]> git.proxmox.com Git - mirror_qemu.git/blob - migration/postcopy-ram.c
migration: reuse mis->userfault_quit_fd
[mirror_qemu.git] / migration / postcopy-ram.c
1 /*
2 * Postcopy migration for RAM
3 *
4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Dave Gilbert <dgilbert@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 /*
15 * Postcopy is a migration technique where the execution flips from the
16 * source to the destination before all the data has been copied.
17 */
18
19 #include "qemu/osdep.h"
20 #include "exec/target_page.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "savevm.h"
24 #include "postcopy-ram.h"
25 #include "ram.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/balloon.h"
28 #include "qemu/error-report.h"
29 #include "trace.h"
30
31 /* Arbitrary limit on size of each discard command,
32 * keeps them around ~200 bytes
33 */
34 #define MAX_DISCARDS_PER_COMMAND 12
35
36 struct PostcopyDiscardState {
37 const char *ramblock_name;
38 uint16_t cur_entry;
39 /*
40 * Start and length of a discard range (bytes)
41 */
42 uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
43 uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
44 unsigned int nsentwords;
45 unsigned int nsentcmds;
46 };
47
48 /* Postcopy needs to detect accesses to pages that haven't yet been copied
49 * across, and efficiently map new pages in, the techniques for doing this
50 * are target OS specific.
51 */
52 #if defined(__linux__)
53
54 #include <poll.h>
55 #include <sys/ioctl.h>
56 #include <sys/syscall.h>
57 #include <asm/types.h> /* for __u64 */
58 #endif
59
60 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
61 #include <sys/eventfd.h>
62 #include <linux/userfaultfd.h>
63
64
65 /**
66 * receive_ufd_features: check userfault fd features, to request only supported
67 * features in the future.
68 *
69 * Returns: true on success
70 *
71 * __NR_userfaultfd - should be checked before
72 * @features: out parameter will contain uffdio_api.features provided by kernel
73 * in case of success
74 */
75 static bool receive_ufd_features(uint64_t *features)
76 {
77 struct uffdio_api api_struct = {0};
78 int ufd;
79 bool ret = true;
80
81 /* if we are here __NR_userfaultfd should exists */
82 ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
83 if (ufd == -1) {
84 error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
85 strerror(errno));
86 return false;
87 }
88
89 /* ask features */
90 api_struct.api = UFFD_API;
91 api_struct.features = 0;
92 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
93 error_report("%s: UFFDIO_API failed: %s", __func__,
94 strerror(errno));
95 ret = false;
96 goto release_ufd;
97 }
98
99 *features = api_struct.features;
100
101 release_ufd:
102 close(ufd);
103 return ret;
104 }
105
106 /**
107 * request_ufd_features: this function should be called only once on a newly
108 * opened ufd, subsequent calls will lead to error.
109 *
110 * Returns: true on succes
111 *
112 * @ufd: fd obtained from userfaultfd syscall
113 * @features: bit mask see UFFD_API_FEATURES
114 */
115 static bool request_ufd_features(int ufd, uint64_t features)
116 {
117 struct uffdio_api api_struct = {0};
118 uint64_t ioctl_mask;
119
120 api_struct.api = UFFD_API;
121 api_struct.features = features;
122 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
123 error_report("%s failed: UFFDIO_API failed: %s", __func__,
124 strerror(errno));
125 return false;
126 }
127
128 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
129 (__u64)1 << _UFFDIO_UNREGISTER;
130 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
131 error_report("Missing userfault features: %" PRIx64,
132 (uint64_t)(~api_struct.ioctls & ioctl_mask));
133 return false;
134 }
135
136 return true;
137 }
138
139 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
140 {
141 uint64_t asked_features = 0;
142 static uint64_t supported_features;
143
144 /*
145 * it's not possible to
146 * request UFFD_API twice per one fd
147 * userfault fd features is persistent
148 */
149 if (!supported_features) {
150 if (!receive_ufd_features(&supported_features)) {
151 error_report("%s failed", __func__);
152 return false;
153 }
154 }
155
156 /*
157 * request features, even if asked_features is 0, due to
158 * kernel expects UFFD_API before UFFDIO_REGISTER, per
159 * userfault file descriptor
160 */
161 if (!request_ufd_features(ufd, asked_features)) {
162 error_report("%s failed: features %" PRIu64, __func__,
163 asked_features);
164 return false;
165 }
166
167 if (getpagesize() != ram_pagesize_summary()) {
168 bool have_hp = false;
169 /* We've got a huge page */
170 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
171 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
172 #endif
173 if (!have_hp) {
174 error_report("Userfault on this host does not support huge pages");
175 return false;
176 }
177 }
178 return true;
179 }
180
181 /* Callback from postcopy_ram_supported_by_host block iterator.
