]> git.proxmox.com Git - mirror_qemu.git/blob - migration/ram.c
Merge remote-tracking branch 'remotes/xtensa/tags/20180918-xtensa' into staging
[mirror_qemu.git] / migration / ram.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/pmem.h"
37 #include "xbzrle.h"
38 #include "ram.h"
39 #include "migration.h"
40 #include "socket.h"
41 #include "migration/register.h"
42 #include "migration/misc.h"
43 #include "qemu-file.h"
44 #include "postcopy-ram.h"
45 #include "page_cache.h"
46 #include "qemu/error-report.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qmp/qerror.h"
50 #include "trace.h"
51 #include "exec/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
55 #include "block.h"
56 #include "sysemu/sysemu.h"
57 #include "qemu/uuid.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60
61 /***********************************************************/
62 /* ram save/restore */
63
64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
71 #define RAM_SAVE_FLAG_ZERO 0x02
72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
73 #define RAM_SAVE_FLAG_PAGE 0x08
74 #define RAM_SAVE_FLAG_EOS 0x10
75 #define RAM_SAVE_FLAG_CONTINUE 0x20
76 #define RAM_SAVE_FLAG_XBZRLE 0x40
77 /* 0x80 is reserved in migration.h start with 0x100 next */
78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
80 static inline bool is_zero_range(uint8_t *p, uint64_t size)
81 {
82 return buffer_is_zero(p, size);
83 }
84
85 XBZRLECacheStats xbzrle_counters;
86
87 /* struct contains XBZRLE cache and a static page
88 used by the compression */
89 static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
101 } XBZRLE;
102
103 static void XBZRLE_cache_lock(void)
104 {
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107 }
108
109 static void XBZRLE_cache_unlock(void)
110 {
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113 }
114
115 /**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
123 * Returns 0 for success or -1 for error
124 *
125 * @new_size: new cache size
126 * @errp: set *errp if the check failed, with reason
127 */
128 int xbzrle_cache_resize(int64_t new_size, Error **errp)
129 {
130 PageCache *new_cache;
131 int64_t ret = 0;
132
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
142 return 0;
143 }
144
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
149 if (!new_cache) {
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
157 out:
158 XBZRLE_cache_unlock();
159 return ret;
160 }
161
162 /* Should be holding either ram_list.mutex, or the RCU lock. */
163 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
164 INTERNAL_RAMBLOCK_FOREACH(block) \
165 if (!qemu_ram_is_migratable(block)) {} else
166
167 #undef RAMBLOCK_FOREACH
168
169 static void ramblock_recv_map_init(void)
170 {
171 RAMBlock *rb;
172
173 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
174 assert(!rb->receivedmap);
175 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
176 }
177 }
178
179 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
180 {
181 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
182 rb->receivedmap);
183 }
184
185 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
186 {
187 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
188 }
189
190 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
191 {
192 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
193 }
194
195 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
196 size_t nr)
197 {
198 bitmap_set_atomic(rb->receivedmap,
199 ramblock_recv_bitmap_offset(host_addr, rb),
200 nr);
201 }
202
203 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
204
205 /*
206 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
207 *
208 * Returns >0 if success with sent bytes, or <0 if error.
209 */
210 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
211 const char *block_name)
212 {
213 RAMBlock *block = qemu_ram_block_by_name(block_name);
214 unsigned long *le_bitmap, nbits;
215 uint64_t size;
216
217 if (!block) {
218 error_report("%s: invalid block name: %s", __func__, block_name);
219 return -1;
220 }
221
222 nbits = block->used_length >> TARGET_PAGE_BITS;
223
224 /*
225 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
226 * machines we may need 4 more bytes for padding (see below
227 * comment). So extend it a bit before hand.
228 */
229 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
230
231 /*
232 * Always use little endian when sending the bitmap. This is
233 * required that when source and destination VMs are not using the
234 * same endianess. (Note: big endian won't work.)
235 */
236 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
237
238 /* Size of the bitmap, in bytes */
239 size = DIV_ROUND_UP(nbits, 8);
240
241 /*
242 * size is always aligned to 8 bytes for 64bit machines, but it
243 * may not be true for 32bit machines. We need this padding to
244 * make sure the migration can survive even between 32bit and
245 * 64bit machines.
246 */
247 size = ROUND_UP(size, 8);
248
249 qemu_put_be64(file, size);
250 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
251 /*
252 * Mark as an end, in case the middle part is screwed up due to
253 * some "misterious" reason.
