]> git.proxmox.com Git - mirror_qemu.git/blob - migration/ram.c
hw/vfio/ccw: avoid taking address members in packed structs
[mirror_qemu.git] / migration / ram.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/pmem.h"
37 #include "xbzrle.h"
38 #include "ram.h"
39 #include "migration.h"
40 #include "socket.h"
41 #include "migration/register.h"
42 #include "migration/misc.h"
43 #include "qemu-file.h"
44 #include "postcopy-ram.h"
45 #include "page_cache.h"
46 #include "qemu/error-report.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qmp/qerror.h"
50 #include "trace.h"
51 #include "exec/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
55 #include "block.h"
56 #include "sysemu/sysemu.h"
57 #include "qemu/uuid.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60
61 /***********************************************************/
62 /* ram save/restore */
63
64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
71 #define RAM_SAVE_FLAG_ZERO 0x02
72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
73 #define RAM_SAVE_FLAG_PAGE 0x08
74 #define RAM_SAVE_FLAG_EOS 0x10
75 #define RAM_SAVE_FLAG_CONTINUE 0x20
76 #define RAM_SAVE_FLAG_XBZRLE 0x40
77 /* 0x80 is reserved in migration.h start with 0x100 next */
78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
80 static inline bool is_zero_range(uint8_t *p, uint64_t size)
81 {
82 return buffer_is_zero(p, size);
83 }
84
85 XBZRLECacheStats xbzrle_counters;
86
87 /* struct contains XBZRLE cache and a static page
88 used by the compression */
89 static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
101 } XBZRLE;
102
103 static void XBZRLE_cache_lock(void)
104 {
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107 }
108
109 static void XBZRLE_cache_unlock(void)
110 {
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113 }
114
115 /**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
123 * Returns 0 for success or -1 for error
124 *
125 * @new_size: new cache size
126 * @errp: set *errp if the check failed, with reason
127 */
128 int xbzrle_cache_resize(int64_t new_size, Error **errp)
129 {
130 PageCache *new_cache;
131 int64_t ret = 0;
132
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
142 return 0;
143 }
144
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
149 if (!new_cache) {
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
157 out:
158 XBZRLE_cache_unlock();
159 return ret;
160 }
161
162 static bool ramblock_is_ignored(RAMBlock *block)
163 {
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
166 }
167
168 /* Should be holding either ram_list.mutex, or the RCU lock. */
169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
172
173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
174 INTERNAL_RAMBLOCK_FOREACH(block) \
175 if (!qemu_ram_is_migratable(block)) {} else
176
177 #undef RAMBLOCK_FOREACH
178
179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
180 {
181 RAMBlock *block;
182 int ret = 0;
183
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 rcu_read_unlock();
192 return ret;
193 }
194
195 static void ramblock_recv_map_init(void)
196 {
197 RAMBlock *rb;
198
199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
202 }
203 }
204
205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
206 {
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
209 }
210
211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
212 {
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
214 }
215
216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
217 {
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
219 }
220
221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
223 {
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
227 }
228
229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
230
231 /*
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
233 *
234 * Returns >0 if success with sent bytes, or <0 if error.
235 */
236 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
238 {
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
242
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
246 }
247
248 nbits = block->used_length >> TARGET_PAGE_BITS;
249
250 /*
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
254 */
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
256
257 /*
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
261 */
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
263
264 /* Size of the bitmap, in bytes */
265 size = DIV_ROUND_UP(nbits, 8);
266
267 /*
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
272 */
273 size = ROUND_UP(size, 8);
274
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
277 /*
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
280 */
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
283
284 g_free(le_bitmap);
285
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
288 }
289
290 return size + sizeof(size);
291 }
292
293 /*
294 * An outstanding page request, on the source, having been received
295 * and queued
296 */
297 struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
301
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
303 };
304
305 /* State of RAM for migration */
306 struct RAMState {
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
326 /* bytes transferred at start_time */
327 uint64_t bytes_xfer_prev;
328 /* number of dirty pages since start_time */
329 uint64_t num_dirty_pages_period;
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
332
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
340
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
345 /* number of dirty bits in the bitmap */
346 uint64_t migration_dirty_pages;
347 /* Protects modification of the bitmap and migration dirty pages */
348 QemuMutex bitmap_mutex;
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
354 };
355 typedef struct RAMState RAMState;
356
357 static RAMState *ram_state;
358
359 static NotifierWithReturnList precopy_notifier_list;
360
361 void precopy_infrastructure_init(void)
362 {
363 notifier_with_return_list_init(&precopy_notifier_list);
364 }
365
366 void precopy_add_notifier(NotifierWithReturn *n)
367 {
368 notifier_with_return_list_add(&precopy_notifier_list, n);
369 }
370
371 void precopy_remove_notifier(NotifierWithReturn *n)
372 {
373 notifier_with_return_remove(n);
374 }
375
376 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
377 {
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
381
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
383 }
384
385 void precopy_enable_free_page_optimization(void)
386 {
387 if (!ram_state) {
388 return;
389 }
390
391 ram_state->fpo_enabled = true;
392 }
393
394 uint64_t ram_bytes_remaining(void)
395 {
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
397 0;
398 }
399
400 MigrationStats ram_counters;
401
402 /* used by the search for pages to send */
403 struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
406 /* Current page to search from */
407 unsigned long page;
408 /* Set once we wrap around */
409 bool complete_round;
410 };
411 typedef struct PageSearchStatus PageSearchStatus;
412
413 CompressionStats compression_counters;
414
415 struct CompressParam {
416 bool done;
417 bool quit;
418 bool zero_page;
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
424
425 /* internally used fields */
426 z_stream stream;
427 uint8_t *originbuf;
428 };
429 typedef struct CompressParam CompressParam;
430
431 struct DecompressParam {
432 bool done;
433 bool quit;
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
437 uint8_t *compbuf;
438 int len;
439 z_stream stream;
440 };
441 typedef struct DecompressParam DecompressParam;
442
443 static CompressParam *comp_param;
444 static QemuThread *compress_threads;
445 /* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
448 */
449 static QemuMutex comp_done_lock;
450 static QemuCond comp_done_cond;
451 /* The empty QEMUFileOps will be used by file in CompressParam */
452 static const QEMUFileOps empty_ops = { };
453
454 static QEMUFile *decomp_file;
455 static DecompressParam *decomp_param;
456 static QemuThread *decompress_threads;
457 static QemuMutex decomp_done_lock;
458 static QemuCond decomp_done_cond;
459
460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
461 ram_addr_t offset, uint8_t *source_buf);
462
463 static void *do_data_compress(void *opaque)
464 {
465 CompressParam *param = opaque;
466 RAMBlock *block;
467 ram_addr_t offset;
468 bool zero_page;
469
470 qemu_mutex_lock(&param->mutex);
471 while (!param->quit) {
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
477
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
480
481 qemu_mutex_lock(&comp_done_lock);
482 param->done = true;
483 param->zero_page = zero_page;
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
486
487 qemu_mutex_lock(&param->mutex);
488 } else {
489 qemu_cond_wait(&param->cond, &param->mutex);
490 }
491 }
492 qemu_mutex_unlock(&param->mutex);
493
494 return NULL;
495 }
496
497 static void compress_threads_save_cleanup(void)
498 {
499 int i, thread_count;
500
501 if (!migrate_use_compression() || !comp_param) {
502 return;
503 }
504
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
507 /*
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
510 */
511 if (!comp_param[i].file) {
512 break;
513 }
514
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
519
520 qemu_thread_join(compress_threads + i);
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
523 deflateEnd(&comp_param[i].stream);
524 g_free(comp_param[i].originbuf);
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
527 }
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
530 g_free(compress_threads);
531 g_free(comp_param);
532 compress_threads = NULL;
533 comp_param = NULL;
534 }
535
536 static int compress_threads_save_setup(void)
537 {
538 int i, thread_count;
539
540 if (!migrate_use_compression()) {
541 return 0;
542 }
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
548 for (i = 0; i < thread_count; i++) {
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
552 }
553
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
556 g_free(comp_param[i].originbuf);
557 goto exit;
558 }
559
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
562 */
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
565 comp_param[i].quit = false;
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
571 }
572 return 0;
573
574 exit:
575 compress_threads_save_cleanup();
576 return -1;
577 }
578
579 /* Multiple fd's */
580
581 #define MULTIFD_MAGIC 0x11223344U
582 #define MULTIFD_VERSION 1
583
584 #define MULTIFD_FLAG_SYNC (1 << 0)
585
586 /* This value needs to be a multiple of qemu_target_page_size() */
587 #define MULTIFD_PACKET_SIZE (512 * 1024)
588
589 typedef struct {
590 uint32_t magic;
591 uint32_t version;
592 unsigned char uuid[16]; /* QemuUUID */
593 uint8_t id;
594 uint8_t unused1[7]; /* Reserved for future use */
595 uint64_t unused2[4]; /* Reserved for future use */
596 } __attribute__((packed)) MultiFDInit_t;
597
598 typedef struct {
599 uint32_t magic;
600 uint32_t version;
601 uint32_t flags;
602 /* maximum number of allocated pages */
603 uint32_t pages_alloc;
604 uint32_t pages_used;
605 /* size of the next packet that contains pages */
606 uint32_t next_packet_size;
607 uint64_t packet_num;
608 uint64_t unused[4]; /* Reserved for future use */
609 char ramblock[256];
610 uint64_t offset[];
611 } __attribute__((packed)) MultiFDPacket_t;
612
613 typedef struct {
614 /* number of used pages */
615 uint32_t used;
616 /* number of allocated pages */
617 uint32_t allocated;
618 /* global number of generated multifd packets */
619 uint64_t packet_num;
620 /* offset of each page */
621 ram_addr_t *offset;
622 /* pointer to each page */
623 struct iovec *iov;
624 RAMBlock *block;
625 } MultiFDPages_t;
626
627 typedef struct {
628 /* this fields are not changed once the thread is created */
629 /* channel number */
630 uint8_t id;
631 /* channel thread name */
632 char *name;
633 /* channel thread id */
634 QemuThread thread;
635 /* communication channel */
636 QIOChannel *c;
637 /* sem where to wait for more work */
638 QemuSemaphore sem;
639 /* this mutex protects the following parameters */
640 QemuMutex mutex;
641 /* is this channel thread running */
642 bool running;
643 /* should this thread finish */
644 bool quit;
645 /* thread has work to do */
646 int pending_job;
647 /* array of pages to sent */
648 MultiFDPages_t *pages;
649 /* packet allocated len */
650 uint32_t packet_len;
651 /* pointer to the packet */
652 MultiFDPacket_t *packet;
653 /* multifd flags for each packet */
654 uint32_t flags;
655 /* size of the next packet that contains pages */
656 uint32_t next_packet_size;
657 /* global number of generated multifd packets */
658 uint64_t packet_num;
659 /* thread local variables */
660 /* packets sent through this channel */
661 uint64_t num_packets;
662 /* pages sent through this channel */
663 uint64_t num_pages;
664 /* syncs main thread and channels */
665 QemuSemaphore sem_sync;
666 } MultiFDSendParams;
667
668 typedef struct {
669 /* this fields are not changed once the thread is created */
670 /* channel number */
671 uint8_t id;
672 /* channel thread name */
673 char *name;
674 /* channel thread id */
675 QemuThread thread;
676 /* communication channel */
677 QIOChannel *c;
678 /* this mutex protects the following parameters */
679 QemuMutex mutex;
680 /* is this channel thread running */
681 bool running;
682 /* array of pages to receive */
683 MultiFDPages_t *pages;
684 /* packet allocated len */
685 uint32_t packet_len;
686 /* pointer to the packet */
687 MultiFDPacket_t *packet;
688 /* multifd flags for each packet */
689 uint32_t flags;
690 /* global number of generated multifd packets */
691 uint64_t packet_num;
692 /* thread local variables */
693 /* size of the next packet that contains pages */
694 uint32_t next_packet_size;
695 /* packets sent through this channel */
696 uint64_t num_packets;
697 /* pages sent through this channel */
698 uint64_t num_pages;
699 /* syncs main thread and channels */
700 QemuSemaphore sem_sync;
701 } MultiFDRecvParams;
702
703 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
704 {
705 MultiFDInit_t msg;
706 int ret;
707
708 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
709 msg.version = cpu_to_be32(MULTIFD_VERSION);
710 msg.id = p->id;
711 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
712
713 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
714 if (ret != 0) {
715 return -1;
716 }
717 return 0;
718 }
719
720 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
721 {
722 MultiFDInit_t msg;
723 int ret;
724
725 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
726 if (ret != 0) {
727 return -1;
728 }
729
730 msg.magic = be32_to_cpu(msg.magic);
731 msg.version = be32_to_cpu(msg.version);
732
733 if (msg.magic != MULTIFD_MAGIC) {
734 error_setg(errp, "multifd: received packet magic %x "
735 "expected %x", msg.magic, MULTIFD_MAGIC);
736 return -1;
737 }
738
739 if (msg.version != MULTIFD_VERSION) {
740 error_setg(errp, "multifd: received packet version %d "
741 "expected %d", msg.version, MULTIFD_VERSION);
742 return -1;
743 }
744
745 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
746 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
747 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
748
749 error_setg(errp, "multifd: received uuid '%s' and expected "
750 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
751 g_free(uuid);
752 g_free(msg_uuid);
753 return -1;
754 }
755
756 if (msg.id > migrate_multifd_channels()) {
757 error_setg(errp, "multifd: received channel version %d "
758 "expected %d", msg.version, MULTIFD_VERSION);
759 return -1;
760 }
761
762 return msg.id;
763 }
764
765 static MultiFDPages_t *multifd_pages_init(size_t size)
766 {
767 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
768
769 pages->allocated = size;
770 pages->iov = g_new0(struct iovec, size);
771 pages->offset = g_new0(ram_addr_t, size);
772
773 return pages;
774 }
775
776 static void multifd_pages_clear(MultiFDPages_t *pages)
777 {
778 pages->used = 0;
779 pages->allocated = 0;
780 pages->packet_num = 0;
781 pages->block = NULL;
782 g_free(pages->iov);
783 pages->iov = NULL;
784 g_free(pages->offset);
785 pages->offset = NULL;
786 g_free(pages);
787 }
788
789 static void multifd_send_fill_packet(MultiFDSendParams *p)
790 {
791 MultiFDPacket_t *packet = p->packet;
792 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
793 int i;
794
795 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
796 packet->version = cpu_to_be32(MULTIFD_VERSION);
797 packet->flags = cpu_to_be32(p->flags);
798 packet->pages_alloc = cpu_to_be32(page_max);
799 packet->pages_used = cpu_to_be32(p->pages->used);
800 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
801 packet->packet_num = cpu_to_be64(p->packet_num);
802
803 if (p->pages->block) {
804 strncpy(packet->ramblock, p->pages->block->idstr, 256);
805 }
806
807 for (i = 0; i < p->pages->used; i++) {
808 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
809 }
810 }
811
812 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
813 {
814 MultiFDPacket_t *packet = p->packet;
815 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
816 RAMBlock *block;
817 int i;
818
819 packet->magic = be32_to_cpu(packet->magic);
820 if (packet->magic != MULTIFD_MAGIC) {
821 error_setg(errp, "multifd: received packet "
822 "magic %x and expected magic %x",
823 packet->magic, MULTIFD_MAGIC);
824 return -1;
825 }
826
827 packet->version = be32_to_cpu(packet->version);
828 if (packet->version != MULTIFD_VERSION) {
829 error_setg(errp, "multifd: received packet "
830 "version %d and expected version %d",
831 packet->version, MULTIFD_VERSION);
832 return -1;
833 }
834
835 p->flags = be32_to_cpu(packet->flags);
836
837 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
838 /*
839 * If we recevied a packet that is 100 times bigger than expected
840 * just stop migration. It is a magic number.
