]> git.proxmox.com Git - mirror_qemu.git/blob - migration/ram.c
c13b44b4d9bebbf1bee49256fb4b3c045ad45693
[mirror_qemu.git] / migration / ram.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "xbzrle.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "socket.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-events-migration.h"
48 #include "qapi/qmp/qerror.h"
49 #include "trace.h"
50 #include "exec/ram_addr.h"
51 #include "exec/target_page.h"
52 #include "qemu/rcu_queue.h"
53 #include "migration/colo.h"
54 #include "block.h"
55 #include "sysemu/sysemu.h"
56 #include "qemu/uuid.h"
57 #include "savevm.h"
58 #include "qemu/iov.h"
59
60 /***********************************************************/
61 /* ram save/restore */
62
63 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
64 * worked for pages that where filled with the same char. We switched
65 * it to only search for the zero value. And to avoid confusion with
66 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
67 */
68
69 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
70 #define RAM_SAVE_FLAG_ZERO 0x02
71 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
72 #define RAM_SAVE_FLAG_PAGE 0x08
73 #define RAM_SAVE_FLAG_EOS 0x10
74 #define RAM_SAVE_FLAG_CONTINUE 0x20
75 #define RAM_SAVE_FLAG_XBZRLE 0x40
76 /* 0x80 is reserved in migration.h start with 0x100 next */
77 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
78
79 static inline bool is_zero_range(uint8_t *p, uint64_t size)
80 {
81 return buffer_is_zero(p, size);
82 }
83
84 XBZRLECacheStats xbzrle_counters;
85
86 /* struct contains XBZRLE cache and a static page
87 used by the compression */
88 static struct {
89 /* buffer used for XBZRLE encoding */
90 uint8_t *encoded_buf;
91 /* buffer for storing page content */
92 uint8_t *current_buf;
93 /* Cache for XBZRLE, Protected by lock. */
94 PageCache *cache;
95 QemuMutex lock;
96 /* it will store a page full of zeros */
97 uint8_t *zero_target_page;
98 /* buffer used for XBZRLE decoding */
99 uint8_t *decoded_buf;
100 } XBZRLE;
101
102 static void XBZRLE_cache_lock(void)
103 {
104 if (migrate_use_xbzrle())
105 qemu_mutex_lock(&XBZRLE.lock);
106 }
107
108 static void XBZRLE_cache_unlock(void)
109 {
110 if (migrate_use_xbzrle())
111 qemu_mutex_unlock(&XBZRLE.lock);
112 }
113
114 /**
115 * xbzrle_cache_resize: resize the xbzrle cache
116 *
117 * This function is called from qmp_migrate_set_cache_size in main
118 * thread, possibly while a migration is in progress. A running
119 * migration may be using the cache and might finish during this call,
120 * hence changes to the cache are protected by XBZRLE.lock().
121 *
122 * Returns 0 for success or -1 for error
123 *
124 * @new_size: new cache size
125 * @errp: set *errp if the check failed, with reason
126 */
127 int xbzrle_cache_resize(int64_t new_size, Error **errp)
128 {
129 PageCache *new_cache;
130 int64_t ret = 0;
131
132 /* Check for truncation */
133 if (new_size != (size_t)new_size) {
134 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
135 "exceeding address space");
136 return -1;
137 }
138
139 if (new_size == migrate_xbzrle_cache_size()) {
140 /* nothing to do */
141 return 0;
142 }
143
144 XBZRLE_cache_lock();
145
146 if (XBZRLE.cache != NULL) {
147 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
148 if (!new_cache) {
149 ret = -1;
150 goto out;
151 }
152
153 cache_fini(XBZRLE.cache);
154 XBZRLE.cache = new_cache;
155 }
156 out:
157 XBZRLE_cache_unlock();
158 return ret;
159 }
160
161 static bool ramblock_is_ignored(RAMBlock *block)
162 {
163 return !qemu_ram_is_migratable(block) ||
164 (migrate_ignore_shared() && qemu_ram_is_shared(block));
165 }
166
167 /* Should be holding either ram_list.mutex, or the RCU lock. */
168 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
169 INTERNAL_RAMBLOCK_FOREACH(block) \
170 if (ramblock_is_ignored(block)) {} else
171
172 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
173 INTERNAL_RAMBLOCK_FOREACH(block) \
174 if (!qemu_ram_is_migratable(block)) {} else
175
176 #undef RAMBLOCK_FOREACH
177
178 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
179 {
180 RAMBlock *block;
181 int ret = 0;
182
183 RCU_READ_LOCK_GUARD();
184
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 return ret;
192 }
193
194 static void ramblock_recv_map_init(void)
195 {
196 RAMBlock *rb;
197
198 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
199 assert(!rb->receivedmap);
200 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
201 }
202 }
203
204 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
205 {
206 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
207 rb->receivedmap);
208 }
209
210 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
211 {
212 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
213 }
214
215 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
216 {
217 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
218 }
219
220 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
221 size_t nr)
222 {
223 bitmap_set_atomic(rb->receivedmap,
224 ramblock_recv_bitmap_offset(host_addr, rb),
225 nr);
226 }
227
228 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
229
230 /*
231 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
232 *
233 * Returns >0 if success with sent bytes, or <0 if error.
234 */
235 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
236 const char *block_name)
237 {
238 RAMBlock *block = qemu_ram_block_by_name(block_name);
239 unsigned long *le_bitmap, nbits;
240 uint64_t size;
241
242 if (!block) {
243 error_report("%s: invalid block name: %s", __func__, block_name);
244 return -1;
245 }
246
247 nbits = block->used_length >> TARGET_PAGE_BITS;
248
249 /*
250 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
251 * machines we may need 4 more bytes for padding (see below
252 * comment). So extend it a bit before hand.
253 */
254 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
255
256 /*
257 * Always use little endian when sending the bitmap. This is
258 * required that when source and destination VMs are not using the
259 * same endianess. (Note: big endian won't work.)
260 */
261 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
262
263 /* Size of the bitmap, in bytes */
264 size = DIV_ROUND_UP(nbits, 8);
265
266 /*
267 * size is always aligned to 8 bytes for 64bit machines, but it
268 * may not be true for 32bit machines. We need this padding to
269 * make sure the migration can survive even between 32bit and
270 * 64bit machines.
271 */
272 size = ROUND_UP(size, 8);
273
274 qemu_put_be64(file, size);
275 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
276 /*
277 * Mark as an end, in case the middle part is screwed up due to
278 * some "misterious" reason.
279 */
280 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
281 qemu_fflush(file);
282
283 g_free(le_bitmap);
284
285 if (qemu_file_get_error(file)) {
286 return qemu_file_get_error(file);
287 }
288
289 return size + sizeof(size);
290 }
291
292 /*
293 * An outstanding page request, on the source, having been received
294 * and queued
295 */
296 struct RAMSrcPageRequest {
297 RAMBlock *rb;
298 hwaddr offset;
299 hwaddr len;
300
301 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
302 };
303
304 /* State of RAM for migration */
305 struct RAMState {
306 /* QEMUFile used for this migration */
307 QEMUFile *f;
308 /* Last block that we have visited searching for dirty pages */
309 RAMBlock *last_seen_block;
310 /* Last block from where we have sent data */
311 RAMBlock *last_sent_block;
312 /* Last dirty target page we have sent */
313 ram_addr_t last_page;
314 /* last ram version we have seen */
315 uint32_t last_version;
316 /* We are in the first round */
317 bool ram_bulk_stage;
318 /* The free page optimization is enabled */
319 bool fpo_enabled;
320 /* How many times we have dirty too many pages */
321 int dirty_rate_high_cnt;
322 /* these variables are used for bitmap sync */
323 /* last time we did a full bitmap_sync */
324 int64_t time_last_bitmap_sync;
325 /* bytes transferred at start_time */
326 uint64_t bytes_xfer_prev;
327 /* number of dirty pages since start_time */
328 uint64_t num_dirty_pages_period;
329 /* xbzrle misses since the beginning of the period */
330 uint64_t xbzrle_cache_miss_prev;
331
332 /* compression statistics since the beginning of the period */
333 /* amount of count that no free thread to compress data */
334 uint64_t compress_thread_busy_prev;
335 /* amount bytes after compression */
336 uint64_t compressed_size_prev;
337 /* amount of compressed pages */
338 uint64_t compress_pages_prev;
339
340 /* total handled target pages at the beginning of period */
341 uint64_t target_page_count_prev;
342 /* total handled target pages since start */
343 uint64_t target_page_count;
344 /* number of dirty bits in the bitmap */
345 uint64_t migration_dirty_pages;
346 /* Protects modification of the bitmap and migration dirty pages */
347 QemuMutex bitmap_mutex;
348 /* The RAMBlock used in the last src_page_requests */
349 RAMBlock *last_req_rb;
350 /* Queue of outstanding page requests from the destination */
351 QemuMutex src_page_req_mutex;
352 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
353 };
354 typedef struct RAMState RAMState;
355
356 static RAMState *ram_state;
357
358 static NotifierWithReturnList precopy_notifier_list;
359
360 void precopy_infrastructure_init(void)
361 {
362 notifier_with_return_list_init(&precopy_notifier_list);
363 }
364
365 void precopy_add_notifier(NotifierWithReturn *n)
366 {
367 notifier_with_return_list_add(&precopy_notifier_list, n);
368 }
369
370 void precopy_remove_notifier(NotifierWithReturn *n)
371 {
372 notifier_with_return_remove(n);
373 }
374
375 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
376 {
377 PrecopyNotifyData pnd;
378 pnd.reason = reason;
379 pnd.errp = errp;
380
381 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
382 }
383
384 void precopy_enable_free_page_optimization(void)
385 {
386 if (!ram_state) {
387 return;
388 }
389
390 ram_state->fpo_enabled = true;
391 }
392
393 uint64_t ram_bytes_remaining(void)
394 {
395 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
396 0;
397 }
398
399 MigrationStats ram_counters;
400
401 /* used by the search for pages to send */
402 struct PageSearchStatus {
403 /* Current block being searched */
404 RAMBlock *block;
405 /* Current page to search from */
406 unsigned long page;
407 /* Set once we wrap around */
408 bool complete_round;
409 };
410 typedef struct PageSearchStatus PageSearchStatus;
411
412 CompressionStats compression_counters;
413
414 struct CompressParam {
415 bool done;
416 bool quit;
417 bool zero_page;
418 QEMUFile *file;
419 QemuMutex mutex;
420 QemuCond cond;
421 RAMBlock *block;
422 ram_addr_t offset;
423
424 /* internally used fields */
425 z_stream stream;
426 uint8_t *originbuf;
427 };
428 typedef struct CompressParam CompressParam;
429
430 struct DecompressParam {
431 bool done;
432 bool quit;
433 QemuMutex mutex;
434 QemuCond cond;
435 void *des;
436 uint8_t *compbuf;
437 int len;
438 z_stream stream;
439 };
440 typedef struct DecompressParam DecompressParam;
441
442 static CompressParam *comp_param;
443 static QemuThread *compress_threads;
444 /* comp_done_cond is used to wake up the migration thread when
445 * one of the compression threads has finished the compression.
446 * comp_done_lock is used to co-work with comp_done_cond.
447 */
448 static QemuMutex comp_done_lock;
449 static QemuCond comp_done_cond;
450 /* The empty QEMUFileOps will be used by file in CompressParam */
451 static const QEMUFileOps empty_ops = { };
452
453 static QEMUFile *decomp_file;
454 static DecompressParam *decomp_param;
455 static QemuThread *decompress_threads;
456 static QemuMutex decomp_done_lock;
457 static QemuCond decomp_done_cond;
458
459 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
460 ram_addr_t offset, uint8_t *source_buf);
461
462 static void *do_data_compress(void *opaque)
463 {
464 CompressParam *param = opaque;
465 RAMBlock *block;
466 ram_addr_t offset;
467 bool zero_page;
468
469 qemu_mutex_lock(&param->mutex);
470 while (!param->quit) {
471 if (param->block) {
472 block = param->block;
473 offset = param->offset;
474 param->block = NULL;
475 qemu_mutex_unlock(&param->mutex);
476
477 zero_page = do_compress_ram_page(param->file, &param->stream,
478 block, offset, param->originbuf);
479
480 qemu_mutex_lock(&comp_done_lock);
481 param->done = true;
482 param->zero_page = zero_page;
483 qemu_cond_signal(&comp_done_cond);
484 qemu_mutex_unlock(&comp_done_lock);
485
486 qemu_mutex_lock(&param->mutex);
487 } else {
488 qemu_cond_wait(&param->cond, &param->mutex);
489 }
490 }
491 qemu_mutex_unlock(&param->mutex);
492
493 return NULL;
494 }
495
496 static void compress_threads_save_cleanup(void)
497 {
498 int i, thread_count;
499
500 if (!migrate_use_compression() || !comp_param) {
501 return;
502 }
503
504 thread_count = migrate_compress_threads();
505 for (i = 0; i < thread_count; i++) {
506 /*
507 * we use it as a indicator which shows if the thread is
508 * properly init'd or not
509 */
510 if (!comp_param[i].file) {
511 break;
512 }
513
514 qemu_mutex_lock(&comp_param[i].mutex);
515 comp_param[i].quit = true;
516 qemu_cond_signal(&comp_param[i].cond);
517 qemu_mutex_unlock(&comp_param[i].mutex);
518
519 qemu_thread_join(compress_threads + i);
520 qemu_mutex_destroy(&comp_param[i].mutex);
521 qemu_cond_destroy(&comp_param[i].cond);
522 deflateEnd(&comp_param[i].stream);
523 g_free(comp_param[i].originbuf);
524 qemu_fclose(comp_param[i].file);
525 comp_param[i].file = NULL;
526 }
527 qemu_mutex_destroy(&comp_done_lock);
528 qemu_cond_destroy(&comp_done_cond);
529 g_free(compress_threads);
530 g_free(comp_param);
531 compress_threads = NULL;
532 comp_param = NULL;
533 }
534
535 static int compress_threads_save_setup(void)
536 {
537 int i, thread_count;
538
539 if (!migrate_use_compression()) {
540 return 0;
541 }
542 thread_count = migrate_compress_threads();
543 compress_threads = g_new0(QemuThread, thread_count);
544 comp_param = g_new0(CompressParam, thread_count);
545 qemu_cond_init(&comp_done_cond);
546 qemu_mutex_init(&comp_done_lock);
547 for (i = 0; i < thread_count; i++) {
548 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
549 if (!comp_param[i].originbuf) {
550 goto exit;
551 }
552
553 if (deflateInit(&comp_param[i].stream,
554 migrate_compress_level()) != Z_OK) {
555 g_free(comp_param[i].originbuf);
556 goto exit;
557 }
558
559 /* comp_param[i].file is just used as a dummy buffer to save data,
560 * set its ops to empty.
