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2954 new_ml = g_new(MemoryRegionList, 1);
2955 new_ml->mr = submr;
2956 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2957 if (new_ml->mr->addr < ml->mr->addr ||
2958 (new_ml->mr->addr == ml->mr->addr &&
2959 new_ml->mr->priority > ml->mr->priority)) {
2960 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
2961 new_ml = NULL;
2962 break;
2963 }
2964 }
2965 if (new_ml) {
2966 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
2967 }
2968 }
2969
2970 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2971 mtree_print_mr(ml->mr, level + 1, cur_start,
2972 alias_print_queue, owner);
2973 }
2974
2975 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
2976 g_free(ml);
2977 }
2978 }
2979
2980 struct FlatViewInfo {
2981 int counter;
2982 bool dispatch_tree;
2983 bool owner;
2984 AccelClass *ac;
2985 const char *ac_name;
2986 };
2987
2988 static void mtree_print_flatview(gpointer key, gpointer value,
2989 gpointer user_data)
2990 {
2991 FlatView *view = key;
2992 GArray *fv_address_spaces = value;
2993 struct FlatViewInfo *fvi = user_data;
2994 FlatRange *range = &view->ranges[0];
2995 MemoryRegion *mr;
2996 int n = view->nr;
2997 int i;
2998 AddressSpace *as;
2999
3000 qemu_printf("FlatView #%d\n", fvi->counter);
3001 ++fvi->counter;
3002
3003 for (i = 0; i < fv_address_spaces->len; ++i) {
3004 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3005 qemu_printf(" AS \"%s\", root: %s",
3006 as->name, memory_region_name(as->root));
3007 if (as->root->alias) {
3008 qemu_printf(", alias %s", memory_region_name(as->root->alias));
3009 }
3010 qemu_printf("\n");
3011 }
3012
3013 qemu_printf(" Root memory region: %s\n",
3014 view->root ? memory_region_name(view->root) : "(none)");
3015
3016 if (n <= 0) {
3017 qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3018 return;
3019 }
3020
3021 while (n--) {
3022 mr = range->mr;
3023 if (range->offset_in_region) {
3024 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3025 " (prio %d, %s%s): %s @" TARGET_FMT_plx,
3026 int128_get64(range->addr.start),
3027 int128_get64(range->addr.start)
3028 + MR_SIZE(range->addr.size),
3029 mr->priority,
3030 range->nonvolatile ? "nv-" : "",
3031 range->readonly ? "rom" : memory_region_type(mr),
3032 memory_region_name(mr),
3033 range->offset_in_region);
3034 } else {
3035 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3036 " (prio %d, %s%s): %s",
3037 int128_get64(range->addr.start),
3038 int128_get64(range->addr.start)
3039 + MR_SIZE(range->addr.size),
3040 mr->priority,
3041 range->nonvolatile ? "nv-" : "",
3042 range->readonly ? "rom" : memory_region_type(mr),
3043 memory_region_name(mr));
3044 }
3045 if (fvi->owner) {
3046 mtree_print_mr_owner(mr);
3047 }
3048
3049 if (fvi->ac) {
3050 for (i = 0; i < fv_address_spaces->len; ++i) {
3051 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3052 if (fvi->ac->has_memory(current_machine, as,
3053 int128_get64(range->addr.start),
3054 MR_SIZE(range->addr.size) + 1)) {
3055 qemu_printf(" %s", fvi->ac_name);
3056 }
3057 }
3058 }
3059 qemu_printf("\n");
3060 range++;
3061 }
3062
3063 #if !defined(CONFIG_USER_ONLY)
3064 if (fvi->dispatch_tree && view->root) {
3065 mtree_print_dispatch(view->dispatch, view->root);
3066 }
3067 #endif
3068
3069 qemu_printf("\n");
3070 }
3071
3072 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3073 gpointer user_data)
3074 {
3075 FlatView *view = key;
3076 GArray *fv_address_spaces = value;
3077
3078 g_array_unref(fv_address_spaces);
3079 flatview_unref(view);
3080
3081 return true;
3082 }
3083
3084 void mtree_info(bool flatview, bool dispatch_tree, bool owner)
3085 {
3086 MemoryRegionListHead ml_head;
3087 MemoryRegionList *ml, *ml2;
3088 AddressSpace *as;
3089
3090 if (flatview) {
3091 FlatView *view;
3092 struct FlatViewInfo fvi = {
3093 .counter = 0,
3094 .dispatch_tree = dispatch_tree,
3095 .owner = owner,
3096 };
3097 GArray *fv_address_spaces;
3098 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3099 AccelClass *ac = ACCEL_GET_CLASS(current_machine->accelerator);
3100
3101 if (ac->has_memory) {
3102 fvi.ac = ac;
3103 fvi.ac_name = current_machine->accel ? current_machine->accel :
3104 object_class_get_name(OBJECT_CLASS(ac));
3105 }
3106
3107 /* Gather all FVs in one table */
