]> git.proxmox.com Git - mirror_qemu.git/blob - migration/ram.c
migration/postcopy: discard_length must not be 0
[mirror_qemu.git] / migration / ram.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/pmem.h"
37 #include "xbzrle.h"
38 #include "ram.h"
39 #include "migration.h"
40 #include "socket.h"
41 #include "migration/register.h"
42 #include "migration/misc.h"
43 #include "qemu-file.h"
44 #include "postcopy-ram.h"
45 #include "page_cache.h"
46 #include "qemu/error-report.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qmp/qerror.h"
50 #include "trace.h"
51 #include "exec/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
55 #include "block.h"
56 #include "sysemu/sysemu.h"
57 #include "qemu/uuid.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60
61 /***********************************************************/
62 /* ram save/restore */
63
64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
71 #define RAM_SAVE_FLAG_ZERO 0x02
72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
73 #define RAM_SAVE_FLAG_PAGE 0x08
74 #define RAM_SAVE_FLAG_EOS 0x10
75 #define RAM_SAVE_FLAG_CONTINUE 0x20
76 #define RAM_SAVE_FLAG_XBZRLE 0x40
77 /* 0x80 is reserved in migration.h start with 0x100 next */
78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
80 static inline bool is_zero_range(uint8_t *p, uint64_t size)
81 {
82 return buffer_is_zero(p, size);
83 }
84
85 XBZRLECacheStats xbzrle_counters;
86
87 /* struct contains XBZRLE cache and a static page
88 used by the compression */
89 static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
101 } XBZRLE;
102
103 static void XBZRLE_cache_lock(void)
104 {
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107 }
108
109 static void XBZRLE_cache_unlock(void)
110 {
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113 }
114
115 /**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
123 * Returns 0 for success or -1 for error
124 *
125 * @new_size: new cache size
126 * @errp: set *errp if the check failed, with reason
127 */
128 int xbzrle_cache_resize(int64_t new_size, Error **errp)
129 {
130 PageCache *new_cache;
131 int64_t ret = 0;
132
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
142 return 0;
143 }
144
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
149 if (!new_cache) {
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
157 out:
158 XBZRLE_cache_unlock();
159 return ret;
160 }
161
162 static bool ramblock_is_ignored(RAMBlock *block)
163 {
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
166 }
167
168 /* Should be holding either ram_list.mutex, or the RCU lock. */
169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
172
173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
174 INTERNAL_RAMBLOCK_FOREACH(block) \
175 if (!qemu_ram_is_migratable(block)) {} else
176
177 #undef RAMBLOCK_FOREACH
178
179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
180 {
181 RAMBlock *block;
182 int ret = 0;
183
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 rcu_read_unlock();
192 return ret;
193 }
194
195 static void ramblock_recv_map_init(void)
196 {
197 RAMBlock *rb;
198
199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
202 }
203 }
204
205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
206 {
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
209 }
210
211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
212 {
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
214 }
215
216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
217 {
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
219 }
220
221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
223 {
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
227 }
228
229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
230
231 /*
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
233 *
234 * Returns >0 if success with sent bytes, or <0 if error.
235 */
236 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
238 {
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
242
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
246 }
247
248 nbits = block->used_length >> TARGET_PAGE_BITS;
249
250 /*
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
254 */
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
256
257 /*
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
261 */
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
263
264 /* Size of the bitmap, in bytes */
265 size = DIV_ROUND_UP(nbits, 8);
266
267 /*
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
272 */
273 size = ROUND_UP(size, 8);
274
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
277 /*
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
280 */
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
283
284 g_free(le_bitmap);
285
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
288 }
289
290 return size + sizeof(size);
291 }
292
293 /*
294 * An outstanding page request, on the source, having been received
295 * and queued
296 */
297 struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
301
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
303 };
304
305 /* State of RAM for migration */
306 struct RAMState {
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
326 /* bytes transferred at start_time */
327 uint64_t bytes_xfer_prev;
328 /* number of dirty pages since start_time */
329 uint64_t num_dirty_pages_period;
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
332
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
340
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
345 /* number of dirty bits in the bitmap */
346 uint64_t migration_dirty_pages;
347 /* Protects modification of the bitmap and migration dirty pages */
348 QemuMutex bitmap_mutex;
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
354 };
355 typedef struct RAMState RAMState;
356
357 static RAMState *ram_state;
358
359 static NotifierWithReturnList precopy_notifier_list;
360
361 void precopy_infrastructure_init(void)
362 {
363 notifier_with_return_list_init(&precopy_notifier_list);
364 }
365
366 void precopy_add_notifier(NotifierWithReturn *n)
367 {
368 notifier_with_return_list_add(&precopy_notifier_list, n);
369 }
370
371 void precopy_remove_notifier(NotifierWithReturn *n)
372 {
373 notifier_with_return_remove(n);
374 }
375
376 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
377 {
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
381
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
383 }
384
385 void precopy_enable_free_page_optimization(void)
386 {
387 if (!ram_state) {
388 return;
389 }
390
391 ram_state->fpo_enabled = true;
392 }
393
394 uint64_t ram_bytes_remaining(void)
395 {
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
397 0;
398 }
399
400 MigrationStats ram_counters;
401
402 /* used by the search for pages to send */
403 struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
406 /* Current page to search from */
407 unsigned long page;
408 /* Set once we wrap around */
409 bool complete_round;
410 };
411 typedef struct PageSearchStatus PageSearchStatus;
412
413 CompressionStats compression_counters;
414
415 struct CompressParam {
416 bool done;
417 bool quit;
418 bool zero_page;
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
424
425 /* internally used fields */
426 z_stream stream;
427 uint8_t *originbuf;
428 };
429 typedef struct CompressParam CompressParam;
430
431 struct DecompressParam {
432 bool done;
433 bool quit;
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
437 uint8_t *compbuf;
438 int len;
439 z_stream stream;
440 };
441 typedef struct DecompressParam DecompressParam;
442
443 static CompressParam *comp_param;
444 static QemuThread *compress_threads;
445 /* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
448 */
449 static QemuMutex comp_done_lock;
450 static QemuCond comp_done_cond;
451 /* The empty QEMUFileOps will be used by file in CompressParam */
452 static const QEMUFileOps empty_ops = { };
453
454 static QEMUFile *decomp_file;
455 static DecompressParam *decomp_param;
456 static QemuThread *decompress_threads;
457 static QemuMutex decomp_done_lock;
458 static QemuCond decomp_done_cond;
459
460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
461 ram_addr_t offset, uint8_t *source_buf);
462
463 static void *do_data_compress(void *opaque)
464 {
465 CompressParam *param = opaque;
466 RAMBlock *block;
467 ram_addr_t offset;
468 bool zero_page;
469
470 qemu_mutex_lock(&param->mutex);
471 while (!param->quit) {
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
477
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
480
481 qemu_mutex_lock(&comp_done_lock);
482 param->done = true;
483 param->zero_page = zero_page;
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
486
487 qemu_mutex_lock(&param->mutex);
488 } else {
489 qemu_cond_wait(&param->cond, &param->mutex);
490 }
491 }
492 qemu_mutex_unlock(&param->mutex);
493
494 return NULL;
495 }
496
497 static void compress_threads_save_cleanup(void)
498 {
499 int i, thread_count;
500
501 if (!migrate_use_compression() || !comp_param) {
502 return;
503 }
504
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
507 /*
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
510 */
511 if (!comp_param[i].file) {
512 break;
513 }
514
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
519
520 qemu_thread_join(compress_threads + i);
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
523 deflateEnd(&comp_param[i].stream);
524 g_free(comp_param[i].originbuf);
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
527 }
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
530 g_free(compress_threads);
531 g_free(comp_param);
532 compress_threads = NULL;
533 comp_param = NULL;
534 }
535
536 static int compress_threads_save_setup(void)
537 {
538 int i, thread_count;
539
540 if (!migrate_use_compression()) {
541 return 0;
542 }
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
548 for (i = 0; i < thread_count; i++) {
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
552 }
553
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
556 g_free(comp_param[i].originbuf);
557 goto exit;
558 }
559
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
562 */
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
565 comp_param[i].quit = false;
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
571 }
572 return 0;
573
574 exit:
575 compress_threads_save_cleanup();
576 return -1;
577 }
578
579 /* Multiple fd's */
580
581 #define MULTIFD_MAGIC 0x11223344U
582 #define MULTIFD_VERSION 1
583
584 #define MULTIFD_FLAG_SYNC (1 << 0)
585
586 /* This value needs to be a multiple of qemu_target_page_size() */
587 #define MULTIFD_PACKET_SIZE (512 * 1024)
588
589 typedef struct {
590 uint32_t magic;
591 uint32_t version;
592 unsigned char uuid[16]; /* QemuUUID */
593 uint8_t id;
594 uint8_t unused1[7]; /* Reserved for future use */
595 uint64_t unused2[4]; /* Reserved for future use */
596 } __attribute__((packed)) MultiFDInit_t;
597
598 typedef struct {
599 uint32_t magic;
600 uint32_t version;
601 uint32_t flags;
602 /* maximum number of allocated pages */
603 uint32_t pages_alloc;
604 uint32_t pages_used;
605 /* size of the next packet that contains pages */
606 uint32_t next_packet_size;
607 uint64_t packet_num;
608 uint64_t unused[4]; /* Reserved for future use */
609 char ramblock[256];
610 uint64_t offset[];
611 } __attribute__((packed)) MultiFDPacket_t;
612
613 typedef struct {
614 /* number of used pages */
615 uint32_t used;
616 /* number of allocated pages */
617 uint32_t allocated;
618 /* global number of generated multifd packets */
619 uint64_t packet_num;
620 /* offset of each page */
621 ram_addr_t *offset;
622 /* pointer to each page */
623 struct iovec *iov;
624 RAMBlock *block;
625 } MultiFDPages_t;
626
627 typedef struct {
628 /* this fields are not changed once the thread is created */
629 /* channel number */
630 uint8_t id;
631 /* channel thread name */
632 char *name;
633 /* channel thread id */
634 QemuThread thread;
635 /* communication channel */
636 QIOChannel *c;
637 /* sem where to wait for more work */
638 QemuSemaphore sem;
639 /* this mutex protects the following parameters */
640 QemuMutex mutex;
641 /* is this channel thread running */
642 bool running;
643 /* should this thread finish */
644 bool quit;
645 /* thread has work to do */
646 int pending_job;
647 /* array of pages to sent */
648 MultiFDPages_t *pages;
649 /* packet allocated len */
650 uint32_t packet_len;
651 /* pointer to the packet */
652 MultiFDPacket_t *packet;
653 /* multifd flags for each packet */
654 uint32_t flags;
655 /* size of the next packet that contains pages */
656 uint32_t next_packet_size;
657 /* global number of generated multifd packets */
658 uint64_t packet_num;
659 /* thread local variables */
660 /* packets sent through this channel */
661 uint64_t num_packets;
662 /* pages sent through this channel */
663 uint64_t num_pages;
664 } MultiFDSendParams;
665
666 typedef struct {
667 /* this fields are not changed once the thread is created */
668 /* channel number */
669 uint8_t id;
670 /* channel thread name */
671 char *name;
672 /* channel thread id */
673 QemuThread thread;
674 /* communication channel */
675 QIOChannel *c;
676 /* this mutex protects the following parameters */
677 QemuMutex mutex;
678 /* is this channel thread running */
679 bool running;
680 /* should this thread finish */
681 bool quit;
682 /* array of pages to receive */
683 MultiFDPages_t *pages;
684 /* packet allocated len */
685 uint32_t packet_len;
686 /* pointer to the packet */
687 MultiFDPacket_t *packet;
688 /* multifd flags for each packet */
689 uint32_t flags;
690 /* global number of generated multifd packets */
691 uint64_t packet_num;
692 /* thread local variables */
693 /* size of the next packet that contains pages */
694 uint32_t next_packet_size;
695 /* packets sent through this channel */
696 uint64_t num_packets;
697 /* pages sent through this channel */
698 uint64_t num_pages;
699 /* syncs main thread and channels */
700 QemuSemaphore sem_sync;
701 } MultiFDRecvParams;
702
703 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
704 {
705 MultiFDInit_t msg;
706 int ret;
707
708 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
709 msg.version = cpu_to_be32(MULTIFD_VERSION);
710 msg.id = p->id;
711 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
712
713 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
714 if (ret != 0) {
715 return -1;
716 }
717 return 0;
718 }
719
720 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
721 {
722 MultiFDInit_t msg;
723 int ret;
724
725 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
726 if (ret != 0) {
727 return -1;
728 }
729
730 msg.magic = be32_to_cpu(msg.magic);
731 msg.version = be32_to_cpu(msg.version);
732
733 if (msg.magic != MULTIFD_MAGIC) {
734 error_setg(errp, "multifd: received packet magic %x "
735 "expected %x", msg.magic, MULTIFD_MAGIC);
736 return -1;
737 }
738
739 if (msg.version != MULTIFD_VERSION) {
740 error_setg(errp, "multifd: received packet version %d "
741 "expected %d", msg.version, MULTIFD_VERSION);
742 return -1;
743 }
744
745 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
746 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
747 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
748
749 error_setg(errp, "multifd: received uuid '%s' and expected "
750 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
751 g_free(uuid);
752 g_free(msg_uuid);
753 return -1;
754 }
755
756 if (msg.id > migrate_multifd_channels()) {
757 error_setg(errp, "multifd: received channel version %d "
758 "expected %d", msg.version, MULTIFD_VERSION);
759 return -1;
760 }
761
762 return msg.id;
763 }
764
765 static MultiFDPages_t *multifd_pages_init(size_t size)
766 {
767 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
768
769 pages->allocated = size;
770 pages->iov = g_new0(struct iovec, size);
771 pages->offset = g_new0(ram_addr_t, size);
772
773 return pages;
774 }
775
776 static void multifd_pages_clear(MultiFDPages_t *pages)
777 {
778 pages->used = 0;
779 pages->allocated = 0;
780 pages->packet_num = 0;
781 pages->block = NULL;
782 g_free(pages->iov);
783 pages->iov = NULL;
784 g_free(pages->offset);
785 pages->offset = NULL;
786 g_free(pages);
787 }
788
789 static void multifd_send_fill_packet(MultiFDSendParams *p)
790 {
791 MultiFDPacket_t *packet = p->packet;
792 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
793 int i;
794
795 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
796 packet->version = cpu_to_be32(MULTIFD_VERSION);
797 packet->flags = cpu_to_be32(p->flags);
798 packet->pages_alloc = cpu_to_be32(page_max);
799 packet->pages_used = cpu_to_be32(p->pages->used);
800 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
801 packet->packet_num = cpu_to_be64(p->packet_num);
802
803 if (p->pages->block) {
804 strncpy(packet->ramblock, p->pages->block->idstr, 256);
805 }
806
807 for (i = 0; i < p->pages->used; i++) {
808 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
809 }
810 }
811
812 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
813 {
814 MultiFDPacket_t *packet = p->packet;
815 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
816 RAMBlock *block;
817 int i;
818
819 packet->magic = be32_to_cpu(packet->magic);
820 if (packet->magic != MULTIFD_MAGIC) {
821 error_setg(errp, "multifd: received packet "
822 "magic %x and expected magic %x",
823 packet->magic, MULTIFD_MAGIC);
824 return -1;
825 }
826
827 packet->version = be32_to_cpu(packet->version);
828 if (packet->version != MULTIFD_VERSION) {
829 error_setg(errp, "multifd: received packet "
830 "version %d and expected version %d",
831 packet->version, MULTIFD_VERSION);
832 return -1;
833 }
834
835 p->flags = be32_to_cpu(packet->flags);
836
837 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
838 /*
839 * If we recevied a packet that is 100 times bigger than expected
840 * just stop migration. It is a magic number.
841 */
842 if (packet->pages_alloc > pages_max * 100) {
843 error_setg(errp, "multifd: received packet "
844 "with size %d and expected a maximum size of %d",
845 packet->pages_alloc, pages_max * 100) ;
846 return -1;
847 }
848 /*
849 * We received a packet that is bigger than expected but inside
850 * reasonable limits (see previous comment). Just reallocate.