561 */
562 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
563 comp_param[i].done = true;
564 comp_param[i].quit = false;
565 qemu_mutex_init(&comp_param[i].mutex);
566 qemu_cond_init(&comp_param[i].cond);
567 qemu_thread_create(compress_threads + i, "compress",
568 do_data_compress, comp_param + i,
569 QEMU_THREAD_JOINABLE);
570 }
571 return 0;
572
573 exit:
574 compress_threads_save_cleanup();
575 return -1;
576 }
577
578 /* Multiple fd's */
579
580 #define MULTIFD_MAGIC 0x11223344U
581 #define MULTIFD_VERSION 1
582
583 #define MULTIFD_FLAG_SYNC (1 << 0)
584
585 /* This value needs to be a multiple of qemu_target_page_size() */
586 #define MULTIFD_PACKET_SIZE (512 * 1024)
587
588 typedef struct {
589 uint32_t magic;
590 uint32_t version;
591 unsigned char uuid[16]; /* QemuUUID */
592 uint8_t id;
593 uint8_t unused1[7]; /* Reserved for future use */
594 uint64_t unused2[4]; /* Reserved for future use */
595 } __attribute__((packed)) MultiFDInit_t;
596
597 typedef struct {
598 uint32_t magic;
599 uint32_t version;
600 uint32_t flags;
601 /* maximum number of allocated pages */
602 uint32_t pages_alloc;
603 uint32_t pages_used;
604 /* size of the next packet that contains pages */
605 uint32_t next_packet_size;
606 uint64_t packet_num;
607 uint64_t unused[4]; /* Reserved for future use */
608 char ramblock[256];
609 uint64_t offset[];
610 } __attribute__((packed)) MultiFDPacket_t;
611
612 typedef struct {
613 /* number of used pages */
614 uint32_t used;
615 /* number of allocated pages */
616 uint32_t allocated;
617 /* global number of generated multifd packets */
618 uint64_t packet_num;
619 /* offset of each page */
620 ram_addr_t *offset;
621 /* pointer to each page */
622 struct iovec *iov;
623 RAMBlock *block;
624 } MultiFDPages_t;
625
626 typedef struct {
627 /* this fields are not changed once the thread is created */
628 /* channel number */
629 uint8_t id;
630 /* channel thread name */
631 char *name;
632 /* channel thread id */
633 QemuThread thread;
634 /* communication channel */
635 QIOChannel *c;
636 /* sem where to wait for more work */
637 QemuSemaphore sem;
638 /* this mutex protects the following parameters */
639 QemuMutex mutex;
640 /* is this channel thread running */
641 bool running;
642 /* should this thread finish */
643 bool quit;
644 /* thread has work to do */
645 int pending_job;
646 /* array of pages to sent */
647 MultiFDPages_t *pages;
648 /* packet allocated len */
649 uint32_t packet_len;
650 /* pointer to the packet */
651 MultiFDPacket_t *packet;
652 /* multifd flags for each packet */
653 uint32_t flags;
654 /* size of the next packet that contains pages */
655 uint32_t next_packet_size;
656 /* global number of generated multifd packets */
657 uint64_t packet_num;
658 /* thread local variables */
659 /* packets sent through this channel */
660 uint64_t num_packets;
661 /* pages sent through this channel */
662 uint64_t num_pages;
663 /* syncs main thread and channels */
664 QemuSemaphore sem_sync;
665 } MultiFDSendParams;
666
667 typedef struct {
668 /* this fields are not changed once the thread is created */
669 /* channel number */
670 uint8_t id;
671 /* channel thread name */
672 char *name;
673 /* channel thread id */
674 QemuThread thread;
675 /* communication channel */
676 QIOChannel *c;
677 /* this mutex protects the following parameters */
678 QemuMutex mutex;
679 /* is this channel thread running */
680 bool running;
681 /* should this thread finish */
682 bool quit;
683 /* array of pages to receive */
684 MultiFDPages_t *pages;
685 /* packet allocated len */
686 uint32_t packet_len;
687 /* pointer to the packet */
688 MultiFDPacket_t *packet;
689 /* multifd flags for each packet */
690 uint32_t flags;
691 /* global number of generated multifd packets */
692 uint64_t packet_num;
693 /* thread local variables */
694 /* size of the next packet that contains pages */
695 uint32_t next_packet_size;
696 /* packets sent through this channel */
697 uint64_t num_packets;
698 /* pages sent through this channel */
699 uint64_t num_pages;
700 /* syncs main thread and channels */
701 QemuSemaphore sem_sync;
702 } MultiFDRecvParams;
703
704 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
705 {
706 MultiFDInit_t msg = {};
707 int ret;
708
709 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
710 msg.version = cpu_to_be32(MULTIFD_VERSION);
711 msg.id = p->id;
712 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
713
714 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
715 if (ret != 0) {
716 return -1;
717 }
718 return 0;
719 }
720
721 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
722 {
723 MultiFDInit_t msg;
724 int ret;
725
726 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
727 if (ret != 0) {
728 return -1;
729 }
730
731 msg.magic = be32_to_cpu(msg.magic);
732 msg.version = be32_to_cpu(msg.version);
733
734 if (msg.magic != MULTIFD_MAGIC) {
735 error_setg(errp, "multifd: received packet magic %x "
736 "expected %x", msg.magic, MULTIFD_MAGIC);
737 return -1;
738 }
739
740 if (msg.version != MULTIFD_VERSION) {
741 error_setg(errp, "multifd: received packet version %d "
742 "expected %d", msg.version, MULTIFD_VERSION);
743 return -1;
744 }
745
746 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
747 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
748 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
749
750 error_setg(errp, "multifd: received uuid '%s' and expected "
751 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
752 g_free(uuid);
753 g_free(msg_uuid);
754 return -1;
755 }
756
757 if (msg.id > migrate_multifd_channels()) {
758 error_setg(errp, "multifd: received channel version %d "
759 "expected %d", msg.version, MULTIFD_VERSION);
760 return -1;
761 }
762
763 return msg.id;
764 }
765
766 static MultiFDPages_t *multifd_pages_init(size_t size)
767 {
768 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
769
770 pages->allocated = size;
771 pages->iov = g_new0(struct iovec, size);
772 pages->offset = g_new0(ram_addr_t, size);
773
774 return pages;
775 }
776
777 static void multifd_pages_clear(MultiFDPages_t *pages)
778 {
779 pages->used = 0;
780 pages->allocated = 0;
781 pages->packet_num = 0;
782 pages->block = NULL;
783 g_free(pages->iov);
784 pages->iov = NULL;
785 g_free(pages->offset);
786 pages->offset = NULL;
787 g_free(pages);
788 }
789
790 static void multifd_send_fill_packet(MultiFDSendParams *p)
791 {
792 MultiFDPacket_t *packet = p->packet;
793 int i;
794
795 packet->flags = cpu_to_be32(p->flags);
796 packet->pages_alloc = cpu_to_be32(p->pages->allocated);
797 packet->pages_used = cpu_to_be32(p->pages->used);
798 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
799 packet->packet_num = cpu_to_be64(p->packet_num);
800
801 if (p->pages->block) {
802 strncpy(packet->ramblock, p->pages->block->idstr, 256);
803 }
804
805 for (i = 0; i < p->pages->used; i++) {
806 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
807 }
808 }
809
810 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
811 {
812 MultiFDPacket_t *packet = p->packet;
813 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
814 RAMBlock *block;
815 int i;
816
817 packet->magic = be32_to_cpu(packet->magic);
818 if (packet->magic != MULTIFD_MAGIC) {
819 error_setg(errp, "multifd: received packet "
820 "magic %x and expected magic %x",
821 packet->magic, MULTIFD_MAGIC);
822 return -1;
823 }
824
825 packet->version = be32_to_cpu(packet->version);
826 if (packet->version != MULTIFD_VERSION) {
827 error_setg(errp, "multifd: received packet "
828 "version %d and expected version %d",
829 packet->version, MULTIFD_VERSION);
830 return -1;
831 }
832
833 p->flags = be32_to_cpu(packet->flags);
834
835 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
836 /*
837 * If we received a packet that is 100 times bigger than expected
838 * just stop migration. It is a magic number.
839 */
840 if (packet->pages_alloc > pages_max * 100) {
841 error_setg(errp, "multifd: received packet "
842 "with size %d and expected a maximum size of %d",
843 packet->pages_alloc, pages_max * 100) ;
844 return -1;
845 }
846 /*
847 * We received a packet that is bigger than expected but inside
848 * reasonable limits (see previous comment). Just reallocate.
849 */
850 if (packet->pages_alloc > p->pages->allocated) {
851 multifd_pages_clear(p->pages);
852 p->pages = multifd_pages_init(packet->pages_alloc);
853 }
854
855 p->pages->used = be32_to_cpu(packet->pages_used);
856 if (p->pages->used > packet->pages_alloc) {
857 error_setg(errp, "multifd: received packet "
858 "with %d pages and expected maximum pages are %d",
859 p->pages->used, packet->pages_alloc) ;
860 return -1;
861 }
862
863 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
864 p->packet_num = be64_to_cpu(packet->packet_num);
865
866 if (p->pages->used == 0) {
867 return 0;
868 }
869
870 /* make sure that ramblock is 0 terminated */
871 packet->ramblock[255] = 0;
872 block = qemu_ram_block_by_name(packet->ramblock);
873 if (!block) {
874 error_setg(errp, "multifd: unknown ram block %s",
875 packet->ramblock);
876 return -1;
877 }
878
879 for (i = 0; i < p->pages->used; i++) {
880 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
881
882 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
883 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
884 " (max " RAM_ADDR_FMT ")",
885 offset, block->max_length);
886 return -1;
887 }
888 p->pages->iov[i].iov_base = block->host + offset;
889 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
890 }
891
892 return 0;
893 }
894
895 struct {
896 MultiFDSendParams *params;
897 /* array of pages to sent */
898 MultiFDPages_t *pages;
899 /* global number of generated multifd packets */
900 uint64_t packet_num;
901 /* send channels ready */
902 QemuSemaphore channels_ready;
903 /*
904 * Have we already run terminate threads. There is a race when it
905 * happens that we got one error while we are exiting.
906 * We will use atomic operations. Only valid values are 0 and 1.
907 */
908 int exiting;
909 } *multifd_send_state;
910
911 /*
912 * How we use multifd_send_state->pages and channel->pages?
913 *
914 * We create a pages for each channel, and a main one. Each time that
915 * we need to send a batch of pages we interchange the ones between
916 * multifd_send_state and the channel that is sending it. There are
917 * two reasons for that:
918 * - to not have to do so many mallocs during migration
919 * - to make easier to know what to free at the end of migration
920 *
921 * This way we always know who is the owner of each "pages" struct,
922 * and we don't need any locking. It belongs to the migration thread
923 * or to the channel thread. Switching is safe because the migration
924 * thread is using the channel mutex when changing it, and the channel
925 * have to had finish with its own, otherwise pending_job can't be
926 * false.
927 */
928
929 static int multifd_send_pages(RAMState *rs)
930 {
931 int i;
932 static int next_channel;
933 MultiFDSendParams *p = NULL; /* make happy gcc */
934 MultiFDPages_t *pages = multifd_send_state->pages;
935 uint64_t transferred;
936
937 if (atomic_read(&multifd_send_state->exiting)) {
938 return -1;
939 }
940
941 qemu_sem_wait(&multifd_send_state->channels_ready);
942 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
943 p = &multifd_send_state->params[i];
944
945 qemu_mutex_lock(&p->mutex);
946 if (p->quit) {
947 error_report("%s: channel %d has already quit!", __func__, i);
948 qemu_mutex_unlock(&p->mutex);
949 return -1;
950 }
951 if (!p->pending_job) {
952 p->pending_job++;
953 next_channel = (i + 1) % migrate_multifd_channels();
954 break;
955 }
956 qemu_mutex_unlock(&p->mutex);
957 }
958 p->pages->used = 0;
959
960 p->packet_num = multifd_send_state->packet_num++;
961 p->pages->block = NULL;
962 multifd_send_state->pages = p->pages;
963 p->pages = pages;
964 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
965 qemu_file_update_transfer(rs->f, transferred);
966 ram_counters.multifd_bytes += transferred;
967 ram_counters.transferred += transferred;;
968 qemu_mutex_unlock(&p->mutex);
969 qemu_sem_post(&p->sem);
970
971 return 1;
972 }
973
974 static int multifd_queue_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
975 {
976 MultiFDPages_t *pages = multifd_send_state->pages;
977
978 if (!pages->block) {
979 pages->block = block;
980 }
981
982 if (pages->block == block) {
983 pages->offset[pages->used] = offset;
984 pages->iov[pages->used].iov_base = block->host + offset;
985 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
986 pages->used++;
987
988 if (pages->used < pages->allocated) {
989 return 1;
990 }
991 }
992
993 if (multifd_send_pages(rs) < 0) {
994 return -1;
995 }
996
997 if (pages->block != block) {
998 return multifd_queue_page(rs, block, offset);
999 }
1000
1001 return 1;
1002 }
1003
1004 static void multifd_send_terminate_threads(Error *err)
1005 {
1006 int i;
1007
1008 trace_multifd_send_terminate_threads(err != NULL);
1009
1010 if (err) {
1011 MigrationState *s = migrate_get_current();
1012 migrate_set_error(s, err);
1013 if (s->state == MIGRATION_STATUS_SETUP ||
1014 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
1015 s->state == MIGRATION_STATUS_DEVICE ||
1016 s->state == MIGRATION_STATUS_ACTIVE) {
1017 migrate_set_state(&s->state, s->state,
1018 MIGRATION_STATUS_FAILED);
1019 }
1020 }
1021
1022 /*
1023 * We don't want to exit each threads twice. Depending on where
1024 * we get the error, or if there are two independent errors in two
1025 * threads at the same time, we can end calling this function
1026 * twice.
1027 */
1028 if (atomic_xchg(&multifd_send_state->exiting, 1)) {
1029 return;
1030 }
1031
1032 for (i = 0; i < migrate_multifd_channels(); i++) {
1033 MultiFDSendParams *p = &multifd_send_state->params[i];
1034
1035 qemu_mutex_lock(&p->mutex);
1036 p->quit = true;
1037 qemu_sem_post(&p->sem);
1038 qemu_mutex_unlock(&p->mutex);
1039 }
1040 }
1041
1042 void multifd_save_cleanup(void)
1043 {
1044 int i;
1045
1046 if (!migrate_use_multifd()) {
1047 return;
1048 }
1049 multifd_send_terminate_threads(NULL);
1050 for (i = 0; i < migrate_multifd_channels(); i++) {
1051 MultiFDSendParams *p = &multifd_send_state->params[i];
1052
1053 if (p->running) {
1054 qemu_thread_join(&p->thread);
1055 }
1056 socket_send_channel_destroy(p->c);
1057 p->c = NULL;
1058 qemu_mutex_destroy(&p->mutex);
1059 qemu_sem_destroy(&p->sem);
1060 qemu_sem_destroy(&p->sem_sync);
1061 g_free(p->name);
1062 p->name = NULL;
1063 multifd_pages_clear(p->pages);
1064 p->pages = NULL;
1065 p->packet_len = 0;
1066 g_free(p->packet);
1067 p->packet = NULL;
1068 }
1069 qemu_sem_destroy(&multifd_send_state->channels_ready);
1070 g_free(multifd_send_state->params);
1071 multifd_send_state->params = NULL;
1072 multifd_pages_clear(multifd_send_state->pages);
1073 multifd_send_state->pages = NULL;
1074 g_free(multifd_send_state);
1075 multifd_send_state = NULL;
1076 }
1077
1078 static void multifd_send_sync_main(RAMState *rs)
1079 {
1080 int i;
1081
1082 if (!migrate_use_multifd()) {
1083 return;
1084 }
1085 if (multifd_send_state->pages->used) {
1086 if (multifd_send_pages(rs) < 0) {
1087 error_report("%s: multifd_send_pages fail", __func__);
1088 return;
1089 }
1090 }
1091 for (i = 0; i < migrate_multifd_channels(); i++) {
1092 MultiFDSendParams *p = &multifd_send_state->params[i];
1093
1094 trace_multifd_send_sync_main_signal(p->id);
1095
1096 qemu_mutex_lock(&p->mutex);
1097
1098 if (p->quit) {
1099 error_report("%s: channel %d has already quit", __func__, i);
1100 qemu_mutex_unlock(&p->mutex);
1101 return;
1102 }
1103
1104 p->packet_num = multifd_send_state->packet_num++;
1105 p->flags |= MULTIFD_FLAG_SYNC;
1106 p->pending_job++;
1107 qemu_file_update_transfer(rs->f, p->packet_len);
1108 ram_counters.multifd_bytes += p->packet_len;
1109 ram_counters.transferred += p->packet_len;
1110 qemu_mutex_unlock(&p->mutex);
1111 qemu_sem_post(&p->sem);
1112 }
1113 for (i = 0; i < migrate_multifd_channels(); i++) {
1114 MultiFDSendParams *p = &multifd_send_state->params[i];
1115
1116 trace_multifd_send_sync_main_wait(p->id);
1117 qemu_sem_wait(&p->sem_sync);
1118 }
1119 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1120 }
1121
1122 static void *multifd_send_thread(void *opaque)
1123 {
1124 MultiFDSendParams *p = opaque;
1125 Error *local_err = NULL;
1126 int ret = 0;
1127 uint32_t flags = 0;
1128
1129 trace_multifd_send_thread_start(p->id);
1130 rcu_register_thread();
1131
1132 if (multifd_send_initial_packet(p, &local_err) < 0) {
1133 ret = -1;
1134 goto out;
1135 }
1136 /* initial packet */
1137 p->num_packets = 1;
1138
1139 while (true) {
1140 qemu_sem_wait(&p->sem);
1141
1142 if (atomic_read(&multifd_send_state->exiting)) {
1143 break;
1144 }
1145 qemu_mutex_lock(&p->mutex);
1146
1147 if (p->pending_job) {
1148 uint32_t used = p->pages->used;
1149 uint64_t packet_num = p->packet_num;
1150 flags = p->flags;
1151
1152 p->next_packet_size = used * qemu_target_page_size();
1153 multifd_send_fill_packet(p);
1154 p->flags = 0;
1155 p->num_packets++;
1156 p->num_pages += used;
1157 qemu_mutex_unlock(&p->mutex);
1158
1159 trace_multifd_send(p->id, packet_num, used, flags,
1160 p->next_packet_size);
1161
1162 ret = qio_channel_write_all(p->c, (void *)p->packet,
1163 p->packet_len, &local_err);
1164 if (ret != 0) {
1165 break;
1166 }
1167
1168 if (used) {
1169 ret = qio_channel_writev_all(p->c, p->pages->iov,
1170 used, &local_err);
1171 if (ret != 0) {
1172 break;
1173 }
1174 }
1175
1176 qemu_mutex_lock(&p->mutex);
1177 p->pending_job--;
1178 qemu_mutex_unlock(&p->mutex);
1179
1180 if (flags & MULTIFD_FLAG_SYNC) {
1181 qemu_sem_post(&p->sem_sync);
1182 }
1183 qemu_sem_post(&multifd_send_state->channels_ready);
1184 } else if (p->quit) {
1185 qemu_mutex_unlock(&p->mutex);
1186 break;
1187 } else {
1188 qemu_mutex_unlock(&p->mutex);
1189 /* sometimes there are spurious wakeups */
1190 }
1191 }
1192
1193 out:
1194 if (local_err) {
1195 trace_multifd_send_error(p->id);
1196 multifd_send_terminate_threads(local_err);
1197 }
1198
1199 /*
1200 * Error happen, I will exit, but I can't just leave, tell
1201 * who pay attention to me.
