]> git.proxmox.com Git - mirror_qemu.git/blob - migration/postcopy-ram.c
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / migration / postcopy-ram.c
1 /*
2 * Postcopy migration for RAM
3 *
4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Dave Gilbert <dgilbert@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 /*
15 * Postcopy is a migration technique where the execution flips from the
16 * source to the destination before all the data has been copied.
17 */
18
19 #include "qemu/osdep.h"
20 #include "exec/target_page.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "savevm.h"
24 #include "postcopy-ram.h"
25 #include "ram.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/balloon.h"
28 #include "qemu/error-report.h"
29 #include "trace.h"
30
31 /* Arbitrary limit on size of each discard command,
32 * keeps them around ~200 bytes
33 */
34 #define MAX_DISCARDS_PER_COMMAND 12
35
36 struct PostcopyDiscardState {
37 const char *ramblock_name;
38 uint16_t cur_entry;
39 /*
40 * Start and length of a discard range (bytes)
41 */
42 uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
43 uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
44 unsigned int nsentwords;
45 unsigned int nsentcmds;
46 };
47
48 /* Postcopy needs to detect accesses to pages that haven't yet been copied
49 * across, and efficiently map new pages in, the techniques for doing this
50 * are target OS specific.
51 */
52 #if defined(__linux__)
53
54 #include <poll.h>
55 #include <sys/ioctl.h>
56 #include <sys/syscall.h>
57 #include <asm/types.h> /* for __u64 */
58 #endif
59
60 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
61 #include <sys/eventfd.h>
62 #include <linux/userfaultfd.h>
63
64 typedef struct PostcopyBlocktimeContext {
65 /* time when page fault initiated per vCPU */
66 int64_t *page_fault_vcpu_time;
67 /* page address per vCPU */
68 uintptr_t *vcpu_addr;
69 int64_t total_blocktime;
70 /* blocktime per vCPU */
71 int64_t *vcpu_blocktime;
72 /* point in time when last page fault was initiated */
73 int64_t last_begin;
74 /* number of vCPU are suspended */
75 int smp_cpus_down;
76
77 /*
78 * Handler for exit event, necessary for
79 * releasing whole blocktime_ctx
80 */
81 Notifier exit_notifier;
82 } PostcopyBlocktimeContext;
83
84 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
85 {
86 g_free(ctx->page_fault_vcpu_time);
87 g_free(ctx->vcpu_addr);
88 g_free(ctx->vcpu_blocktime);
89 g_free(ctx);
90 }
91
92 static void migration_exit_cb(Notifier *n, void *data)
93 {
94 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
95 exit_notifier);
96 destroy_blocktime_context(ctx);
97 }
98
99 static struct PostcopyBlocktimeContext *blocktime_context_new(void)
100 {
101 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
102 ctx->page_fault_vcpu_time = g_new0(int64_t, smp_cpus);
103 ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
104 ctx->vcpu_blocktime = g_new0(int64_t, smp_cpus);
105
106 ctx->exit_notifier.notify = migration_exit_cb;
107 qemu_add_exit_notifier(&ctx->exit_notifier);
108 return ctx;
109 }
110
111 static int64List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
112 {
113 int64List *list = NULL, *entry = NULL;
114 int i;
115
116 for (i = smp_cpus - 1; i >= 0; i--) {
117 entry = g_new0(int64List, 1);
118 entry->value = ctx->vcpu_blocktime[i];
119 entry->next = list;
120 list = entry;
121 }
122
123 return list;
124 }
125
126 /*
127 * This function just populates MigrationInfo from postcopy's
128 * blocktime context. It will not populate MigrationInfo,
129 * unless postcopy-blocktime capability was set.
130 *
131 * @info: pointer to MigrationInfo to populate
132 */
133 void fill_destination_postcopy_migration_info(MigrationInfo *info)
134 {
135 MigrationIncomingState *mis = migration_incoming_get_current();
136 PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
137
138 if (!bc) {
139 return;
140 }
141
142 info->has_postcopy_blocktime = true;
143 info->postcopy_blocktime = bc->total_blocktime;
144 info->has_postcopy_vcpu_blocktime = true;
145 info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
146 }
147
148 static uint64_t get_postcopy_total_blocktime(void)
149 {
150 MigrationIncomingState *mis = migration_incoming_get_current();
151 PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
152
153 if (!bc) {
154 return 0;
155 }
156
157 return bc->total_blocktime;
158 }
159
160 /**
161 * receive_ufd_features: check userfault fd features, to request only supported
162 * features in the future.