254 */
255 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
256 qemu_fflush(file);
257
258 g_free(le_bitmap);
259
260 if (qemu_file_get_error(file)) {
261 return qemu_file_get_error(file);
262 }
263
264 return size + sizeof(size);
265 }
266
267 /*
268 * An outstanding page request, on the source, having been received
269 * and queued
270 */
271 struct RAMSrcPageRequest {
272 RAMBlock *rb;
273 hwaddr offset;
274 hwaddr len;
275
276 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
277 };
278
279 /* State of RAM for migration */
280 struct RAMState {
281 /* QEMUFile used for this migration */
282 QEMUFile *f;
283 /* Last block that we have visited searching for dirty pages */
284 RAMBlock *last_seen_block;
285 /* Last block from where we have sent data */
286 RAMBlock *last_sent_block;
287 /* Last dirty target page we have sent */
288 ram_addr_t last_page;
289 /* last ram version we have seen */
290 uint32_t last_version;
291 /* We are in the first round */
292 bool ram_bulk_stage;
293 /* How many times we have dirty too many pages */
294 int dirty_rate_high_cnt;
295 /* these variables are used for bitmap sync */
296 /* last time we did a full bitmap_sync */
297 int64_t time_last_bitmap_sync;
298 /* bytes transferred at start_time */
299 uint64_t bytes_xfer_prev;
300 /* number of dirty pages since start_time */
301 uint64_t num_dirty_pages_period;
302 /* xbzrle misses since the beginning of the period */
303 uint64_t xbzrle_cache_miss_prev;
304 /* number of iterations at the beginning of period */
305 uint64_t iterations_prev;
306 /* Iterations since start */
307 uint64_t iterations;
308 /* number of dirty bits in the bitmap */
309 uint64_t migration_dirty_pages;
310 /* protects modification of the bitmap */
311 QemuMutex bitmap_mutex;
312 /* The RAMBlock used in the last src_page_requests */
313 RAMBlock *last_req_rb;
314 /* Queue of outstanding page requests from the destination */
315 QemuMutex src_page_req_mutex;
316 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests;
317 };
318 typedef struct RAMState RAMState;
319
320 static RAMState *ram_state;
321
322 uint64_t ram_bytes_remaining(void)
323 {
324 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
325 0;
326 }
327
328 MigrationStats ram_counters;
329
330 /* used by the search for pages to send */
331 struct PageSearchStatus {
332 /* Current block being searched */
333 RAMBlock *block;
334 /* Current page to search from */
335 unsigned long page;
336 /* Set once we wrap around */
337 bool complete_round;
338 };
339 typedef struct PageSearchStatus PageSearchStatus;
340
341 struct CompressParam {
342 bool done;
343 bool quit;
344 bool zero_page;
345 QEMUFile *file;
346 QemuMutex mutex;
347 QemuCond cond;
348 RAMBlock *block;
349 ram_addr_t offset;
350
351 /* internally used fields */
352 z_stream stream;
353 uint8_t *originbuf;
354 };
355 typedef struct CompressParam CompressParam;
356
357 struct DecompressParam {
358 bool done;
359 bool quit;
360 QemuMutex mutex;
361 QemuCond cond;
362 void *des;
363 uint8_t *compbuf;
364 int len;
365 z_stream stream;
366 };
367 typedef struct DecompressParam DecompressParam;
368
369 static CompressParam *comp_param;
370 static QemuThread *compress_threads;
371 /* comp_done_cond is used to wake up the migration thread when
372 * one of the compression threads has finished the compression.
373 * comp_done_lock is used to co-work with comp_done_cond.
374 */
375 static QemuMutex comp_done_lock;
376 static QemuCond comp_done_cond;
377 /* The empty QEMUFileOps will be used by file in CompressParam */
378 static const QEMUFileOps empty_ops = { };
379
380 static QEMUFile *decomp_file;
381 static DecompressParam *decomp_param;
382 static QemuThread *decompress_threads;
383 static QemuMutex decomp_done_lock;
384 static QemuCond decomp_done_cond;
385
386 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
387 ram_addr_t offset, uint8_t *source_buf);
388
389 static void *do_data_compress(void *opaque)
390 {
391 CompressParam *param = opaque;
392 RAMBlock *block;
393 ram_addr_t offset;
394 bool zero_page;
395
396 qemu_mutex_lock(&param->mutex);
397 while (!param->quit) {
398 if (param->block) {
399 block = param->block;
400 offset = param->offset;
401 param->block = NULL;
402 qemu_mutex_unlock(&param->mutex);
403
404 zero_page = do_compress_ram_page(param->file, &param->stream,
405 block, offset, param->originbuf);
406
407 qemu_mutex_lock(&comp_done_lock);
408 param->done = true;
