]> git.proxmox.com Git - mirror_qemu.git/blob - migration/postcopy-ram.c
migration: Recover behavior of preempt channel creation for pre-7.2
[mirror_qemu.git] / migration / postcopy-ram.c
1 /*
2 * Postcopy migration for RAM
3 *
4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Dave Gilbert <dgilbert@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 /*
15 * Postcopy is a migration technique where the execution flips from the
16 * source to the destination before all the data has been copied.
17 */
18
19 #include "qemu/osdep.h"
20 #include "qemu/madvise.h"
21 #include "exec/target_page.h"
22 #include "migration.h"
23 #include "qemu-file.h"
24 #include "savevm.h"
25 #include "postcopy-ram.h"
26 #include "ram.h"
27 #include "qapi/error.h"
28 #include "qemu/notify.h"
29 #include "qemu/rcu.h"
30 #include "sysemu/sysemu.h"
31 #include "qemu/error-report.h"
32 #include "trace.h"
33 #include "hw/boards.h"
34 #include "exec/ramblock.h"
35 #include "socket.h"
36 #include "yank_functions.h"
37 #include "tls.h"
38 #include "qemu/userfaultfd.h"
39
40 /* Arbitrary limit on size of each discard command,
41 * keeps them around ~200 bytes
42 */
43 #define MAX_DISCARDS_PER_COMMAND 12
44
45 struct PostcopyDiscardState {
46 const char *ramblock_name;
47 uint16_t cur_entry;
48 /*
49 * Start and length of a discard range (bytes)
50 */
51 uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
52 uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
53 unsigned int nsentwords;
54 unsigned int nsentcmds;
55 };
56
57 static NotifierWithReturnList postcopy_notifier_list;
58
59 void postcopy_infrastructure_init(void)
60 {
61 notifier_with_return_list_init(&postcopy_notifier_list);
62 }
63
64 void postcopy_add_notifier(NotifierWithReturn *nn)
65 {
66 notifier_with_return_list_add(&postcopy_notifier_list, nn);
67 }
68
69 void postcopy_remove_notifier(NotifierWithReturn *n)
70 {
71 notifier_with_return_remove(n);
72 }
73
74 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
75 {
76 struct PostcopyNotifyData pnd;
77 pnd.reason = reason;
78 pnd.errp = errp;
79
80 return notifier_with_return_list_notify(&postcopy_notifier_list,
81 &pnd);
82 }
83
84 /*
85 * NOTE: this routine is not thread safe, we can't call it concurrently. But it
86 * should be good enough for migration's purposes.
87 */
88 void postcopy_thread_create(MigrationIncomingState *mis,
89 QemuThread *thread, const char *name,
90 void *(*fn)(void *), int joinable)
91 {
92 qemu_sem_init(&mis->thread_sync_sem, 0);
93 qemu_thread_create(thread, name, fn, mis, joinable);
94 qemu_sem_wait(&mis->thread_sync_sem);
95 qemu_sem_destroy(&mis->thread_sync_sem);
96 }
97
98 /* Postcopy needs to detect accesses to pages that haven't yet been copied
99 * across, and efficiently map new pages in, the techniques for doing this
100 * are target OS specific.
101 */
102 #if defined(__linux__)
103
104 #include <poll.h>
105 #include <sys/ioctl.h>
106 #include <sys/syscall.h>
107 #include <asm/types.h> /* for __u64 */
108 #endif
109
110 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
111 #include <sys/eventfd.h>
112 #include <linux/userfaultfd.h>
113
114 typedef struct PostcopyBlocktimeContext {
115 /* time when page fault initiated per vCPU */
116 uint32_t *page_fault_vcpu_time;
117 /* page address per vCPU */
118 uintptr_t *vcpu_addr;
119 uint32_t total_blocktime;
120 /* blocktime per vCPU */
121 uint32_t *vcpu_blocktime;
122 /* point in time when last page fault was initiated */
123 uint32_t last_begin;
124 /* number of vCPU are suspended */
125 int smp_cpus_down;
126 uint64_t start_time;
127
128 /*
129 * Handler for exit event, necessary for
130 * releasing whole blocktime_ctx
131 */
132 Notifier exit_notifier;
133 } PostcopyBlocktimeContext;
134
135 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
136 {
137 g_free(ctx->page_fault_vcpu_time);
138 g_free(ctx->vcpu_addr);
139 g_free(ctx->vcpu_blocktime);
140 g_free(ctx);
141 }
142
143 static void migration_exit_cb(Notifier *n, void *data)
144 {
145 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
146 exit_notifier);
147 destroy_blocktime_context(ctx);
148 }
149
150 static struct PostcopyBlocktimeContext *blocktime_context_new(void)
151 {
152 MachineState *ms = MACHINE(qdev_get_machine());
153 unsigned int smp_cpus = ms->smp.cpus;
154 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
155 ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
156 ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
157 ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
158
159 ctx->exit_notifier.notify = migration_exit_cb;
160 ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
161 qemu_add_exit_notifier(&ctx->exit_notifier);
162 return ctx;
163 }
164
165 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
166 {
167 MachineState *ms = MACHINE(qdev_get_machine());
168 uint32List *list = NULL;
169 int i;
170
171 for (i = ms->smp.cpus - 1; i >= 0; i--) {
172 QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]);
173 }
174
175 return list;
176 }
177
178 /*
179 * This function just populates MigrationInfo from postcopy's
180 * blocktime context. It will not populate MigrationInfo,
181 * unless postcopy-blocktime capability was set.
182 *
183 * @info: pointer to MigrationInfo to populate
184 */
185 void fill_destination_postcopy_migration_info(MigrationInfo *info)
186 {
187 MigrationIncomingState *mis = migration_incoming_get_current();
188 PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
189
190 if (!bc) {
191 return;
192 }
193
194 info->has_postcopy_blocktime = true;
195 info->postcopy_blocktime = bc->total_blocktime;
196 info->has_postcopy_vcpu_blocktime = true;
197 info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
198 }
199
200 static uint32_t get_postcopy_total_blocktime(void)
201 {
202 MigrationIncomingState *mis = migration_incoming_get_current();
203 PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
204
205 if (!bc) {
206 return 0;
207 }
208
209 return bc->total_blocktime;
210 }
211
212 /**
213 * receive_ufd_features: check userfault fd features, to request only supported
214 * features in the future.