163 *
164 * Returns: true on success
165 *
166 * __NR_userfaultfd - should be checked before
167 * @features: out parameter will contain uffdio_api.features provided by kernel
168 * in case of success
169 */
170 static bool receive_ufd_features(uint64_t *features)
171 {
172 struct uffdio_api api_struct = {0};
173 int ufd;
174 bool ret = true;
175
176 /* if we are here __NR_userfaultfd should exists */
177 ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
178 if (ufd == -1) {
179 error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
180 strerror(errno));
181 return false;
182 }
183
184 /* ask features */
185 api_struct.api = UFFD_API;
186 api_struct.features = 0;
187 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
188 error_report("%s: UFFDIO_API failed: %s", __func__,
189 strerror(errno));
190 ret = false;
191 goto release_ufd;
192 }
193
194 *features = api_struct.features;
195
196 release_ufd:
197 close(ufd);
198 return ret;
199 }
200
201 /**
202 * request_ufd_features: this function should be called only once on a newly
203 * opened ufd, subsequent calls will lead to error.
204 *
205 * Returns: true on succes
206 *
207 * @ufd: fd obtained from userfaultfd syscall
208 * @features: bit mask see UFFD_API_FEATURES
209 */
210 static bool request_ufd_features(int ufd, uint64_t features)
211 {
212 struct uffdio_api api_struct = {0};
213 uint64_t ioctl_mask;
214
215 api_struct.api = UFFD_API;
216 api_struct.features = features;
217 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
218 error_report("%s failed: UFFDIO_API failed: %s", __func__,
219 strerror(errno));
220 return false;
221 }
222
223 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
224 (__u64)1 << _UFFDIO_UNREGISTER;
225 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
226 error_report("Missing userfault features: %" PRIx64,
227 (uint64_t)(~api_struct.ioctls & ioctl_mask));
228 return false;
229 }
230
231 return true;
232 }
233
234 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
235 {
236 uint64_t asked_features = 0;
237 static uint64_t supported_features;
238
239 /*
240 * it's not possible to
241 * request UFFD_API twice per one fd
242 * userfault fd features is persistent
243 */
244 if (!supported_features) {
245 if (!receive_ufd_features(&supported_features)) {
246 error_report("%s failed", __func__);
247 return false;
248 }
249 }
250
251 #ifdef UFFD_FEATURE_THREAD_ID
252 if (migrate_postcopy_blocktime() && mis &&
253 UFFD_FEATURE_THREAD_ID & supported_features) {
254 /* kernel supports that feature */
255 /* don't create blocktime_context if it exists */
256 if (!mis->blocktime_ctx) {
257 mis->blocktime_ctx = blocktime_context_new();
258 }
259
260 asked_features |= UFFD_FEATURE_THREAD_ID;
261 }
262 #endif
263
264 /*
265 * request features, even if asked_features is 0, due to
266 * kernel expects UFFD_API before UFFDIO_REGISTER, per
267 * userfault file descriptor
268 */
269 if (!request_ufd_features(ufd, asked_features)) {
270 error_report("%s failed: features %" PRIu64, __func__,
271 asked_features);
272 return false;
273 }
274
275 if (getpagesize() != ram_pagesize_summary()) {
276 bool have_hp = false;
277 /* We've got a huge page */
278 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
279 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
280 #endif
281 if (!have_hp) {
282 error_report("Userfault on this host does not support huge pages");
283 return false;
284 }
285 }
286 return true;
287 }
288
289 /* Callback from postcopy_ram_supported_by_host block iterator.
290 */
291 static int test_ramblock_postcopiable(const char *block_name, void *host_addr,
292 ram_addr_t offset, ram_addr_t length, void *opaque)
293 {
294 RAMBlock *rb = qemu_ram_block_by_name(block_name);
295 size_t pagesize = qemu_ram_pagesize(rb);
296
297 if (qemu_ram_is_shared(rb)) {
298 error_report("Postcopy on shared RAM (%s) is not yet supported",
299 block_name);
300 return 1;
301 }
302
303 if (length % pagesize) {
304 error_report("Postcopy requires RAM blocks to be a page size multiple,"
305 " block %s is 0x" RAM_ADDR_FMT " bytes with a "
306 "page size of 0x%zx", block_name, length, pagesize);
307 return 1;
308 }
309 return 0;
310 }
311
312 /*
313 * Note: This has the side effect of munlock'ing all of RAM, that's
314 * normally fine since if the postcopy succeeds it gets turned back on at the
315 * end.