851 */
852 if (packet->pages_alloc > p->pages->allocated) {
853 multifd_pages_clear(p->pages);
854 p->pages = multifd_pages_init(packet->pages_alloc);
855 }
856
857 p->pages->used = be32_to_cpu(packet->pages_used);
858 if (p->pages->used > packet->pages_alloc) {
859 error_setg(errp, "multifd: received packet "
860 "with %d pages and expected maximum pages are %d",
861 p->pages->used, packet->pages_alloc) ;
862 return -1;
863 }
864
865 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
866 p->packet_num = be64_to_cpu(packet->packet_num);
867
868 if (p->pages->used) {
869 /* make sure that ramblock is 0 terminated */
870 packet->ramblock[255] = 0;
871 block = qemu_ram_block_by_name(packet->ramblock);
872 if (!block) {
873 error_setg(errp, "multifd: unknown ram block %s",
874 packet->ramblock);
875 return -1;
876 }
877 }
878
879 for (i = 0; i < p->pages->used; i++) {
880 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
881
882 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
883 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
884 " (max " RAM_ADDR_FMT ")",
885 offset, block->max_length);
886 return -1;
887 }
888 p->pages->iov[i].iov_base = block->host + offset;
889 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
890 }
891
892 return 0;
893 }
894
895 struct {
896 MultiFDSendParams *params;
897 /* array of pages to sent */
898 MultiFDPages_t *pages;
899 /* syncs main thread and channels */
900 QemuSemaphore sem_sync;
901 /* global number of generated multifd packets */
902 uint64_t packet_num;
903 /* send channels ready */
904 QemuSemaphore channels_ready;
905 } *multifd_send_state;
906
907 /*
908 * How we use multifd_send_state->pages and channel->pages?
909 *
910 * We create a pages for each channel, and a main one. Each time that
911 * we need to send a batch of pages we interchange the ones between
912 * multifd_send_state and the channel that is sending it. There are
913 * two reasons for that:
914 * - to not have to do so many mallocs during migration
915 * - to make easier to know what to free at the end of migration
916 *
917 * This way we always know who is the owner of each "pages" struct,
918 * and we don't need any locking. It belongs to the migration thread
919 * or to the channel thread. Switching is safe because the migration
920 * thread is using the channel mutex when changing it, and the channel
921 * have to had finish with its own, otherwise pending_job can't be
922 * false.
923 */
924
925 static int multifd_send_pages(void)
926 {
927 int i;
928 static int next_channel;
929 MultiFDSendParams *p = NULL; /* make happy gcc */
930 MultiFDPages_t *pages = multifd_send_state->pages;
931 uint64_t transferred;
932
933 qemu_sem_wait(&multifd_send_state->channels_ready);
934 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
935 p = &multifd_send_state->params[i];
936
937 qemu_mutex_lock(&p->mutex);
938 if (p->quit) {
939 error_report("%s: channel %d has already quit!", __func__, i);
940 qemu_mutex_unlock(&p->mutex);
941 return -1;
942 }
943 if (!p->pending_job) {
944 p->pending_job++;
945 next_channel = (i + 1) % migrate_multifd_channels();
946 break;
947 }
948 qemu_mutex_unlock(&p->mutex);
949 }
950 p->pages->used = 0;
951
952 p->packet_num = multifd_send_state->packet_num++;
953 p->pages->block = NULL;
954 multifd_send_state->pages = p->pages;
955 p->pages = pages;
956 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
957 ram_counters.multifd_bytes += transferred;
958 ram_counters.transferred += transferred;;
959 qemu_mutex_unlock(&p->mutex);
960 qemu_sem_post(&p->sem);
961
962 return 1;
963 }
964
965 static int multifd_queue_page(RAMBlock *block, ram_addr_t offset)
966 {
967 MultiFDPages_t *pages = multifd_send_state->pages;
968
969 if (!pages->block) {
970 pages->block = block;
971 }
972
973 if (pages->block == block) {
974 pages->offset[pages->used] = offset;
975 pages->iov[pages->used].iov_base = block->host + offset;
976 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
977 pages->used++;
978
979 if (pages->used < pages->allocated) {
980 return 1;
981 }
982 }
983
984 if (multifd_send_pages() < 0) {
985 return -1;
986 }
987
988 if (pages->block != block) {
989 return multifd_queue_page(block, offset);
990 }
991
992 return 1;
993 }
994
995 static void multifd_send_terminate_threads(Error *err)
996 {
997 int i;
998
999 if (err) {
1000 MigrationState *s = migrate_get_current();
1001 migrate_set_error(s, err);
1002 if (s->state == MIGRATION_STATUS_SETUP ||
1003 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
1004 s->state == MIGRATION_STATUS_DEVICE ||
1005 s->state == MIGRATION_STATUS_ACTIVE) {
1006 migrate_set_state(&s->state, s->state,
1007 MIGRATION_STATUS_FAILED);
1008 }
1009 }
1010
1011 for (i = 0; i < migrate_multifd_channels(); i++) {
1012 MultiFDSendParams *p = &multifd_send_state->params[i];
1013
1014 qemu_mutex_lock(&p->mutex);
1015 p->quit = true;
1016 qemu_sem_post(&p->sem);
1017 qemu_mutex_unlock(&p->mutex);
1018 }
1019 }
1020
1021 void multifd_save_cleanup(void)
1022 {
1023 int i;
1024
1025 if (!migrate_use_multifd()) {
1026 return;
1027 }
1028 multifd_send_terminate_threads(NULL);
1029 for (i = 0; i < migrate_multifd_channels(); i++) {
1030 MultiFDSendParams *p = &multifd_send_state->params[i];
1031
1032 if (p->running) {
1033 qemu_thread_join(&p->thread);
1034 }
1035 socket_send_channel_destroy(p->c);
1036 p->c = NULL;
1037 qemu_mutex_destroy(&p->mutex);
1038 qemu_sem_destroy(&p->sem);
1039 g_free(p->name);
1040 p->name = NULL;
1041 multifd_pages_clear(p->pages);
1042 p->pages = NULL;
1043 p->packet_len = 0;
1044 g_free(p->packet);
1045 p->packet = NULL;
1046 }
1047 qemu_sem_destroy(&multifd_send_state->channels_ready);
1048 qemu_sem_destroy(&multifd_send_state->sem_sync);
1049 g_free(multifd_send_state->params);
1050 multifd_send_state->params = NULL;
1051 multifd_pages_clear(multifd_send_state->pages);
1052 multifd_send_state->pages = NULL;
1053 g_free(multifd_send_state);
1054 multifd_send_state = NULL;
1055 }
1056
1057 static void multifd_send_sync_main(void)
1058 {
1059 int i;
1060
1061 if (!migrate_use_multifd()) {
1062 return;
1063 }
1064 if (multifd_send_state->pages->used) {
1065 if (multifd_send_pages() < 0) {
1066 error_report("%s: multifd_send_pages fail", __func__);
1067 return;
1068 }
1069 }
1070 for (i = 0; i < migrate_multifd_channels(); i++) {
1071 MultiFDSendParams *p = &multifd_send_state->params[i];
1072
1073 trace_multifd_send_sync_main_signal(p->id);
1074
1075 qemu_mutex_lock(&p->mutex);
1076
1077 if (p->quit) {
1078 error_report("%s: channel %d has already quit", __func__, i);
1079 qemu_mutex_unlock(&p->mutex);
1080 return;
1081 }
1082
1083 p->packet_num = multifd_send_state->packet_num++;
1084 p->flags |= MULTIFD_FLAG_SYNC;
1085 p->pending_job++;
1086 qemu_mutex_unlock(&p->mutex);
1087 qemu_sem_post(&p->sem);
1088 }
1089 for (i = 0; i < migrate_multifd_channels(); i++) {
1090 MultiFDSendParams *p = &multifd_send_state->params[i];
1091
1092 trace_multifd_send_sync_main_wait(p->id);
1093 qemu_sem_wait(&multifd_send_state->sem_sync);
1094 }
1095 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1096 }
1097
1098 static void *multifd_send_thread(void *opaque)
1099 {
1100 MultiFDSendParams *p = opaque;
1101 Error *local_err = NULL;
1102 int ret = 0;
1103 uint32_t flags = 0;
1104
1105 trace_multifd_send_thread_start(p->id);
1106 rcu_register_thread();
1107
1108 if (multifd_send_initial_packet(p, &local_err) < 0) {
1109 goto out;
1110 }
1111 /* initial packet */
1112 p->num_packets = 1;
1113
1114 while (true) {
1115 qemu_sem_wait(&p->sem);
1116 qemu_mutex_lock(&p->mutex);
1117
1118 if (p->pending_job) {
1119 uint32_t used = p->pages->used;
1120 uint64_t packet_num = p->packet_num;
1121 flags = p->flags;
1122
1123 p->next_packet_size = used * qemu_target_page_size();
1124 multifd_send_fill_packet(p);
1125 p->flags = 0;
1126 p->num_packets++;
1127 p->num_pages += used;
1128 p->pages->used = 0;
1129 qemu_mutex_unlock(&p->mutex);
1130
1131 trace_multifd_send(p->id, packet_num, used, flags,
1132 p->next_packet_size);
1133
1134 ret = qio_channel_write_all(p->c, (void *)p->packet,
1135 p->packet_len, &local_err);
1136 if (ret != 0) {
1137 break;
1138 }
1139
1140 if (used) {
1141 ret = qio_channel_writev_all(p->c, p->pages->iov,
1142 used, &local_err);
1143 if (ret != 0) {
1144 break;
1145 }
1146 }
1147
1148 qemu_mutex_lock(&p->mutex);
1149 p->pending_job--;
1150 qemu_mutex_unlock(&p->mutex);
1151
1152 if (flags & MULTIFD_FLAG_SYNC) {
1153 qemu_sem_post(&multifd_send_state->sem_sync);
1154 }
1155 qemu_sem_post(&multifd_send_state->channels_ready);
1156 } else if (p->quit) {
1157 qemu_mutex_unlock(&p->mutex);
1158 break;
1159 } else {
1160 qemu_mutex_unlock(&p->mutex);
1161 /* sometimes there are spurious wakeups */
1162 }
1163 }
1164
1165 out:
1166 if (local_err) {
1167 multifd_send_terminate_threads(local_err);
1168 }
1169
1170 /*
1171 * Error happen, I will exit, but I can't just leave, tell
1172 * who pay attention to me.
1173 */
1174 if (ret != 0) {
1175 if (flags & MULTIFD_FLAG_SYNC) {
1176 qemu_sem_post(&multifd_send_state->sem_sync);
1177 }
1178 qemu_sem_post(&multifd_send_state->channels_ready);
1179 }
1180
1181 qemu_mutex_lock(&p->mutex);
1182 p->running = false;
1183 qemu_mutex_unlock(&p->mutex);
1184
1185 rcu_unregister_thread();
1186 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1187
1188 return NULL;
1189 }
1190
1191 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1192 {
1193 MultiFDSendParams *p = opaque;
1194 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1195 Error *local_err = NULL;
1196
1197 if (qio_task_propagate_error(task, &local_err)) {
1198 migrate_set_error(migrate_get_current(), local_err);
1199 multifd_save_cleanup();
1200 } else {
1201 p->c = QIO_CHANNEL(sioc);
1202 qio_channel_set_delay(p->c, false);
1203 p->running = true;
1204 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1205 QEMU_THREAD_JOINABLE);
1206 }
1207 }
1208
1209 int multifd_save_setup(void)
1210 {
1211 int thread_count;
1212 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1213 uint8_t i;
1214
1215 if (!migrate_use_multifd()) {
1216 return 0;
1217 }
1218 thread_count = migrate_multifd_channels();
1219 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1220 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1221 multifd_send_state->pages = multifd_pages_init(page_count);
1222 qemu_sem_init(&multifd_send_state->sem_sync, 0);
1223 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1224
1225 for (i = 0; i < thread_count; i++) {
1226 MultiFDSendParams *p = &multifd_send_state->params[i];
1227
1228 qemu_mutex_init(&p->mutex);
1229 qemu_sem_init(&p->sem, 0);
1230 p->quit = false;
1231 p->pending_job = 0;
1232 p->id = i;
1233 p->pages = multifd_pages_init(page_count);
1234 p->packet_len = sizeof(MultiFDPacket_t)
1235 + sizeof(ram_addr_t) * page_count;
1236 p->packet = g_malloc0(p->packet_len);
1237 p->name = g_strdup_printf("multifdsend_%d", i);
1238 socket_send_channel_create(multifd_new_send_channel_async, p);
1239 }
1240 return 0;
1241 }
1242
1243 struct {
1244 MultiFDRecvParams *params;
1245 /* number of created threads */
1246 int count;
1247 /* syncs main thread and channels */
1248 QemuSemaphore sem_sync;
1249 /* global number of generated multifd packets */
1250 uint64_t packet_num;
1251 } *multifd_recv_state;
1252
1253 static void multifd_recv_terminate_threads(Error *err)
1254 {
1255 int i;
1256
1257 if (err) {
1258 MigrationState *s = migrate_get_current();
1259 migrate_set_error(s, err);
1260 if (s->state == MIGRATION_STATUS_SETUP ||
1261 s->state == MIGRATION_STATUS_ACTIVE) {
1262 migrate_set_state(&s->state, s->state,
1263 MIGRATION_STATUS_FAILED);
1264 }
1265 }
1266
1267 for (i = 0; i < migrate_multifd_channels(); i++) {
1268 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1269
1270 qemu_mutex_lock(&p->mutex);
1271 p->quit = true;
1272 /* We could arrive here for two reasons:
1273 - normal quit, i.e. everything went fine, just finished
1274 - error quit: We close the channels so the channel threads
1275 finish the qio_channel_read_all_eof() */
1276 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1277 qemu_mutex_unlock(&p->mutex);
1278 }
1279 }
1280
1281 int multifd_load_cleanup(Error **errp)
1282 {
1283 int i;
1284 int ret = 0;
1285
1286 if (!migrate_use_multifd()) {
1287 return 0;
1288 }
1289 multifd_recv_terminate_threads(NULL);
1290 for (i = 0; i < migrate_multifd_channels(); i++) {
1291 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1292
1293 if (p->running) {
1294 p->quit = true;
1295 /*
1296 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
1297 * however try to wakeup it without harm in cleanup phase.