1202 */
1203 if (ret != 0) {
1204 qemu_sem_post(&p->sem_sync);
1205 qemu_sem_post(&multifd_send_state->channels_ready);
1206 }
1207
1208 qemu_mutex_lock(&p->mutex);
1209 p->running = false;
1210 qemu_mutex_unlock(&p->mutex);
1211
1212 rcu_unregister_thread();
1213 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1214
1215 return NULL;
1216 }
1217
1218 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1219 {
1220 MultiFDSendParams *p = opaque;
1221 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1222 Error *local_err = NULL;
1223
1224 trace_multifd_new_send_channel_async(p->id);
1225 if (qio_task_propagate_error(task, &local_err)) {
1226 migrate_set_error(migrate_get_current(), local_err);
1227 multifd_save_cleanup();
1228 } else {
1229 p->c = QIO_CHANNEL(sioc);
1230 qio_channel_set_delay(p->c, false);
1231 p->running = true;
1232 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1233 QEMU_THREAD_JOINABLE);
1234 }
1235 }
1236
1237 int multifd_save_setup(void)
1238 {
1239 int thread_count;
1240 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1241 uint8_t i;
1242
1243 if (!migrate_use_multifd()) {
1244 return 0;
1245 }
1246 thread_count = migrate_multifd_channels();
1247 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1248 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1249 multifd_send_state->pages = multifd_pages_init(page_count);
1250 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1251 atomic_set(&multifd_send_state->exiting, 0);
1252
1253 for (i = 0; i < thread_count; i++) {
1254 MultiFDSendParams *p = &multifd_send_state->params[i];
1255
1256 qemu_mutex_init(&p->mutex);
1257 qemu_sem_init(&p->sem, 0);
1258 qemu_sem_init(&p->sem_sync, 0);
1259 p->quit = false;
1260 p->pending_job = 0;
1261 p->id = i;
1262 p->pages = multifd_pages_init(page_count);
1263 p->packet_len = sizeof(MultiFDPacket_t)
1264 + sizeof(ram_addr_t) * page_count;
1265 p->packet = g_malloc0(p->packet_len);
1266 p->packet->magic = cpu_to_be32(MULTIFD_MAGIC);
1267 p->packet->version = cpu_to_be32(MULTIFD_VERSION);
1268 p->name = g_strdup_printf("multifdsend_%d", i);
1269 socket_send_channel_create(multifd_new_send_channel_async, p);
1270 }
1271 return 0;
1272 }
1273
1274 struct {
1275 MultiFDRecvParams *params;
1276 /* number of created threads */
1277 int count;
1278 /* syncs main thread and channels */
1279 QemuSemaphore sem_sync;
1280 /* global number of generated multifd packets */
1281 uint64_t packet_num;
1282 } *multifd_recv_state;
1283
1284 static void multifd_recv_terminate_threads(Error *err)
1285 {
1286 int i;
1287
1288 trace_multifd_recv_terminate_threads(err != NULL);
1289
1290 if (err) {
1291 MigrationState *s = migrate_get_current();
1292 migrate_set_error(s, err);
1293 if (s->state == MIGRATION_STATUS_SETUP ||
1294 s->state == MIGRATION_STATUS_ACTIVE) {
1295 migrate_set_state(&s->state, s->state,
1296 MIGRATION_STATUS_FAILED);
1297 }
1298 }
1299
1300 for (i = 0; i < migrate_multifd_channels(); i++) {
1301 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1302
1303 qemu_mutex_lock(&p->mutex);
1304 p->quit = true;
1305 /* We could arrive here for two reasons:
1306 - normal quit, i.e. everything went fine, just finished
1307 - error quit: We close the channels so the channel threads
1308 finish the qio_channel_read_all_eof() */
1309 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1310 qemu_mutex_unlock(&p->mutex);
1311 }
1312 }
1313
1314 int multifd_load_cleanup(Error **errp)
1315 {
1316 int i;
1317 int ret = 0;
1318
1319 if (!migrate_use_multifd()) {
1320 return 0;
1321 }
1322 multifd_recv_terminate_threads(NULL);
1323 for (i = 0; i < migrate_multifd_channels(); i++) {
1324 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1325
1326 if (p->running) {
1327 p->quit = true;
1328 /*
1329 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
1330 * however try to wakeup it without harm in cleanup phase.
1331 */
1332 qemu_sem_post(&p->sem_sync);
1333 qemu_thread_join(&p->thread);
1334 }
1335 object_unref(OBJECT(p->c));
1336 p->c = NULL;
1337 qemu_mutex_destroy(&p->mutex);
1338 qemu_sem_destroy(&p->sem_sync);
1339 g_free(p->name);
1340 p->name = NULL;
1341 multifd_pages_clear(p->pages);
1342 p->pages = NULL;
1343 p->packet_len = 0;
1344 g_free(p->packet);
1345 p->packet = NULL;
1346 }
1347 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1348 g_free(multifd_recv_state->params);
1349 multifd_recv_state->params = NULL;
1350 g_free(multifd_recv_state);
1351 multifd_recv_state = NULL;
1352
1353 return ret;
1354 }
1355
1356 static void multifd_recv_sync_main(void)
1357 {
1358 int i;
1359
1360 if (!migrate_use_multifd()) {
1361 return;
1362 }
1363 for (i = 0; i < migrate_multifd_channels(); i++) {
1364 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1365
1366 trace_multifd_recv_sync_main_wait(p->id);
1367 qemu_sem_wait(&multifd_recv_state->sem_sync);
1368 }
1369 for (i = 0; i < migrate_multifd_channels(); i++) {
1370 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1371
1372 qemu_mutex_lock(&p->mutex);
1373 if (multifd_recv_state->packet_num < p->packet_num) {
1374 multifd_recv_state->packet_num = p->packet_num;
1375 }
1376 qemu_mutex_unlock(&p->mutex);
1377 trace_multifd_recv_sync_main_signal(p->id);
1378 qemu_sem_post(&p->sem_sync);
1379 }
1380 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1381 }
1382
1383 static void *multifd_recv_thread(void *opaque)
1384 {
1385 MultiFDRecvParams *p = opaque;
1386 Error *local_err = NULL;
1387 int ret;
1388
1389 trace_multifd_recv_thread_start(p->id);
1390 rcu_register_thread();
1391
1392 while (true) {
1393 uint32_t used;
1394 uint32_t flags;
1395
1396 if (p->quit) {
1397 break;
1398 }
1399
1400 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1401 p->packet_len, &local_err);
1402 if (ret == 0) { /* EOF */
1403 break;
1404 }
1405 if (ret == -1) { /* Error */
1406 break;
1407 }
1408
1409 qemu_mutex_lock(&p->mutex);
1410 ret = multifd_recv_unfill_packet(p, &local_err);
1411 if (ret) {
1412 qemu_mutex_unlock(&p->mutex);
1413 break;
1414 }
1415
1416 used = p->pages->used;
1417 flags = p->flags;
1418 trace_multifd_recv(p->id, p->packet_num, used, flags,
1419 p->next_packet_size);
1420 p->num_packets++;
1421 p->num_pages += used;
1422 qemu_mutex_unlock(&p->mutex);
1423
1424 if (used) {
1425 ret = qio_channel_readv_all(p->c, p->pages->iov,
1426 used, &local_err);
1427 if (ret != 0) {
1428 break;
1429 }
1430 }
1431
1432 if (flags & MULTIFD_FLAG_SYNC) {
1433 qemu_sem_post(&multifd_recv_state->sem_sync);
1434 qemu_sem_wait(&p->sem_sync);
1435 }
1436 }
1437
1438 if (local_err) {
1439 multifd_recv_terminate_threads(local_err);
1440 }
1441 qemu_mutex_lock(&p->mutex);
1442 p->running = false;
1443 qemu_mutex_unlock(&p->mutex);
1444
1445 rcu_unregister_thread();
1446 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1447
1448 return NULL;
1449 }
1450
1451 int multifd_load_setup(void)
1452 {
1453 int thread_count;
1454 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1455 uint8_t i;
1456
1457 if (!migrate_use_multifd()) {
1458 return 0;
1459 }
1460 thread_count = migrate_multifd_channels();
1461 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1462 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1463 atomic_set(&multifd_recv_state->count, 0);
1464 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1465
1466 for (i = 0; i < thread_count; i++) {
1467 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1468
1469 qemu_mutex_init(&p->mutex);
1470 qemu_sem_init(&p->sem_sync, 0);
1471 p->quit = false;
1472 p->id = i;
1473 p->pages = multifd_pages_init(page_count);
1474 p->packet_len = sizeof(MultiFDPacket_t)
1475 + sizeof(ram_addr_t) * page_count;
1476 p->packet = g_malloc0(p->packet_len);
1477 p->name = g_strdup_printf("multifdrecv_%d", i);
1478 }
1479 return 0;
1480 }
1481
1482 bool multifd_recv_all_channels_created(void)
1483 {
1484 int thread_count = migrate_multifd_channels();
1485
1486 if (!migrate_use_multifd()) {
1487 return true;
1488 }
1489
1490 return thread_count == atomic_read(&multifd_recv_state->count);
1491 }
1492
1493 /*
1494 * Try to receive all multifd channels to get ready for the migration.
1495 * - Return true and do not set @errp when correctly receving all channels;
1496 * - Return false and do not set @errp when correctly receiving the current one;
1497 * - Return false and set @errp when failing to receive the current channel.
1498 */
1499 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1500 {
1501 MultiFDRecvParams *p;
1502 Error *local_err = NULL;
1503 int id;
1504
1505 id = multifd_recv_initial_packet(ioc, &local_err);
1506 if (id < 0) {
1507 multifd_recv_terminate_threads(local_err);
1508 error_propagate_prepend(errp, local_err,
1509 "failed to receive packet"
1510 " via multifd channel %d: ",
1511 atomic_read(&multifd_recv_state->count));
1512 return false;
1513 }
1514 trace_multifd_recv_new_channel(id);
1515
1516 p = &multifd_recv_state->params[id];
1517 if (p->c != NULL) {
1518 error_setg(&local_err, "multifd: received id '%d' already setup'",
1519 id);
1520 multifd_recv_terminate_threads(local_err);
1521 error_propagate(errp, local_err);
1522 return false;
1523 }
1524 p->c = ioc;
1525 object_ref(OBJECT(ioc));
1526 /* initial packet */
1527 p->num_packets = 1;
1528
1529 p->running = true;
1530 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1531 QEMU_THREAD_JOINABLE);
1532 atomic_inc(&multifd_recv_state->count);
1533 return atomic_read(&multifd_recv_state->count) ==
1534 migrate_multifd_channels();
1535 }
1536
1537 /**
1538 * save_page_header: write page header to wire
1539 *
1540 * If this is the 1st block, it also writes the block identification
1541 *
1542 * Returns the number of bytes written
1543 *
1544 * @f: QEMUFile where to send the data
1545 * @block: block that contains the page we want to send
1546 * @offset: offset inside the block for the page
1547 * in the lower bits, it contains flags
1548 */
1549 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1550 ram_addr_t offset)
1551 {
1552 size_t size, len;
1553
1554 if (block == rs->last_sent_block) {
1555 offset |= RAM_SAVE_FLAG_CONTINUE;
1556 }
1557 qemu_put_be64(f, offset);
1558 size = 8;
1559
1560 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1561 len = strlen(block->idstr);
1562 qemu_put_byte(f, len);
1563 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1564 size += 1 + len;
1565 rs->last_sent_block = block;
1566 }
1567 return size;
1568 }
1569
1570 /**
1571 * mig_throttle_guest_down: throotle down the guest
1572 *
1573 * Reduce amount of guest cpu execution to hopefully slow down memory
1574 * writes. If guest dirty memory rate is reduced below the rate at
1575 * which we can transfer pages to the destination then we should be
1576 * able to complete migration. Some workloads dirty memory way too
1577 * fast and will not effectively converge, even with auto-converge.
1578 */
1579 static void mig_throttle_guest_down(void)
1580 {
1581 MigrationState *s = migrate_get_current();
1582 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1583 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1584 int pct_max = s->parameters.max_cpu_throttle;
1585
1586 /* We have not started throttling yet. Let's start it. */
1587 if (!cpu_throttle_active()) {
1588 cpu_throttle_set(pct_initial);
1589 } else {
1590 /* Throttling already on, just increase the rate */
1591 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1592 pct_max));
1593 }
1594 }
1595
1596 /**
1597 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1598 *
1599 * @rs: current RAM state
1600 * @current_addr: address for the zero page
1601 *
1602 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1603 * The important thing is that a stale (not-yet-0'd) page be replaced
1604 * by the new data.
1605 * As a bonus, if the page wasn't in the cache it gets added so that
1606 * when a small write is made into the 0'd page it gets XBZRLE sent.
1607 */
1608 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1609 {
1610 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1611 return;
1612 }
1613
1614 /* We don't care if this fails to allocate a new cache page
1615 * as long as it updated an old one */
1616 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1617 ram_counters.dirty_sync_count);
1618 }
1619
1620 #define ENCODING_FLAG_XBZRLE 0x1
1621
1622 /**
1623 * save_xbzrle_page: compress and send current page
1624 *
1625 * Returns: 1 means that we wrote the page
1626 * 0 means that page is identical to the one already sent
1627 * -1 means that xbzrle would be longer than normal
1628 *
1629 * @rs: current RAM state
1630 * @current_data: pointer to the address of the page contents
1631 * @current_addr: addr of the page
1632 * @block: block that contains the page we want to send
1633 * @offset: offset inside the block for the page
1634 * @last_stage: if we are at the completion stage
1635 */
1636 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1637 ram_addr_t current_addr, RAMBlock *block,
1638 ram_addr_t offset, bool last_stage)
1639 {
1640 int encoded_len = 0, bytes_xbzrle;
1641 uint8_t *prev_cached_page;
1642
1643 if (!cache_is_cached(XBZRLE.cache, current_addr,
1644 ram_counters.dirty_sync_count)) {
1645 xbzrle_counters.cache_miss++;
1646 if (!last_stage) {
1647 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1648 ram_counters.dirty_sync_count) == -1) {
1649 return -1;
1650 } else {
1651 /* update *current_data when the page has been
1652 inserted into cache */
1653 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1654 }
1655 }
1656 return -1;
1657 }
1658
1659 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1660
1661 /* save current buffer into memory */
1662 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1663
1664 /* XBZRLE encoding (if there is no overflow) */
1665 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1666 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1667 TARGET_PAGE_SIZE);
1668
1669 /*
1670 * Update the cache contents, so that it corresponds to the data
1671 * sent, in all cases except where we skip the page.
1672 */
1673 if (!last_stage && encoded_len != 0) {
1674 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1675 /*
1676 * In the case where we couldn't compress, ensure that the caller
1677 * sends the data from the cache, since the guest might have
1678 * changed the RAM since we copied it.
1679 */
1680 *current_data = prev_cached_page;
1681 }
1682
1683 if (encoded_len == 0) {
1684 trace_save_xbzrle_page_skipping();
1685 return 0;
1686 } else if (encoded_len == -1) {
1687 trace_save_xbzrle_page_overflow();
1688 xbzrle_counters.overflow++;
1689 return -1;
1690 }
1691
1692 /* Send XBZRLE based compressed page */
1693 bytes_xbzrle = save_page_header(rs, rs->f, block,
1694 offset | RAM_SAVE_FLAG_XBZRLE);
1695 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1696 qemu_put_be16(rs->f, encoded_len);
1697 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1698 bytes_xbzrle += encoded_len + 1 + 2;
1699 xbzrle_counters.pages++;
1700 xbzrle_counters.bytes += bytes_xbzrle;
1701 ram_counters.transferred += bytes_xbzrle;
1702
1703 return 1;
1704 }
1705
1706 /**
1707 * migration_bitmap_find_dirty: find the next dirty page from start
1708 *
1709 * Returns the page offset within memory region of the start of a dirty page
1710 *
1711 * @rs: current RAM state
1712 * @rb: RAMBlock where to search for dirty pages
1713 * @start: page where we start the search
1714 */
1715 static inline
1716 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1717 unsigned long start)
1718 {
1719 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1720 unsigned long *bitmap = rb->bmap;
1721 unsigned long next;
1722
1723 if (ramblock_is_ignored(rb)) {
1724 return size;
1725 }
1726
1727 /*
1728 * When the free page optimization is enabled, we need to check the bitmap
1729 * to send the non-free pages rather than all the pages in the bulk stage.