316 */
317 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
318 {
319 long pagesize = getpagesize();
320 int ufd = -1;
321 bool ret = false; /* Error unless we change it */
322 void *testarea = NULL;
323 struct uffdio_register reg_struct;
324 struct uffdio_range range_struct;
325 uint64_t feature_mask;
326
327 if (qemu_target_page_size() > pagesize) {
328 error_report("Target page size bigger than host page size");
329 goto out;
330 }
331
332 ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
333 if (ufd == -1) {
334 error_report("%s: userfaultfd not available: %s", __func__,
335 strerror(errno));
336 goto out;
337 }
338
339 /* Version and features check */
340 if (!ufd_check_and_apply(ufd, mis)) {
341 goto out;
342 }
343
344 /* We don't support postcopy with shared RAM yet */
345 if (qemu_ram_foreach_block(test_ramblock_postcopiable, NULL)) {
346 goto out;
347 }
348
349 /*
350 * userfault and mlock don't go together; we'll put it back later if
351 * it was enabled.
352 */
353 if (munlockall()) {
354 error_report("%s: munlockall: %s", __func__, strerror(errno));
355 return -1;
356 }
357
358 /*
359 * We need to check that the ops we need are supported on anon memory
360 * To do that we need to register a chunk and see the flags that
361 * are returned.
362 */
363 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
364 MAP_ANONYMOUS, -1, 0);
365 if (testarea == MAP_FAILED) {
366 error_report("%s: Failed to map test area: %s", __func__,
367 strerror(errno));
368 goto out;
369 }
370 g_assert(((size_t)testarea & (pagesize-1)) == 0);
371
372 reg_struct.range.start = (uintptr_t)testarea;
373 reg_struct.range.len = pagesize;
374 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
375
376 if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
377 error_report("%s userfault register: %s", __func__, strerror(errno));
378 goto out;
379 }
380
381 range_struct.start = (uintptr_t)testarea;
382 range_struct.len = pagesize;
383 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
384 error_report("%s userfault unregister: %s", __func__, strerror(errno));
385 goto out;
386 }
387
388 feature_mask = (__u64)1 << _UFFDIO_WAKE |
389 (__u64)1 << _UFFDIO_COPY |
390 (__u64)1 << _UFFDIO_ZEROPAGE;
391 if ((reg_struct.ioctls & feature_mask) != feature_mask) {
392 error_report("Missing userfault map features: %" PRIx64,
393 (uint64_t)(~reg_struct.ioctls & feature_mask));
394 goto out;
395 }
396
397 /* Success! */
398 ret = true;
399 out:
400 if (testarea) {
401 munmap(testarea, pagesize);
402 }
403 if (ufd != -1) {
404 close(ufd);
405 }
406 return ret;
407 }
408
409 /*
410 * Setup an area of RAM so that it *can* be used for postcopy later; this
411 * must be done right at the start prior to pre-copy.
412 * opaque should be the MIS.
413 */
414 static int init_range(const char *block_name, void *host_addr,
415 ram_addr_t offset, ram_addr_t length, void *opaque)
416 {
417 trace_postcopy_init_range(block_name, host_addr, offset, length);
418
419 /*
420 * We need the whole of RAM to be truly empty for postcopy, so things
421 * like ROMs and any data tables built during init must be zero'd
422 * - we're going to get the copy from the source anyway.
423 * (Precopy will just overwrite this data, so doesn't need the discard)
424 */
425 if (ram_discard_range(block_name, 0, length)) {
426 return -1;
427 }
428
429 return 0;
430 }
431
432 /*
433 * At the end of migration, undo the effects of init_range
434 * opaque should be the MIS.
