]> git.proxmox.com Git - mirror_qemu.git/blob - migration/ram.c
docs/nvdimm: add example on persistent backend setup
[mirror_qemu.git] / migration / ram.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/pmem.h"
37 #include "xbzrle.h"
38 #include "ram.h"
39 #include "migration.h"
40 #include "socket.h"
41 #include "migration/register.h"
42 #include "migration/misc.h"
43 #include "qemu-file.h"
44 #include "postcopy-ram.h"
45 #include "page_cache.h"
46 #include "qemu/error-report.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qmp/qerror.h"
50 #include "trace.h"
51 #include "exec/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
55 #include "block.h"
56 #include "sysemu/sysemu.h"
57 #include "qemu/uuid.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60
61 /***********************************************************/
62 /* ram save/restore */
63
64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
71 #define RAM_SAVE_FLAG_ZERO 0x02
72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
73 #define RAM_SAVE_FLAG_PAGE 0x08
74 #define RAM_SAVE_FLAG_EOS 0x10
75 #define RAM_SAVE_FLAG_CONTINUE 0x20
76 #define RAM_SAVE_FLAG_XBZRLE 0x40
77 /* 0x80 is reserved in migration.h start with 0x100 next */
78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
80 static inline bool is_zero_range(uint8_t *p, uint64_t size)
81 {
82 return buffer_is_zero(p, size);
83 }
84
85 XBZRLECacheStats xbzrle_counters;
86
87 /* struct contains XBZRLE cache and a static page
88 used by the compression */
89 static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
101 } XBZRLE;
102
103 static void XBZRLE_cache_lock(void)
104 {
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107 }
108
109 static void XBZRLE_cache_unlock(void)
110 {
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113 }
114
115 /**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
123 * Returns 0 for success or -1 for error
124 *
125 * @new_size: new cache size
126 * @errp: set *errp if the check failed, with reason
127 */
128 int xbzrle_cache_resize(int64_t new_size, Error **errp)
129 {
130 PageCache *new_cache;
131 int64_t ret = 0;
132
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
142 return 0;
143 }
144
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
149 if (!new_cache) {
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
157 out:
158 XBZRLE_cache_unlock();
159 return ret;
160 }
161
162 static bool ramblock_is_ignored(RAMBlock *block)
163 {
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
166 }
167
168 /* Should be holding either ram_list.mutex, or the RCU lock. */
169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
172
173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
174 INTERNAL_RAMBLOCK_FOREACH(block) \
175 if (!qemu_ram_is_migratable(block)) {} else
176
177 #undef RAMBLOCK_FOREACH
178
179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
180 {
181 RAMBlock *block;
182 int ret = 0;
183
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 rcu_read_unlock();
192 return ret;
193 }
194
195 static void ramblock_recv_map_init(void)
196 {
197 RAMBlock *rb;
198
199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
202 }
203 }
204
205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
206 {
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
209 }
210
211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
212 {
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
214 }
215
216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
217 {
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
219 }
220
221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
223 {
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
227 }
228
229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
230
231 /*
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
233 *
234 * Returns >0 if success with sent bytes, or <0 if error.
235 */
236 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
238 {
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
242
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
246 }
247
248 nbits = block->used_length >> TARGET_PAGE_BITS;
249
250 /*
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
254 */
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
256
257 /*
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
261 */
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
263
264 /* Size of the bitmap, in bytes */
265 size = DIV_ROUND_UP(nbits, 8);
266
267 /*
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
272 */
273 size = ROUND_UP(size, 8);
274
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
277 /*
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
280 */
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
283
284 g_free(le_bitmap);
285
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
288 }
289
290 return size + sizeof(size);
291 }
292
293 /*
294 * An outstanding page request, on the source, having been received
295 * and queued
296 */
297 struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
301
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
303 };
304
305 /* State of RAM for migration */
306 struct RAMState {
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
326 /* bytes transferred at start_time */
327 uint64_t bytes_xfer_prev;
328 /* number of dirty pages since start_time */
329 uint64_t num_dirty_pages_period;
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
332
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
340
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
345 /* number of dirty bits in the bitmap */
346 uint64_t migration_dirty_pages;
347 /* Protects modification of the bitmap and migration dirty pages */
348 QemuMutex bitmap_mutex;
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
354 };
355 typedef struct RAMState RAMState;
356
357 static RAMState *ram_state;
358
359 static NotifierWithReturnList precopy_notifier_list;
360
361 void precopy_infrastructure_init(void)
362 {
363 notifier_with_return_list_init(&precopy_notifier_list);
364 }
365
366 void precopy_add_notifier(NotifierWithReturn *n)
367 {
368 notifier_with_return_list_add(&precopy_notifier_list, n);
369 }
370
371 void precopy_remove_notifier(NotifierWithReturn *n)
372 {
373 notifier_with_return_remove(n);
374 }
375
376 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
377 {
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
381
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
383 }
384
385 void precopy_enable_free_page_optimization(void)
386 {
387 if (!ram_state) {
388 return;
389 }
390
391 ram_state->fpo_enabled = true;
392 }
393
394 uint64_t ram_bytes_remaining(void)
395 {
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
397 0;
398 }
399
400 MigrationStats ram_counters;
401
402 /* used by the search for pages to send */
403 struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
406 /* Current page to search from */
407 unsigned long page;
408 /* Set once we wrap around */
409 bool complete_round;
410 };
411 typedef struct PageSearchStatus PageSearchStatus;
412
413 CompressionStats compression_counters;
414
415 struct CompressParam {
416 bool done;
417 bool quit;
418 bool zero_page;
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
424
425 /* internally used fields */
426 z_stream stream;
427 uint8_t *originbuf;
428 };
429 typedef struct CompressParam CompressParam;
430
431 struct DecompressParam {
432 bool done;
433 bool quit;
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
437 uint8_t *compbuf;
438 int len;
439 z_stream stream;
440 };
441 typedef struct DecompressParam DecompressParam;
442
443 static CompressParam *comp_param;
444 static QemuThread *compress_threads;
445 /* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
448 */
449 static QemuMutex comp_done_lock;
450 static QemuCond comp_done_cond;
451 /* The empty QEMUFileOps will be used by file in CompressParam */
452 static const QEMUFileOps empty_ops = { };
453
454 static QEMUFile *decomp_file;
455 static DecompressParam *decomp_param;
456 static QemuThread *decompress_threads;
457 static QemuMutex decomp_done_lock;
458 static QemuCond decomp_done_cond;
459
460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
461 ram_addr_t offset, uint8_t *source_buf);
462
463 static void *do_data_compress(void *opaque)
464 {
465 CompressParam *param = opaque;
466 RAMBlock *block;
467 ram_addr_t offset;
468 bool zero_page;
469
470 qemu_mutex_lock(&param->mutex);
471 while (!param->quit) {
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
477
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
480
481 qemu_mutex_lock(&comp_done_lock);
482 param->done = true;
483 param->zero_page = zero_page;
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
486
487 qemu_mutex_lock(&param->mutex);
488 } else {
489 qemu_cond_wait(&param->cond, &param->mutex);
490 }
491 }
492 qemu_mutex_unlock(&param->mutex);
493
494 return NULL;
495 }
496
497 static void compress_threads_save_cleanup(void)
498 {
499 int i, thread_count;
500
501 if (!migrate_use_compression() || !comp_param) {
502 return;
503 }
504
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
507 /*
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
510 */
511 if (!comp_param[i].file) {
512 break;
513 }
514
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
519
520 qemu_thread_join(compress_threads + i);
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
523 deflateEnd(&comp_param[i].stream);
524 g_free(comp_param[i].originbuf);
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
527 }
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
530 g_free(compress_threads);
531 g_free(comp_param);
532 compress_threads = NULL;
533 comp_param = NULL;
534 }
535
536 static int compress_threads_save_setup(void)
537 {
538 int i, thread_count;
539
540 if (!migrate_use_compression()) {
541 return 0;
542 }
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
548 for (i = 0; i < thread_count; i++) {
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
552 }
553
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
556 g_free(comp_param[i].originbuf);
557 goto exit;
558 }
559
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
562 */
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
565 comp_param[i].quit = false;
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
571 }
572 return 0;
573
574 exit:
575 compress_threads_save_cleanup();
576 return -1;
577 }
578
579 /* Multiple fd's */
580
581 #define MULTIFD_MAGIC 0x11223344U
582 #define MULTIFD_VERSION 1
583
584 #define MULTIFD_FLAG_SYNC (1 << 0)
585
586 /* This value needs to be a multiple of qemu_target_page_size() */
587 #define MULTIFD_PACKET_SIZE (512 * 1024)
588
589 typedef struct {
590 uint32_t magic;
591 uint32_t version;
592 unsigned char uuid[16]; /* QemuUUID */
593 uint8_t id;
594 uint8_t unused1[7]; /* Reserved for future use */
595 uint64_t unused2[4]; /* Reserved for future use */
596 } __attribute__((packed)) MultiFDInit_t;
597
598 typedef struct {
599 uint32_t magic;
600 uint32_t version;
601 uint32_t flags;
602 /* maximum number of allocated pages */
603 uint32_t pages_alloc;
604 uint32_t pages_used;
605 /* size of the next packet that contains pages */
606 uint32_t next_packet_size;
607 uint64_t packet_num;
608 uint64_t unused[4]; /* Reserved for future use */
609 char ramblock[256];
610 uint64_t offset[];
611 } __attribute__((packed)) MultiFDPacket_t;
612
613 typedef struct {
614 /* number of used pages */
615 uint32_t used;
616 /* number of allocated pages */
617 uint32_t allocated;
618 /* global number of generated multifd packets */
619 uint64_t packet_num;
620 /* offset of each page */
621 ram_addr_t *offset;
622 /* pointer to each page */
623 struct iovec *iov;
624 RAMBlock *block;
625 } MultiFDPages_t;
626
627 typedef struct {
628 /* this fields are not changed once the thread is created */
629 /* channel number */
630 uint8_t id;
631 /* channel thread name */
632 char *name;
633 /* channel thread id */
634 QemuThread thread;
635 /* communication channel */
636 QIOChannel *c;
637 /* sem where to wait for more work */
638 QemuSemaphore sem;
639 /* this mutex protects the following parameters */
640 QemuMutex mutex;
641 /* is this channel thread running */
642 bool running;
643 /* should this thread finish */
644 bool quit;
645 /* thread has work to do */
646 int pending_job;
647 /* array of pages to sent */
648 MultiFDPages_t *pages;
649 /* packet allocated len */
650 uint32_t packet_len;
651 /* pointer to the packet */
652 MultiFDPacket_t *packet;
653 /* multifd flags for each packet */
654 uint32_t flags;
655 /* size of the next packet that contains pages */
656 uint32_t next_packet_size;
657 /* global number of generated multifd packets */
658 uint64_t packet_num;
659 /* thread local variables */
660 /* packets sent through this channel */
661 uint64_t num_packets;
662 /* pages sent through this channel */
663 uint64_t num_pages;
664 /* syncs main thread and channels */
665 QemuSemaphore sem_sync;
666 } MultiFDSendParams;
667
668 typedef struct {
669 /* this fields are not changed once the thread is created */
670 /* channel number */
671 uint8_t id;
672 /* channel thread name */
673 char *name;
674 /* channel thread id */
675 QemuThread thread;
676 /* communication channel */
677 QIOChannel *c;
678 /* this mutex protects the following parameters */
679 QemuMutex mutex;
680 /* is this channel thread running */
681 bool running;
682 /* should this thread finish */
683 bool quit;
684 /* array of pages to receive */
685 MultiFDPages_t *pages;
686 /* packet allocated len */
687 uint32_t packet_len;
688 /* pointer to the packet */
689 MultiFDPacket_t *packet;
690 /* multifd flags for each packet */
691 uint32_t flags;
692 /* global number of generated multifd packets */
693 uint64_t packet_num;
694 /* thread local variables */
695 /* size of the next packet that contains pages */
696 uint32_t next_packet_size;
697 /* packets sent through this channel */
698 uint64_t num_packets;
699 /* pages sent through this channel */
700 uint64_t num_pages;
701 /* syncs main thread and channels */
702 QemuSemaphore sem_sync;
703 } MultiFDRecvParams;
704
705 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
706 {
707 MultiFDInit_t msg;
708 int ret;
709
710 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
711 msg.version = cpu_to_be32(MULTIFD_VERSION);
712 msg.id = p->id;
713 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
714
715 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
716 if (ret != 0) {
717 return -1;
718 }
719 return 0;
720 }
721
722 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
723 {
724 MultiFDInit_t msg;
725 int ret;
726
727 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
728 if (ret != 0) {
729 return -1;
730 }
731
732 msg.magic = be32_to_cpu(msg.magic);
733 msg.version = be32_to_cpu(msg.version);
734
735 if (msg.magic != MULTIFD_MAGIC) {
736 error_setg(errp, "multifd: received packet magic %x "
737 "expected %x", msg.magic, MULTIFD_MAGIC);
738 return -1;
739 }
740
741 if (msg.version != MULTIFD_VERSION) {
742 error_setg(errp, "multifd: received packet version %d "
743 "expected %d", msg.version, MULTIFD_VERSION);
744 return -1;
745 }
746
747 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
748 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
749 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
750
751 error_setg(errp, "multifd: received uuid '%s' and expected "
752 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
753 g_free(uuid);
754 g_free(msg_uuid);
755 return -1;
756 }
757
758 if (msg.id > migrate_multifd_channels()) {
759 error_setg(errp, "multifd: received channel version %d "
760 "expected %d", msg.version, MULTIFD_VERSION);
761 return -1;
762 }
763
764 return msg.id;
765 }
766
767 static MultiFDPages_t *multifd_pages_init(size_t size)
768 {
769 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
770
771 pages->allocated = size;
772 pages->iov = g_new0(struct iovec, size);
773 pages->offset = g_new0(ram_addr_t, size);
774
775 return pages;
776 }
777
778 static void multifd_pages_clear(MultiFDPages_t *pages)
779 {
780 pages->used = 0;
781 pages->allocated = 0;
782 pages->packet_num = 0;
783 pages->block = NULL;
784 g_free(pages->iov);
785 pages->iov = NULL;
786 g_free(pages->offset);
787 pages->offset = NULL;
788 g_free(pages);
789 }
790
791 static void multifd_send_fill_packet(MultiFDSendParams *p)
792 {
793 MultiFDPacket_t *packet = p->packet;
794 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
795 int i;
796
797 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
798 packet->version = cpu_to_be32(MULTIFD_VERSION);
799 packet->flags = cpu_to_be32(p->flags);
800 packet->pages_alloc = cpu_to_be32(page_max);
801 packet->pages_used = cpu_to_be32(p->pages->used);
802 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
803 packet->packet_num = cpu_to_be64(p->packet_num);
804
805 if (p->pages->block) {
806 strncpy(packet->ramblock, p->pages->block->idstr, 256);
807 }
808
809 for (i = 0; i < p->pages->used; i++) {
810 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
811 }
812 }
813
814 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
815 {
816 MultiFDPacket_t *packet = p->packet;
817 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
818 RAMBlock *block;
819 int i;
820
821 packet->magic = be32_to_cpu(packet->magic);
822 if (packet->magic != MULTIFD_MAGIC) {
823 error_setg(errp, "multifd: received packet "
824 "magic %x and expected magic %x",
825 packet->magic, MULTIFD_MAGIC);
826 return -1;
827 }
828
829 packet->version = be32_to_cpu(packet->version);
830 if (packet->version != MULTIFD_VERSION) {
831 error_setg(errp, "multifd: received packet "
832 "version %d and expected version %d",
833 packet->version, MULTIFD_VERSION);
834 return -1;
835 }
836
837 p->flags = be32_to_cpu(packet->flags);
838
839 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
840 /*
841 * If we recevied a packet that is 100 times bigger than expected
842 * just stop migration. It is a magic number.
843 */
844 if (packet->pages_alloc > pages_max * 100) {
845 error_setg(errp, "multifd: received packet "
846 "with size %d and expected a maximum size of %d",
847 packet->pages_alloc, pages_max * 100) ;
848 return -1;
849 }
850 /*
851 * We received a packet that is bigger than expected but inside
852 * reasonable limits (see previous comment). Just reallocate.