3108 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3109 view = address_space_get_flatview(as);
3110
3111 fv_address_spaces = g_hash_table_lookup(views, view);
3112 if (!fv_address_spaces) {
3113 fv_address_spaces = g_array_new(false, false, sizeof(as));
3114 g_hash_table_insert(views, view, fv_address_spaces);
3115 }
3116
3117 g_array_append_val(fv_address_spaces, as);
3118 }
3119
3120 /* Print */
3121 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3122
3123 /* Free */
3124 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3125 g_hash_table_unref(views);
3126
3127 return;
3128 }
3129
3130 QTAILQ_INIT(&ml_head);
3131
3132 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3133 qemu_printf("address-space: %s\n", as->name);
3134 mtree_print_mr(as->root, 1, 0, &ml_head, owner);
3135 qemu_printf("\n");
3136 }
3137
3138 /* print aliased regions */
3139 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3140 qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3141 mtree_print_mr(ml->mr, 1, 0, &ml_head, owner);
3142 qemu_printf("\n");
3143 }
3144
3145 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3146 g_free(ml);
3147 }
3148 }
3149
3150 void memory_region_init_ram(MemoryRegion *mr,
3151 struct Object *owner,
3152 const char *name,
3153 uint64_t size,
3154 Error **errp)
3155 {
3156 DeviceState *owner_dev;
3157 Error *err = NULL;
3158
3159 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3160 if (err) {
3161 error_propagate(errp, err);
3162 return;
3163 }
3164 /* This will assert if owner is neither NULL nor a DeviceState.
3165 * We only want the owner here for the purposes of defining a
3166 * unique name for migration. TODO: Ideally we should implement
3167 * a naming scheme for Objects which are not DeviceStates, in
3168 * which case we can relax this restriction.
3169 */
3170 owner_dev = DEVICE(owner);
3171 vmstate_register_ram(mr, owner_dev);
3172 }
3173
3174 void memory_region_init_rom(MemoryRegion *mr,
3175 struct Object *owner,
3176 const char *name,
3177 uint64_t size,
3178 Error **errp)
3179 {
3180 DeviceState *owner_dev;
3181 Error *err = NULL;
3182
3183 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3184 if (err) {
3185 error_propagate(errp, err);
3186 return;
3187 }
3188 /* This will assert if owner is neither NULL nor a DeviceState.
3189 * We only want the owner here for the purposes of defining a
3190 * unique name for migration. TODO: Ideally we should implement
3191 * a naming scheme for Objects which are not DeviceStates, in
3192 * which case we can relax this restriction.
3193 */
3194 owner_dev = DEVICE(owner);
3195 vmstate_register_ram(mr, owner_dev);
3196 }
3197
3198 void memory_region_init_rom_device(MemoryRegion *mr,
3199 struct Object *owner,
3200 const MemoryRegionOps *ops,
3201 void *opaque,
3202 const char *name,
3203 uint64_t size,
3204 Error **errp)
3205 {
3206 DeviceState *owner_dev;
3207 Error *err = NULL;
3208
3209 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3210 name, size, &err);
3211 if (err) {
3212 error_propagate(errp, err);
3213 return;
3214 }
3215 /* This will assert if owner is neither NULL nor a DeviceState.
3216 * We only want the owner here for the purposes of defining a
3217 * unique name for migration. TODO: Ideally we should implement
3218 * a naming scheme for Objects which are not DeviceStates, in
3219 * which case we can relax this restriction.
3220 */
3221 owner_dev = DEVICE(owner);
3222 vmstate_register_ram(mr, owner_dev);
3223 }
3224
3225 static const TypeInfo memory_region_info = {
3226 .parent = TYPE_OBJECT,
3227 .name = TYPE_MEMORY_REGION,
3228 .class_size = sizeof(MemoryRegionClass),
3229 .instance_size = sizeof(MemoryRegion),
3230 .instance_init = memory_region_initfn,
3231 .instance_finalize = memory_region_finalize,
3232 };
3233
3234 static const TypeInfo iommu_memory_region_info = {
3235 .parent = TYPE_MEMORY_REGION,
3236 .name = TYPE_IOMMU_MEMORY_REGION,
3237 .class_size = sizeof(IOMMUMemoryRegionClass),
3238 .instance_size = sizeof(IOMMUMemoryRegion),
3239 .instance_init = iommu_memory_region_initfn,
3240 .abstract = true,
3241 };
3242
3243 static void memory_register_types(void)
3244 {
3245 type_register_static(&memory_region_info);
3246 type_register_static(&iommu_memory_region_info);
3247 }
3248
3249 type_init(memory_register_types)