215 *
216 * Returns: true on success
217 *
218 * __NR_userfaultfd - should be checked before
219 * @features: out parameter will contain uffdio_api.features provided by kernel
220 * in case of success
221 */
222 static bool receive_ufd_features(uint64_t *features)
223 {
224 struct uffdio_api api_struct = {0};
225 int ufd;
226 bool ret = true;
227
228 ufd = uffd_open(O_CLOEXEC);
229 if (ufd == -1) {
230 error_report("%s: uffd_open() failed: %s", __func__, strerror(errno));
231 return false;
232 }
233
234 /* ask features */
235 api_struct.api = UFFD_API;
236 api_struct.features = 0;
237 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
238 error_report("%s: UFFDIO_API failed: %s", __func__,
239 strerror(errno));
240 ret = false;
241 goto release_ufd;
242 }
243
244 *features = api_struct.features;
245
246 release_ufd:
247 close(ufd);
248 return ret;
249 }
250
251 /**
252 * request_ufd_features: this function should be called only once on a newly
253 * opened ufd, subsequent calls will lead to error.
254 *
255 * Returns: true on success
256 *
257 * @ufd: fd obtained from userfaultfd syscall
258 * @features: bit mask see UFFD_API_FEATURES
259 */
260 static bool request_ufd_features(int ufd, uint64_t features)
261 {
262 struct uffdio_api api_struct = {0};
263 uint64_t ioctl_mask;
264
265 api_struct.api = UFFD_API;
266 api_struct.features = features;
267 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
268 error_report("%s failed: UFFDIO_API failed: %s", __func__,
269 strerror(errno));
270 return false;
271 }
272
273 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
274 (__u64)1 << _UFFDIO_UNREGISTER;
275 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
276 error_report("Missing userfault features: %" PRIx64,
277 (uint64_t)(~api_struct.ioctls & ioctl_mask));
278 return false;
279 }
280
281 return true;
282 }
283
284 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
285 {
286 uint64_t asked_features = 0;
287 static uint64_t supported_features;
288
289 /*
290 * it's not possible to
291 * request UFFD_API twice per one fd
292 * userfault fd features is persistent
293 */
294 if (!supported_features) {
295 if (!receive_ufd_features(&supported_features)) {
296 error_report("%s failed", __func__);
297 return false;
298 }
299 }
300
301 #ifdef UFFD_FEATURE_THREAD_ID
302 if (UFFD_FEATURE_THREAD_ID & supported_features) {
303 asked_features |= UFFD_FEATURE_THREAD_ID;
304 if (migrate_postcopy_blocktime()) {
305 if (!mis->blocktime_ctx) {
306 mis->blocktime_ctx = blocktime_context_new();
307 }
308 }
309 }
310 #endif
311
312 /*
313 * request features, even if asked_features is 0, due to
314 * kernel expects UFFD_API before UFFDIO_REGISTER, per
315 * userfault file descriptor
316 */
317 if (!request_ufd_features(ufd, asked_features)) {
318 error_report("%s failed: features %" PRIu64, __func__,
319 asked_features);
320 return false;
321 }
322
323 if (qemu_real_host_page_size() != ram_pagesize_summary()) {
324 bool have_hp = false;
325 /* We've got a huge page */
326 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
327 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
328 #endif
329 if (!have_hp) {
330 error_report("Userfault on this host does not support huge pages");
331 return false;
332 }
333 }
334 return true;
335 }
336
337 /* Callback from postcopy_ram_supported_by_host block iterator.
338 */
339 static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque)
340 {
341 const char *block_name = qemu_ram_get_idstr(rb);
342 ram_addr_t length = qemu_ram_get_used_length(rb);
343 size_t pagesize = qemu_ram_pagesize(rb);
344
345 if (length % pagesize) {
346 error_report("Postcopy requires RAM blocks to be a page size multiple,"
347 " block %s is 0x" RAM_ADDR_FMT " bytes with a "
348 "page size of 0x%zx", block_name, length, pagesize);
349 return 1;
350 }
351 return 0;
352 }
353
354 /*
355 * Note: This has the side effect of munlock'ing all of RAM, that's
356 * normally fine since if the postcopy succeeds it gets turned back on at the
357 * end.
358 */
359 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
360 {
361 long pagesize = qemu_real_host_page_size();
362 int ufd = -1;
363 bool ret = false; /* Error unless we change it */
364 void *testarea = NULL;
365 struct uffdio_register reg_struct;
366 struct uffdio_range range_struct;
367 uint64_t feature_mask;
368 Error *local_err = NULL;
369
370 if (qemu_target_page_size() > pagesize) {
371 error_report("Target page size bigger than host page size");
372 goto out;
373 }
374
375 ufd = uffd_open(O_CLOEXEC);
376 if (ufd == -1) {
377 error_report("%s: userfaultfd not available: %s", __func__,
378 strerror(errno));
379 goto out;
380 }
381
382 /* Give devices a chance to object */
383 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
384 error_report_err(local_err);
385 goto out;
386 }
387
388 /* Version and features check */
389 if (!ufd_check_and_apply(ufd, mis)) {
390 goto out;
391 }
392
393 /* We don't support postcopy with shared RAM yet */
394 if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) {
395 goto out;
396 }
397
398 /*
399 * userfault and mlock don't go together; we'll put it back later if
400 * it was enabled.
401 */
402 if (munlockall()) {
403 error_report("%s: munlockall: %s", __func__, strerror(errno));
404 goto out;
405 }
406
407 /*
408 * We need to check that the ops we need are supported on anon memory
409 * To do that we need to register a chunk and see the flags that
410 * are returned.
411 */
412 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
413 MAP_ANONYMOUS, -1, 0);
414 if (testarea == MAP_FAILED) {
415 error_report("%s: Failed to map test area: %s", __func__,
416 strerror(errno));
417 goto out;
418 }
419 g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize));
420
421 reg_struct.range.start = (uintptr_t)testarea;
422 reg_struct.range.len = pagesize;
423 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
424
425 if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
426 error_report("%s userfault register: %s", __func__, strerror(errno));
427 goto out;
428 }
429
430 range_struct.start = (uintptr_t)testarea;
431 range_struct.len = pagesize;
432 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
433 error_report("%s userfault unregister: %s", __func__, strerror(errno));
434 goto out;
435 }
436
437 feature_mask = (__u64)1 << _UFFDIO_WAKE |
438 (__u64)1 << _UFFDIO_COPY |
439 (__u64)1 << _UFFDIO_ZEROPAGE;
440 if ((reg_struct.ioctls & feature_mask) != feature_mask) {
441 error_report("Missing userfault map features: %" PRIx64,
442 (uint64_t)(~reg_struct.ioctls & feature_mask));
443 goto out;
444 }
445
446 /* Success! */
447 ret = true;
448 out:
449 if (testarea) {
450 munmap(testarea, pagesize);
451 }
452 if (ufd != -1) {
453 close(ufd);
454 }
455 return ret;
456 }
457
458 /*
459 * Setup an area of RAM so that it *can* be used for postcopy later; this
460 * must be done right at the start prior to pre-copy.