841 */
842 if (packet->pages_alloc > pages_max * 100) {
843 error_setg(errp, "multifd: received packet "
844 "with size %d and expected a maximum size of %d",
845 packet->pages_alloc, pages_max * 100) ;
846 return -1;
847 }
848 /*
849 * We received a packet that is bigger than expected but inside
850 * reasonable limits (see previous comment). Just reallocate.
851 */
852 if (packet->pages_alloc > p->pages->allocated) {
853 multifd_pages_clear(p->pages);
854 multifd_pages_init(packet->pages_alloc);
855 }
856
857 p->pages->used = be32_to_cpu(packet->pages_used);
858 if (p->pages->used > packet->pages_alloc) {
859 error_setg(errp, "multifd: received packet "
860 "with %d pages and expected maximum pages are %d",
861 p->pages->used, packet->pages_alloc) ;
862 return -1;
863 }
864
865 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
866 p->packet_num = be64_to_cpu(packet->packet_num);
867
868 if (p->pages->used) {
869 /* make sure that ramblock is 0 terminated */
870 packet->ramblock[255] = 0;
871 block = qemu_ram_block_by_name(packet->ramblock);
872 if (!block) {
873 error_setg(errp, "multifd: unknown ram block %s",
874 packet->ramblock);
875 return -1;
876 }
877 }
878
879 for (i = 0; i < p->pages->used; i++) {
880 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
881
882 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
883 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
884 " (max " RAM_ADDR_FMT ")",
885 offset, block->max_length);
886 return -1;
887 }
888 p->pages->iov[i].iov_base = block->host + offset;
889 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
890 }
891
892 return 0;
893 }
894
895 struct {
896 MultiFDSendParams *params;
897 /* number of created threads */
898 int count;
899 /* array of pages to sent */
900 MultiFDPages_t *pages;
901 /* syncs main thread and channels */
902 QemuSemaphore sem_sync;
903 /* global number of generated multifd packets */
904 uint64_t packet_num;
905 /* send channels ready */
906 QemuSemaphore channels_ready;
907 } *multifd_send_state;
908
909 /*
910 * How we use multifd_send_state->pages and channel->pages?
911 *
912 * We create a pages for each channel, and a main one. Each time that
913 * we need to send a batch of pages we interchange the ones between
914 * multifd_send_state and the channel that is sending it. There are
915 * two reasons for that:
916 * - to not have to do so many mallocs during migration
917 * - to make easier to know what to free at the end of migration
918 *
919 * This way we always know who is the owner of each "pages" struct,
920 * and we don't need any loocking. It belongs to the migration thread
921 * or to the channel thread. Switching is safe because the migration
922 * thread is using the channel mutex when changing it, and the channel
923 * have to had finish with its own, otherwise pending_job can't be
924 * false.
925 */
926
927 static void multifd_send_pages(void)
928 {
929 int i;
930 static int next_channel;
931 MultiFDSendParams *p = NULL; /* make happy gcc */
932 MultiFDPages_t *pages = multifd_send_state->pages;
933 uint64_t transferred;
934
935 qemu_sem_wait(&multifd_send_state->channels_ready);
936 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
937 p = &multifd_send_state->params[i];
938
939 qemu_mutex_lock(&p->mutex);
940 if (!p->pending_job) {
941 p->pending_job++;
942 next_channel = (i + 1) % migrate_multifd_channels();
943 break;
944 }
945 qemu_mutex_unlock(&p->mutex);
946 }
947 p->pages->used = 0;
948
949 p->packet_num = multifd_send_state->packet_num++;
950 p->pages->block = NULL;
951 multifd_send_state->pages = p->pages;
952 p->pages = pages;
953 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
954 ram_counters.multifd_bytes += transferred;
955 ram_counters.transferred += transferred;;
956 qemu_mutex_unlock(&p->mutex);
957 qemu_sem_post(&p->sem);
958 }
959
960 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
961 {
962 MultiFDPages_t *pages = multifd_send_state->pages;
963
964 if (!pages->block) {
965 pages->block = block;
966 }
967
968 if (pages->block == block) {
969 pages->offset[pages->used] = offset;
970 pages->iov[pages->used].iov_base = block->host + offset;
971 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
972 pages->used++;
973
974 if (pages->used < pages->allocated) {
975 return;
976 }
977 }
978
979 multifd_send_pages();
980
981 if (pages->block != block) {
982 multifd_queue_page(block, offset);
983 }
984 }
985
986 static void multifd_send_terminate_threads(Error *err)
987 {
988 int i;
989
990 if (err) {
991 MigrationState *s = migrate_get_current();
992 migrate_set_error(s, err);
993 if (s->state == MIGRATION_STATUS_SETUP ||
994 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
995 s->state == MIGRATION_STATUS_DEVICE ||
996 s->state == MIGRATION_STATUS_ACTIVE) {
997 migrate_set_state(&s->state, s->state,
998 MIGRATION_STATUS_FAILED);
999 }
1000 }
1001
1002 for (i = 0; i < migrate_multifd_channels(); i++) {
1003 MultiFDSendParams *p = &multifd_send_state->params[i];
1004
1005 qemu_mutex_lock(&p->mutex);
1006 p->quit = true;
1007 qemu_sem_post(&p->sem);
1008 qemu_mutex_unlock(&p->mutex);
1009 }
1010 }
1011
1012 void multifd_save_cleanup(void)
1013 {
1014 int i;
1015
1016 if (!migrate_use_multifd()) {
1017 return;
1018 }
1019 multifd_send_terminate_threads(NULL);
1020 for (i = 0; i < migrate_multifd_channels(); i++) {
1021 MultiFDSendParams *p = &multifd_send_state->params[i];
1022
1023 if (p->running) {
1024 qemu_thread_join(&p->thread);
1025 }
1026 socket_send_channel_destroy(p->c);
1027 p->c = NULL;
1028 qemu_mutex_destroy(&p->mutex);
1029 qemu_sem_destroy(&p->sem);
1030 qemu_sem_destroy(&p->sem_sync);
1031 g_free(p->name);
1032 p->name = NULL;
1033 multifd_pages_clear(p->pages);
1034 p->pages = NULL;
1035 p->packet_len = 0;
1036 g_free(p->packet);
1037 p->packet = NULL;
1038 }
1039 qemu_sem_destroy(&multifd_send_state->channels_ready);
1040 qemu_sem_destroy(&multifd_send_state->sem_sync);
1041 g_free(multifd_send_state->params);
1042 multifd_send_state->params = NULL;
1043 multifd_pages_clear(multifd_send_state->pages);
1044 multifd_send_state->pages = NULL;
1045 g_free(multifd_send_state);
1046 multifd_send_state = NULL;
1047 }
1048
1049 static void multifd_send_sync_main(void)
1050 {
1051 int i;
1052
1053 if (!migrate_use_multifd()) {
1054 return;
1055 }
1056 if (multifd_send_state->pages->used) {
1057 multifd_send_pages();
1058 }
1059 for (i = 0; i < migrate_multifd_channels(); i++) {
1060 MultiFDSendParams *p = &multifd_send_state->params[i];
1061
1062 trace_multifd_send_sync_main_signal(p->id);
1063
1064 qemu_mutex_lock(&p->mutex);
1065
1066 p->packet_num = multifd_send_state->packet_num++;
1067 p->flags |= MULTIFD_FLAG_SYNC;
1068 p->pending_job++;
1069 qemu_mutex_unlock(&p->mutex);
1070 qemu_sem_post(&p->sem);
1071 }
1072 for (i = 0; i < migrate_multifd_channels(); i++) {
1073 MultiFDSendParams *p = &multifd_send_state->params[i];
1074
1075 trace_multifd_send_sync_main_wait(p->id);
1076 qemu_sem_wait(&multifd_send_state->sem_sync);
1077 }
1078 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1079 }
1080
1081 static void *multifd_send_thread(void *opaque)
1082 {
1083 MultiFDSendParams *p = opaque;
1084 Error *local_err = NULL;
1085 int ret;
1086
1087 trace_multifd_send_thread_start(p->id);
1088 rcu_register_thread();
1089
1090 if (multifd_send_initial_packet(p, &local_err) < 0) {
1091 goto out;
1092 }
1093 /* initial packet */
1094 p->num_packets = 1;
1095
1096 while (true) {
1097 qemu_sem_wait(&p->sem);
1098 qemu_mutex_lock(&p->mutex);
1099
1100 if (p->pending_job) {
1101 uint32_t used = p->pages->used;
1102 uint64_t packet_num = p->packet_num;
1103 uint32_t flags = p->flags;
1104
1105 p->next_packet_size = used * qemu_target_page_size();
1106 multifd_send_fill_packet(p);
1107 p->flags = 0;
1108 p->num_packets++;
1109 p->num_pages += used;
1110 p->pages->used = 0;
1111 qemu_mutex_unlock(&p->mutex);
1112
1113 trace_multifd_send(p->id, packet_num, used, flags,
1114 p->next_packet_size);
1115
1116 ret = qio_channel_write_all(p->c, (void *)p->packet,
1117 p->packet_len, &local_err);
1118 if (ret != 0) {
1119 break;
1120 }
1121
1122 if (used) {
1123 ret = qio_channel_writev_all(p->c, p->pages->iov,
1124 used, &local_err);
1125 if (ret != 0) {
1126 break;
1127 }
1128 }
1129
1130 qemu_mutex_lock(&p->mutex);
1131 p->pending_job--;
1132 qemu_mutex_unlock(&p->mutex);
1133
1134 if (flags & MULTIFD_FLAG_SYNC) {
1135 qemu_sem_post(&multifd_send_state->sem_sync);
1136 }
1137 qemu_sem_post(&multifd_send_state->channels_ready);
1138 } else if (p->quit) {
1139 qemu_mutex_unlock(&p->mutex);
1140 break;
1141 } else {
1142 qemu_mutex_unlock(&p->mutex);
1143 /* sometimes there are spurious wakeups */
1144 }
1145 }
1146
1147 out:
1148 if (local_err) {
1149 multifd_send_terminate_threads(local_err);
1150 }
1151
1152 qemu_mutex_lock(&p->mutex);
1153 p->running = false;
1154 qemu_mutex_unlock(&p->mutex);
1155
1156 rcu_unregister_thread();
1157 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1158
1159 return NULL;
1160 }
1161
1162 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1163 {
1164 MultiFDSendParams *p = opaque;
1165 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1166 Error *local_err = NULL;
1167
1168 if (qio_task_propagate_error(task, &local_err)) {
1169 migrate_set_error(migrate_get_current(), local_err);
1170 multifd_save_cleanup();
1171 } else {
1172 p->c = QIO_CHANNEL(sioc);
1173 qio_channel_set_delay(p->c, false);
1174 p->running = true;
1175 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1176 QEMU_THREAD_JOINABLE);
1177
1178 atomic_inc(&multifd_send_state->count);
1179 }
1180 }
1181
1182 int multifd_save_setup(void)
1183 {
1184 int thread_count;
1185 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1186 uint8_t i;
1187
1188 if (!migrate_use_multifd()) {
1189 return 0;
1190 }
1191 thread_count = migrate_multifd_channels();
1192 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1193 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1194 atomic_set(&multifd_send_state->count, 0);
1195 multifd_send_state->pages = multifd_pages_init(page_count);
1196 qemu_sem_init(&multifd_send_state->sem_sync, 0);
1197 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1198
1199 for (i = 0; i < thread_count; i++) {
1200 MultiFDSendParams *p = &multifd_send_state->params[i];
1201
1202 qemu_mutex_init(&p->mutex);
1203 qemu_sem_init(&p->sem, 0);
1204 qemu_sem_init(&p->sem_sync, 0);
1205 p->quit = false;
1206 p->pending_job = 0;
1207 p->id = i;
1208 p->pages = multifd_pages_init(page_count);
1209 p->packet_len = sizeof(MultiFDPacket_t)
1210 + sizeof(ram_addr_t) * page_count;
1211 p->packet = g_malloc0(p->packet_len);
1212 p->name = g_strdup_printf("multifdsend_%d", i);
1213 socket_send_channel_create(multifd_new_send_channel_async, p);
1214 }
1215 return 0;
1216 }
1217
1218 struct {
1219 MultiFDRecvParams *params;
1220 /* number of created threads */
1221 int count;
1222 /* syncs main thread and channels */
1223 QemuSemaphore sem_sync;
1224 /* global number of generated multifd packets */
1225 uint64_t packet_num;
1226 } *multifd_recv_state;
1227
1228 static void multifd_recv_terminate_threads(Error *err)
1229 {
1230 int i;
1231
1232 if (err) {
1233 MigrationState *s = migrate_get_current();
1234 migrate_set_error(s, err);
1235 if (s->state == MIGRATION_STATUS_SETUP ||
1236 s->state == MIGRATION_STATUS_ACTIVE) {
1237 migrate_set_state(&s->state, s->state,
1238 MIGRATION_STATUS_FAILED);
1239 }
1240 }
1241
1242 for (i = 0; i < migrate_multifd_channels(); i++) {
1243 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1244
1245 qemu_mutex_lock(&p->mutex);
1246 /* We could arrive here for two reasons:
1247 - normal quit, i.e. everything went fine, just finished
1248 - error quit: We close the channels so the channel threads
1249 finish the qio_channel_read_all_eof() */
1250 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1251 qemu_mutex_unlock(&p->mutex);
1252 }
1253 }
1254
1255 int multifd_load_cleanup(Error **errp)
1256 {
1257 int i;
1258 int ret = 0;
1259
1260 if (!migrate_use_multifd()) {
1261 return 0;
1262 }
1263 multifd_recv_terminate_threads(NULL);
1264 for (i = 0; i < migrate_multifd_channels(); i++) {
1265 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1266
1267 if (p->running) {
1268 qemu_thread_join(&p->thread);
1269 }
1270 object_unref(OBJECT(p->c));
1271 p->c = NULL;
1272 qemu_mutex_destroy(&p->mutex);
1273 qemu_sem_destroy(&p->sem_sync);
1274 g_free(p->name);
1275 p->name = NULL;
1276 multifd_pages_clear(p->pages);
1277 p->pages = NULL;
1278 p->packet_len = 0;
1279 g_free(p->packet);
1280 p->packet = NULL;
1281 }
1282 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1283 g_free(multifd_recv_state->params);
1284 multifd_recv_state->params = NULL;
1285 g_free(multifd_recv_state);
1286 multifd_recv_state = NULL;
1287
1288 return ret;
1289 }
1290
1291 static void multifd_recv_sync_main(void)
1292 {
1293 int i;
1294
1295 if (!migrate_use_multifd()) {
1296 return;
1297 }
1298 for (i = 0; i < migrate_multifd_channels(); i++) {
1299 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1300
1301 trace_multifd_recv_sync_main_wait(p->id);
1302 qemu_sem_wait(&multifd_recv_state->sem_sync);
1303 qemu_mutex_lock(&p->mutex);
1304 if (multifd_recv_state->packet_num < p->packet_num) {
1305 multifd_recv_state->packet_num = p->packet_num;
1306 }
1307 qemu_mutex_unlock(&p->mutex);
1308 }
1309 for (i = 0; i < migrate_multifd_channels(); i++) {
1310 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1311
1312 trace_multifd_recv_sync_main_signal(p->id);
1313 qemu_sem_post(&p->sem_sync);
1314 }
1315 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1316 }
1317
1318 static void *multifd_recv_thread(void *opaque)
1319 {
1320 MultiFDRecvParams *p = opaque;
1321 Error *local_err = NULL;
1322 int ret;
1323
1324 trace_multifd_recv_thread_start(p->id);
1325 rcu_register_thread();
1326
1327 while (true) {
1328 uint32_t used;
1329 uint32_t flags;
1330
1331 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1332 p->packet_len, &local_err);
1333 if (ret == 0) { /* EOF */
1334 break;
1335 }
1336 if (ret == -1) { /* Error */
1337 break;
1338 }
1339
1340 qemu_mutex_lock(&p->mutex);
1341 ret = multifd_recv_unfill_packet(p, &local_err);
1342 if (ret) {
1343 qemu_mutex_unlock(&p->mutex);
1344 break;
1345 }
1346
1347 used = p->pages->used;
1348 flags = p->flags;
1349 trace_multifd_recv(p->id, p->packet_num, used, flags,
1350 p->next_packet_size);
1351 p->num_packets++;
1352 p->num_pages += used;
1353 qemu_mutex_unlock(&p->mutex);
1354
1355 if (used) {
1356 ret = qio_channel_readv_all(p->c, p->pages->iov,
1357 used, &local_err);
1358 if (ret != 0) {
1359 break;
1360 }
1361 }
1362
1363 if (flags & MULTIFD_FLAG_SYNC) {
1364 qemu_sem_post(&multifd_recv_state->sem_sync);
1365 qemu_sem_wait(&p->sem_sync);
1366 }
1367 }
1368
1369 if (local_err) {
1370 multifd_recv_terminate_threads(local_err);
1371 }
1372 qemu_mutex_lock(&p->mutex);
1373 p->running = false;
1374 qemu_mutex_unlock(&p->mutex);
1375
1376 rcu_unregister_thread();
1377 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1378
1379 return NULL;
1380 }
1381
1382 int multifd_load_setup(void)
1383 {
1384 int thread_count;
1385 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1386 uint8_t i;
1387
1388 if (!migrate_use_multifd()) {
1389 return 0;
1390 }
1391 thread_count = migrate_multifd_channels();
1392 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1393 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1394 atomic_set(&multifd_recv_state->count, 0);
1395 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1396
1397 for (i = 0; i < thread_count; i++) {
1398 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1399
1400 qemu_mutex_init(&p->mutex);
1401 qemu_sem_init(&p->sem_sync, 0);
1402 p->id = i;
1403 p->pages = multifd_pages_init(page_count);
1404 p->packet_len = sizeof(MultiFDPacket_t)
1405 + sizeof(ram_addr_t) * page_count;
1406 p->packet = g_malloc0(p->packet_len);
1407 p->name = g_strdup_printf("multifdrecv_%d", i);
1408 }
1409 return 0;
1410 }
1411
1412 bool multifd_recv_all_channels_created(void)
1413 {
1414 int thread_count = migrate_multifd_channels();
1415
1416 if (!migrate_use_multifd()) {
1417 return true;
1418 }
1419
1420 return thread_count == atomic_read(&multifd_recv_state->count);
1421 }
1422
1423 /*
1424 * Try to receive all multifd channels to get ready for the migration.