435 */
436 static int cleanup_range(const char *block_name, void *host_addr,
437 ram_addr_t offset, ram_addr_t length, void *opaque)
438 {
439 MigrationIncomingState *mis = opaque;
440 struct uffdio_range range_struct;
441 trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
442
443 /*
444 * We turned off hugepage for the precopy stage with postcopy enabled
445 * we can turn it back on now.
446 */
447 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
448
449 /*
450 * We can also turn off userfault now since we should have all the
451 * pages. It can be useful to leave it on to debug postcopy
452 * if you're not sure it's always getting every page.
453 */
454 range_struct.start = (uintptr_t)host_addr;
455 range_struct.len = length;
456
457 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
458 error_report("%s: userfault unregister %s", __func__, strerror(errno));
459
460 return -1;
461 }
462
463 return 0;
464 }
465
466 /*
467 * Initialise postcopy-ram, setting the RAM to a state where we can go into
468 * postcopy later; must be called prior to any precopy.
469 * called from arch_init's similarly named ram_postcopy_incoming_init
470 */
471 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
472 {
473 if (qemu_ram_foreach_block(init_range, NULL)) {
474 return -1;
475 }
476
477 return 0;
478 }
479
480 /*
481 * At the end of a migration where postcopy_ram_incoming_init was called.
482 */
483 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
484 {
485 trace_postcopy_ram_incoming_cleanup_entry();
486
487 if (mis->have_fault_thread) {
488 uint64_t tmp64;
489
490 if (qemu_ram_foreach_block(cleanup_range, mis)) {
491 return -1;
492 }
493 /*
494 * Tell the fault_thread to exit, it's an eventfd that should
495 * currently be at 0, we're going to increment it to 1
496 */
497 tmp64 = 1;
498 if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) {
499 trace_postcopy_ram_incoming_cleanup_join();
500 qemu_thread_join(&mis->fault_thread);
501 } else {
502 /* Not much we can do here, but may as well report it */
503 error_report("%s: incrementing userfault_quit_fd: %s", __func__,
504 strerror(errno));
505 }
506 trace_postcopy_ram_incoming_cleanup_closeuf();
507 close(mis->userfault_fd);
508 close(mis->userfault_quit_fd);
509 mis->have_fault_thread = false;
510 }
511
512 qemu_balloon_inhibit(false);
513
514 if (enable_mlock) {
515 if (os_mlock() < 0) {
516 error_report("mlock: %s", strerror(errno));
517 /*
518 * It doesn't feel right to fail at this point, we have a valid
519 * VM state.
520 */
521 }
522 }
523
524 postcopy_state_set(POSTCOPY_INCOMING_END);
525
526 if (mis->postcopy_tmp_page) {
527 munmap(mis->postcopy_tmp_page, mis->largest_page_size);
528 mis->postcopy_tmp_page = NULL;
529 }
530 if (mis->postcopy_tmp_zero_page) {
531 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
532 mis->postcopy_tmp_zero_page = NULL;
533 }
534 trace_postcopy_ram_incoming_cleanup_blocktime(
535 get_postcopy_total_blocktime());
536
537 trace_postcopy_ram_incoming_cleanup_exit();
538 return 0;
539 }
540
541 /*
542 * Disable huge pages on an area
543 */
544 static int nhp_range(const char *block_name, void *host_addr,
545 ram_addr_t offset, ram_addr_t length, void *opaque)
546 {
547 trace_postcopy_nhp_range(block_name, host_addr, offset, length);
548
549 /*
550 * Before we do discards we need to ensure those discards really
551 * do delete areas of the page, even if THP thinks a hugepage would
552 * be a good idea, so force hugepages off.
553 */
554 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
555
556 return 0;
557 }
558
559 /*
560 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
561 * however leaving it until after precopy means that most of the precopy
562 * data is still THPd
563 */
564 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
565 {
566 if (qemu_ram_foreach_block(nhp_range, mis)) {
567 return -1;
568 }
569
570 postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
571
572 return 0;
573 }
574
575 /*
576 * Mark the given area of RAM as requiring notification to unwritten areas
577 * Used as a callback on qemu_ram_foreach_block.