409 param->zero_page = zero_page;
410 qemu_cond_signal(&comp_done_cond);
411 qemu_mutex_unlock(&comp_done_lock);
412
413 qemu_mutex_lock(&param->mutex);
414 } else {
415 qemu_cond_wait(&param->cond, &param->mutex);
416 }
417 }
418 qemu_mutex_unlock(&param->mutex);
419
420 return NULL;
421 }
422
423 static inline void terminate_compression_threads(void)
424 {
425 int idx, thread_count;
426
427 thread_count = migrate_compress_threads();
428
429 for (idx = 0; idx < thread_count; idx++) {
430 qemu_mutex_lock(&comp_param[idx].mutex);
431 comp_param[idx].quit = true;
432 qemu_cond_signal(&comp_param[idx].cond);
433 qemu_mutex_unlock(&comp_param[idx].mutex);
434 }
435 }
436
437 static void compress_threads_save_cleanup(void)
438 {
439 int i, thread_count;
440
441 if (!migrate_use_compression()) {
442 return;
443 }
444 terminate_compression_threads();
445 thread_count = migrate_compress_threads();
446 for (i = 0; i < thread_count; i++) {
447 /*
448 * we use it as a indicator which shows if the thread is
449 * properly init'd or not
450 */
451 if (!comp_param[i].file) {
452 break;
453 }
454 qemu_thread_join(compress_threads + i);
455 qemu_mutex_destroy(&comp_param[i].mutex);
456 qemu_cond_destroy(&comp_param[i].cond);
457 deflateEnd(&comp_param[i].stream);
458 g_free(comp_param[i].originbuf);
459 qemu_fclose(comp_param[i].file);
460 comp_param[i].file = NULL;
461 }
462 qemu_mutex_destroy(&comp_done_lock);
463 qemu_cond_destroy(&comp_done_cond);
464 g_free(compress_threads);
465 g_free(comp_param);
466 compress_threads = NULL;
467 comp_param = NULL;
468 }
469
470 static int compress_threads_save_setup(void)
471 {
472 int i, thread_count;
473
474 if (!migrate_use_compression()) {
475 return 0;
476 }
477 thread_count = migrate_compress_threads();
478 compress_threads = g_new0(QemuThread, thread_count);
479 comp_param = g_new0(CompressParam, thread_count);
480 qemu_cond_init(&comp_done_cond);
481 qemu_mutex_init(&comp_done_lock);
482 for (i = 0; i < thread_count; i++) {
483 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
484 if (!comp_param[i].originbuf) {
485 goto exit;
486 }
487
488 if (deflateInit(&comp_param[i].stream,
489 migrate_compress_level()) != Z_OK) {
490 g_free(comp_param[i].originbuf);
491 goto exit;
492 }
493
494 /* comp_param[i].file is just used as a dummy buffer to save data,
495 * set its ops to empty.
496 */
497 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
498 comp_param[i].done = true;
499 comp_param[i].quit = false;
500 qemu_mutex_init(&comp_param[i].mutex);
501 qemu_cond_init(&comp_param[i].cond);
502 qemu_thread_create(compress_threads + i, "compress",
503 do_data_compress, comp_param + i,
504 QEMU_THREAD_JOINABLE);
505 }
506 return 0;
507
508 exit:
509 compress_threads_save_cleanup();
510 return -1;
511 }
512
513 /* Multiple fd's */
514
515 #define MULTIFD_MAGIC 0x11223344U
516 #define MULTIFD_VERSION 1
517
518 #define MULTIFD_FLAG_SYNC (1 << 0)
519
520 typedef struct {
521 uint32_t magic;
522 uint32_t version;
523 unsigned char uuid[16]; /* QemuUUID */
524 uint8_t id;
525 } __attribute__((packed)) MultiFDInit_t;
526
527 typedef struct {
528 uint32_t magic;
529 uint32_t version;
530 uint32_t flags;
531 uint32_t size;
532 uint32_t used;
533 uint64_t packet_num;
534 char ramblock[256];
535 uint64_t offset[];
536 } __attribute__((packed)) MultiFDPacket_t;
537
538 typedef struct {
539 /* number of used pages */
540 uint32_t used;
541 /* number of allocated pages */
542 uint32_t allocated;
543 /* global number of generated multifd packets */
544 uint64_t packet_num;
545 /* offset of each page */
546 ram_addr_t *offset;
547 /* pointer to each page */
548 struct iovec *iov;
549 RAMBlock *block;
550 } MultiFDPages_t;
551
552 typedef struct {
553 /* this fields are not changed once the thread is created */
554 /* channel number */
555 uint8_t id;
556 /* channel thread name */
557 char *name;
558 /* channel thread id */
559 QemuThread thread;
560 /* communication channel */
561 QIOChannel *c;
562 /* sem where to wait for more work */
563 QemuSemaphore sem;
564 /* this mutex protects the following parameters */
565 QemuMutex mutex;
566 /* is this channel thread running */
567 bool running;
568 /* should this thread finish */
569 bool quit;
570 /* thread has work to do */
571 int pending_job;
572 /* array of pages to sent */
573 MultiFDPages_t *pages;
574 /* packet allocated len */
575 uint32_t packet_len;
576 /* pointer to the packet */