1425 * - Return true and do not set @errp when correctly receving all channels;
1426 * - Return false and do not set @errp when correctly receiving the current one;
1427 * - Return false and set @errp when failing to receive the current channel.
1428 */
1429 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1430 {
1431 MultiFDRecvParams *p;
1432 Error *local_err = NULL;
1433 int id;
1434
1435 id = multifd_recv_initial_packet(ioc, &local_err);
1436 if (id < 0) {
1437 multifd_recv_terminate_threads(local_err);
1438 error_propagate_prepend(errp, local_err,
1439 "failed to receive packet"
1440 " via multifd channel %d: ",
1441 atomic_read(&multifd_recv_state->count));
1442 return false;
1443 }
1444
1445 p = &multifd_recv_state->params[id];
1446 if (p->c != NULL) {
1447 error_setg(&local_err, "multifd: received id '%d' already setup'",
1448 id);
1449 multifd_recv_terminate_threads(local_err);
1450 error_propagate(errp, local_err);
1451 return false;
1452 }
1453 p->c = ioc;
1454 object_ref(OBJECT(ioc));
1455 /* initial packet */
1456 p->num_packets = 1;
1457
1458 p->running = true;
1459 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1460 QEMU_THREAD_JOINABLE);
1461 atomic_inc(&multifd_recv_state->count);
1462 return atomic_read(&multifd_recv_state->count) ==
1463 migrate_multifd_channels();
1464 }
1465
1466 /**
1467 * save_page_header: write page header to wire
1468 *
1469 * If this is the 1st block, it also writes the block identification
1470 *
1471 * Returns the number of bytes written
1472 *
1473 * @f: QEMUFile where to send the data
1474 * @block: block that contains the page we want to send
1475 * @offset: offset inside the block for the page
1476 * in the lower bits, it contains flags
1477 */
1478 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1479 ram_addr_t offset)
1480 {
1481 size_t size, len;
1482
1483 if (block == rs->last_sent_block) {
1484 offset |= RAM_SAVE_FLAG_CONTINUE;
1485 }
1486 qemu_put_be64(f, offset);
1487 size = 8;
1488
1489 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1490 len = strlen(block->idstr);
1491 qemu_put_byte(f, len);
1492 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1493 size += 1 + len;
1494 rs->last_sent_block = block;
1495 }
1496 return size;
1497 }
1498
1499 /**
1500 * mig_throttle_guest_down: throotle down the guest
1501 *
1502 * Reduce amount of guest cpu execution to hopefully slow down memory
1503 * writes. If guest dirty memory rate is reduced below the rate at
1504 * which we can transfer pages to the destination then we should be
1505 * able to complete migration. Some workloads dirty memory way too
1506 * fast and will not effectively converge, even with auto-converge.
1507 */
1508 static void mig_throttle_guest_down(void)
1509 {
1510 MigrationState *s = migrate_get_current();
1511 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1512 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1513 int pct_max = s->parameters.max_cpu_throttle;
1514
1515 /* We have not started throttling yet. Let's start it. */
1516 if (!cpu_throttle_active()) {
1517 cpu_throttle_set(pct_initial);
1518 } else {
1519 /* Throttling already on, just increase the rate */
1520 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1521 pct_max));
1522 }
1523 }
1524
1525 /**
1526 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1527 *
1528 * @rs: current RAM state
1529 * @current_addr: address for the zero page
1530 *
1531 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1532 * The important thing is that a stale (not-yet-0'd) page be replaced
1533 * by the new data.
1534 * As a bonus, if the page wasn't in the cache it gets added so that
1535 * when a small write is made into the 0'd page it gets XBZRLE sent.
1536 */
1537 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1538 {
1539 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1540 return;
1541 }
1542
1543 /* We don't care if this fails to allocate a new cache page
1544 * as long as it updated an old one */
1545 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1546 ram_counters.dirty_sync_count);
1547 }
1548
1549 #define ENCODING_FLAG_XBZRLE 0x1
1550
1551 /**
1552 * save_xbzrle_page: compress and send current page
1553 *
1554 * Returns: 1 means that we wrote the page
1555 * 0 means that page is identical to the one already sent
1556 * -1 means that xbzrle would be longer than normal
1557 *
1558 * @rs: current RAM state
1559 * @current_data: pointer to the address of the page contents
1560 * @current_addr: addr of the page
1561 * @block: block that contains the page we want to send
1562 * @offset: offset inside the block for the page
1563 * @last_stage: if we are at the completion stage
1564 */
1565 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1566 ram_addr_t current_addr, RAMBlock *block,
1567 ram_addr_t offset, bool last_stage)
1568 {
1569 int encoded_len = 0, bytes_xbzrle;
1570 uint8_t *prev_cached_page;
1571
1572 if (!cache_is_cached(XBZRLE.cache, current_addr,
1573 ram_counters.dirty_sync_count)) {
1574 xbzrle_counters.cache_miss++;
1575 if (!last_stage) {
1576 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1577 ram_counters.dirty_sync_count) == -1) {
1578 return -1;
1579 } else {
1580 /* update *current_data when the page has been
1581 inserted into cache */
1582 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1583 }
1584 }
1585 return -1;
1586 }
1587
1588 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1589
1590 /* save current buffer into memory */
1591 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1592
1593 /* XBZRLE encoding (if there is no overflow) */
1594 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1595 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1596 TARGET_PAGE_SIZE);
1597 if (encoded_len == 0) {
1598 trace_save_xbzrle_page_skipping();
1599 return 0;
1600 } else if (encoded_len == -1) {
1601 trace_save_xbzrle_page_overflow();
1602 xbzrle_counters.overflow++;
1603 /* update data in the cache */
1604 if (!last_stage) {
1605 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
1606 *current_data = prev_cached_page;
1607 }
1608 return -1;
1609 }
1610
1611 /* we need to update the data in the cache, in order to get the same data */
1612 if (!last_stage) {
1613 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1614 }
1615
1616 /* Send XBZRLE based compressed page */
1617 bytes_xbzrle = save_page_header(rs, rs->f, block,
1618 offset | RAM_SAVE_FLAG_XBZRLE);
1619 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1620 qemu_put_be16(rs->f, encoded_len);
1621 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1622 bytes_xbzrle += encoded_len + 1 + 2;
1623 xbzrle_counters.pages++;
1624 xbzrle_counters.bytes += bytes_xbzrle;
1625 ram_counters.transferred += bytes_xbzrle;
1626
1627 return 1;
1628 }
1629
1630 /**
1631 * migration_bitmap_find_dirty: find the next dirty page from start
1632 *
1633 * Called with rcu_read_lock() to protect migration_bitmap
1634 *
1635 * Returns the byte offset within memory region of the start of a dirty page
1636 *
1637 * @rs: current RAM state
1638 * @rb: RAMBlock where to search for dirty pages
1639 * @start: page where we start the search
1640 */
1641 static inline
1642 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1643 unsigned long start)
1644 {
1645 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1646 unsigned long *bitmap = rb->bmap;
1647 unsigned long next;
1648
1649 if (ramblock_is_ignored(rb)) {
1650 return size;
1651 }
1652
1653 /*
1654 * When the free page optimization is enabled, we need to check the bitmap
1655 * to send the non-free pages rather than all the pages in the bulk stage.
1656 */
1657 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1658 next = start + 1;
1659 } else {
1660 next = find_next_bit(bitmap, size, start);
1661 }
1662
1663 return next;
1664 }
1665
1666 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1667 RAMBlock *rb,
1668 unsigned long page)
1669 {
1670 bool ret;
1671
1672 qemu_mutex_lock(&rs->bitmap_mutex);
1673 ret = test_and_clear_bit(page, rb->bmap);
1674
1675 if (ret) {
1676 rs->migration_dirty_pages--;
1677 }
1678 qemu_mutex_unlock(&rs->bitmap_mutex);
1679
1680 return ret;
1681 }
1682
1683 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1684 ram_addr_t start, ram_addr_t length)
1685 {
1686 rs->migration_dirty_pages +=
1687 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
1688 &rs->num_dirty_pages_period);
1689 }
1690
1691 /**
1692 * ram_pagesize_summary: calculate all the pagesizes of a VM
1693 *
1694 * Returns a summary bitmap of the page sizes of all RAMBlocks
1695 *
1696 * For VMs with just normal pages this is equivalent to the host page
1697 * size. If it's got some huge pages then it's the OR of all the
1698 * different page sizes.
1699 */
1700 uint64_t ram_pagesize_summary(void)
1701 {
1702 RAMBlock *block;
1703 uint64_t summary = 0;
1704
1705 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1706 summary |= block->page_size;
1707 }
1708
1709 return summary;
1710 }
1711
1712 uint64_t ram_get_total_transferred_pages(void)
1713 {
1714 return ram_counters.normal + ram_counters.duplicate +
1715 compression_counters.pages + xbzrle_counters.pages;
1716 }
1717
1718 static void migration_update_rates(RAMState *rs, int64_t end_time)
1719 {
1720 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1721 double compressed_size;
1722
1723 /* calculate period counters */
1724 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1725 / (end_time - rs->time_last_bitmap_sync);
1726
1727 if (!page_count) {
1728 return;
1729 }
1730
1731 if (migrate_use_xbzrle()) {
1732 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1733 rs->xbzrle_cache_miss_prev) / page_count;
1734 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1735 }
1736
1737 if (migrate_use_compression()) {
1738 compression_counters.busy_rate = (double)(compression_counters.busy -
1739 rs->compress_thread_busy_prev) / page_count;
1740 rs->compress_thread_busy_prev = compression_counters.busy;
1741
1742 compressed_size = compression_counters.compressed_size -
1743 rs->compressed_size_prev;
1744 if (compressed_size) {
1745 double uncompressed_size = (compression_counters.pages -
1746 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1747
1748 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1749 compression_counters.compression_rate =
1750 uncompressed_size / compressed_size;
1751
1752 rs->compress_pages_prev = compression_counters.pages;
1753 rs->compressed_size_prev = compression_counters.compressed_size;
1754 }
1755 }
1756 }
1757
1758 static void migration_bitmap_sync(RAMState *rs)
1759 {
1760 RAMBlock *block;
1761 int64_t end_time;
1762 uint64_t bytes_xfer_now;
1763
1764 ram_counters.dirty_sync_count++;
1765
1766 if (!rs->time_last_bitmap_sync) {
1767 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1768 }
1769
1770 trace_migration_bitmap_sync_start();
1771 memory_global_dirty_log_sync();
1772
1773 qemu_mutex_lock(&rs->bitmap_mutex);
1774 rcu_read_lock();
1775 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1776 migration_bitmap_sync_range(rs, block, 0, block->used_length);
1777 }
1778 ram_counters.remaining = ram_bytes_remaining();
1779 rcu_read_unlock();
1780 qemu_mutex_unlock(&rs->bitmap_mutex);
1781
1782 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1783
1784 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1785
1786 /* more than 1 second = 1000 millisecons */
1787 if (end_time > rs->time_last_bitmap_sync + 1000) {
1788 bytes_xfer_now = ram_counters.transferred;
1789
1790 /* During block migration the auto-converge logic incorrectly detects
1791 * that ram migration makes no progress. Avoid this by disabling the
1792 * throttling logic during the bulk phase of block migration. */
1793 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1794 /* The following detection logic can be refined later. For now:
1795 Check to see if the dirtied bytes is 50% more than the approx.
1796 amount of bytes that just got transferred since the last time we
1797 were in this routine. If that happens twice, start or increase
1798 throttling */
1799
1800 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1801 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1802 (++rs->dirty_rate_high_cnt >= 2)) {
1803 trace_migration_throttle();
1804 rs->dirty_rate_high_cnt = 0;
1805 mig_throttle_guest_down();
1806 }
1807 }
1808
1809 migration_update_rates(rs, end_time);
1810
1811 rs->target_page_count_prev = rs->target_page_count;
1812
1813 /* reset period counters */
1814 rs->time_last_bitmap_sync = end_time;
1815 rs->num_dirty_pages_period = 0;
1816 rs->bytes_xfer_prev = bytes_xfer_now;
1817 }
1818 if (migrate_use_events()) {
1819 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1820 }
1821 }
1822
1823 static void migration_bitmap_sync_precopy(RAMState *rs)
1824 {
1825 Error *local_err = NULL;
1826
1827 /*
1828 * The current notifier usage is just an optimization to migration, so we
1829 * don't stop the normal migration process in the error case.
