]> git.proxmox.com Git - mirror_qemu.git/blob - migration/qemu-file.c
Include qemu-common.h exactly where needed
[mirror_qemu.git] / migration / qemu-file.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include <zlib.h>
26 #include "qemu/error-report.h"
27 #include "qemu/iov.h"
28 #include "migration.h"
29 #include "qemu-file.h"
30 #include "trace.h"
31
32 #define IO_BUF_SIZE 32768
33 #define MAX_IOV_SIZE MIN(IOV_MAX, 64)
34
35 struct QEMUFile {
36 const QEMUFileOps *ops;
37 const QEMUFileHooks *hooks;
38 void *opaque;
39
40 int64_t bytes_xfer;
41 int64_t xfer_limit;
42
43 int64_t pos; /* start of buffer when writing, end of buffer
44 when reading */
45 int buf_index;
46 int buf_size; /* 0 when writing */
47 uint8_t buf[IO_BUF_SIZE];
48
49 DECLARE_BITMAP(may_free, MAX_IOV_SIZE);
50 struct iovec iov[MAX_IOV_SIZE];
51 unsigned int iovcnt;
52
53 int last_error;
54 };
55
56 /*
57 * Stop a file from being read/written - not all backing files can do this
58 * typically only sockets can.
59 */
60 int qemu_file_shutdown(QEMUFile *f)
61 {
62 if (!f->ops->shut_down) {
63 return -ENOSYS;
64 }
65 return f->ops->shut_down(f->opaque, true, true);
66 }
67
68 /*
69 * Result: QEMUFile* for a 'return path' for comms in the opposite direction
70 * NULL if not available
71 */
72 QEMUFile *qemu_file_get_return_path(QEMUFile *f)
73 {
74 if (!f->ops->get_return_path) {
75 return NULL;
76 }
77 return f->ops->get_return_path(f->opaque);
78 }
79
80 bool qemu_file_mode_is_not_valid(const char *mode)
81 {
82 if (mode == NULL ||
83 (mode[0] != 'r' && mode[0] != 'w') ||
84 mode[1] != 'b' || mode[2] != 0) {
85 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
86 return true;
87 }
88
89 return false;
90 }
91
92 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
93 {
94 QEMUFile *f;
95
96 f = g_new0(QEMUFile, 1);
97
98 f->opaque = opaque;
99 f->ops = ops;
100 return f;
101 }
102
103
104 void qemu_file_set_hooks(QEMUFile *f, const QEMUFileHooks *hooks)
105 {
106 f->hooks = hooks;
107 }
108
109 /*
110 * Get last error for stream f
111 *
112 * Return negative error value if there has been an error on previous
113 * operations, return 0 if no error happened.
114 *
115 */
116 int qemu_file_get_error(QEMUFile *f)
117 {
118 return f->last_error;
119 }
120
121 void qemu_file_set_error(QEMUFile *f, int ret)
122 {
123 if (f->last_error == 0) {
124 f->last_error = ret;
125 }
126 }
127
128 bool qemu_file_is_writable(QEMUFile *f)
129 {
130 return f->ops->writev_buffer;
131 }
132
133 static void qemu_iovec_release_ram(QEMUFile *f)
134 {
135 struct iovec iov;
136 unsigned long idx;
137
138 /* Find and release all the contiguous memory ranges marked as may_free. */
139 idx = find_next_bit(f->may_free, f->iovcnt, 0);
140 if (idx >= f->iovcnt) {
141 return;
142 }
143 iov = f->iov[idx];
144
145 /* The madvise() in the loop is called for iov within a continuous range and
146 * then reinitialize the iov. And in the end, madvise() is called for the
147 * last iov.
148 */
149 while ((idx = find_next_bit(f->may_free, f->iovcnt, idx + 1)) < f->iovcnt) {
150 /* check for adjacent buffer and coalesce them */
151 if (iov.iov_base + iov.iov_len == f->iov[idx].iov_base) {
152 iov.iov_len += f->iov[idx].iov_len;
153 continue;
154 }
155 if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
156 error_report("migrate: madvise DONTNEED failed %p %zd: %s",
157 iov.iov_base, iov.iov_len, strerror(errno));
158 }
159 iov = f->iov[idx];
160 }
161 if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
162 error_report("migrate: madvise DONTNEED failed %p %zd: %s",
163 iov.iov_base, iov.iov_len, strerror(errno));
164 }
165 memset(f->may_free, 0, sizeof(f->may_free));
166 }
167
168 /**
169 * Flushes QEMUFile buffer
170 *
171 * If there is writev_buffer QEMUFileOps it uses it otherwise uses
172 * put_buffer ops. This will flush all pending data. If data was
173 * only partially flushed, it will set an error state.