577 MultiFDPacket_t *packet;
578 /* multifd flags for each packet */
579 uint32_t flags;
580 /* global number of generated multifd packets */
581 uint64_t packet_num;
582 /* thread local variables */
583 /* packets sent through this channel */
584 uint64_t num_packets;
585 /* pages sent through this channel */
586 uint64_t num_pages;
587 /* syncs main thread and channels */
588 QemuSemaphore sem_sync;
589 } MultiFDSendParams;
590
591 typedef struct {
592 /* this fields are not changed once the thread is created */
593 /* channel number */
594 uint8_t id;
595 /* channel thread name */
596 char *name;
597 /* channel thread id */
598 QemuThread thread;
599 /* communication channel */
600 QIOChannel *c;
601 /* this mutex protects the following parameters */
602 QemuMutex mutex;
603 /* is this channel thread running */
604 bool running;
605 /* array of pages to receive */
606 MultiFDPages_t *pages;
607 /* packet allocated len */
608 uint32_t packet_len;
609 /* pointer to the packet */
610 MultiFDPacket_t *packet;
611 /* multifd flags for each packet */
612 uint32_t flags;
613 /* global number of generated multifd packets */
614 uint64_t packet_num;
615 /* thread local variables */
616 /* packets sent through this channel */
617 uint64_t num_packets;
618 /* pages sent through this channel */
619 uint64_t num_pages;
620 /* syncs main thread and channels */
621 QemuSemaphore sem_sync;
622 } MultiFDRecvParams;
623
624 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
625 {
626 MultiFDInit_t msg;
627 int ret;
628
629 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
630 msg.version = cpu_to_be32(MULTIFD_VERSION);
631 msg.id = p->id;
632 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
633
634 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
635 if (ret != 0) {
636 return -1;
637 }
638 return 0;
639 }
640
641 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
642 {
643 MultiFDInit_t msg;
644 int ret;
645
646 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
647 if (ret != 0) {
648 return -1;
649 }
650
651 be32_to_cpus(&msg.magic);
652 be32_to_cpus(&msg.version);
653
654 if (msg.magic != MULTIFD_MAGIC) {
655 error_setg(errp, "multifd: received packet magic %x "
656 "expected %x", msg.magic, MULTIFD_MAGIC);
657 return -1;
658 }
659
660 if (msg.version != MULTIFD_VERSION) {
661 error_setg(errp, "multifd: received packet version %d "
662 "expected %d", msg.version, MULTIFD_VERSION);
663 return -1;
664 }
665
666 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
667 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
668 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
669
670 error_setg(errp, "multifd: received uuid '%s' and expected "
671 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
672 g_free(uuid);
673 g_free(msg_uuid);
674 return -1;
675 }
676
677 if (msg.id > migrate_multifd_channels()) {
678 error_setg(errp, "multifd: received channel version %d "
679 "expected %d", msg.version, MULTIFD_VERSION);
680 return -1;
681 }
682
683 return msg.id;
684 }
685
686 static MultiFDPages_t *multifd_pages_init(size_t size)
687 {
688 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
689
690 pages->allocated = size;
691 pages->iov = g_new0(struct iovec, size);
692 pages->offset = g_new0(ram_addr_t, size);
693
694 return pages;
695 }
696
697 static void multifd_pages_clear(MultiFDPages_t *pages)
698 {
699 pages->used = 0;
700 pages->allocated = 0;
701 pages->packet_num = 0;
702 pages->block = NULL;
703 g_free(pages->iov);
704 pages->iov = NULL;
705 g_free(pages->offset);
706 pages->offset = NULL;
707 g_free(pages);
708 }
709
710 static void multifd_send_fill_packet(MultiFDSendParams *p)
711 {
712 MultiFDPacket_t *packet = p->packet;
713 int i;
714
715 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
716 packet->version = cpu_to_be32(MULTIFD_VERSION);
717 packet->flags = cpu_to_be32(p->flags);
718 packet->size = cpu_to_be32(migrate_multifd_page_count());
719 packet->used = cpu_to_be32(p->pages->used);
720 packet->packet_num = cpu_to_be64(p->packet_num);
721
722 if (p->pages->block) {
723 strncpy(packet->ramblock, p->pages->block->idstr, 256);
724 }
725
726 for (i = 0; i < p->pages->used; i++) {
727 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
728 }
729 }
730
731 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
732 {
733 MultiFDPacket_t *packet = p->packet;
734 RAMBlock *block;
735 int i;
736
737 be32_to_cpus(&packet->magic);