1830 */
1831 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1832 error_report_err(local_err);
1833 }
1834
1835 migration_bitmap_sync(rs);
1836
1837 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1838 error_report_err(local_err);
1839 }
1840 }
1841
1842 /**
1843 * save_zero_page_to_file: send the zero page to the file
1844 *
1845 * Returns the size of data written to the file, 0 means the page is not
1846 * a zero page
1847 *
1848 * @rs: current RAM state
1849 * @file: the file where the data is saved
1850 * @block: block that contains the page we want to send
1851 * @offset: offset inside the block for the page
1852 */
1853 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1854 RAMBlock *block, ram_addr_t offset)
1855 {
1856 uint8_t *p = block->host + offset;
1857 int len = 0;
1858
1859 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1860 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1861 qemu_put_byte(file, 0);
1862 len += 1;
1863 }
1864 return len;
1865 }
1866
1867 /**
1868 * save_zero_page: send the zero page to the stream
1869 *
1870 * Returns the number of pages written.
1871 *
1872 * @rs: current RAM state
1873 * @block: block that contains the page we want to send
1874 * @offset: offset inside the block for the page
1875 */
1876 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1877 {
1878 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1879
1880 if (len) {
1881 ram_counters.duplicate++;
1882 ram_counters.transferred += len;
1883 return 1;
1884 }
1885 return -1;
1886 }
1887
1888 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1889 {
1890 if (!migrate_release_ram() || !migration_in_postcopy()) {
1891 return;
1892 }
1893
1894 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1895 }
1896
1897 /*
1898 * @pages: the number of pages written by the control path,
1899 * < 0 - error
1900 * > 0 - number of pages written
1901 *
1902 * Return true if the pages has been saved, otherwise false is returned.
1903 */
1904 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1905 int *pages)
1906 {
1907 uint64_t bytes_xmit = 0;
1908 int ret;
1909
1910 *pages = -1;
1911 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1912 &bytes_xmit);
1913 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1914 return false;
1915 }
1916
1917 if (bytes_xmit) {
1918 ram_counters.transferred += bytes_xmit;
1919 *pages = 1;
1920 }
1921
1922 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1923 return true;
1924 }
1925
1926 if (bytes_xmit > 0) {
1927 ram_counters.normal++;
1928 } else if (bytes_xmit == 0) {
1929 ram_counters.duplicate++;
1930 }
1931
1932 return true;
1933 }
1934
1935 /*
1936 * directly send the page to the stream
1937 *
1938 * Returns the number of pages written.
1939 *
1940 * @rs: current RAM state
1941 * @block: block that contains the page we want to send
1942 * @offset: offset inside the block for the page
1943 * @buf: the page to be sent
1944 * @async: send to page asyncly
1945 */
1946 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1947 uint8_t *buf, bool async)
1948 {
1949 ram_counters.transferred += save_page_header(rs, rs->f, block,
1950 offset | RAM_SAVE_FLAG_PAGE);
1951 if (async) {
1952 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1953 migrate_release_ram() &
1954 migration_in_postcopy());
1955 } else {
1956 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1957 }
1958 ram_counters.transferred += TARGET_PAGE_SIZE;
1959 ram_counters.normal++;
1960 return 1;
1961 }
1962
1963 /**
1964 * ram_save_page: send the given page to the stream
1965 *
1966 * Returns the number of pages written.
1967 * < 0 - error
1968 * >=0 - Number of pages written - this might legally be 0
1969 * if xbzrle noticed the page was the same.
1970 *
1971 * @rs: current RAM state
1972 * @block: block that contains the page we want to send
1973 * @offset: offset inside the block for the page
1974 * @last_stage: if we are at the completion stage
1975 */
1976 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
1977 {
1978 int pages = -1;
1979 uint8_t *p;
1980 bool send_async = true;
1981 RAMBlock *block = pss->block;
1982 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
1983 ram_addr_t current_addr = block->offset + offset;
1984
1985 p = block->host + offset;
1986 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1987
1988 XBZRLE_cache_lock();
1989 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1990 migrate_use_xbzrle()) {
1991 pages = save_xbzrle_page(rs, &p, current_addr, block,
1992 offset, last_stage);
1993 if (!last_stage) {
1994 /* Can't send this cached data async, since the cache page
1995 * might get updated before it gets to the wire
1996 */
1997 send_async = false;
1998 }
1999 }
2000
2001 /* XBZRLE overflow or normal page */
2002 if (pages == -1) {
2003 pages = save_normal_page(rs, block, offset, p, send_async);
2004 }
2005
2006 XBZRLE_cache_unlock();
2007
2008 return pages;
2009 }
2010
2011 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2012 ram_addr_t offset)
2013 {
2014 multifd_queue_page(block, offset);
2015 ram_counters.normal++;
2016
2017 return 1;
2018 }
2019
2020 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
2021 ram_addr_t offset, uint8_t *source_buf)
2022 {
2023 RAMState *rs = ram_state;
2024 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
2025 bool zero_page = false;
2026 int ret;
2027
2028 if (save_zero_page_to_file(rs, f, block, offset)) {
2029 zero_page = true;
2030 goto exit;
2031 }
2032
2033 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
2034
2035 /*
2036 * copy it to a internal buffer to avoid it being modified by VM
2037 * so that we can catch up the error during compression and
2038 * decompression
2039 */
2040 memcpy(source_buf, p, TARGET_PAGE_SIZE);
2041 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2042 if (ret < 0) {
2043 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2044 error_report("compressed data failed!");
2045 return false;
2046 }
2047
2048 exit:
2049 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2050 return zero_page;
2051 }
2052
2053 static void
2054 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2055 {
2056 ram_counters.transferred += bytes_xmit;
2057
2058 if (param->zero_page) {
2059 ram_counters.duplicate++;
2060 return;
2061 }
2062
2063 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2064 compression_counters.compressed_size += bytes_xmit - 8;
2065 compression_counters.pages++;
2066 }
2067
2068 static bool save_page_use_compression(RAMState *rs);
2069
2070 static void flush_compressed_data(RAMState *rs)
2071 {
2072 int idx, len, thread_count;
2073
2074 if (!save_page_use_compression(rs)) {
2075 return;
2076 }
2077 thread_count = migrate_compress_threads();
2078
2079 qemu_mutex_lock(&comp_done_lock);
2080 for (idx = 0; idx < thread_count; idx++) {
2081 while (!comp_param[idx].done) {
2082 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2083 }
2084 }
2085 qemu_mutex_unlock(&comp_done_lock);
2086
2087 for (idx = 0; idx < thread_count; idx++) {
2088 qemu_mutex_lock(&comp_param[idx].mutex);
2089 if (!comp_param[idx].quit) {
2090 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2091 /*
2092 * it's safe to fetch zero_page without holding comp_done_lock
2093 * as there is no further request submitted to the thread,
2094 * i.e, the thread should be waiting for a request at this point.
2095 */
2096 update_compress_thread_counts(&comp_param[idx], len);
2097 }
2098 qemu_mutex_unlock(&comp_param[idx].mutex);
2099 }
2100 }
2101
2102 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2103 ram_addr_t offset)
2104 {
2105 param->block = block;
2106 param->offset = offset;
2107 }
2108
2109 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2110 ram_addr_t offset)
2111 {
2112 int idx, thread_count, bytes_xmit = -1, pages = -1;
2113 bool wait = migrate_compress_wait_thread();
2114
2115 thread_count = migrate_compress_threads();
2116 qemu_mutex_lock(&comp_done_lock);
2117 retry:
2118 for (idx = 0; idx < thread_count; idx++) {
2119 if (comp_param[idx].done) {
2120 comp_param[idx].done = false;
2121 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2122 qemu_mutex_lock(&comp_param[idx].mutex);
2123 set_compress_params(&comp_param[idx], block, offset);
2124 qemu_cond_signal(&comp_param[idx].cond);
2125 qemu_mutex_unlock(&comp_param[idx].mutex);
2126 pages = 1;
2127 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2128 break;
2129 }
2130 }
2131
2132 /*
2133 * wait for the free thread if the user specifies 'compress-wait-thread',
2134 * otherwise we will post the page out in the main thread as normal page.
2135 */
2136 if (pages < 0 && wait) {
2137 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2138 goto retry;
2139 }
2140 qemu_mutex_unlock(&comp_done_lock);
2141
2142 return pages;
2143 }
2144
2145 /**
2146 * find_dirty_block: find the next dirty page and update any state
2147 * associated with the search process.
2148 *
2149 * Returns if a page is found
2150 *
2151 * @rs: current RAM state
2152 * @pss: data about the state of the current dirty page scan
2153 * @again: set to false if the search has scanned the whole of RAM
2154 */
2155 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2156 {
2157 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2158 if (pss->complete_round && pss->block == rs->last_seen_block &&
2159 pss->page >= rs->last_page) {
2160 /*
2161 * We've been once around the RAM and haven't found anything.
2162 * Give up.
2163 */
2164 *again = false;
2165 return false;
2166 }
2167 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
2168 /* Didn't find anything in this RAM Block */
2169 pss->page = 0;
2170 pss->block = QLIST_NEXT_RCU(pss->block, next);
2171 if (!pss->block) {
2172 /*
2173 * If memory migration starts over, we will meet a dirtied page
2174 * which may still exists in compression threads's ring, so we
2175 * should flush the compressed data to make sure the new page
2176 * is not overwritten by the old one in the destination.
2177 *
2178 * Also If xbzrle is on, stop using the data compression at this
2179 * point. In theory, xbzrle can do better than compression.
2180 */
2181 flush_compressed_data(rs);
2182
2183 /* Hit the end of the list */
2184 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2185 /* Flag that we've looped */
2186 pss->complete_round = true;
2187 rs->ram_bulk_stage = false;
2188 }
2189 /* Didn't find anything this time, but try again on the new block */
2190 *again = true;
2191 return false;
2192 } else {
2193 /* Can go around again, but... */
2194 *again = true;
2195 /* We've found something so probably don't need to */
2196 return true;
2197 }
2198 }
2199
2200 /**
2201 * unqueue_page: gets a page of the queue
2202 *
2203 * Helper for 'get_queued_page' - gets a page off the queue
2204 *
2205 * Returns the block of the page (or NULL if none available)
2206 *
2207 * @rs: current RAM state
2208 * @offset: used to return the offset within the RAMBlock
2209 */
2210 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2211 {
2212 RAMBlock *block = NULL;
2213
2214 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2215 return NULL;
2216 }
2217
2218 qemu_mutex_lock(&rs->src_page_req_mutex);
2219 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2220 struct RAMSrcPageRequest *entry =
2221 QSIMPLEQ_FIRST(&rs->src_page_requests);
2222 block = entry->rb;
2223 *offset = entry->offset;
2224
2225 if (entry->len > TARGET_PAGE_SIZE) {
2226 entry->len -= TARGET_PAGE_SIZE;
2227 entry->offset += TARGET_PAGE_SIZE;
2228 } else {
2229 memory_region_unref(block->mr);
2230 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2231 g_free(entry);
2232 migration_consume_urgent_request();
2233 }
2234 }
2235 qemu_mutex_unlock(&rs->src_page_req_mutex);
2236
2237 return block;
2238 }
2239
2240 /**
2241 * get_queued_page: unqueue a page from the postocpy requests
2242 *
2243 * Skips pages that are already sent (!dirty)
2244 *
2245 * Returns if a queued page is found
2246 *
2247 * @rs: current RAM state
2248 * @pss: data about the state of the current dirty page scan
2249 */
2250 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2251 {
2252 RAMBlock *block;
2253 ram_addr_t offset;
2254 bool dirty;
2255
2256 do {
2257 block = unqueue_page(rs, &offset);
2258 /*
2259 * We're sending this page, and since it's postcopy nothing else
2260 * will dirty it, and we must make sure it doesn't get sent again
2261 * even if this queue request was received after the background
2262 * search already sent it.
2263 */
2264 if (block) {
2265 unsigned long page;
2266
2267 page = offset >> TARGET_PAGE_BITS;
2268 dirty = test_bit(page, block->bmap);
2269 if (!dirty) {
2270 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2271 page, test_bit(page, block->unsentmap));
2272 } else {
2273 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2274 }
2275 }
2276
2277 } while (block && !dirty);
2278
2279 if (block) {
2280 /*
2281 * As soon as we start servicing pages out of order, then we have
2282 * to kill the bulk stage, since the bulk stage assumes
2283 * in (migration_bitmap_find_and_reset_dirty) that every page is
2284 * dirty, that's no longer true.
2285 */
2286 rs->ram_bulk_stage = false;
2287
2288 /*
2289 * We want the background search to continue from the queued page
2290 * since the guest is likely to want other pages near to the page
2291 * it just requested.
2292 */
2293 pss->block = block;
2294 pss->page = offset >> TARGET_PAGE_BITS;
2295 }
2296
2297 return !!block;
2298 }
2299
2300 /**
2301 * migration_page_queue_free: drop any remaining pages in the ram
2302 * request queue
2303 *
2304 * It should be empty at the end anyway, but in error cases there may
2305 * be some left. in case that there is any page left, we drop it.
2306 *
2307 */
2308 static void migration_page_queue_free(RAMState *rs)
2309 {
2310 struct RAMSrcPageRequest *mspr, *next_mspr;
2311 /* This queue generally should be empty - but in the case of a failed
2312 * migration might have some droppings in.
2313 */
2314 rcu_read_lock();
2315 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2316 memory_region_unref(mspr->rb->mr);
2317 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2318 g_free(mspr);
2319 }
2320 rcu_read_unlock();
2321 }
2322
2323 /**
2324 * ram_save_queue_pages: queue the page for transmission
2325 *
2326 * A request from postcopy destination for example.
2327 *
2328 * Returns zero on success or negative on error
2329 *
2330 * @rbname: Name of the RAMBLock of the request. NULL means the
2331 * same that last one.
2332 * @start: starting address from the start of the RAMBlock
2333 * @len: length (in bytes) to send
2334 */
2335 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2336 {
2337 RAMBlock *ramblock;
2338 RAMState *rs = ram_state;
2339
2340 ram_counters.postcopy_requests++;
2341 rcu_read_lock();
2342 if (!rbname) {
2343 /* Reuse last RAMBlock */
2344 ramblock = rs->last_req_rb;
2345
2346 if (!ramblock) {
2347 /*
2348 * Shouldn't happen, we can't reuse the last RAMBlock if
2349 * it's the 1st request.
2350 */
2351 error_report("ram_save_queue_pages no previous block");
2352 goto err;
2353 }
2354 } else {
2355 ramblock = qemu_ram_block_by_name(rbname);
2356
2357 if (!ramblock) {
2358 /* We shouldn't be asked for a non-existent RAMBlock */
2359 error_report("ram_save_queue_pages no block '%s'", rbname);
2360 goto err;
2361 }
2362 rs->last_req_rb = ramblock;
2363 }
2364 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2365 if (start+len > ramblock->used_length) {
2366 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2367 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2368 __func__, start, len, ramblock->used_length);
2369 goto err;
2370 }
2371
2372 struct RAMSrcPageRequest *new_entry =
2373 g_malloc0(sizeof(struct RAMSrcPageRequest));
2374 new_entry->rb = ramblock;
2375 new_entry->offset = start;
2376 new_entry->len = len;
2377
2378 memory_region_ref(ramblock->mr);
2379 qemu_mutex_lock(&rs->src_page_req_mutex);
2380 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2381 migration_make_urgent_request();
2382 qemu_mutex_unlock(&rs->src_page_req_mutex);
2383 rcu_read_unlock();
2384
2385 return 0;
2386
2387 err:
2388 rcu_read_unlock();
2389 return -1;
2390 }
2391
2392 static bool save_page_use_compression(RAMState *rs)
2393 {
2394 if (!migrate_use_compression()) {
2395 return false;
2396 }
2397
2398 /*
2399 * If xbzrle is on, stop using the data compression after first
2400 * round of migration even if compression is enabled. In theory,
2401 * xbzrle can do better than compression.