853 */
854 if (packet->pages_alloc > p->pages->allocated) {
855 multifd_pages_clear(p->pages);
856 p->pages = multifd_pages_init(packet->pages_alloc);
857 }
858
859 p->pages->used = be32_to_cpu(packet->pages_used);
860 if (p->pages->used > packet->pages_alloc) {
861 error_setg(errp, "multifd: received packet "
862 "with %d pages and expected maximum pages are %d",
863 p->pages->used, packet->pages_alloc) ;
864 return -1;
865 }
866
867 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
868 p->packet_num = be64_to_cpu(packet->packet_num);
869
870 if (p->pages->used) {
871 /* make sure that ramblock is 0 terminated */
872 packet->ramblock[255] = 0;
873 block = qemu_ram_block_by_name(packet->ramblock);
874 if (!block) {
875 error_setg(errp, "multifd: unknown ram block %s",
876 packet->ramblock);
877 return -1;
878 }
879 }
880
881 for (i = 0; i < p->pages->used; i++) {
882 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
883
884 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
885 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
886 " (max " RAM_ADDR_FMT ")",
887 offset, block->max_length);
888 return -1;
889 }
890 p->pages->iov[i].iov_base = block->host + offset;
891 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
892 }
893
894 return 0;
895 }
896
897 struct {
898 MultiFDSendParams *params;
899 /* array of pages to sent */
900 MultiFDPages_t *pages;
901 /* global number of generated multifd packets */
902 uint64_t packet_num;
903 /* send channels ready */
904 QemuSemaphore channels_ready;
905 } *multifd_send_state;
906
907 /*
908 * How we use multifd_send_state->pages and channel->pages?
909 *
910 * We create a pages for each channel, and a main one. Each time that
911 * we need to send a batch of pages we interchange the ones between
912 * multifd_send_state and the channel that is sending it. There are
913 * two reasons for that:
914 * - to not have to do so many mallocs during migration
915 * - to make easier to know what to free at the end of migration
916 *
917 * This way we always know who is the owner of each "pages" struct,
918 * and we don't need any locking. It belongs to the migration thread
919 * or to the channel thread. Switching is safe because the migration
920 * thread is using the channel mutex when changing it, and the channel
921 * have to had finish with its own, otherwise pending_job can't be
922 * false.
923 */
924
925 static int multifd_send_pages(RAMState *rs)
926 {
927 int i;
928 static int next_channel;
929 MultiFDSendParams *p = NULL; /* make happy gcc */
930 MultiFDPages_t *pages = multifd_send_state->pages;
931 uint64_t transferred;
932
933 qemu_sem_wait(&multifd_send_state->channels_ready);
934 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
935 p = &multifd_send_state->params[i];
936
937 qemu_mutex_lock(&p->mutex);
938 if (p->quit) {
939 error_report("%s: channel %d has already quit!", __func__, i);
940 qemu_mutex_unlock(&p->mutex);
941 return -1;
942 }
943 if (!p->pending_job) {
944 p->pending_job++;
945 next_channel = (i + 1) % migrate_multifd_channels();
946 break;
947 }
948 qemu_mutex_unlock(&p->mutex);
949 }
950 p->pages->used = 0;
951
952 p->packet_num = multifd_send_state->packet_num++;
953 p->pages->block = NULL;
954 multifd_send_state->pages = p->pages;
955 p->pages = pages;
956 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
957 qemu_file_update_transfer(rs->f, transferred);
958 ram_counters.multifd_bytes += transferred;
959 ram_counters.transferred += transferred;;
960 qemu_mutex_unlock(&p->mutex);
961 qemu_sem_post(&p->sem);
962
963 return 1;
964 }
965
966 static int multifd_queue_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
967 {
968 MultiFDPages_t *pages = multifd_send_state->pages;
969
970 if (!pages->block) {
971 pages->block = block;
972 }
973
974 if (pages->block == block) {
975 pages->offset[pages->used] = offset;
976 pages->iov[pages->used].iov_base = block->host + offset;
977 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
978 pages->used++;
979
980 if (pages->used < pages->allocated) {
981 return 1;
982 }
983 }
984
985 if (multifd_send_pages(rs) < 0) {
986 return -1;
987 }
988
989 if (pages->block != block) {
990 return multifd_queue_page(rs, block, offset);
991 }
992
993 return 1;
994 }
995
996 static void multifd_send_terminate_threads(Error *err)
997 {
998 int i;
999
1000 trace_multifd_send_terminate_threads(err != NULL);
1001
1002 if (err) {
1003 MigrationState *s = migrate_get_current();
1004 migrate_set_error(s, err);
1005 if (s->state == MIGRATION_STATUS_SETUP ||
1006 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
1007 s->state == MIGRATION_STATUS_DEVICE ||
1008 s->state == MIGRATION_STATUS_ACTIVE) {
1009 migrate_set_state(&s->state, s->state,
1010 MIGRATION_STATUS_FAILED);
1011 }
1012 }
1013
1014 for (i = 0; i < migrate_multifd_channels(); i++) {
1015 MultiFDSendParams *p = &multifd_send_state->params[i];
1016
1017 qemu_mutex_lock(&p->mutex);
1018 p->quit = true;
1019 qemu_sem_post(&p->sem);
1020 qemu_mutex_unlock(&p->mutex);
1021 }
1022 }
1023
1024 void multifd_save_cleanup(void)
1025 {
1026 int i;
1027
1028 if (!migrate_use_multifd()) {
1029 return;
1030 }
1031 multifd_send_terminate_threads(NULL);
1032 for (i = 0; i < migrate_multifd_channels(); i++) {
1033 MultiFDSendParams *p = &multifd_send_state->params[i];
1034
1035 if (p->running) {
1036 qemu_thread_join(&p->thread);
1037 }
1038 socket_send_channel_destroy(p->c);
1039 p->c = NULL;
1040 qemu_mutex_destroy(&p->mutex);
1041 qemu_sem_destroy(&p->sem);
1042 qemu_sem_destroy(&p->sem_sync);
1043 g_free(p->name);
1044 p->name = NULL;
1045 multifd_pages_clear(p->pages);
1046 p->pages = NULL;
1047 p->packet_len = 0;
1048 g_free(p->packet);
1049 p->packet = NULL;
1050 }
1051 qemu_sem_destroy(&multifd_send_state->channels_ready);
1052 g_free(multifd_send_state->params);
1053 multifd_send_state->params = NULL;
1054 multifd_pages_clear(multifd_send_state->pages);
1055 multifd_send_state->pages = NULL;
1056 g_free(multifd_send_state);
1057 multifd_send_state = NULL;
1058 }
1059
1060 static void multifd_send_sync_main(RAMState *rs)
1061 {
1062 int i;
1063
1064 if (!migrate_use_multifd()) {
1065 return;
1066 }
1067 if (multifd_send_state->pages->used) {
1068 if (multifd_send_pages(rs) < 0) {
1069 error_report("%s: multifd_send_pages fail", __func__);
1070 return;
1071 }
1072 }
1073 for (i = 0; i < migrate_multifd_channels(); i++) {
1074 MultiFDSendParams *p = &multifd_send_state->params[i];
1075
1076 trace_multifd_send_sync_main_signal(p->id);
1077
1078 qemu_mutex_lock(&p->mutex);
1079
1080 if (p->quit) {
1081 error_report("%s: channel %d has already quit", __func__, i);
1082 qemu_mutex_unlock(&p->mutex);
1083 return;
1084 }
1085
1086 p->packet_num = multifd_send_state->packet_num++;
1087 p->flags |= MULTIFD_FLAG_SYNC;
1088 p->pending_job++;
1089 qemu_file_update_transfer(rs->f, p->packet_len);
1090 ram_counters.multifd_bytes += p->packet_len;
1091 ram_counters.transferred += p->packet_len;
1092 qemu_mutex_unlock(&p->mutex);
1093 qemu_sem_post(&p->sem);
1094 }
1095 for (i = 0; i < migrate_multifd_channels(); i++) {
1096 MultiFDSendParams *p = &multifd_send_state->params[i];
1097
1098 trace_multifd_send_sync_main_wait(p->id);
1099 qemu_sem_wait(&p->sem_sync);
1100 }
1101 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1102 }
1103
1104 static void *multifd_send_thread(void *opaque)
1105 {
1106 MultiFDSendParams *p = opaque;
1107 Error *local_err = NULL;
1108 int ret = 0;
1109 uint32_t flags = 0;
1110
1111 trace_multifd_send_thread_start(p->id);
1112 rcu_register_thread();
1113
1114 if (multifd_send_initial_packet(p, &local_err) < 0) {
1115 ret = -1;
1116 goto out;
1117 }
1118 /* initial packet */
1119 p->num_packets = 1;
1120
1121 while (true) {
1122 qemu_sem_wait(&p->sem);
1123 qemu_mutex_lock(&p->mutex);
1124
1125 if (p->pending_job) {
1126 uint32_t used = p->pages->used;
1127 uint64_t packet_num = p->packet_num;
1128 flags = p->flags;
1129
1130 p->next_packet_size = used * qemu_target_page_size();
1131 multifd_send_fill_packet(p);
1132 p->flags = 0;
1133 p->num_packets++;
1134 p->num_pages += used;
1135 p->pages->used = 0;
1136 qemu_mutex_unlock(&p->mutex);
1137
1138 trace_multifd_send(p->id, packet_num, used, flags,
1139 p->next_packet_size);
1140
1141 ret = qio_channel_write_all(p->c, (void *)p->packet,
1142 p->packet_len, &local_err);
1143 if (ret != 0) {
1144 break;
1145 }
1146
1147 if (used) {
1148 ret = qio_channel_writev_all(p->c, p->pages->iov,
1149 used, &local_err);
1150 if (ret != 0) {
1151 break;
1152 }
1153 }
1154
1155 qemu_mutex_lock(&p->mutex);
1156 p->pending_job--;
1157 qemu_mutex_unlock(&p->mutex);
1158
1159 if (flags & MULTIFD_FLAG_SYNC) {
1160 qemu_sem_post(&p->sem_sync);
1161 }
1162 qemu_sem_post(&multifd_send_state->channels_ready);
1163 } else if (p->quit) {
1164 qemu_mutex_unlock(&p->mutex);
1165 break;
1166 } else {
1167 qemu_mutex_unlock(&p->mutex);
1168 /* sometimes there are spurious wakeups */
1169 }
1170 }
1171
1172 out:
1173 if (local_err) {
1174 trace_multifd_send_error(p->id);
1175 multifd_send_terminate_threads(local_err);
1176 }
1177
1178 /*
1179 * Error happen, I will exit, but I can't just leave, tell
1180 * who pay attention to me.
1181 */
1182 if (ret != 0) {
1183 qemu_sem_post(&p->sem_sync);
1184 qemu_sem_post(&multifd_send_state->channels_ready);
1185 }
1186
1187 qemu_mutex_lock(&p->mutex);
1188 p->running = false;
1189 qemu_mutex_unlock(&p->mutex);
1190
1191 rcu_unregister_thread();
1192 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1193
1194 return NULL;
1195 }
1196
1197 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1198 {
1199 MultiFDSendParams *p = opaque;
1200 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1201 Error *local_err = NULL;
1202
1203 trace_multifd_new_send_channel_async(p->id);
1204 if (qio_task_propagate_error(task, &local_err)) {
1205 migrate_set_error(migrate_get_current(), local_err);
1206 multifd_save_cleanup();
1207 } else {
1208 p->c = QIO_CHANNEL(sioc);
1209 qio_channel_set_delay(p->c, false);
1210 p->running = true;
1211 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1212 QEMU_THREAD_JOINABLE);
1213 }
1214 }
1215
1216 int multifd_save_setup(void)
1217 {
1218 int thread_count;
1219 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1220 uint8_t i;
1221
1222 if (!migrate_use_multifd()) {
1223 return 0;
1224 }
1225 thread_count = migrate_multifd_channels();
1226 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1227 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1228 multifd_send_state->pages = multifd_pages_init(page_count);
1229 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1230
1231 for (i = 0; i < thread_count; i++) {
1232 MultiFDSendParams *p = &multifd_send_state->params[i];
1233
1234 qemu_mutex_init(&p->mutex);
1235 qemu_sem_init(&p->sem, 0);
1236 qemu_sem_init(&p->sem_sync, 0);
1237 p->quit = false;
1238 p->pending_job = 0;
1239 p->id = i;
1240 p->pages = multifd_pages_init(page_count);
1241 p->packet_len = sizeof(MultiFDPacket_t)
1242 + sizeof(ram_addr_t) * page_count;
1243 p->packet = g_malloc0(p->packet_len);
1244 p->name = g_strdup_printf("multifdsend_%d", i);
1245 socket_send_channel_create(multifd_new_send_channel_async, p);
1246 }
1247 return 0;
1248 }
1249
1250 struct {
1251 MultiFDRecvParams *params;
1252 /* number of created threads */
1253 int count;
1254 /* syncs main thread and channels */
1255 QemuSemaphore sem_sync;
1256 /* global number of generated multifd packets */
1257 uint64_t packet_num;
1258 } *multifd_recv_state;
1259
1260 static void multifd_recv_terminate_threads(Error *err)
1261 {
1262 int i;
1263
1264 trace_multifd_recv_terminate_threads(err != NULL);
1265
1266 if (err) {
1267 MigrationState *s = migrate_get_current();
1268 migrate_set_error(s, err);
1269 if (s->state == MIGRATION_STATUS_SETUP ||
1270 s->state == MIGRATION_STATUS_ACTIVE) {
1271 migrate_set_state(&s->state, s->state,
1272 MIGRATION_STATUS_FAILED);
1273 }
1274 }
1275
1276 for (i = 0; i < migrate_multifd_channels(); i++) {
1277 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1278
1279 qemu_mutex_lock(&p->mutex);
1280 p->quit = true;
1281 /* We could arrive here for two reasons:
1282 - normal quit, i.e. everything went fine, just finished
1283 - error quit: We close the channels so the channel threads
1284 finish the qio_channel_read_all_eof() */
1285 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1286 qemu_mutex_unlock(&p->mutex);
1287 }
1288 }
1289
1290 int multifd_load_cleanup(Error **errp)
1291 {
1292 int i;
1293 int ret = 0;
1294
1295 if (!migrate_use_multifd()) {
1296 return 0;
1297 }
1298 multifd_recv_terminate_threads(NULL);
1299 for (i = 0; i < migrate_multifd_channels(); i++) {
1300 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1301
1302 if (p->running) {
1303 p->quit = true;
1304 /*
1305 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
1306 * however try to wakeup it without harm in cleanup phase.