1298 */
1299 qemu_sem_post(&p->sem_sync);
1300 qemu_thread_join(&p->thread);
1301 }
1302 object_unref(OBJECT(p->c));
1303 p->c = NULL;
1304 qemu_mutex_destroy(&p->mutex);
1305 qemu_sem_destroy(&p->sem_sync);
1306 g_free(p->name);
1307 p->name = NULL;
1308 multifd_pages_clear(p->pages);
1309 p->pages = NULL;
1310 p->packet_len = 0;
1311 g_free(p->packet);
1312 p->packet = NULL;
1313 }
1314 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1315 g_free(multifd_recv_state->params);
1316 multifd_recv_state->params = NULL;
1317 g_free(multifd_recv_state);
1318 multifd_recv_state = NULL;
1319
1320 return ret;
1321 }
1322
1323 static void multifd_recv_sync_main(void)
1324 {
1325 int i;
1326
1327 if (!migrate_use_multifd()) {
1328 return;
1329 }
1330 for (i = 0; i < migrate_multifd_channels(); i++) {
1331 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1332
1333 trace_multifd_recv_sync_main_wait(p->id);
1334 qemu_sem_wait(&multifd_recv_state->sem_sync);
1335 }
1336 for (i = 0; i < migrate_multifd_channels(); i++) {
1337 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1338
1339 qemu_mutex_lock(&p->mutex);
1340 if (multifd_recv_state->packet_num < p->packet_num) {
1341 multifd_recv_state->packet_num = p->packet_num;
1342 }
1343 qemu_mutex_unlock(&p->mutex);
1344 trace_multifd_recv_sync_main_signal(p->id);
1345 qemu_sem_post(&p->sem_sync);
1346 }
1347 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1348 }
1349
1350 static void *multifd_recv_thread(void *opaque)
1351 {
1352 MultiFDRecvParams *p = opaque;
1353 Error *local_err = NULL;
1354 int ret;
1355
1356 trace_multifd_recv_thread_start(p->id);
1357 rcu_register_thread();
1358
1359 while (true) {
1360 uint32_t used;
1361 uint32_t flags;
1362
1363 if (p->quit) {
1364 break;
1365 }
1366
1367 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1368 p->packet_len, &local_err);
1369 if (ret == 0) { /* EOF */
1370 break;
1371 }
1372 if (ret == -1) { /* Error */
1373 break;
1374 }
1375
1376 qemu_mutex_lock(&p->mutex);
1377 ret = multifd_recv_unfill_packet(p, &local_err);
1378 if (ret) {
1379 qemu_mutex_unlock(&p->mutex);
1380 break;
1381 }
1382
1383 used = p->pages->used;
1384 flags = p->flags;
1385 trace_multifd_recv(p->id, p->packet_num, used, flags,
1386 p->next_packet_size);
1387 p->num_packets++;
1388 p->num_pages += used;
1389 qemu_mutex_unlock(&p->mutex);
1390
1391 if (used) {
1392 ret = qio_channel_readv_all(p->c, p->pages->iov,
1393 used, &local_err);
1394 if (ret != 0) {
1395 break;
1396 }
1397 }
1398
1399 if (flags & MULTIFD_FLAG_SYNC) {
1400 qemu_sem_post(&multifd_recv_state->sem_sync);
1401 qemu_sem_wait(&p->sem_sync);
1402 }
1403 }
1404
1405 if (local_err) {
1406 multifd_recv_terminate_threads(local_err);
1407 }
1408 qemu_mutex_lock(&p->mutex);
1409 p->running = false;
1410 qemu_mutex_unlock(&p->mutex);
1411
1412 rcu_unregister_thread();
1413 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1414
1415 return NULL;
1416 }
1417
1418 int multifd_load_setup(void)
1419 {
1420 int thread_count;
1421 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1422 uint8_t i;
1423
1424 if (!migrate_use_multifd()) {
1425 return 0;
1426 }
1427 thread_count = migrate_multifd_channels();
1428 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1429 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1430 atomic_set(&multifd_recv_state->count, 0);
1431 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1432
1433 for (i = 0; i < thread_count; i++) {
1434 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1435
1436 qemu_mutex_init(&p->mutex);
1437 qemu_sem_init(&p->sem_sync, 0);
1438 p->quit = false;
1439 p->id = i;
1440 p->pages = multifd_pages_init(page_count);
1441 p->packet_len = sizeof(MultiFDPacket_t)
1442 + sizeof(ram_addr_t) * page_count;
1443 p->packet = g_malloc0(p->packet_len);
1444 p->name = g_strdup_printf("multifdrecv_%d", i);
1445 }
1446 return 0;
1447 }
1448
1449 bool multifd_recv_all_channels_created(void)
1450 {
1451 int thread_count = migrate_multifd_channels();
1452
1453 if (!migrate_use_multifd()) {
1454 return true;
1455 }
1456
1457 return thread_count == atomic_read(&multifd_recv_state->count);
1458 }
1459
1460 /*
1461 * Try to receive all multifd channels to get ready for the migration.
1462 * - Return true and do not set @errp when correctly receving all channels;
1463 * - Return false and do not set @errp when correctly receiving the current one;
1464 * - Return false and set @errp when failing to receive the current channel.
1465 */
1466 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1467 {
1468 MultiFDRecvParams *p;
1469 Error *local_err = NULL;
1470 int id;
1471
1472 id = multifd_recv_initial_packet(ioc, &local_err);
1473 if (id < 0) {
1474 multifd_recv_terminate_threads(local_err);
1475 error_propagate_prepend(errp, local_err,
1476 "failed to receive packet"
1477 " via multifd channel %d: ",
1478 atomic_read(&multifd_recv_state->count));
1479 return false;
1480 }
1481
1482 p = &multifd_recv_state->params[id];
1483 if (p->c != NULL) {
1484 error_setg(&local_err, "multifd: received id '%d' already setup'",
1485 id);
1486 multifd_recv_terminate_threads(local_err);
1487 error_propagate(errp, local_err);
1488 return false;
1489 }
1490 p->c = ioc;
1491 object_ref(OBJECT(ioc));
1492 /* initial packet */
1493 p->num_packets = 1;
1494
1495 p->running = true;
1496 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1497 QEMU_THREAD_JOINABLE);
1498 atomic_inc(&multifd_recv_state->count);
1499 return atomic_read(&multifd_recv_state->count) ==
1500 migrate_multifd_channels();
1501 }
1502
1503 /**
1504 * save_page_header: write page header to wire
1505 *
1506 * If this is the 1st block, it also writes the block identification
1507 *
1508 * Returns the number of bytes written
1509 *
1510 * @f: QEMUFile where to send the data
1511 * @block: block that contains the page we want to send
1512 * @offset: offset inside the block for the page
1513 * in the lower bits, it contains flags
1514 */
1515 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1516 ram_addr_t offset)
1517 {
1518 size_t size, len;
1519
1520 if (block == rs->last_sent_block) {
1521 offset |= RAM_SAVE_FLAG_CONTINUE;
1522 }
1523 qemu_put_be64(f, offset);
1524 size = 8;
1525
1526 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1527 len = strlen(block->idstr);
1528 qemu_put_byte(f, len);
1529 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1530 size += 1 + len;
1531 rs->last_sent_block = block;
1532 }
1533 return size;
1534 }
1535
1536 /**
1537 * mig_throttle_guest_down: throotle down the guest
1538 *
1539 * Reduce amount of guest cpu execution to hopefully slow down memory
1540 * writes. If guest dirty memory rate is reduced below the rate at
1541 * which we can transfer pages to the destination then we should be
1542 * able to complete migration. Some workloads dirty memory way too
1543 * fast and will not effectively converge, even with auto-converge.
1544 */
1545 static void mig_throttle_guest_down(void)
1546 {
1547 MigrationState *s = migrate_get_current();
1548 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1549 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1550 int pct_max = s->parameters.max_cpu_throttle;
1551
1552 /* We have not started throttling yet. Let's start it. */
1553 if (!cpu_throttle_active()) {
1554 cpu_throttle_set(pct_initial);
1555 } else {
1556 /* Throttling already on, just increase the rate */
1557 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1558 pct_max));
1559 }
1560 }
1561
1562 /**
1563 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1564 *
1565 * @rs: current RAM state
1566 * @current_addr: address for the zero page
1567 *
1568 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1569 * The important thing is that a stale (not-yet-0'd) page be replaced
1570 * by the new data.
1571 * As a bonus, if the page wasn't in the cache it gets added so that
1572 * when a small write is made into the 0'd page it gets XBZRLE sent.
1573 */
1574 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1575 {
1576 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1577 return;
1578 }
1579
1580 /* We don't care if this fails to allocate a new cache page
1581 * as long as it updated an old one */
1582 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1583 ram_counters.dirty_sync_count);
1584 }
1585
1586 #define ENCODING_FLAG_XBZRLE 0x1
1587
1588 /**
1589 * save_xbzrle_page: compress and send current page
1590 *
1591 * Returns: 1 means that we wrote the page
1592 * 0 means that page is identical to the one already sent
1593 * -1 means that xbzrle would be longer than normal
1594 *
1595 * @rs: current RAM state
1596 * @current_data: pointer to the address of the page contents
1597 * @current_addr: addr of the page
1598 * @block: block that contains the page we want to send
1599 * @offset: offset inside the block for the page
1600 * @last_stage: if we are at the completion stage
1601 */
1602 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1603 ram_addr_t current_addr, RAMBlock *block,
1604 ram_addr_t offset, bool last_stage)
1605 {
1606 int encoded_len = 0, bytes_xbzrle;
1607 uint8_t *prev_cached_page;
1608
1609 if (!cache_is_cached(XBZRLE.cache, current_addr,
1610 ram_counters.dirty_sync_count)) {
1611 xbzrle_counters.cache_miss++;
1612 if (!last_stage) {
1613 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1614 ram_counters.dirty_sync_count) == -1) {
1615 return -1;
1616 } else {
1617 /* update *current_data when the page has been
1618 inserted into cache */
1619 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1620 }
1621 }
1622 return -1;
1623 }
1624
1625 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1626
1627 /* save current buffer into memory */
1628 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1629
1630 /* XBZRLE encoding (if there is no overflow) */
1631 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1632 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1633 TARGET_PAGE_SIZE);
1634
1635 /*
1636 * Update the cache contents, so that it corresponds to the data
1637 * sent, in all cases except where we skip the page.
1638 */
1639 if (!last_stage && encoded_len != 0) {
1640 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1641 /*
1642 * In the case where we couldn't compress, ensure that the caller
1643 * sends the data from the cache, since the guest might have
1644 * changed the RAM since we copied it.
1645 */
1646 *current_data = prev_cached_page;
1647 }
1648
1649 if (encoded_len == 0) {
1650 trace_save_xbzrle_page_skipping();
1651 return 0;
1652 } else if (encoded_len == -1) {
1653 trace_save_xbzrle_page_overflow();
1654 xbzrle_counters.overflow++;
1655 return -1;
1656 }
1657
1658 /* Send XBZRLE based compressed page */
1659 bytes_xbzrle = save_page_header(rs, rs->f, block,
1660 offset | RAM_SAVE_FLAG_XBZRLE);
1661 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1662 qemu_put_be16(rs->f, encoded_len);
1663 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1664 bytes_xbzrle += encoded_len + 1 + 2;
1665 xbzrle_counters.pages++;
1666 xbzrle_counters.bytes += bytes_xbzrle;
1667 ram_counters.transferred += bytes_xbzrle;
1668
1669 return 1;
1670 }
1671
1672 /**
1673 * migration_bitmap_find_dirty: find the next dirty page from start
1674 *
1675 * Returns the page offset within memory region of the start of a dirty page
1676 *
1677 * @rs: current RAM state
1678 * @rb: RAMBlock where to search for dirty pages
1679 * @start: page where we start the search
1680 */
1681 static inline
1682 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1683 unsigned long start)
1684 {
1685 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1686 unsigned long *bitmap = rb->bmap;
1687 unsigned long next;
1688
1689 if (ramblock_is_ignored(rb)) {
1690 return size;
1691 }
1692
1693 /*
1694 * When the free page optimization is enabled, we need to check the bitmap
1695 * to send the non-free pages rather than all the pages in the bulk stage.
1696 */
1697 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1698 next = start + 1;
1699 } else {
1700 next = find_next_bit(bitmap, size, start);
1701 }
1702
1703 return next;
1704 }
1705
1706 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1707 RAMBlock *rb,
1708 unsigned long page)
1709 {
1710 bool ret;
1711
1712 qemu_mutex_lock(&rs->bitmap_mutex);
1713
1714 /*
1715 * Clear dirty bitmap if needed. This _must_ be called before we
1716 * send any of the page in the chunk because we need to make sure
1717 * we can capture further page content changes when we sync dirty
1718 * log the next time. So as long as we are going to send any of
1719 * the page in the chunk we clear the remote dirty bitmap for all.
1720 * Clearing it earlier won't be a problem, but too late will.
1721 */
1722 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1723 uint8_t shift = rb->clear_bmap_shift;
1724 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1725 hwaddr start = (page << TARGET_PAGE_BITS) & (-size);
1726
1727 /*
1728 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1729 * can make things easier sometimes since then start address
1730 * of the small chunk will always be 64 pages aligned so the
1731 * bitmap will always be aligned to unsigned long. We should
1732 * even be able to remove this restriction but I'm simply
1733 * keeping it.
1734 */
1735 assert(shift >= 6);
1736 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1737 memory_region_clear_dirty_bitmap(rb->mr, start, size);
1738 }
1739
1740 ret = test_and_clear_bit(page, rb->bmap);
1741
1742 if (ret) {
1743 rs->migration_dirty_pages--;
1744 }
1745 qemu_mutex_unlock(&rs->bitmap_mutex);
1746
1747 return ret;
1748 }
1749
1750 /* Called with RCU critical section */
1751 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1752 ram_addr_t length)
1753 {
1754 rs->migration_dirty_pages +=
1755 cpu_physical_memory_sync_dirty_bitmap(rb, 0, length,
1756 &rs->num_dirty_pages_period);
1757 }
1758
1759 /**
1760 * ram_pagesize_summary: calculate all the pagesizes of a VM
1761 *
1762 * Returns a summary bitmap of the page sizes of all RAMBlocks
1763 *
1764 * For VMs with just normal pages this is equivalent to the host page
1765 * size. If it's got some huge pages then it's the OR of all the
1766 * different page sizes.
1767 */
1768 uint64_t ram_pagesize_summary(void)
1769 {
1770 RAMBlock *block;
1771 uint64_t summary = 0;
1772
1773 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1774 summary |= block->page_size;
1775 }
1776
1777 return summary;
1778 }
1779
1780 uint64_t ram_get_total_transferred_pages(void)
1781 {
1782 return ram_counters.normal + ram_counters.duplicate +
1783 compression_counters.pages + xbzrle_counters.pages;
1784 }
1785
1786 static void migration_update_rates(RAMState *rs, int64_t end_time)
1787 {
1788 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1789 double compressed_size;
1790
1791 /* calculate period counters */
1792 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1793 / (end_time - rs->time_last_bitmap_sync);
1794
1795 if (!page_count) {
1796 return;
1797 }
1798
1799 if (migrate_use_xbzrle()) {
1800 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1801 rs->xbzrle_cache_miss_prev) / page_count;
1802 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1803 }
1804
1805 if (migrate_use_compression()) {
1806 compression_counters.busy_rate = (double)(compression_counters.busy -
1807 rs->compress_thread_busy_prev) / page_count;
1808 rs->compress_thread_busy_prev = compression_counters.busy;
1809
1810 compressed_size = compression_counters.compressed_size -
1811 rs->compressed_size_prev;
1812 if (compressed_size) {
1813 double uncompressed_size = (compression_counters.pages -
1814 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1815
1816 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1817 compression_counters.compression_rate =
1818 uncompressed_size / compressed_size;
1819
1820 rs->compress_pages_prev = compression_counters.pages;
1821 rs->compressed_size_prev = compression_counters.compressed_size;
1822 }
1823 }
1824 }
1825
1826 static void migration_bitmap_sync(RAMState *rs)
1827 {
1828 RAMBlock *block;
1829 int64_t end_time;
1830 uint64_t bytes_xfer_now;
1831
1832 ram_counters.dirty_sync_count++;
1833
1834 if (!rs->time_last_bitmap_sync) {
1835 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1836 }
1837
1838 trace_migration_bitmap_sync_start();
1839 memory_global_dirty_log_sync();
1840
1841 qemu_mutex_lock(&rs->bitmap_mutex);
1842 rcu_read_lock();
1843 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1844 migration_bitmap_sync_range(rs, block, block->used_length);
1845 }
1846 ram_counters.remaining = ram_bytes_remaining();
1847 rcu_read_unlock();
1848 qemu_mutex_unlock(&rs->bitmap_mutex);
1849
1850 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1851
1852 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1853
1854 /* more than 1 second = 1000 millisecons */
1855 if (end_time > rs->time_last_bitmap_sync + 1000) {
1856 bytes_xfer_now = ram_counters.transferred;
1857
1858 /* During block migration the auto-converge logic incorrectly detects
1859 * that ram migration makes no progress. Avoid this by disabling the
1860 * throttling logic during the bulk phase of block migration. */
1861 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1862 /* The following detection logic can be refined later. For now:
1863 Check to see if the dirtied bytes is 50% more than the approx.
1864 amount of bytes that just got transferred since the last time we
1865 were in this routine. If that happens twice, start or increase
1866 throttling */
1867
1868 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1869 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1870 (++rs->dirty_rate_high_cnt >= 2)) {
1871 trace_migration_throttle();
1872 rs->dirty_rate_high_cnt = 0;
1873 mig_throttle_guest_down();
1874 }
1875 }
1876
1877 migration_update_rates(rs, end_time);
1878
1879 rs->target_page_count_prev = rs->target_page_count;
1880
1881 /* reset period counters */
1882 rs->time_last_bitmap_sync = end_time;
1883 rs->num_dirty_pages_period = 0;
1884 rs->bytes_xfer_prev = bytes_xfer_now;
1885 }
1886 if (migrate_use_events()) {
1887 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1888 }
1889 }
1890
1891 static void migration_bitmap_sync_precopy(RAMState *rs)
1892 {
1893 Error *local_err = NULL;
1894
1895 /*
1896 * The current notifier usage is just an optimization to migration, so we
1897 * don't stop the normal migration process in the error case.