2402 */
2403 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2404 return true;
2405 }
2406
2407 return false;
2408 }
2409
2410 /*
2411 * try to compress the page before posting it out, return true if the page
2412 * has been properly handled by compression, otherwise needs other
2413 * paths to handle it
2414 */
2415 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2416 {
2417 if (!save_page_use_compression(rs)) {
2418 return false;
2419 }
2420
2421 /*
2422 * When starting the process of a new block, the first page of
2423 * the block should be sent out before other pages in the same
2424 * block, and all the pages in last block should have been sent
2425 * out, keeping this order is important, because the 'cont' flag
2426 * is used to avoid resending the block name.
2427 *
2428 * We post the fist page as normal page as compression will take
2429 * much CPU resource.
2430 */
2431 if (block != rs->last_sent_block) {
2432 flush_compressed_data(rs);
2433 return false;
2434 }
2435
2436 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2437 return true;
2438 }
2439
2440 compression_counters.busy++;
2441 return false;
2442 }
2443
2444 /**
2445 * ram_save_target_page: save one target page
2446 *
2447 * Returns the number of pages written
2448 *
2449 * @rs: current RAM state
2450 * @pss: data about the page we want to send
2451 * @last_stage: if we are at the completion stage
2452 */
2453 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2454 bool last_stage)
2455 {
2456 RAMBlock *block = pss->block;
2457 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2458 int res;
2459
2460 if (control_save_page(rs, block, offset, &res)) {
2461 return res;
2462 }
2463
2464 if (save_compress_page(rs, block, offset)) {
2465 return 1;
2466 }
2467
2468 res = save_zero_page(rs, block, offset);
2469 if (res > 0) {
2470 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2471 * page would be stale
2472 */
2473 if (!save_page_use_compression(rs)) {
2474 XBZRLE_cache_lock();
2475 xbzrle_cache_zero_page(rs, block->offset + offset);
2476 XBZRLE_cache_unlock();
2477 }
2478 ram_release_pages(block->idstr, offset, res);
2479 return res;
2480 }
2481
2482 /*
2483 * do not use multifd for compression as the first page in the new
2484 * block should be posted out before sending the compressed page
2485 */
2486 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
2487 return ram_save_multifd_page(rs, block, offset);
2488 }
2489
2490 return ram_save_page(rs, pss, last_stage);
2491 }
2492
2493 /**
2494 * ram_save_host_page: save a whole host page
2495 *
2496 * Starting at *offset send pages up to the end of the current host
2497 * page. It's valid for the initial offset to point into the middle of
2498 * a host page in which case the remainder of the hostpage is sent.
2499 * Only dirty target pages are sent. Note that the host page size may
2500 * be a huge page for this block.
2501 * The saving stops at the boundary of the used_length of the block
2502 * if the RAMBlock isn't a multiple of the host page size.
2503 *
2504 * Returns the number of pages written or negative on error
2505 *
2506 * @rs: current RAM state
2507 * @ms: current migration state
2508 * @pss: data about the page we want to send
2509 * @last_stage: if we are at the completion stage
2510 */
2511 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2512 bool last_stage)
2513 {
2514 int tmppages, pages = 0;
2515 size_t pagesize_bits =
2516 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2517
2518 if (ramblock_is_ignored(pss->block)) {
2519 error_report("block %s should not be migrated !", pss->block->idstr);
2520 return 0;
2521 }
2522
2523 do {
2524 /* Check the pages is dirty and if it is send it */
2525 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2526 pss->page++;
2527 continue;
2528 }
2529
2530 tmppages = ram_save_target_page(rs, pss, last_stage);
2531 if (tmppages < 0) {
2532 return tmppages;
2533 }
2534
2535 pages += tmppages;
2536 if (pss->block->unsentmap) {
2537 clear_bit(pss->page, pss->block->unsentmap);
2538 }
2539
2540 pss->page++;
2541 } while ((pss->page & (pagesize_bits - 1)) &&
2542 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2543
2544 /* The offset we leave with is the last one we looked at */
2545 pss->page--;
2546 return pages;
2547 }
2548
2549 /**
2550 * ram_find_and_save_block: finds a dirty page and sends it to f
2551 *
2552 * Called within an RCU critical section.
2553 *
2554 * Returns the number of pages written where zero means no dirty pages,
2555 * or negative on error
2556 *
2557 * @rs: current RAM state
2558 * @last_stage: if we are at the completion stage
2559 *
2560 * On systems where host-page-size > target-page-size it will send all the
2561 * pages in a host page that are dirty.
2562 */
2563
2564 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2565 {
2566 PageSearchStatus pss;
2567 int pages = 0;
2568 bool again, found;
2569
2570 /* No dirty page as there is zero RAM */
2571 if (!ram_bytes_total()) {
2572 return pages;
2573 }
2574
2575 pss.block = rs->last_seen_block;
2576 pss.page = rs->last_page;
2577 pss.complete_round = false;
2578
2579 if (!pss.block) {
2580 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2581 }
2582
2583 do {
2584 again = true;
2585 found = get_queued_page(rs, &pss);
2586
2587 if (!found) {
2588 /* priority queue empty, so just search for something dirty */
2589 found = find_dirty_block(rs, &pss, &again);
2590 }
2591
2592 if (found) {
2593 pages = ram_save_host_page(rs, &pss, last_stage);
2594 }
2595 } while (!pages && again);
2596
2597 rs->last_seen_block = pss.block;
2598 rs->last_page = pss.page;
2599
2600 return pages;
2601 }
2602
2603 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2604 {
2605 uint64_t pages = size / TARGET_PAGE_SIZE;
2606
2607 if (zero) {
2608 ram_counters.duplicate += pages;
2609 } else {
2610 ram_counters.normal += pages;
2611 ram_counters.transferred += size;
2612 qemu_update_position(f, size);
2613 }
2614 }
2615
2616 static uint64_t ram_bytes_total_common(bool count_ignored)
2617 {
2618 RAMBlock *block;
2619 uint64_t total = 0;
2620
2621 rcu_read_lock();
2622 if (count_ignored) {
2623 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2624 total += block->used_length;
2625 }
2626 } else {
2627 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2628 total += block->used_length;
2629 }
2630 }
2631 rcu_read_unlock();
2632 return total;
2633 }
2634
2635 uint64_t ram_bytes_total(void)
2636 {
2637 return ram_bytes_total_common(false);
2638 }
2639
2640 static void xbzrle_load_setup(void)
2641 {
2642 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2643 }
2644
2645 static void xbzrle_load_cleanup(void)
2646 {
2647 g_free(XBZRLE.decoded_buf);
2648 XBZRLE.decoded_buf = NULL;
2649 }
2650
2651 static void ram_state_cleanup(RAMState **rsp)
2652 {
2653 if (*rsp) {
2654 migration_page_queue_free(*rsp);
2655 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2656 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2657 g_free(*rsp);
2658 *rsp = NULL;
2659 }
2660 }
2661
2662 static void xbzrle_cleanup(void)
2663 {
2664 XBZRLE_cache_lock();
2665 if (XBZRLE.cache) {
2666 cache_fini(XBZRLE.cache);
2667 g_free(XBZRLE.encoded_buf);
2668 g_free(XBZRLE.current_buf);
2669 g_free(XBZRLE.zero_target_page);
2670 XBZRLE.cache = NULL;
2671 XBZRLE.encoded_buf = NULL;
2672 XBZRLE.current_buf = NULL;
2673 XBZRLE.zero_target_page = NULL;
2674 }
2675 XBZRLE_cache_unlock();
2676 }
2677
2678 static void ram_save_cleanup(void *opaque)
2679 {
2680 RAMState **rsp = opaque;
2681 RAMBlock *block;
2682
2683 /* caller have hold iothread lock or is in a bh, so there is
2684 * no writing race against this migration_bitmap
2685 */
2686 memory_global_dirty_log_stop();
2687
2688 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2689 g_free(block->bmap);
2690 block->bmap = NULL;
2691 g_free(block->unsentmap);
2692 block->unsentmap = NULL;
2693 }
2694
2695 xbzrle_cleanup();
2696 compress_threads_save_cleanup();
2697 ram_state_cleanup(rsp);
2698 }
2699
2700 static void ram_state_reset(RAMState *rs)
2701 {
2702 rs->last_seen_block = NULL;
2703 rs->last_sent_block = NULL;
2704 rs->last_page = 0;
2705 rs->last_version = ram_list.version;
2706 rs->ram_bulk_stage = true;
2707 rs->fpo_enabled = false;
2708 }
2709
2710 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2711
2712 /*
2713 * 'expected' is the value you expect the bitmap mostly to be full
2714 * of; it won't bother printing lines that are all this value.
2715 * If 'todump' is null the migration bitmap is dumped.
2716 */
2717 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2718 unsigned long pages)
2719 {
2720 int64_t cur;
2721 int64_t linelen = 128;
2722 char linebuf[129];
2723
2724 for (cur = 0; cur < pages; cur += linelen) {
2725 int64_t curb;
2726 bool found = false;
2727 /*
2728 * Last line; catch the case where the line length
2729 * is longer than remaining ram
2730 */
2731 if (cur + linelen > pages) {
2732 linelen = pages - cur;
2733 }
2734 for (curb = 0; curb < linelen; curb++) {
2735 bool thisbit = test_bit(cur + curb, todump);
2736 linebuf[curb] = thisbit ? '1' : '.';
2737 found = found || (thisbit != expected);
2738 }
2739 if (found) {
2740 linebuf[curb] = '\0';
2741 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2742 }
2743 }
2744 }
2745
2746 /* **** functions for postcopy ***** */
2747
2748 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2749 {
2750 struct RAMBlock *block;
2751
2752 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2753 unsigned long *bitmap = block->bmap;
2754 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2755 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2756
2757 while (run_start < range) {
2758 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2759 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2760 (run_end - run_start) << TARGET_PAGE_BITS);
2761 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2762 }
2763 }
2764 }
2765
2766 /**
2767 * postcopy_send_discard_bm_ram: discard a RAMBlock
2768 *
2769 * Returns zero on success
2770 *
2771 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2772 * Note: At this point the 'unsentmap' is the processed bitmap combined
2773 * with the dirtymap; so a '1' means it's either dirty or unsent.
2774 *
2775 * @ms: current migration state
2776 * @pds: state for postcopy
2777 * @start: RAMBlock starting page
2778 * @length: RAMBlock size
2779 */
2780 static int postcopy_send_discard_bm_ram(MigrationState *ms,
2781 PostcopyDiscardState *pds,
2782 RAMBlock *block)
2783 {
2784 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2785 unsigned long current;
2786 unsigned long *unsentmap = block->unsentmap;
2787
2788 for (current = 0; current < end; ) {
2789 unsigned long one = find_next_bit(unsentmap, end, current);
2790
2791 if (one <= end) {
2792 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2793 unsigned long discard_length;
2794
2795 if (zero >= end) {
2796 discard_length = end - one;
2797 } else {
2798 discard_length = zero - one;
2799 }
2800 if (discard_length) {
2801 postcopy_discard_send_range(ms, pds, one, discard_length);
2802 }
2803 current = one + discard_length;
2804 } else {
2805 current = one;
2806 }
2807 }
2808
2809 return 0;
2810 }
2811
2812 /**
2813 * postcopy_each_ram_send_discard: discard all RAMBlocks
2814 *
2815 * Returns 0 for success or negative for error
2816 *
2817 * Utility for the outgoing postcopy code.
2818 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2819 * passing it bitmap indexes and name.
2820 * (qemu_ram_foreach_block ends up passing unscaled lengths
2821 * which would mean postcopy code would have to deal with target page)
2822 *
2823 * @ms: current migration state
2824 */
2825 static int postcopy_each_ram_send_discard(MigrationState *ms)
2826 {
2827 struct RAMBlock *block;
2828 int ret;
2829
2830 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2831 PostcopyDiscardState *pds =
2832 postcopy_discard_send_init(ms, block->idstr);
2833
2834 /*
2835 * Postcopy sends chunks of bitmap over the wire, but it
2836 * just needs indexes at this point, avoids it having
2837 * target page specific code.
2838 */
2839 ret = postcopy_send_discard_bm_ram(ms, pds, block);
2840 postcopy_discard_send_finish(ms, pds);
2841 if (ret) {
2842 return ret;
2843 }
2844 }
2845
2846 return 0;
2847 }
2848
2849 /**
2850 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2851 *
2852 * Helper for postcopy_chunk_hostpages; it's called twice to
2853 * canonicalize the two bitmaps, that are similar, but one is
2854 * inverted.
2855 *
2856 * Postcopy requires that all target pages in a hostpage are dirty or
2857 * clean, not a mix. This function canonicalizes the bitmaps.
2858 *
2859 * @ms: current migration state
2860 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2861 * otherwise we need to canonicalize partially dirty host pages
2862 * @block: block that contains the page we want to canonicalize
2863 * @pds: state for postcopy
2864 */
2865 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2866 RAMBlock *block,
2867 PostcopyDiscardState *pds)
2868 {
2869 RAMState *rs = ram_state;
2870 unsigned long *bitmap = block->bmap;
2871 unsigned long *unsentmap = block->unsentmap;
2872 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2873 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2874 unsigned long run_start;
2875
2876 if (block->page_size == TARGET_PAGE_SIZE) {
2877 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2878 return;
2879 }
2880
2881 if (unsent_pass) {
2882 /* Find a sent page */
2883 run_start = find_next_zero_bit(unsentmap, pages, 0);
2884 } else {
2885 /* Find a dirty page */
2886 run_start = find_next_bit(bitmap, pages, 0);
2887 }
2888
2889 while (run_start < pages) {
2890 bool do_fixup = false;
2891 unsigned long fixup_start_addr;
2892 unsigned long host_offset;
2893
2894 /*
2895 * If the start of this run of pages is in the middle of a host
2896 * page, then we need to fixup this host page.
2897 */
2898 host_offset = run_start % host_ratio;
2899 if (host_offset) {
2900 do_fixup = true;
2901 run_start -= host_offset;
2902 fixup_start_addr = run_start;
2903 /* For the next pass */
2904 run_start = run_start + host_ratio;
2905 } else {
2906 /* Find the end of this run */
2907 unsigned long run_end;
2908 if (unsent_pass) {
2909 run_end = find_next_bit(unsentmap, pages, run_start + 1);
2910 } else {
2911 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
2912 }
2913 /*
2914 * If the end isn't at the start of a host page, then the
2915 * run doesn't finish at the end of a host page
2916 * and we need to discard.
2917 */
2918 host_offset = run_end % host_ratio;
2919 if (host_offset) {
2920 do_fixup = true;
2921 fixup_start_addr = run_end - host_offset;
2922 /*
2923 * This host page has gone, the next loop iteration starts
2924 * from after the fixup
2925 */
2926 run_start = fixup_start_addr + host_ratio;
2927 } else {
2928 /*
2929 * No discards on this iteration, next loop starts from
2930 * next sent/dirty page
2931 */
2932 run_start = run_end + 1;
2933 }
2934 }
2935
2936 if (do_fixup) {
2937 unsigned long page;
2938
2939 /* Tell the destination to discard this page */
2940 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2941 /* For the unsent_pass we:
2942 * discard partially sent pages
2943 * For the !unsent_pass (dirty) we:
2944 * discard partially dirty pages that were sent
2945 * (any partially sent pages were already discarded
2946 * by the previous unsent_pass)
2947 */
2948 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2949 host_ratio);
2950 }
2951
2952 /* Clean up the bitmap */
2953 for (page = fixup_start_addr;
2954 page < fixup_start_addr + host_ratio; page++) {
2955 /* All pages in this host page are now not sent */
2956 set_bit(page, unsentmap);
2957
2958 /*
2959 * Remark them as dirty, updating the count for any pages
2960 * that weren't previously dirty.