578 * host_addr: Base of area to mark
579 * offset: Offset in the whole ram arena
580 * length: Length of the section
581 * opaque: MigrationIncomingState pointer
582 * Returns 0 on success
583 */
584 static int ram_block_enable_notify(const char *block_name, void *host_addr,
585 ram_addr_t offset, ram_addr_t length,
586 void *opaque)
587 {
588 MigrationIncomingState *mis = opaque;
589 struct uffdio_register reg_struct;
590
591 reg_struct.range.start = (uintptr_t)host_addr;
592 reg_struct.range.len = length;
593 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
594
595 /* Now tell our userfault_fd that it's responsible for this area */
596 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
597 error_report("%s userfault register: %s", __func__, strerror(errno));
598 return -1;
599 }
600 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
601 error_report("%s userfault: Region doesn't support COPY", __func__);
602 return -1;
603 }
604
605 return 0;
606 }
607
608 static int get_mem_fault_cpu_index(uint32_t pid)
609 {
610 CPUState *cpu_iter;
611
612 CPU_FOREACH(cpu_iter) {
613 if (cpu_iter->thread_id == pid) {
614 trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
615 return cpu_iter->cpu_index;
616 }
617 }
618 trace_get_mem_fault_cpu_index(-1, pid);
619 return -1;
620 }
621
622 /*
623 * This function is being called when pagefault occurs. It
624 * tracks down vCPU blocking time.
625 *
626 * @addr: faulted host virtual address
627 * @ptid: faulted process thread id
628 * @rb: ramblock appropriate to addr
629 */
630 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
631 RAMBlock *rb)
632 {
633 int cpu, already_received;
634 MigrationIncomingState *mis = migration_incoming_get_current();
635 PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
636 int64_t now_ms;
637
638 if (!dc || ptid == 0) {
639 return;
640 }
641 cpu = get_mem_fault_cpu_index(ptid);
642 if (cpu < 0) {
643 return;
644 }
645
646 now_ms = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
647 if (dc->vcpu_addr[cpu] == 0) {
648 atomic_inc(&dc->smp_cpus_down);
649 }
650
651 atomic_xchg__nocheck(&dc->last_begin, now_ms);
652 atomic_xchg__nocheck(&dc->page_fault_vcpu_time[cpu], now_ms);
653 atomic_xchg__nocheck(&dc->vcpu_addr[cpu], addr);
654
655 /* check it here, not at the begining of the function,
656 * due to, check could accur early than bitmap_set in
657 * qemu_ufd_copy_ioctl */
658 already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
659 if (already_received) {
660 atomic_xchg__nocheck(&dc->vcpu_addr[cpu], 0);
661 atomic_xchg__nocheck(&dc->page_fault_vcpu_time[cpu], 0);
662 atomic_dec(&dc->smp_cpus_down);
663 }
664 trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
665 cpu, already_received);
666 }
667
668 /*
669 * This function just provide calculated blocktime per cpu and trace it.
670 * Total blocktime is calculated in mark_postcopy_blocktime_end.
671 *
672 *
673 * Assume we have 3 CPU
674 *
675 * S1 E1 S1 E1
676 * -----***********------------xxx***************------------------------> CPU1
677 *
678 * S2 E2
679 * ------------****************xxx---------------------------------------> CPU2
680 *
681 * S3 E3
682 * ------------------------****xxx********-------------------------------> CPU3
683 *
684 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
685 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
686 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
687 * it's a part of total blocktime.