461 * opaque should be the MIS.
462 */
463 static int init_range(RAMBlock *rb, void *opaque)
464 {
465 const char *block_name = qemu_ram_get_idstr(rb);
466 void *host_addr = qemu_ram_get_host_addr(rb);
467 ram_addr_t offset = qemu_ram_get_offset(rb);
468 ram_addr_t length = qemu_ram_get_used_length(rb);
469 trace_postcopy_init_range(block_name, host_addr, offset, length);
470
471 /*
472 * Save the used_length before running the guest. In case we have to
473 * resize RAM blocks when syncing RAM block sizes from the source during
474 * precopy, we'll update it manually via the ram block notifier.
475 */
476 rb->postcopy_length = length;
477
478 /*
479 * We need the whole of RAM to be truly empty for postcopy, so things
480 * like ROMs and any data tables built during init must be zero'd
481 * - we're going to get the copy from the source anyway.
482 * (Precopy will just overwrite this data, so doesn't need the discard)
483 */
484 if (ram_discard_range(block_name, 0, length)) {
485 return -1;
486 }
487
488 return 0;
489 }
490
491 /*
492 * At the end of migration, undo the effects of init_range
493 * opaque should be the MIS.
494 */
495 static int cleanup_range(RAMBlock *rb, void *opaque)
496 {
497 const char *block_name = qemu_ram_get_idstr(rb);
498 void *host_addr = qemu_ram_get_host_addr(rb);
499 ram_addr_t offset = qemu_ram_get_offset(rb);
500 ram_addr_t length = rb->postcopy_length;
501 MigrationIncomingState *mis = opaque;
502 struct uffdio_range range_struct;
503 trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
504
505 /*
506 * We turned off hugepage for the precopy stage with postcopy enabled
507 * we can turn it back on now.
508 */
509 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
510
511 /*
512 * We can also turn off userfault now since we should have all the
513 * pages. It can be useful to leave it on to debug postcopy
514 * if you're not sure it's always getting every page.
515 */
516 range_struct.start = (uintptr_t)host_addr;
517 range_struct.len = length;
518
519 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
520 error_report("%s: userfault unregister %s", __func__, strerror(errno));
521
522 return -1;
523 }
524
525 return 0;
526 }
527
528 /*
529 * Initialise postcopy-ram, setting the RAM to a state where we can go into
530 * postcopy later; must be called prior to any precopy.
531 * called from arch_init's similarly named ram_postcopy_incoming_init
532 */
533 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
534 {
535 if (foreach_not_ignored_block(init_range, NULL)) {
536 return -1;
537 }
538
539 return 0;
540 }
541
542 static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis)
543 {
544 int i;
545
546 if (mis->postcopy_tmp_pages) {
547 for (i = 0; i < mis->postcopy_channels; i++) {
548 if (mis->postcopy_tmp_pages[i].tmp_huge_page) {
549 munmap(mis->postcopy_tmp_pages[i].tmp_huge_page,
550 mis->largest_page_size);
551 mis->postcopy_tmp_pages[i].tmp_huge_page = NULL;
552 }
553 }
554 g_free(mis->postcopy_tmp_pages);
555 mis->postcopy_tmp_pages = NULL;
556 }
557
558 if (mis->postcopy_tmp_zero_page) {
559 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
560 mis->postcopy_tmp_zero_page = NULL;
561 }
562 }
563
564 /*
565 * At the end of a migration where postcopy_ram_incoming_init was called.
566 */
567 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
568 {
569 trace_postcopy_ram_incoming_cleanup_entry();
570
571 if (mis->preempt_thread_status == PREEMPT_THREAD_CREATED) {
572 /* Notify the fast load thread to quit */
573 mis->preempt_thread_status = PREEMPT_THREAD_QUIT;
574 if (mis->postcopy_qemufile_dst) {
575 qemu_file_shutdown(mis->postcopy_qemufile_dst);
576 }
577 qemu_thread_join(&mis->postcopy_prio_thread);
578 mis->preempt_thread_status = PREEMPT_THREAD_NONE;
579 }
580
581 if (mis->have_fault_thread) {
582 Error *local_err = NULL;
583
584 /* Let the fault thread quit */
585 qatomic_set(&mis->fault_thread_quit, 1);
586 postcopy_fault_thread_notify(mis);
587 trace_postcopy_ram_incoming_cleanup_join();
588 qemu_thread_join(&mis->fault_thread);
589
590 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
591 error_report_err(local_err);
592 return -1;
593 }
594
595 if (foreach_not_ignored_block(cleanup_range, mis)) {
596 return -1;
597 }
598
599 trace_postcopy_ram_incoming_cleanup_closeuf();
600 close(mis->userfault_fd);
601 close(mis->userfault_event_fd);
602 mis->have_fault_thread = false;
603 }
604
605 if (enable_mlock) {
606 if (os_mlock() < 0) {
607 error_report("mlock: %s", strerror(errno));
608 /*
609 * It doesn't feel right to fail at this point, we have a valid
610 * VM state.
611 */
612 }
613 }
614
615 postcopy_temp_pages_cleanup(mis);
616
617 trace_postcopy_ram_incoming_cleanup_blocktime(
618 get_postcopy_total_blocktime());
619
620 trace_postcopy_ram_incoming_cleanup_exit();
621 return 0;
622 }
623
624 /*
625 * Disable huge pages on an area
626 */
627 static int nhp_range(RAMBlock *rb, void *opaque)
628 {
629 const char *block_name = qemu_ram_get_idstr(rb);
630 void *host_addr = qemu_ram_get_host_addr(rb);
631 ram_addr_t offset = qemu_ram_get_offset(rb);
632 ram_addr_t length = rb->postcopy_length;
633 trace_postcopy_nhp_range(block_name, host_addr, offset, length);
634
635 /*
636 * Before we do discards we need to ensure those discards really
637 * do delete areas of the page, even if THP thinks a hugepage would
638 * be a good idea, so force hugepages off.
639 */
640 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
641
642 return 0;
643 }
644
645 /*
646 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
647 * however leaving it until after precopy means that most of the precopy
648 * data is still THPd
649 */
650 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
651 {
652 if (foreach_not_ignored_block(nhp_range, mis)) {
653 return -1;
654 }
655
656 postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
657
658 return 0;
659 }
660
661 /*
662 * Mark the given area of RAM as requiring notification to unwritten areas
663 * Used as a callback on foreach_not_ignored_block.