2961 */
2962 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2963 }
2964 }
2965
2966 if (unsent_pass) {
2967 /* Find the next sent page for the next iteration */
2968 run_start = find_next_zero_bit(unsentmap, pages, run_start);
2969 } else {
2970 /* Find the next dirty page for the next iteration */
2971 run_start = find_next_bit(bitmap, pages, run_start);
2972 }
2973 }
2974 }
2975
2976 /**
2977 * postcopy_chuck_hostpages: discrad any partially sent host page
2978 *
2979 * Utility for the outgoing postcopy code.
2980 *
2981 * Discard any partially sent host-page size chunks, mark any partially
2982 * dirty host-page size chunks as all dirty. In this case the host-page
2983 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
2984 *
2985 * Returns zero on success
2986 *
2987 * @ms: current migration state
2988 * @block: block we want to work with
2989 */
2990 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
2991 {
2992 PostcopyDiscardState *pds =
2993 postcopy_discard_send_init(ms, block->idstr);
2994
2995 /* First pass: Discard all partially sent host pages */
2996 postcopy_chunk_hostpages_pass(ms, true, block, pds);
2997 /*
2998 * Second pass: Ensure that all partially dirty host pages are made
2999 * fully dirty.
3000 */
3001 postcopy_chunk_hostpages_pass(ms, false, block, pds);
3002
3003 postcopy_discard_send_finish(ms, pds);
3004 return 0;
3005 }
3006
3007 /**
3008 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3009 *
3010 * Returns zero on success
3011 *
3012 * Transmit the set of pages to be discarded after precopy to the target
3013 * these are pages that:
3014 * a) Have been previously transmitted but are now dirty again
3015 * b) Pages that have never been transmitted, this ensures that
3016 * any pages on the destination that have been mapped by background
3017 * tasks get discarded (transparent huge pages is the specific concern)
3018 * Hopefully this is pretty sparse
3019 *
3020 * @ms: current migration state
3021 */
3022 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3023 {
3024 RAMState *rs = ram_state;
3025 RAMBlock *block;
3026 int ret;
3027
3028 rcu_read_lock();
3029
3030 /* This should be our last sync, the src is now paused */
3031 migration_bitmap_sync(rs);
3032
3033 /* Easiest way to make sure we don't resume in the middle of a host-page */
3034 rs->last_seen_block = NULL;
3035 rs->last_sent_block = NULL;
3036 rs->last_page = 0;
3037
3038 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3039 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3040 unsigned long *bitmap = block->bmap;
3041 unsigned long *unsentmap = block->unsentmap;
3042
3043 if (!unsentmap) {
3044 /* We don't have a safe way to resize the sentmap, so
3045 * if the bitmap was resized it will be NULL at this
3046 * point.
3047 */
3048 error_report("migration ram resized during precopy phase");
3049 rcu_read_unlock();
3050 return -EINVAL;
3051 }
3052 /* Deal with TPS != HPS and huge pages */
3053 ret = postcopy_chunk_hostpages(ms, block);
3054 if (ret) {
3055 rcu_read_unlock();
3056 return ret;
3057 }
3058
3059 /*
3060 * Update the unsentmap to be unsentmap = unsentmap | dirty
3061 */
3062 bitmap_or(unsentmap, unsentmap, bitmap, pages);
3063 #ifdef DEBUG_POSTCOPY
3064 ram_debug_dump_bitmap(unsentmap, true, pages);
3065 #endif
3066 }
3067 trace_ram_postcopy_send_discard_bitmap();
3068
3069 ret = postcopy_each_ram_send_discard(ms);
3070 rcu_read_unlock();
3071
3072 return ret;
3073 }
3074
3075 /**
3076 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3077 *
3078 * Returns zero on success
3079 *
3080 * @rbname: name of the RAMBlock of the request. NULL means the
3081 * same that last one.
3082 * @start: RAMBlock starting page
3083 * @length: RAMBlock size
3084 */
3085 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3086 {
3087 int ret = -1;
3088
3089 trace_ram_discard_range(rbname, start, length);
3090
3091 rcu_read_lock();
3092 RAMBlock *rb = qemu_ram_block_by_name(rbname);
3093
3094 if (!rb) {
3095 error_report("ram_discard_range: Failed to find block '%s'", rbname);
3096 goto err;
3097 }
3098
3099 /*
3100 * On source VM, we don't need to update the received bitmap since
3101 * we don't even have one.
3102 */
3103 if (rb->receivedmap) {
3104 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3105 length >> qemu_target_page_bits());
3106 }
3107
3108 ret = ram_block_discard_range(rb, start, length);
3109
3110 err:
3111 rcu_read_unlock();
3112
3113 return ret;
3114 }
3115
3116 /*
3117 * For every allocation, we will try not to crash the VM if the
3118 * allocation failed.
3119 */
3120 static int xbzrle_init(void)
3121 {
3122 Error *local_err = NULL;
3123
3124 if (!migrate_use_xbzrle()) {
3125 return 0;
3126 }
3127
3128 XBZRLE_cache_lock();
3129
3130 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3131 if (!XBZRLE.zero_target_page) {
3132 error_report("%s: Error allocating zero page", __func__);
3133 goto err_out;
3134 }
3135
3136 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3137 TARGET_PAGE_SIZE, &local_err);
3138 if (!XBZRLE.cache) {
3139 error_report_err(local_err);
3140 goto free_zero_page;
3141 }
3142
3143 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3144 if (!XBZRLE.encoded_buf) {
3145 error_report("%s: Error allocating encoded_buf", __func__);
3146 goto free_cache;
3147 }
3148
3149 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3150 if (!XBZRLE.current_buf) {
3151 error_report("%s: Error allocating current_buf", __func__);
3152 goto free_encoded_buf;
3153 }
3154
3155 /* We are all good */
3156 XBZRLE_cache_unlock();
3157 return 0;
3158
3159 free_encoded_buf:
3160 g_free(XBZRLE.encoded_buf);
3161 XBZRLE.encoded_buf = NULL;
3162 free_cache:
3163 cache_fini(XBZRLE.cache);
3164 XBZRLE.cache = NULL;
3165 free_zero_page:
3166 g_free(XBZRLE.zero_target_page);
3167 XBZRLE.zero_target_page = NULL;
3168 err_out:
3169 XBZRLE_cache_unlock();
3170 return -ENOMEM;
3171 }
3172
3173 static int ram_state_init(RAMState **rsp)
3174 {
3175 *rsp = g_try_new0(RAMState, 1);
3176
3177 if (!*rsp) {
3178 error_report("%s: Init ramstate fail", __func__);
3179 return -1;
3180 }
3181
3182 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3183 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3184 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3185
3186 /*
3187 * Count the total number of pages used by ram blocks not including any
3188 * gaps due to alignment or unplugs.
3189 */
3190 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3191
3192 ram_state_reset(*rsp);
3193
3194 return 0;
3195 }
3196
3197 static void ram_list_init_bitmaps(void)
3198 {
3199 RAMBlock *block;
3200 unsigned long pages;
3201
3202 /* Skip setting bitmap if there is no RAM */
3203 if (ram_bytes_total()) {
3204 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3205 pages = block->max_length >> TARGET_PAGE_BITS;
3206 block->bmap = bitmap_new(pages);
3207 bitmap_set(block->bmap, 0, pages);
3208 if (migrate_postcopy_ram()) {
3209 block->unsentmap = bitmap_new(pages);
3210 bitmap_set(block->unsentmap, 0, pages);
3211 }
3212 }
3213 }
3214 }
3215
3216 static void ram_init_bitmaps(RAMState *rs)
3217 {
3218 /* For memory_global_dirty_log_start below. */
3219 qemu_mutex_lock_iothread();
3220 qemu_mutex_lock_ramlist();
3221 rcu_read_lock();
3222
3223 ram_list_init_bitmaps();
3224 memory_global_dirty_log_start();
3225 migration_bitmap_sync_precopy(rs);
3226
3227 rcu_read_unlock();
3228 qemu_mutex_unlock_ramlist();
3229 qemu_mutex_unlock_iothread();
3230 }
3231
3232 static int ram_init_all(RAMState **rsp)
3233 {
3234 if (ram_state_init(rsp)) {
3235 return -1;
3236 }
3237
3238 if (xbzrle_init()) {
3239 ram_state_cleanup(rsp);
3240 return -1;
3241 }
3242
3243 ram_init_bitmaps(*rsp);
3244
3245 return 0;
3246 }
3247
3248 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3249 {
3250 RAMBlock *block;
3251 uint64_t pages = 0;
3252
3253 /*
3254 * Postcopy is not using xbzrle/compression, so no need for that.
3255 * Also, since source are already halted, we don't need to care
3256 * about dirty page logging as well.
3257 */
3258
3259 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3260 pages += bitmap_count_one(block->bmap,
3261 block->used_length >> TARGET_PAGE_BITS);
3262 }
3263
3264 /* This may not be aligned with current bitmaps. Recalculate. */
3265 rs->migration_dirty_pages = pages;
3266
3267 rs->last_seen_block = NULL;
3268 rs->last_sent_block = NULL;
3269 rs->last_page = 0;
3270 rs->last_version = ram_list.version;
3271 /*
3272 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3273 * matter what we have sent.
3274 */
3275 rs->ram_bulk_stage = false;
3276
3277 /* Update RAMState cache of output QEMUFile */
3278 rs->f = out;
3279
3280 trace_ram_state_resume_prepare(pages);
3281 }
3282
3283 /*
3284 * This function clears bits of the free pages reported by the caller from the
3285 * migration dirty bitmap. @addr is the host address corresponding to the
3286 * start of the continuous guest free pages, and @len is the total bytes of
3287 * those pages.
3288 */
3289 void qemu_guest_free_page_hint(void *addr, size_t len)
3290 {
3291 RAMBlock *block;
3292 ram_addr_t offset;
3293 size_t used_len, start, npages;
3294 MigrationState *s = migrate_get_current();
3295
3296 /* This function is currently expected to be used during live migration */
3297 if (!migration_is_setup_or_active(s->state)) {
3298 return;
3299 }
3300
3301 for (; len > 0; len -= used_len, addr += used_len) {
3302 block = qemu_ram_block_from_host(addr, false, &offset);
3303 if (unlikely(!block || offset >= block->used_length)) {
3304 /*
3305 * The implementation might not support RAMBlock resize during
3306 * live migration, but it could happen in theory with future
3307 * updates. So we add a check here to capture that case.
3308 */
3309 error_report_once("%s unexpected error", __func__);
3310 return;
3311 }
3312
3313 if (len <= block->used_length - offset) {
3314 used_len = len;
3315 } else {
3316 used_len = block->used_length - offset;
3317 }
3318
3319 start = offset >> TARGET_PAGE_BITS;
3320 npages = used_len >> TARGET_PAGE_BITS;
3321
3322 qemu_mutex_lock(&ram_state->bitmap_mutex);
3323 ram_state->migration_dirty_pages -=
3324 bitmap_count_one_with_offset(block->bmap, start, npages);
3325 bitmap_clear(block->bmap, start, npages);
3326 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3327 }
3328 }
3329
3330 /*
3331 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3332 * long-running RCU critical section. When rcu-reclaims in the code
3333 * start to become numerous it will be necessary to reduce the
3334 * granularity of these critical sections.
3335 */
3336
3337 /**
3338 * ram_save_setup: Setup RAM for migration
3339 *
3340 * Returns zero to indicate success and negative for error
3341 *
3342 * @f: QEMUFile where to send the data
3343 * @opaque: RAMState pointer
3344 */
3345 static int ram_save_setup(QEMUFile *f, void *opaque)
3346 {
3347 RAMState **rsp = opaque;
3348 RAMBlock *block;
3349
3350 if (compress_threads_save_setup()) {
3351 return -1;
3352 }
3353
3354 /* migration has already setup the bitmap, reuse it. */
3355 if (!migration_in_colo_state()) {
3356 if (ram_init_all(rsp) != 0) {
3357 compress_threads_save_cleanup();
3358 return -1;
3359 }
3360 }
3361 (*rsp)->f = f;
3362
3363 rcu_read_lock();
3364
3365 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3366
3367 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3368 qemu_put_byte(f, strlen(block->idstr));
3369 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3370 qemu_put_be64(f, block->used_length);
3371 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3372 qemu_put_be64(f, block->page_size);
3373 }
3374 if (migrate_ignore_shared()) {
3375 qemu_put_be64(f, block->mr->addr);
3376 qemu_put_byte(f, ramblock_is_ignored(block) ? 1 : 0);
3377 }
3378 }
3379
3380 rcu_read_unlock();
3381
3382 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3383 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3384
3385 multifd_send_sync_main();
3386 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3387 qemu_fflush(f);
3388
3389 return 0;
3390 }
3391
3392 /**
3393 * ram_save_iterate: iterative stage for migration
3394 *
3395 * Returns zero to indicate success and negative for error
3396 *
3397 * @f: QEMUFile where to send the data
3398 * @opaque: RAMState pointer
3399 */
3400 static int ram_save_iterate(QEMUFile *f, void *opaque)
3401 {
3402 RAMState **temp = opaque;
3403 RAMState *rs = *temp;
3404 int ret;
3405 int i;
3406 int64_t t0;
3407 int done = 0;
3408
3409 if (blk_mig_bulk_active()) {
3410 /* Avoid transferring ram during bulk phase of block migration as
3411 * the bulk phase will usually take a long time and transferring
3412 * ram updates during that time is pointless. */
3413 goto out;
3414 }
3415
3416 rcu_read_lock();
3417 if (ram_list.version != rs->last_version) {
3418 ram_state_reset(rs);
3419 }
3420
3421 /* Read version before ram_list.blocks */
3422 smp_rmb();
3423
3424 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3425
3426 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3427 i = 0;
3428 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3429 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3430 int pages;
3431
3432 if (qemu_file_get_error(f)) {
3433 break;
3434 }
3435
3436 pages = ram_find_and_save_block(rs, false);
3437 /* no more pages to sent */
3438 if (pages == 0) {
3439 done = 1;
3440 break;
3441 }
3442
3443 if (pages < 0) {
3444 qemu_file_set_error(f, pages);
3445 break;
3446 }
3447
3448 rs->target_page_count += pages;
3449
3450 /* we want to check in the 1st loop, just in case it was the 1st time
3451 and we had to sync the dirty bitmap.
3452 qemu_get_clock_ns() is a bit expensive, so we only check each some
3453 iterations
3454 */
3455 if ((i & 63) == 0) {
3456 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3457 if (t1 > MAX_WAIT) {
3458 trace_ram_save_iterate_big_wait(t1, i);
3459 break;
3460 }
3461 }
3462 i++;
3463 }
3464 rcu_read_unlock();
3465
3466 /*
3467 * Must occur before EOS (or any QEMUFile operation)
3468 * because of RDMA protocol.