1898 */
1899 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1900 error_report_err(local_err);
1901 }
1902
1903 migration_bitmap_sync(rs);
1904
1905 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1906 error_report_err(local_err);
1907 }
1908 }
1909
1910 /**
1911 * save_zero_page_to_file: send the zero page to the file
1912 *
1913 * Returns the size of data written to the file, 0 means the page is not
1914 * a zero page
1915 *
1916 * @rs: current RAM state
1917 * @file: the file where the data is saved
1918 * @block: block that contains the page we want to send
1919 * @offset: offset inside the block for the page
1920 */
1921 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1922 RAMBlock *block, ram_addr_t offset)
1923 {
1924 uint8_t *p = block->host + offset;
1925 int len = 0;
1926
1927 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1928 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1929 qemu_put_byte(file, 0);
1930 len += 1;
1931 }
1932 return len;
1933 }
1934
1935 /**
1936 * save_zero_page: send the zero page to the stream
1937 *
1938 * Returns the number of pages written.
1939 *
1940 * @rs: current RAM state
1941 * @block: block that contains the page we want to send
1942 * @offset: offset inside the block for the page
1943 */
1944 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1945 {
1946 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1947
1948 if (len) {
1949 ram_counters.duplicate++;
1950 ram_counters.transferred += len;
1951 return 1;
1952 }
1953 return -1;
1954 }
1955
1956 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1957 {
1958 if (!migrate_release_ram() || !migration_in_postcopy()) {
1959 return;
1960 }
1961
1962 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1963 }
1964
1965 /*
1966 * @pages: the number of pages written by the control path,
1967 * < 0 - error
1968 * > 0 - number of pages written
1969 *
1970 * Return true if the pages has been saved, otherwise false is returned.
1971 */
1972 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1973 int *pages)
1974 {
1975 uint64_t bytes_xmit = 0;
1976 int ret;
1977
1978 *pages = -1;
1979 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1980 &bytes_xmit);
1981 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1982 return false;
1983 }
1984
1985 if (bytes_xmit) {
1986 ram_counters.transferred += bytes_xmit;
1987 *pages = 1;
1988 }
1989
1990 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1991 return true;
1992 }
1993
1994 if (bytes_xmit > 0) {
1995 ram_counters.normal++;
1996 } else if (bytes_xmit == 0) {
1997 ram_counters.duplicate++;
1998 }
1999
2000 return true;
2001 }
2002
2003 /*
2004 * directly send the page to the stream
2005 *
2006 * Returns the number of pages written.
2007 *
2008 * @rs: current RAM state
2009 * @block: block that contains the page we want to send
2010 * @offset: offset inside the block for the page
2011 * @buf: the page to be sent
2012 * @async: send to page asyncly
2013 */
2014 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2015 uint8_t *buf, bool async)
2016 {
2017 ram_counters.transferred += save_page_header(rs, rs->f, block,
2018 offset | RAM_SAVE_FLAG_PAGE);
2019 if (async) {
2020 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
2021 migrate_release_ram() &
2022 migration_in_postcopy());
2023 } else {
2024 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
2025 }
2026 ram_counters.transferred += TARGET_PAGE_SIZE;
2027 ram_counters.normal++;
2028 return 1;
2029 }
2030
2031 /**
2032 * ram_save_page: send the given page to the stream
2033 *
2034 * Returns the number of pages written.
2035 * < 0 - error
2036 * >=0 - Number of pages written - this might legally be 0
2037 * if xbzrle noticed the page was the same.
2038 *
2039 * @rs: current RAM state
2040 * @block: block that contains the page we want to send
2041 * @offset: offset inside the block for the page
2042 * @last_stage: if we are at the completion stage
2043 */
2044 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
2045 {
2046 int pages = -1;
2047 uint8_t *p;
2048 bool send_async = true;
2049 RAMBlock *block = pss->block;
2050 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2051 ram_addr_t current_addr = block->offset + offset;
2052
2053 p = block->host + offset;
2054 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
2055
2056 XBZRLE_cache_lock();
2057 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2058 migrate_use_xbzrle()) {
2059 pages = save_xbzrle_page(rs, &p, current_addr, block,
2060 offset, last_stage);
2061 if (!last_stage) {
2062 /* Can't send this cached data async, since the cache page
2063 * might get updated before it gets to the wire
2064 */
2065 send_async = false;
2066 }
2067 }
2068
2069 /* XBZRLE overflow or normal page */
2070 if (pages == -1) {
2071 pages = save_normal_page(rs, block, offset, p, send_async);
2072 }
2073
2074 XBZRLE_cache_unlock();
2075
2076 return pages;
2077 }
2078
2079 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2080 ram_addr_t offset)
2081 {
2082 if (multifd_queue_page(block, offset) < 0) {
2083 return -1;
2084 }
2085 ram_counters.normal++;
2086
2087 return 1;
2088 }
2089
2090 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
2091 ram_addr_t offset, uint8_t *source_buf)
2092 {
2093 RAMState *rs = ram_state;
2094 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
2095 bool zero_page = false;
2096 int ret;
2097
2098 if (save_zero_page_to_file(rs, f, block, offset)) {
2099 zero_page = true;
2100 goto exit;
2101 }
2102
2103 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
2104
2105 /*
2106 * copy it to a internal buffer to avoid it being modified by VM
2107 * so that we can catch up the error during compression and
2108 * decompression
2109 */
2110 memcpy(source_buf, p, TARGET_PAGE_SIZE);
2111 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2112 if (ret < 0) {
2113 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2114 error_report("compressed data failed!");
2115 return false;
2116 }
2117
2118 exit:
2119 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2120 return zero_page;
2121 }
2122
2123 static void
2124 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2125 {
2126 ram_counters.transferred += bytes_xmit;
2127
2128 if (param->zero_page) {
2129 ram_counters.duplicate++;
2130 return;
2131 }
2132
2133 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2134 compression_counters.compressed_size += bytes_xmit - 8;
2135 compression_counters.pages++;
2136 }
2137
2138 static bool save_page_use_compression(RAMState *rs);
2139
2140 static void flush_compressed_data(RAMState *rs)
2141 {
2142 int idx, len, thread_count;
2143
2144 if (!save_page_use_compression(rs)) {
2145 return;
2146 }
2147 thread_count = migrate_compress_threads();
2148
2149 qemu_mutex_lock(&comp_done_lock);
2150 for (idx = 0; idx < thread_count; idx++) {
2151 while (!comp_param[idx].done) {
2152 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2153 }
2154 }
2155 qemu_mutex_unlock(&comp_done_lock);
2156
2157 for (idx = 0; idx < thread_count; idx++) {
2158 qemu_mutex_lock(&comp_param[idx].mutex);
2159 if (!comp_param[idx].quit) {
2160 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2161 /*
2162 * it's safe to fetch zero_page without holding comp_done_lock
2163 * as there is no further request submitted to the thread,
2164 * i.e, the thread should be waiting for a request at this point.
2165 */
2166 update_compress_thread_counts(&comp_param[idx], len);
2167 }
2168 qemu_mutex_unlock(&comp_param[idx].mutex);
2169 }
2170 }
2171
2172 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2173 ram_addr_t offset)
2174 {
2175 param->block = block;
2176 param->offset = offset;
2177 }
2178
2179 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2180 ram_addr_t offset)
2181 {
2182 int idx, thread_count, bytes_xmit = -1, pages = -1;
2183 bool wait = migrate_compress_wait_thread();
2184
2185 thread_count = migrate_compress_threads();
2186 qemu_mutex_lock(&comp_done_lock);
2187 retry:
2188 for (idx = 0; idx < thread_count; idx++) {
2189 if (comp_param[idx].done) {
2190 comp_param[idx].done = false;
2191 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2192 qemu_mutex_lock(&comp_param[idx].mutex);
2193 set_compress_params(&comp_param[idx], block, offset);
2194 qemu_cond_signal(&comp_param[idx].cond);
2195 qemu_mutex_unlock(&comp_param[idx].mutex);
2196 pages = 1;
2197 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2198 break;
2199 }
2200 }
2201
2202 /*
2203 * wait for the free thread if the user specifies 'compress-wait-thread',
2204 * otherwise we will post the page out in the main thread as normal page.
2205 */
2206 if (pages < 0 && wait) {
2207 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2208 goto retry;
2209 }
2210 qemu_mutex_unlock(&comp_done_lock);
2211
2212 return pages;
2213 }
2214
2215 /**
2216 * find_dirty_block: find the next dirty page and update any state
2217 * associated with the search process.
2218 *
2219 * Returns true if a page is found
2220 *
2221 * @rs: current RAM state
2222 * @pss: data about the state of the current dirty page scan
2223 * @again: set to false if the search has scanned the whole of RAM
2224 */
2225 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2226 {
2227 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2228 if (pss->complete_round && pss->block == rs->last_seen_block &&
2229 pss->page >= rs->last_page) {
2230 /*
2231 * We've been once around the RAM and haven't found anything.
2232 * Give up.
2233 */
2234 *again = false;
2235 return false;
2236 }
2237 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
2238 /* Didn't find anything in this RAM Block */
2239 pss->page = 0;
2240 pss->block = QLIST_NEXT_RCU(pss->block, next);
2241 if (!pss->block) {
2242 /*
2243 * If memory migration starts over, we will meet a dirtied page
2244 * which may still exists in compression threads's ring, so we
2245 * should flush the compressed data to make sure the new page
2246 * is not overwritten by the old one in the destination.
2247 *
2248 * Also If xbzrle is on, stop using the data compression at this
2249 * point. In theory, xbzrle can do better than compression.
2250 */
2251 flush_compressed_data(rs);
2252
2253 /* Hit the end of the list */
2254 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2255 /* Flag that we've looped */
2256 pss->complete_round = true;
2257 rs->ram_bulk_stage = false;
2258 }
2259 /* Didn't find anything this time, but try again on the new block */
2260 *again = true;
2261 return false;
2262 } else {
2263 /* Can go around again, but... */
2264 *again = true;
2265 /* We've found something so probably don't need to */
2266 return true;
2267 }
2268 }
2269
2270 /**
2271 * unqueue_page: gets a page of the queue
2272 *
2273 * Helper for 'get_queued_page' - gets a page off the queue
2274 *
2275 * Returns the block of the page (or NULL if none available)
2276 *
2277 * @rs: current RAM state
2278 * @offset: used to return the offset within the RAMBlock
2279 */
2280 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2281 {
2282 RAMBlock *block = NULL;
2283
2284 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2285 return NULL;
2286 }
2287
2288 qemu_mutex_lock(&rs->src_page_req_mutex);
2289 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2290 struct RAMSrcPageRequest *entry =
2291 QSIMPLEQ_FIRST(&rs->src_page_requests);
2292 block = entry->rb;
2293 *offset = entry->offset;
2294
2295 if (entry->len > TARGET_PAGE_SIZE) {
2296 entry->len -= TARGET_PAGE_SIZE;
2297 entry->offset += TARGET_PAGE_SIZE;
2298 } else {
2299 memory_region_unref(block->mr);
2300 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2301 g_free(entry);
2302 migration_consume_urgent_request();
2303 }
2304 }
2305 qemu_mutex_unlock(&rs->src_page_req_mutex);
2306
2307 return block;
2308 }
2309
2310 /**
2311 * get_queued_page: unqueue a page from the postcopy requests
2312 *
2313 * Skips pages that are already sent (!dirty)
2314 *
2315 * Returns true if a queued page is found
2316 *
2317 * @rs: current RAM state
2318 * @pss: data about the state of the current dirty page scan
2319 */
2320 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2321 {
2322 RAMBlock *block;
2323 ram_addr_t offset;
2324 bool dirty;
2325
2326 do {
2327 block = unqueue_page(rs, &offset);
2328 /*
2329 * We're sending this page, and since it's postcopy nothing else
2330 * will dirty it, and we must make sure it doesn't get sent again
2331 * even if this queue request was received after the background
2332 * search already sent it.
2333 */
2334 if (block) {
2335 unsigned long page;
2336
2337 page = offset >> TARGET_PAGE_BITS;
2338 dirty = test_bit(page, block->bmap);
2339 if (!dirty) {
2340 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2341 page, test_bit(page, block->unsentmap));
2342 } else {
2343 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2344 }
2345 }
2346
2347 } while (block && !dirty);
2348
2349 if (block) {
2350 /*
2351 * As soon as we start servicing pages out of order, then we have
2352 * to kill the bulk stage, since the bulk stage assumes
2353 * in (migration_bitmap_find_and_reset_dirty) that every page is
2354 * dirty, that's no longer true.
2355 */
2356 rs->ram_bulk_stage = false;
2357
2358 /*
2359 * We want the background search to continue from the queued page
2360 * since the guest is likely to want other pages near to the page
2361 * it just requested.
2362 */
2363 pss->block = block;
2364 pss->page = offset >> TARGET_PAGE_BITS;
2365
2366 /*
2367 * This unqueued page would break the "one round" check, even is
2368 * really rare.
2369 */
2370 pss->complete_round = false;
2371 }
2372
2373 return !!block;
2374 }
2375
2376 /**
2377 * migration_page_queue_free: drop any remaining pages in the ram
2378 * request queue
2379 *
2380 * It should be empty at the end anyway, but in error cases there may
2381 * be some left. in case that there is any page left, we drop it.
2382 *
2383 */
2384 static void migration_page_queue_free(RAMState *rs)
2385 {
2386 struct RAMSrcPageRequest *mspr, *next_mspr;
2387 /* This queue generally should be empty - but in the case of a failed
2388 * migration might have some droppings in.
2389 */
2390 rcu_read_lock();
2391 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2392 memory_region_unref(mspr->rb->mr);
2393 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2394 g_free(mspr);
2395 }
2396 rcu_read_unlock();
2397 }
2398
2399 /**
2400 * ram_save_queue_pages: queue the page for transmission
2401 *
2402 * A request from postcopy destination for example.
2403 *
2404 * Returns zero on success or negative on error
2405 *
2406 * @rbname: Name of the RAMBLock of the request. NULL means the
2407 * same that last one.
2408 * @start: starting address from the start of the RAMBlock
2409 * @len: length (in bytes) to send
2410 */
2411 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2412 {
2413 RAMBlock *ramblock;
2414 RAMState *rs = ram_state;
2415
2416 ram_counters.postcopy_requests++;
2417 rcu_read_lock();
2418 if (!rbname) {
2419 /* Reuse last RAMBlock */
2420 ramblock = rs->last_req_rb;
2421
2422 if (!ramblock) {
2423 /*
2424 * Shouldn't happen, we can't reuse the last RAMBlock if
2425 * it's the 1st request.
2426 */
2427 error_report("ram_save_queue_pages no previous block");
2428 goto err;
2429 }
2430 } else {
2431 ramblock = qemu_ram_block_by_name(rbname);
2432
2433 if (!ramblock) {
2434 /* We shouldn't be asked for a non-existent RAMBlock */
2435 error_report("ram_save_queue_pages no block '%s'", rbname);
2436 goto err;
2437 }
2438 rs->last_req_rb = ramblock;
2439 }
2440 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2441 if (start+len > ramblock->used_length) {
2442 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2443 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2444 __func__, start, len, ramblock->used_length);
2445 goto err;
2446 }
2447
2448 struct RAMSrcPageRequest *new_entry =
2449 g_malloc0(sizeof(struct RAMSrcPageRequest));
2450 new_entry->rb = ramblock;
2451 new_entry->offset = start;
2452 new_entry->len = len;
2453
2454 memory_region_ref(ramblock->mr);
2455 qemu_mutex_lock(&rs->src_page_req_mutex);
2456 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2457 migration_make_urgent_request();
2458 qemu_mutex_unlock(&rs->src_page_req_mutex);
2459 rcu_read_unlock();
2460
2461 return 0;
2462
2463 err:
2464 rcu_read_unlock();
2465 return -1;
2466 }
2467
2468 static bool save_page_use_compression(RAMState *rs)
2469 {
2470 if (!migrate_use_compression()) {
2471 return false;
2472 }
2473
2474 /*
2475 * If xbzrle is on, stop using the data compression after first
2476 * round of migration even if compression is enabled. In theory,
2477 * xbzrle can do better than compression.