182 */
183 static int test_ramblock_postcopiable(const char *block_name, void *host_addr,
184 ram_addr_t offset, ram_addr_t length, void *opaque)
185 {
186 RAMBlock *rb = qemu_ram_block_by_name(block_name);
187 size_t pagesize = qemu_ram_pagesize(rb);
188
189 if (qemu_ram_is_shared(rb)) {
190 error_report("Postcopy on shared RAM (%s) is not yet supported",
191 block_name);
192 return 1;
193 }
194
195 if (length % pagesize) {
196 error_report("Postcopy requires RAM blocks to be a page size multiple,"
197 " block %s is 0x" RAM_ADDR_FMT " bytes with a "
198 "page size of 0x%zx", block_name, length, pagesize);
199 return 1;
200 }
201 return 0;
202 }
203
204 /*
205 * Note: This has the side effect of munlock'ing all of RAM, that's
206 * normally fine since if the postcopy succeeds it gets turned back on at the
207 * end.
208 */
209 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
210 {
211 long pagesize = getpagesize();
212 int ufd = -1;
213 bool ret = false; /* Error unless we change it */
214 void *testarea = NULL;
215 struct uffdio_register reg_struct;
216 struct uffdio_range range_struct;
217 uint64_t feature_mask;
218
219 if (qemu_target_page_size() > pagesize) {
220 error_report("Target page size bigger than host page size");
221 goto out;
222 }
223
224 ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
225 if (ufd == -1) {
226 error_report("%s: userfaultfd not available: %s", __func__,
227 strerror(errno));
228 goto out;
229 }
230
231 /* Version and features check */
232 if (!ufd_check_and_apply(ufd, mis)) {
233 goto out;
234 }
235
236 /* We don't support postcopy with shared RAM yet */
237 if (qemu_ram_foreach_block(test_ramblock_postcopiable, NULL)) {
238 goto out;
239 }
240
241 /*
242 * userfault and mlock don't go together; we'll put it back later if
243 * it was enabled.
244 */
245 if (munlockall()) {
246 error_report("%s: munlockall: %s", __func__, strerror(errno));
247 return -1;
248 }
249
250 /*
251 * We need to check that the ops we need are supported on anon memory
252 * To do that we need to register a chunk and see the flags that
253 * are returned.
254 */
255 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
256 MAP_ANONYMOUS, -1, 0);
257 if (testarea == MAP_FAILED) {
258 error_report("%s: Failed to map test area: %s", __func__,
259 strerror(errno));
260 goto out;
261 }
262 g_assert(((size_t)testarea & (pagesize-1)) == 0);
263
264 reg_struct.range.start = (uintptr_t)testarea;
265 reg_struct.range.len = pagesize;
266 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
267
268 if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
269 error_report("%s userfault register: %s", __func__, strerror(errno));
270 goto out;
271 }
272
273 range_struct.start = (uintptr_t)testarea;
274 range_struct.len = pagesize;
275 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
276 error_report("%s userfault unregister: %s", __func__, strerror(errno));
277 goto out;
278 }
279
280 feature_mask = (__u64)1 << _UFFDIO_WAKE |
281 (__u64)1 << _UFFDIO_COPY |
282 (__u64)1 << _UFFDIO_ZEROPAGE;
283 if ((reg_struct.ioctls & feature_mask) != feature_mask) {
284 error_report("Missing userfault map features: %" PRIx64,
285 (uint64_t)(~reg_struct.ioctls & feature_mask));
286 goto out;
287 }
288
289 /* Success! */
290 ret = true;
291 out:
292 if (testarea) {
293 munmap(testarea, pagesize);
294 }
295 if (ufd != -1) {
296 close(ufd);
297 }
298 return ret;
299 }
300
301 /*
302 * Setup an area of RAM so that it *can* be used for postcopy later; this
303 * must be done right at the start prior to pre-copy.
304 * opaque should be the MIS.