1307 */
1308 qemu_sem_post(&p->sem_sync);
1309 qemu_thread_join(&p->thread);
1310 }
1311 object_unref(OBJECT(p->c));
1312 p->c = NULL;
1313 qemu_mutex_destroy(&p->mutex);
1314 qemu_sem_destroy(&p->sem_sync);
1315 g_free(p->name);
1316 p->name = NULL;
1317 multifd_pages_clear(p->pages);
1318 p->pages = NULL;
1319 p->packet_len = 0;
1320 g_free(p->packet);
1321 p->packet = NULL;
1322 }
1323 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1324 g_free(multifd_recv_state->params);
1325 multifd_recv_state->params = NULL;
1326 g_free(multifd_recv_state);
1327 multifd_recv_state = NULL;
1328
1329 return ret;
1330 }
1331
1332 static void multifd_recv_sync_main(void)
1333 {
1334 int i;
1335
1336 if (!migrate_use_multifd()) {
1337 return;
1338 }
1339 for (i = 0; i < migrate_multifd_channels(); i++) {
1340 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1341
1342 trace_multifd_recv_sync_main_wait(p->id);
1343 qemu_sem_wait(&multifd_recv_state->sem_sync);
1344 }
1345 for (i = 0; i < migrate_multifd_channels(); i++) {
1346 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1347
1348 qemu_mutex_lock(&p->mutex);
1349 if (multifd_recv_state->packet_num < p->packet_num) {
1350 multifd_recv_state->packet_num = p->packet_num;
1351 }
1352 qemu_mutex_unlock(&p->mutex);
1353 trace_multifd_recv_sync_main_signal(p->id);
1354 qemu_sem_post(&p->sem_sync);
1355 }
1356 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1357 }
1358
1359 static void *multifd_recv_thread(void *opaque)
1360 {
1361 MultiFDRecvParams *p = opaque;
1362 Error *local_err = NULL;
1363 int ret;
1364
1365 trace_multifd_recv_thread_start(p->id);
1366 rcu_register_thread();
1367
1368 while (true) {
1369 uint32_t used;
1370 uint32_t flags;
1371
1372 if (p->quit) {
1373 break;
1374 }
1375
1376 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1377 p->packet_len, &local_err);
1378 if (ret == 0) { /* EOF */
1379 break;
1380 }
1381 if (ret == -1) { /* Error */
1382 break;
1383 }
1384
1385 qemu_mutex_lock(&p->mutex);
1386 ret = multifd_recv_unfill_packet(p, &local_err);
1387 if (ret) {
1388 qemu_mutex_unlock(&p->mutex);
1389 break;
1390 }
1391
1392 used = p->pages->used;
1393 flags = p->flags;
1394 trace_multifd_recv(p->id, p->packet_num, used, flags,
1395 p->next_packet_size);
1396 p->num_packets++;
1397 p->num_pages += used;
1398 qemu_mutex_unlock(&p->mutex);
1399
1400 if (used) {
1401 ret = qio_channel_readv_all(p->c, p->pages->iov,
1402 used, &local_err);
1403 if (ret != 0) {
1404 break;
1405 }
1406 }
1407
1408 if (flags & MULTIFD_FLAG_SYNC) {
1409 qemu_sem_post(&multifd_recv_state->sem_sync);
1410 qemu_sem_wait(&p->sem_sync);
1411 }
1412 }
1413
1414 if (local_err) {
1415 multifd_recv_terminate_threads(local_err);
1416 }
1417 qemu_mutex_lock(&p->mutex);
1418 p->running = false;
1419 qemu_mutex_unlock(&p->mutex);
1420
1421 rcu_unregister_thread();
1422 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1423
1424 return NULL;
1425 }
1426
1427 int multifd_load_setup(void)
1428 {
1429 int thread_count;
1430 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1431 uint8_t i;
1432
1433 if (!migrate_use_multifd()) {
1434 return 0;
1435 }
1436 thread_count = migrate_multifd_channels();
1437 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1438 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1439 atomic_set(&multifd_recv_state->count, 0);
1440 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1441
1442 for (i = 0; i < thread_count; i++) {
1443 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1444
1445 qemu_mutex_init(&p->mutex);
1446 qemu_sem_init(&p->sem_sync, 0);
1447 p->quit = false;
1448 p->id = i;
1449 p->pages = multifd_pages_init(page_count);
1450 p->packet_len = sizeof(MultiFDPacket_t)
1451 + sizeof(ram_addr_t) * page_count;
1452 p->packet = g_malloc0(p->packet_len);
1453 p->name = g_strdup_printf("multifdrecv_%d", i);
1454 }
1455 return 0;
1456 }
1457
1458 bool multifd_recv_all_channels_created(void)
1459 {
1460 int thread_count = migrate_multifd_channels();
1461
1462 if (!migrate_use_multifd()) {
1463 return true;
1464 }
1465
1466 return thread_count == atomic_read(&multifd_recv_state->count);
1467 }
1468
1469 /*
1470 * Try to receive all multifd channels to get ready for the migration.
1471 * - Return true and do not set @errp when correctly receving all channels;
1472 * - Return false and do not set @errp when correctly receiving the current one;
1473 * - Return false and set @errp when failing to receive the current channel.
1474 */
1475 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1476 {
1477 MultiFDRecvParams *p;
1478 Error *local_err = NULL;
1479 int id;
1480
1481 id = multifd_recv_initial_packet(ioc, &local_err);
1482 if (id < 0) {
1483 multifd_recv_terminate_threads(local_err);
1484 error_propagate_prepend(errp, local_err,
1485 "failed to receive packet"
1486 " via multifd channel %d: ",
1487 atomic_read(&multifd_recv_state->count));
1488 return false;
1489 }
1490 trace_multifd_recv_new_channel(id);
1491
1492 p = &multifd_recv_state->params[id];
1493 if (p->c != NULL) {
1494 error_setg(&local_err, "multifd: received id '%d' already setup'",
1495 id);
1496 multifd_recv_terminate_threads(local_err);
1497 error_propagate(errp, local_err);
1498 return false;
1499 }
1500 p->c = ioc;
1501 object_ref(OBJECT(ioc));
1502 /* initial packet */
1503 p->num_packets = 1;
1504
1505 p->running = true;
1506 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1507 QEMU_THREAD_JOINABLE);
1508 atomic_inc(&multifd_recv_state->count);
1509 return atomic_read(&multifd_recv_state->count) ==
1510 migrate_multifd_channels();
1511 }
1512
1513 /**
1514 * save_page_header: write page header to wire
1515 *
1516 * If this is the 1st block, it also writes the block identification
1517 *
1518 * Returns the number of bytes written
1519 *
1520 * @f: QEMUFile where to send the data
1521 * @block: block that contains the page we want to send
1522 * @offset: offset inside the block for the page
1523 * in the lower bits, it contains flags
1524 */
1525 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1526 ram_addr_t offset)
1527 {
1528 size_t size, len;
1529
1530 if (block == rs->last_sent_block) {
1531 offset |= RAM_SAVE_FLAG_CONTINUE;
1532 }
1533 qemu_put_be64(f, offset);
1534 size = 8;
1535
1536 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1537 len = strlen(block->idstr);
1538 qemu_put_byte(f, len);
1539 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1540 size += 1 + len;
1541 rs->last_sent_block = block;
1542 }
1543 return size;
1544 }
1545
1546 /**
1547 * mig_throttle_guest_down: throotle down the guest
1548 *
1549 * Reduce amount of guest cpu execution to hopefully slow down memory
1550 * writes. If guest dirty memory rate is reduced below the rate at
1551 * which we can transfer pages to the destination then we should be
1552 * able to complete migration. Some workloads dirty memory way too
1553 * fast and will not effectively converge, even with auto-converge.
1554 */
1555 static void mig_throttle_guest_down(void)
1556 {
1557 MigrationState *s = migrate_get_current();
1558 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1559 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1560 int pct_max = s->parameters.max_cpu_throttle;
1561
1562 /* We have not started throttling yet. Let's start it. */
1563 if (!cpu_throttle_active()) {
1564 cpu_throttle_set(pct_initial);
1565 } else {
1566 /* Throttling already on, just increase the rate */
1567 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1568 pct_max));
1569 }
1570 }
1571
1572 /**
1573 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1574 *
1575 * @rs: current RAM state
1576 * @current_addr: address for the zero page
1577 *
1578 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1579 * The important thing is that a stale (not-yet-0'd) page be replaced
1580 * by the new data.
1581 * As a bonus, if the page wasn't in the cache it gets added so that
1582 * when a small write is made into the 0'd page it gets XBZRLE sent.
1583 */
1584 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1585 {
1586 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1587 return;
1588 }
1589
1590 /* We don't care if this fails to allocate a new cache page
1591 * as long as it updated an old one */
1592 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1593 ram_counters.dirty_sync_count);
1594 }
1595
1596 #define ENCODING_FLAG_XBZRLE 0x1
1597
1598 /**
1599 * save_xbzrle_page: compress and send current page
1600 *
1601 * Returns: 1 means that we wrote the page
1602 * 0 means that page is identical to the one already sent
1603 * -1 means that xbzrle would be longer than normal
1604 *
1605 * @rs: current RAM state
1606 * @current_data: pointer to the address of the page contents
1607 * @current_addr: addr of the page
1608 * @block: block that contains the page we want to send
1609 * @offset: offset inside the block for the page
1610 * @last_stage: if we are at the completion stage
1611 */
1612 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1613 ram_addr_t current_addr, RAMBlock *block,
1614 ram_addr_t offset, bool last_stage)
1615 {
1616 int encoded_len = 0, bytes_xbzrle;
1617 uint8_t *prev_cached_page;
1618
1619 if (!cache_is_cached(XBZRLE.cache, current_addr,
1620 ram_counters.dirty_sync_count)) {
1621 xbzrle_counters.cache_miss++;
1622 if (!last_stage) {
1623 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1624 ram_counters.dirty_sync_count) == -1) {
1625 return -1;
1626 } else {
1627 /* update *current_data when the page has been
1628 inserted into cache */
1629 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1630 }
1631 }
1632 return -1;
1633 }
1634
1635 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1636
1637 /* save current buffer into memory */
1638 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1639
1640 /* XBZRLE encoding (if there is no overflow) */
1641 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1642 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1643 TARGET_PAGE_SIZE);
1644
1645 /*
1646 * Update the cache contents, so that it corresponds to the data
1647 * sent, in all cases except where we skip the page.
1648 */
1649 if (!last_stage && encoded_len != 0) {
1650 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1651 /*
1652 * In the case where we couldn't compress, ensure that the caller
1653 * sends the data from the cache, since the guest might have
1654 * changed the RAM since we copied it.
1655 */
1656 *current_data = prev_cached_page;
1657 }
1658
1659 if (encoded_len == 0) {
1660 trace_save_xbzrle_page_skipping();
1661 return 0;
1662 } else if (encoded_len == -1) {
1663 trace_save_xbzrle_page_overflow();
1664 xbzrle_counters.overflow++;
1665 return -1;
1666 }
1667
1668 /* Send XBZRLE based compressed page */
1669 bytes_xbzrle = save_page_header(rs, rs->f, block,
1670 offset | RAM_SAVE_FLAG_XBZRLE);
1671 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1672 qemu_put_be16(rs->f, encoded_len);
1673 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1674 bytes_xbzrle += encoded_len + 1 + 2;
1675 xbzrle_counters.pages++;
1676 xbzrle_counters.bytes += bytes_xbzrle;
1677 ram_counters.transferred += bytes_xbzrle;
1678
1679 return 1;
1680 }
1681
1682 /**
1683 * migration_bitmap_find_dirty: find the next dirty page from start
1684 *
1685 * Returns the page offset within memory region of the start of a dirty page
1686 *
1687 * @rs: current RAM state
1688 * @rb: RAMBlock where to search for dirty pages
1689 * @start: page where we start the search
1690 */
1691 static inline
1692 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1693 unsigned long start)
1694 {
1695 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1696 unsigned long *bitmap = rb->bmap;
1697 unsigned long next;
1698
1699 if (ramblock_is_ignored(rb)) {
1700 return size;
1701 }
1702
1703 /*
1704 * When the free page optimization is enabled, we need to check the bitmap
1705 * to send the non-free pages rather than all the pages in the bulk stage.
1706 */
1707 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1708 next = start + 1;
1709 } else {
1710 next = find_next_bit(bitmap, size, start);
1711 }
1712
1713 return next;
1714 }
1715
1716 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1717 RAMBlock *rb,
1718 unsigned long page)
1719 {
1720 bool ret;
1721
1722 qemu_mutex_lock(&rs->bitmap_mutex);
1723
1724 /*
1725 * Clear dirty bitmap if needed. This _must_ be called before we
1726 * send any of the page in the chunk because we need to make sure
1727 * we can capture further page content changes when we sync dirty
1728 * log the next time. So as long as we are going to send any of
1729 * the page in the chunk we clear the remote dirty bitmap for all.
1730 * Clearing it earlier won't be a problem, but too late will.
1731 */
1732 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1733 uint8_t shift = rb->clear_bmap_shift;
1734 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1735 hwaddr start = (page << TARGET_PAGE_BITS) & (-size);
1736
1737 /*
1738 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1739 * can make things easier sometimes since then start address
1740 * of the small chunk will always be 64 pages aligned so the
1741 * bitmap will always be aligned to unsigned long. We should
1742 * even be able to remove this restriction but I'm simply
1743 * keeping it.
1744 */
1745 assert(shift >= 6);
1746 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1747 memory_region_clear_dirty_bitmap(rb->mr, start, size);
1748 }
1749
1750 ret = test_and_clear_bit(page, rb->bmap);
1751
1752 if (ret) {
1753 rs->migration_dirty_pages--;
1754 }
1755 qemu_mutex_unlock(&rs->bitmap_mutex);
1756
1757 return ret;
1758 }
1759
1760 /* Called with RCU critical section */
1761 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
1762 {
1763 rs->migration_dirty_pages +=
1764 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length,
1765 &rs->num_dirty_pages_period);
1766 }
1767
1768 /**
1769 * ram_pagesize_summary: calculate all the pagesizes of a VM
1770 *
1771 * Returns a summary bitmap of the page sizes of all RAMBlocks
1772 *
1773 * For VMs with just normal pages this is equivalent to the host page
1774 * size. If it's got some huge pages then it's the OR of all the
1775 * different page sizes.
1776 */
1777 uint64_t ram_pagesize_summary(void)
1778 {
1779 RAMBlock *block;
1780 uint64_t summary = 0;
1781
1782 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1783 summary |= block->page_size;
1784 }
1785
1786 return summary;
1787 }
1788
1789 uint64_t ram_get_total_transferred_pages(void)
1790 {
1791 return ram_counters.normal + ram_counters.duplicate +
1792 compression_counters.pages + xbzrle_counters.pages;
1793 }
1794
1795 static void migration_update_rates(RAMState *rs, int64_t end_time)
1796 {
1797 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1798 double compressed_size;
1799
1800 /* calculate period counters */
1801 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1802 / (end_time - rs->time_last_bitmap_sync);
1803
1804 if (!page_count) {
1805 return;
1806 }
1807
1808 if (migrate_use_xbzrle()) {
1809 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1810 rs->xbzrle_cache_miss_prev) / page_count;
1811 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1812 }
1813
1814 if (migrate_use_compression()) {
1815 compression_counters.busy_rate = (double)(compression_counters.busy -
1816 rs->compress_thread_busy_prev) / page_count;
1817 rs->compress_thread_busy_prev = compression_counters.busy;
1818
1819 compressed_size = compression_counters.compressed_size -
1820 rs->compressed_size_prev;
1821 if (compressed_size) {
1822 double uncompressed_size = (compression_counters.pages -
1823 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1824
1825 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1826 compression_counters.compression_rate =
1827 uncompressed_size / compressed_size;
1828
1829 rs->compress_pages_prev = compression_counters.pages;
1830 rs->compressed_size_prev = compression_counters.compressed_size;
1831 }
1832 }
1833 }
1834
1835 static void migration_bitmap_sync(RAMState *rs)
1836 {
1837 RAMBlock *block;
1838 int64_t end_time;
1839 uint64_t bytes_xfer_now;
1840
1841 ram_counters.dirty_sync_count++;
1842
1843 if (!rs->time_last_bitmap_sync) {
1844 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1845 }
1846
1847 trace_migration_bitmap_sync_start();
1848 memory_global_dirty_log_sync();
1849
1850 qemu_mutex_lock(&rs->bitmap_mutex);
1851 rcu_read_lock();
1852 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1853 ramblock_sync_dirty_bitmap(rs, block);
1854 }
1855 ram_counters.remaining = ram_bytes_remaining();
1856 rcu_read_unlock();
1857 qemu_mutex_unlock(&rs->bitmap_mutex);
1858
1859 memory_global_after_dirty_log_sync();
1860 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1861
1862 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1863
1864 /* more than 1 second = 1000 millisecons */
1865 if (end_time > rs->time_last_bitmap_sync + 1000) {
1866 bytes_xfer_now = ram_counters.transferred;
1867
1868 /* During block migration the auto-converge logic incorrectly detects
1869 * that ram migration makes no progress. Avoid this by disabling the
1870 * throttling logic during the bulk phase of block migration. */
1871 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1872 /* The following detection logic can be refined later. For now:
1873 Check to see if the dirtied bytes is 50% more than the approx.
1874 amount of bytes that just got transferred since the last time we
1875 were in this routine. If that happens twice, start or increase
1876 throttling */
1877
1878 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1879 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1880 (++rs->dirty_rate_high_cnt >= 2)) {
1881 trace_migration_throttle();
1882 rs->dirty_rate_high_cnt = 0;
1883 mig_throttle_guest_down();
1884 }
1885 }
1886
1887 migration_update_rates(rs, end_time);
1888
1889 rs->target_page_count_prev = rs->target_page_count;
1890
1891 /* reset period counters */
1892 rs->time_last_bitmap_sync = end_time;
1893 rs->num_dirty_pages_period = 0;
1894 rs->bytes_xfer_prev = bytes_xfer_now;
1895 }
1896 if (migrate_use_events()) {
1897 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1898 }
1899 }
1900
1901 static void migration_bitmap_sync_precopy(RAMState *rs)
1902 {
1903 Error *local_err = NULL;
1904
1905 /*
1906 * The current notifier usage is just an optimization to migration, so we
1907 * don't stop the normal migration process in the error case.