2478 */
2479 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2480 return true;
2481 }
2482
2483 return false;
2484 }
2485
2486 /*
2487 * try to compress the page before posting it out, return true if the page
2488 * has been properly handled by compression, otherwise needs other
2489 * paths to handle it
2490 */
2491 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2492 {
2493 if (!save_page_use_compression(rs)) {
2494 return false;
2495 }
2496
2497 /*
2498 * When starting the process of a new block, the first page of
2499 * the block should be sent out before other pages in the same
2500 * block, and all the pages in last block should have been sent
2501 * out, keeping this order is important, because the 'cont' flag
2502 * is used to avoid resending the block name.
2503 *
2504 * We post the fist page as normal page as compression will take
2505 * much CPU resource.
2506 */
2507 if (block != rs->last_sent_block) {
2508 flush_compressed_data(rs);
2509 return false;
2510 }
2511
2512 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2513 return true;
2514 }
2515
2516 compression_counters.busy++;
2517 return false;
2518 }
2519
2520 /**
2521 * ram_save_target_page: save one target page
2522 *
2523 * Returns the number of pages written
2524 *
2525 * @rs: current RAM state
2526 * @pss: data about the page we want to send
2527 * @last_stage: if we are at the completion stage
2528 */
2529 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2530 bool last_stage)
2531 {
2532 RAMBlock *block = pss->block;
2533 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2534 int res;
2535
2536 if (control_save_page(rs, block, offset, &res)) {
2537 return res;
2538 }
2539
2540 if (save_compress_page(rs, block, offset)) {
2541 return 1;
2542 }
2543
2544 res = save_zero_page(rs, block, offset);
2545 if (res > 0) {
2546 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2547 * page would be stale
2548 */
2549 if (!save_page_use_compression(rs)) {
2550 XBZRLE_cache_lock();
2551 xbzrle_cache_zero_page(rs, block->offset + offset);
2552 XBZRLE_cache_unlock();
2553 }
2554 ram_release_pages(block->idstr, offset, res);
2555 return res;
2556 }
2557
2558 /*
2559 * do not use multifd for compression as the first page in the new
2560 * block should be posted out before sending the compressed page
2561 */
2562 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
2563 return ram_save_multifd_page(rs, block, offset);
2564 }
2565
2566 return ram_save_page(rs, pss, last_stage);
2567 }
2568
2569 /**
2570 * ram_save_host_page: save a whole host page
2571 *
2572 * Starting at *offset send pages up to the end of the current host
2573 * page. It's valid for the initial offset to point into the middle of
2574 * a host page in which case the remainder of the hostpage is sent.
2575 * Only dirty target pages are sent. Note that the host page size may
2576 * be a huge page for this block.
2577 * The saving stops at the boundary of the used_length of the block
2578 * if the RAMBlock isn't a multiple of the host page size.
2579 *
2580 * Returns the number of pages written or negative on error
2581 *
2582 * @rs: current RAM state
2583 * @ms: current migration state
2584 * @pss: data about the page we want to send
2585 * @last_stage: if we are at the completion stage
2586 */
2587 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2588 bool last_stage)
2589 {
2590 int tmppages, pages = 0;
2591 size_t pagesize_bits =
2592 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2593
2594 if (ramblock_is_ignored(pss->block)) {
2595 error_report("block %s should not be migrated !", pss->block->idstr);
2596 return 0;
2597 }
2598
2599 do {
2600 /* Check the pages is dirty and if it is send it */
2601 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2602 pss->page++;
2603 continue;
2604 }
2605
2606 tmppages = ram_save_target_page(rs, pss, last_stage);
2607 if (tmppages < 0) {
2608 return tmppages;
2609 }
2610
2611 pages += tmppages;
2612 if (pss->block->unsentmap) {
2613 clear_bit(pss->page, pss->block->unsentmap);
2614 }
2615
2616 pss->page++;
2617 } while ((pss->page & (pagesize_bits - 1)) &&
2618 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2619
2620 /* The offset we leave with is the last one we looked at */
2621 pss->page--;
2622 return pages;
2623 }
2624
2625 /**
2626 * ram_find_and_save_block: finds a dirty page and sends it to f
2627 *
2628 * Called within an RCU critical section.
2629 *
2630 * Returns the number of pages written where zero means no dirty pages,
2631 * or negative on error
2632 *
2633 * @rs: current RAM state
2634 * @last_stage: if we are at the completion stage
2635 *
2636 * On systems where host-page-size > target-page-size it will send all the
2637 * pages in a host page that are dirty.
2638 */
2639
2640 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2641 {
2642 PageSearchStatus pss;
2643 int pages = 0;
2644 bool again, found;
2645
2646 /* No dirty page as there is zero RAM */
2647 if (!ram_bytes_total()) {
2648 return pages;
2649 }
2650
2651 pss.block = rs->last_seen_block;
2652 pss.page = rs->last_page;
2653 pss.complete_round = false;
2654
2655 if (!pss.block) {
2656 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2657 }
2658
2659 do {
2660 again = true;
2661 found = get_queued_page(rs, &pss);
2662
2663 if (!found) {
2664 /* priority queue empty, so just search for something dirty */
2665 found = find_dirty_block(rs, &pss, &again);
2666 }
2667
2668 if (found) {
2669 pages = ram_save_host_page(rs, &pss, last_stage);
2670 }
2671 } while (!pages && again);
2672
2673 rs->last_seen_block = pss.block;
2674 rs->last_page = pss.page;
2675
2676 return pages;
2677 }
2678
2679 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2680 {
2681 uint64_t pages = size / TARGET_PAGE_SIZE;
2682
2683 if (zero) {
2684 ram_counters.duplicate += pages;
2685 } else {
2686 ram_counters.normal += pages;
2687 ram_counters.transferred += size;
2688 qemu_update_position(f, size);
2689 }
2690 }
2691
2692 static uint64_t ram_bytes_total_common(bool count_ignored)
2693 {
2694 RAMBlock *block;
2695 uint64_t total = 0;
2696
2697 rcu_read_lock();
2698 if (count_ignored) {
2699 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2700 total += block->used_length;
2701 }
2702 } else {
2703 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2704 total += block->used_length;
2705 }
2706 }
2707 rcu_read_unlock();
2708 return total;
2709 }
2710
2711 uint64_t ram_bytes_total(void)
2712 {
2713 return ram_bytes_total_common(false);
2714 }
2715
2716 static void xbzrle_load_setup(void)
2717 {
2718 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2719 }
2720
2721 static void xbzrle_load_cleanup(void)
2722 {
2723 g_free(XBZRLE.decoded_buf);
2724 XBZRLE.decoded_buf = NULL;
2725 }
2726
2727 static void ram_state_cleanup(RAMState **rsp)
2728 {
2729 if (*rsp) {
2730 migration_page_queue_free(*rsp);
2731 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2732 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2733 g_free(*rsp);
2734 *rsp = NULL;
2735 }
2736 }
2737
2738 static void xbzrle_cleanup(void)
2739 {
2740 XBZRLE_cache_lock();
2741 if (XBZRLE.cache) {
2742 cache_fini(XBZRLE.cache);
2743 g_free(XBZRLE.encoded_buf);
2744 g_free(XBZRLE.current_buf);
2745 g_free(XBZRLE.zero_target_page);
2746 XBZRLE.cache = NULL;
2747 XBZRLE.encoded_buf = NULL;
2748 XBZRLE.current_buf = NULL;
2749 XBZRLE.zero_target_page = NULL;
2750 }
2751 XBZRLE_cache_unlock();
2752 }
2753
2754 static void ram_save_cleanup(void *opaque)
2755 {
2756 RAMState **rsp = opaque;
2757 RAMBlock *block;
2758
2759 /* caller have hold iothread lock or is in a bh, so there is
2760 * no writing race against the migration bitmap
2761 */
2762 memory_global_dirty_log_stop();
2763
2764 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2765 g_free(block->clear_bmap);
2766 block->clear_bmap = NULL;
2767 g_free(block->bmap);
2768 block->bmap = NULL;
2769 g_free(block->unsentmap);
2770 block->unsentmap = NULL;
2771 }
2772
2773 xbzrle_cleanup();
2774 compress_threads_save_cleanup();
2775 ram_state_cleanup(rsp);
2776 }
2777
2778 static void ram_state_reset(RAMState *rs)
2779 {
2780 rs->last_seen_block = NULL;
2781 rs->last_sent_block = NULL;
2782 rs->last_page = 0;
2783 rs->last_version = ram_list.version;
2784 rs->ram_bulk_stage = true;
2785 rs->fpo_enabled = false;
2786 }
2787
2788 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2789
2790 /*
2791 * 'expected' is the value you expect the bitmap mostly to be full
2792 * of; it won't bother printing lines that are all this value.
2793 * If 'todump' is null the migration bitmap is dumped.
2794 */
2795 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2796 unsigned long pages)
2797 {
2798 int64_t cur;
2799 int64_t linelen = 128;
2800 char linebuf[129];
2801
2802 for (cur = 0; cur < pages; cur += linelen) {
2803 int64_t curb;
2804 bool found = false;
2805 /*
2806 * Last line; catch the case where the line length
2807 * is longer than remaining ram
2808 */
2809 if (cur + linelen > pages) {
2810 linelen = pages - cur;
2811 }
2812 for (curb = 0; curb < linelen; curb++) {
2813 bool thisbit = test_bit(cur + curb, todump);
2814 linebuf[curb] = thisbit ? '1' : '.';
2815 found = found || (thisbit != expected);
2816 }
2817 if (found) {
2818 linebuf[curb] = '\0';
2819 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2820 }
2821 }
2822 }
2823
2824 /* **** functions for postcopy ***** */
2825
2826 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2827 {
2828 struct RAMBlock *block;
2829
2830 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2831 unsigned long *bitmap = block->bmap;
2832 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2833 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2834
2835 while (run_start < range) {
2836 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2837 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2838 (run_end - run_start) << TARGET_PAGE_BITS);
2839 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2840 }
2841 }
2842 }
2843
2844 /**
2845 * postcopy_send_discard_bm_ram: discard a RAMBlock
2846 *
2847 * Returns zero on success
2848 *
2849 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2850 * Note: At this point the 'unsentmap' is the processed bitmap combined
2851 * with the dirtymap; so a '1' means it's either dirty or unsent.
2852 *
2853 * @ms: current migration state
2854 * @pds: state for postcopy
2855 * @block: RAMBlock to discard
2856 */
2857 static int postcopy_send_discard_bm_ram(MigrationState *ms,
2858 PostcopyDiscardState *pds,
2859 RAMBlock *block)
2860 {
2861 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2862 unsigned long current;
2863 unsigned long *unsentmap = block->unsentmap;
2864
2865 for (current = 0; current < end; ) {
2866 unsigned long one = find_next_bit(unsentmap, end, current);
2867 unsigned long zero, discard_length;
2868
2869 if (one >= end) {
2870 break;
2871 }
2872
2873 zero = find_next_zero_bit(unsentmap, end, one + 1);
2874
2875 if (zero >= end) {
2876 discard_length = end - one;
2877 } else {
2878 discard_length = zero - one;
2879 }
2880 postcopy_discard_send_range(ms, pds, one, discard_length);
2881 current = one + discard_length;
2882 }
2883
2884 return 0;
2885 }
2886
2887 /**
2888 * postcopy_each_ram_send_discard: discard all RAMBlocks
2889 *
2890 * Returns 0 for success or negative for error
2891 *
2892 * Utility for the outgoing postcopy code.
2893 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2894 * passing it bitmap indexes and name.
2895 * (qemu_ram_foreach_block ends up passing unscaled lengths
2896 * which would mean postcopy code would have to deal with target page)
2897 *
2898 * @ms: current migration state
2899 */
2900 static int postcopy_each_ram_send_discard(MigrationState *ms)
2901 {
2902 struct RAMBlock *block;
2903 int ret;
2904
2905 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2906 PostcopyDiscardState *pds =
2907 postcopy_discard_send_init(ms, block->idstr);
2908
2909 /*
2910 * Postcopy sends chunks of bitmap over the wire, but it
2911 * just needs indexes at this point, avoids it having
2912 * target page specific code.
2913 */
2914 ret = postcopy_send_discard_bm_ram(ms, pds, block);
2915 postcopy_discard_send_finish(ms, pds);
2916 if (ret) {
2917 return ret;
2918 }
2919 }
2920
2921 return 0;
2922 }
2923
2924 /**
2925 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2926 *
2927 * Helper for postcopy_chunk_hostpages; it's called twice to
2928 * canonicalize the two bitmaps, that are similar, but one is
2929 * inverted.
2930 *
2931 * Postcopy requires that all target pages in a hostpage are dirty or
2932 * clean, not a mix. This function canonicalizes the bitmaps.
2933 *
2934 * @ms: current migration state
2935 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2936 * otherwise we need to canonicalize partially dirty host pages
2937 * @block: block that contains the page we want to canonicalize
2938 * @pds: state for postcopy
2939 */
2940 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2941 RAMBlock *block,
2942 PostcopyDiscardState *pds)
2943 {
2944 RAMState *rs = ram_state;
2945 unsigned long *bitmap = block->bmap;
2946 unsigned long *unsentmap = block->unsentmap;
2947 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2948 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2949 unsigned long run_start;
2950
2951 if (block->page_size == TARGET_PAGE_SIZE) {
2952 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2953 return;
2954 }
2955
2956 if (unsent_pass) {
2957 /* Find a sent page */
2958 run_start = find_next_zero_bit(unsentmap, pages, 0);
2959 } else {
2960 /* Find a dirty page */
2961 run_start = find_next_bit(bitmap, pages, 0);
2962 }
2963
2964 while (run_start < pages) {
2965 bool do_fixup = false;
2966 unsigned long fixup_start_addr;
2967 unsigned long host_offset;
2968
2969 /*
2970 * If the start of this run of pages is in the middle of a host
2971 * page, then we need to fixup this host page.
2972 */
2973 host_offset = run_start % host_ratio;
2974 if (host_offset) {
2975 do_fixup = true;
2976 run_start -= host_offset;
2977 fixup_start_addr = run_start;
2978 /* For the next pass */
2979 run_start = run_start + host_ratio;
2980 } else {
2981 /* Find the end of this run */
2982 unsigned long run_end;
2983 if (unsent_pass) {
2984 run_end = find_next_bit(unsentmap, pages, run_start + 1);
2985 } else {
2986 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
2987 }
2988 /*
2989 * If the end isn't at the start of a host page, then the
2990 * run doesn't finish at the end of a host page
2991 * and we need to discard.
2992 */
2993 host_offset = run_end % host_ratio;
2994 if (host_offset) {
2995 do_fixup = true;
2996 fixup_start_addr = run_end - host_offset;
2997 /*
2998 * This host page has gone, the next loop iteration starts
2999 * from after the fixup
3000 */
3001 run_start = fixup_start_addr + host_ratio;
3002 } else {
3003 /*
3004 * No discards on this iteration, next loop starts from
3005 * next sent/dirty page
3006 */
3007 run_start = run_end + 1;
3008 }
3009 }
3010
3011 if (do_fixup) {
3012 unsigned long page;
3013
3014 /* Tell the destination to discard this page */
3015 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
3016 /* For the unsent_pass we:
3017 * discard partially sent pages
3018 * For the !unsent_pass (dirty) we:
3019 * discard partially dirty pages that were sent
3020 * (any partially sent pages were already discarded
3021 * by the previous unsent_pass)
3022 */
3023 postcopy_discard_send_range(ms, pds, fixup_start_addr,
3024 host_ratio);
3025 }
3026
3027 /* Clean up the bitmap */
3028 for (page = fixup_start_addr;
3029 page < fixup_start_addr + host_ratio; page++) {
3030 /* All pages in this host page are now not sent */
3031 set_bit(page, unsentmap);
3032
3033 /*
3034 * Remark them as dirty, updating the count for any pages
3035 * that weren't previously dirty.