738 if (packet->magic != MULTIFD_MAGIC) {
739 error_setg(errp, "multifd: received packet "
740 "magic %x and expected magic %x",
741 packet->magic, MULTIFD_MAGIC);
742 return -1;
743 }
744
745 be32_to_cpus(&packet->version);
746 if (packet->version != MULTIFD_VERSION) {
747 error_setg(errp, "multifd: received packet "
748 "version %d and expected version %d",
749 packet->version, MULTIFD_VERSION);
750 return -1;
751 }
752
753 p->flags = be32_to_cpu(packet->flags);
754
755 be32_to_cpus(&packet->size);
756 if (packet->size > migrate_multifd_page_count()) {
757 error_setg(errp, "multifd: received packet "
758 "with size %d and expected maximum size %d",
759 packet->size, migrate_multifd_page_count()) ;
760 return -1;
761 }
762
763 p->pages->used = be32_to_cpu(packet->used);
764 if (p->pages->used > packet->size) {
765 error_setg(errp, "multifd: received packet "
766 "with size %d and expected maximum size %d",
767 p->pages->used, packet->size) ;
768 return -1;
769 }
770
771 p->packet_num = be64_to_cpu(packet->packet_num);
772
773 if (p->pages->used) {
774 /* make sure that ramblock is 0 terminated */
775 packet->ramblock[255] = 0;
776 block = qemu_ram_block_by_name(packet->ramblock);
777 if (!block) {
778 error_setg(errp, "multifd: unknown ram block %s",
779 packet->ramblock);
780 return -1;
781 }
782 }
783
784 for (i = 0; i < p->pages->used; i++) {
785 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
786
787 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
788 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
789 " (max " RAM_ADDR_FMT ")",
790 offset, block->max_length);
791 return -1;
792 }
793 p->pages->iov[i].iov_base = block->host + offset;
794 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
795 }
796
797 return 0;
798 }
799
800 struct {
801 MultiFDSendParams *params;
802 /* number of created threads */
803 int count;
804 /* array of pages to sent */
805 MultiFDPages_t *pages;
806 /* syncs main thread and channels */
807 QemuSemaphore sem_sync;
808 /* global number of generated multifd packets */
809 uint64_t packet_num;
810 /* send channels ready */
811 QemuSemaphore channels_ready;
812 } *multifd_send_state;
813
814 /*
815 * How we use multifd_send_state->pages and channel->pages?
816 *
817 * We create a pages for each channel, and a main one. Each time that
818 * we need to send a batch of pages we interchange the ones between
819 * multifd_send_state and the channel that is sending it. There are
820 * two reasons for that:
821 * - to not have to do so many mallocs during migration
822 * - to make easier to know what to free at the end of migration
823 *
824 * This way we always know who is the owner of each "pages" struct,
825 * and we don't need any loocking. It belongs to the migration thread
826 * or to the channel thread. Switching is safe because the migration
827 * thread is using the channel mutex when changing it, and the channel
828 * have to had finish with its own, otherwise pending_job can't be
829 * false.
830 */
831
832 static void multifd_send_pages(void)
833 {
834 int i;
835 static int next_channel;
836 MultiFDSendParams *p = NULL; /* make happy gcc */
837 MultiFDPages_t *pages = multifd_send_state->pages;
838 uint64_t transferred;
839
840 qemu_sem_wait(&multifd_send_state->channels_ready);
841 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
842 p = &multifd_send_state->params[i];
843
844 qemu_mutex_lock(&p->mutex);
845 if (!p->pending_job) {
846 p->pending_job++;
847 next_channel = (i + 1) % migrate_multifd_channels();
848 break;
849 }
850 qemu_mutex_unlock(&p->mutex);
851 }
852 p->pages->used = 0;
853
854 p->packet_num = multifd_send_state->packet_num++;
855 p->pages->block = NULL;
856 multifd_send_state->pages = p->pages;
857 p->pages = pages;
858 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
859 ram_counters.multifd_bytes += transferred;
860 ram_counters.transferred += transferred;;
861 qemu_mutex_unlock(&p->mutex);
862 qemu_sem_post(&p->sem);
863 }
864
865 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
866 {
867 MultiFDPages_t *pages = multifd_send_state->pages;
868
869 if (!pages->block) {
870 pages->block = block;
871 }
872
873 if (pages->block == block) {
874 pages->offset[pages->used] = offset;
875 pages->iov[pages->used].iov_base = block->host + offset;
876 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
877 pages->used++;
878
879 if (pages->used < pages->allocated) {
880 return;
881 }
882 }
883