3469 */
3470 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3471
3472 multifd_send_sync_main();
3473 out:
3474 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3475 qemu_fflush(f);
3476 ram_counters.transferred += 8;
3477
3478 ret = qemu_file_get_error(f);
3479 if (ret < 0) {
3480 return ret;
3481 }
3482
3483 return done;
3484 }
3485
3486 /**
3487 * ram_save_complete: function called to send the remaining amount of ram
3488 *
3489 * Returns zero to indicate success or negative on error
3490 *
3491 * Called with iothread lock
3492 *
3493 * @f: QEMUFile where to send the data
3494 * @opaque: RAMState pointer
3495 */
3496 static int ram_save_complete(QEMUFile *f, void *opaque)
3497 {
3498 RAMState **temp = opaque;
3499 RAMState *rs = *temp;
3500 int ret = 0;
3501
3502 rcu_read_lock();
3503
3504 if (!migration_in_postcopy()) {
3505 migration_bitmap_sync_precopy(rs);
3506 }
3507
3508 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3509
3510 /* try transferring iterative blocks of memory */
3511
3512 /* flush all remaining blocks regardless of rate limiting */
3513 while (true) {
3514 int pages;
3515
3516 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3517 /* no more blocks to sent */
3518 if (pages == 0) {
3519 break;
3520 }
3521 if (pages < 0) {
3522 ret = pages;
3523 break;
3524 }
3525 }
3526
3527 flush_compressed_data(rs);
3528 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3529
3530 rcu_read_unlock();
3531
3532 multifd_send_sync_main();
3533 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3534 qemu_fflush(f);
3535
3536 return ret;
3537 }
3538
3539 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3540 uint64_t *res_precopy_only,
3541 uint64_t *res_compatible,
3542 uint64_t *res_postcopy_only)
3543 {
3544 RAMState **temp = opaque;
3545 RAMState *rs = *temp;
3546 uint64_t remaining_size;
3547
3548 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3549
3550 if (!migration_in_postcopy() &&
3551 remaining_size < max_size) {
3552 qemu_mutex_lock_iothread();
3553 rcu_read_lock();
3554 migration_bitmap_sync_precopy(rs);
3555 rcu_read_unlock();
3556 qemu_mutex_unlock_iothread();
3557 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3558 }
3559
3560 if (migrate_postcopy_ram()) {
3561 /* We can do postcopy, and all the data is postcopiable */
3562 *res_compatible += remaining_size;
3563 } else {
3564 *res_precopy_only += remaining_size;
3565 }
3566 }
3567
3568 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3569 {
3570 unsigned int xh_len;
3571 int xh_flags;
3572 uint8_t *loaded_data;
3573
3574 /* extract RLE header */
3575 xh_flags = qemu_get_byte(f);
3576 xh_len = qemu_get_be16(f);
3577
3578 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3579 error_report("Failed to load XBZRLE page - wrong compression!");
3580 return -1;
3581 }
3582
3583 if (xh_len > TARGET_PAGE_SIZE) {
3584 error_report("Failed to load XBZRLE page - len overflow!");
3585 return -1;
3586 }
3587 loaded_data = XBZRLE.decoded_buf;
3588 /* load data and decode */
3589 /* it can change loaded_data to point to an internal buffer */
3590 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3591
3592 /* decode RLE */
3593 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3594 TARGET_PAGE_SIZE) == -1) {
3595 error_report("Failed to load XBZRLE page - decode error!");
3596 return -1;
3597 }
3598
3599 return 0;
3600 }
3601
3602 /**
3603 * ram_block_from_stream: read a RAMBlock id from the migration stream
3604 *
3605 * Must be called from within a rcu critical section.
3606 *
3607 * Returns a pointer from within the RCU-protected ram_list.
3608 *
3609 * @f: QEMUFile where to read the data from
3610 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3611 */
3612 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3613 {
3614 static RAMBlock *block = NULL;
3615 char id[256];
3616 uint8_t len;
3617
3618 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3619 if (!block) {
3620 error_report("Ack, bad migration stream!");
3621 return NULL;
3622 }
3623 return block;
3624 }
3625
3626 len = qemu_get_byte(f);
3627 qemu_get_buffer(f, (uint8_t *)id, len);
3628 id[len] = 0;
3629
3630 block = qemu_ram_block_by_name(id);
3631 if (!block) {
3632 error_report("Can't find block %s", id);
3633 return NULL;
3634 }
3635
3636 if (ramblock_is_ignored(block)) {
3637 error_report("block %s should not be migrated !", id);
3638 return NULL;
3639 }
3640
3641 return block;
3642 }
3643
3644 static inline void *host_from_ram_block_offset(RAMBlock *block,
3645 ram_addr_t offset)
3646 {
3647 if (!offset_in_ramblock(block, offset)) {
3648 return NULL;
3649 }
3650
3651 return block->host + offset;
3652 }
3653
3654 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3655 ram_addr_t offset)
3656 {
3657 if (!offset_in_ramblock(block, offset)) {
3658 return NULL;
3659 }
3660 if (!block->colo_cache) {
3661 error_report("%s: colo_cache is NULL in block :%s",
3662 __func__, block->idstr);
3663 return NULL;
3664 }
3665
3666 /*
3667 * During colo checkpoint, we need bitmap of these migrated pages.
3668 * It help us to decide which pages in ram cache should be flushed
3669 * into VM's RAM later.
3670 */
3671 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3672 ram_state->migration_dirty_pages++;
3673 }
3674 return block->colo_cache + offset;
3675 }
3676
3677 /**
3678 * ram_handle_compressed: handle the zero page case
3679 *
3680 * If a page (or a whole RDMA chunk) has been
3681 * determined to be zero, then zap it.
3682 *
3683 * @host: host address for the zero page
3684 * @ch: what the page is filled from. We only support zero
3685 * @size: size of the zero page
3686 */
3687 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3688 {
3689 if (ch != 0 || !is_zero_range(host, size)) {
3690 memset(host, ch, size);
3691 }
3692 }
3693
3694 /* return the size after decompression, or negative value on error */
3695 static int
3696 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3697 const uint8_t *source, size_t source_len)
3698 {
3699 int err;
3700
3701 err = inflateReset(stream);
3702 if (err != Z_OK) {
3703 return -1;
3704 }
3705
3706 stream->avail_in = source_len;
3707 stream->next_in = (uint8_t *)source;
3708 stream->avail_out = dest_len;
3709 stream->next_out = dest;
3710
3711 err = inflate(stream, Z_NO_FLUSH);
3712 if (err != Z_STREAM_END) {
3713 return -1;
3714 }
3715
3716 return stream->total_out;
3717 }
3718
3719 static void *do_data_decompress(void *opaque)
3720 {
3721 DecompressParam *param = opaque;
3722 unsigned long pagesize;
3723 uint8_t *des;
3724 int len, ret;
3725
3726 qemu_mutex_lock(&param->mutex);
3727 while (!param->quit) {
3728 if (param->des) {
3729 des = param->des;
3730 len = param->len;
3731 param->des = 0;
3732 qemu_mutex_unlock(&param->mutex);
3733
3734 pagesize = TARGET_PAGE_SIZE;
3735
3736 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3737 param->compbuf, len);
3738 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3739 error_report("decompress data failed");
3740 qemu_file_set_error(decomp_file, ret);
3741 }
3742
3743 qemu_mutex_lock(&decomp_done_lock);
3744 param->done = true;
3745 qemu_cond_signal(&decomp_done_cond);
3746 qemu_mutex_unlock(&decomp_done_lock);
3747
3748 qemu_mutex_lock(&param->mutex);
3749 } else {
3750 qemu_cond_wait(&param->cond, &param->mutex);
3751 }
3752 }
3753 qemu_mutex_unlock(&param->mutex);
3754
3755 return NULL;
3756 }
3757
3758 static int wait_for_decompress_done(void)
3759 {
3760 int idx, thread_count;
3761
3762 if (!migrate_use_compression()) {
3763 return 0;
3764 }
3765
3766 thread_count = migrate_decompress_threads();
3767 qemu_mutex_lock(&decomp_done_lock);
3768 for (idx = 0; idx < thread_count; idx++) {
3769 while (!decomp_param[idx].done) {
3770 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3771 }
3772 }
3773 qemu_mutex_unlock(&decomp_done_lock);
3774 return qemu_file_get_error(decomp_file);
3775 }
3776
3777 static void compress_threads_load_cleanup(void)
3778 {
3779 int i, thread_count;
3780
3781 if (!migrate_use_compression()) {
3782 return;
3783 }
3784 thread_count = migrate_decompress_threads();
3785 for (i = 0; i < thread_count; i++) {
3786 /*
3787 * we use it as a indicator which shows if the thread is
3788 * properly init'd or not
3789 */
3790 if (!decomp_param[i].compbuf) {
3791 break;
3792 }
3793
3794 qemu_mutex_lock(&decomp_param[i].mutex);
3795 decomp_param[i].quit = true;
3796 qemu_cond_signal(&decomp_param[i].cond);
3797 qemu_mutex_unlock(&decomp_param[i].mutex);
3798 }
3799 for (i = 0; i < thread_count; i++) {
3800 if (!decomp_param[i].compbuf) {
3801 break;
3802 }
3803
3804 qemu_thread_join(decompress_threads + i);
3805 qemu_mutex_destroy(&decomp_param[i].mutex);
3806 qemu_cond_destroy(&decomp_param[i].cond);
3807 inflateEnd(&decomp_param[i].stream);
3808 g_free(decomp_param[i].compbuf);
3809 decomp_param[i].compbuf = NULL;
3810 }
3811 g_free(decompress_threads);
3812 g_free(decomp_param);
3813 decompress_threads = NULL;
3814 decomp_param = NULL;
3815 decomp_file = NULL;
3816 }
3817
3818 static int compress_threads_load_setup(QEMUFile *f)
3819 {
3820 int i, thread_count;
3821
3822 if (!migrate_use_compression()) {
3823 return 0;
3824 }
3825
3826 thread_count = migrate_decompress_threads();
3827 decompress_threads = g_new0(QemuThread, thread_count);
3828 decomp_param = g_new0(DecompressParam, thread_count);
3829 qemu_mutex_init(&decomp_done_lock);
3830 qemu_cond_init(&decomp_done_cond);
3831 decomp_file = f;
3832 for (i = 0; i < thread_count; i++) {
3833 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3834 goto exit;
3835 }
3836
3837 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3838 qemu_mutex_init(&decomp_param[i].mutex);
3839 qemu_cond_init(&decomp_param[i].cond);
3840 decomp_param[i].done = true;
3841 decomp_param[i].quit = false;
3842 qemu_thread_create(decompress_threads + i, "decompress",
3843 do_data_decompress, decomp_param + i,
3844 QEMU_THREAD_JOINABLE);
3845 }
3846 return 0;
3847 exit:
3848 compress_threads_load_cleanup();
3849 return -1;
3850 }
3851
3852 static void decompress_data_with_multi_threads(QEMUFile *f,
3853 void *host, int len)
3854 {
3855 int idx, thread_count;
3856
3857 thread_count = migrate_decompress_threads();
3858 qemu_mutex_lock(&decomp_done_lock);
3859 while (true) {
3860 for (idx = 0; idx < thread_count; idx++) {
3861 if (decomp_param[idx].done) {
3862 decomp_param[idx].done = false;
3863 qemu_mutex_lock(&decomp_param[idx].mutex);
3864 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3865 decomp_param[idx].des = host;
3866 decomp_param[idx].len = len;
3867 qemu_cond_signal(&decomp_param[idx].cond);
3868 qemu_mutex_unlock(&decomp_param[idx].mutex);
3869 break;
3870 }
3871 }
3872 if (idx < thread_count) {
3873 break;
3874 } else {
3875 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3876 }
3877 }
3878 qemu_mutex_unlock(&decomp_done_lock);
3879 }
3880
3881 /*
3882 * colo cache: this is for secondary VM, we cache the whole
3883 * memory of the secondary VM, it is need to hold the global lock
3884 * to call this helper.
3885 */
3886 int colo_init_ram_cache(void)
3887 {
3888 RAMBlock *block;
3889
3890 rcu_read_lock();
3891 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3892 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3893 NULL,
3894 false);
3895 if (!block->colo_cache) {
3896 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3897 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3898 block->used_length);
3899 goto out_locked;
3900 }
3901 memcpy(block->colo_cache, block->host, block->used_length);
3902 }
3903 rcu_read_unlock();
3904 /*
3905 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3906 * with to decide which page in cache should be flushed into SVM's RAM. Here
3907 * we use the same name 'ram_bitmap' as for migration.
3908 */
3909 if (ram_bytes_total()) {
3910 RAMBlock *block;
3911
3912 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3913 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3914
3915 block->bmap = bitmap_new(pages);
3916 bitmap_set(block->bmap, 0, pages);
3917 }
3918 }
3919 ram_state = g_new0(RAMState, 1);
3920 ram_state->migration_dirty_pages = 0;
3921 memory_global_dirty_log_start();
3922
3923 return 0;
3924
3925 out_locked:
3926
3927 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3928 if (block->colo_cache) {
3929 qemu_anon_ram_free(block->colo_cache, block->used_length);
3930 block->colo_cache = NULL;
3931 }
3932 }
3933
3934 rcu_read_unlock();
3935 return -errno;
3936 }
3937
3938 /* It is need to hold the global lock to call this helper */
3939 void colo_release_ram_cache(void)
3940 {
3941 RAMBlock *block;
3942
3943 memory_global_dirty_log_stop();
3944 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3945 g_free(block->bmap);
3946 block->bmap = NULL;
3947 }
3948
3949 rcu_read_lock();
3950
3951 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3952 if (block->colo_cache) {
3953 qemu_anon_ram_free(block->colo_cache, block->used_length);
3954 block->colo_cache = NULL;
3955 }
3956 }
3957
3958 rcu_read_unlock();
3959 g_free(ram_state);
3960 ram_state = NULL;
3961 }
3962
3963 /**
3964 * ram_load_setup: Setup RAM for migration incoming side
3965 *
3966 * Returns zero to indicate success and negative for error
3967 *
3968 * @f: QEMUFile where to receive the data
3969 * @opaque: RAMState pointer
3970 */
3971 static int ram_load_setup(QEMUFile *f, void *opaque)
3972 {
3973 if (compress_threads_load_setup(f)) {
3974 return -1;
3975 }
3976
3977 xbzrle_load_setup();
3978 ramblock_recv_map_init();
3979
3980 return 0;
3981 }
3982
3983 static int ram_load_cleanup(void *opaque)
3984 {
3985 RAMBlock *rb;
3986
3987 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3988 if (ramblock_is_pmem(rb)) {
3989 pmem_persist(rb->host, rb->used_length);
3990 }
3991 }
3992
3993 xbzrle_load_cleanup();
3994 compress_threads_load_cleanup();
3995
3996 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3997 g_free(rb->receivedmap);
3998 rb->receivedmap = NULL;
3999 }
4000
4001 return 0;
4002 }
4003
4004 /**
4005 * ram_postcopy_incoming_init: allocate postcopy data structures
4006 *
4007 * Returns 0 for success and negative if there was one error
4008 *
4009 * @mis: current migration incoming state
4010 *
4011 * Allocate data structures etc needed by incoming migration with
4012 * postcopy-ram. postcopy-ram's similarly names
4013 * postcopy_ram_incoming_init does the work.
4014 */
4015 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4016 {
4017 return postcopy_ram_incoming_init(mis);
4018 }
4019
4020 /**
4021 * ram_load_postcopy: load a page in postcopy case
4022 *
4023 * Returns 0 for success or -errno in case of error
4024 *
4025 * Called in postcopy mode by ram_load().
4026 * rcu_read_lock is taken prior to this being called.
4027 *
4028 * @f: QEMUFile where to send the data
4029 */
4030 static int ram_load_postcopy(QEMUFile *f)
4031 {
4032 int flags = 0, ret = 0;
4033 bool place_needed = false;
4034 bool matches_target_page_size = false;
4035 MigrationIncomingState *mis = migration_incoming_get_current();
4036 /* Temporary page that is later 'placed' */
4037 void *postcopy_host_page = postcopy_get_tmp_page(mis);
4038 void *last_host = NULL;
4039 bool all_zero = false;
4040
4041 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4042 ram_addr_t addr;
4043 void *host = NULL;
4044 void *page_buffer = NULL;
4045 void *place_source = NULL;
4046 RAMBlock *block = NULL;
4047 uint8_t ch;
4048
4049 addr = qemu_get_be64(f);
4050
4051 /*
4052 * If qemu file error, we should stop here, and then "addr"
4053 * may be invalid
4054 */
4055 ret = qemu_file_get_error(f);
4056 if (ret) {
4057 break;
4058 }
4059
4060 flags = addr & ~TARGET_PAGE_MASK;
4061 addr &= TARGET_PAGE_MASK;
4062
4063 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4064 place_needed = false;
4065 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
4066 block = ram_block_from_stream(f, flags);
4067
4068 host = host_from_ram_block_offset(block, addr);
4069 if (!host) {
4070 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4071 ret = -EINVAL;
4072 break;
4073 }
4074 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4075 /*
4076 * Postcopy requires that we place whole host pages atomically;
4077 * these may be huge pages for RAMBlocks that are backed by
4078 * hugetlbfs.