1908 */
1909 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1910 error_report_err(local_err);
1911 }
1912
1913 migration_bitmap_sync(rs);
1914
1915 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1916 error_report_err(local_err);
1917 }
1918 }
1919
1920 /**
1921 * save_zero_page_to_file: send the zero page to the file
1922 *
1923 * Returns the size of data written to the file, 0 means the page is not
1924 * a zero page
1925 *
1926 * @rs: current RAM state
1927 * @file: the file where the data is saved
1928 * @block: block that contains the page we want to send
1929 * @offset: offset inside the block for the page
1930 */
1931 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1932 RAMBlock *block, ram_addr_t offset)
1933 {
1934 uint8_t *p = block->host + offset;
1935 int len = 0;
1936
1937 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1938 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1939 qemu_put_byte(file, 0);
1940 len += 1;
1941 }
1942 return len;
1943 }
1944
1945 /**
1946 * save_zero_page: send the zero page to the stream
1947 *
1948 * Returns the number of pages written.
1949 *
1950 * @rs: current RAM state
1951 * @block: block that contains the page we want to send
1952 * @offset: offset inside the block for the page
1953 */
1954 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1955 {
1956 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1957
1958 if (len) {
1959 ram_counters.duplicate++;
1960 ram_counters.transferred += len;
1961 return 1;
1962 }
1963 return -1;
1964 }
1965
1966 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1967 {
1968 if (!migrate_release_ram() || !migration_in_postcopy()) {
1969 return;
1970 }
1971
1972 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1973 }
1974
1975 /*
1976 * @pages: the number of pages written by the control path,
1977 * < 0 - error
1978 * > 0 - number of pages written
1979 *
1980 * Return true if the pages has been saved, otherwise false is returned.
1981 */
1982 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1983 int *pages)
1984 {
1985 uint64_t bytes_xmit = 0;
1986 int ret;
1987
1988 *pages = -1;
1989 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1990 &bytes_xmit);
1991 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1992 return false;
1993 }
1994
1995 if (bytes_xmit) {
1996 ram_counters.transferred += bytes_xmit;
1997 *pages = 1;
1998 }
1999
2000 if (ret == RAM_SAVE_CONTROL_DELAYED) {
2001 return true;
2002 }
2003
2004 if (bytes_xmit > 0) {
2005 ram_counters.normal++;
2006 } else if (bytes_xmit == 0) {
2007 ram_counters.duplicate++;
2008 }
2009
2010 return true;
2011 }
2012
2013 /*
2014 * directly send the page to the stream
2015 *
2016 * Returns the number of pages written.
2017 *
2018 * @rs: current RAM state
2019 * @block: block that contains the page we want to send
2020 * @offset: offset inside the block for the page
2021 * @buf: the page to be sent
2022 * @async: send to page asyncly
2023 */
2024 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2025 uint8_t *buf, bool async)
2026 {
2027 ram_counters.transferred += save_page_header(rs, rs->f, block,
2028 offset | RAM_SAVE_FLAG_PAGE);
2029 if (async) {
2030 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
2031 migrate_release_ram() &
2032 migration_in_postcopy());
2033 } else {
2034 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
2035 }
2036 ram_counters.transferred += TARGET_PAGE_SIZE;
2037 ram_counters.normal++;
2038 return 1;
2039 }
2040
2041 /**
2042 * ram_save_page: send the given page to the stream
2043 *
2044 * Returns the number of pages written.
2045 * < 0 - error
2046 * >=0 - Number of pages written - this might legally be 0
2047 * if xbzrle noticed the page was the same.
2048 *
2049 * @rs: current RAM state
2050 * @block: block that contains the page we want to send
2051 * @offset: offset inside the block for the page
2052 * @last_stage: if we are at the completion stage
2053 */
2054 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
2055 {
2056 int pages = -1;
2057 uint8_t *p;
2058 bool send_async = true;
2059 RAMBlock *block = pss->block;
2060 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2061 ram_addr_t current_addr = block->offset + offset;
2062
2063 p = block->host + offset;
2064 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
2065
2066 XBZRLE_cache_lock();
2067 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2068 migrate_use_xbzrle()) {
2069 pages = save_xbzrle_page(rs, &p, current_addr, block,
2070 offset, last_stage);
2071 if (!last_stage) {
2072 /* Can't send this cached data async, since the cache page
2073 * might get updated before it gets to the wire
2074 */
2075 send_async = false;
2076 }
2077 }
2078
2079 /* XBZRLE overflow or normal page */
2080 if (pages == -1) {
2081 pages = save_normal_page(rs, block, offset, p, send_async);
2082 }
2083
2084 XBZRLE_cache_unlock();
2085
2086 return pages;
2087 }
2088
2089 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2090 ram_addr_t offset)
2091 {
2092 if (multifd_queue_page(rs, block, offset) < 0) {
2093 return -1;
2094 }
2095 ram_counters.normal++;
2096
2097 return 1;
2098 }
2099
2100 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
2101 ram_addr_t offset, uint8_t *source_buf)
2102 {
2103 RAMState *rs = ram_state;
2104 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
2105 bool zero_page = false;
2106 int ret;
2107
2108 if (save_zero_page_to_file(rs, f, block, offset)) {
2109 zero_page = true;
2110 goto exit;
2111 }
2112
2113 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
2114
2115 /*
2116 * copy it to a internal buffer to avoid it being modified by VM
2117 * so that we can catch up the error during compression and
2118 * decompression
2119 */
2120 memcpy(source_buf, p, TARGET_PAGE_SIZE);
2121 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2122 if (ret < 0) {
2123 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2124 error_report("compressed data failed!");
2125 return false;
2126 }
2127
2128 exit:
2129 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2130 return zero_page;
2131 }
2132
2133 static void
2134 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2135 {
2136 ram_counters.transferred += bytes_xmit;
2137
2138 if (param->zero_page) {
2139 ram_counters.duplicate++;
2140 return;
2141 }
2142
2143 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2144 compression_counters.compressed_size += bytes_xmit - 8;
2145 compression_counters.pages++;
2146 }
2147
2148 static bool save_page_use_compression(RAMState *rs);
2149
2150 static void flush_compressed_data(RAMState *rs)
2151 {
2152 int idx, len, thread_count;
2153
2154 if (!save_page_use_compression(rs)) {
2155 return;
2156 }
2157 thread_count = migrate_compress_threads();
2158
2159 qemu_mutex_lock(&comp_done_lock);
2160 for (idx = 0; idx < thread_count; idx++) {
2161 while (!comp_param[idx].done) {
2162 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2163 }
2164 }
2165 qemu_mutex_unlock(&comp_done_lock);
2166
2167 for (idx = 0; idx < thread_count; idx++) {
2168 qemu_mutex_lock(&comp_param[idx].mutex);
2169 if (!comp_param[idx].quit) {
2170 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2171 /*
2172 * it's safe to fetch zero_page without holding comp_done_lock
2173 * as there is no further request submitted to the thread,
2174 * i.e, the thread should be waiting for a request at this point.
2175 */
2176 update_compress_thread_counts(&comp_param[idx], len);
2177 }
2178 qemu_mutex_unlock(&comp_param[idx].mutex);
2179 }
2180 }
2181
2182 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2183 ram_addr_t offset)
2184 {
2185 param->block = block;
2186 param->offset = offset;
2187 }
2188
2189 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2190 ram_addr_t offset)
2191 {
2192 int idx, thread_count, bytes_xmit = -1, pages = -1;
2193 bool wait = migrate_compress_wait_thread();
2194
2195 thread_count = migrate_compress_threads();
2196 qemu_mutex_lock(&comp_done_lock);
2197 retry:
2198 for (idx = 0; idx < thread_count; idx++) {
2199 if (comp_param[idx].done) {
2200 comp_param[idx].done = false;
2201 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2202 qemu_mutex_lock(&comp_param[idx].mutex);
2203 set_compress_params(&comp_param[idx], block, offset);
2204 qemu_cond_signal(&comp_param[idx].cond);
2205 qemu_mutex_unlock(&comp_param[idx].mutex);
2206 pages = 1;
2207 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2208 break;
2209 }
2210 }
2211
2212 /*
2213 * wait for the free thread if the user specifies 'compress-wait-thread',
2214 * otherwise we will post the page out in the main thread as normal page.
2215 */
2216 if (pages < 0 && wait) {
2217 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2218 goto retry;
2219 }
2220 qemu_mutex_unlock(&comp_done_lock);
2221
2222 return pages;
2223 }
2224
2225 /**
2226 * find_dirty_block: find the next dirty page and update any state
2227 * associated with the search process.
2228 *
2229 * Returns true if a page is found
2230 *
2231 * @rs: current RAM state
2232 * @pss: data about the state of the current dirty page scan
2233 * @again: set to false if the search has scanned the whole of RAM
2234 */
2235 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2236 {
2237 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2238 if (pss->complete_round && pss->block == rs->last_seen_block &&
2239 pss->page >= rs->last_page) {
2240 /*
2241 * We've been once around the RAM and haven't found anything.
2242 * Give up.
2243 */
2244 *again = false;
2245 return false;
2246 }
2247 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
2248 /* Didn't find anything in this RAM Block */
2249 pss->page = 0;
2250 pss->block = QLIST_NEXT_RCU(pss->block, next);
2251 if (!pss->block) {
2252 /*
2253 * If memory migration starts over, we will meet a dirtied page
2254 * which may still exists in compression threads's ring, so we
2255 * should flush the compressed data to make sure the new page
2256 * is not overwritten by the old one in the destination.
2257 *
2258 * Also If xbzrle is on, stop using the data compression at this
2259 * point. In theory, xbzrle can do better than compression.
2260 */
2261 flush_compressed_data(rs);
2262
2263 /* Hit the end of the list */
2264 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2265 /* Flag that we've looped */
2266 pss->complete_round = true;
2267 rs->ram_bulk_stage = false;
2268 }
2269 /* Didn't find anything this time, but try again on the new block */
2270 *again = true;
2271 return false;
2272 } else {
2273 /* Can go around again, but... */
2274 *again = true;
2275 /* We've found something so probably don't need to */
2276 return true;
2277 }
2278 }
2279
2280 /**
2281 * unqueue_page: gets a page of the queue
2282 *
2283 * Helper for 'get_queued_page' - gets a page off the queue
2284 *
2285 * Returns the block of the page (or NULL if none available)
2286 *
2287 * @rs: current RAM state
2288 * @offset: used to return the offset within the RAMBlock
2289 */
2290 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2291 {
2292 RAMBlock *block = NULL;
2293
2294 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2295 return NULL;
2296 }
2297
2298 qemu_mutex_lock(&rs->src_page_req_mutex);
2299 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2300 struct RAMSrcPageRequest *entry =
2301 QSIMPLEQ_FIRST(&rs->src_page_requests);
2302 block = entry->rb;
2303 *offset = entry->offset;
2304
2305 if (entry->len > TARGET_PAGE_SIZE) {
2306 entry->len -= TARGET_PAGE_SIZE;
2307 entry->offset += TARGET_PAGE_SIZE;
2308 } else {
2309 memory_region_unref(block->mr);
2310 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2311 g_free(entry);
2312 migration_consume_urgent_request();
2313 }
2314 }
2315 qemu_mutex_unlock(&rs->src_page_req_mutex);
2316
2317 return block;
2318 }
2319
2320 /**
2321 * get_queued_page: unqueue a page from the postcopy requests
2322 *
2323 * Skips pages that are already sent (!dirty)
2324 *
2325 * Returns true if a queued page is found
2326 *
2327 * @rs: current RAM state
2328 * @pss: data about the state of the current dirty page scan
2329 */
2330 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2331 {
2332 RAMBlock *block;
2333 ram_addr_t offset;
2334 bool dirty;
2335
2336 do {
2337 block = unqueue_page(rs, &offset);
2338 /*
2339 * We're sending this page, and since it's postcopy nothing else
2340 * will dirty it, and we must make sure it doesn't get sent again
2341 * even if this queue request was received after the background
2342 * search already sent it.
2343 */
2344 if (block) {
2345 unsigned long page;
2346
2347 page = offset >> TARGET_PAGE_BITS;
2348 dirty = test_bit(page, block->bmap);
2349 if (!dirty) {
2350 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2351 page, test_bit(page, block->unsentmap));
2352 } else {
2353 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2354 }
2355 }
2356
2357 } while (block && !dirty);
2358
2359 if (block) {
2360 /*
2361 * As soon as we start servicing pages out of order, then we have
2362 * to kill the bulk stage, since the bulk stage assumes
2363 * in (migration_bitmap_find_and_reset_dirty) that every page is
2364 * dirty, that's no longer true.
2365 */
2366 rs->ram_bulk_stage = false;
2367
2368 /*
2369 * We want the background search to continue from the queued page
2370 * since the guest is likely to want other pages near to the page
2371 * it just requested.
2372 */
2373 pss->block = block;
2374 pss->page = offset >> TARGET_PAGE_BITS;
2375
2376 /*
2377 * This unqueued page would break the "one round" check, even is
2378 * really rare.
2379 */
2380 pss->complete_round = false;
2381 }
2382
2383 return !!block;
2384 }
2385
2386 /**
2387 * migration_page_queue_free: drop any remaining pages in the ram
2388 * request queue
2389 *
2390 * It should be empty at the end anyway, but in error cases there may
2391 * be some left. in case that there is any page left, we drop it.
2392 *
2393 */
2394 static void migration_page_queue_free(RAMState *rs)
2395 {
2396 struct RAMSrcPageRequest *mspr, *next_mspr;
2397 /* This queue generally should be empty - but in the case of a failed
2398 * migration might have some droppings in.
2399 */
2400 rcu_read_lock();
2401 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2402 memory_region_unref(mspr->rb->mr);
2403 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2404 g_free(mspr);
2405 }
2406 rcu_read_unlock();
2407 }
2408
2409 /**
2410 * ram_save_queue_pages: queue the page for transmission
2411 *
2412 * A request from postcopy destination for example.
2413 *
2414 * Returns zero on success or negative on error
2415 *
2416 * @rbname: Name of the RAMBLock of the request. NULL means the
2417 * same that last one.
2418 * @start: starting address from the start of the RAMBlock
2419 * @len: length (in bytes) to send
2420 */
2421 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2422 {
2423 RAMBlock *ramblock;
2424 RAMState *rs = ram_state;
2425
2426 ram_counters.postcopy_requests++;
2427 rcu_read_lock();
2428 if (!rbname) {
2429 /* Reuse last RAMBlock */
2430 ramblock = rs->last_req_rb;
2431
2432 if (!ramblock) {
2433 /*
2434 * Shouldn't happen, we can't reuse the last RAMBlock if
2435 * it's the 1st request.