174 */
175 void qemu_fflush(QEMUFile *f)
176 {
177 ssize_t ret = 0;
178 ssize_t expect = 0;
179
180 if (!qemu_file_is_writable(f)) {
181 return;
182 }
183
184 if (f->iovcnt > 0) {
185 expect = iov_size(f->iov, f->iovcnt);
186 ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos);
187
188 qemu_iovec_release_ram(f);
189 }
190
191 if (ret >= 0) {
192 f->pos += ret;
193 }
194 /* We expect the QEMUFile write impl to send the full
195 * data set we requested, so sanity check that.
196 */
197 if (ret != expect) {
198 qemu_file_set_error(f, ret < 0 ? ret : -EIO);
199 }
200 f->buf_index = 0;
201 f->iovcnt = 0;
202 }
203
204 void ram_control_before_iterate(QEMUFile *f, uint64_t flags)
205 {
206 int ret = 0;
207
208 if (f->hooks && f->hooks->before_ram_iterate) {
209 ret = f->hooks->before_ram_iterate(f, f->opaque, flags, NULL);
210 if (ret < 0) {
211 qemu_file_set_error(f, ret);
212 }
213 }
214 }
215
216 void ram_control_after_iterate(QEMUFile *f, uint64_t flags)
217 {
218 int ret = 0;
219
220 if (f->hooks && f->hooks->after_ram_iterate) {
221 ret = f->hooks->after_ram_iterate(f, f->opaque, flags, NULL);
222 if (ret < 0) {
223 qemu_file_set_error(f, ret);
224 }
225 }
226 }
227
228 void ram_control_load_hook(QEMUFile *f, uint64_t flags, void *data)
229 {
230 int ret = -EINVAL;
231
232 if (f->hooks && f->hooks->hook_ram_load) {
233 ret = f->hooks->hook_ram_load(f, f->opaque, flags, data);
234 if (ret < 0) {
235 qemu_file_set_error(f, ret);
236 }
237 } else {
238 /*
239 * Hook is a hook specifically requested by the source sending a flag
240 * that expects there to be a hook on the destination.
241 */
242 if (flags == RAM_CONTROL_HOOK) {
243 qemu_file_set_error(f, ret);
244 }
245 }
246 }
247
248 size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset,
249 ram_addr_t offset, size_t size,
250 uint64_t *bytes_sent)
251 {
252 if (f->hooks && f->hooks->save_page) {
253 int ret = f->hooks->save_page(f, f->opaque, block_offset,
254 offset, size, bytes_sent);
255 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
256 f->bytes_xfer += size;
257 }
258
259 if (ret != RAM_SAVE_CONTROL_DELAYED &&
260 ret != RAM_SAVE_CONTROL_NOT_SUPP) {
261 if (bytes_sent && *bytes_sent > 0) {
262 qemu_update_position(f, *bytes_sent);
263 } else if (ret < 0) {
264 qemu_file_set_error(f, ret);
265 }
266 }
267
268 return ret;
269 }
270
271 return RAM_SAVE_CONTROL_NOT_SUPP;
272 }
273
274 /*
275 * Attempt to fill the buffer from the underlying file
276 * Returns the number of bytes read, or negative value for an error.
277 *
278 * Note that it can return a partially full buffer even in a not error/not EOF
279 * case if the underlying file descriptor gives a short read, and that can
280 * happen even on a blocking fd.
281 */
282 static ssize_t qemu_fill_buffer(QEMUFile *f)
283 {
284 int len;
285 int pending;
286
287 assert(!qemu_file_is_writable(f));
288
289 pending = f->buf_size - f->buf_index;
290 if (pending > 0) {
291 memmove(f->buf, f->buf + f->buf_index, pending);
292 }
293 f->buf_index = 0;
294 f->buf_size = pending;
295
296 len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos,
297 IO_BUF_SIZE - pending);
298 if (len > 0) {
299 f->buf_size += len;
300 f->pos += len;
301 } else if (len == 0) {
302 qemu_file_set_error(f, -EIO);
303 } else if (len != -EAGAIN) {
304 qemu_file_set_error(f, len);
305 }
306
307 return len;
308 }
309
310 void qemu_update_position(QEMUFile *f, size_t size)
311 {
312 f->pos += size;
313 }
314
315 /** Closes the file
316 *
317 * Returns negative error value if any error happened on previous operations or
318 * while closing the file. Returns 0 or positive number on success.