884 multifd_send_pages();
885
886 if (pages->block != block) {
887 multifd_queue_page(block, offset);
888 }
889 }
890
891 static void multifd_send_terminate_threads(Error *err)
892 {
893 int i;
894
895 if (err) {
896 MigrationState *s = migrate_get_current();
897 migrate_set_error(s, err);
898 if (s->state == MIGRATION_STATUS_SETUP ||
899 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
900 s->state == MIGRATION_STATUS_DEVICE ||
901 s->state == MIGRATION_STATUS_ACTIVE) {
902 migrate_set_state(&s->state, s->state,
903 MIGRATION_STATUS_FAILED);
904 }
905 }
906
907 for (i = 0; i < migrate_multifd_channels(); i++) {
908 MultiFDSendParams *p = &multifd_send_state->params[i];
909
910 qemu_mutex_lock(&p->mutex);
911 p->quit = true;
912 qemu_sem_post(&p->sem);
913 qemu_mutex_unlock(&p->mutex);
914 }
915 }
916
917 int multifd_save_cleanup(Error **errp)
918 {
919 int i;
920 int ret = 0;
921
922 if (!migrate_use_multifd()) {
923 return 0;
924 }
925 multifd_send_terminate_threads(NULL);
926 for (i = 0; i < migrate_multifd_channels(); i++) {
927 MultiFDSendParams *p = &multifd_send_state->params[i];
928
929 if (p->running) {
930 qemu_thread_join(&p->thread);
931 }
932 socket_send_channel_destroy(p->c);
933 p->c = NULL;
934 qemu_mutex_destroy(&p->mutex);
935 qemu_sem_destroy(&p->sem);
936 qemu_sem_destroy(&p->sem_sync);
937 g_free(p->name);
938 p->name = NULL;
939 multifd_pages_clear(p->pages);
940 p->pages = NULL;
941 p->packet_len = 0;
942 g_free(p->packet);
943 p->packet = NULL;
944 }
945 qemu_sem_destroy(&multifd_send_state->channels_ready);
946 qemu_sem_destroy(&multifd_send_state->sem_sync);
947 g_free(multifd_send_state->params);
948 multifd_send_state->params = NULL;
949 multifd_pages_clear(multifd_send_state->pages);
950 multifd_send_state->pages = NULL;
951 g_free(multifd_send_state);
952 multifd_send_state = NULL;
953 return ret;
954 }
955
956 static void multifd_send_sync_main(void)
957 {
958 int i;
959
960 if (!migrate_use_multifd()) {
961 return;
962 }
963 if (multifd_send_state->pages->used) {
964 multifd_send_pages();
965 }
966 for (i = 0; i < migrate_multifd_channels(); i++) {
967 MultiFDSendParams *p = &multifd_send_state->params[i];
968
969 trace_multifd_send_sync_main_signal(p->id);
970
971 qemu_mutex_lock(&p->mutex);
972
973 p->packet_num = multifd_send_state->packet_num++;
974 p->flags |= MULTIFD_FLAG_SYNC;
975 p->pending_job++;
976 qemu_mutex_unlock(&p->mutex);
977 qemu_sem_post(&p->sem);
978 }
979 for (i = 0; i < migrate_multifd_channels(); i++) {
980 MultiFDSendParams *p = &multifd_send_state->params[i];
981
982 trace_multifd_send_sync_main_wait(p->id);
983 qemu_sem_wait(&multifd_send_state->sem_sync);
984 }
985 trace_multifd_send_sync_main(multifd_send_state->packet_num);
986 }
987
988 static void *multifd_send_thread(void *opaque)
989 {
990 MultiFDSendParams *p = opaque;
991 Error *local_err = NULL;
992 int ret;
993
994 trace_multifd_send_thread_start(p->id);
995 rcu_register_thread();
996
997 if (multifd_send_initial_packet(p, &local_err) < 0) {
998 goto out;
999 }
1000 /* initial packet */
1001 p->num_packets = 1;
1002
1003 while (true) {
1004 qemu_sem_wait(&p->sem);
1005 qemu_mutex_lock(&p->mutex);
1006
1007 if (p->pending_job) {
1008 uint32_t used = p->pages->used;
1009 uint64_t packet_num = p->packet_num;
1010 uint32_t flags = p->flags;
1011
1012 multifd_send_fill_packet(p);
1013 p->flags = 0;
1014 p->num_packets++;
1015 p->num_pages += used;
1016 p->pages->used = 0;
1017 qemu_mutex_unlock(&p->mutex);
1018
1019 trace_multifd_send(p->id, packet_num, used, flags);
1020
1021 ret = qio_channel_write_all(p->c, (void *)p->packet,
1022 p->packet_len, &local_err);
1023 if (ret != 0) {
1024 break;
1025 }
1026
1027 ret = qio_channel_writev_all(p->c, p->pages->iov, used, &local_err);
1028 if (ret != 0) {
1029 break;
1030 }
1031
1032 qemu_mutex_lock(&p->mutex);
1033 p->pending_job--;
1034 qemu_mutex_unlock(&p->mutex);
1035
1036 if (flags & MULTIFD_FLAG_SYNC) {
1037 qemu_sem_post(&multifd_send_state->sem_sync);
1038 }
1039 qemu_sem_post(&multifd_send_state->channels_ready);
1040 } else if (p->quit) {
1041 qemu_mutex_unlock(&p->mutex);
1042 break;
1043 } else {
1044 qemu_mutex_unlock(&p->mutex);
1045 /* sometimes there are spurious wakeups */
1046 }
1047 }
1048
1049 out:
1050 if (local_err) {
1051 multifd_send_terminate_threads(local_err);
1052 }
1053
1054 qemu_mutex_lock(&p->mutex);
1055 p->running = false;
1056 qemu_mutex_unlock(&p->mutex);
1057
1058 rcu_unregister_thread();