3036 */
3037 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
3038 }
3039 }
3040
3041 if (unsent_pass) {
3042 /* Find the next sent page for the next iteration */
3043 run_start = find_next_zero_bit(unsentmap, pages, run_start);
3044 } else {
3045 /* Find the next dirty page for the next iteration */
3046 run_start = find_next_bit(bitmap, pages, run_start);
3047 }
3048 }
3049 }
3050
3051 /**
3052 * postcopy_chunk_hostpages: discard any partially sent host page
3053 *
3054 * Utility for the outgoing postcopy code.
3055 *
3056 * Discard any partially sent host-page size chunks, mark any partially
3057 * dirty host-page size chunks as all dirty. In this case the host-page
3058 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
3059 *
3060 * Returns zero on success
3061 *
3062 * @ms: current migration state
3063 * @block: block we want to work with
3064 */
3065 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
3066 {
3067 PostcopyDiscardState *pds =
3068 postcopy_discard_send_init(ms, block->idstr);
3069
3070 /* First pass: Discard all partially sent host pages */
3071 postcopy_chunk_hostpages_pass(ms, true, block, pds);
3072 /*
3073 * Second pass: Ensure that all partially dirty host pages are made
3074 * fully dirty.
3075 */
3076 postcopy_chunk_hostpages_pass(ms, false, block, pds);
3077
3078 postcopy_discard_send_finish(ms, pds);
3079 return 0;
3080 }
3081
3082 /**
3083 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3084 *
3085 * Returns zero on success
3086 *
3087 * Transmit the set of pages to be discarded after precopy to the target
3088 * these are pages that:
3089 * a) Have been previously transmitted but are now dirty again
3090 * b) Pages that have never been transmitted, this ensures that
3091 * any pages on the destination that have been mapped by background
3092 * tasks get discarded (transparent huge pages is the specific concern)
3093 * Hopefully this is pretty sparse
3094 *
3095 * @ms: current migration state
3096 */
3097 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3098 {
3099 RAMState *rs = ram_state;
3100 RAMBlock *block;
3101 int ret;
3102
3103 rcu_read_lock();
3104
3105 /* This should be our last sync, the src is now paused */
3106 migration_bitmap_sync(rs);
3107
3108 /* Easiest way to make sure we don't resume in the middle of a host-page */
3109 rs->last_seen_block = NULL;
3110 rs->last_sent_block = NULL;
3111 rs->last_page = 0;
3112
3113 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3114 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3115 unsigned long *bitmap = block->bmap;
3116 unsigned long *unsentmap = block->unsentmap;
3117
3118 if (!unsentmap) {
3119 /* We don't have a safe way to resize the sentmap, so
3120 * if the bitmap was resized it will be NULL at this
3121 * point.
3122 */
3123 error_report("migration ram resized during precopy phase");
3124 rcu_read_unlock();
3125 return -EINVAL;
3126 }
3127 /* Deal with TPS != HPS and huge pages */
3128 ret = postcopy_chunk_hostpages(ms, block);
3129 if (ret) {
3130 rcu_read_unlock();
3131 return ret;
3132 }
3133
3134 /*
3135 * Update the unsentmap to be unsentmap = unsentmap | dirty
3136 */
3137 bitmap_or(unsentmap, unsentmap, bitmap, pages);
3138 #ifdef DEBUG_POSTCOPY
3139 ram_debug_dump_bitmap(unsentmap, true, pages);
3140 #endif
3141 }
3142 trace_ram_postcopy_send_discard_bitmap();
3143
3144 ret = postcopy_each_ram_send_discard(ms);
3145 rcu_read_unlock();
3146
3147 return ret;
3148 }
3149
3150 /**
3151 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3152 *
3153 * Returns zero on success
3154 *
3155 * @rbname: name of the RAMBlock of the request. NULL means the
3156 * same that last one.
3157 * @start: RAMBlock starting page
3158 * @length: RAMBlock size
3159 */
3160 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3161 {
3162 int ret = -1;
3163
3164 trace_ram_discard_range(rbname, start, length);
3165
3166 rcu_read_lock();
3167 RAMBlock *rb = qemu_ram_block_by_name(rbname);
3168
3169 if (!rb) {
3170 error_report("ram_discard_range: Failed to find block '%s'", rbname);
3171 goto err;
3172 }
3173
3174 /*
3175 * On source VM, we don't need to update the received bitmap since
3176 * we don't even have one.
3177 */
3178 if (rb->receivedmap) {
3179 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3180 length >> qemu_target_page_bits());
3181 }
3182
3183 ret = ram_block_discard_range(rb, start, length);
3184
3185 err:
3186 rcu_read_unlock();
3187
3188 return ret;
3189 }
3190
3191 /*
3192 * For every allocation, we will try not to crash the VM if the
3193 * allocation failed.
3194 */
3195 static int xbzrle_init(void)
3196 {
3197 Error *local_err = NULL;
3198
3199 if (!migrate_use_xbzrle()) {
3200 return 0;
3201 }
3202
3203 XBZRLE_cache_lock();
3204
3205 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3206 if (!XBZRLE.zero_target_page) {
3207 error_report("%s: Error allocating zero page", __func__);
3208 goto err_out;
3209 }
3210
3211 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3212 TARGET_PAGE_SIZE, &local_err);
3213 if (!XBZRLE.cache) {
3214 error_report_err(local_err);
3215 goto free_zero_page;
3216 }
3217
3218 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3219 if (!XBZRLE.encoded_buf) {
3220 error_report("%s: Error allocating encoded_buf", __func__);
3221 goto free_cache;
3222 }
3223
3224 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3225 if (!XBZRLE.current_buf) {
3226 error_report("%s: Error allocating current_buf", __func__);
3227 goto free_encoded_buf;
3228 }
3229
3230 /* We are all good */
3231 XBZRLE_cache_unlock();
3232 return 0;
3233
3234 free_encoded_buf:
3235 g_free(XBZRLE.encoded_buf);
3236 XBZRLE.encoded_buf = NULL;
3237 free_cache:
3238 cache_fini(XBZRLE.cache);
3239 XBZRLE.cache = NULL;
3240 free_zero_page:
3241 g_free(XBZRLE.zero_target_page);
3242 XBZRLE.zero_target_page = NULL;
3243 err_out:
3244 XBZRLE_cache_unlock();
3245 return -ENOMEM;
3246 }
3247
3248 static int ram_state_init(RAMState **rsp)
3249 {
3250 *rsp = g_try_new0(RAMState, 1);
3251
3252 if (!*rsp) {
3253 error_report("%s: Init ramstate fail", __func__);
3254 return -1;
3255 }
3256
3257 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3258 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3259 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3260
3261 /*
3262 * Count the total number of pages used by ram blocks not including any
3263 * gaps due to alignment or unplugs.
3264 * This must match with the initial values of dirty bitmap.
3265 */
3266 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3267 ram_state_reset(*rsp);
3268
3269 return 0;
3270 }
3271
3272 static void ram_list_init_bitmaps(void)
3273 {
3274 MigrationState *ms = migrate_get_current();
3275 RAMBlock *block;
3276 unsigned long pages;
3277 uint8_t shift;
3278
3279 /* Skip setting bitmap if there is no RAM */
3280 if (ram_bytes_total()) {
3281 shift = ms->clear_bitmap_shift;
3282 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3283 error_report("clear_bitmap_shift (%u) too big, using "
3284 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3285 shift = CLEAR_BITMAP_SHIFT_MAX;
3286 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3287 error_report("clear_bitmap_shift (%u) too small, using "
3288 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3289 shift = CLEAR_BITMAP_SHIFT_MIN;
3290 }
3291
3292 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3293 pages = block->max_length >> TARGET_PAGE_BITS;
3294 /*
3295 * The initial dirty bitmap for migration must be set with all
3296 * ones to make sure we'll migrate every guest RAM page to
3297 * destination.
3298 * Here we set RAMBlock.bmap all to 1 because when rebegin a
3299 * new migration after a failed migration, ram_list.
3300 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
3301 * guest memory.
3302 */
3303 block->bmap = bitmap_new(pages);
3304 bitmap_set(block->bmap, 0, pages);
3305 block->clear_bmap_shift = shift;
3306 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
3307 if (migrate_postcopy_ram()) {
3308 block->unsentmap = bitmap_new(pages);
3309 bitmap_set(block->unsentmap, 0, pages);
3310 }
3311 }
3312 }
3313 }
3314
3315 static void ram_init_bitmaps(RAMState *rs)
3316 {
3317 /* For memory_global_dirty_log_start below. */
3318 qemu_mutex_lock_iothread();
3319 qemu_mutex_lock_ramlist();
3320 rcu_read_lock();
3321
3322 ram_list_init_bitmaps();
3323 memory_global_dirty_log_start();
3324 migration_bitmap_sync_precopy(rs);
3325
3326 rcu_read_unlock();
3327 qemu_mutex_unlock_ramlist();
3328 qemu_mutex_unlock_iothread();
3329 }
3330
3331 static int ram_init_all(RAMState **rsp)
3332 {
3333 if (ram_state_init(rsp)) {
3334 return -1;
3335 }
3336
3337 if (xbzrle_init()) {
3338 ram_state_cleanup(rsp);
3339 return -1;
3340 }
3341
3342 ram_init_bitmaps(*rsp);
3343
3344 return 0;
3345 }
3346
3347 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3348 {
3349 RAMBlock *block;
3350 uint64_t pages = 0;
3351
3352 /*
3353 * Postcopy is not using xbzrle/compression, so no need for that.
3354 * Also, since source are already halted, we don't need to care
3355 * about dirty page logging as well.
3356 */
3357
3358 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3359 pages += bitmap_count_one(block->bmap,
3360 block->used_length >> TARGET_PAGE_BITS);
3361 }
3362
3363 /* This may not be aligned with current bitmaps. Recalculate. */
3364 rs->migration_dirty_pages = pages;
3365
3366 rs->last_seen_block = NULL;
3367 rs->last_sent_block = NULL;
3368 rs->last_page = 0;
3369 rs->last_version = ram_list.version;
3370 /*
3371 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3372 * matter what we have sent.
3373 */
3374 rs->ram_bulk_stage = false;
3375
3376 /* Update RAMState cache of output QEMUFile */
3377 rs->f = out;
3378
3379 trace_ram_state_resume_prepare(pages);
3380 }
3381
3382 /*
3383 * This function clears bits of the free pages reported by the caller from the
3384 * migration dirty bitmap. @addr is the host address corresponding to the
3385 * start of the continuous guest free pages, and @len is the total bytes of
3386 * those pages.
3387 */
3388 void qemu_guest_free_page_hint(void *addr, size_t len)
3389 {
3390 RAMBlock *block;
3391 ram_addr_t offset;
3392 size_t used_len, start, npages;
3393 MigrationState *s = migrate_get_current();
3394
3395 /* This function is currently expected to be used during live migration */
3396 if (!migration_is_setup_or_active(s->state)) {
3397 return;
3398 }
3399
3400 for (; len > 0; len -= used_len, addr += used_len) {
3401 block = qemu_ram_block_from_host(addr, false, &offset);
3402 if (unlikely(!block || offset >= block->used_length)) {
3403 /*
3404 * The implementation might not support RAMBlock resize during
3405 * live migration, but it could happen in theory with future
3406 * updates. So we add a check here to capture that case.
3407 */
3408 error_report_once("%s unexpected error", __func__);
3409 return;
3410 }
3411
3412 if (len <= block->used_length - offset) {
3413 used_len = len;
3414 } else {
3415 used_len = block->used_length - offset;
3416 }
3417
3418 start = offset >> TARGET_PAGE_BITS;
3419 npages = used_len >> TARGET_PAGE_BITS;
3420
3421 qemu_mutex_lock(&ram_state->bitmap_mutex);
3422 ram_state->migration_dirty_pages -=
3423 bitmap_count_one_with_offset(block->bmap, start, npages);
3424 bitmap_clear(block->bmap, start, npages);
3425 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3426 }
3427 }
3428
3429 /*
3430 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3431 * long-running RCU critical section. When rcu-reclaims in the code
3432 * start to become numerous it will be necessary to reduce the
3433 * granularity of these critical sections.
3434 */
3435
3436 /**
3437 * ram_save_setup: Setup RAM for migration
3438 *
3439 * Returns zero to indicate success and negative for error
3440 *
3441 * @f: QEMUFile where to send the data
3442 * @opaque: RAMState pointer
3443 */
3444 static int ram_save_setup(QEMUFile *f, void *opaque)
3445 {
3446 RAMState **rsp = opaque;
3447 RAMBlock *block;
3448
3449 if (compress_threads_save_setup()) {
3450 return -1;
3451 }
3452
3453 /* migration has already setup the bitmap, reuse it. */
3454 if (!migration_in_colo_state()) {
3455 if (ram_init_all(rsp) != 0) {
3456 compress_threads_save_cleanup();
3457 return -1;
3458 }
3459 }
3460 (*rsp)->f = f;
3461
3462 rcu_read_lock();
3463
3464 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3465
3466 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3467 qemu_put_byte(f, strlen(block->idstr));
3468 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3469 qemu_put_be64(f, block->used_length);
3470 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3471 qemu_put_be64(f, block->page_size);
3472 }
3473 if (migrate_ignore_shared()) {
3474 qemu_put_be64(f, block->mr->addr);
3475 }
3476 }
3477
3478 rcu_read_unlock();
3479
3480 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3481 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3482
3483 multifd_send_sync_main();
3484 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3485 qemu_fflush(f);
3486
3487 return 0;
3488 }
3489
3490 /**
3491 * ram_save_iterate: iterative stage for migration
3492 *
3493 * Returns zero to indicate success and negative for error
3494 *
3495 * @f: QEMUFile where to send the data
3496 * @opaque: RAMState pointer
3497 */
3498 static int ram_save_iterate(QEMUFile *f, void *opaque)
3499 {
3500 RAMState **temp = opaque;
3501 RAMState *rs = *temp;
3502 int ret;
3503 int i;
3504 int64_t t0;
3505 int done = 0;
3506
3507 if (blk_mig_bulk_active()) {
3508 /* Avoid transferring ram during bulk phase of block migration as
3509 * the bulk phase will usually take a long time and transferring
3510 * ram updates during that time is pointless. */
3511 goto out;
3512 }
3513
3514 rcu_read_lock();
3515 if (ram_list.version != rs->last_version) {
3516 ram_state_reset(rs);
3517 }
3518
3519 /* Read version before ram_list.blocks */
3520 smp_rmb();
3521
3522 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3523
3524 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3525 i = 0;
3526 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3527 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3528 int pages;
3529
3530 if (qemu_file_get_error(f)) {
3531 break;
3532 }
3533
3534 pages = ram_find_and_save_block(rs, false);
3535 /* no more pages to sent */
3536 if (pages == 0) {
3537 done = 1;
3538 break;
3539 }
3540
3541 if (pages < 0) {
3542 qemu_file_set_error(f, pages);
3543 break;
3544 }
3545
3546 rs->target_page_count += pages;
3547
3548 /* we want to check in the 1st loop, just in case it was the 1st time
3549 and we had to sync the dirty bitmap.
3550 qemu_clock_get_ns() is a bit expensive, so we only check each some
3551 iterations
3552 */
3553 if ((i & 63) == 0) {
3554 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3555 if (t1 > MAX_WAIT) {
3556 trace_ram_save_iterate_big_wait(t1, i);
3557 break;
3558 }
3559 }
3560 i++;
3561 }
3562 rcu_read_unlock();
3563
3564 /*
3565 * Must occur before EOS (or any QEMUFile operation)
3566 * because of RDMA protocol.