4079 * To make it atomic, the data is read into a temporary page
4080 * that's moved into place later.
4081 * The migration protocol uses, possibly smaller, target-pages
4082 * however the source ensures it always sends all the components
4083 * of a host page in order.
4084 */
4085 page_buffer = postcopy_host_page +
4086 ((uintptr_t)host & (block->page_size - 1));
4087 /* If all TP are zero then we can optimise the place */
4088 if (!((uintptr_t)host & (block->page_size - 1))) {
4089 all_zero = true;
4090 } else {
4091 /* not the 1st TP within the HP */
4092 if (host != (last_host + TARGET_PAGE_SIZE)) {
4093 error_report("Non-sequential target page %p/%p",
4094 host, last_host);
4095 ret = -EINVAL;
4096 break;
4097 }
4098 }
4099
4100
4101 /*
4102 * If it's the last part of a host page then we place the host
4103 * page
4104 */
4105 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
4106 (block->page_size - 1)) == 0;
4107 place_source = postcopy_host_page;
4108 }
4109 last_host = host;
4110
4111 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4112 case RAM_SAVE_FLAG_ZERO:
4113 ch = qemu_get_byte(f);
4114 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4115 if (ch) {
4116 all_zero = false;
4117 }
4118 break;
4119
4120 case RAM_SAVE_FLAG_PAGE:
4121 all_zero = false;
4122 if (!matches_target_page_size) {
4123 /* For huge pages, we always use temporary buffer */
4124 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4125 } else {
4126 /*
4127 * For small pages that matches target page size, we
4128 * avoid the qemu_file copy. Instead we directly use
4129 * the buffer of QEMUFile to place the page. Note: we
4130 * cannot do any QEMUFile operation before using that
4131 * buffer to make sure the buffer is valid when
4132 * placing the page.
4133 */
4134 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4135 TARGET_PAGE_SIZE);
4136 }
4137 break;
4138 case RAM_SAVE_FLAG_EOS:
4139 /* normal exit */
4140 multifd_recv_sync_main();
4141 break;
4142 default:
4143 error_report("Unknown combination of migration flags: %#x"
4144 " (postcopy mode)", flags);
4145 ret = -EINVAL;
4146 break;
4147 }
4148
4149 /* Detect for any possible file errors */
4150 if (!ret && qemu_file_get_error(f)) {
4151 ret = qemu_file_get_error(f);
4152 }
4153
4154 if (!ret && place_needed) {
4155 /* This gets called at the last target page in the host page */
4156 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4157
4158 if (all_zero) {
4159 ret = postcopy_place_page_zero(mis, place_dest,
4160 block);
4161 } else {
4162 ret = postcopy_place_page(mis, place_dest,
4163 place_source, block);
4164 }
4165 }
4166 }
4167
4168 return ret;
4169 }
4170
4171 static bool postcopy_is_advised(void)
4172 {
4173 PostcopyState ps = postcopy_state_get();
4174 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4175 }
4176
4177 static bool postcopy_is_running(void)
4178 {
4179 PostcopyState ps = postcopy_state_get();
4180 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4181 }
4182
4183 /*
4184 * Flush content of RAM cache into SVM's memory.
4185 * Only flush the pages that be dirtied by PVM or SVM or both.
4186 */
4187 static void colo_flush_ram_cache(void)
4188 {
4189 RAMBlock *block = NULL;
4190 void *dst_host;
4191 void *src_host;
4192 unsigned long offset = 0;
4193
4194 memory_global_dirty_log_sync();
4195 rcu_read_lock();
4196 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4197 migration_bitmap_sync_range(ram_state, block, 0, block->used_length);
4198 }
4199 rcu_read_unlock();
4200
4201 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4202 rcu_read_lock();
4203 block = QLIST_FIRST_RCU(&ram_list.blocks);
4204
4205 while (block) {
4206 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4207
4208 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4209 offset = 0;
4210 block = QLIST_NEXT_RCU(block, next);
4211 } else {
4212 migration_bitmap_clear_dirty(ram_state, block, offset);
4213 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4214 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4215 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4216 }
4217 }
4218
4219 rcu_read_unlock();
4220 trace_colo_flush_ram_cache_end();
4221 }
4222
4223 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4224 {
4225 int flags = 0, ret = 0, invalid_flags = 0;
4226 static uint64_t seq_iter;
4227 int len = 0;
4228 /*
4229 * If system is running in postcopy mode, page inserts to host memory must
4230 * be atomic
4231 */
4232 bool postcopy_running = postcopy_is_running();
4233 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4234 bool postcopy_advised = postcopy_is_advised();
4235
4236 seq_iter++;
4237
4238 if (version_id != 4) {
4239 ret = -EINVAL;
4240 }
4241
4242 if (!migrate_use_compression()) {
4243 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4244 }
4245 /* This RCU critical section can be very long running.
4246 * When RCU reclaims in the code start to become numerous,
4247 * it will be necessary to reduce the granularity of this
4248 * critical section.
4249 */
4250 rcu_read_lock();
4251
4252 if (postcopy_running) {
4253 ret = ram_load_postcopy(f);
4254 }
4255
4256 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4257 ram_addr_t addr, total_ram_bytes;
4258 void *host = NULL;
4259 uint8_t ch;
4260
4261 addr = qemu_get_be64(f);
4262 flags = addr & ~TARGET_PAGE_MASK;
4263 addr &= TARGET_PAGE_MASK;
4264
4265 if (flags & invalid_flags) {
4266 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4267 error_report("Received an unexpected compressed page");
4268 }
4269
4270 ret = -EINVAL;
4271 break;
4272 }
4273
4274 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4275 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4276 RAMBlock *block = ram_block_from_stream(f, flags);
4277
4278 /*
4279 * After going into COLO, we should load the Page into colo_cache.
4280 */
4281 if (migration_incoming_in_colo_state()) {
4282 host = colo_cache_from_block_offset(block, addr);
4283 } else {
4284 host = host_from_ram_block_offset(block, addr);
4285 }
4286 if (!host) {
4287 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4288 ret = -EINVAL;
4289 break;
4290 }
4291
4292 if (!migration_incoming_in_colo_state()) {
4293 ramblock_recv_bitmap_set(block, host);
4294 }
4295
4296 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4297 }
4298
4299 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4300 case RAM_SAVE_FLAG_MEM_SIZE:
4301 /* Synchronize RAM block list */
4302 total_ram_bytes = addr;
4303 while (!ret && total_ram_bytes) {
4304 RAMBlock *block;
4305 char id[256];
4306 ram_addr_t length;
4307
4308 len = qemu_get_byte(f);
4309 qemu_get_buffer(f, (uint8_t *)id, len);
4310 id[len] = 0;
4311 length = qemu_get_be64(f);
4312
4313 block = qemu_ram_block_by_name(id);
4314 if (block && !qemu_ram_is_migratable(block)) {
4315 error_report("block %s should not be migrated !", id);
4316 ret = -EINVAL;
4317 } else if (block) {
4318 if (length != block->used_length) {
4319 Error *local_err = NULL;
4320
4321 ret = qemu_ram_resize(block, length,
4322 &local_err);
4323 if (local_err) {
4324 error_report_err(local_err);
4325 }
4326 }
4327 /* For postcopy we need to check hugepage sizes match */
4328 if (postcopy_advised &&
4329 block->page_size != qemu_host_page_size) {
4330 uint64_t remote_page_size = qemu_get_be64(f);
4331 if (remote_page_size != block->page_size) {
4332 error_report("Mismatched RAM page size %s "
4333 "(local) %zd != %" PRId64,
4334 id, block->page_size,
4335 remote_page_size);
4336 ret = -EINVAL;
4337 }
4338 }
4339 if (migrate_ignore_shared()) {
4340 hwaddr addr = qemu_get_be64(f);
4341 bool ignored = qemu_get_byte(f);
4342 if (ignored != ramblock_is_ignored(block)) {
4343 error_report("RAM block %s should %s be migrated",
4344 id, ignored ? "" : "not");
4345 ret = -EINVAL;
4346 }
4347 if (ramblock_is_ignored(block) &&
4348 block->mr->addr != addr) {
4349 error_report("Mismatched GPAs for block %s "
4350 "%" PRId64 "!= %" PRId64,
4351 id, (uint64_t)addr,
4352 (uint64_t)block->mr->addr);
4353 ret = -EINVAL;
4354 }
4355 }
4356 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4357 block->idstr);
4358 } else {
4359 error_report("Unknown ramblock \"%s\", cannot "
4360 "accept migration", id);
4361 ret = -EINVAL;
4362 }
4363
4364 total_ram_bytes -= length;
4365 }
4366 break;
4367
4368 case RAM_SAVE_FLAG_ZERO:
4369 ch = qemu_get_byte(f);
4370 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4371 break;
4372
4373 case RAM_SAVE_FLAG_PAGE:
4374 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4375 break;
4376
4377 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4378 len = qemu_get_be32(f);
4379 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4380 error_report("Invalid compressed data length: %d", len);
4381 ret = -EINVAL;
4382 break;
4383 }
4384 decompress_data_with_multi_threads(f, host, len);
4385 break;
4386
4387 case RAM_SAVE_FLAG_XBZRLE:
4388 if (load_xbzrle(f, addr, host) < 0) {
4389 error_report("Failed to decompress XBZRLE page at "
4390 RAM_ADDR_FMT, addr);
4391 ret = -EINVAL;
4392 break;
4393 }
4394 break;
4395 case RAM_SAVE_FLAG_EOS:
4396 /* normal exit */
4397 multifd_recv_sync_main();
4398 break;
4399 default:
4400 if (flags & RAM_SAVE_FLAG_HOOK) {
4401 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4402 } else {
4403 error_report("Unknown combination of migration flags: %#x",
4404 flags);
4405 ret = -EINVAL;
4406 }
4407 }
4408 if (!ret) {
4409 ret = qemu_file_get_error(f);
4410 }
4411 }
4412
4413 ret |= wait_for_decompress_done();
4414 rcu_read_unlock();
4415 trace_ram_load_complete(ret, seq_iter);
4416
4417 if (!ret && migration_incoming_in_colo_state()) {
4418 colo_flush_ram_cache();
4419 }
4420 return ret;
4421 }
4422
4423 static bool ram_has_postcopy(void *opaque)
4424 {
4425 RAMBlock *rb;
4426 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4427 if (ramblock_is_pmem(rb)) {
4428 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4429 "is not supported now!", rb->idstr, rb->host);
4430 return false;
4431 }
4432 }
4433
4434 return migrate_postcopy_ram();
4435 }
4436
4437 /* Sync all the dirty bitmap with destination VM. */
4438 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4439 {
4440 RAMBlock *block;
4441 QEMUFile *file = s->to_dst_file;
4442 int ramblock_count = 0;
4443
4444 trace_ram_dirty_bitmap_sync_start();
4445
4446 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4447 qemu_savevm_send_recv_bitmap(file, block->idstr);
4448 trace_ram_dirty_bitmap_request(block->idstr);
4449 ramblock_count++;
4450 }
4451
4452 trace_ram_dirty_bitmap_sync_wait();
4453
4454 /* Wait until all the ramblocks' dirty bitmap synced */
4455 while (ramblock_count--) {
4456 qemu_sem_wait(&s->rp_state.rp_sem);
4457 }
4458
4459 trace_ram_dirty_bitmap_sync_complete();
4460
4461 return 0;
4462 }
4463
4464 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4465 {
4466 qemu_sem_post(&s->rp_state.rp_sem);
4467 }
4468
4469 /*
4470 * Read the received bitmap, revert it as the initial dirty bitmap.
4471 * This is only used when the postcopy migration is paused but wants
4472 * to resume from a middle point.
4473 */
4474 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4475 {
4476 int ret = -EINVAL;
4477 QEMUFile *file = s->rp_state.from_dst_file;
4478 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4479 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4480 uint64_t size, end_mark;
4481
4482 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4483
4484 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4485 error_report("%s: incorrect state %s", __func__,
4486 MigrationStatus_str(s->state));
4487 return -EINVAL;
4488 }
4489
4490 /*
4491 * Note: see comments in ramblock_recv_bitmap_send() on why we
4492 * need the endianess convertion, and the paddings.
4493 */
4494 local_size = ROUND_UP(local_size, 8);
4495
4496 /* Add paddings */
4497 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4498
4499 size = qemu_get_be64(file);
4500
4501 /* The size of the bitmap should match with our ramblock */
4502 if (size != local_size) {
4503 error_report("%s: ramblock '%s' bitmap size mismatch "
4504 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4505 block->idstr, size, local_size);
4506 ret = -EINVAL;
4507 goto out;
4508 }
4509
4510 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4511 end_mark = qemu_get_be64(file);
4512
4513 ret = qemu_file_get_error(file);
4514 if (ret || size != local_size) {
4515 error_report("%s: read bitmap failed for ramblock '%s': %d"
4516 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4517 __func__, block->idstr, ret, local_size, size);
4518 ret = -EIO;
4519 goto out;
4520 }
4521
4522 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4523 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4524 __func__, block->idstr, end_mark);
4525 ret = -EINVAL;
4526 goto out;
4527 }
4528
4529 /*
4530 * Endianess convertion. We are during postcopy (though paused).
4531 * The dirty bitmap won't change. We can directly modify it.
4532 */
4533 bitmap_from_le(block->bmap, le_bitmap, nbits);
4534
4535 /*
4536 * What we received is "received bitmap". Revert it as the initial
4537 * dirty bitmap for this ramblock.
4538 */
4539 bitmap_complement(block->bmap, block->bmap, nbits);
4540
4541 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4542
4543 /*
4544 * We succeeded to sync bitmap for current ramblock. If this is
4545 * the last one to sync, we need to notify the main send thread.
4546 */
4547 ram_dirty_bitmap_reload_notify(s);
4548
4549 ret = 0;
4550 out:
4551 g_free(le_bitmap);
4552 return ret;
4553 }
4554
4555 static int ram_resume_prepare(MigrationState *s, void *opaque)
4556 {
4557 RAMState *rs = *(RAMState **)opaque;
4558 int ret;
4559
4560 ret = ram_dirty_bitmap_sync_all(s, rs);
4561 if (ret) {
4562 return ret;
4563 }
4564
4565 ram_state_resume_prepare(rs, s->to_dst_file);
4566
4567 return 0;
4568 }
4569
4570 static SaveVMHandlers savevm_ram_handlers = {
4571 .save_setup = ram_save_setup,
4572 .save_live_iterate = ram_save_iterate,
4573 .save_live_complete_postcopy = ram_save_complete,
4574 .save_live_complete_precopy = ram_save_complete,
4575 .has_postcopy = ram_has_postcopy,
4576 .save_live_pending = ram_save_pending,
4577 .load_state = ram_load,
4578 .save_cleanup = ram_save_cleanup,
4579 .load_setup = ram_load_setup,
4580 .load_cleanup = ram_load_cleanup,
4581 .resume_prepare = ram_resume_prepare,
4582 };
4583
4584 void ram_mig_init(void)
4585 {
4586 qemu_mutex_init(&XBZRLE.lock);
4587 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
4588 }