2436 */
2437 error_report("ram_save_queue_pages no previous block");
2438 goto err;
2439 }
2440 } else {
2441 ramblock = qemu_ram_block_by_name(rbname);
2442
2443 if (!ramblock) {
2444 /* We shouldn't be asked for a non-existent RAMBlock */
2445 error_report("ram_save_queue_pages no block '%s'", rbname);
2446 goto err;
2447 }
2448 rs->last_req_rb = ramblock;
2449 }
2450 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2451 if (start+len > ramblock->used_length) {
2452 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2453 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2454 __func__, start, len, ramblock->used_length);
2455 goto err;
2456 }
2457
2458 struct RAMSrcPageRequest *new_entry =
2459 g_malloc0(sizeof(struct RAMSrcPageRequest));
2460 new_entry->rb = ramblock;
2461 new_entry->offset = start;
2462 new_entry->len = len;
2463
2464 memory_region_ref(ramblock->mr);
2465 qemu_mutex_lock(&rs->src_page_req_mutex);
2466 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2467 migration_make_urgent_request();
2468 qemu_mutex_unlock(&rs->src_page_req_mutex);
2469 rcu_read_unlock();
2470
2471 return 0;
2472
2473 err:
2474 rcu_read_unlock();
2475 return -1;
2476 }
2477
2478 static bool save_page_use_compression(RAMState *rs)
2479 {
2480 if (!migrate_use_compression()) {
2481 return false;
2482 }
2483
2484 /*
2485 * If xbzrle is on, stop using the data compression after first
2486 * round of migration even if compression is enabled. In theory,
2487 * xbzrle can do better than compression.
2488 */
2489 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2490 return true;
2491 }
2492
2493 return false;
2494 }
2495
2496 /*
2497 * try to compress the page before posting it out, return true if the page
2498 * has been properly handled by compression, otherwise needs other
2499 * paths to handle it
2500 */
2501 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2502 {
2503 if (!save_page_use_compression(rs)) {
2504 return false;
2505 }
2506
2507 /*
2508 * When starting the process of a new block, the first page of
2509 * the block should be sent out before other pages in the same
2510 * block, and all the pages in last block should have been sent
2511 * out, keeping this order is important, because the 'cont' flag
2512 * is used to avoid resending the block name.
2513 *
2514 * We post the fist page as normal page as compression will take
2515 * much CPU resource.
2516 */
2517 if (block != rs->last_sent_block) {
2518 flush_compressed_data(rs);
2519 return false;
2520 }
2521
2522 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2523 return true;
2524 }
2525
2526 compression_counters.busy++;
2527 return false;
2528 }
2529
2530 /**
2531 * ram_save_target_page: save one target page
2532 *
2533 * Returns the number of pages written
2534 *
2535 * @rs: current RAM state
2536 * @pss: data about the page we want to send
2537 * @last_stage: if we are at the completion stage
2538 */
2539 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2540 bool last_stage)
2541 {
2542 RAMBlock *block = pss->block;
2543 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2544 int res;
2545
2546 if (control_save_page(rs, block, offset, &res)) {
2547 return res;
2548 }
2549
2550 if (save_compress_page(rs, block, offset)) {
2551 return 1;
2552 }
2553
2554 res = save_zero_page(rs, block, offset);
2555 if (res > 0) {
2556 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2557 * page would be stale
2558 */
2559 if (!save_page_use_compression(rs)) {
2560 XBZRLE_cache_lock();
2561 xbzrle_cache_zero_page(rs, block->offset + offset);
2562 XBZRLE_cache_unlock();
2563 }
2564 ram_release_pages(block->idstr, offset, res);
2565 return res;
2566 }
2567
2568 /*
2569 * do not use multifd for compression as the first page in the new
2570 * block should be posted out before sending the compressed page
2571 */
2572 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
2573 return ram_save_multifd_page(rs, block, offset);
2574 }
2575
2576 return ram_save_page(rs, pss, last_stage);
2577 }
2578
2579 /**
2580 * ram_save_host_page: save a whole host page
2581 *
2582 * Starting at *offset send pages up to the end of the current host
2583 * page. It's valid for the initial offset to point into the middle of
2584 * a host page in which case the remainder of the hostpage is sent.
2585 * Only dirty target pages are sent. Note that the host page size may
2586 * be a huge page for this block.
2587 * The saving stops at the boundary of the used_length of the block
2588 * if the RAMBlock isn't a multiple of the host page size.
2589 *
2590 * Returns the number of pages written or negative on error
2591 *
2592 * @rs: current RAM state
2593 * @ms: current migration state
2594 * @pss: data about the page we want to send
2595 * @last_stage: if we are at the completion stage
2596 */
2597 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2598 bool last_stage)
2599 {
2600 int tmppages, pages = 0;
2601 size_t pagesize_bits =
2602 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2603
2604 if (ramblock_is_ignored(pss->block)) {
2605 error_report("block %s should not be migrated !", pss->block->idstr);
2606 return 0;
2607 }
2608
2609 do {
2610 /* Check the pages is dirty and if it is send it */
2611 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2612 pss->page++;
2613 continue;
2614 }
2615
2616 tmppages = ram_save_target_page(rs, pss, last_stage);
2617 if (tmppages < 0) {
2618 return tmppages;
2619 }
2620
2621 pages += tmppages;
2622 if (pss->block->unsentmap) {
2623 clear_bit(pss->page, pss->block->unsentmap);
2624 }
2625
2626 pss->page++;
2627 } while ((pss->page & (pagesize_bits - 1)) &&
2628 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2629
2630 /* The offset we leave with is the last one we looked at */
2631 pss->page--;
2632 return pages;
2633 }
2634
2635 /**
2636 * ram_find_and_save_block: finds a dirty page and sends it to f
2637 *
2638 * Called within an RCU critical section.
2639 *
2640 * Returns the number of pages written where zero means no dirty pages,
2641 * or negative on error
2642 *
2643 * @rs: current RAM state
2644 * @last_stage: if we are at the completion stage
2645 *
2646 * On systems where host-page-size > target-page-size it will send all the
2647 * pages in a host page that are dirty.
2648 */
2649
2650 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2651 {
2652 PageSearchStatus pss;
2653 int pages = 0;
2654 bool again, found;
2655
2656 /* No dirty page as there is zero RAM */
2657 if (!ram_bytes_total()) {
2658 return pages;
2659 }
2660
2661 pss.block = rs->last_seen_block;
2662 pss.page = rs->last_page;
2663 pss.complete_round = false;
2664
2665 if (!pss.block) {
2666 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2667 }
2668
2669 do {
2670 again = true;
2671 found = get_queued_page(rs, &pss);
2672
2673 if (!found) {
2674 /* priority queue empty, so just search for something dirty */
2675 found = find_dirty_block(rs, &pss, &again);
2676 }
2677
2678 if (found) {
2679 pages = ram_save_host_page(rs, &pss, last_stage);
2680 }
2681 } while (!pages && again);
2682
2683 rs->last_seen_block = pss.block;
2684 rs->last_page = pss.page;
2685
2686 return pages;
2687 }
2688
2689 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2690 {
2691 uint64_t pages = size / TARGET_PAGE_SIZE;
2692
2693 if (zero) {
2694 ram_counters.duplicate += pages;
2695 } else {
2696 ram_counters.normal += pages;
2697 ram_counters.transferred += size;
2698 qemu_update_position(f, size);
2699 }
2700 }
2701
2702 static uint64_t ram_bytes_total_common(bool count_ignored)
2703 {
2704 RAMBlock *block;
2705 uint64_t total = 0;
2706
2707 rcu_read_lock();
2708 if (count_ignored) {
2709 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2710 total += block->used_length;
2711 }
2712 } else {
2713 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2714 total += block->used_length;
2715 }
2716 }
2717 rcu_read_unlock();
2718 return total;
2719 }
2720
2721 uint64_t ram_bytes_total(void)
2722 {
2723 return ram_bytes_total_common(false);
2724 }
2725
2726 static void xbzrle_load_setup(void)
2727 {
2728 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2729 }
2730
2731 static void xbzrle_load_cleanup(void)
2732 {
2733 g_free(XBZRLE.decoded_buf);
2734 XBZRLE.decoded_buf = NULL;
2735 }
2736
2737 static void ram_state_cleanup(RAMState **rsp)
2738 {
2739 if (*rsp) {
2740 migration_page_queue_free(*rsp);
2741 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2742 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2743 g_free(*rsp);
2744 *rsp = NULL;
2745 }
2746 }
2747
2748 static void xbzrle_cleanup(void)
2749 {
2750 XBZRLE_cache_lock();
2751 if (XBZRLE.cache) {
2752 cache_fini(XBZRLE.cache);
2753 g_free(XBZRLE.encoded_buf);
2754 g_free(XBZRLE.current_buf);
2755 g_free(XBZRLE.zero_target_page);
2756 XBZRLE.cache = NULL;
2757 XBZRLE.encoded_buf = NULL;
2758 XBZRLE.current_buf = NULL;
2759 XBZRLE.zero_target_page = NULL;
2760 }
2761 XBZRLE_cache_unlock();
2762 }
2763
2764 static void ram_save_cleanup(void *opaque)
2765 {
2766 RAMState **rsp = opaque;
2767 RAMBlock *block;
2768
2769 /* caller have hold iothread lock or is in a bh, so there is
2770 * no writing race against the migration bitmap
2771 */
2772 memory_global_dirty_log_stop();
2773
2774 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2775 g_free(block->clear_bmap);
2776 block->clear_bmap = NULL;
2777 g_free(block->bmap);
2778 block->bmap = NULL;
2779 g_free(block->unsentmap);
2780 block->unsentmap = NULL;
2781 }
2782
2783 xbzrle_cleanup();
2784 compress_threads_save_cleanup();
2785 ram_state_cleanup(rsp);
2786 }
2787
2788 static void ram_state_reset(RAMState *rs)
2789 {
2790 rs->last_seen_block = NULL;
2791 rs->last_sent_block = NULL;
2792 rs->last_page = 0;
2793 rs->last_version = ram_list.version;
2794 rs->ram_bulk_stage = true;
2795 rs->fpo_enabled = false;
2796 }
2797
2798 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2799
2800 /*
2801 * 'expected' is the value you expect the bitmap mostly to be full
2802 * of; it won't bother printing lines that are all this value.
2803 * If 'todump' is null the migration bitmap is dumped.
2804 */
2805 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2806 unsigned long pages)
2807 {
2808 int64_t cur;
2809 int64_t linelen = 128;
2810 char linebuf[129];
2811
2812 for (cur = 0; cur < pages; cur += linelen) {
2813 int64_t curb;
2814 bool found = false;
2815 /*
2816 * Last line; catch the case where the line length
2817 * is longer than remaining ram
2818 */
2819 if (cur + linelen > pages) {
2820 linelen = pages - cur;
2821 }
2822 for (curb = 0; curb < linelen; curb++) {
2823 bool thisbit = test_bit(cur + curb, todump);
2824 linebuf[curb] = thisbit ? '1' : '.';
2825 found = found || (thisbit != expected);
2826 }
2827 if (found) {
2828 linebuf[curb] = '\0';
2829 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2830 }
2831 }
2832 }
2833
2834 /* **** functions for postcopy ***** */
2835
2836 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2837 {
2838 struct RAMBlock *block;
2839
2840 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2841 unsigned long *bitmap = block->bmap;
2842 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2843 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2844
2845 while (run_start < range) {
2846 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2847 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2848 (run_end - run_start) << TARGET_PAGE_BITS);
2849 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2850 }
2851 }
2852 }
2853
2854 /**
2855 * postcopy_send_discard_bm_ram: discard a RAMBlock
2856 *
2857 * Returns zero on success
2858 *
2859 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2860 * Note: At this point the 'unsentmap' is the processed bitmap combined
2861 * with the dirtymap; so a '1' means it's either dirty or unsent.
2862 *
2863 * @ms: current migration state
2864 * @block: RAMBlock to discard
2865 */
2866 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2867 {
2868 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2869 unsigned long current;
2870 unsigned long *unsentmap = block->unsentmap;
2871
2872 for (current = 0; current < end; ) {
2873 unsigned long one = find_next_bit(unsentmap, end, current);
2874 unsigned long zero, discard_length;
2875
2876 if (one >= end) {
2877 break;
2878 }
2879
2880 zero = find_next_zero_bit(unsentmap, end, one + 1);
2881
2882 if (zero >= end) {
2883 discard_length = end - one;
2884 } else {
2885 discard_length = zero - one;
2886 }
2887 postcopy_discard_send_range(ms, one, discard_length);
2888 current = one + discard_length;
2889 }
2890
2891 return 0;
2892 }
2893
2894 /**
2895 * postcopy_each_ram_send_discard: discard all RAMBlocks
2896 *
2897 * Returns 0 for success or negative for error
2898 *
2899 * Utility for the outgoing postcopy code.
2900 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2901 * passing it bitmap indexes and name.
2902 * (qemu_ram_foreach_block ends up passing unscaled lengths
2903 * which would mean postcopy code would have to deal with target page)
2904 *
2905 * @ms: current migration state
2906 */
2907 static int postcopy_each_ram_send_discard(MigrationState *ms)
2908 {
2909 struct RAMBlock *block;
2910 int ret;
2911
2912 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2913 postcopy_discard_send_init(ms, block->idstr);
2914
2915 /*
2916 * Postcopy sends chunks of bitmap over the wire, but it
2917 * just needs indexes at this point, avoids it having
2918 * target page specific code.
2919 */
2920 ret = postcopy_send_discard_bm_ram(ms, block);
2921 postcopy_discard_send_finish(ms);
2922 if (ret) {
2923 return ret;
2924 }
2925 }
2926
2927 return 0;
2928 }
2929
2930 /**
2931 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2932 *
2933 * Helper for postcopy_chunk_hostpages; it's called twice to
2934 * canonicalize the two bitmaps, that are similar, but one is
2935 * inverted.
2936 *
2937 * Postcopy requires that all target pages in a hostpage are dirty or
2938 * clean, not a mix. This function canonicalizes the bitmaps.
2939 *
2940 * @ms: current migration state
2941 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2942 * otherwise we need to canonicalize partially dirty host pages
2943 * @block: block that contains the page we want to canonicalize
2944 */
2945 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2946 RAMBlock *block)
2947 {
2948 RAMState *rs = ram_state;
2949 unsigned long *bitmap = block->bmap;
2950 unsigned long *unsentmap = block->unsentmap;
2951 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2952 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2953 unsigned long run_start;
2954
2955 if (block->page_size == TARGET_PAGE_SIZE) {
2956 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2957 return;
2958 }
2959
2960 if (unsent_pass) {
2961 /* Find a sent page */
2962 run_start = find_next_zero_bit(unsentmap, pages, 0);
2963 } else {
2964 /* Find a dirty page */
2965 run_start = find_next_bit(bitmap, pages, 0);
2966 }
2967
2968 while (run_start < pages) {
2969
2970 /*
2971 * If the start of this run of pages is in the middle of a host
2972 * page, then we need to fixup this host page.
2973 */
2974 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2975 /* Find the end of this run */
2976 if (unsent_pass) {
2977 run_start = find_next_bit(unsentmap, pages, run_start + 1);
2978 } else {
2979 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2980 }
2981 /*
2982 * If the end isn't at the start of a host page, then the
2983 * run doesn't finish at the end of a host page
2984 * and we need to discard.
2985 */
2986 }
2987
2988 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2989 unsigned long page;
2990 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2991 host_ratio);
2992 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2993
2994 /* Tell the destination to discard this page */
2995 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2996 /* For the unsent_pass we:
2997 * discard partially sent pages
2998 * For the !unsent_pass (dirty) we:
2999 * discard partially dirty pages that were sent
3000 * (any partially sent pages were already discarded
3001 * by the previous unsent_pass)
3002 */
3003 postcopy_discard_send_range(ms, fixup_start_addr, host_ratio);
3004 }
3005
3006 /* Clean up the bitmap */
3007 for (page = fixup_start_addr;
3008 page < fixup_start_addr + host_ratio; page++) {
3009 /* All pages in this host page are now not sent */
3010 set_bit(page, unsentmap);
3011
3012 /*
3013 * Remark them as dirty, updating the count for any pages
3014 * that weren't previously dirty.