319 *
320 * The meaning of return value on success depends on the specific backend
321 * being used.
322 */
323 int qemu_fclose(QEMUFile *f)
324 {
325 int ret;
326 qemu_fflush(f);
327 ret = qemu_file_get_error(f);
328
329 if (f->ops->close) {
330 int ret2 = f->ops->close(f->opaque);
331 if (ret >= 0) {
332 ret = ret2;
333 }
334 }
335 /* If any error was spotted before closing, we should report it
336 * instead of the close() return value.
337 */
338 if (f->last_error) {
339 ret = f->last_error;
340 }
341 g_free(f);
342 trace_qemu_file_fclose();
343 return ret;
344 }
345
346 static void add_to_iovec(QEMUFile *f, const uint8_t *buf, size_t size,
347 bool may_free)
348 {
349 /* check for adjacent buffer and coalesce them */
350 if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
351 f->iov[f->iovcnt - 1].iov_len &&
352 may_free == test_bit(f->iovcnt - 1, f->may_free))
353 {
354 f->iov[f->iovcnt - 1].iov_len += size;
355 } else {
356 if (may_free) {
357 set_bit(f->iovcnt, f->may_free);
358 }
359 f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
360 f->iov[f->iovcnt++].iov_len = size;
361 }
362
363 if (f->iovcnt >= MAX_IOV_SIZE) {
364 qemu_fflush(f);
365 }
366 }
367
368 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, size_t size,
369 bool may_free)
370 {
371 if (f->last_error) {
372 return;
373 }
374
375 f->bytes_xfer += size;
376 add_to_iovec(f, buf, size, may_free);
377 }
378
379 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, size_t size)
380 {
381 size_t l;
382
383 if (f->last_error) {
384 return;
385 }
386
387 while (size > 0) {
388 l = IO_BUF_SIZE - f->buf_index;
389 if (l > size) {
390 l = size;
391 }
392 memcpy(f->buf + f->buf_index, buf, l);
393 f->bytes_xfer += l;
394 add_to_iovec(f, f->buf + f->buf_index, l, false);
395 f->buf_index += l;
396 if (f->buf_index == IO_BUF_SIZE) {
397 qemu_fflush(f);
398 }
399 if (qemu_file_get_error(f)) {
400 break;
401 }
402 buf += l;
403 size -= l;
404 }
405 }
406
407 void qemu_put_byte(QEMUFile *f, int v)
408 {
409 if (f->last_error) {
410 return;
411 }
412
413 f->buf[f->buf_index] = v;
414 f->bytes_xfer++;
415 add_to_iovec(f, f->buf + f->buf_index, 1, false);
416 f->buf_index++;
417 if (f->buf_index == IO_BUF_SIZE) {
418 qemu_fflush(f);
419 }
420 }
421
422 void qemu_file_skip(QEMUFile *f, int size)
423 {
424 if (f->buf_index + size <= f->buf_size) {
425 f->buf_index += size;
426 }
427 }
428
429 /*
430 * Read 'size' bytes from file (at 'offset') without moving the
431 * pointer and set 'buf' to point to that data.
432 *
433 * It will return size bytes unless there was an error, in which case it will
434 * return as many as it managed to read (assuming blocking fd's which
435 * all current QEMUFile are)
436 */
437 size_t qemu_peek_buffer(QEMUFile *f, uint8_t **buf, size_t size, size_t offset)
438 {
439 ssize_t pending;
440 size_t index;
441
442 assert(!qemu_file_is_writable(f));
443 assert(offset < IO_BUF_SIZE);
444 assert(size <= IO_BUF_SIZE - offset);
445
446 /* The 1st byte to read from */
447 index = f->buf_index + offset;
448 /* The number of available bytes starting at index */
449 pending = f->buf_size - index;
450
451 /*
452 * qemu_fill_buffer might return just a few bytes, even when there isn't
453 * an error, so loop collecting them until we get enough.
454 */
455 while (pending < size) {
456 int received = qemu_fill_buffer(f);
457
458 if (received <= 0) {
459 break;
460 }
461
462 index = f->buf_index + offset;
463 pending = f->buf_size - index;
464 }
465
466 if (pending <= 0) {
467 return 0;
468 }
469 if (size > pending) {
470 size = pending;
471 }
472
473 *buf = f->buf + index;
474 return size;
475 }
476
477 /*
478 * Read 'size' bytes of data from the file into buf.
479 * 'size' can be larger than the internal buffer.