688 * S1 - here is last_begin
689 * Legend of the picture is following:
690 * * - means blocktime per vCPU
691 * x - means overlapped blocktime (total blocktime)
692 *
693 * @addr: host virtual address
694 */
695 static void mark_postcopy_blocktime_end(uintptr_t addr)
696 {
697 MigrationIncomingState *mis = migration_incoming_get_current();
698 PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
699 int i, affected_cpu = 0;
700 int64_t now_ms;
701 bool vcpu_total_blocktime = false;
702 int64_t read_vcpu_time;
703
704 if (!dc) {
705 return;
706 }
707
708 now_ms = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
709
710 /* lookup cpu, to clear it,
711 * that algorithm looks straighforward, but it's not
712 * optimal, more optimal algorithm is keeping tree or hash
713 * where key is address value is a list of */
714 for (i = 0; i < smp_cpus; i++) {
715 uint64_t vcpu_blocktime = 0;
716
717 read_vcpu_time = atomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
718 if (atomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
719 read_vcpu_time == 0) {
720 continue;
721 }
722 atomic_xchg__nocheck(&dc->vcpu_addr[i], 0);
723 vcpu_blocktime = now_ms - read_vcpu_time;
724 affected_cpu += 1;
725 /* we need to know is that mark_postcopy_end was due to
726 * faulted page, another possible case it's prefetched
727 * page and in that case we shouldn't be here */
728 if (!vcpu_total_blocktime &&
729 atomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
730 vcpu_total_blocktime = true;
731 }
732 /* continue cycle, due to one page could affect several vCPUs */
733 dc->vcpu_blocktime[i] += vcpu_blocktime;
734 }
735
736 atomic_sub(&dc->smp_cpus_down, affected_cpu);
737 if (vcpu_total_blocktime) {
738 dc->total_blocktime += now_ms - atomic_fetch_add(&dc->last_begin, 0);
739 }
740 trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
741 affected_cpu);
742 }
743
744 /*
745 * Handle faults detected by the USERFAULT markings
746 */
747 static void *postcopy_ram_fault_thread(void *opaque)
748 {
749 MigrationIncomingState *mis = opaque;
750 struct uffd_msg msg;
751 int ret;
752 RAMBlock *rb = NULL;
753 RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */
754
755 trace_postcopy_ram_fault_thread_entry();
756 qemu_sem_post(&mis->fault_thread_sem);
757
758 while (true) {
759 ram_addr_t rb_offset;
760 struct pollfd pfd[2];
761
762 /*
763 * We're mainly waiting for the kernel to give us a faulting HVA,
764 * however we can be told to quit via userfault_quit_fd which is
765 * an eventfd
766 */
767 pfd[0].fd = mis->userfault_fd;
768 pfd[0].events = POLLIN;
769 pfd[0].revents = 0;
770 pfd[1].fd = mis->userfault_quit_fd;
771 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
772 pfd[1].revents = 0;
773
774 if (poll(pfd, 2, -1 /* Wait forever */) == -1) {
775 error_report("%s: userfault poll: %s", __func__, strerror(errno));
776 break;
777 }
778
779 if (pfd[1].revents) {
780 trace_postcopy_ram_fault_thread_quit();
781 break;
782 }
783
784 ret = read(mis->userfault_fd, &msg, sizeof(msg));
785 if (ret != sizeof(msg)) {
786 if (errno == EAGAIN) {
787 /*
788 * if a wake up happens on the other thread just after
789 * the poll, there is nothing to read.
790 */
791 continue;
792 }
793 if (ret < 0) {
794 error_report("%s: Failed to read full userfault message: %s",
795 __func__, strerror(errno));
796 break;
797 } else {
798 error_report("%s: Read %d bytes from userfaultfd expected %zd",
799 __func__, ret, sizeof(msg));
800 break; /* Lost alignment, don't know what we'd read next */
801 }
802 }
803 if (msg.event != UFFD_EVENT_PAGEFAULT) {
804 error_report("%s: Read unexpected event %ud from userfaultfd",
805 __func__, msg.event);
806 continue; /* It's not a page fault, shouldn't happen */
807 }
808
809 rb = qemu_ram_block_from_host(
810 (void *)(uintptr_t)msg.arg.pagefault.address,
811 true, &rb_offset);
812 if (!rb) {
813 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
814 PRIx64, (uint64_t)msg.arg.pagefault.address);
815 break;
816 }
817
818 rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
819 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
820 qemu_ram_get_idstr(rb),
821 rb_offset,
822 msg.arg.pagefault.feat.ptid);
823
824 mark_postcopy_blocktime_begin((uintptr_t)(msg.arg.pagefault.address),
825 msg.arg.pagefault.feat.ptid, rb);
826 /*
827 * Send the request to the source - we want to request one
828 * of our host page sizes (which is >= TPS)
829 */
830 if (rb != last_rb) {
831 last_rb = rb;
832 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
833 rb_offset, qemu_ram_pagesize(rb));
834 } else {
835 /* Save some space */
836 migrate_send_rp_req_pages(mis, NULL,
837 rb_offset, qemu_ram_pagesize(rb));
838 }
839 }
840 trace_postcopy_ram_fault_thread_exit();
841 return NULL;
842 }
843
844 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
845 {
846 /* Open the fd for the kernel to give us userfaults */
847 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
848 if (mis->userfault_fd == -1) {
849 error_report("%s: Failed to open userfault fd: %s", __func__,
850 strerror(errno));
851 return -1;
852 }
853
854 /*
855 * Although the host check already tested the API, we need to
856 * do the check again as an ABI handshake on the new fd.