3567 */
3568 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3569
3570 out:
3571 multifd_send_sync_main();
3572 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3573 qemu_fflush(f);
3574 ram_counters.transferred += 8;
3575
3576 ret = qemu_file_get_error(f);
3577 if (ret < 0) {
3578 return ret;
3579 }
3580
3581 return done;
3582 }
3583
3584 /**
3585 * ram_save_complete: function called to send the remaining amount of ram
3586 *
3587 * Returns zero to indicate success or negative on error
3588 *
3589 * Called with iothread lock
3590 *
3591 * @f: QEMUFile where to send the data
3592 * @opaque: RAMState pointer
3593 */
3594 static int ram_save_complete(QEMUFile *f, void *opaque)
3595 {
3596 RAMState **temp = opaque;
3597 RAMState *rs = *temp;
3598 int ret = 0;
3599
3600 rcu_read_lock();
3601
3602 if (!migration_in_postcopy()) {
3603 migration_bitmap_sync_precopy(rs);
3604 }
3605
3606 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3607
3608 /* try transferring iterative blocks of memory */
3609
3610 /* flush all remaining blocks regardless of rate limiting */
3611 while (true) {
3612 int pages;
3613
3614 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3615 /* no more blocks to sent */
3616 if (pages == 0) {
3617 break;
3618 }
3619 if (pages < 0) {
3620 ret = pages;
3621 break;
3622 }
3623 }
3624
3625 flush_compressed_data(rs);
3626 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3627
3628 rcu_read_unlock();
3629
3630 multifd_send_sync_main();
3631 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3632 qemu_fflush(f);
3633
3634 return ret;
3635 }
3636
3637 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3638 uint64_t *res_precopy_only,
3639 uint64_t *res_compatible,
3640 uint64_t *res_postcopy_only)
3641 {
3642 RAMState **temp = opaque;
3643 RAMState *rs = *temp;
3644 uint64_t remaining_size;
3645
3646 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3647
3648 if (!migration_in_postcopy() &&
3649 remaining_size < max_size) {
3650 qemu_mutex_lock_iothread();
3651 rcu_read_lock();
3652 migration_bitmap_sync_precopy(rs);
3653 rcu_read_unlock();
3654 qemu_mutex_unlock_iothread();
3655 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3656 }
3657
3658 if (migrate_postcopy_ram()) {
3659 /* We can do postcopy, and all the data is postcopiable */
3660 *res_compatible += remaining_size;
3661 } else {
3662 *res_precopy_only += remaining_size;
3663 }
3664 }
3665
3666 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3667 {
3668 unsigned int xh_len;
3669 int xh_flags;
3670 uint8_t *loaded_data;
3671
3672 /* extract RLE header */
3673 xh_flags = qemu_get_byte(f);
3674 xh_len = qemu_get_be16(f);
3675
3676 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3677 error_report("Failed to load XBZRLE page - wrong compression!");
3678 return -1;
3679 }
3680
3681 if (xh_len > TARGET_PAGE_SIZE) {
3682 error_report("Failed to load XBZRLE page - len overflow!");
3683 return -1;
3684 }
3685 loaded_data = XBZRLE.decoded_buf;
3686 /* load data and decode */
3687 /* it can change loaded_data to point to an internal buffer */
3688 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3689
3690 /* decode RLE */
3691 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3692 TARGET_PAGE_SIZE) == -1) {
3693 error_report("Failed to load XBZRLE page - decode error!");
3694 return -1;
3695 }
3696
3697 return 0;
3698 }
3699
3700 /**
3701 * ram_block_from_stream: read a RAMBlock id from the migration stream
3702 *
3703 * Must be called from within a rcu critical section.
3704 *
3705 * Returns a pointer from within the RCU-protected ram_list.
3706 *
3707 * @f: QEMUFile where to read the data from
3708 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3709 */
3710 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3711 {
3712 static RAMBlock *block = NULL;
3713 char id[256];
3714 uint8_t len;
3715
3716 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3717 if (!block) {
3718 error_report("Ack, bad migration stream!");
3719 return NULL;
3720 }
3721 return block;
3722 }
3723
3724 len = qemu_get_byte(f);
3725 qemu_get_buffer(f, (uint8_t *)id, len);
3726 id[len] = 0;
3727
3728 block = qemu_ram_block_by_name(id);
3729 if (!block) {
3730 error_report("Can't find block %s", id);
3731 return NULL;
3732 }
3733
3734 if (ramblock_is_ignored(block)) {
3735 error_report("block %s should not be migrated !", id);
3736 return NULL;
3737 }
3738
3739 return block;
3740 }
3741
3742 static inline void *host_from_ram_block_offset(RAMBlock *block,
3743 ram_addr_t offset)
3744 {
3745 if (!offset_in_ramblock(block, offset)) {
3746 return NULL;
3747 }
3748
3749 return block->host + offset;
3750 }
3751
3752 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3753 ram_addr_t offset)
3754 {
3755 if (!offset_in_ramblock(block, offset)) {
3756 return NULL;
3757 }
3758 if (!block->colo_cache) {
3759 error_report("%s: colo_cache is NULL in block :%s",
3760 __func__, block->idstr);
3761 return NULL;
3762 }
3763
3764 /*
3765 * During colo checkpoint, we need bitmap of these migrated pages.
3766 * It help us to decide which pages in ram cache should be flushed
3767 * into VM's RAM later.
3768 */
3769 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3770 ram_state->migration_dirty_pages++;
3771 }
3772 return block->colo_cache + offset;
3773 }
3774
3775 /**
3776 * ram_handle_compressed: handle the zero page case
3777 *
3778 * If a page (or a whole RDMA chunk) has been
3779 * determined to be zero, then zap it.
3780 *
3781 * @host: host address for the zero page
3782 * @ch: what the page is filled from. We only support zero
3783 * @size: size of the zero page
3784 */
3785 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3786 {
3787 if (ch != 0 || !is_zero_range(host, size)) {
3788 memset(host, ch, size);
3789 }
3790 }
3791
3792 /* return the size after decompression, or negative value on error */
3793 static int
3794 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3795 const uint8_t *source, size_t source_len)
3796 {
3797 int err;
3798
3799 err = inflateReset(stream);
3800 if (err != Z_OK) {
3801 return -1;
3802 }
3803
3804 stream->avail_in = source_len;
3805 stream->next_in = (uint8_t *)source;
3806 stream->avail_out = dest_len;
3807 stream->next_out = dest;
3808
3809 err = inflate(stream, Z_NO_FLUSH);
3810 if (err != Z_STREAM_END) {
3811 return -1;
3812 }
3813
3814 return stream->total_out;
3815 }
3816
3817 static void *do_data_decompress(void *opaque)
3818 {
3819 DecompressParam *param = opaque;
3820 unsigned long pagesize;
3821 uint8_t *des;
3822 int len, ret;
3823
3824 qemu_mutex_lock(&param->mutex);
3825 while (!param->quit) {
3826 if (param->des) {
3827 des = param->des;
3828 len = param->len;
3829 param->des = 0;
3830 qemu_mutex_unlock(&param->mutex);
3831
3832 pagesize = TARGET_PAGE_SIZE;
3833
3834 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3835 param->compbuf, len);
3836 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3837 error_report("decompress data failed");
3838 qemu_file_set_error(decomp_file, ret);
3839 }
3840
3841 qemu_mutex_lock(&decomp_done_lock);
3842 param->done = true;
3843 qemu_cond_signal(&decomp_done_cond);
3844 qemu_mutex_unlock(&decomp_done_lock);
3845
3846 qemu_mutex_lock(&param->mutex);
3847 } else {
3848 qemu_cond_wait(&param->cond, &param->mutex);
3849 }
3850 }
3851 qemu_mutex_unlock(&param->mutex);
3852
3853 return NULL;
3854 }
3855
3856 static int wait_for_decompress_done(void)
3857 {
3858 int idx, thread_count;
3859
3860 if (!migrate_use_compression()) {
3861 return 0;
3862 }
3863
3864 thread_count = migrate_decompress_threads();
3865 qemu_mutex_lock(&decomp_done_lock);
3866 for (idx = 0; idx < thread_count; idx++) {
3867 while (!decomp_param[idx].done) {
3868 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3869 }
3870 }
3871 qemu_mutex_unlock(&decomp_done_lock);
3872 return qemu_file_get_error(decomp_file);
3873 }
3874
3875 static void compress_threads_load_cleanup(void)
3876 {
3877 int i, thread_count;
3878
3879 if (!migrate_use_compression()) {
3880 return;
3881 }
3882 thread_count = migrate_decompress_threads();
3883 for (i = 0; i < thread_count; i++) {
3884 /*
3885 * we use it as a indicator which shows if the thread is
3886 * properly init'd or not
3887 */
3888 if (!decomp_param[i].compbuf) {
3889 break;
3890 }
3891
3892 qemu_mutex_lock(&decomp_param[i].mutex);
3893 decomp_param[i].quit = true;
3894 qemu_cond_signal(&decomp_param[i].cond);
3895 qemu_mutex_unlock(&decomp_param[i].mutex);
3896 }
3897 for (i = 0; i < thread_count; i++) {
3898 if (!decomp_param[i].compbuf) {
3899 break;
3900 }
3901
3902 qemu_thread_join(decompress_threads + i);
3903 qemu_mutex_destroy(&decomp_param[i].mutex);
3904 qemu_cond_destroy(&decomp_param[i].cond);
3905 inflateEnd(&decomp_param[i].stream);
3906 g_free(decomp_param[i].compbuf);
3907 decomp_param[i].compbuf = NULL;
3908 }
3909 g_free(decompress_threads);
3910 g_free(decomp_param);
3911 decompress_threads = NULL;
3912 decomp_param = NULL;
3913 decomp_file = NULL;
3914 }
3915
3916 static int compress_threads_load_setup(QEMUFile *f)
3917 {
3918 int i, thread_count;
3919
3920 if (!migrate_use_compression()) {
3921 return 0;
3922 }
3923
3924 thread_count = migrate_decompress_threads();
3925 decompress_threads = g_new0(QemuThread, thread_count);
3926 decomp_param = g_new0(DecompressParam, thread_count);
3927 qemu_mutex_init(&decomp_done_lock);
3928 qemu_cond_init(&decomp_done_cond);
3929 decomp_file = f;
3930 for (i = 0; i < thread_count; i++) {
3931 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3932 goto exit;
3933 }
3934
3935 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3936 qemu_mutex_init(&decomp_param[i].mutex);
3937 qemu_cond_init(&decomp_param[i].cond);
3938 decomp_param[i].done = true;
3939 decomp_param[i].quit = false;
3940 qemu_thread_create(decompress_threads + i, "decompress",
3941 do_data_decompress, decomp_param + i,
3942 QEMU_THREAD_JOINABLE);
3943 }
3944 return 0;
3945 exit:
3946 compress_threads_load_cleanup();
3947 return -1;
3948 }
3949
3950 static void decompress_data_with_multi_threads(QEMUFile *f,
3951 void *host, int len)
3952 {
3953 int idx, thread_count;
3954
3955 thread_count = migrate_decompress_threads();
3956 qemu_mutex_lock(&decomp_done_lock);
3957 while (true) {
3958 for (idx = 0; idx < thread_count; idx++) {
3959 if (decomp_param[idx].done) {
3960 decomp_param[idx].done = false;
3961 qemu_mutex_lock(&decomp_param[idx].mutex);
3962 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3963 decomp_param[idx].des = host;
3964 decomp_param[idx].len = len;
3965 qemu_cond_signal(&decomp_param[idx].cond);
3966 qemu_mutex_unlock(&decomp_param[idx].mutex);
3967 break;
3968 }
3969 }
3970 if (idx < thread_count) {
3971 break;
3972 } else {
3973 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3974 }
3975 }
3976 qemu_mutex_unlock(&decomp_done_lock);
3977 }
3978
3979 /*
3980 * colo cache: this is for secondary VM, we cache the whole
3981 * memory of the secondary VM, it is need to hold the global lock
3982 * to call this helper.
3983 */
3984 int colo_init_ram_cache(void)
3985 {
3986 RAMBlock *block;
3987
3988 rcu_read_lock();
3989 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3990 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3991 NULL,
3992 false);
3993 if (!block->colo_cache) {
3994 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3995 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3996 block->used_length);
3997 goto out_locked;
3998 }
3999 memcpy(block->colo_cache, block->host, block->used_length);
4000 }
4001 rcu_read_unlock();
4002 /*
4003 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
4004 * with to decide which page in cache should be flushed into SVM's RAM. Here
4005 * we use the same name 'ram_bitmap' as for migration.
4006 */
4007 if (ram_bytes_total()) {
4008 RAMBlock *block;
4009
4010 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4011 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
4012
4013 block->bmap = bitmap_new(pages);
4014 bitmap_set(block->bmap, 0, pages);
4015 }
4016 }
4017 ram_state = g_new0(RAMState, 1);
4018 ram_state->migration_dirty_pages = 0;
4019 qemu_mutex_init(&ram_state->bitmap_mutex);
4020 memory_global_dirty_log_start();
4021
4022 return 0;
4023
4024 out_locked:
4025
4026 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4027 if (block->colo_cache) {
4028 qemu_anon_ram_free(block->colo_cache, block->used_length);
4029 block->colo_cache = NULL;
4030 }
4031 }
4032
4033 rcu_read_unlock();
4034 return -errno;
4035 }
4036
4037 /* It is need to hold the global lock to call this helper */
4038 void colo_release_ram_cache(void)
4039 {
4040 RAMBlock *block;
4041
4042 memory_global_dirty_log_stop();
4043 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4044 g_free(block->bmap);
4045 block->bmap = NULL;
4046 }
4047
4048 rcu_read_lock();
4049
4050 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4051 if (block->colo_cache) {
4052 qemu_anon_ram_free(block->colo_cache, block->used_length);
4053 block->colo_cache = NULL;
4054 }
4055 }
4056
4057 rcu_read_unlock();
4058 qemu_mutex_destroy(&ram_state->bitmap_mutex);
4059 g_free(ram_state);
4060 ram_state = NULL;
4061 }
4062
4063 /**
4064 * ram_load_setup: Setup RAM for migration incoming side
4065 *
4066 * Returns zero to indicate success and negative for error
4067 *
4068 * @f: QEMUFile where to receive the data
4069 * @opaque: RAMState pointer
4070 */
4071 static int ram_load_setup(QEMUFile *f, void *opaque)
4072 {
4073 if (compress_threads_load_setup(f)) {
4074 return -1;
4075 }
4076
4077 xbzrle_load_setup();
4078 ramblock_recv_map_init();
4079
4080 return 0;
4081 }
4082
4083 static int ram_load_cleanup(void *opaque)
4084 {
4085 RAMBlock *rb;
4086
4087 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4088 if (ramblock_is_pmem(rb)) {
4089 pmem_persist(rb->host, rb->used_length);
4090 }
4091 }
4092
4093 xbzrle_load_cleanup();
4094 compress_threads_load_cleanup();
4095
4096 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4097 g_free(rb->receivedmap);
4098 rb->receivedmap = NULL;
4099 }
4100
4101 return 0;
4102 }
4103
4104 /**
4105 * ram_postcopy_incoming_init: allocate postcopy data structures
4106 *
4107 * Returns 0 for success and negative if there was one error
4108 *
4109 * @mis: current migration incoming state
4110 *
4111 * Allocate data structures etc needed by incoming migration with
4112 * postcopy-ram. postcopy-ram's similarly names
4113 * postcopy_ram_incoming_init does the work.
4114 */
4115 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4116 {
4117 return postcopy_ram_incoming_init(mis);
4118 }
4119
4120 /**
4121 * ram_load_postcopy: load a page in postcopy case
4122 *
4123 * Returns 0 for success or -errno in case of error
4124 *
4125 * Called in postcopy mode by ram_load().
4126 * rcu_read_lock is taken prior to this being called.