480 *
481 * It will return size bytes unless there was an error, in which case it will
482 * return as many as it managed to read (assuming blocking fd's which
483 * all current QEMUFile are)
484 */
485 size_t qemu_get_buffer(QEMUFile *f, uint8_t *buf, size_t size)
486 {
487 size_t pending = size;
488 size_t done = 0;
489
490 while (pending > 0) {
491 size_t res;
492 uint8_t *src;
493
494 res = qemu_peek_buffer(f, &src, MIN(pending, IO_BUF_SIZE), 0);
495 if (res == 0) {
496 return done;
497 }
498 memcpy(buf, src, res);
499 qemu_file_skip(f, res);
500 buf += res;
501 pending -= res;
502 done += res;
503 }
504 return done;
505 }
506
507 /*
508 * Read 'size' bytes of data from the file.
509 * 'size' can be larger than the internal buffer.
510 *
511 * The data:
512 * may be held on an internal buffer (in which case *buf is updated
513 * to point to it) that is valid until the next qemu_file operation.
514 * OR
515 * will be copied to the *buf that was passed in.
516 *
517 * The code tries to avoid the copy if possible.
518 *
519 * It will return size bytes unless there was an error, in which case it will
520 * return as many as it managed to read (assuming blocking fd's which
521 * all current QEMUFile are)
522 *
523 * Note: Since **buf may get changed, the caller should take care to
524 * keep a pointer to the original buffer if it needs to deallocate it.
525 */
526 size_t qemu_get_buffer_in_place(QEMUFile *f, uint8_t **buf, size_t size)
527 {
528 if (size < IO_BUF_SIZE) {
529 size_t res;
530 uint8_t *src;
531
532 res = qemu_peek_buffer(f, &src, size, 0);
533
534 if (res == size) {
535 qemu_file_skip(f, res);
536 *buf = src;
537 return res;
538 }
539 }
540
541 return qemu_get_buffer(f, *buf, size);
542 }
543
544 /*
545 * Peeks a single byte from the buffer; this isn't guaranteed to work if
546 * offset leaves a gap after the previous read/peeked data.
547 */
548 int qemu_peek_byte(QEMUFile *f, int offset)
549 {
550 int index = f->buf_index + offset;
551
552 assert(!qemu_file_is_writable(f));
553 assert(offset < IO_BUF_SIZE);
554
555 if (index >= f->buf_size) {
556 qemu_fill_buffer(f);
557 index = f->buf_index + offset;
558 if (index >= f->buf_size) {
559 return 0;
560 }
561 }
562 return f->buf[index];
563 }
564
565 int qemu_get_byte(QEMUFile *f)
566 {
567 int result;
568
569 result = qemu_peek_byte(f, 0);
570 qemu_file_skip(f, 1);
571 return result;
572 }
573
574 int64_t qemu_ftell_fast(QEMUFile *f)
575 {
576 int64_t ret = f->pos;
577 int i;
578
579 for (i = 0; i < f->iovcnt; i++) {
580 ret += f->iov[i].iov_len;
581 }
582
583 return ret;
584 }
585
586 int64_t qemu_ftell(QEMUFile *f)
587 {
588 qemu_fflush(f);
589 return f->pos;
590 }
591
592 int qemu_file_rate_limit(QEMUFile *f)
593 {
594 if (qemu_file_get_error(f)) {
595 return 1;
596 }
597 if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) {
598 return 1;
599 }
600 return 0;
601 }
602
603 int64_t qemu_file_get_rate_limit(QEMUFile *f)
604 {
605 return f->xfer_limit;
606 }
607
608 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
609 {
610 f->xfer_limit = limit;
611 }
612
613 void qemu_file_reset_rate_limit(QEMUFile *f)
614 {
615 f->bytes_xfer = 0;
616 }
617
618 void qemu_put_be16(QEMUFile *f, unsigned int v)
619 {
620 qemu_put_byte(f, v >> 8);
621 qemu_put_byte(f, v);
622 }
623
624 void qemu_put_be32(QEMUFile *f, unsigned int v)
625 {
626 qemu_put_byte(f, v >> 24);
627 qemu_put_byte(f, v >> 16);
628 qemu_put_byte(f, v >> 8);
629 qemu_put_byte(f, v);
630 }
631
632 void qemu_put_be64(QEMUFile *f, uint64_t v)
633 {
634 qemu_put_be32(f, v >> 32);
635 qemu_put_be32(f, v);
636 }
637
638 unsigned int qemu_get_be16(QEMUFile *f)
639 {
640 unsigned int v;
641 v = qemu_get_byte(f) << 8;
642 v |= qemu_get_byte(f);
643 return v;
644 }
645
646 unsigned int qemu_get_be32(QEMUFile *f)
647 {
648 unsigned int v;
649 v = (unsigned int)qemu_get_byte(f) << 24;
650 v |= qemu_get_byte(f) << 16;
651 v |= qemu_get_byte(f) << 8;
652 v |= qemu_get_byte(f);
653 return v;
654 }
655
656 uint64_t qemu_get_be64(QEMUFile *f)
657 {
658 uint64_t v;
659 v = (uint64_t)qemu_get_be32(f) << 32;
660 v |= qemu_get_be32(f);
661 return v;
662 }
663
664 /* return the size after compression, or negative value on error */
665 static int qemu_compress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
666 const uint8_t *source, size_t source_len)
667 {
668 int err;
669
670 err = deflateReset(stream);
671 if (err != Z_OK) {
672 return -1;
673 }
674
675 stream->avail_in = source_len;
676 stream->next_in = (uint8_t *)source;
677 stream->avail_out = dest_len;
678 stream->next_out = dest;
679
680 err = deflate(stream, Z_FINISH);
681 if (err != Z_STREAM_END) {
682 return -1;
683 }
684
685 return stream->next_out - dest;
686 }
687
688 /* Compress size bytes of data start at p and store the compressed
689 * data to the buffer of f.