1730 */
1731 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1732 next = start + 1;
1733 } else {
1734 next = find_next_bit(bitmap, size, start);
1735 }
1736
1737 return next;
1738 }
1739
1740 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1741 RAMBlock *rb,
1742 unsigned long page)
1743 {
1744 bool ret;
1745
1746 qemu_mutex_lock(&rs->bitmap_mutex);
1747
1748 /*
1749 * Clear dirty bitmap if needed. This _must_ be called before we
1750 * send any of the page in the chunk because we need to make sure
1751 * we can capture further page content changes when we sync dirty
1752 * log the next time. So as long as we are going to send any of
1753 * the page in the chunk we clear the remote dirty bitmap for all.
1754 * Clearing it earlier won't be a problem, but too late will.
1755 */
1756 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1757 uint8_t shift = rb->clear_bmap_shift;
1758 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1759 hwaddr start = (page << TARGET_PAGE_BITS) & (-size);
1760
1761 /*
1762 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1763 * can make things easier sometimes since then start address
1764 * of the small chunk will always be 64 pages aligned so the
1765 * bitmap will always be aligned to unsigned long. We should
1766 * even be able to remove this restriction but I'm simply
1767 * keeping it.
1768 */
1769 assert(shift >= 6);
1770 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1771 memory_region_clear_dirty_bitmap(rb->mr, start, size);
1772 }
1773
1774 ret = test_and_clear_bit(page, rb->bmap);
1775
1776 if (ret) {
1777 rs->migration_dirty_pages--;
1778 }
1779 qemu_mutex_unlock(&rs->bitmap_mutex);
1780
1781 return ret;
1782 }
1783
1784 /* Called with RCU critical section */
1785 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
1786 {
1787 rs->migration_dirty_pages +=
1788 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length,
1789 &rs->num_dirty_pages_period);
1790 }
1791
1792 /**
1793 * ram_pagesize_summary: calculate all the pagesizes of a VM
1794 *
1795 * Returns a summary bitmap of the page sizes of all RAMBlocks
1796 *
1797 * For VMs with just normal pages this is equivalent to the host page
1798 * size. If it's got some huge pages then it's the OR of all the
1799 * different page sizes.
1800 */
1801 uint64_t ram_pagesize_summary(void)
1802 {
1803 RAMBlock *block;
1804 uint64_t summary = 0;
1805
1806 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1807 summary |= block->page_size;
1808 }
1809
1810 return summary;
1811 }
1812
1813 uint64_t ram_get_total_transferred_pages(void)
1814 {
1815 return ram_counters.normal + ram_counters.duplicate +
1816 compression_counters.pages + xbzrle_counters.pages;
1817 }
1818
1819 static void migration_update_rates(RAMState *rs, int64_t end_time)
1820 {
1821 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1822 double compressed_size;
1823
1824 /* calculate period counters */
1825 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1826 / (end_time - rs->time_last_bitmap_sync);
1827
1828 if (!page_count) {
1829 return;
1830 }
1831
1832 if (migrate_use_xbzrle()) {
1833 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1834 rs->xbzrle_cache_miss_prev) / page_count;
1835 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1836 }
1837
1838 if (migrate_use_compression()) {
1839 compression_counters.busy_rate = (double)(compression_counters.busy -
1840 rs->compress_thread_busy_prev) / page_count;
1841 rs->compress_thread_busy_prev = compression_counters.busy;
1842
1843 compressed_size = compression_counters.compressed_size -
1844 rs->compressed_size_prev;
1845 if (compressed_size) {
1846 double uncompressed_size = (compression_counters.pages -
1847 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1848
1849 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1850 compression_counters.compression_rate =
1851 uncompressed_size / compressed_size;
1852
1853 rs->compress_pages_prev = compression_counters.pages;
1854 rs->compressed_size_prev = compression_counters.compressed_size;
1855 }
1856 }
1857 }
1858
1859 static void migration_bitmap_sync(RAMState *rs)
1860 {
1861 RAMBlock *block;
1862 int64_t end_time;
1863 uint64_t bytes_xfer_now;
1864
1865 ram_counters.dirty_sync_count++;
1866
1867 if (!rs->time_last_bitmap_sync) {
1868 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1869 }
1870
1871 trace_migration_bitmap_sync_start();
1872 memory_global_dirty_log_sync();
1873
1874 qemu_mutex_lock(&rs->bitmap_mutex);
1875 WITH_RCU_READ_LOCK_GUARD() {
1876 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1877 ramblock_sync_dirty_bitmap(rs, block);
1878 }
1879 ram_counters.remaining = ram_bytes_remaining();
1880 }
1881 qemu_mutex_unlock(&rs->bitmap_mutex);
1882
1883 memory_global_after_dirty_log_sync();
1884 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1885
1886 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1887
1888 /* more than 1 second = 1000 millisecons */
1889 if (end_time > rs->time_last_bitmap_sync + 1000) {
1890 bytes_xfer_now = ram_counters.transferred;
1891
1892 /* During block migration the auto-converge logic incorrectly detects
1893 * that ram migration makes no progress. Avoid this by disabling the
1894 * throttling logic during the bulk phase of block migration. */
1895 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1896 /* The following detection logic can be refined later. For now:
1897 Check to see if the dirtied bytes is 50% more than the approx.
1898 amount of bytes that just got transferred since the last time we
1899 were in this routine. If that happens twice, start or increase
1900 throttling */
1901
1902 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1903 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1904 (++rs->dirty_rate_high_cnt >= 2)) {
1905 trace_migration_throttle();
1906 rs->dirty_rate_high_cnt = 0;
1907 mig_throttle_guest_down();
1908 }
1909 }
1910
1911 migration_update_rates(rs, end_time);
1912
1913 rs->target_page_count_prev = rs->target_page_count;
1914
1915 /* reset period counters */
1916 rs->time_last_bitmap_sync = end_time;
1917 rs->num_dirty_pages_period = 0;
1918 rs->bytes_xfer_prev = bytes_xfer_now;
1919 }
1920 if (migrate_use_events()) {
1921 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1922 }
1923 }
1924
1925 static void migration_bitmap_sync_precopy(RAMState *rs)
1926 {
1927 Error *local_err = NULL;
1928
1929 /*
1930 * The current notifier usage is just an optimization to migration, so we
1931 * don't stop the normal migration process in the error case.
1932 */
1933 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1934 error_report_err(local_err);
1935 }
1936
1937 migration_bitmap_sync(rs);
1938
1939 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1940 error_report_err(local_err);
1941 }
1942 }
1943
1944 /**
1945 * save_zero_page_to_file: send the zero page to the file
1946 *
1947 * Returns the size of data written to the file, 0 means the page is not
1948 * a zero page
1949 *
1950 * @rs: current RAM state
1951 * @file: the file where the data is saved
1952 * @block: block that contains the page we want to send
1953 * @offset: offset inside the block for the page
1954 */
1955 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1956 RAMBlock *block, ram_addr_t offset)
1957 {
1958 uint8_t *p = block->host + offset;
1959 int len = 0;
1960
1961 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1962 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1963 qemu_put_byte(file, 0);
1964 len += 1;
1965 }
1966 return len;
1967 }
1968
1969 /**
1970 * save_zero_page: send the zero page to the stream
1971 *
1972 * Returns the number of pages written.
1973 *
1974 * @rs: current RAM state
1975 * @block: block that contains the page we want to send
1976 * @offset: offset inside the block for the page
1977 */
1978 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1979 {
1980 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1981
1982 if (len) {
1983 ram_counters.duplicate++;
1984 ram_counters.transferred += len;
1985 return 1;
1986 }
1987 return -1;
1988 }
1989
1990 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1991 {
1992 if (!migrate_release_ram() || !migration_in_postcopy()) {
1993 return;
1994 }
1995
1996 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1997 }
1998
1999 /*
2000 * @pages: the number of pages written by the control path,
2001 * < 0 - error
2002 * > 0 - number of pages written
2003 *
2004 * Return true if the pages has been saved, otherwise false is returned.
2005 */
2006 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2007 int *pages)
2008 {
2009 uint64_t bytes_xmit = 0;
2010 int ret;
2011
2012 *pages = -1;
2013 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
2014 &bytes_xmit);
2015 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
2016 return false;
2017 }
2018
2019 if (bytes_xmit) {
2020 ram_counters.transferred += bytes_xmit;
2021 *pages = 1;
2022 }
2023
2024 if (ret == RAM_SAVE_CONTROL_DELAYED) {
2025 return true;
2026 }
2027
2028 if (bytes_xmit > 0) {
2029 ram_counters.normal++;
2030 } else if (bytes_xmit == 0) {
2031 ram_counters.duplicate++;
2032 }
2033
2034 return true;
2035 }
2036
2037 /*
2038 * directly send the page to the stream
2039 *
2040 * Returns the number of pages written.
2041 *
2042 * @rs: current RAM state
2043 * @block: block that contains the page we want to send
2044 * @offset: offset inside the block for the page
2045 * @buf: the page to be sent
2046 * @async: send to page asyncly
2047 */
2048 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2049 uint8_t *buf, bool async)
2050 {
2051 ram_counters.transferred += save_page_header(rs, rs->f, block,
2052 offset | RAM_SAVE_FLAG_PAGE);
2053 if (async) {
2054 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
2055 migrate_release_ram() &
2056 migration_in_postcopy());
2057 } else {
2058 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
2059 }
2060 ram_counters.transferred += TARGET_PAGE_SIZE;
2061 ram_counters.normal++;
2062 return 1;
2063 }
2064
2065 /**
2066 * ram_save_page: send the given page to the stream
2067 *
2068 * Returns the number of pages written.
2069 * < 0 - error
2070 * >=0 - Number of pages written - this might legally be 0
2071 * if xbzrle noticed the page was the same.
2072 *
2073 * @rs: current RAM state
2074 * @block: block that contains the page we want to send
2075 * @offset: offset inside the block for the page
2076 * @last_stage: if we are at the completion stage
2077 */
2078 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
2079 {
2080 int pages = -1;
2081 uint8_t *p;
2082 bool send_async = true;
2083 RAMBlock *block = pss->block;
2084 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2085 ram_addr_t current_addr = block->offset + offset;
2086
2087 p = block->host + offset;
2088 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
2089
2090 XBZRLE_cache_lock();
2091 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2092 migrate_use_xbzrle()) {
2093 pages = save_xbzrle_page(rs, &p, current_addr, block,
2094 offset, last_stage);
2095 if (!last_stage) {
2096 /* Can't send this cached data async, since the cache page
2097 * might get updated before it gets to the wire
2098 */
2099 send_async = false;
2100 }
2101 }
2102
2103 /* XBZRLE overflow or normal page */
2104 if (pages == -1) {
2105 pages = save_normal_page(rs, block, offset, p, send_async);
2106 }
2107
2108 XBZRLE_cache_unlock();
2109
2110 return pages;
2111 }
2112
2113 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2114 ram_addr_t offset)
2115 {
2116 if (multifd_queue_page(rs, block, offset) < 0) {
2117 return -1;
2118 }
2119 ram_counters.normal++;
2120
2121 return 1;
2122 }
2123
2124 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
2125 ram_addr_t offset, uint8_t *source_buf)
2126 {
2127 RAMState *rs = ram_state;
2128 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
2129 bool zero_page = false;
2130 int ret;
2131
2132 if (save_zero_page_to_file(rs, f, block, offset)) {
2133 zero_page = true;
2134 goto exit;
2135 }
2136
2137 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
2138
2139 /*
2140 * copy it to a internal buffer to avoid it being modified by VM
2141 * so that we can catch up the error during compression and
2142 * decompression
2143 */
2144 memcpy(source_buf, p, TARGET_PAGE_SIZE);
2145 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2146 if (ret < 0) {
2147 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2148 error_report("compressed data failed!");
2149 return false;
2150 }
2151
2152 exit:
2153 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2154 return zero_page;
2155 }
2156
2157 static void
2158 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2159 {
2160 ram_counters.transferred += bytes_xmit;
2161
2162 if (param->zero_page) {
2163 ram_counters.duplicate++;
2164 return;
2165 }
2166
2167 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2168 compression_counters.compressed_size += bytes_xmit - 8;
2169 compression_counters.pages++;
2170 }
2171
2172 static bool save_page_use_compression(RAMState *rs);
2173
2174 static void flush_compressed_data(RAMState *rs)
2175 {
2176 int idx, len, thread_count;
2177
2178 if (!save_page_use_compression(rs)) {
2179 return;
2180 }
2181 thread_count = migrate_compress_threads();
2182
2183 qemu_mutex_lock(&comp_done_lock);
2184 for (idx = 0; idx < thread_count; idx++) {
2185 while (!comp_param[idx].done) {
2186 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2187 }
2188 }
2189 qemu_mutex_unlock(&comp_done_lock);
2190
2191 for (idx = 0; idx < thread_count; idx++) {
2192 qemu_mutex_lock(&comp_param[idx].mutex);
2193 if (!comp_param[idx].quit) {
2194 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2195 /*
2196 * it's safe to fetch zero_page without holding comp_done_lock
2197 * as there is no further request submitted to the thread,
2198 * i.e, the thread should be waiting for a request at this point.
2199 */
2200 update_compress_thread_counts(&comp_param[idx], len);
2201 }
2202 qemu_mutex_unlock(&comp_param[idx].mutex);
2203 }
2204 }
2205
2206 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2207 ram_addr_t offset)
2208 {
2209 param->block = block;
2210 param->offset = offset;
2211 }
2212
2213 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2214 ram_addr_t offset)
2215 {
2216 int idx, thread_count, bytes_xmit = -1, pages = -1;
2217 bool wait = migrate_compress_wait_thread();
2218
2219 thread_count = migrate_compress_threads();
2220 qemu_mutex_lock(&comp_done_lock);
2221 retry:
2222 for (idx = 0; idx < thread_count; idx++) {
2223 if (comp_param[idx].done) {
2224 comp_param[idx].done = false;
2225 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2226 qemu_mutex_lock(&comp_param[idx].mutex);
2227 set_compress_params(&comp_param[idx], block, offset);
2228 qemu_cond_signal(&comp_param[idx].cond);
2229 qemu_mutex_unlock(&comp_param[idx].mutex);
2230 pages = 1;
2231 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2232 break;
2233 }
2234 }
2235
2236 /*
2237 * wait for the free thread if the user specifies 'compress-wait-thread',
2238 * otherwise we will post the page out in the main thread as normal page.
2239 */
2240 if (pages < 0 && wait) {
2241 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2242 goto retry;
2243 }
2244 qemu_mutex_unlock(&comp_done_lock);
2245
2246 return pages;
2247 }
2248
2249 /**
2250 * find_dirty_block: find the next dirty page and update any state
2251 * associated with the search process.
2252 *
2253 * Returns true if a page is found
2254 *
2255 * @rs: current RAM state
2256 * @pss: data about the state of the current dirty page scan
2257 * @again: set to false if the search has scanned the whole of RAM
2258 */
2259 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2260 {
2261 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2262 if (pss->complete_round && pss->block == rs->last_seen_block &&
2263 pss->page >= rs->last_page) {
2264 /*
2265 * We've been once around the RAM and haven't found anything.
2266 * Give up.
2267 */
2268 *again = false;
2269 return false;
2270 }
2271 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
2272 /* Didn't find anything in this RAM Block */
2273 pss->page = 0;
2274 pss->block = QLIST_NEXT_RCU(pss->block, next);
2275 if (!pss->block) {
2276 /*
2277 * If memory migration starts over, we will meet a dirtied page
2278 * which may still exists in compression threads's ring, so we
2279 * should flush the compressed data to make sure the new page
2280 * is not overwritten by the old one in the destination.
2281 *
2282 * Also If xbzrle is on, stop using the data compression at this
2283 * point. In theory, xbzrle can do better than compression.