3015 */
3016 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
3017 }
3018 }
3019
3020 if (unsent_pass) {
3021 /* Find the next sent page for the next iteration */
3022 run_start = find_next_zero_bit(unsentmap, pages, run_start);
3023 } else {
3024 /* Find the next dirty page for the next iteration */
3025 run_start = find_next_bit(bitmap, pages, run_start);
3026 }
3027 }
3028 }
3029
3030 /**
3031 * postcopy_chunk_hostpages: discard any partially sent host page
3032 *
3033 * Utility for the outgoing postcopy code.
3034 *
3035 * Discard any partially sent host-page size chunks, mark any partially
3036 * dirty host-page size chunks as all dirty. In this case the host-page
3037 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
3038 *
3039 * Returns zero on success
3040 *
3041 * @ms: current migration state
3042 * @block: block we want to work with
3043 */
3044 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
3045 {
3046 postcopy_discard_send_init(ms, block->idstr);
3047
3048 /* First pass: Discard all partially sent host pages */
3049 postcopy_chunk_hostpages_pass(ms, true, block);
3050 /*
3051 * Second pass: Ensure that all partially dirty host pages are made
3052 * fully dirty.
3053 */
3054 postcopy_chunk_hostpages_pass(ms, false, block);
3055
3056 postcopy_discard_send_finish(ms);
3057 return 0;
3058 }
3059
3060 /**
3061 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3062 *
3063 * Returns zero on success
3064 *
3065 * Transmit the set of pages to be discarded after precopy to the target
3066 * these are pages that:
3067 * a) Have been previously transmitted but are now dirty again
3068 * b) Pages that have never been transmitted, this ensures that
3069 * any pages on the destination that have been mapped by background
3070 * tasks get discarded (transparent huge pages is the specific concern)
3071 * Hopefully this is pretty sparse
3072 *
3073 * @ms: current migration state
3074 */
3075 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3076 {
3077 RAMState *rs = ram_state;
3078 RAMBlock *block;
3079 int ret;
3080
3081 rcu_read_lock();
3082
3083 /* This should be our last sync, the src is now paused */
3084 migration_bitmap_sync(rs);
3085
3086 /* Easiest way to make sure we don't resume in the middle of a host-page */
3087 rs->last_seen_block = NULL;
3088 rs->last_sent_block = NULL;
3089 rs->last_page = 0;
3090
3091 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3092 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3093 unsigned long *bitmap = block->bmap;
3094 unsigned long *unsentmap = block->unsentmap;
3095
3096 if (!unsentmap) {
3097 /* We don't have a safe way to resize the sentmap, so
3098 * if the bitmap was resized it will be NULL at this
3099 * point.
3100 */
3101 error_report("migration ram resized during precopy phase");
3102 rcu_read_unlock();
3103 return -EINVAL;
3104 }
3105 /* Deal with TPS != HPS and huge pages */
3106 ret = postcopy_chunk_hostpages(ms, block);
3107 if (ret) {
3108 rcu_read_unlock();
3109 return ret;
3110 }
3111
3112 /*
3113 * Update the unsentmap to be unsentmap = unsentmap | dirty
3114 */
3115 bitmap_or(unsentmap, unsentmap, bitmap, pages);
3116 #ifdef DEBUG_POSTCOPY
3117 ram_debug_dump_bitmap(unsentmap, true, pages);
3118 #endif
3119 }
3120 trace_ram_postcopy_send_discard_bitmap();
3121
3122 ret = postcopy_each_ram_send_discard(ms);
3123 rcu_read_unlock();
3124
3125 return ret;
3126 }
3127
3128 /**
3129 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3130 *
3131 * Returns zero on success
3132 *
3133 * @rbname: name of the RAMBlock of the request. NULL means the
3134 * same that last one.
3135 * @start: RAMBlock starting page
3136 * @length: RAMBlock size
3137 */
3138 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3139 {
3140 int ret = -1;
3141
3142 trace_ram_discard_range(rbname, start, length);
3143
3144 rcu_read_lock();
3145 RAMBlock *rb = qemu_ram_block_by_name(rbname);
3146
3147 if (!rb) {
3148 error_report("ram_discard_range: Failed to find block '%s'", rbname);
3149 goto err;
3150 }
3151
3152 /*
3153 * On source VM, we don't need to update the received bitmap since
3154 * we don't even have one.
3155 */
3156 if (rb->receivedmap) {
3157 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3158 length >> qemu_target_page_bits());
3159 }
3160
3161 ret = ram_block_discard_range(rb, start, length);
3162
3163 err:
3164 rcu_read_unlock();
3165
3166 return ret;
3167 }
3168
3169 /*
3170 * For every allocation, we will try not to crash the VM if the
3171 * allocation failed.
3172 */
3173 static int xbzrle_init(void)
3174 {
3175 Error *local_err = NULL;
3176
3177 if (!migrate_use_xbzrle()) {
3178 return 0;
3179 }
3180
3181 XBZRLE_cache_lock();
3182
3183 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3184 if (!XBZRLE.zero_target_page) {
3185 error_report("%s: Error allocating zero page", __func__);
3186 goto err_out;
3187 }
3188
3189 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3190 TARGET_PAGE_SIZE, &local_err);
3191 if (!XBZRLE.cache) {
3192 error_report_err(local_err);
3193 goto free_zero_page;
3194 }
3195
3196 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3197 if (!XBZRLE.encoded_buf) {
3198 error_report("%s: Error allocating encoded_buf", __func__);
3199 goto free_cache;
3200 }
3201
3202 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3203 if (!XBZRLE.current_buf) {
3204 error_report("%s: Error allocating current_buf", __func__);
3205 goto free_encoded_buf;
3206 }
3207
3208 /* We are all good */
3209 XBZRLE_cache_unlock();
3210 return 0;
3211
3212 free_encoded_buf:
3213 g_free(XBZRLE.encoded_buf);
3214 XBZRLE.encoded_buf = NULL;
3215 free_cache:
3216 cache_fini(XBZRLE.cache);
3217 XBZRLE.cache = NULL;
3218 free_zero_page:
3219 g_free(XBZRLE.zero_target_page);
3220 XBZRLE.zero_target_page = NULL;
3221 err_out:
3222 XBZRLE_cache_unlock();
3223 return -ENOMEM;
3224 }
3225
3226 static int ram_state_init(RAMState **rsp)
3227 {
3228 *rsp = g_try_new0(RAMState, 1);
3229
3230 if (!*rsp) {
3231 error_report("%s: Init ramstate fail", __func__);
3232 return -1;
3233 }
3234
3235 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3236 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3237 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3238
3239 /*
3240 * Count the total number of pages used by ram blocks not including any
3241 * gaps due to alignment or unplugs.
3242 * This must match with the initial values of dirty bitmap.
3243 */
3244 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3245 ram_state_reset(*rsp);
3246
3247 return 0;
3248 }
3249
3250 static void ram_list_init_bitmaps(void)
3251 {
3252 MigrationState *ms = migrate_get_current();
3253 RAMBlock *block;
3254 unsigned long pages;
3255 uint8_t shift;
3256
3257 /* Skip setting bitmap if there is no RAM */
3258 if (ram_bytes_total()) {
3259 shift = ms->clear_bitmap_shift;
3260 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3261 error_report("clear_bitmap_shift (%u) too big, using "
3262 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3263 shift = CLEAR_BITMAP_SHIFT_MAX;
3264 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3265 error_report("clear_bitmap_shift (%u) too small, using "
3266 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3267 shift = CLEAR_BITMAP_SHIFT_MIN;
3268 }
3269
3270 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3271 pages = block->max_length >> TARGET_PAGE_BITS;
3272 /*
3273 * The initial dirty bitmap for migration must be set with all
3274 * ones to make sure we'll migrate every guest RAM page to
3275 * destination.
3276 * Here we set RAMBlock.bmap all to 1 because when rebegin a
3277 * new migration after a failed migration, ram_list.
3278 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
3279 * guest memory.
3280 */
3281 block->bmap = bitmap_new(pages);
3282 bitmap_set(block->bmap, 0, pages);
3283 block->clear_bmap_shift = shift;
3284 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
3285 if (migrate_postcopy_ram()) {
3286 block->unsentmap = bitmap_new(pages);
3287 bitmap_set(block->unsentmap, 0, pages);
3288 }
3289 }
3290 }
3291 }
3292
3293 static void ram_init_bitmaps(RAMState *rs)
3294 {
3295 /* For memory_global_dirty_log_start below. */
3296 qemu_mutex_lock_iothread();
3297 qemu_mutex_lock_ramlist();
3298 rcu_read_lock();
3299
3300 ram_list_init_bitmaps();
3301 memory_global_dirty_log_start();
3302 migration_bitmap_sync_precopy(rs);
3303
3304 rcu_read_unlock();
3305 qemu_mutex_unlock_ramlist();
3306 qemu_mutex_unlock_iothread();
3307 }
3308
3309 static int ram_init_all(RAMState **rsp)
3310 {
3311 if (ram_state_init(rsp)) {
3312 return -1;
3313 }
3314
3315 if (xbzrle_init()) {
3316 ram_state_cleanup(rsp);
3317 return -1;
3318 }
3319
3320 ram_init_bitmaps(*rsp);
3321
3322 return 0;
3323 }
3324
3325 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3326 {
3327 RAMBlock *block;
3328 uint64_t pages = 0;
3329
3330 /*
3331 * Postcopy is not using xbzrle/compression, so no need for that.
3332 * Also, since source are already halted, we don't need to care
3333 * about dirty page logging as well.
3334 */
3335
3336 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3337 pages += bitmap_count_one(block->bmap,
3338 block->used_length >> TARGET_PAGE_BITS);
3339 }
3340
3341 /* This may not be aligned with current bitmaps. Recalculate. */
3342 rs->migration_dirty_pages = pages;
3343
3344 rs->last_seen_block = NULL;
3345 rs->last_sent_block = NULL;
3346 rs->last_page = 0;
3347 rs->last_version = ram_list.version;
3348 /*
3349 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3350 * matter what we have sent.
3351 */
3352 rs->ram_bulk_stage = false;
3353
3354 /* Update RAMState cache of output QEMUFile */
3355 rs->f = out;
3356
3357 trace_ram_state_resume_prepare(pages);
3358 }
3359
3360 /*
3361 * This function clears bits of the free pages reported by the caller from the
3362 * migration dirty bitmap. @addr is the host address corresponding to the
3363 * start of the continuous guest free pages, and @len is the total bytes of
3364 * those pages.
3365 */
3366 void qemu_guest_free_page_hint(void *addr, size_t len)
3367 {
3368 RAMBlock *block;
3369 ram_addr_t offset;
3370 size_t used_len, start, npages;
3371 MigrationState *s = migrate_get_current();
3372
3373 /* This function is currently expected to be used during live migration */
3374 if (!migration_is_setup_or_active(s->state)) {
3375 return;
3376 }
3377
3378 for (; len > 0; len -= used_len, addr += used_len) {
3379 block = qemu_ram_block_from_host(addr, false, &offset);
3380 if (unlikely(!block || offset >= block->used_length)) {
3381 /*
3382 * The implementation might not support RAMBlock resize during
3383 * live migration, but it could happen in theory with future
3384 * updates. So we add a check here to capture that case.
3385 */
3386 error_report_once("%s unexpected error", __func__);
3387 return;
3388 }
3389
3390 if (len <= block->used_length - offset) {
3391 used_len = len;
3392 } else {
3393 used_len = block->used_length - offset;
3394 }
3395
3396 start = offset >> TARGET_PAGE_BITS;
3397 npages = used_len >> TARGET_PAGE_BITS;
3398
3399 qemu_mutex_lock(&ram_state->bitmap_mutex);
3400 ram_state->migration_dirty_pages -=
3401 bitmap_count_one_with_offset(block->bmap, start, npages);
3402 bitmap_clear(block->bmap, start, npages);
3403 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3404 }
3405 }
3406
3407 /*
3408 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3409 * long-running RCU critical section. When rcu-reclaims in the code
3410 * start to become numerous it will be necessary to reduce the
3411 * granularity of these critical sections.
3412 */
3413
3414 /**
3415 * ram_save_setup: Setup RAM for migration
3416 *
3417 * Returns zero to indicate success and negative for error
3418 *
3419 * @f: QEMUFile where to send the data
3420 * @opaque: RAMState pointer
3421 */
3422 static int ram_save_setup(QEMUFile *f, void *opaque)
3423 {
3424 RAMState **rsp = opaque;
3425 RAMBlock *block;
3426
3427 if (compress_threads_save_setup()) {
3428 return -1;
3429 }
3430
3431 /* migration has already setup the bitmap, reuse it. */
3432 if (!migration_in_colo_state()) {
3433 if (ram_init_all(rsp) != 0) {
3434 compress_threads_save_cleanup();
3435 return -1;
3436 }
3437 }
3438 (*rsp)->f = f;
3439
3440 rcu_read_lock();
3441
3442 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3443
3444 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3445 qemu_put_byte(f, strlen(block->idstr));
3446 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3447 qemu_put_be64(f, block->used_length);
3448 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3449 qemu_put_be64(f, block->page_size);
3450 }
3451 if (migrate_ignore_shared()) {
3452 qemu_put_be64(f, block->mr->addr);
3453 }
3454 }
3455
3456 rcu_read_unlock();
3457
3458 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3459 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3460
3461 multifd_send_sync_main(*rsp);
3462 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3463 qemu_fflush(f);
3464
3465 return 0;
3466 }
3467
3468 /**
3469 * ram_save_iterate: iterative stage for migration
3470 *
3471 * Returns zero to indicate success and negative for error
3472 *
3473 * @f: QEMUFile where to send the data
3474 * @opaque: RAMState pointer
3475 */
3476 static int ram_save_iterate(QEMUFile *f, void *opaque)
3477 {
3478 RAMState **temp = opaque;
3479 RAMState *rs = *temp;
3480 int ret;
3481 int i;
3482 int64_t t0;
3483 int done = 0;
3484
3485 if (blk_mig_bulk_active()) {
3486 /* Avoid transferring ram during bulk phase of block migration as
3487 * the bulk phase will usually take a long time and transferring
3488 * ram updates during that time is pointless. */
3489 goto out;
3490 }
3491
3492 rcu_read_lock();
3493 if (ram_list.version != rs->last_version) {
3494 ram_state_reset(rs);
3495 }
3496
3497 /* Read version before ram_list.blocks */
3498 smp_rmb();
3499
3500 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3501
3502 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3503 i = 0;
3504 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3505 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3506 int pages;
3507
3508 if (qemu_file_get_error(f)) {
3509 break;
3510 }
3511
3512 pages = ram_find_and_save_block(rs, false);
3513 /* no more pages to sent */
3514 if (pages == 0) {
3515 done = 1;
3516 break;
3517 }
3518
3519 if (pages < 0) {
3520 qemu_file_set_error(f, pages);
3521 break;
3522 }
3523
3524 rs->target_page_count += pages;
3525
3526 /* we want to check in the 1st loop, just in case it was the 1st time
3527 and we had to sync the dirty bitmap.
3528 qemu_clock_get_ns() is a bit expensive, so we only check each some
3529 iterations
3530 */
3531 if ((i & 63) == 0) {
3532 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3533 if (t1 > MAX_WAIT) {
3534 trace_ram_save_iterate_big_wait(t1, i);
3535 break;
3536 }
3537 }
3538 i++;
3539 }
3540 rcu_read_unlock();
3541
3542 /*
3543 * Must occur before EOS (or any QEMUFile operation)
3544 * because of RDMA protocol.