664 * host_addr: Base of area to mark
665 * offset: Offset in the whole ram arena
666 * length: Length of the section
667 * opaque: MigrationIncomingState pointer
668 * Returns 0 on success
669 */
670 static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
671 {
672 MigrationIncomingState *mis = opaque;
673 struct uffdio_register reg_struct;
674
675 reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
676 reg_struct.range.len = rb->postcopy_length;
677 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
678
679 /* Now tell our userfault_fd that it's responsible for this area */
680 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
681 error_report("%s userfault register: %s", __func__, strerror(errno));
682 return -1;
683 }
684 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
685 error_report("%s userfault: Region doesn't support COPY", __func__);
686 return -1;
687 }
688 if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
689 qemu_ram_set_uf_zeroable(rb);
690 }
691
692 return 0;
693 }
694
695 int postcopy_wake_shared(struct PostCopyFD *pcfd,
696 uint64_t client_addr,
697 RAMBlock *rb)
698 {
699 size_t pagesize = qemu_ram_pagesize(rb);
700 struct uffdio_range range;
701 int ret;
702 trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
703 range.start = ROUND_DOWN(client_addr, pagesize);
704 range.len = pagesize;
705 ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
706 if (ret) {
707 error_report("%s: Failed to wake: %zx in %s (%s)",
708 __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
709 strerror(errno));
710 }
711 return ret;
712 }
713
714 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb,
715 ram_addr_t start, uint64_t haddr)
716 {
717 void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb));
718
719 /*
720 * Discarded pages (via RamDiscardManager) are never migrated. On unlikely
721 * access, place a zeropage, which will also set the relevant bits in the
722 * recv_bitmap accordingly, so we won't try placing a zeropage twice.
723 *
724 * Checking a single bit is sufficient to handle pagesize > TPS as either
725 * all relevant bits are set or not.
726 */
727 assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb)));
728 if (ramblock_page_is_discarded(rb, start)) {
729 bool received = ramblock_recv_bitmap_test_byte_offset(rb, start);
730
731 return received ? 0 : postcopy_place_page_zero(mis, aligned, rb);
732 }
733
734 return migrate_send_rp_req_pages(mis, rb, start, haddr);
735 }
736
737 /*
738 * Callback from shared fault handlers to ask for a page,
739 * the page must be specified by a RAMBlock and an offset in that rb
740 * Note: Only for use by shared fault handlers (in fault thread)
741 */
742 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
743 uint64_t client_addr, uint64_t rb_offset)
744 {
745 uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
746 MigrationIncomingState *mis = migration_incoming_get_current();
747
748 trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
749 rb_offset);
750 if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
751 trace_postcopy_request_shared_page_present(pcfd->idstr,
752 qemu_ram_get_idstr(rb), rb_offset);
753 return postcopy_wake_shared(pcfd, client_addr, rb);
754 }
755 postcopy_request_page(mis, rb, aligned_rbo, client_addr);
756 return 0;
757 }
758
759 static int get_mem_fault_cpu_index(uint32_t pid)
760 {
761 CPUState *cpu_iter;
762
763 CPU_FOREACH(cpu_iter) {
764 if (cpu_iter->thread_id == pid) {
765 trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
766 return cpu_iter->cpu_index;
767 }
768 }
769 trace_get_mem_fault_cpu_index(-1, pid);
770 return -1;
771 }
772
773 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
774 {
775 int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
776 dc->start_time;
777 return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
778 }
779
780 /*
781 * This function is being called when pagefault occurs. It
782 * tracks down vCPU blocking time.
783 *
784 * @addr: faulted host virtual address
785 * @ptid: faulted process thread id
786 * @rb: ramblock appropriate to addr
787 */
788 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
789 RAMBlock *rb)
790 {
791 int cpu, already_received;
792 MigrationIncomingState *mis = migration_incoming_get_current();
793 PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
794 uint32_t low_time_offset;
795
796 if (!dc || ptid == 0) {
797 return;
798 }
799 cpu = get_mem_fault_cpu_index(ptid);
800 if (cpu < 0) {
801 return;
802 }
803
804 low_time_offset = get_low_time_offset(dc);
805 if (dc->vcpu_addr[cpu] == 0) {
806 qatomic_inc(&dc->smp_cpus_down);
807 }
808
809 qatomic_xchg(&dc->last_begin, low_time_offset);
810 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
811 qatomic_xchg(&dc->vcpu_addr[cpu], addr);
812
813 /*
814 * check it here, not at the beginning of the function,
815 * due to, check could occur early than bitmap_set in
816 * qemu_ufd_copy_ioctl
817 */
818 already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
819 if (already_received) {
820 qatomic_xchg(&dc->vcpu_addr[cpu], 0);
821 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
822 qatomic_dec(&dc->smp_cpus_down);
823 }
824 trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
825 cpu, already_received);
826 }
827
828 /*
829 * This function just provide calculated blocktime per cpu and trace it.
830 * Total blocktime is calculated in mark_postcopy_blocktime_end.
831 *
832 *
833 * Assume we have 3 CPU
834 *
835 * S1 E1 S1 E1
836 * -----***********------------xxx***************------------------------> CPU1
837 *
838 * S2 E2
839 * ------------****************xxx---------------------------------------> CPU2
840 *
841 * S3 E3
842 * ------------------------****xxx********-------------------------------> CPU3
843 *
844 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
845 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
846 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
847 * it's a part of total blocktime.