305 */
306 static int init_range(const char *block_name, void *host_addr,
307 ram_addr_t offset, ram_addr_t length, void *opaque)
308 {
309 trace_postcopy_init_range(block_name, host_addr, offset, length);
310
311 /*
312 * We need the whole of RAM to be truly empty for postcopy, so things
313 * like ROMs and any data tables built during init must be zero'd
314 * - we're going to get the copy from the source anyway.
315 * (Precopy will just overwrite this data, so doesn't need the discard)
316 */
317 if (ram_discard_range(block_name, 0, length)) {
318 return -1;
319 }
320
321 return 0;
322 }
323
324 /*
325 * At the end of migration, undo the effects of init_range
326 * opaque should be the MIS.
327 */
328 static int cleanup_range(const char *block_name, void *host_addr,
329 ram_addr_t offset, ram_addr_t length, void *opaque)
330 {
331 MigrationIncomingState *mis = opaque;
332 struct uffdio_range range_struct;
333 trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
334
335 /*
336 * We turned off hugepage for the precopy stage with postcopy enabled
337 * we can turn it back on now.
338 */
339 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
340
341 /*
342 * We can also turn off userfault now since we should have all the
343 * pages. It can be useful to leave it on to debug postcopy
344 * if you're not sure it's always getting every page.
345 */
346 range_struct.start = (uintptr_t)host_addr;
347 range_struct.len = length;
348
349 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
350 error_report("%s: userfault unregister %s", __func__, strerror(errno));
351
352 return -1;
353 }
354
355 return 0;
356 }
357
358 /*
359 * Initialise postcopy-ram, setting the RAM to a state where we can go into
360 * postcopy later; must be called prior to any precopy.
361 * called from arch_init's similarly named ram_postcopy_incoming_init
362 */
363 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
364 {
365 if (qemu_ram_foreach_block(init_range, NULL)) {
366 return -1;
367 }
368
369 return 0;
370 }
371
372 /*
373 * At the end of a migration where postcopy_ram_incoming_init was called.
374 */
375 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
376 {
377 trace_postcopy_ram_incoming_cleanup_entry();
378
379 if (mis->have_fault_thread) {
380 uint64_t tmp64;
381
382 if (qemu_ram_foreach_block(cleanup_range, mis)) {
383 return -1;
384 }
385 /*
386 * Tell the fault_thread to exit, it's an eventfd that should
387 * currently be at 0, we're going to increment it to 1
388 */
389 tmp64 = 1;
390 atomic_set(&mis->fault_thread_quit, 1);
391 if (write(mis->userfault_event_fd, &tmp64, 8) == 8) {
392 trace_postcopy_ram_incoming_cleanup_join();
393 qemu_thread_join(&mis->fault_thread);
394 } else {
395 /* Not much we can do here, but may as well report it */
396 error_report("%s: incrementing userfault_event_fd: %s", __func__,
397 strerror(errno));
398 }
399 trace_postcopy_ram_incoming_cleanup_closeuf();
400 close(mis->userfault_fd);
401 close(mis->userfault_event_fd);
402 mis->have_fault_thread = false;
403 }
404
405 qemu_balloon_inhibit(false);
406
407 if (enable_mlock) {
408 if (os_mlock() < 0) {
409 error_report("mlock: %s", strerror(errno));
410 /*
411 * It doesn't feel right to fail at this point, we have a valid
412 * VM state.
413 */
414 }
415 }
416
417 postcopy_state_set(POSTCOPY_INCOMING_END);
418
419 if (mis->postcopy_tmp_page) {
420 munmap(mis->postcopy_tmp_page, mis->largest_page_size);
421 mis->postcopy_tmp_page = NULL;
422 }
423 if (mis->postcopy_tmp_zero_page) {
424 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
425 mis->postcopy_tmp_zero_page = NULL;
426 }
427 trace_postcopy_ram_incoming_cleanup_exit();
428 return 0;
429 }
430
431 /*
432 * Disable huge pages on an area
433 */
434 static int nhp_range(const char *block_name, void *host_addr,
435 ram_addr_t offset, ram_addr_t length, void *opaque)
436 {
437 trace_postcopy_nhp_range(block_name, host_addr, offset, length);
438
439 /*
440 * Before we do discards we need to ensure those discards really
441 * do delete areas of the page, even if THP thinks a hugepage would
442 * be a good idea, so force hugepages off.