2284 */
2285 flush_compressed_data(rs);
2286
2287 /* Hit the end of the list */
2288 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2289 /* Flag that we've looped */
2290 pss->complete_round = true;
2291 rs->ram_bulk_stage = false;
2292 }
2293 /* Didn't find anything this time, but try again on the new block */
2294 *again = true;
2295 return false;
2296 } else {
2297 /* Can go around again, but... */
2298 *again = true;
2299 /* We've found something so probably don't need to */
2300 return true;
2301 }
2302 }
2303
2304 /**
2305 * unqueue_page: gets a page of the queue
2306 *
2307 * Helper for 'get_queued_page' - gets a page off the queue
2308 *
2309 * Returns the block of the page (or NULL if none available)
2310 *
2311 * @rs: current RAM state
2312 * @offset: used to return the offset within the RAMBlock
2313 */
2314 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2315 {
2316 RAMBlock *block = NULL;
2317
2318 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2319 return NULL;
2320 }
2321
2322 qemu_mutex_lock(&rs->src_page_req_mutex);
2323 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2324 struct RAMSrcPageRequest *entry =
2325 QSIMPLEQ_FIRST(&rs->src_page_requests);
2326 block = entry->rb;
2327 *offset = entry->offset;
2328
2329 if (entry->len > TARGET_PAGE_SIZE) {
2330 entry->len -= TARGET_PAGE_SIZE;
2331 entry->offset += TARGET_PAGE_SIZE;
2332 } else {
2333 memory_region_unref(block->mr);
2334 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2335 g_free(entry);
2336 migration_consume_urgent_request();
2337 }
2338 }
2339 qemu_mutex_unlock(&rs->src_page_req_mutex);
2340
2341 return block;
2342 }
2343
2344 /**
2345 * get_queued_page: unqueue a page from the postcopy requests
2346 *
2347 * Skips pages that are already sent (!dirty)
2348 *
2349 * Returns true if a queued page is found
2350 *
2351 * @rs: current RAM state
2352 * @pss: data about the state of the current dirty page scan
2353 */
2354 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2355 {
2356 RAMBlock *block;
2357 ram_addr_t offset;
2358 bool dirty;
2359
2360 do {
2361 block = unqueue_page(rs, &offset);
2362 /*
2363 * We're sending this page, and since it's postcopy nothing else
2364 * will dirty it, and we must make sure it doesn't get sent again
2365 * even if this queue request was received after the background
2366 * search already sent it.
2367 */
2368 if (block) {
2369 unsigned long page;
2370
2371 page = offset >> TARGET_PAGE_BITS;
2372 dirty = test_bit(page, block->bmap);
2373 if (!dirty) {
2374 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2375 page);
2376 } else {
2377 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2378 }
2379 }
2380
2381 } while (block && !dirty);
2382
2383 if (block) {
2384 /*
2385 * As soon as we start servicing pages out of order, then we have
2386 * to kill the bulk stage, since the bulk stage assumes
2387 * in (migration_bitmap_find_and_reset_dirty) that every page is
2388 * dirty, that's no longer true.
2389 */
2390 rs->ram_bulk_stage = false;
2391
2392 /*
2393 * We want the background search to continue from the queued page
2394 * since the guest is likely to want other pages near to the page
2395 * it just requested.
2396 */
2397 pss->block = block;
2398 pss->page = offset >> TARGET_PAGE_BITS;
2399
2400 /*
2401 * This unqueued page would break the "one round" check, even is
2402 * really rare.
2403 */
2404 pss->complete_round = false;
2405 }
2406
2407 return !!block;
2408 }
2409
2410 /**
2411 * migration_page_queue_free: drop any remaining pages in the ram
2412 * request queue
2413 *
2414 * It should be empty at the end anyway, but in error cases there may
2415 * be some left. in case that there is any page left, we drop it.
2416 *
2417 */
2418 static void migration_page_queue_free(RAMState *rs)
2419 {
2420 struct RAMSrcPageRequest *mspr, *next_mspr;
2421 /* This queue generally should be empty - but in the case of a failed
2422 * migration might have some droppings in.
2423 */
2424 RCU_READ_LOCK_GUARD();
2425 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2426 memory_region_unref(mspr->rb->mr);
2427 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2428 g_free(mspr);
2429 }
2430 }
2431
2432 /**
2433 * ram_save_queue_pages: queue the page for transmission
2434 *
2435 * A request from postcopy destination for example.
2436 *
2437 * Returns zero on success or negative on error
2438 *
2439 * @rbname: Name of the RAMBLock of the request. NULL means the
2440 * same that last one.
2441 * @start: starting address from the start of the RAMBlock
2442 * @len: length (in bytes) to send
2443 */
2444 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2445 {
2446 RAMBlock *ramblock;
2447 RAMState *rs = ram_state;
2448
2449 ram_counters.postcopy_requests++;
2450 RCU_READ_LOCK_GUARD();
2451
2452 if (!rbname) {
2453 /* Reuse last RAMBlock */
2454 ramblock = rs->last_req_rb;
2455
2456 if (!ramblock) {
2457 /*
2458 * Shouldn't happen, we can't reuse the last RAMBlock if
2459 * it's the 1st request.
2460 */
2461 error_report("ram_save_queue_pages no previous block");
2462 return -1;
2463 }
2464 } else {
2465 ramblock = qemu_ram_block_by_name(rbname);
2466
2467 if (!ramblock) {
2468 /* We shouldn't be asked for a non-existent RAMBlock */
2469 error_report("ram_save_queue_pages no block '%s'", rbname);
2470 return -1;
2471 }
2472 rs->last_req_rb = ramblock;
2473 }
2474 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2475 if (start+len > ramblock->used_length) {
2476 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2477 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2478 __func__, start, len, ramblock->used_length);
2479 return -1;
2480 }
2481
2482 struct RAMSrcPageRequest *new_entry =
2483 g_malloc0(sizeof(struct RAMSrcPageRequest));
2484 new_entry->rb = ramblock;
2485 new_entry->offset = start;
2486 new_entry->len = len;
2487
2488 memory_region_ref(ramblock->mr);
2489 qemu_mutex_lock(&rs->src_page_req_mutex);
2490 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2491 migration_make_urgent_request();
2492 qemu_mutex_unlock(&rs->src_page_req_mutex);
2493
2494 return 0;
2495 }
2496
2497 static bool save_page_use_compression(RAMState *rs)
2498 {
2499 if (!migrate_use_compression()) {
2500 return false;
2501 }
2502
2503 /*
2504 * If xbzrle is on, stop using the data compression after first
2505 * round of migration even if compression is enabled. In theory,
2506 * xbzrle can do better than compression.
2507 */
2508 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2509 return true;
2510 }
2511
2512 return false;
2513 }
2514
2515 /*
2516 * try to compress the page before posting it out, return true if the page
2517 * has been properly handled by compression, otherwise needs other
2518 * paths to handle it
2519 */
2520 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2521 {
2522 if (!save_page_use_compression(rs)) {
2523 return false;
2524 }
2525
2526 /*
2527 * When starting the process of a new block, the first page of
2528 * the block should be sent out before other pages in the same
2529 * block, and all the pages in last block should have been sent
2530 * out, keeping this order is important, because the 'cont' flag
2531 * is used to avoid resending the block name.
2532 *
2533 * We post the fist page as normal page as compression will take
2534 * much CPU resource.
2535 */
2536 if (block != rs->last_sent_block) {
2537 flush_compressed_data(rs);
2538 return false;
2539 }
2540
2541 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2542 return true;
2543 }
2544
2545 compression_counters.busy++;
2546 return false;
2547 }
2548
2549 /**
2550 * ram_save_target_page: save one target page
2551 *
2552 * Returns the number of pages written
2553 *
2554 * @rs: current RAM state
2555 * @pss: data about the page we want to send
2556 * @last_stage: if we are at the completion stage
2557 */
2558 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2559 bool last_stage)
2560 {
2561 RAMBlock *block = pss->block;
2562 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2563 int res;
2564
2565 if (control_save_page(rs, block, offset, &res)) {
2566 return res;
2567 }
2568
2569 if (save_compress_page(rs, block, offset)) {
2570 return 1;
2571 }
2572
2573 res = save_zero_page(rs, block, offset);
2574 if (res > 0) {
2575 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2576 * page would be stale
2577 */
2578 if (!save_page_use_compression(rs)) {
2579 XBZRLE_cache_lock();
2580 xbzrle_cache_zero_page(rs, block->offset + offset);
2581 XBZRLE_cache_unlock();
2582 }
2583 ram_release_pages(block->idstr, offset, res);
2584 return res;
2585 }
2586
2587 /*
2588 * do not use multifd for compression as the first page in the new
2589 * block should be posted out before sending the compressed page
2590 */
2591 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
2592 return ram_save_multifd_page(rs, block, offset);
2593 }
2594
2595 return ram_save_page(rs, pss, last_stage);
2596 }
2597
2598 /**
2599 * ram_save_host_page: save a whole host page
2600 *
2601 * Starting at *offset send pages up to the end of the current host
2602 * page. It's valid for the initial offset to point into the middle of
2603 * a host page in which case the remainder of the hostpage is sent.
2604 * Only dirty target pages are sent. Note that the host page size may
2605 * be a huge page for this block.
2606 * The saving stops at the boundary of the used_length of the block
2607 * if the RAMBlock isn't a multiple of the host page size.
2608 *
2609 * Returns the number of pages written or negative on error
2610 *
2611 * @rs: current RAM state
2612 * @ms: current migration state
2613 * @pss: data about the page we want to send
2614 * @last_stage: if we are at the completion stage
2615 */
2616 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2617 bool last_stage)
2618 {
2619 int tmppages, pages = 0;
2620 size_t pagesize_bits =
2621 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2622
2623 if (ramblock_is_ignored(pss->block)) {
2624 error_report("block %s should not be migrated !", pss->block->idstr);
2625 return 0;
2626 }
2627
2628 do {
2629 /* Check the pages is dirty and if it is send it */
2630 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2631 pss->page++;
2632 continue;
2633 }
2634
2635 tmppages = ram_save_target_page(rs, pss, last_stage);
2636 if (tmppages < 0) {
2637 return tmppages;
2638 }
2639
2640 pages += tmppages;
2641 pss->page++;
2642 /* Allow rate limiting to happen in the middle of huge pages */
2643 migration_rate_limit();
2644 } while ((pss->page & (pagesize_bits - 1)) &&
2645 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2646
2647 /* The offset we leave with is the last one we looked at */
2648 pss->page--;
2649 return pages;
2650 }
2651
2652 /**
2653 * ram_find_and_save_block: finds a dirty page and sends it to f
2654 *
2655 * Called within an RCU critical section.
2656 *
2657 * Returns the number of pages written where zero means no dirty pages,
2658 * or negative on error
2659 *
2660 * @rs: current RAM state
2661 * @last_stage: if we are at the completion stage
2662 *
2663 * On systems where host-page-size > target-page-size it will send all the
2664 * pages in a host page that are dirty.
2665 */
2666
2667 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2668 {
2669 PageSearchStatus pss;
2670 int pages = 0;
2671 bool again, found;
2672
2673 /* No dirty page as there is zero RAM */
2674 if (!ram_bytes_total()) {
2675 return pages;
2676 }
2677
2678 pss.block = rs->last_seen_block;
2679 pss.page = rs->last_page;
2680 pss.complete_round = false;
2681
2682 if (!pss.block) {
2683 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2684 }
2685
2686 do {
2687 again = true;
2688 found = get_queued_page(rs, &pss);
2689
2690 if (!found) {
2691 /* priority queue empty, so just search for something dirty */
2692 found = find_dirty_block(rs, &pss, &again);
2693 }
2694
2695 if (found) {
2696 pages = ram_save_host_page(rs, &pss, last_stage);
2697 }
2698 } while (!pages && again);
2699
2700 rs->last_seen_block = pss.block;
2701 rs->last_page = pss.page;
2702
2703 return pages;
2704 }
2705
2706 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2707 {
2708 uint64_t pages = size / TARGET_PAGE_SIZE;
2709
2710 if (zero) {
2711 ram_counters.duplicate += pages;
2712 } else {
2713 ram_counters.normal += pages;
2714 ram_counters.transferred += size;
2715 qemu_update_position(f, size);
2716 }
2717 }
2718
2719 static uint64_t ram_bytes_total_common(bool count_ignored)
2720 {
2721 RAMBlock *block;
2722 uint64_t total = 0;
2723
2724 RCU_READ_LOCK_GUARD();
2725
2726 if (count_ignored) {
2727 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2728 total += block->used_length;
2729 }
2730 } else {
2731 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2732 total += block->used_length;
2733 }
2734 }
2735 return total;
2736 }
2737
2738 uint64_t ram_bytes_total(void)
2739 {
2740 return ram_bytes_total_common(false);
2741 }
2742
2743 static void xbzrle_load_setup(void)
2744 {
2745 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2746 }
2747
2748 static void xbzrle_load_cleanup(void)
2749 {
2750 g_free(XBZRLE.decoded_buf);
2751 XBZRLE.decoded_buf = NULL;
2752 }
2753
2754 static void ram_state_cleanup(RAMState **rsp)
2755 {
2756 if (*rsp) {
2757 migration_page_queue_free(*rsp);
2758 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2759 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2760 g_free(*rsp);
2761 *rsp = NULL;
2762 }
2763 }
2764
2765 static void xbzrle_cleanup(void)
2766 {
2767 XBZRLE_cache_lock();
2768 if (XBZRLE.cache) {
2769 cache_fini(XBZRLE.cache);
2770 g_free(XBZRLE.encoded_buf);
2771 g_free(XBZRLE.current_buf);
2772 g_free(XBZRLE.zero_target_page);
2773 XBZRLE.cache = NULL;
2774 XBZRLE.encoded_buf = NULL;
2775 XBZRLE.current_buf = NULL;
2776 XBZRLE.zero_target_page = NULL;
2777 }
2778 XBZRLE_cache_unlock();
2779 }
2780
2781 static void ram_save_cleanup(void *opaque)
2782 {
2783 RAMState **rsp = opaque;
2784 RAMBlock *block;
2785
2786 /* caller have hold iothread lock or is in a bh, so there is
2787 * no writing race against the migration bitmap
2788 */
2789 memory_global_dirty_log_stop();
2790
2791 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2792 g_free(block->clear_bmap);
2793 block->clear_bmap = NULL;
2794 g_free(block->bmap);
2795 block->bmap = NULL;
2796 }
2797
2798 xbzrle_cleanup();
2799 compress_threads_save_cleanup();
2800 ram_state_cleanup(rsp);
2801 }
2802
2803 static void ram_state_reset(RAMState *rs)
2804 {
2805 rs->last_seen_block = NULL;
2806 rs->last_sent_block = NULL;
2807 rs->last_page = 0;
2808 rs->last_version = ram_list.version;
2809 rs->ram_bulk_stage = true;
2810 rs->fpo_enabled = false;
2811 }
2812
2813 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2814
2815 /*
2816 * 'expected' is the value you expect the bitmap mostly to be full
2817 * of; it won't bother printing lines that are all this value.
2818 * If 'todump' is null the migration bitmap is dumped.
2819 */
2820 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2821 unsigned long pages)
2822 {
2823 int64_t cur;
2824 int64_t linelen = 128;
2825 char linebuf[129];
2826
2827 for (cur = 0; cur < pages; cur += linelen) {
2828 int64_t curb;
2829 bool found = false;
2830 /*
2831 * Last line; catch the case where the line length
2832 * is longer than remaining ram
2833 */
2834 if (cur + linelen > pages) {
2835 linelen = pages - cur;
2836 }
2837 for (curb = 0; curb < linelen; curb++) {
2838 bool thisbit = test_bit(cur + curb, todump);
2839 linebuf[curb] = thisbit ? '1' : '.';
2840 found = found || (thisbit != expected);
2841 }
2842 if (found) {
2843 linebuf[curb] = '\0';
2844 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2845 }
2846 }
2847 }
2848
2849 /* **** functions for postcopy ***** */
2850
2851 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2852 {
2853 struct RAMBlock *block;
2854
2855 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2856 unsigned long *bitmap = block->bmap;
2857 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2858 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2859
2860 while (run_start < range) {
2861 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2862 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2863 (run_end - run_start) << TARGET_PAGE_BITS);
2864 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2865 }
2866 }
2867 }
2868
2869 /**
2870 * postcopy_send_discard_bm_ram: discard a RAMBlock
2871 *
2872 * Returns zero on success
2873 *
2874 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2875 *
2876 * @ms: current migration state
2877 * @block: RAMBlock to discard
2878 */
2879 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2880 {
2881 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2882 unsigned long current;
2883 unsigned long *bitmap = block->bmap;
2884
2885 for (current = 0; current < end; ) {
2886 unsigned long one = find_next_bit(bitmap, end, current);
2887 unsigned long zero, discard_length;
2888
2889 if (one >= end) {
2890 break;
2891 }
2892
2893 zero = find_next_zero_bit(bitmap, end, one + 1);
2894
2895 if (zero >= end) {
2896 discard_length = end - one;
2897 } else {
2898 discard_length = zero - one;
2899 }
2900 postcopy_discard_send_range(ms, one, discard_length);
2901 current = one + discard_length;
2902 }
2903
2904 return 0;
2905 }
2906
2907 /**
2908 * postcopy_each_ram_send_discard: discard all RAMBlocks
2909 *
2910 * Returns 0 for success or negative for error
2911 *
2912 * Utility for the outgoing postcopy code.