848 * S1 - here is last_begin
849 * Legend of the picture is following:
850 * * - means blocktime per vCPU
851 * x - means overlapped blocktime (total blocktime)
852 *
853 * @addr: host virtual address
854 */
855 static void mark_postcopy_blocktime_end(uintptr_t addr)
856 {
857 MigrationIncomingState *mis = migration_incoming_get_current();
858 PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
859 MachineState *ms = MACHINE(qdev_get_machine());
860 unsigned int smp_cpus = ms->smp.cpus;
861 int i, affected_cpu = 0;
862 bool vcpu_total_blocktime = false;
863 uint32_t read_vcpu_time, low_time_offset;
864
865 if (!dc) {
866 return;
867 }
868
869 low_time_offset = get_low_time_offset(dc);
870 /* lookup cpu, to clear it,
871 * that algorithm looks straightforward, but it's not
872 * optimal, more optimal algorithm is keeping tree or hash
873 * where key is address value is a list of */
874 for (i = 0; i < smp_cpus; i++) {
875 uint32_t vcpu_blocktime = 0;
876
877 read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
878 if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
879 read_vcpu_time == 0) {
880 continue;
881 }
882 qatomic_xchg(&dc->vcpu_addr[i], 0);
883 vcpu_blocktime = low_time_offset - read_vcpu_time;
884 affected_cpu += 1;
885 /* we need to know is that mark_postcopy_end was due to
886 * faulted page, another possible case it's prefetched
887 * page and in that case we shouldn't be here */
888 if (!vcpu_total_blocktime &&
889 qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
890 vcpu_total_blocktime = true;
891 }
892 /* continue cycle, due to one page could affect several vCPUs */
893 dc->vcpu_blocktime[i] += vcpu_blocktime;
894 }
895
896 qatomic_sub(&dc->smp_cpus_down, affected_cpu);
897 if (vcpu_total_blocktime) {
898 dc->total_blocktime += low_time_offset - qatomic_fetch_add(
899 &dc->last_begin, 0);
900 }
901 trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
902 affected_cpu);
903 }
904
905 static void postcopy_pause_fault_thread(MigrationIncomingState *mis)
906 {
907 trace_postcopy_pause_fault_thread();
908 qemu_sem_wait(&mis->postcopy_pause_sem_fault);
909 trace_postcopy_pause_fault_thread_continued();
910 }
911
912 /*
913 * Handle faults detected by the USERFAULT markings
914 */
915 static void *postcopy_ram_fault_thread(void *opaque)
916 {
917 MigrationIncomingState *mis = opaque;
918 struct uffd_msg msg;
919 int ret;
920 size_t index;
921 RAMBlock *rb = NULL;
922
923 trace_postcopy_ram_fault_thread_entry();
924 rcu_register_thread();
925 mis->last_rb = NULL; /* last RAMBlock we sent part of */
926 qemu_sem_post(&mis->thread_sync_sem);
927
928 struct pollfd *pfd;
929 size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
930
931 pfd = g_new0(struct pollfd, pfd_len);
932
933 pfd[0].fd = mis->userfault_fd;
934 pfd[0].events = POLLIN;
935 pfd[1].fd = mis->userfault_event_fd;
936 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
937 trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
938 for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
939 struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
940 struct PostCopyFD, index);
941 pfd[2 + index].fd = pcfd->fd;
942 pfd[2 + index].events = POLLIN;
943 trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
944 pcfd->fd);
945 }
946
947 while (true) {
948 ram_addr_t rb_offset;
949 int poll_result;
950
951 /*
952 * We're mainly waiting for the kernel to give us a faulting HVA,
953 * however we can be told to quit via userfault_quit_fd which is
954 * an eventfd
955 */
956
957 poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
958 if (poll_result == -1) {
959 error_report("%s: userfault poll: %s", __func__, strerror(errno));
960 break;
961 }
962
963 if (!mis->to_src_file) {
964 /*
965 * Possibly someone tells us that the return path is
966 * broken already using the event. We should hold until
967 * the channel is rebuilt.
968 */
969 postcopy_pause_fault_thread(mis);
970 }
971
972 if (pfd[1].revents) {
973 uint64_t tmp64 = 0;
974
975 /* Consume the signal */
976 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
977 /* Nothing obviously nicer than posting this error. */
978 error_report("%s: read() failed", __func__);
979 }
980
981 if (qatomic_read(&mis->fault_thread_quit)) {
982 trace_postcopy_ram_fault_thread_quit();
983 break;
984 }
985 }
986
987 if (pfd[0].revents) {
988 poll_result--;
989 ret = read(mis->userfault_fd, &msg, sizeof(msg));
990 if (ret != sizeof(msg)) {
991 if (errno == EAGAIN) {
992 /*
993 * if a wake up happens on the other thread just after
994 * the poll, there is nothing to read.
995 */
996 continue;
997 }
998 if (ret < 0) {
999 error_report("%s: Failed to read full userfault "
1000 "message: %s",
1001 __func__, strerror(errno));
1002 break;
1003 } else {
1004 error_report("%s: Read %d bytes from userfaultfd "
1005 "expected %zd",
1006 __func__, ret, sizeof(msg));
1007 break; /* Lost alignment, don't know what we'd read next */
1008 }
1009 }
1010 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1011 error_report("%s: Read unexpected event %ud from userfaultfd",
1012 __func__, msg.event);
1013 continue; /* It's not a page fault, shouldn't happen */
1014 }
1015
1016 rb = qemu_ram_block_from_host(
1017 (void *)(uintptr_t)msg.arg.pagefault.address,
1018 true, &rb_offset);
1019 if (!rb) {
1020 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
1021 PRIx64, (uint64_t)msg.arg.pagefault.address);
1022 break;
1023 }
1024
1025 rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
1026 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
1027 qemu_ram_get_idstr(rb),
1028 rb_offset,
1029 msg.arg.pagefault.feat.ptid);
1030 mark_postcopy_blocktime_begin(
1031 (uintptr_t)(msg.arg.pagefault.address),
1032 msg.arg.pagefault.feat.ptid, rb);
1033
1034 retry:
1035 /*
1036 * Send the request to the source - we want to request one
1037 * of our host page sizes (which is >= TPS)
1038 */
1039 ret = postcopy_request_page(mis, rb, rb_offset,
1040 msg.arg.pagefault.address);
1041 if (ret) {
1042 /* May be network failure, try to wait for recovery */
1043 postcopy_pause_fault_thread(mis);
1044 goto retry;
1045 }
1046 }
1047
1048 /* Now handle any requests from external processes on shared memory */
1049 /* TODO: May need to handle devices deregistering during postcopy */
1050 for (index = 2; index < pfd_len && poll_result; index++) {
1051 if (pfd[index].revents) {
1052 struct PostCopyFD *pcfd =
1053 &g_array_index(mis->postcopy_remote_fds,
1054 struct PostCopyFD, index - 2);
1055
1056 poll_result--;
1057 if (pfd[index].revents & POLLERR) {
1058 error_report("%s: POLLERR on poll %zd fd=%d",
1059 __func__, index, pcfd->fd);
1060 pfd[index].events = 0;
1061 continue;
1062 }
1063
1064 ret = read(pcfd->fd, &msg, sizeof(msg));
1065 if (ret != sizeof(msg)) {
1066 if (errno == EAGAIN) {
1067 /*
1068 * if a wake up happens on the other thread just after
1069 * the poll, there is nothing to read.