857 */
858 if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
859 return -1;
860 }
861
862 /* Now an eventfd we use to tell the fault-thread to quit */
863 mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC);
864 if (mis->userfault_quit_fd == -1) {
865 error_report("%s: Opening userfault_quit_fd: %s", __func__,
866 strerror(errno));
867 close(mis->userfault_fd);
868 return -1;
869 }
870
871 qemu_sem_init(&mis->fault_thread_sem, 0);
872 qemu_thread_create(&mis->fault_thread, "postcopy/fault",
873 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
874 qemu_sem_wait(&mis->fault_thread_sem);
875 qemu_sem_destroy(&mis->fault_thread_sem);
876 mis->have_fault_thread = true;
877
878 /* Mark so that we get notified of accesses to unwritten areas */
879 if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) {
880 return -1;
881 }
882
883 /*
884 * Ballooning can mark pages as absent while we're postcopying
885 * that would cause false userfaults.
886 */
887 qemu_balloon_inhibit(true);
888
889 trace_postcopy_ram_enable_notify();
890
891 return 0;
892 }
893
894 static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr,
895 void *from_addr, uint64_t pagesize, RAMBlock *rb)
896 {
897 int ret;
898 if (from_addr) {
899 struct uffdio_copy copy_struct;
900 copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
901 copy_struct.src = (uint64_t)(uintptr_t)from_addr;
902 copy_struct.len = pagesize;
903 copy_struct.mode = 0;
904 ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
905 } else {
906 struct uffdio_zeropage zero_struct;
907 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
908 zero_struct.range.len = pagesize;
909 zero_struct.mode = 0;
910 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
911 }
912 if (!ret) {
913 ramblock_recv_bitmap_set_range(rb, host_addr,
914 pagesize / qemu_target_page_size());
915 mark_postcopy_blocktime_end((uintptr_t)host_addr);
916
917 }
918 return ret;
919 }
920
921 /*
922 * Place a host page (from) at (host) atomically
923 * returns 0 on success
924 */
925 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
926 RAMBlock *rb)
927 {
928 size_t pagesize = qemu_ram_pagesize(rb);
929
930 /* copy also acks to the kernel waking the stalled thread up
931 * TODO: We can inhibit that ack and only do it if it was requested
932 * which would be slightly cheaper, but we'd have to be careful
933 * of the order of updating our page state.
934 */
935 if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) {
936 int e = errno;
937 error_report("%s: %s copy host: %p from: %p (size: %zd)",
938 __func__, strerror(e), host, from, pagesize);
939
940 return -e;
941 }
942
943 trace_postcopy_place_page(host);
944 return 0;
945 }
946
947 /*
948 * Place a zero page at (host) atomically
949 * returns 0 on success
950 */
951 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
952 RAMBlock *rb)
953 {
954 trace_postcopy_place_page_zero(host);
955
956 if (qemu_ram_pagesize(rb) == getpagesize()) {
957 if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, getpagesize(),
958 rb)) {
959 int e = errno;
960 error_report("%s: %s zero host: %p",
961 __func__, strerror(e), host);
962
963 return -e;
964 }
965 } else {
966 /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
967 if (!mis->postcopy_tmp_zero_page) {
968 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
969 PROT_READ | PROT_WRITE,
970 MAP_PRIVATE | MAP_ANONYMOUS,
971 -1, 0);
972 if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
973 int e = errno;
974 mis->postcopy_tmp_zero_page = NULL;
975 error_report("%s: %s mapping large zero page",
976 __func__, strerror(e));
977 return -e;
978 }
979 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
980 }
981 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
982 rb);
983 }
984
985 return 0;
986 }
987
988 /*
989 * Returns a target page of memory that can be mapped at a later point in time
990 * using postcopy_place_page
991 * The same address is used repeatedly, postcopy_place_page just takes the
992 * backing page away.