2913 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2914 * passing it bitmap indexes and name.
2915 * (qemu_ram_foreach_block ends up passing unscaled lengths
2916 * which would mean postcopy code would have to deal with target page)
2917 *
2918 * @ms: current migration state
2919 */
2920 static int postcopy_each_ram_send_discard(MigrationState *ms)
2921 {
2922 struct RAMBlock *block;
2923 int ret;
2924
2925 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2926 postcopy_discard_send_init(ms, block->idstr);
2927
2928 /*
2929 * Postcopy sends chunks of bitmap over the wire, but it
2930 * just needs indexes at this point, avoids it having
2931 * target page specific code.
2932 */
2933 ret = postcopy_send_discard_bm_ram(ms, block);
2934 postcopy_discard_send_finish(ms);
2935 if (ret) {
2936 return ret;
2937 }
2938 }
2939
2940 return 0;
2941 }
2942
2943 /**
2944 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2945 *
2946 * Helper for postcopy_chunk_hostpages; it's called twice to
2947 * canonicalize the two bitmaps, that are similar, but one is
2948 * inverted.
2949 *
2950 * Postcopy requires that all target pages in a hostpage are dirty or
2951 * clean, not a mix. This function canonicalizes the bitmaps.
2952 *
2953 * @ms: current migration state
2954 * @block: block that contains the page we want to canonicalize
2955 */
2956 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2957 {
2958 RAMState *rs = ram_state;
2959 unsigned long *bitmap = block->bmap;
2960 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2961 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2962 unsigned long run_start;
2963
2964 if (block->page_size == TARGET_PAGE_SIZE) {
2965 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2966 return;
2967 }
2968
2969 /* Find a dirty page */
2970 run_start = find_next_bit(bitmap, pages, 0);
2971
2972 while (run_start < pages) {
2973
2974 /*
2975 * If the start of this run of pages is in the middle of a host
2976 * page, then we need to fixup this host page.
2977 */
2978 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2979 /* Find the end of this run */
2980 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2981 /*
2982 * If the end isn't at the start of a host page, then the
2983 * run doesn't finish at the end of a host page
2984 * and we need to discard.
2985 */
2986 }
2987
2988 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2989 unsigned long page;
2990 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2991 host_ratio);
2992 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2993
2994 /* Clean up the bitmap */
2995 for (page = fixup_start_addr;
2996 page < fixup_start_addr + host_ratio; page++) {
2997 /*
2998 * Remark them as dirty, updating the count for any pages
2999 * that weren't previously dirty.
3000 */
3001 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
3002 }
3003 }
3004
3005 /* Find the next dirty page for the next iteration */
3006 run_start = find_next_bit(bitmap, pages, run_start);
3007 }
3008 }
3009
3010 /**
3011 * postcopy_chunk_hostpages: discard any partially sent host page
3012 *
3013 * Utility for the outgoing postcopy code.
3014 *
3015 * Discard any partially sent host-page size chunks, mark any partially
3016 * dirty host-page size chunks as all dirty. In this case the host-page
3017 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
3018 *
3019 * Returns zero on success
3020 *
3021 * @ms: current migration state
3022 * @block: block we want to work with
3023 */
3024 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
3025 {
3026 postcopy_discard_send_init(ms, block->idstr);
3027
3028 /*
3029 * Ensure that all partially dirty host pages are made fully dirty.
3030 */
3031 postcopy_chunk_hostpages_pass(ms, block);
3032
3033 postcopy_discard_send_finish(ms);
3034 return 0;
3035 }
3036
3037 /**
3038 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3039 *
3040 * Returns zero on success
3041 *
3042 * Transmit the set of pages to be discarded after precopy to the target
3043 * these are pages that:
3044 * a) Have been previously transmitted but are now dirty again
3045 * b) Pages that have never been transmitted, this ensures that
3046 * any pages on the destination that have been mapped by background
3047 * tasks get discarded (transparent huge pages is the specific concern)
3048 * Hopefully this is pretty sparse
3049 *
3050 * @ms: current migration state
3051 */
3052 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3053 {
3054 RAMState *rs = ram_state;
3055 RAMBlock *block;
3056 int ret;
3057
3058 RCU_READ_LOCK_GUARD();
3059
3060 /* This should be our last sync, the src is now paused */
3061 migration_bitmap_sync(rs);
3062
3063 /* Easiest way to make sure we don't resume in the middle of a host-page */
3064 rs->last_seen_block = NULL;
3065 rs->last_sent_block = NULL;
3066 rs->last_page = 0;
3067
3068 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3069 /* Deal with TPS != HPS and huge pages */
3070 ret = postcopy_chunk_hostpages(ms, block);
3071 if (ret) {
3072 return ret;
3073 }
3074
3075 #ifdef DEBUG_POSTCOPY
3076 ram_debug_dump_bitmap(block->bmap, true,
3077 block->used_length >> TARGET_PAGE_BITS);
3078 #endif
3079 }
3080 trace_ram_postcopy_send_discard_bitmap();
3081
3082 ret = postcopy_each_ram_send_discard(ms);
3083
3084 return ret;
3085 }
3086
3087 /**
3088 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3089 *
3090 * Returns zero on success
3091 *
3092 * @rbname: name of the RAMBlock of the request. NULL means the
3093 * same that last one.
3094 * @start: RAMBlock starting page
3095 * @length: RAMBlock size
3096 */
3097 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3098 {
3099 trace_ram_discard_range(rbname, start, length);
3100
3101 RCU_READ_LOCK_GUARD();
3102 RAMBlock *rb = qemu_ram_block_by_name(rbname);
3103
3104 if (!rb) {
3105 error_report("ram_discard_range: Failed to find block '%s'", rbname);
3106 return -1;
3107 }
3108
3109 /*
3110 * On source VM, we don't need to update the received bitmap since
3111 * we don't even have one.
3112 */
3113 if (rb->receivedmap) {
3114 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3115 length >> qemu_target_page_bits());
3116 }
3117
3118 return ram_block_discard_range(rb, start, length);
3119 }
3120
3121 /*
3122 * For every allocation, we will try not to crash the VM if the
3123 * allocation failed.
3124 */
3125 static int xbzrle_init(void)
3126 {
3127 Error *local_err = NULL;
3128
3129 if (!migrate_use_xbzrle()) {
3130 return 0;
3131 }
3132
3133 XBZRLE_cache_lock();
3134
3135 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3136 if (!XBZRLE.zero_target_page) {
3137 error_report("%s: Error allocating zero page", __func__);
3138 goto err_out;
3139 }
3140
3141 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3142 TARGET_PAGE_SIZE, &local_err);
3143 if (!XBZRLE.cache) {
3144 error_report_err(local_err);
3145 goto free_zero_page;
3146 }
3147
3148 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3149 if (!XBZRLE.encoded_buf) {
3150 error_report("%s: Error allocating encoded_buf", __func__);
3151 goto free_cache;
3152 }
3153
3154 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3155 if (!XBZRLE.current_buf) {
3156 error_report("%s: Error allocating current_buf", __func__);
3157 goto free_encoded_buf;
3158 }
3159
3160 /* We are all good */
3161 XBZRLE_cache_unlock();
3162 return 0;
3163
3164 free_encoded_buf:
3165 g_free(XBZRLE.encoded_buf);
3166 XBZRLE.encoded_buf = NULL;
3167 free_cache:
3168 cache_fini(XBZRLE.cache);
3169 XBZRLE.cache = NULL;
3170 free_zero_page:
3171 g_free(XBZRLE.zero_target_page);
3172 XBZRLE.zero_target_page = NULL;
3173 err_out:
3174 XBZRLE_cache_unlock();
3175 return -ENOMEM;
3176 }
3177
3178 static int ram_state_init(RAMState **rsp)
3179 {
3180 *rsp = g_try_new0(RAMState, 1);
3181
3182 if (!*rsp) {
3183 error_report("%s: Init ramstate fail", __func__);
3184 return -1;
3185 }
3186
3187 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3188 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3189 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3190
3191 /*
3192 * Count the total number of pages used by ram blocks not including any
3193 * gaps due to alignment or unplugs.
3194 * This must match with the initial values of dirty bitmap.
3195 */
3196 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3197 ram_state_reset(*rsp);
3198
3199 return 0;
3200 }
3201
3202 static void ram_list_init_bitmaps(void)
3203 {
3204 MigrationState *ms = migrate_get_current();
3205 RAMBlock *block;
3206 unsigned long pages;
3207 uint8_t shift;
3208
3209 /* Skip setting bitmap if there is no RAM */
3210 if (ram_bytes_total()) {
3211 shift = ms->clear_bitmap_shift;
3212 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3213 error_report("clear_bitmap_shift (%u) too big, using "
3214 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3215 shift = CLEAR_BITMAP_SHIFT_MAX;
3216 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3217 error_report("clear_bitmap_shift (%u) too small, using "
3218 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3219 shift = CLEAR_BITMAP_SHIFT_MIN;
3220 }
3221
3222 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3223 pages = block->max_length >> TARGET_PAGE_BITS;
3224 /*
3225 * The initial dirty bitmap for migration must be set with all
3226 * ones to make sure we'll migrate every guest RAM page to
3227 * destination.
3228 * Here we set RAMBlock.bmap all to 1 because when rebegin a
3229 * new migration after a failed migration, ram_list.
3230 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
3231 * guest memory.
3232 */
3233 block->bmap = bitmap_new(pages);
3234 bitmap_set(block->bmap, 0, pages);
3235 block->clear_bmap_shift = shift;
3236 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
3237 }
3238 }
3239 }
3240
3241 static void ram_init_bitmaps(RAMState *rs)
3242 {
3243 /* For memory_global_dirty_log_start below. */
3244 qemu_mutex_lock_iothread();
3245 qemu_mutex_lock_ramlist();
3246
3247 WITH_RCU_READ_LOCK_GUARD() {
3248 ram_list_init_bitmaps();
3249 memory_global_dirty_log_start();
3250 migration_bitmap_sync_precopy(rs);
3251 }
3252 qemu_mutex_unlock_ramlist();
3253 qemu_mutex_unlock_iothread();
3254 }
3255
3256 static int ram_init_all(RAMState **rsp)
3257 {
3258 if (ram_state_init(rsp)) {
3259 return -1;
3260 }
3261
3262 if (xbzrle_init()) {
3263 ram_state_cleanup(rsp);
3264 return -1;
3265 }
3266
3267 ram_init_bitmaps(*rsp);
3268
3269 return 0;
3270 }
3271
3272 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3273 {
3274 RAMBlock *block;
3275 uint64_t pages = 0;
3276
3277 /*
3278 * Postcopy is not using xbzrle/compression, so no need for that.
3279 * Also, since source are already halted, we don't need to care
3280 * about dirty page logging as well.
3281 */
3282
3283 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3284 pages += bitmap_count_one(block->bmap,
3285 block->used_length >> TARGET_PAGE_BITS);
3286 }
3287
3288 /* This may not be aligned with current bitmaps. Recalculate. */
3289 rs->migration_dirty_pages = pages;
3290
3291 rs->last_seen_block = NULL;
3292 rs->last_sent_block = NULL;
3293 rs->last_page = 0;
3294 rs->last_version = ram_list.version;
3295 /*
3296 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3297 * matter what we have sent.
3298 */
3299 rs->ram_bulk_stage = false;
3300
3301 /* Update RAMState cache of output QEMUFile */
3302 rs->f = out;
3303
3304 trace_ram_state_resume_prepare(pages);
3305 }
3306
3307 /*
3308 * This function clears bits of the free pages reported by the caller from the
3309 * migration dirty bitmap. @addr is the host address corresponding to the
3310 * start of the continuous guest free pages, and @len is the total bytes of
3311 * those pages.
3312 */
3313 void qemu_guest_free_page_hint(void *addr, size_t len)
3314 {
3315 RAMBlock *block;
3316 ram_addr_t offset;
3317 size_t used_len, start, npages;
3318 MigrationState *s = migrate_get_current();
3319
3320 /* This function is currently expected to be used during live migration */
3321 if (!migration_is_setup_or_active(s->state)) {
3322 return;
3323 }
3324
3325 for (; len > 0; len -= used_len, addr += used_len) {
3326 block = qemu_ram_block_from_host(addr, false, &offset);
3327 if (unlikely(!block || offset >= block->used_length)) {
3328 /*
3329 * The implementation might not support RAMBlock resize during
3330 * live migration, but it could happen in theory with future
3331 * updates. So we add a check here to capture that case.
3332 */
3333 error_report_once("%s unexpected error", __func__);
3334 return;
3335 }
3336
3337 if (len <= block->used_length - offset) {
3338 used_len = len;
3339 } else {
3340 used_len = block->used_length - offset;
3341 }
3342
3343 start = offset >> TARGET_PAGE_BITS;
3344 npages = used_len >> TARGET_PAGE_BITS;
3345
3346 qemu_mutex_lock(&ram_state->bitmap_mutex);
3347 ram_state->migration_dirty_pages -=
3348 bitmap_count_one_with_offset(block->bmap, start, npages);
3349 bitmap_clear(block->bmap, start, npages);
3350 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3351 }
3352 }
3353
3354 /*
3355 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3356 * long-running RCU critical section. When rcu-reclaims in the code
3357 * start to become numerous it will be necessary to reduce the
3358 * granularity of these critical sections.
3359 */
3360
3361 /**
3362 * ram_save_setup: Setup RAM for migration
3363 *
3364 * Returns zero to indicate success and negative for error
3365 *
3366 * @f: QEMUFile where to send the data
3367 * @opaque: RAMState pointer
3368 */
3369 static int ram_save_setup(QEMUFile *f, void *opaque)
3370 {
3371 RAMState **rsp = opaque;
3372 RAMBlock *block;
3373
3374 if (compress_threads_save_setup()) {
3375 return -1;
3376 }
3377
3378 /* migration has already setup the bitmap, reuse it. */
3379 if (!migration_in_colo_state()) {
3380 if (ram_init_all(rsp) != 0) {
3381 compress_threads_save_cleanup();
3382 return -1;
3383 }
3384 }
3385 (*rsp)->f = f;
3386
3387 WITH_RCU_READ_LOCK_GUARD() {
3388 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3389
3390 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3391 qemu_put_byte(f, strlen(block->idstr));
3392 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3393 qemu_put_be64(f, block->used_length);
3394 if (migrate_postcopy_ram() && block->page_size !=
3395 qemu_host_page_size) {
3396 qemu_put_be64(f, block->page_size);
3397 }
3398 if (migrate_ignore_shared()) {
3399 qemu_put_be64(f, block->mr->addr);
3400 }
3401 }
3402 }
3403
3404 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3405 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3406
3407 multifd_send_sync_main(*rsp);
3408 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3409 qemu_fflush(f);
3410
3411 return 0;
3412 }
3413
3414 /**
3415 * ram_save_iterate: iterative stage for migration
3416 *
3417 * Returns zero to indicate success and negative for error
3418 *
3419 * @f: QEMUFile where to send the data
3420 * @opaque: RAMState pointer
3421 */
3422 static int ram_save_iterate(QEMUFile *f, void *opaque)
3423 {
3424 RAMState **temp = opaque;
3425 RAMState *rs = *temp;
3426 int ret;
3427 int i;
3428 int64_t t0;
3429 int done = 0;
3430
3431 if (blk_mig_bulk_active()) {
3432 /* Avoid transferring ram during bulk phase of block migration as
3433 * the bulk phase will usually take a long time and transferring
3434 * ram updates during that time is pointless. */
3435 goto out;
3436 }
3437
3438 WITH_RCU_READ_LOCK_GUARD() {
3439 if (ram_list.version != rs->last_version) {
3440 ram_state_reset(rs);
3441 }
3442
3443 /* Read version before ram_list.blocks */
3444 smp_rmb();
3445
3446 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3447
3448 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3449 i = 0;
3450 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3451 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3452 int pages;
3453
3454 if (qemu_file_get_error(f)) {
3455 break;
3456 }
3457
3458 pages = ram_find_and_save_block(rs, false);
3459 /* no more pages to sent */
3460 if (pages == 0) {
3461 done = 1;
3462 break;
3463 }
3464
3465 if (pages < 0) {
3466 qemu_file_set_error(f, pages);
3467 break;
3468 }
3469
3470 rs->target_page_count += pages;
3471
3472 /*
3473 * we want to check in the 1st loop, just in case it was the 1st
3474 * time and we had to sync the dirty bitmap.