443 */
444 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
445
446 return 0;
447 }
448
449 /*
450 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
451 * however leaving it until after precopy means that most of the precopy
452 * data is still THPd
453 */
454 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
455 {
456 if (qemu_ram_foreach_block(nhp_range, mis)) {
457 return -1;
458 }
459
460 postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
461
462 return 0;
463 }
464
465 /*
466 * Mark the given area of RAM as requiring notification to unwritten areas
467 * Used as a callback on qemu_ram_foreach_block.
468 * host_addr: Base of area to mark
469 * offset: Offset in the whole ram arena
470 * length: Length of the section
471 * opaque: MigrationIncomingState pointer
472 * Returns 0 on success
473 */
474 static int ram_block_enable_notify(const char *block_name, void *host_addr,
475 ram_addr_t offset, ram_addr_t length,
476 void *opaque)
477 {
478 MigrationIncomingState *mis = opaque;
479 struct uffdio_register reg_struct;
480
481 reg_struct.range.start = (uintptr_t)host_addr;
482 reg_struct.range.len = length;
483 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
484
485 /* Now tell our userfault_fd that it's responsible for this area */
486 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
487 error_report("%s userfault register: %s", __func__, strerror(errno));
488 return -1;
489 }
490 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
491 error_report("%s userfault: Region doesn't support COPY", __func__);
492 return -1;
493 }
494
495 return 0;
496 }
497
498 /*
499 * Handle faults detected by the USERFAULT markings
500 */
501 static void *postcopy_ram_fault_thread(void *opaque)
502 {
503 MigrationIncomingState *mis = opaque;
504 struct uffd_msg msg;
505 int ret;
506 RAMBlock *rb = NULL;
507 RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */
508
509 trace_postcopy_ram_fault_thread_entry();
510 qemu_sem_post(&mis->fault_thread_sem);
511
512 while (true) {
513 ram_addr_t rb_offset;
514 struct pollfd pfd[2];
515
516 /*
517 * We're mainly waiting for the kernel to give us a faulting HVA,
518 * however we can be told to quit via userfault_quit_fd which is
519 * an eventfd
520 */
521 pfd[0].fd = mis->userfault_fd;
522 pfd[0].events = POLLIN;
523 pfd[0].revents = 0;
524 pfd[1].fd = mis->userfault_event_fd;
525 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
526 pfd[1].revents = 0;
527
528 if (poll(pfd, 2, -1 /* Wait forever */) == -1) {
529 error_report("%s: userfault poll: %s", __func__, strerror(errno));
530 break;
531 }
532
533 if (pfd[1].revents) {
534 uint64_t tmp64 = 0;
535
536 /* Consume the signal */
537 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
538 /* Nothing obviously nicer than posting this error. */
539 error_report("%s: read() failed", __func__);
540 }
541
542 if (atomic_read(&mis->fault_thread_quit)) {
543 trace_postcopy_ram_fault_thread_quit();
544 break;
545 }
546 }
547
548 ret = read(mis->userfault_fd, &msg, sizeof(msg));
549 if (ret != sizeof(msg)) {
550 if (errno == EAGAIN) {
551 /*
552 * if a wake up happens on the other thread just after
553 * the poll, there is nothing to read.
554 */
555 continue;
556 }
557 if (ret < 0) {
558 error_report("%s: Failed to read full userfault message: %s",
559 __func__, strerror(errno));
560 break;
561 } else {
562 error_report("%s: Read %d bytes from userfaultfd expected %zd",
563 __func__, ret, sizeof(msg));
564 break; /* Lost alignment, don't know what we'd read next */
565 }
566 }
567 if (msg.event != UFFD_EVENT_PAGEFAULT) {
568 error_report("%s: Read unexpected event %ud from userfaultfd",
569 __func__, msg.event);
570 continue; /* It's not a page fault, shouldn't happen */
571 }
572
573 rb = qemu_ram_block_from_host(
574 (void *)(uintptr_t)msg.arg.pagefault.address,
575 true, &rb_offset);
576 if (!rb) {
577 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
578 PRIx64, (uint64_t)msg.arg.pagefault.address);
579 break;
580 }
581
582 rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
583 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
584 qemu_ram_get_idstr(rb),
585 rb_offset);
586
587 /*
588 * Send the request to the source - we want to request one
589 * of our host page sizes (which is >= TPS)
590 */
591 if (rb != last_rb) {
592 last_rb = rb;
593 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
594 rb_offset, qemu_ram_pagesize(rb));
595 } else {
596 /* Save some space */
597 migrate_send_rp_req_pages(mis, NULL,
598 rb_offset, qemu_ram_pagesize(rb));
599 }
600 }
601 trace_postcopy_ram_fault_thread_exit();
602 return NULL;
603 }
604
605 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
606 {
607 /* Open the fd for the kernel to give us userfaults */
608 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
609 if (mis->userfault_fd == -1) {
610 error_report("%s: Failed to open userfault fd: %s", __func__,
611 strerror(errno));
612 return -1;
613 }
614
615 /*
616 * Although the host check already tested the API, we need to
617 * do the check again as an ABI handshake on the new fd.