993 * Returns: Pointer to allocated page
994 *
995 */
996 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
997 {
998 if (!mis->postcopy_tmp_page) {
999 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
1000 PROT_READ | PROT_WRITE, MAP_PRIVATE |
1001 MAP_ANONYMOUS, -1, 0);
1002 if (mis->postcopy_tmp_page == MAP_FAILED) {
1003 mis->postcopy_tmp_page = NULL;
1004 error_report("%s: %s", __func__, strerror(errno));
1005 return NULL;
1006 }
1007 }
1008
1009 return mis->postcopy_tmp_page;
1010 }
1011
1012 #else
1013 /* No target OS support, stubs just fail */
1014 void fill_destination_postcopy_migration_info(MigrationInfo *info)
1015 {
1016 }
1017
1018 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1019 {
1020 error_report("%s: No OS support", __func__);
1021 return false;
1022 }
1023
1024 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
1025 {
1026 error_report("postcopy_ram_incoming_init: No OS support");
1027 return -1;
1028 }
1029
1030 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1031 {
1032 assert(0);
1033 return -1;
1034 }
1035
1036 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1037 {
1038 assert(0);
1039 return -1;
1040 }
1041
1042 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1043 {
1044 assert(0);
1045 return -1;
1046 }
1047
1048 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1049 RAMBlock *rb)
1050 {
1051 assert(0);
1052 return -1;
1053 }
1054
1055 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1056 RAMBlock *rb)
1057 {
1058 assert(0);
1059 return -1;
1060 }
1061
1062 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1063 {
1064 assert(0);
1065 return NULL;
1066 }
1067
1068 #endif
1069
1070 /* ------------------------------------------------------------------------- */
1071
1072 /**
1073 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1074 * asking to discard individual ranges.
1075 *
1076 * @ms: The current migration state.
1077 * @offset: the bitmap offset of the named RAMBlock in the migration
1078 * bitmap.
1079 * @name: RAMBlock that discards will operate on.
1080 *
1081 * returns: a new PDS.
1082 */
1083 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
1084 const char *name)
1085 {
1086 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
1087
1088 if (res) {
1089 res->ramblock_name = name;
1090 }
1091
1092 return res;
1093 }
1094
1095 /**
1096 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1097 * discard. May send a discard message, may just leave it queued to
1098 * be sent later.
1099 *
1100 * @ms: Current migration state.
1101 * @pds: Structure initialised by postcopy_discard_send_init().
1102 * @start,@length: a range of pages in the migration bitmap in the
1103 * RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1104 */
1105 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
1106 unsigned long start, unsigned long length)
1107 {
1108 size_t tp_size = qemu_target_page_size();
1109 /* Convert to byte offsets within the RAM block */
1110 pds->start_list[pds->cur_entry] = start * tp_size;
1111 pds->length_list[pds->cur_entry] = length * tp_size;
1112 trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
1113 pds->cur_entry++;
1114 pds->nsentwords++;
1115
1116 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
1117 /* Full set, ship it! */
1118 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1119 pds->ramblock_name,
1120 pds->cur_entry,
1121 pds->start_list,
1122 pds->length_list);
1123 pds->nsentcmds++;
1124 pds->cur_entry = 0;
1125 }
1126 }
1127
1128 /**
1129 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1130 * bitmap code. Sends any outstanding discard messages, frees the PDS
1131 *
1132 * @ms: Current migration state.
1133 * @pds: Structure initialised by postcopy_discard_send_init().
1134 */
1135 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
1136 {
1137 /* Anything unsent? */
1138 if (pds->cur_entry) {
1139 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1140 pds->ramblock_name,
1141 pds->cur_entry,
1142 pds->start_list,
1143 pds->length_list);
1144 pds->nsentcmds++;
1145 }
1146
1147 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
1148 pds->nsentcmds);
1149
1150 g_free(pds);
1151 }
1152
1153 /*
1154 * Current state of incoming postcopy; note this is not part of
1155 * MigrationIncomingState since it's state is used during cleanup
1156 * at the end as MIS is being freed.
1157 */
1158 static PostcopyState incoming_postcopy_state;
1159
1160 PostcopyState postcopy_state_get(void)
1161 {
1162 return atomic_mb_read(&incoming_postcopy_state);
1163 }
1164
1165 /* Set the state and return the old state */
1166 PostcopyState postcopy_state_set(PostcopyState new_state)
1167 {
1168 return atomic_xchg(&incoming_postcopy_state, new_state);
1169 }