4127 *
4128 * @f: QEMUFile where to send the data
4129 */
4130 static int ram_load_postcopy(QEMUFile *f)
4131 {
4132 int flags = 0, ret = 0;
4133 bool place_needed = false;
4134 bool matches_target_page_size = false;
4135 MigrationIncomingState *mis = migration_incoming_get_current();
4136 /* Temporary page that is later 'placed' */
4137 void *postcopy_host_page = postcopy_get_tmp_page(mis);
4138 void *last_host = NULL;
4139 bool all_zero = false;
4140
4141 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4142 ram_addr_t addr;
4143 void *host = NULL;
4144 void *page_buffer = NULL;
4145 void *place_source = NULL;
4146 RAMBlock *block = NULL;
4147 uint8_t ch;
4148
4149 addr = qemu_get_be64(f);
4150
4151 /*
4152 * If qemu file error, we should stop here, and then "addr"
4153 * may be invalid
4154 */
4155 ret = qemu_file_get_error(f);
4156 if (ret) {
4157 break;
4158 }
4159
4160 flags = addr & ~TARGET_PAGE_MASK;
4161 addr &= TARGET_PAGE_MASK;
4162
4163 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4164 place_needed = false;
4165 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
4166 block = ram_block_from_stream(f, flags);
4167
4168 host = host_from_ram_block_offset(block, addr);
4169 if (!host) {
4170 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4171 ret = -EINVAL;
4172 break;
4173 }
4174 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4175 /*
4176 * Postcopy requires that we place whole host pages atomically;
4177 * these may be huge pages for RAMBlocks that are backed by
4178 * hugetlbfs.
4179 * To make it atomic, the data is read into a temporary page
4180 * that's moved into place later.
4181 * The migration protocol uses, possibly smaller, target-pages
4182 * however the source ensures it always sends all the components
4183 * of a host page in order.
4184 */
4185 page_buffer = postcopy_host_page +
4186 ((uintptr_t)host & (block->page_size - 1));
4187 /* If all TP are zero then we can optimise the place */
4188 if (!((uintptr_t)host & (block->page_size - 1))) {
4189 all_zero = true;
4190 } else {
4191 /* not the 1st TP within the HP */
4192 if (host != (last_host + TARGET_PAGE_SIZE)) {
4193 error_report("Non-sequential target page %p/%p",
4194 host, last_host);
4195 ret = -EINVAL;
4196 break;
4197 }
4198 }
4199
4200
4201 /*
4202 * If it's the last part of a host page then we place the host
4203 * page
4204 */
4205 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
4206 (block->page_size - 1)) == 0;
4207 place_source = postcopy_host_page;
4208 }
4209 last_host = host;
4210
4211 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4212 case RAM_SAVE_FLAG_ZERO:
4213 ch = qemu_get_byte(f);
4214 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4215 if (ch) {
4216 all_zero = false;
4217 }
4218 break;
4219
4220 case RAM_SAVE_FLAG_PAGE:
4221 all_zero = false;
4222 if (!matches_target_page_size) {
4223 /* For huge pages, we always use temporary buffer */
4224 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4225 } else {
4226 /*
4227 * For small pages that matches target page size, we
4228 * avoid the qemu_file copy. Instead we directly use
4229 * the buffer of QEMUFile to place the page. Note: we
4230 * cannot do any QEMUFile operation before using that
4231 * buffer to make sure the buffer is valid when
4232 * placing the page.
4233 */
4234 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4235 TARGET_PAGE_SIZE);
4236 }
4237 break;
4238 case RAM_SAVE_FLAG_EOS:
4239 /* normal exit */
4240 multifd_recv_sync_main();
4241 break;
4242 default:
4243 error_report("Unknown combination of migration flags: %#x"
4244 " (postcopy mode)", flags);
4245 ret = -EINVAL;
4246 break;
4247 }
4248
4249 /* Detect for any possible file errors */
4250 if (!ret && qemu_file_get_error(f)) {
4251 ret = qemu_file_get_error(f);
4252 }
4253
4254 if (!ret && place_needed) {
4255 /* This gets called at the last target page in the host page */
4256 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4257
4258 if (all_zero) {
4259 ret = postcopy_place_page_zero(mis, place_dest,
4260 block);
4261 } else {
4262 ret = postcopy_place_page(mis, place_dest,
4263 place_source, block);
4264 }
4265 }
4266 }
4267
4268 return ret;
4269 }
4270
4271 static bool postcopy_is_advised(void)
4272 {
4273 PostcopyState ps = postcopy_state_get();
4274 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4275 }
4276
4277 static bool postcopy_is_running(void)
4278 {
4279 PostcopyState ps = postcopy_state_get();
4280 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4281 }
4282
4283 /*
4284 * Flush content of RAM cache into SVM's memory.
4285 * Only flush the pages that be dirtied by PVM or SVM or both.
4286 */
4287 static void colo_flush_ram_cache(void)
4288 {
4289 RAMBlock *block = NULL;
4290 void *dst_host;
4291 void *src_host;
4292 unsigned long offset = 0;
4293
4294 memory_global_dirty_log_sync();
4295 rcu_read_lock();
4296 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4297 migration_bitmap_sync_range(ram_state, block, block->used_length);
4298 }
4299 rcu_read_unlock();
4300
4301 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4302 rcu_read_lock();
4303 block = QLIST_FIRST_RCU(&ram_list.blocks);
4304
4305 while (block) {
4306 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4307
4308 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4309 offset = 0;
4310 block = QLIST_NEXT_RCU(block, next);
4311 } else {
4312 migration_bitmap_clear_dirty(ram_state, block, offset);
4313 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4314 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4315 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4316 }
4317 }
4318
4319 rcu_read_unlock();
4320 trace_colo_flush_ram_cache_end();
4321 }
4322
4323 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4324 {
4325 int flags = 0, ret = 0, invalid_flags = 0;
4326 static uint64_t seq_iter;
4327 int len = 0;
4328 /*
4329 * If system is running in postcopy mode, page inserts to host memory must
4330 * be atomic
4331 */
4332 bool postcopy_running = postcopy_is_running();
4333 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4334 bool postcopy_advised = postcopy_is_advised();
4335
4336 seq_iter++;
4337
4338 if (version_id != 4) {
4339 ret = -EINVAL;
4340 }
4341
4342 if (!migrate_use_compression()) {
4343 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4344 }
4345 /* This RCU critical section can be very long running.
4346 * When RCU reclaims in the code start to become numerous,
4347 * it will be necessary to reduce the granularity of this
4348 * critical section.
4349 */
4350 rcu_read_lock();
4351
4352 if (postcopy_running) {
4353 ret = ram_load_postcopy(f);
4354 }
4355
4356 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4357 ram_addr_t addr, total_ram_bytes;
4358 void *host = NULL;
4359 uint8_t ch;
4360
4361 addr = qemu_get_be64(f);
4362 flags = addr & ~TARGET_PAGE_MASK;
4363 addr &= TARGET_PAGE_MASK;
4364
4365 if (flags & invalid_flags) {
4366 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4367 error_report("Received an unexpected compressed page");
4368 }
4369
4370 ret = -EINVAL;
4371 break;
4372 }
4373
4374 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4375 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4376 RAMBlock *block = ram_block_from_stream(f, flags);
4377
4378 /*
4379 * After going into COLO, we should load the Page into colo_cache.
4380 */
4381 if (migration_incoming_in_colo_state()) {
4382 host = colo_cache_from_block_offset(block, addr);
4383 } else {
4384 host = host_from_ram_block_offset(block, addr);
4385 }
4386 if (!host) {
4387 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4388 ret = -EINVAL;
4389 break;
4390 }
4391
4392 if (!migration_incoming_in_colo_state()) {
4393 ramblock_recv_bitmap_set(block, host);
4394 }
4395
4396 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4397 }
4398
4399 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4400 case RAM_SAVE_FLAG_MEM_SIZE:
4401 /* Synchronize RAM block list */
4402 total_ram_bytes = addr;
4403 while (!ret && total_ram_bytes) {
4404 RAMBlock *block;
4405 char id[256];
4406 ram_addr_t length;
4407
4408 len = qemu_get_byte(f);
4409 qemu_get_buffer(f, (uint8_t *)id, len);
4410 id[len] = 0;
4411 length = qemu_get_be64(f);
4412
4413 block = qemu_ram_block_by_name(id);
4414 if (block && !qemu_ram_is_migratable(block)) {
4415 error_report("block %s should not be migrated !", id);
4416 ret = -EINVAL;
4417 } else if (block) {
4418 if (length != block->used_length) {
4419 Error *local_err = NULL;
4420
4421 ret = qemu_ram_resize(block, length,
4422 &local_err);
4423 if (local_err) {
4424 error_report_err(local_err);
4425 }
4426 }
4427 /* For postcopy we need to check hugepage sizes match */
4428 if (postcopy_advised &&
4429 block->page_size != qemu_host_page_size) {
4430 uint64_t remote_page_size = qemu_get_be64(f);
4431 if (remote_page_size != block->page_size) {
4432 error_report("Mismatched RAM page size %s "
4433 "(local) %zd != %" PRId64,
4434 id, block->page_size,
4435 remote_page_size);
4436 ret = -EINVAL;
4437 }
4438 }
4439 if (migrate_ignore_shared()) {
4440 hwaddr addr = qemu_get_be64(f);
4441 if (ramblock_is_ignored(block) &&
4442 block->mr->addr != addr) {
4443 error_report("Mismatched GPAs for block %s "
4444 "%" PRId64 "!= %" PRId64,
4445 id, (uint64_t)addr,
4446 (uint64_t)block->mr->addr);
4447 ret = -EINVAL;
4448 }
4449 }
4450 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4451 block->idstr);
4452 } else {
4453 error_report("Unknown ramblock \"%s\", cannot "
4454 "accept migration", id);
4455 ret = -EINVAL;
4456 }
4457
4458 total_ram_bytes -= length;
4459 }
4460 break;
4461
4462 case RAM_SAVE_FLAG_ZERO:
4463 ch = qemu_get_byte(f);
4464 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4465 break;
4466
4467 case RAM_SAVE_FLAG_PAGE:
4468 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4469 break;
4470
4471 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4472 len = qemu_get_be32(f);
4473 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4474 error_report("Invalid compressed data length: %d", len);
4475 ret = -EINVAL;
4476 break;
4477 }
4478 decompress_data_with_multi_threads(f, host, len);
4479 break;
4480
4481 case RAM_SAVE_FLAG_XBZRLE:
4482 if (load_xbzrle(f, addr, host) < 0) {
4483 error_report("Failed to decompress XBZRLE page at "
4484 RAM_ADDR_FMT, addr);
4485 ret = -EINVAL;
4486 break;
4487 }
4488 break;
4489 case RAM_SAVE_FLAG_EOS:
4490 /* normal exit */
4491 multifd_recv_sync_main();
4492 break;
4493 default:
4494 if (flags & RAM_SAVE_FLAG_HOOK) {
4495 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4496 } else {
4497 error_report("Unknown combination of migration flags: %#x",
4498 flags);
4499 ret = -EINVAL;
4500 }
4501 }
4502 if (!ret) {
4503 ret = qemu_file_get_error(f);
4504 }
4505 }
4506
4507 ret |= wait_for_decompress_done();
4508 rcu_read_unlock();
4509 trace_ram_load_complete(ret, seq_iter);
4510
4511 if (!ret && migration_incoming_in_colo_state()) {
4512 colo_flush_ram_cache();
4513 }
4514 return ret;
4515 }
4516
4517 static bool ram_has_postcopy(void *opaque)
4518 {
4519 RAMBlock *rb;
4520 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4521 if (ramblock_is_pmem(rb)) {
4522 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4523 "is not supported now!", rb->idstr, rb->host);
4524 return false;
4525 }
4526 }
4527
4528 return migrate_postcopy_ram();
4529 }
4530
4531 /* Sync all the dirty bitmap with destination VM. */
4532 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4533 {
4534 RAMBlock *block;
4535 QEMUFile *file = s->to_dst_file;
4536 int ramblock_count = 0;
4537
4538 trace_ram_dirty_bitmap_sync_start();
4539
4540 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4541 qemu_savevm_send_recv_bitmap(file, block->idstr);
4542 trace_ram_dirty_bitmap_request(block->idstr);
4543 ramblock_count++;
4544 }
4545
4546 trace_ram_dirty_bitmap_sync_wait();
4547
4548 /* Wait until all the ramblocks' dirty bitmap synced */
4549 while (ramblock_count--) {
4550 qemu_sem_wait(&s->rp_state.rp_sem);
4551 }
4552
4553 trace_ram_dirty_bitmap_sync_complete();
4554
4555 return 0;
4556 }
4557
4558 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4559 {
4560 qemu_sem_post(&s->rp_state.rp_sem);
4561 }
4562
4563 /*
4564 * Read the received bitmap, revert it as the initial dirty bitmap.
4565 * This is only used when the postcopy migration is paused but wants
4566 * to resume from a middle point.
4567 */
4568 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4569 {
4570 int ret = -EINVAL;
4571 QEMUFile *file = s->rp_state.from_dst_file;
4572 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4573 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4574 uint64_t size, end_mark;
4575
4576 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4577
4578 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4579 error_report("%s: incorrect state %s", __func__,
4580 MigrationStatus_str(s->state));
4581 return -EINVAL;
4582 }
4583
4584 /*
4585 * Note: see comments in ramblock_recv_bitmap_send() on why we
4586 * need the endianess convertion, and the paddings.
4587 */
4588 local_size = ROUND_UP(local_size, 8);
4589
4590 /* Add paddings */
4591 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4592
4593 size = qemu_get_be64(file);
4594
4595 /* The size of the bitmap should match with our ramblock */
4596 if (size != local_size) {
4597 error_report("%s: ramblock '%s' bitmap size mismatch "
4598 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4599 block->idstr, size, local_size);
4600 ret = -EINVAL;
4601 goto out;
4602 }
4603
4604 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4605 end_mark = qemu_get_be64(file);
4606
4607 ret = qemu_file_get_error(file);
4608 if (ret || size != local_size) {
4609 error_report("%s: read bitmap failed for ramblock '%s': %d"
4610 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4611 __func__, block->idstr, ret, local_size, size);
4612 ret = -EIO;
4613 goto out;
4614 }
4615
4616 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4617 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4618 __func__, block->idstr, end_mark);
4619 ret = -EINVAL;
4620 goto out;
4621 }
4622
4623 /*
4624 * Endianess convertion. We are during postcopy (though paused).
4625 * The dirty bitmap won't change. We can directly modify it.
4626 */
4627 bitmap_from_le(block->bmap, le_bitmap, nbits);
4628
4629 /*
4630 * What we received is "received bitmap". Revert it as the initial
4631 * dirty bitmap for this ramblock.
4632 */
4633 bitmap_complement(block->bmap, block->bmap, nbits);
4634
4635 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4636
4637 /*
4638 * We succeeded to sync bitmap for current ramblock. If this is
4639 * the last one to sync, we need to notify the main send thread.
4640 */
4641 ram_dirty_bitmap_reload_notify(s);
4642
4643 ret = 0;
4644 out:
4645 g_free(le_bitmap);
4646 return ret;
4647 }
4648
4649 static int ram_resume_prepare(MigrationState *s, void *opaque)
4650 {
4651 RAMState *rs = *(RAMState **)opaque;
4652 int ret;
4653
4654 ret = ram_dirty_bitmap_sync_all(s, rs);
4655 if (ret) {
4656 return ret;
4657 }
4658
4659 ram_state_resume_prepare(rs, s->to_dst_file);
4660
4661 return 0;
4662 }
4663
4664 static SaveVMHandlers savevm_ram_handlers = {
4665 .save_setup = ram_save_setup,
4666 .save_live_iterate = ram_save_iterate,
4667 .save_live_complete_postcopy = ram_save_complete,
4668 .save_live_complete_precopy = ram_save_complete,
4669 .has_postcopy = ram_has_postcopy,
4670 .save_live_pending = ram_save_pending,
4671 .load_state = ram_load,
4672 .save_cleanup = ram_save_cleanup,
4673 .load_setup = ram_load_setup,
4674 .load_cleanup = ram_load_cleanup,
4675 .resume_prepare = ram_resume_prepare,
4676 };
4677
4678 void ram_mig_init(void)
4679 {
4680 qemu_mutex_init(&XBZRLE.lock);
4681 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
4682 }