690 *
691 * When f is not writable, return -1 if f has no space to save the
692 * compressed data.
693 * When f is wirtable and it has no space to save the compressed data,
694 * do fflush first, if f still has no space to save the compressed
695 * data, return -1.
696 */
697 ssize_t qemu_put_compression_data(QEMUFile *f, z_stream *stream,
698 const uint8_t *p, size_t size)
699 {
700 ssize_t blen = IO_BUF_SIZE - f->buf_index - sizeof(int32_t);
701
702 if (blen < compressBound(size)) {
703 if (!qemu_file_is_writable(f)) {
704 return -1;
705 }
706 qemu_fflush(f);
707 blen = IO_BUF_SIZE - sizeof(int32_t);
708 if (blen < compressBound(size)) {
709 return -1;
710 }
711 }
712
713 blen = qemu_compress_data(stream, f->buf + f->buf_index + sizeof(int32_t),
714 blen, p, size);
715 if (blen < 0) {
716 return -1;
717 }
718
719 qemu_put_be32(f, blen);
720 if (f->ops->writev_buffer) {
721 add_to_iovec(f, f->buf + f->buf_index, blen, false);
722 }
723 f->buf_index += blen;
724 if (f->buf_index == IO_BUF_SIZE) {
725 qemu_fflush(f);
726 }
727 return blen + sizeof(int32_t);
728 }
729
730 /* Put the data in the buffer of f_src to the buffer of f_des, and
731 * then reset the buf_index of f_src to 0.
732 */
733
734 int qemu_put_qemu_file(QEMUFile *f_des, QEMUFile *f_src)
735 {
736 int len = 0;
737
738 if (f_src->buf_index > 0) {
739 len = f_src->buf_index;
740 qemu_put_buffer(f_des, f_src->buf, f_src->buf_index);
741 f_src->buf_index = 0;
742 f_src->iovcnt = 0;
743 }
744 return len;
745 }
746
747 /*
748 * Get a string whose length is determined by a single preceding byte
749 * A preallocated 256 byte buffer must be passed in.
750 * Returns: len on success and a 0 terminated string in the buffer
751 * else 0
752 * (Note a 0 length string will return 0 either way)
753 */
754 size_t qemu_get_counted_string(QEMUFile *f, char buf[256])
755 {
756 size_t len = qemu_get_byte(f);
757 size_t res = qemu_get_buffer(f, (uint8_t *)buf, len);
758
759 buf[res] = 0;
760
761 return res == len ? res : 0;
762 }
763
764 /*
765 * Put a string with one preceding byte containing its length. The length of
766 * the string should be less than 256.
767 */
768 void qemu_put_counted_string(QEMUFile *f, const char *str)
769 {
770 size_t len = strlen(str);
771
772 assert(len < 256);
773 qemu_put_byte(f, len);
774 qemu_put_buffer(f, (const uint8_t *)str, len);
775 }
776
777 /*
778 * Set the blocking state of the QEMUFile.
779 * Note: On some transports the OS only keeps a single blocking state for
780 * both directions, and thus changing the blocking on the main
781 * QEMUFile can also affect the return path.
782 */
783 void qemu_file_set_blocking(QEMUFile *f, bool block)
784 {
785 if (f->ops->set_blocking) {
786 f->ops->set_blocking(f->opaque, block);
787 }
788 }