1070 */
1071 continue;
1072 }
1073 if (ret < 0) {
1074 error_report("%s: Failed to read full userfault "
1075 "message: %s (shared) revents=%d",
1076 __func__, strerror(errno),
1077 pfd[index].revents);
1078 /*TODO: Could just disable this sharer */
1079 break;
1080 } else {
1081 error_report("%s: Read %d bytes from userfaultfd "
1082 "expected %zd (shared)",
1083 __func__, ret, sizeof(msg));
1084 /*TODO: Could just disable this sharer */
1085 break; /*Lost alignment,don't know what we'd read next*/
1086 }
1087 }
1088 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1089 error_report("%s: Read unexpected event %ud "
1090 "from userfaultfd (shared)",
1091 __func__, msg.event);
1092 continue; /* It's not a page fault, shouldn't happen */
1093 }
1094 /* Call the device handler registered with us */
1095 ret = pcfd->handler(pcfd, &msg);
1096 if (ret) {
1097 error_report("%s: Failed to resolve shared fault on %zd/%s",
1098 __func__, index, pcfd->idstr);
1099 /* TODO: Fail? Disable this sharer? */
1100 }
1101 }
1102 }
1103 }
1104 rcu_unregister_thread();
1105 trace_postcopy_ram_fault_thread_exit();
1106 g_free(pfd);
1107 return NULL;
1108 }
1109
1110 static int postcopy_temp_pages_setup(MigrationIncomingState *mis)
1111 {
1112 PostcopyTmpPage *tmp_page;
1113 int err, i, channels;
1114 void *temp_page;
1115
1116 if (migrate_postcopy_preempt()) {
1117 /* If preemption enabled, need extra channel for urgent requests */
1118 mis->postcopy_channels = RAM_CHANNEL_MAX;
1119 } else {
1120 /* Both precopy/postcopy on the same channel */
1121 mis->postcopy_channels = 1;
1122 }
1123
1124 channels = mis->postcopy_channels;
1125 mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels);
1126
1127 for (i = 0; i < channels; i++) {
1128 tmp_page = &mis->postcopy_tmp_pages[i];
1129 temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE,
1130 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1131 if (temp_page == MAP_FAILED) {
1132 err = errno;
1133 error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s",
1134 __func__, i, strerror(err));
1135 /* Clean up will be done later */
1136 return -err;
1137 }
1138 tmp_page->tmp_huge_page = temp_page;
1139 /* Initialize default states for each tmp page */
1140 postcopy_temp_page_reset(tmp_page);
1141 }
1142
1143 /*
1144 * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
1145 */
1146 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1147 PROT_READ | PROT_WRITE,
1148 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1149 if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1150 err = errno;
1151 mis->postcopy_tmp_zero_page = NULL;
1152 error_report("%s: Failed to map large zero page %s",
1153 __func__, strerror(err));
1154 return -err;
1155 }
1156
1157 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1158
1159 return 0;
1160 }
1161
1162 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1163 {
1164 /* Open the fd for the kernel to give us userfaults */
1165 mis->userfault_fd = uffd_open(O_CLOEXEC | O_NONBLOCK);
1166 if (mis->userfault_fd == -1) {
1167 error_report("%s: Failed to open userfault fd: %s", __func__,
1168 strerror(errno));
1169 return -1;
1170 }
1171
1172 /*
1173 * Although the host check already tested the API, we need to
1174 * do the check again as an ABI handshake on the new fd.
1175 */
1176 if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1177 return -1;
1178 }
1179
1180 /* Now an eventfd we use to tell the fault-thread to quit */
1181 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1182 if (mis->userfault_event_fd == -1) {
1183 error_report("%s: Opening userfault_event_fd: %s", __func__,
1184 strerror(errno));
1185 close(mis->userfault_fd);
1186 return -1;
1187 }
1188
1189 postcopy_thread_create(mis, &mis->fault_thread, "fault-default",
1190 postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE);
1191 mis->have_fault_thread = true;
1192
1193 /* Mark so that we get notified of accesses to unwritten areas */
1194 if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1195 error_report("ram_block_enable_notify failed");
1196 return -1;
1197 }
1198
1199 if (postcopy_temp_pages_setup(mis)) {
1200 /* Error dumped in the sub-function */
1201 return -1;
1202 }
1203
1204 if (migrate_postcopy_preempt()) {
1205 /*
1206 * This thread needs to be created after the temp pages because
1207 * it'll fetch RAM_CHANNEL_POSTCOPY PostcopyTmpPage immediately.
1208 */
1209 postcopy_thread_create(mis, &mis->postcopy_prio_thread, "fault-fast",
1210 postcopy_preempt_thread, QEMU_THREAD_JOINABLE);
1211 mis->preempt_thread_status = PREEMPT_THREAD_CREATED;
1212 }
1213
1214 trace_postcopy_ram_enable_notify();
1215
1216 return 0;
1217 }
1218
1219 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
1220 void *from_addr, uint64_t pagesize, RAMBlock *rb)
1221 {
1222 int userfault_fd = mis->userfault_fd;
1223 int ret;
1224
1225 if (from_addr) {
1226 struct uffdio_copy copy_struct;
1227 copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1228 copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1229 copy_struct.len = pagesize;
1230 copy_struct.mode = 0;
1231 ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1232 } else {
1233 struct uffdio_zeropage zero_struct;
1234 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1235 zero_struct.range.len = pagesize;
1236 zero_struct.mode = 0;
1237 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1238 }
1239 if (!ret) {
1240 qemu_mutex_lock(&mis->page_request_mutex);
1241 ramblock_recv_bitmap_set_range(rb, host_addr,
1242 pagesize / qemu_target_page_size());
1243 /*
1244 * If this page resolves a page fault for a previous recorded faulted
1245 * address, take a special note to maintain the requested page list.
1246 */
1247 if (g_tree_lookup(mis->page_requested, host_addr)) {
1248 g_tree_remove(mis->page_requested, host_addr);
1249 mis->page_requested_count--;
1250 trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
1251 }
1252 qemu_mutex_unlock(&mis->page_request_mutex);
1253 mark_postcopy_blocktime_end((uintptr_t)host_addr);
1254 }
1255 return ret;
1256 }
1257
1258 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1259 {
1260 int i;
1261 MigrationIncomingState *mis = migration_incoming_get_current();
1262 GArray *pcrfds = mis->postcopy_remote_fds;
1263
1264 for (i = 0; i < pcrfds->len; i++) {
1265 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1266 int ret = cur->waker(cur, rb, offset);
1267 if (ret) {
1268 return ret;
1269 }
1270 }
1271 return 0;
1272 }
1273
1274 /*
1275 * Place a host page (from) at (host) atomically
1276 * returns 0 on success
1277 */
1278 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1279 RAMBlock *rb)
1280 {
1281 size_t pagesize = qemu_ram_pagesize(rb);
1282
1283 /* copy also acks to the kernel waking the stalled thread up
1284 * TODO: We can inhibit that ack and only do it if it was requested
1285 * which would be slightly cheaper, but we'd have to be careful
1286 * of the order of updating our page state.