1059 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1060
1061 return NULL;
1062 }
1063
1064 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1065 {
1066 MultiFDSendParams *p = opaque;
1067 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1068 Error *local_err = NULL;
1069
1070 if (qio_task_propagate_error(task, &local_err)) {
1071 if (multifd_save_cleanup(&local_err) != 0) {
1072 migrate_set_error(migrate_get_current(), local_err);
1073 }
1074 } else {
1075 p->c = QIO_CHANNEL(sioc);
1076 qio_channel_set_delay(p->c, false);
1077 p->running = true;
1078 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1079 QEMU_THREAD_JOINABLE);
1080
1081 atomic_inc(&multifd_send_state->count);
1082 }
1083 }
1084
1085 int multifd_save_setup(void)
1086 {
1087 int thread_count;
1088 uint32_t page_count = migrate_multifd_page_count();
1089 uint8_t i;
1090
1091 if (!migrate_use_multifd()) {
1092 return 0;
1093 }
1094 thread_count = migrate_multifd_channels();
1095 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1096 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1097 atomic_set(&multifd_send_state->count, 0);
1098 multifd_send_state->pages = multifd_pages_init(page_count);
1099 qemu_sem_init(&multifd_send_state->sem_sync, 0);
1100 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1101
1102 for (i = 0; i < thread_count; i++) {
1103 MultiFDSendParams *p = &multifd_send_state->params[i];
1104
1105 qemu_mutex_init(&p->mutex);
1106 qemu_sem_init(&p->sem, 0);
1107 qemu_sem_init(&p->sem_sync, 0);
1108 p->quit = false;
1109 p->pending_job = 0;
1110 p->id = i;
1111 p->pages = multifd_pages_init(page_count);
1112 p->packet_len = sizeof(MultiFDPacket_t)
1113 + sizeof(ram_addr_t) * page_count;
1114 p->packet = g_malloc0(p->packet_len);
1115 p->name = g_strdup_printf("multifdsend_%d", i);
1116 socket_send_channel_create(multifd_new_send_channel_async, p);
1117 }
1118 return 0;
1119 }
1120
1121 struct {
1122 MultiFDRecvParams *params;
1123 /* number of created threads */
1124 int count;
1125 /* syncs main thread and channels */
1126 QemuSemaphore sem_sync;
1127 /* global number of generated multifd packets */
1128 uint64_t packet_num;
1129 } *multifd_recv_state;
1130
1131 static void multifd_recv_terminate_threads(Error *err)
1132 {
1133 int i;
1134
1135 if (err) {
1136 MigrationState *s = migrate_get_current();
1137 migrate_set_error(s, err);
1138 if (s->state == MIGRATION_STATUS_SETUP ||
1139 s->state == MIGRATION_STATUS_ACTIVE) {
1140 migrate_set_state(&s->state, s->state,
1141 MIGRATION_STATUS_FAILED);
1142 }
1143 }
1144
1145 for (i = 0; i < migrate_multifd_channels(); i++) {
1146 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1147
1148 qemu_mutex_lock(&p->mutex);
1149 /* We could arrive here for two reasons:
1150 - normal quit, i.e. everything went fine, just finished
1151 - error quit: We close the channels so the channel threads
1152 finish the qio_channel_read_all_eof() */
1153 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1154 qemu_mutex_unlock(&p->mutex);
1155 }
1156 }
1157
1158 int multifd_load_cleanup(Error **errp)
1159 {
1160 int i;
1161 int ret = 0;
1162
1163 if (!migrate_use_multifd()) {
1164 return 0;
1165 }
1166 multifd_recv_terminate_threads(NULL);
1167 for (i = 0; i < migrate_multifd_channels(); i++) {
1168 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1169
1170 if (p->running) {
1171 qemu_thread_join(&p->thread);
1172 }
1173 object_unref(OBJECT(p->c));
1174 p->c = NULL;
1175 qemu_mutex_destroy(&p->mutex);
1176 qemu_sem_destroy(&p->sem_sync);
1177 g_free(p->name);
1178 p->name = NULL;
1179 multifd_pages_clear(p->pages);
1180 p->pages = NULL;
1181 p->packet_len = 0;
1182 g_free(p->packet);
1183 p->packet = NULL;
1184 }
1185 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1186 g_free(multifd_recv_state->params);
1187 multifd_recv_state->params = NULL;
1188 g_free(multifd_recv_state);
1189 multifd_recv_state = NULL;
1190
1191 return ret;
1192 }
1193
1194 static void multifd_recv_sync_main(void)
1195 {
1196 int i;
1197
1198 if (!migrate_use_multifd()) {
1199 return;
1200 }
1201 for (i = 0; i < migrate_multifd_channels(); i++) {
1202 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1203
1204 trace_multifd_recv_sync_main_wait(p->id);
1205 qemu_sem_wait(&multifd_recv_state->sem_sync);
1206 qemu_mutex_lock(&p->mutex);
1207 if (multifd_recv_state->packet_num < p->packet_num) {
1208 multifd_recv_state->packet_num = p->packet_num;