3545 */
3546 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3547
3548 out:
3549 multifd_send_sync_main(rs);
3550 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3551 qemu_fflush(f);
3552 ram_counters.transferred += 8;
3553
3554 ret = qemu_file_get_error(f);
3555 if (ret < 0) {
3556 return ret;
3557 }
3558
3559 return done;
3560 }
3561
3562 /**
3563 * ram_save_complete: function called to send the remaining amount of ram
3564 *
3565 * Returns zero to indicate success or negative on error
3566 *
3567 * Called with iothread lock
3568 *
3569 * @f: QEMUFile where to send the data
3570 * @opaque: RAMState pointer
3571 */
3572 static int ram_save_complete(QEMUFile *f, void *opaque)
3573 {
3574 RAMState **temp = opaque;
3575 RAMState *rs = *temp;
3576 int ret = 0;
3577
3578 rcu_read_lock();
3579
3580 if (!migration_in_postcopy()) {
3581 migration_bitmap_sync_precopy(rs);
3582 }
3583
3584 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3585
3586 /* try transferring iterative blocks of memory */
3587
3588 /* flush all remaining blocks regardless of rate limiting */
3589 while (true) {
3590 int pages;
3591
3592 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3593 /* no more blocks to sent */
3594 if (pages == 0) {
3595 break;
3596 }
3597 if (pages < 0) {
3598 ret = pages;
3599 break;
3600 }
3601 }
3602
3603 flush_compressed_data(rs);
3604 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3605
3606 rcu_read_unlock();
3607
3608 multifd_send_sync_main(rs);
3609 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3610 qemu_fflush(f);
3611
3612 return ret;
3613 }
3614
3615 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3616 uint64_t *res_precopy_only,
3617 uint64_t *res_compatible,
3618 uint64_t *res_postcopy_only)
3619 {
3620 RAMState **temp = opaque;
3621 RAMState *rs = *temp;
3622 uint64_t remaining_size;
3623
3624 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3625
3626 if (!migration_in_postcopy() &&
3627 remaining_size < max_size) {
3628 qemu_mutex_lock_iothread();
3629 rcu_read_lock();
3630 migration_bitmap_sync_precopy(rs);
3631 rcu_read_unlock();
3632 qemu_mutex_unlock_iothread();
3633 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3634 }
3635
3636 if (migrate_postcopy_ram()) {
3637 /* We can do postcopy, and all the data is postcopiable */
3638 *res_compatible += remaining_size;
3639 } else {
3640 *res_precopy_only += remaining_size;
3641 }
3642 }
3643
3644 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3645 {
3646 unsigned int xh_len;
3647 int xh_flags;
3648 uint8_t *loaded_data;
3649
3650 /* extract RLE header */
3651 xh_flags = qemu_get_byte(f);
3652 xh_len = qemu_get_be16(f);
3653
3654 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3655 error_report("Failed to load XBZRLE page - wrong compression!");
3656 return -1;
3657 }
3658
3659 if (xh_len > TARGET_PAGE_SIZE) {
3660 error_report("Failed to load XBZRLE page - len overflow!");
3661 return -1;
3662 }
3663 loaded_data = XBZRLE.decoded_buf;
3664 /* load data and decode */
3665 /* it can change loaded_data to point to an internal buffer */
3666 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3667
3668 /* decode RLE */
3669 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3670 TARGET_PAGE_SIZE) == -1) {
3671 error_report("Failed to load XBZRLE page - decode error!");
3672 return -1;
3673 }
3674
3675 return 0;
3676 }
3677
3678 /**
3679 * ram_block_from_stream: read a RAMBlock id from the migration stream
3680 *
3681 * Must be called from within a rcu critical section.
3682 *
3683 * Returns a pointer from within the RCU-protected ram_list.
3684 *
3685 * @f: QEMUFile where to read the data from
3686 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3687 */
3688 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3689 {
3690 static RAMBlock *block = NULL;
3691 char id[256];
3692 uint8_t len;
3693
3694 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3695 if (!block) {
3696 error_report("Ack, bad migration stream!");
3697 return NULL;
3698 }
3699 return block;
3700 }
3701
3702 len = qemu_get_byte(f);
3703 qemu_get_buffer(f, (uint8_t *)id, len);
3704 id[len] = 0;
3705
3706 block = qemu_ram_block_by_name(id);
3707 if (!block) {
3708 error_report("Can't find block %s", id);
3709 return NULL;
3710 }
3711
3712 if (ramblock_is_ignored(block)) {
3713 error_report("block %s should not be migrated !", id);
3714 return NULL;
3715 }
3716
3717 return block;
3718 }
3719
3720 static inline void *host_from_ram_block_offset(RAMBlock *block,
3721 ram_addr_t offset)
3722 {
3723 if (!offset_in_ramblock(block, offset)) {
3724 return NULL;
3725 }
3726
3727 return block->host + offset;
3728 }
3729
3730 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3731 ram_addr_t offset)
3732 {
3733 if (!offset_in_ramblock(block, offset)) {
3734 return NULL;
3735 }
3736 if (!block->colo_cache) {
3737 error_report("%s: colo_cache is NULL in block :%s",
3738 __func__, block->idstr);
3739 return NULL;
3740 }
3741
3742 /*
3743 * During colo checkpoint, we need bitmap of these migrated pages.
3744 * It help us to decide which pages in ram cache should be flushed
3745 * into VM's RAM later.
3746 */
3747 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3748 ram_state->migration_dirty_pages++;
3749 }
3750 return block->colo_cache + offset;
3751 }
3752
3753 /**
3754 * ram_handle_compressed: handle the zero page case
3755 *
3756 * If a page (or a whole RDMA chunk) has been
3757 * determined to be zero, then zap it.
3758 *
3759 * @host: host address for the zero page
3760 * @ch: what the page is filled from. We only support zero
3761 * @size: size of the zero page
3762 */
3763 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3764 {
3765 if (ch != 0 || !is_zero_range(host, size)) {
3766 memset(host, ch, size);
3767 }
3768 }
3769
3770 /* return the size after decompression, or negative value on error */
3771 static int
3772 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3773 const uint8_t *source, size_t source_len)
3774 {
3775 int err;
3776
3777 err = inflateReset(stream);
3778 if (err != Z_OK) {
3779 return -1;
3780 }
3781
3782 stream->avail_in = source_len;
3783 stream->next_in = (uint8_t *)source;
3784 stream->avail_out = dest_len;
3785 stream->next_out = dest;
3786
3787 err = inflate(stream, Z_NO_FLUSH);
3788 if (err != Z_STREAM_END) {
3789 return -1;
3790 }
3791
3792 return stream->total_out;
3793 }
3794
3795 static void *do_data_decompress(void *opaque)
3796 {
3797 DecompressParam *param = opaque;
3798 unsigned long pagesize;
3799 uint8_t *des;
3800 int len, ret;
3801
3802 qemu_mutex_lock(&param->mutex);
3803 while (!param->quit) {
3804 if (param->des) {
3805 des = param->des;
3806 len = param->len;
3807 param->des = 0;
3808 qemu_mutex_unlock(&param->mutex);
3809
3810 pagesize = TARGET_PAGE_SIZE;
3811
3812 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3813 param->compbuf, len);
3814 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3815 error_report("decompress data failed");
3816 qemu_file_set_error(decomp_file, ret);
3817 }
3818
3819 qemu_mutex_lock(&decomp_done_lock);
3820 param->done = true;
3821 qemu_cond_signal(&decomp_done_cond);
3822 qemu_mutex_unlock(&decomp_done_lock);
3823
3824 qemu_mutex_lock(&param->mutex);
3825 } else {
3826 qemu_cond_wait(&param->cond, &param->mutex);
3827 }
3828 }
3829 qemu_mutex_unlock(&param->mutex);
3830
3831 return NULL;
3832 }
3833
3834 static int wait_for_decompress_done(void)
3835 {
3836 int idx, thread_count;
3837
3838 if (!migrate_use_compression()) {
3839 return 0;
3840 }
3841
3842 thread_count = migrate_decompress_threads();
3843 qemu_mutex_lock(&decomp_done_lock);
3844 for (idx = 0; idx < thread_count; idx++) {
3845 while (!decomp_param[idx].done) {
3846 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3847 }
3848 }
3849 qemu_mutex_unlock(&decomp_done_lock);
3850 return qemu_file_get_error(decomp_file);
3851 }
3852
3853 static void compress_threads_load_cleanup(void)
3854 {
3855 int i, thread_count;
3856
3857 if (!migrate_use_compression()) {
3858 return;
3859 }
3860 thread_count = migrate_decompress_threads();
3861 for (i = 0; i < thread_count; i++) {
3862 /*
3863 * we use it as a indicator which shows if the thread is
3864 * properly init'd or not
3865 */
3866 if (!decomp_param[i].compbuf) {
3867 break;
3868 }
3869
3870 qemu_mutex_lock(&decomp_param[i].mutex);
3871 decomp_param[i].quit = true;
3872 qemu_cond_signal(&decomp_param[i].cond);
3873 qemu_mutex_unlock(&decomp_param[i].mutex);
3874 }
3875 for (i = 0; i < thread_count; i++) {
3876 if (!decomp_param[i].compbuf) {
3877 break;
3878 }
3879
3880 qemu_thread_join(decompress_threads + i);
3881 qemu_mutex_destroy(&decomp_param[i].mutex);
3882 qemu_cond_destroy(&decomp_param[i].cond);
3883 inflateEnd(&decomp_param[i].stream);
3884 g_free(decomp_param[i].compbuf);
3885 decomp_param[i].compbuf = NULL;
3886 }
3887 g_free(decompress_threads);
3888 g_free(decomp_param);
3889 decompress_threads = NULL;
3890 decomp_param = NULL;
3891 decomp_file = NULL;
3892 }
3893
3894 static int compress_threads_load_setup(QEMUFile *f)
3895 {
3896 int i, thread_count;
3897
3898 if (!migrate_use_compression()) {
3899 return 0;
3900 }
3901
3902 thread_count = migrate_decompress_threads();
3903 decompress_threads = g_new0(QemuThread, thread_count);
3904 decomp_param = g_new0(DecompressParam, thread_count);
3905 qemu_mutex_init(&decomp_done_lock);
3906 qemu_cond_init(&decomp_done_cond);
3907 decomp_file = f;
3908 for (i = 0; i < thread_count; i++) {
3909 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3910 goto exit;
3911 }
3912
3913 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3914 qemu_mutex_init(&decomp_param[i].mutex);
3915 qemu_cond_init(&decomp_param[i].cond);
3916 decomp_param[i].done = true;
3917 decomp_param[i].quit = false;
3918 qemu_thread_create(decompress_threads + i, "decompress",
3919 do_data_decompress, decomp_param + i,
3920 QEMU_THREAD_JOINABLE);
3921 }
3922 return 0;
3923 exit:
3924 compress_threads_load_cleanup();
3925 return -1;
3926 }
3927
3928 static void decompress_data_with_multi_threads(QEMUFile *f,
3929 void *host, int len)
3930 {
3931 int idx, thread_count;
3932
3933 thread_count = migrate_decompress_threads();
3934 qemu_mutex_lock(&decomp_done_lock);
3935 while (true) {
3936 for (idx = 0; idx < thread_count; idx++) {
3937 if (decomp_param[idx].done) {
3938 decomp_param[idx].done = false;
3939 qemu_mutex_lock(&decomp_param[idx].mutex);
3940 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3941 decomp_param[idx].des = host;
3942 decomp_param[idx].len = len;
3943 qemu_cond_signal(&decomp_param[idx].cond);
3944 qemu_mutex_unlock(&decomp_param[idx].mutex);
3945 break;
3946 }
3947 }
3948 if (idx < thread_count) {
3949 break;
3950 } else {
3951 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3952 }
3953 }
3954 qemu_mutex_unlock(&decomp_done_lock);
3955 }
3956
3957 /*
3958 * colo cache: this is for secondary VM, we cache the whole
3959 * memory of the secondary VM, it is need to hold the global lock
3960 * to call this helper.
3961 */
3962 int colo_init_ram_cache(void)
3963 {
3964 RAMBlock *block;
3965
3966 rcu_read_lock();
3967 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3968 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3969 NULL,
3970 false);
3971 if (!block->colo_cache) {
3972 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3973 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3974 block->used_length);
3975 goto out_locked;
3976 }
3977 memcpy(block->colo_cache, block->host, block->used_length);
3978 }
3979 rcu_read_unlock();
3980 /*
3981 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3982 * with to decide which page in cache should be flushed into SVM's RAM. Here
3983 * we use the same name 'ram_bitmap' as for migration.
3984 */
3985 if (ram_bytes_total()) {
3986 RAMBlock *block;
3987
3988 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3989 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3990
3991 block->bmap = bitmap_new(pages);
3992 bitmap_set(block->bmap, 0, pages);
3993 }
3994 }
3995 ram_state = g_new0(RAMState, 1);
3996 ram_state->migration_dirty_pages = 0;
3997 qemu_mutex_init(&ram_state->bitmap_mutex);
3998 memory_global_dirty_log_start();
3999
4000 return 0;
4001
4002 out_locked:
4003
4004 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4005 if (block->colo_cache) {
4006 qemu_anon_ram_free(block->colo_cache, block->used_length);
4007 block->colo_cache = NULL;
4008 }
4009 }
4010
4011 rcu_read_unlock();
4012 return -errno;
4013 }
4014
4015 /* It is need to hold the global lock to call this helper */
4016 void colo_release_ram_cache(void)
4017 {
4018 RAMBlock *block;
4019
4020 memory_global_dirty_log_stop();
4021 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4022 g_free(block->bmap);
4023 block->bmap = NULL;
4024 }
4025
4026 rcu_read_lock();
4027
4028 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4029 if (block->colo_cache) {
4030 qemu_anon_ram_free(block->colo_cache, block->used_length);
4031 block->colo_cache = NULL;
4032 }
4033 }
4034
4035 rcu_read_unlock();
4036 qemu_mutex_destroy(&ram_state->bitmap_mutex);
4037 g_free(ram_state);
4038 ram_state = NULL;
4039 }
4040
4041 /**
4042 * ram_load_setup: Setup RAM for migration incoming side
4043 *
4044 * Returns zero to indicate success and negative for error
4045 *
4046 * @f: QEMUFile where to receive the data
4047 * @opaque: RAMState pointer
4048 */
4049 static int ram_load_setup(QEMUFile *f, void *opaque)
4050 {
4051 if (compress_threads_load_setup(f)) {
4052 return -1;
4053 }
4054
4055 xbzrle_load_setup();
4056 ramblock_recv_map_init();
4057
4058 return 0;
4059 }
4060
4061 static int ram_load_cleanup(void *opaque)
4062 {
4063 RAMBlock *rb;
4064
4065 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4066 if (ramblock_is_pmem(rb)) {
4067 pmem_persist(rb->host, rb->used_length);
4068 }
4069 }
4070
4071 xbzrle_load_cleanup();
4072 compress_threads_load_cleanup();
4073
4074 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4075 g_free(rb->receivedmap);
4076 rb->receivedmap = NULL;
4077 }
4078
4079 return 0;
4080 }
4081
4082 /**
4083 * ram_postcopy_incoming_init: allocate postcopy data structures
4084 *
4085 * Returns 0 for success and negative if there was one error
4086 *
4087 * @mis: current migration incoming state
4088 *
4089 * Allocate data structures etc needed by incoming migration with
4090 * postcopy-ram. postcopy-ram's similarly names
4091 * postcopy_ram_incoming_init does the work.
4092 */
4093 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4094 {
4095 return postcopy_ram_incoming_init(mis);
4096 }
4097
4098 /**
4099 * ram_load_postcopy: load a page in postcopy case
4100 *
4101 * Returns 0 for success or -errno in case of error
4102 *
4103 * Called in postcopy mode by ram_load().
4104 * rcu_read_lock is taken prior to this being called.
4105 *
4106 * @f: QEMUFile where to send the data
4107 */
4108 static int ram_load_postcopy(QEMUFile *f)
4109 {
4110 int flags = 0, ret = 0;
4111 bool place_needed = false;
4112 bool matches_target_page_size = false;
4113 MigrationIncomingState *mis = migration_incoming_get_current();
4114 /* Temporary page that is later 'placed' */
4115 void *postcopy_host_page = postcopy_get_tmp_page(mis);
4116 void *last_host = NULL;
4117 bool all_zero = false;
4118
4119 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4120 ram_addr_t addr;
4121 void *host = NULL;
4122 void *page_buffer = NULL;
4123 void *place_source = NULL;
4124 RAMBlock *block = NULL;
4125 uint8_t ch;
4126
4127 addr = qemu_get_be64(f);
4128
4129 /*
4130 * If qemu file error, we should stop here, and then "addr"
4131 * may be invalid
4132 */
4133 ret = qemu_file_get_error(f);
4134 if (ret) {
4135 break;
4136 }
4137
4138 flags = addr & ~TARGET_PAGE_MASK;
4139 addr &= TARGET_PAGE_MASK;
4140
4141 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4142 place_needed = false;
4143 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
4144 block = ram_block_from_stream(f, flags);
4145
4146 host = host_from_ram_block_offset(block, addr);
4147 if (!host) {
4148 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4149 ret = -EINVAL;
4150 break;
4151 }
4152 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4153 /*
4154 * Postcopy requires that we place whole host pages atomically;
4155 * these may be huge pages for RAMBlocks that are backed by
4156 * hugetlbfs.