618 */
619 if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
620 return -1;
621 }
622
623 /* Now an eventfd we use to tell the fault-thread to quit */
624 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
625 if (mis->userfault_event_fd == -1) {
626 error_report("%s: Opening userfault_event_fd: %s", __func__,
627 strerror(errno));
628 close(mis->userfault_fd);
629 return -1;
630 }
631
632 qemu_sem_init(&mis->fault_thread_sem, 0);
633 qemu_thread_create(&mis->fault_thread, "postcopy/fault",
634 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
635 qemu_sem_wait(&mis->fault_thread_sem);
636 qemu_sem_destroy(&mis->fault_thread_sem);
637 mis->have_fault_thread = true;
638
639 /* Mark so that we get notified of accesses to unwritten areas */
640 if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) {
641 return -1;
642 }
643
644 /*
645 * Ballooning can mark pages as absent while we're postcopying
646 * that would cause false userfaults.
647 */
648 qemu_balloon_inhibit(true);
649
650 trace_postcopy_ram_enable_notify();
651
652 return 0;
653 }
654
655 static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr,
656 void *from_addr, uint64_t pagesize, RAMBlock *rb)
657 {
658 int ret;
659 if (from_addr) {
660 struct uffdio_copy copy_struct;
661 copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
662 copy_struct.src = (uint64_t)(uintptr_t)from_addr;
663 copy_struct.len = pagesize;
664 copy_struct.mode = 0;
665 ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
666 } else {
667 struct uffdio_zeropage zero_struct;
668 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
669 zero_struct.range.len = pagesize;
670 zero_struct.mode = 0;
671 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
672 }
673 if (!ret) {
674 ramblock_recv_bitmap_set_range(rb, host_addr,
675 pagesize / qemu_target_page_size());
676 }
677 return ret;
678 }
679
680 /*
681 * Place a host page (from) at (host) atomically
682 * returns 0 on success
683 */
684 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
685 RAMBlock *rb)
686 {
687 size_t pagesize = qemu_ram_pagesize(rb);
688
689 /* copy also acks to the kernel waking the stalled thread up
690 * TODO: We can inhibit that ack and only do it if it was requested
691 * which would be slightly cheaper, but we'd have to be careful
692 * of the order of updating our page state.
693 */
694 if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) {
695 int e = errno;
696 error_report("%s: %s copy host: %p from: %p (size: %zd)",
697 __func__, strerror(e), host, from, pagesize);
698
699 return -e;
700 }
701
702 trace_postcopy_place_page(host);
703 return 0;
704 }
705
706 /*
707 * Place a zero page at (host) atomically
708 * returns 0 on success
709 */
710 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
711 RAMBlock *rb)
712 {
713 trace_postcopy_place_page_zero(host);
714
715 if (qemu_ram_pagesize(rb) == getpagesize()) {
716 if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, getpagesize(),
717 rb)) {
718 int e = errno;
719 error_report("%s: %s zero host: %p",
720 __func__, strerror(e), host);
721
722 return -e;
723 }
724 } else {
725 /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
726 if (!mis->postcopy_tmp_zero_page) {
727 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
728 PROT_READ | PROT_WRITE,
729 MAP_PRIVATE | MAP_ANONYMOUS,
730 -1, 0);
731 if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
732 int e = errno;
733 mis->postcopy_tmp_zero_page = NULL;
734 error_report("%s: %s mapping large zero page",
735 __func__, strerror(e));
736 return -e;
737 }
738 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
739 }
740 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
741 rb);
742 }
743
744 return 0;
745 }
746
747 /*
748 * Returns a target page of memory that can be mapped at a later point in time
749 * using postcopy_place_page
750 * The same address is used repeatedly, postcopy_place_page just takes the
751 * backing page away.