3475 * qemu_clock_get_ns() is a bit expensive, so we only check each
3476 * some iterations
3477 */
3478 if ((i & 63) == 0) {
3479 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3480 1000000;
3481 if (t1 > MAX_WAIT) {
3482 trace_ram_save_iterate_big_wait(t1, i);
3483 break;
3484 }
3485 }
3486 i++;
3487 }
3488 }
3489
3490 /*
3491 * Must occur before EOS (or any QEMUFile operation)
3492 * because of RDMA protocol.
3493 */
3494 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3495
3496 out:
3497 multifd_send_sync_main(rs);
3498 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3499 qemu_fflush(f);
3500 ram_counters.transferred += 8;
3501
3502 ret = qemu_file_get_error(f);
3503 if (ret < 0) {
3504 return ret;
3505 }
3506
3507 return done;
3508 }
3509
3510 /**
3511 * ram_save_complete: function called to send the remaining amount of ram
3512 *
3513 * Returns zero to indicate success or negative on error
3514 *
3515 * Called with iothread lock
3516 *
3517 * @f: QEMUFile where to send the data
3518 * @opaque: RAMState pointer
3519 */
3520 static int ram_save_complete(QEMUFile *f, void *opaque)
3521 {
3522 RAMState **temp = opaque;
3523 RAMState *rs = *temp;
3524 int ret = 0;
3525
3526 WITH_RCU_READ_LOCK_GUARD() {
3527 if (!migration_in_postcopy()) {
3528 migration_bitmap_sync_precopy(rs);
3529 }
3530
3531 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3532
3533 /* try transferring iterative blocks of memory */
3534
3535 /* flush all remaining blocks regardless of rate limiting */
3536 while (true) {
3537 int pages;
3538
3539 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3540 /* no more blocks to sent */
3541 if (pages == 0) {
3542 break;
3543 }
3544 if (pages < 0) {
3545 ret = pages;
3546 break;
3547 }
3548 }
3549
3550 flush_compressed_data(rs);
3551 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3552 }
3553
3554 multifd_send_sync_main(rs);
3555 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3556 qemu_fflush(f);
3557
3558 return ret;
3559 }
3560
3561 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3562 uint64_t *res_precopy_only,
3563 uint64_t *res_compatible,
3564 uint64_t *res_postcopy_only)
3565 {
3566 RAMState **temp = opaque;
3567 RAMState *rs = *temp;
3568 uint64_t remaining_size;
3569
3570 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3571
3572 if (!migration_in_postcopy() &&
3573 remaining_size < max_size) {
3574 qemu_mutex_lock_iothread();
3575 WITH_RCU_READ_LOCK_GUARD() {
3576 migration_bitmap_sync_precopy(rs);
3577 }
3578 qemu_mutex_unlock_iothread();
3579 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3580 }
3581
3582 if (migrate_postcopy_ram()) {
3583 /* We can do postcopy, and all the data is postcopiable */
3584 *res_compatible += remaining_size;
3585 } else {
3586 *res_precopy_only += remaining_size;
3587 }
3588 }
3589
3590 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3591 {
3592 unsigned int xh_len;
3593 int xh_flags;
3594 uint8_t *loaded_data;
3595
3596 /* extract RLE header */
3597 xh_flags = qemu_get_byte(f);
3598 xh_len = qemu_get_be16(f);
3599
3600 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3601 error_report("Failed to load XBZRLE page - wrong compression!");
3602 return -1;
3603 }
3604
3605 if (xh_len > TARGET_PAGE_SIZE) {
3606 error_report("Failed to load XBZRLE page - len overflow!");
3607 return -1;
3608 }
3609 loaded_data = XBZRLE.decoded_buf;
3610 /* load data and decode */
3611 /* it can change loaded_data to point to an internal buffer */
3612 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3613
3614 /* decode RLE */
3615 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3616 TARGET_PAGE_SIZE) == -1) {
3617 error_report("Failed to load XBZRLE page - decode error!");
3618 return -1;
3619 }
3620
3621 return 0;
3622 }
3623
3624 /**
3625 * ram_block_from_stream: read a RAMBlock id from the migration stream
3626 *
3627 * Must be called from within a rcu critical section.
3628 *
3629 * Returns a pointer from within the RCU-protected ram_list.
3630 *
3631 * @f: QEMUFile where to read the data from
3632 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3633 */
3634 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3635 {
3636 static RAMBlock *block = NULL;
3637 char id[256];
3638 uint8_t len;
3639
3640 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3641 if (!block) {
3642 error_report("Ack, bad migration stream!");
3643 return NULL;
3644 }
3645 return block;
3646 }
3647
3648 len = qemu_get_byte(f);
3649 qemu_get_buffer(f, (uint8_t *)id, len);
3650 id[len] = 0;
3651
3652 block = qemu_ram_block_by_name(id);
3653 if (!block) {
3654 error_report("Can't find block %s", id);
3655 return NULL;
3656 }
3657
3658 if (ramblock_is_ignored(block)) {
3659 error_report("block %s should not be migrated !", id);
3660 return NULL;
3661 }
3662
3663 return block;
3664 }
3665
3666 static inline void *host_from_ram_block_offset(RAMBlock *block,
3667 ram_addr_t offset)
3668 {
3669 if (!offset_in_ramblock(block, offset)) {
3670 return NULL;
3671 }
3672
3673 return block->host + offset;
3674 }
3675
3676 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3677 ram_addr_t offset)
3678 {
3679 if (!offset_in_ramblock(block, offset)) {
3680 return NULL;
3681 }
3682 if (!block->colo_cache) {
3683 error_report("%s: colo_cache is NULL in block :%s",
3684 __func__, block->idstr);
3685 return NULL;
3686 }
3687
3688 /*
3689 * During colo checkpoint, we need bitmap of these migrated pages.
3690 * It help us to decide which pages in ram cache should be flushed
3691 * into VM's RAM later.
3692 */
3693 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3694 ram_state->migration_dirty_pages++;
3695 }
3696 return block->colo_cache + offset;
3697 }
3698
3699 /**
3700 * ram_handle_compressed: handle the zero page case
3701 *
3702 * If a page (or a whole RDMA chunk) has been
3703 * determined to be zero, then zap it.
3704 *
3705 * @host: host address for the zero page
3706 * @ch: what the page is filled from. We only support zero
3707 * @size: size of the zero page
3708 */
3709 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3710 {
3711 if (ch != 0 || !is_zero_range(host, size)) {
3712 memset(host, ch, size);
3713 }
3714 }
3715
3716 /* return the size after decompression, or negative value on error */
3717 static int
3718 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3719 const uint8_t *source, size_t source_len)
3720 {
3721 int err;
3722
3723 err = inflateReset(stream);
3724 if (err != Z_OK) {
3725 return -1;
3726 }
3727
3728 stream->avail_in = source_len;
3729 stream->next_in = (uint8_t *)source;
3730 stream->avail_out = dest_len;
3731 stream->next_out = dest;
3732
3733 err = inflate(stream, Z_NO_FLUSH);
3734 if (err != Z_STREAM_END) {
3735 return -1;
3736 }
3737
3738 return stream->total_out;
3739 }
3740
3741 static void *do_data_decompress(void *opaque)
3742 {
3743 DecompressParam *param = opaque;
3744 unsigned long pagesize;
3745 uint8_t *des;
3746 int len, ret;
3747
3748 qemu_mutex_lock(&param->mutex);
3749 while (!param->quit) {
3750 if (param->des) {
3751 des = param->des;
3752 len = param->len;
3753 param->des = 0;
3754 qemu_mutex_unlock(&param->mutex);
3755
3756 pagesize = TARGET_PAGE_SIZE;
3757
3758 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3759 param->compbuf, len);
3760 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3761 error_report("decompress data failed");
3762 qemu_file_set_error(decomp_file, ret);
3763 }
3764
3765 qemu_mutex_lock(&decomp_done_lock);
3766 param->done = true;
3767 qemu_cond_signal(&decomp_done_cond);
3768 qemu_mutex_unlock(&decomp_done_lock);
3769
3770 qemu_mutex_lock(&param->mutex);
3771 } else {
3772 qemu_cond_wait(&param->cond, &param->mutex);
3773 }
3774 }
3775 qemu_mutex_unlock(&param->mutex);
3776
3777 return NULL;
3778 }
3779
3780 static int wait_for_decompress_done(void)
3781 {
3782 int idx, thread_count;
3783
3784 if (!migrate_use_compression()) {
3785 return 0;
3786 }
3787
3788 thread_count = migrate_decompress_threads();
3789 qemu_mutex_lock(&decomp_done_lock);
3790 for (idx = 0; idx < thread_count; idx++) {
3791 while (!decomp_param[idx].done) {
3792 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3793 }
3794 }
3795 qemu_mutex_unlock(&decomp_done_lock);
3796 return qemu_file_get_error(decomp_file);
3797 }
3798
3799 static void compress_threads_load_cleanup(void)
3800 {
3801 int i, thread_count;
3802
3803 if (!migrate_use_compression()) {
3804 return;
3805 }
3806 thread_count = migrate_decompress_threads();
3807 for (i = 0; i < thread_count; i++) {
3808 /*
3809 * we use it as a indicator which shows if the thread is
3810 * properly init'd or not
3811 */
3812 if (!decomp_param[i].compbuf) {
3813 break;
3814 }
3815
3816 qemu_mutex_lock(&decomp_param[i].mutex);
3817 decomp_param[i].quit = true;
3818 qemu_cond_signal(&decomp_param[i].cond);
3819 qemu_mutex_unlock(&decomp_param[i].mutex);
3820 }
3821 for (i = 0; i < thread_count; i++) {
3822 if (!decomp_param[i].compbuf) {
3823 break;
3824 }
3825
3826 qemu_thread_join(decompress_threads + i);
3827 qemu_mutex_destroy(&decomp_param[i].mutex);
3828 qemu_cond_destroy(&decomp_param[i].cond);
3829 inflateEnd(&decomp_param[i].stream);
3830 g_free(decomp_param[i].compbuf);
3831 decomp_param[i].compbuf = NULL;
3832 }
3833 g_free(decompress_threads);
3834 g_free(decomp_param);
3835 decompress_threads = NULL;
3836 decomp_param = NULL;
3837 decomp_file = NULL;
3838 }
3839
3840 static int compress_threads_load_setup(QEMUFile *f)
3841 {
3842 int i, thread_count;
3843
3844 if (!migrate_use_compression()) {
3845 return 0;
3846 }
3847
3848 thread_count = migrate_decompress_threads();
3849 decompress_threads = g_new0(QemuThread, thread_count);
3850 decomp_param = g_new0(DecompressParam, thread_count);
3851 qemu_mutex_init(&decomp_done_lock);
3852 qemu_cond_init(&decomp_done_cond);
3853 decomp_file = f;
3854 for (i = 0; i < thread_count; i++) {
3855 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3856 goto exit;
3857 }
3858
3859 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3860 qemu_mutex_init(&decomp_param[i].mutex);
3861 qemu_cond_init(&decomp_param[i].cond);
3862 decomp_param[i].done = true;
3863 decomp_param[i].quit = false;
3864 qemu_thread_create(decompress_threads + i, "decompress",
3865 do_data_decompress, decomp_param + i,
3866 QEMU_THREAD_JOINABLE);
3867 }
3868 return 0;
3869 exit:
3870 compress_threads_load_cleanup();
3871 return -1;
3872 }
3873
3874 static void decompress_data_with_multi_threads(QEMUFile *f,
3875 void *host, int len)
3876 {
3877 int idx, thread_count;
3878
3879 thread_count = migrate_decompress_threads();
3880 qemu_mutex_lock(&decomp_done_lock);
3881 while (true) {
3882 for (idx = 0; idx < thread_count; idx++) {
3883 if (decomp_param[idx].done) {
3884 decomp_param[idx].done = false;
3885 qemu_mutex_lock(&decomp_param[idx].mutex);
3886 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3887 decomp_param[idx].des = host;
3888 decomp_param[idx].len = len;
3889 qemu_cond_signal(&decomp_param[idx].cond);
3890 qemu_mutex_unlock(&decomp_param[idx].mutex);
3891 break;
3892 }
3893 }
3894 if (idx < thread_count) {
3895 break;
3896 } else {
3897 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3898 }
3899 }
3900 qemu_mutex_unlock(&decomp_done_lock);
3901 }
3902
3903 /*
3904 * colo cache: this is for secondary VM, we cache the whole
3905 * memory of the secondary VM, it is need to hold the global lock
3906 * to call this helper.
3907 */
3908 int colo_init_ram_cache(void)
3909 {
3910 RAMBlock *block;
3911
3912 WITH_RCU_READ_LOCK_GUARD() {
3913 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3914 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3915 NULL,
3916 false);
3917 if (!block->colo_cache) {
3918 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3919 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3920 block->used_length);
3921 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3922 if (block->colo_cache) {
3923 qemu_anon_ram_free(block->colo_cache, block->used_length);
3924 block->colo_cache = NULL;
3925 }
3926 }
3927 return -errno;
3928 }
3929 memcpy(block->colo_cache, block->host, block->used_length);
3930 }
3931 }
3932
3933 /*
3934 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3935 * with to decide which page in cache should be flushed into SVM's RAM. Here
3936 * we use the same name 'ram_bitmap' as for migration.
3937 */
3938 if (ram_bytes_total()) {
3939 RAMBlock *block;
3940
3941 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3942 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3943
3944 block->bmap = bitmap_new(pages);
3945 bitmap_set(block->bmap, 0, pages);
3946 }
3947 }
3948 ram_state = g_new0(RAMState, 1);
3949 ram_state->migration_dirty_pages = 0;
3950 qemu_mutex_init(&ram_state->bitmap_mutex);
3951 memory_global_dirty_log_start();
3952
3953 return 0;
3954 }
3955
3956 /* It is need to hold the global lock to call this helper */
3957 void colo_release_ram_cache(void)
3958 {
3959 RAMBlock *block;
3960
3961 memory_global_dirty_log_stop();
3962 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3963 g_free(block->bmap);
3964 block->bmap = NULL;
3965 }
3966
3967 WITH_RCU_READ_LOCK_GUARD() {
3968 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3969 if (block->colo_cache) {
3970 qemu_anon_ram_free(block->colo_cache, block->used_length);
3971 block->colo_cache = NULL;
3972 }
3973 }
3974 }
3975 qemu_mutex_destroy(&ram_state->bitmap_mutex);
3976 g_free(ram_state);
3977 ram_state = NULL;
3978 }
3979
3980 /**
3981 * ram_load_setup: Setup RAM for migration incoming side
3982 *
3983 * Returns zero to indicate success and negative for error
3984 *
3985 * @f: QEMUFile where to receive the data
3986 * @opaque: RAMState pointer
3987 */
3988 static int ram_load_setup(QEMUFile *f, void *opaque)
3989 {
3990 if (compress_threads_load_setup(f)) {
3991 return -1;
3992 }
3993
3994 xbzrle_load_setup();
3995 ramblock_recv_map_init();
3996
3997 return 0;
3998 }
3999
4000 static int ram_load_cleanup(void *opaque)
4001 {
4002 RAMBlock *rb;
4003
4004 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4005 qemu_ram_block_writeback(rb);
4006 }
4007
4008 xbzrle_load_cleanup();
4009 compress_threads_load_cleanup();
4010
4011 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4012 g_free(rb->receivedmap);
4013 rb->receivedmap = NULL;
4014 }
4015
4016 return 0;
4017 }
4018
4019 /**
4020 * ram_postcopy_incoming_init: allocate postcopy data structures
4021 *
4022 * Returns 0 for success and negative if there was one error
4023 *
4024 * @mis: current migration incoming state
4025 *
4026 * Allocate data structures etc needed by incoming migration with
4027 * postcopy-ram. postcopy-ram's similarly names
4028 * postcopy_ram_incoming_init does the work.
4029 */
4030 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4031 {
4032 return postcopy_ram_incoming_init(mis);
4033 }
4034
4035 /**
4036 * ram_load_postcopy: load a page in postcopy case
4037 *
4038 * Returns 0 for success or -errno in case of error
4039 *
4040 * Called in postcopy mode by ram_load().
4041 * rcu_read_lock is taken prior to this being called.