1287 */
1288 if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
1289 int e = errno;
1290 error_report("%s: %s copy host: %p from: %p (size: %zd)",
1291 __func__, strerror(e), host, from, pagesize);
1292
1293 return -e;
1294 }
1295
1296 trace_postcopy_place_page(host);
1297 return postcopy_notify_shared_wake(rb,
1298 qemu_ram_block_host_offset(rb, host));
1299 }
1300
1301 /*
1302 * Place a zero page at (host) atomically
1303 * returns 0 on success
1304 */
1305 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1306 RAMBlock *rb)
1307 {
1308 size_t pagesize = qemu_ram_pagesize(rb);
1309 trace_postcopy_place_page_zero(host);
1310
1311 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1312 * but it's not available for everything (e.g. hugetlbpages)
1313 */
1314 if (qemu_ram_is_uf_zeroable(rb)) {
1315 if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
1316 int e = errno;
1317 error_report("%s: %s zero host: %p",
1318 __func__, strerror(e), host);
1319
1320 return -e;
1321 }
1322 return postcopy_notify_shared_wake(rb,
1323 qemu_ram_block_host_offset(rb,
1324 host));
1325 } else {
1326 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
1327 }
1328 }
1329
1330 #else
1331 /* No target OS support, stubs just fail */
1332 void fill_destination_postcopy_migration_info(MigrationInfo *info)
1333 {
1334 }
1335
1336 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1337 {
1338 error_report("%s: No OS support", __func__);
1339 return false;
1340 }
1341
1342 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1343 {
1344 error_report("postcopy_ram_incoming_init: No OS support");
1345 return -1;
1346 }
1347
1348 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1349 {
1350 assert(0);
1351 return -1;
1352 }
1353
1354 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1355 {
1356 assert(0);
1357 return -1;
1358 }
1359
1360 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1361 uint64_t client_addr, uint64_t rb_offset)
1362 {
1363 assert(0);
1364 return -1;
1365 }
1366
1367 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1368 {
1369 assert(0);
1370 return -1;
1371 }
1372
1373 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1374 RAMBlock *rb)
1375 {
1376 assert(0);
1377 return -1;
1378 }
1379
1380 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1381 RAMBlock *rb)
1382 {
1383 assert(0);
1384 return -1;
1385 }
1386
1387 int postcopy_wake_shared(struct PostCopyFD *pcfd,
1388 uint64_t client_addr,
1389 RAMBlock *rb)
1390 {
1391 assert(0);
1392 return -1;
1393 }
1394 #endif
1395
1396 /* ------------------------------------------------------------------------- */
1397 void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page)
1398 {
1399 tmp_page->target_pages = 0;
1400 tmp_page->host_addr = NULL;
1401 /*
1402 * This is set to true when reset, and cleared as long as we received any
1403 * of the non-zero small page within this huge page.
1404 */
1405 tmp_page->all_zero = true;
1406 }
1407
1408 void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1409 {
1410 uint64_t tmp64 = 1;
1411
1412 /*
1413 * Wakeup the fault_thread. It's an eventfd that should currently
1414 * be at 0, we're going to increment it to 1
1415 */
1416 if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1417 /* Not much we can do here, but may as well report it */
1418 error_report("%s: incrementing failed: %s", __func__,
1419 strerror(errno));
1420 }
1421 }
1422
1423 /**
1424 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1425 * asking to discard individual ranges.
1426 *
1427 * @ms: The current migration state.
1428 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
1429 * @name: RAMBlock that discards will operate on.
1430 */
1431 static PostcopyDiscardState pds = {0};
1432 void postcopy_discard_send_init(MigrationState *ms, const char *name)
1433 {
1434 pds.ramblock_name = name;
1435 pds.cur_entry = 0;
1436 pds.nsentwords = 0;
1437 pds.nsentcmds = 0;
1438 }
1439
1440 /**
1441 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1442 * discard. May send a discard message, may just leave it queued to
1443 * be sent later.
1444 *
1445 * @ms: Current migration state.
1446 * @start,@length: a range of pages in the migration bitmap in the
1447 * RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1448 */
1449 void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
1450 unsigned long length)
1451 {
1452 size_t tp_size = qemu_target_page_size();
1453 /* Convert to byte offsets within the RAM block */
1454 pds.start_list[pds.cur_entry] = start * tp_size;
1455 pds.length_list[pds.cur_entry] = length * tp_size;
1456 trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
1457 pds.cur_entry++;
1458 pds.nsentwords++;
1459
1460 if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
1461 /* Full set, ship it! */
1462 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1463 pds.ramblock_name,
1464 pds.cur_entry,
1465 pds.start_list,
1466 pds.length_list);
1467 pds.nsentcmds++;
1468 pds.cur_entry = 0;
1469 }
1470 }
1471
1472 /**
1473 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1474 * bitmap code. Sends any outstanding discard messages, frees the PDS
1475 *
1476 * @ms: Current migration state.
1477 */
1478 void postcopy_discard_send_finish(MigrationState *ms)
1479 {
1480 /* Anything unsent? */
1481 if (pds.cur_entry) {
1482 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1483 pds.ramblock_name,
1484 pds.cur_entry,
1485 pds.start_list,
1486 pds.length_list);
1487 pds.nsentcmds++;
1488 }
1489
1490 trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
1491 pds.nsentcmds);
1492 }
1493
1494 /*
1495 * Current state of incoming postcopy; note this is not part of
1496 * MigrationIncomingState since it's state is used during cleanup
1497 * at the end as MIS is being freed.
1498 */
1499 static PostcopyState incoming_postcopy_state;
1500
1501 PostcopyState postcopy_state_get(void)
1502 {
1503 return qatomic_mb_read(&incoming_postcopy_state);
1504 }
1505
1506 /* Set the state and return the old state */
1507 PostcopyState postcopy_state_set(PostcopyState new_state)
1508 {
1509 return qatomic_xchg(&incoming_postcopy_state, new_state);
1510 }
1511
1512 /* Register a handler for external shared memory postcopy
1513 * called on the destination.