752 * Returns: Pointer to allocated page
753 *
754 */
755 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
756 {
757 if (!mis->postcopy_tmp_page) {
758 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
759 PROT_READ | PROT_WRITE, MAP_PRIVATE |
760 MAP_ANONYMOUS, -1, 0);
761 if (mis->postcopy_tmp_page == MAP_FAILED) {
762 mis->postcopy_tmp_page = NULL;
763 error_report("%s: %s", __func__, strerror(errno));
764 return NULL;
765 }
766 }
767
768 return mis->postcopy_tmp_page;
769 }
770
771 #else
772 /* No target OS support, stubs just fail */
773 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
774 {
775 error_report("%s: No OS support", __func__);
776 return false;
777 }
778
779 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
780 {
781 error_report("postcopy_ram_incoming_init: No OS support");
782 return -1;
783 }
784
785 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
786 {
787 assert(0);
788 return -1;
789 }
790
791 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
792 {
793 assert(0);
794 return -1;
795 }
796
797 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
798 {
799 assert(0);
800 return -1;
801 }
802
803 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
804 RAMBlock *rb)
805 {
806 assert(0);
807 return -1;
808 }
809
810 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
811 RAMBlock *rb)
812 {
813 assert(0);
814 return -1;
815 }
816
817 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
818 {
819 assert(0);
820 return NULL;
821 }
822
823 #endif
824
825 /* ------------------------------------------------------------------------- */
826
827 /**
828 * postcopy_discard_send_init: Called at the start of each RAMBlock before
829 * asking to discard individual ranges.
830 *
831 * @ms: The current migration state.
832 * @offset: the bitmap offset of the named RAMBlock in the migration
833 * bitmap.
834 * @name: RAMBlock that discards will operate on.
835 *
836 * returns: a new PDS.
837 */
838 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
839 const char *name)
840 {
841 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
842
843 if (res) {
844 res->ramblock_name = name;
845 }
846
847 return res;
848 }
849
850 /**
851 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
852 * discard. May send a discard message, may just leave it queued to
853 * be sent later.
854 *
855 * @ms: Current migration state.
856 * @pds: Structure initialised by postcopy_discard_send_init().
857 * @start,@length: a range of pages in the migration bitmap in the
858 * RAM block passed to postcopy_discard_send_init() (length=1 is one page)
859 */
860 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
861 unsigned long start, unsigned long length)
862 {
863 size_t tp_size = qemu_target_page_size();
864 /* Convert to byte offsets within the RAM block */
865 pds->start_list[pds->cur_entry] = start * tp_size;
866 pds->length_list[pds->cur_entry] = length * tp_size;
867 trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
868 pds->cur_entry++;
869 pds->nsentwords++;
870
871 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
872 /* Full set, ship it! */
873 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
874 pds->ramblock_name,
875 pds->cur_entry,
876 pds->start_list,
877 pds->length_list);
878 pds->nsentcmds++;
879 pds->cur_entry = 0;
880 }
881 }
882
883 /**
884 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
885 * bitmap code. Sends any outstanding discard messages, frees the PDS
886 *
887 * @ms: Current migration state.
888 * @pds: Structure initialised by postcopy_discard_send_init().
889 */
890 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
891 {
892 /* Anything unsent? */
893 if (pds->cur_entry) {
894 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
895 pds->ramblock_name,
896 pds->cur_entry,
897 pds->start_list,
898 pds->length_list);
899 pds->nsentcmds++;
900 }
901
902 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
903 pds->nsentcmds);
904
905 g_free(pds);
906 }
907
908 /*
909 * Current state of incoming postcopy; note this is not part of
910 * MigrationIncomingState since it's state is used during cleanup
911 * at the end as MIS is being freed.
912 */
913 static PostcopyState incoming_postcopy_state;
914
915 PostcopyState postcopy_state_get(void)
916 {
917 return atomic_mb_read(&incoming_postcopy_state);
918 }
919
920 /* Set the state and return the old state */
921 PostcopyState postcopy_state_set(PostcopyState new_state)
922 {
923 return atomic_xchg(&incoming_postcopy_state, new_state);
924 }