4157 * To make it atomic, the data is read into a temporary page
4158 * that's moved into place later.
4159 * The migration protocol uses, possibly smaller, target-pages
4160 * however the source ensures it always sends all the components
4161 * of a host page in order.
4162 */
4163 page_buffer = postcopy_host_page +
4164 ((uintptr_t)host & (block->page_size - 1));
4165 /* If all TP are zero then we can optimise the place */
4166 if (!((uintptr_t)host & (block->page_size - 1))) {
4167 all_zero = true;
4168 } else {
4169 /* not the 1st TP within the HP */
4170 if (host != (last_host + TARGET_PAGE_SIZE)) {
4171 error_report("Non-sequential target page %p/%p",
4172 host, last_host);
4173 ret = -EINVAL;
4174 break;
4175 }
4176 }
4177
4178
4179 /*
4180 * If it's the last part of a host page then we place the host
4181 * page
4182 */
4183 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
4184 (block->page_size - 1)) == 0;
4185 place_source = postcopy_host_page;
4186 }
4187 last_host = host;
4188
4189 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4190 case RAM_SAVE_FLAG_ZERO:
4191 ch = qemu_get_byte(f);
4192 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4193 if (ch) {
4194 all_zero = false;
4195 }
4196 break;
4197
4198 case RAM_SAVE_FLAG_PAGE:
4199 all_zero = false;
4200 if (!matches_target_page_size) {
4201 /* For huge pages, we always use temporary buffer */
4202 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4203 } else {
4204 /*
4205 * For small pages that matches target page size, we
4206 * avoid the qemu_file copy. Instead we directly use
4207 * the buffer of QEMUFile to place the page. Note: we
4208 * cannot do any QEMUFile operation before using that
4209 * buffer to make sure the buffer is valid when
4210 * placing the page.
4211 */
4212 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4213 TARGET_PAGE_SIZE);
4214 }
4215 break;
4216 case RAM_SAVE_FLAG_EOS:
4217 /* normal exit */
4218 multifd_recv_sync_main();
4219 break;
4220 default:
4221 error_report("Unknown combination of migration flags: %#x"
4222 " (postcopy mode)", flags);
4223 ret = -EINVAL;
4224 break;
4225 }
4226
4227 /* Detect for any possible file errors */
4228 if (!ret && qemu_file_get_error(f)) {
4229 ret = qemu_file_get_error(f);
4230 }
4231
4232 if (!ret && place_needed) {
4233 /* This gets called at the last target page in the host page */
4234 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4235
4236 if (all_zero) {
4237 ret = postcopy_place_page_zero(mis, place_dest,
4238 block);
4239 } else {
4240 ret = postcopy_place_page(mis, place_dest,
4241 place_source, block);
4242 }
4243 }
4244 }
4245
4246 return ret;
4247 }
4248
4249 static bool postcopy_is_advised(void)
4250 {
4251 PostcopyState ps = postcopy_state_get();
4252 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4253 }
4254
4255 static bool postcopy_is_running(void)
4256 {
4257 PostcopyState ps = postcopy_state_get();
4258 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4259 }
4260
4261 /*
4262 * Flush content of RAM cache into SVM's memory.
4263 * Only flush the pages that be dirtied by PVM or SVM or both.
4264 */
4265 static void colo_flush_ram_cache(void)
4266 {
4267 RAMBlock *block = NULL;
4268 void *dst_host;
4269 void *src_host;
4270 unsigned long offset = 0;
4271
4272 memory_global_dirty_log_sync();
4273 rcu_read_lock();
4274 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4275 ramblock_sync_dirty_bitmap(ram_state, block);
4276 }
4277 rcu_read_unlock();
4278
4279 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4280 rcu_read_lock();
4281 block = QLIST_FIRST_RCU(&ram_list.blocks);
4282
4283 while (block) {
4284 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4285
4286 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4287 offset = 0;
4288 block = QLIST_NEXT_RCU(block, next);
4289 } else {
4290 migration_bitmap_clear_dirty(ram_state, block, offset);
4291 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4292 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4293 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4294 }
4295 }
4296
4297 rcu_read_unlock();
4298 trace_colo_flush_ram_cache_end();
4299 }
4300
4301 /**
4302 * ram_load_precopy: load pages in precopy case
4303 *
4304 * Returns 0 for success or -errno in case of error
4305 *
4306 * Called in precopy mode by ram_load().
4307 * rcu_read_lock is taken prior to this being called.
4308 *
4309 * @f: QEMUFile where to send the data
4310 */
4311 static int ram_load_precopy(QEMUFile *f)
4312 {
4313 int flags = 0, ret = 0, invalid_flags = 0, len = 0;
4314 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4315 bool postcopy_advised = postcopy_is_advised();
4316 if (!migrate_use_compression()) {
4317 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4318 }
4319
4320 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4321 ram_addr_t addr, total_ram_bytes;
4322 void *host = NULL;
4323 uint8_t ch;
4324
4325 addr = qemu_get_be64(f);
4326 flags = addr & ~TARGET_PAGE_MASK;
4327 addr &= TARGET_PAGE_MASK;
4328
4329 if (flags & invalid_flags) {
4330 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4331 error_report("Received an unexpected compressed page");
4332 }
4333
4334 ret = -EINVAL;
4335 break;
4336 }
4337
4338 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4339 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4340 RAMBlock *block = ram_block_from_stream(f, flags);
4341
4342 /*
4343 * After going into COLO, we should load the Page into colo_cache.
4344 */
4345 if (migration_incoming_in_colo_state()) {
4346 host = colo_cache_from_block_offset(block, addr);
4347 } else {
4348 host = host_from_ram_block_offset(block, addr);
4349 }
4350 if (!host) {
4351 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4352 ret = -EINVAL;
4353 break;
4354 }
4355
4356 if (!migration_incoming_in_colo_state()) {
4357 ramblock_recv_bitmap_set(block, host);
4358 }
4359
4360 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4361 }
4362
4363 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4364 case RAM_SAVE_FLAG_MEM_SIZE:
4365 /* Synchronize RAM block list */
4366 total_ram_bytes = addr;
4367 while (!ret && total_ram_bytes) {
4368 RAMBlock *block;
4369 char id[256];
4370 ram_addr_t length;
4371
4372 len = qemu_get_byte(f);
4373 qemu_get_buffer(f, (uint8_t *)id, len);
4374 id[len] = 0;
4375 length = qemu_get_be64(f);
4376
4377 block = qemu_ram_block_by_name(id);
4378 if (block && !qemu_ram_is_migratable(block)) {
4379 error_report("block %s should not be migrated !", id);
4380 ret = -EINVAL;
4381 } else if (block) {
4382 if (length != block->used_length) {
4383 Error *local_err = NULL;
4384
4385 ret = qemu_ram_resize(block, length,
4386 &local_err);
4387 if (local_err) {
4388 error_report_err(local_err);
4389 }
4390 }
4391 /* For postcopy we need to check hugepage sizes match */
4392 if (postcopy_advised &&
4393 block->page_size != qemu_host_page_size) {
4394 uint64_t remote_page_size = qemu_get_be64(f);
4395 if (remote_page_size != block->page_size) {
4396 error_report("Mismatched RAM page size %s "
4397 "(local) %zd != %" PRId64,
4398 id, block->page_size,
4399 remote_page_size);
4400 ret = -EINVAL;
4401 }
4402 }
4403 if (migrate_ignore_shared()) {
4404 hwaddr addr = qemu_get_be64(f);
4405 if (ramblock_is_ignored(block) &&
4406 block->mr->addr != addr) {
4407 error_report("Mismatched GPAs for block %s "
4408 "%" PRId64 "!= %" PRId64,
4409 id, (uint64_t)addr,
4410 (uint64_t)block->mr->addr);
4411 ret = -EINVAL;
4412 }
4413 }
4414 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4415 block->idstr);
4416 } else {
4417 error_report("Unknown ramblock \"%s\", cannot "
4418 "accept migration", id);
4419 ret = -EINVAL;
4420 }
4421
4422 total_ram_bytes -= length;
4423 }
4424 break;
4425
4426 case RAM_SAVE_FLAG_ZERO:
4427 ch = qemu_get_byte(f);
4428 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4429 break;
4430
4431 case RAM_SAVE_FLAG_PAGE:
4432 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4433 break;
4434
4435 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4436 len = qemu_get_be32(f);
4437 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4438 error_report("Invalid compressed data length: %d", len);
4439 ret = -EINVAL;
4440 break;
4441 }
4442 decompress_data_with_multi_threads(f, host, len);
4443 break;
4444
4445 case RAM_SAVE_FLAG_XBZRLE:
4446 if (load_xbzrle(f, addr, host) < 0) {
4447 error_report("Failed to decompress XBZRLE page at "
4448 RAM_ADDR_FMT, addr);
4449 ret = -EINVAL;
4450 break;
4451 }
4452 break;
4453 case RAM_SAVE_FLAG_EOS:
4454 /* normal exit */
4455 multifd_recv_sync_main();
4456 break;
4457 default:
4458 if (flags & RAM_SAVE_FLAG_HOOK) {
4459 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4460 } else {
4461 error_report("Unknown combination of migration flags: %#x",
4462 flags);
4463 ret = -EINVAL;
4464 }
4465 }
4466 if (!ret) {
4467 ret = qemu_file_get_error(f);
4468 }
4469 }
4470
4471 return ret;
4472 }
4473
4474 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4475 {
4476 int ret = 0;
4477 static uint64_t seq_iter;
4478 /*
4479 * If system is running in postcopy mode, page inserts to host memory must
4480 * be atomic
4481 */
4482 bool postcopy_running = postcopy_is_running();
4483
4484 seq_iter++;
4485
4486 if (version_id != 4) {
4487 return -EINVAL;
4488 }
4489
4490 /*
4491 * This RCU critical section can be very long running.
4492 * When RCU reclaims in the code start to become numerous,
4493 * it will be necessary to reduce the granularity of this
4494 * critical section.
4495 */
4496 rcu_read_lock();
4497
4498 if (postcopy_running) {
4499 ret = ram_load_postcopy(f);
4500 } else {
4501 ret = ram_load_precopy(f);
4502 }
4503
4504 ret |= wait_for_decompress_done();
4505 rcu_read_unlock();
4506 trace_ram_load_complete(ret, seq_iter);
4507
4508 if (!ret && migration_incoming_in_colo_state()) {
4509 colo_flush_ram_cache();
4510 }
4511 return ret;
4512 }
4513
4514 static bool ram_has_postcopy(void *opaque)
4515 {
4516 RAMBlock *rb;
4517 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4518 if (ramblock_is_pmem(rb)) {
4519 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4520 "is not supported now!", rb->idstr, rb->host);
4521 return false;
4522 }
4523 }
4524
4525 return migrate_postcopy_ram();
4526 }
4527
4528 /* Sync all the dirty bitmap with destination VM. */
4529 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4530 {
4531 RAMBlock *block;
4532 QEMUFile *file = s->to_dst_file;
4533 int ramblock_count = 0;
4534
4535 trace_ram_dirty_bitmap_sync_start();
4536
4537 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4538 qemu_savevm_send_recv_bitmap(file, block->idstr);
4539 trace_ram_dirty_bitmap_request(block->idstr);
4540 ramblock_count++;
4541 }
4542
4543 trace_ram_dirty_bitmap_sync_wait();
4544
4545 /* Wait until all the ramblocks' dirty bitmap synced */
4546 while (ramblock_count--) {
4547 qemu_sem_wait(&s->rp_state.rp_sem);
4548 }
4549
4550 trace_ram_dirty_bitmap_sync_complete();
4551
4552 return 0;
4553 }
4554
4555 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4556 {
4557 qemu_sem_post(&s->rp_state.rp_sem);
4558 }
4559
4560 /*
4561 * Read the received bitmap, revert it as the initial dirty bitmap.
4562 * This is only used when the postcopy migration is paused but wants
4563 * to resume from a middle point.
4564 */
4565 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4566 {
4567 int ret = -EINVAL;
4568 QEMUFile *file = s->rp_state.from_dst_file;
4569 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4570 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4571 uint64_t size, end_mark;
4572
4573 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4574
4575 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4576 error_report("%s: incorrect state %s", __func__,
4577 MigrationStatus_str(s->state));
4578 return -EINVAL;
4579 }
4580
4581 /*
4582 * Note: see comments in ramblock_recv_bitmap_send() on why we
4583 * need the endianess convertion, and the paddings.
4584 */
4585 local_size = ROUND_UP(local_size, 8);
4586
4587 /* Add paddings */
4588 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4589
4590 size = qemu_get_be64(file);
4591
4592 /* The size of the bitmap should match with our ramblock */
4593 if (size != local_size) {
4594 error_report("%s: ramblock '%s' bitmap size mismatch "
4595 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4596 block->idstr, size, local_size);
4597 ret = -EINVAL;
4598 goto out;
4599 }
4600
4601 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4602 end_mark = qemu_get_be64(file);
4603
4604 ret = qemu_file_get_error(file);
4605 if (ret || size != local_size) {
4606 error_report("%s: read bitmap failed for ramblock '%s': %d"
4607 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4608 __func__, block->idstr, ret, local_size, size);
4609 ret = -EIO;
4610 goto out;
4611 }
4612
4613 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4614 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4615 __func__, block->idstr, end_mark);
4616 ret = -EINVAL;
4617 goto out;
4618 }
4619
4620 /*
4621 * Endianess convertion. We are during postcopy (though paused).
4622 * The dirty bitmap won't change. We can directly modify it.
4623 */
4624 bitmap_from_le(block->bmap, le_bitmap, nbits);
4625
4626 /*
4627 * What we received is "received bitmap". Revert it as the initial
4628 * dirty bitmap for this ramblock.
4629 */
4630 bitmap_complement(block->bmap, block->bmap, nbits);
4631
4632 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4633
4634 /*
4635 * We succeeded to sync bitmap for current ramblock. If this is
4636 * the last one to sync, we need to notify the main send thread.
4637 */
4638 ram_dirty_bitmap_reload_notify(s);
4639
4640 ret = 0;
4641 out:
4642 g_free(le_bitmap);
4643 return ret;
4644 }
4645
4646 static int ram_resume_prepare(MigrationState *s, void *opaque)
4647 {
4648 RAMState *rs = *(RAMState **)opaque;
4649 int ret;
4650
4651 ret = ram_dirty_bitmap_sync_all(s, rs);
4652 if (ret) {
4653 return ret;
4654 }
4655
4656 ram_state_resume_prepare(rs, s->to_dst_file);
4657
4658 return 0;
4659 }
4660
4661 static SaveVMHandlers savevm_ram_handlers = {
4662 .save_setup = ram_save_setup,
4663 .save_live_iterate = ram_save_iterate,
4664 .save_live_complete_postcopy = ram_save_complete,
4665 .save_live_complete_precopy = ram_save_complete,
4666 .has_postcopy = ram_has_postcopy,
4667 .save_live_pending = ram_save_pending,
4668 .load_state = ram_load,
4669 .save_cleanup = ram_save_cleanup,
4670 .load_setup = ram_load_setup,
4671 .load_cleanup = ram_load_cleanup,
4672 .resume_prepare = ram_resume_prepare,
4673 };
4674
4675 void ram_mig_init(void)
4676 {
4677 qemu_mutex_init(&XBZRLE.lock);
4678 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4679 }