1514 */
1515 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1516 {
1517 MigrationIncomingState *mis = migration_incoming_get_current();
1518
1519 mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1520 *pcfd);
1521 }
1522
1523 /* Unregister a handler for external shared memory postcopy
1524 */
1525 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1526 {
1527 guint i;
1528 MigrationIncomingState *mis = migration_incoming_get_current();
1529 GArray *pcrfds = mis->postcopy_remote_fds;
1530
1531 if (!pcrfds) {
1532 /* migration has already finished and freed the array */
1533 return;
1534 }
1535 for (i = 0; i < pcrfds->len; i++) {
1536 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1537 if (cur->fd == pcfd->fd) {
1538 mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1539 return;
1540 }
1541 }
1542 }
1543
1544 void postcopy_preempt_new_channel(MigrationIncomingState *mis, QEMUFile *file)
1545 {
1546 /*
1547 * The new loading channel has its own threads, so it needs to be
1548 * blocked too. It's by default true, just be explicit.
1549 */
1550 qemu_file_set_blocking(file, true);
1551 mis->postcopy_qemufile_dst = file;
1552 qemu_sem_post(&mis->postcopy_qemufile_dst_done);
1553 trace_postcopy_preempt_new_channel();
1554 }
1555
1556 /*
1557 * Setup the postcopy preempt channel with the IOC. If ERROR is specified,
1558 * setup the error instead. This helper will free the ERROR if specified.
1559 */
1560 static void
1561 postcopy_preempt_send_channel_done(MigrationState *s,
1562 QIOChannel *ioc, Error *local_err)
1563 {
1564 if (local_err) {
1565 migrate_set_error(s, local_err);
1566 error_free(local_err);
1567 } else {
1568 migration_ioc_register_yank(ioc);
1569 s->postcopy_qemufile_src = qemu_file_new_output(ioc);
1570 trace_postcopy_preempt_new_channel();
1571 }
1572
1573 /*
1574 * Kick the waiter in all cases. The waiter should check upon
1575 * postcopy_qemufile_src to know whether it failed or not.
1576 */
1577 qemu_sem_post(&s->postcopy_qemufile_src_sem);
1578 }
1579
1580 static void
1581 postcopy_preempt_tls_handshake(QIOTask *task, gpointer opaque)
1582 {
1583 g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1584 MigrationState *s = opaque;
1585 Error *local_err = NULL;
1586
1587 qio_task_propagate_error(task, &local_err);
1588 postcopy_preempt_send_channel_done(s, ioc, local_err);
1589 }
1590
1591 static void
1592 postcopy_preempt_send_channel_new(QIOTask *task, gpointer opaque)
1593 {
1594 g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1595 MigrationState *s = opaque;
1596 QIOChannelTLS *tioc;
1597 Error *local_err = NULL;
1598
1599 if (qio_task_propagate_error(task, &local_err)) {
1600 goto out;
1601 }
1602
1603 if (migrate_channel_requires_tls_upgrade(ioc)) {
1604 tioc = migration_tls_client_create(s, ioc, s->hostname, &local_err);
1605 if (!tioc) {
1606 goto out;
1607 }
1608 trace_postcopy_preempt_tls_handshake();
1609 qio_channel_set_name(QIO_CHANNEL(tioc), "migration-tls-preempt");
1610 qio_channel_tls_handshake(tioc, postcopy_preempt_tls_handshake,
1611 s, NULL, NULL);
1612 /* Setup the channel until TLS handshake finished */
1613 return;
1614 }
1615
1616 out:
1617 /* This handles both good and error cases */
1618 postcopy_preempt_send_channel_done(s, ioc, local_err);
1619 }
1620
1621 /*
1622 * This function will kick off an async task to establish the preempt
1623 * channel, and wait until the connection setup completed. Returns 0 if
1624 * channel established, -1 for error.
1625 */
1626 int postcopy_preempt_establish_channel(MigrationState *s)
1627 {
1628 /* If preempt not enabled, no need to wait */
1629 if (!migrate_postcopy_preempt()) {
1630 return 0;
1631 }
1632
1633 /*
1634 * Kick off async task to establish preempt channel. Only do so with
1635 * 8.0+ machines, because 7.1/7.2 require the channel to be created in
1636 * setup phase of migration (even if racy in an unreliable network).
1637 */
1638 if (!s->preempt_pre_7_2) {
1639 postcopy_preempt_setup(s);
1640 }
1641
1642 /*
1643 * We need the postcopy preempt channel to be established before
1644 * starting doing anything.
1645 */
1646 qemu_sem_wait(&s->postcopy_qemufile_src_sem);
1647
1648 return s->postcopy_qemufile_src ? 0 : -1;
1649 }
1650
1651 void postcopy_preempt_setup(MigrationState *s)
1652 {
1653 /* Kick an async task to connect */
1654 socket_send_channel_create(postcopy_preempt_send_channel_new, s);
1655 }
1656
1657 static void postcopy_pause_ram_fast_load(MigrationIncomingState *mis)
1658 {
1659 trace_postcopy_pause_fast_load();
1660 qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1661 qemu_sem_wait(&mis->postcopy_pause_sem_fast_load);
1662 qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1663 trace_postcopy_pause_fast_load_continued();
1664 }
1665
1666 static bool preempt_thread_should_run(MigrationIncomingState *mis)
1667 {
1668 return mis->preempt_thread_status != PREEMPT_THREAD_QUIT;
1669 }
1670
1671 void *postcopy_preempt_thread(void *opaque)
1672 {
1673 MigrationIncomingState *mis = opaque;
1674 int ret;
1675
1676 trace_postcopy_preempt_thread_entry();
1677
1678 rcu_register_thread();
1679
1680 qemu_sem_post(&mis->thread_sync_sem);
1681
1682 /*
1683 * The preempt channel is established in asynchronous way. Wait
1684 * for its completion.
1685 */
1686 qemu_sem_wait(&mis->postcopy_qemufile_dst_done);
1687
1688 /* Sending RAM_SAVE_FLAG_EOS to terminate this thread */
1689 qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1690 while (preempt_thread_should_run(mis)) {
1691 ret = ram_load_postcopy(mis->postcopy_qemufile_dst,
1692 RAM_CHANNEL_POSTCOPY);
1693 /* If error happened, go into recovery routine */
1694 if (ret && preempt_thread_should_run(mis)) {
1695 postcopy_pause_ram_fast_load(mis);
1696 } else {
1697 /* We're done */
1698 break;
1699 }
1700 }
1701 qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1702
1703 rcu_unregister_thread();
1704
1705 trace_postcopy_preempt_thread_exit();
1706
1707 return NULL;
1708 }