4042 *
4043 * @f: QEMUFile where to send the data
4044 */
4045 static int ram_load_postcopy(QEMUFile *f)
4046 {
4047 int flags = 0, ret = 0;
4048 bool place_needed = false;
4049 bool matches_target_page_size = false;
4050 MigrationIncomingState *mis = migration_incoming_get_current();
4051 /* Temporary page that is later 'placed' */
4052 void *postcopy_host_page = mis->postcopy_tmp_page;
4053 void *last_host = NULL;
4054 bool all_zero = false;
4055
4056 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4057 ram_addr_t addr;
4058 void *host = NULL;
4059 void *page_buffer = NULL;
4060 void *place_source = NULL;
4061 RAMBlock *block = NULL;
4062 uint8_t ch;
4063
4064 addr = qemu_get_be64(f);
4065
4066 /*
4067 * If qemu file error, we should stop here, and then "addr"
4068 * may be invalid
4069 */
4070 ret = qemu_file_get_error(f);
4071 if (ret) {
4072 break;
4073 }
4074
4075 flags = addr & ~TARGET_PAGE_MASK;
4076 addr &= TARGET_PAGE_MASK;
4077
4078 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4079 place_needed = false;
4080 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
4081 block = ram_block_from_stream(f, flags);
4082
4083 host = host_from_ram_block_offset(block, addr);
4084 if (!host) {
4085 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4086 ret = -EINVAL;
4087 break;
4088 }
4089 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4090 /*
4091 * Postcopy requires that we place whole host pages atomically;
4092 * these may be huge pages for RAMBlocks that are backed by
4093 * hugetlbfs.
4094 * To make it atomic, the data is read into a temporary page
4095 * that's moved into place later.
4096 * The migration protocol uses, possibly smaller, target-pages
4097 * however the source ensures it always sends all the components
4098 * of a host page in order.
4099 */
4100 page_buffer = postcopy_host_page +
4101 ((uintptr_t)host & (block->page_size - 1));
4102 /* If all TP are zero then we can optimise the place */
4103 if (!((uintptr_t)host & (block->page_size - 1))) {
4104 all_zero = true;
4105 } else {
4106 /* not the 1st TP within the HP */
4107 if (host != (last_host + TARGET_PAGE_SIZE)) {
4108 error_report("Non-sequential target page %p/%p",
4109 host, last_host);
4110 ret = -EINVAL;
4111 break;
4112 }
4113 }
4114
4115
4116 /*
4117 * If it's the last part of a host page then we place the host
4118 * page
4119 */
4120 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
4121 (block->page_size - 1)) == 0;
4122 place_source = postcopy_host_page;
4123 }
4124 last_host = host;
4125
4126 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4127 case RAM_SAVE_FLAG_ZERO:
4128 ch = qemu_get_byte(f);
4129 /*
4130 * Can skip to set page_buffer when
4131 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
4132 */
4133 if (ch || !matches_target_page_size) {
4134 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4135 }
4136 if (ch) {
4137 all_zero = false;
4138 }
4139 break;
4140
4141 case RAM_SAVE_FLAG_PAGE:
4142 all_zero = false;
4143 if (!matches_target_page_size) {
4144 /* For huge pages, we always use temporary buffer */
4145 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4146 } else {
4147 /*
4148 * For small pages that matches target page size, we
4149 * avoid the qemu_file copy. Instead we directly use
4150 * the buffer of QEMUFile to place the page. Note: we
4151 * cannot do any QEMUFile operation before using that
4152 * buffer to make sure the buffer is valid when
4153 * placing the page.
4154 */
4155 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4156 TARGET_PAGE_SIZE);
4157 }
4158 break;
4159 case RAM_SAVE_FLAG_EOS:
4160 /* normal exit */
4161 multifd_recv_sync_main();
4162 break;
4163 default:
4164 error_report("Unknown combination of migration flags: %#x"
4165 " (postcopy mode)", flags);
4166 ret = -EINVAL;
4167 break;
4168 }
4169
4170 /* Detect for any possible file errors */
4171 if (!ret && qemu_file_get_error(f)) {
4172 ret = qemu_file_get_error(f);
4173 }
4174
4175 if (!ret && place_needed) {
4176 /* This gets called at the last target page in the host page */
4177 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4178
4179 if (all_zero) {
4180 ret = postcopy_place_page_zero(mis, place_dest,
4181 block);
4182 } else {
4183 ret = postcopy_place_page(mis, place_dest,
4184 place_source, block);
4185 }
4186 }
4187 }
4188
4189 return ret;
4190 }
4191
4192 static bool postcopy_is_advised(void)
4193 {
4194 PostcopyState ps = postcopy_state_get();
4195 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4196 }
4197
4198 static bool postcopy_is_running(void)
4199 {
4200 PostcopyState ps = postcopy_state_get();
4201 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4202 }
4203
4204 /*
4205 * Flush content of RAM cache into SVM's memory.
4206 * Only flush the pages that be dirtied by PVM or SVM or both.
4207 */
4208 static void colo_flush_ram_cache(void)
4209 {
4210 RAMBlock *block = NULL;
4211 void *dst_host;
4212 void *src_host;
4213 unsigned long offset = 0;
4214
4215 memory_global_dirty_log_sync();
4216 WITH_RCU_READ_LOCK_GUARD() {
4217 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4218 ramblock_sync_dirty_bitmap(ram_state, block);
4219 }
4220 }
4221
4222 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4223 WITH_RCU_READ_LOCK_GUARD() {
4224 block = QLIST_FIRST_RCU(&ram_list.blocks);
4225
4226 while (block) {
4227 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4228
4229 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4230 offset = 0;
4231 block = QLIST_NEXT_RCU(block, next);
4232 } else {
4233 migration_bitmap_clear_dirty(ram_state, block, offset);
4234 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4235 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4236 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4237 }
4238 }
4239 }
4240 trace_colo_flush_ram_cache_end();
4241 }
4242
4243 /**
4244 * ram_load_precopy: load pages in precopy case
4245 *
4246 * Returns 0 for success or -errno in case of error
4247 *
4248 * Called in precopy mode by ram_load().
4249 * rcu_read_lock is taken prior to this being called.
4250 *
4251 * @f: QEMUFile where to send the data
4252 */
4253 static int ram_load_precopy(QEMUFile *f)
4254 {
4255 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
4256 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4257 bool postcopy_advised = postcopy_is_advised();
4258 if (!migrate_use_compression()) {
4259 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4260 }
4261
4262 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4263 ram_addr_t addr, total_ram_bytes;
4264 void *host = NULL;
4265 uint8_t ch;
4266
4267 /*
4268 * Yield periodically to let main loop run, but an iteration of
4269 * the main loop is expensive, so do it each some iterations
4270 */
4271 if ((i & 32767) == 0 && qemu_in_coroutine()) {
4272 aio_co_schedule(qemu_get_current_aio_context(),
4273 qemu_coroutine_self());
4274 qemu_coroutine_yield();
4275 }
4276 i++;
4277
4278 addr = qemu_get_be64(f);
4279 flags = addr & ~TARGET_PAGE_MASK;
4280 addr &= TARGET_PAGE_MASK;
4281
4282 if (flags & invalid_flags) {
4283 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4284 error_report("Received an unexpected compressed page");
4285 }
4286
4287 ret = -EINVAL;
4288 break;
4289 }
4290
4291 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4292 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4293 RAMBlock *block = ram_block_from_stream(f, flags);
4294
4295 /*
4296 * After going into COLO, we should load the Page into colo_cache.
4297 */
4298 if (migration_incoming_in_colo_state()) {
4299 host = colo_cache_from_block_offset(block, addr);
4300 } else {
4301 host = host_from_ram_block_offset(block, addr);
4302 }
4303 if (!host) {
4304 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4305 ret = -EINVAL;
4306 break;
4307 }
4308
4309 if (!migration_incoming_in_colo_state()) {
4310 ramblock_recv_bitmap_set(block, host);
4311 }
4312
4313 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4314 }
4315
4316 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4317 case RAM_SAVE_FLAG_MEM_SIZE:
4318 /* Synchronize RAM block list */
4319 total_ram_bytes = addr;
4320 while (!ret && total_ram_bytes) {
4321 RAMBlock *block;
4322 char id[256];
4323 ram_addr_t length;
4324
4325 len = qemu_get_byte(f);
4326 qemu_get_buffer(f, (uint8_t *)id, len);
4327 id[len] = 0;
4328 length = qemu_get_be64(f);
4329
4330 block = qemu_ram_block_by_name(id);
4331 if (block && !qemu_ram_is_migratable(block)) {
4332 error_report("block %s should not be migrated !", id);
4333 ret = -EINVAL;
4334 } else if (block) {
4335 if (length != block->used_length) {
4336 Error *local_err = NULL;
4337
4338 ret = qemu_ram_resize(block, length,
4339 &local_err);
4340 if (local_err) {
4341 error_report_err(local_err);
4342 }
4343 }
4344 /* For postcopy we need to check hugepage sizes match */
4345 if (postcopy_advised &&
4346 block->page_size != qemu_host_page_size) {
4347 uint64_t remote_page_size = qemu_get_be64(f);
4348 if (remote_page_size != block->page_size) {
4349 error_report("Mismatched RAM page size %s "
4350 "(local) %zd != %" PRId64,
4351 id, block->page_size,
4352 remote_page_size);
4353 ret = -EINVAL;
4354 }
4355 }
4356 if (migrate_ignore_shared()) {
4357 hwaddr addr = qemu_get_be64(f);
4358 if (ramblock_is_ignored(block) &&
4359 block->mr->addr != addr) {
4360 error_report("Mismatched GPAs for block %s "
4361 "%" PRId64 "!= %" PRId64,
4362 id, (uint64_t)addr,
4363 (uint64_t)block->mr->addr);
4364 ret = -EINVAL;
4365 }
4366 }
4367 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4368 block->idstr);
4369 } else {
4370 error_report("Unknown ramblock \"%s\", cannot "
4371 "accept migration", id);
4372 ret = -EINVAL;
4373 }
4374
4375 total_ram_bytes -= length;
4376 }
4377 break;
4378
4379 case RAM_SAVE_FLAG_ZERO:
4380 ch = qemu_get_byte(f);
4381 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4382 break;
4383
4384 case RAM_SAVE_FLAG_PAGE:
4385 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4386 break;
4387
4388 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4389 len = qemu_get_be32(f);
4390 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4391 error_report("Invalid compressed data length: %d", len);
4392 ret = -EINVAL;
4393 break;
4394 }
4395 decompress_data_with_multi_threads(f, host, len);
4396 break;
4397
4398 case RAM_SAVE_FLAG_XBZRLE:
4399 if (load_xbzrle(f, addr, host) < 0) {
4400 error_report("Failed to decompress XBZRLE page at "
4401 RAM_ADDR_FMT, addr);
4402 ret = -EINVAL;
4403 break;
4404 }
4405 break;
4406 case RAM_SAVE_FLAG_EOS:
4407 /* normal exit */
4408 multifd_recv_sync_main();
4409 break;
4410 default:
4411 if (flags & RAM_SAVE_FLAG_HOOK) {
4412 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4413 } else {
4414 error_report("Unknown combination of migration flags: %#x",
4415 flags);
4416 ret = -EINVAL;
4417 }
4418 }
4419 if (!ret) {
4420 ret = qemu_file_get_error(f);
4421 }
4422 }
4423
4424 ret |= wait_for_decompress_done();
4425 return ret;
4426 }
4427
4428 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4429 {
4430 int ret = 0;
4431 static uint64_t seq_iter;
4432 /*
4433 * If system is running in postcopy mode, page inserts to host memory must
4434 * be atomic
4435 */
4436 bool postcopy_running = postcopy_is_running();
4437
4438 seq_iter++;
4439
4440 if (version_id != 4) {
4441 return -EINVAL;
4442 }
4443
4444 /*
4445 * This RCU critical section can be very long running.
4446 * When RCU reclaims in the code start to become numerous,
4447 * it will be necessary to reduce the granularity of this
4448 * critical section.
4449 */
4450 WITH_RCU_READ_LOCK_GUARD() {
4451 if (postcopy_running) {
4452 ret = ram_load_postcopy(f);
4453 } else {
4454 ret = ram_load_precopy(f);
4455 }
4456 }
4457 trace_ram_load_complete(ret, seq_iter);
4458
4459 if (!ret && migration_incoming_in_colo_state()) {
4460 colo_flush_ram_cache();
4461 }
4462 return ret;
4463 }
4464
4465 static bool ram_has_postcopy(void *opaque)
4466 {
4467 RAMBlock *rb;
4468 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4469 if (ramblock_is_pmem(rb)) {
4470 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4471 "is not supported now!", rb->idstr, rb->host);
4472 return false;
4473 }
4474 }
4475
4476 return migrate_postcopy_ram();
4477 }
4478
4479 /* Sync all the dirty bitmap with destination VM. */
4480 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4481 {
4482 RAMBlock *block;
4483 QEMUFile *file = s->to_dst_file;
4484 int ramblock_count = 0;
4485
4486 trace_ram_dirty_bitmap_sync_start();
4487
4488 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4489 qemu_savevm_send_recv_bitmap(file, block->idstr);
4490 trace_ram_dirty_bitmap_request(block->idstr);
4491 ramblock_count++;
4492 }
4493
4494 trace_ram_dirty_bitmap_sync_wait();
4495
4496 /* Wait until all the ramblocks' dirty bitmap synced */
4497 while (ramblock_count--) {
4498 qemu_sem_wait(&s->rp_state.rp_sem);
4499 }
4500
4501 trace_ram_dirty_bitmap_sync_complete();
4502
4503 return 0;
4504 }
4505
4506 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4507 {
4508 qemu_sem_post(&s->rp_state.rp_sem);
4509 }
4510
4511 /*
4512 * Read the received bitmap, revert it as the initial dirty bitmap.
4513 * This is only used when the postcopy migration is paused but wants
4514 * to resume from a middle point.
4515 */
4516 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4517 {
4518 int ret = -EINVAL;
4519 QEMUFile *file = s->rp_state.from_dst_file;
4520 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4521 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4522 uint64_t size, end_mark;
4523
4524 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4525
4526 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4527 error_report("%s: incorrect state %s", __func__,
4528 MigrationStatus_str(s->state));
4529 return -EINVAL;
4530 }
4531
4532 /*
4533 * Note: see comments in ramblock_recv_bitmap_send() on why we
4534 * need the endianess convertion, and the paddings.
4535 */
4536 local_size = ROUND_UP(local_size, 8);
4537
4538 /* Add paddings */
4539 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4540
4541 size = qemu_get_be64(file);
4542
4543 /* The size of the bitmap should match with our ramblock */
4544 if (size != local_size) {
4545 error_report("%s: ramblock '%s' bitmap size mismatch "
4546 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4547 block->idstr, size, local_size);
4548 ret = -EINVAL;
4549 goto out;
4550 }
4551
4552 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4553 end_mark = qemu_get_be64(file);
4554
4555 ret = qemu_file_get_error(file);
4556 if (ret || size != local_size) {
4557 error_report("%s: read bitmap failed for ramblock '%s': %d"
4558 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4559 __func__, block->idstr, ret, local_size, size);
4560 ret = -EIO;
4561 goto out;
4562 }
4563
4564 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4565 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4566 __func__, block->idstr, end_mark);
4567 ret = -EINVAL;
4568 goto out;
4569 }
4570
4571 /*
4572 * Endianess convertion. We are during postcopy (though paused).
4573 * The dirty bitmap won't change. We can directly modify it.
4574 */
4575 bitmap_from_le(block->bmap, le_bitmap, nbits);
4576
4577 /*
4578 * What we received is "received bitmap". Revert it as the initial
4579 * dirty bitmap for this ramblock.
4580 */
4581 bitmap_complement(block->bmap, block->bmap, nbits);
4582
4583 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4584
4585 /*
4586 * We succeeded to sync bitmap for current ramblock. If this is
4587 * the last one to sync, we need to notify the main send thread.
4588 */
4589 ram_dirty_bitmap_reload_notify(s);
4590
4591 ret = 0;
4592 out:
4593 g_free(le_bitmap);
4594 return ret;
4595 }
4596
4597 static int ram_resume_prepare(MigrationState *s, void *opaque)
4598 {
4599 RAMState *rs = *(RAMState **)opaque;
4600 int ret;
4601
4602 ret = ram_dirty_bitmap_sync_all(s, rs);
4603 if (ret) {
4604 return ret;
4605 }
4606
4607 ram_state_resume_prepare(rs, s->to_dst_file);
4608
4609 return 0;
4610 }
4611
4612 static SaveVMHandlers savevm_ram_handlers = {
4613 .save_setup = ram_save_setup,
4614 .save_live_iterate = ram_save_iterate,
4615 .save_live_complete_postcopy = ram_save_complete,
4616 .save_live_complete_precopy = ram_save_complete,
4617 .has_postcopy = ram_has_postcopy,
4618 .save_live_pending = ram_save_pending,
4619 .load_state = ram_load,
4620 .save_cleanup = ram_save_cleanup,
4621 .load_setup = ram_load_setup,
4622 .load_cleanup = ram_load_cleanup,
4623 .resume_prepare = ram_resume_prepare,
4624 };
4625
4626 void ram_mig_init(void)
4627 {
4628 qemu_mutex_init(&XBZRLE.lock);
4629 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4630 }