1209 }
1210 qemu_mutex_unlock(&p->mutex);
1211 }
1212 for (i = 0; i < migrate_multifd_channels(); i++) {
1213 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1214
1215 trace_multifd_recv_sync_main_signal(p->id);
1216 qemu_sem_post(&p->sem_sync);
1217 }
1218 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1219 }
1220
1221 static void *multifd_recv_thread(void *opaque)
1222 {
1223 MultiFDRecvParams *p = opaque;
1224 Error *local_err = NULL;
1225 int ret;
1226
1227 trace_multifd_recv_thread_start(p->id);
1228 rcu_register_thread();
1229
1230 while (true) {
1231 uint32_t used;
1232 uint32_t flags;
1233
1234 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1235 p->packet_len, &local_err);
1236 if (ret == 0) { /* EOF */
1237 break;
1238 }
1239 if (ret == -1) { /* Error */
1240 break;
1241 }
1242
1243 qemu_mutex_lock(&p->mutex);
1244 ret = multifd_recv_unfill_packet(p, &local_err);
1245 if (ret) {
1246 qemu_mutex_unlock(&p->mutex);
1247 break;
1248 }
1249
1250 used = p->pages->used;
1251 flags = p->flags;
1252 trace_multifd_recv(p->id, p->packet_num, used, flags);
1253 p->num_packets++;
1254 p->num_pages += used;
1255 qemu_mutex_unlock(&p->mutex);
1256
1257 ret = qio_channel_readv_all(p->c, p->pages->iov, used, &local_err);
1258 if (ret != 0) {
1259 break;
1260 }
1261
1262 if (flags & MULTIFD_FLAG_SYNC) {
1263 qemu_sem_post(&multifd_recv_state->sem_sync);
1264 qemu_sem_wait(&p->sem_sync);
1265 }
1266 }
1267
1268 if (local_err) {
1269 multifd_recv_terminate_threads(local_err);
1270 }
1271 qemu_mutex_lock(&p->mutex);
1272 p->running = false;
1273 qemu_mutex_unlock(&p->mutex);
1274
1275 rcu_unregister_thread();
1276 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1277
1278 return NULL;
1279 }
1280
1281 int multifd_load_setup(void)
1282 {
1283 int thread_count;
1284 uint32_t page_count = migrate_multifd_page_count();
1285 uint8_t i;
1286
1287 if (!migrate_use_multifd()) {
1288 return 0;
1289 }
1290 thread_count = migrate_multifd_channels();
1291 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1292 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1293 atomic_set(&multifd_recv_state->count, 0);
1294 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1295
1296 for (i = 0; i < thread_count; i++) {
1297 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1298
1299 qemu_mutex_init(&p->mutex);
1300 qemu_sem_init(&p->sem_sync, 0);
1301 p->id = i;
1302 p->pages = multifd_pages_init(page_count);
1303 p->packet_len = sizeof(MultiFDPacket_t)
1304 + sizeof(ram_addr_t) * page_count;
1305 p->packet = g_malloc0(p->packet_len);
1306 p->name = g_strdup_printf("multifdrecv_%d", i);
1307 }
1308 return 0;
1309 }
1310
1311 bool multifd_recv_all_channels_created(void)
1312 {
1313 int thread_count = migrate_multifd_channels();
1314
1315 if (!migrate_use_multifd()) {
1316 return true;
1317 }
1318
1319 return thread_count == atomic_read(&multifd_recv_state->count);
1320 }
1321
1322 /* Return true if multifd is ready for the migration, otherwise false */
1323 bool multifd_recv_new_channel(QIOChannel *ioc)
1324 {
1325 MultiFDRecvParams *p;
1326 Error *local_err = NULL;
1327 int id;
1328
1329 id = multifd_recv_initial_packet(ioc, &local_err);
1330 if (id < 0) {
1331 multifd_recv_terminate_threads(local_err);
1332 return false;
1333 }
1334
1335 p = &multifd_recv_state->params[id];
1336 if (p->c != NULL) {
1337 error_setg(&local_err, "multifd: received id '%d' already setup'",
1338 id);
1339 multifd_recv_terminate_threads(local_err);
1340 return false;
1341 }
1342 p->c = ioc;
1343 object_ref(OBJECT(ioc));
1344 /* initial packet */
1345 p->num_packets = 1;
1346
1347 p->running = true;
1348 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1349 QEMU_THREAD_JOINABLE);
1350 atomic_inc(&multifd_recv_state->count);
1351 return multifd_recv_state->count == migrate_multifd_channels();
1352 }
1353
1354 /**
1355 * save_page_header: write page header to wire
1356 *
1357 * If this is the 1st block, it also writes the block identification
1358 *
1359 * Returns the number of bytes written
1360 *
1361 * @f: QEMUFile where to send the data
1362 * @block: block that contains the page we want to send
1363 * @offset: offset inside the block for the page
1364 * in the lower bits, it contains flags
1365 */
1366 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1367 ram_addr_t offset)
1368 {
1369 size_t size, len;
1370
1371 if (block == rs->last_sent_block) {
1372 offset |= RAM_SAVE_FLAG_CONTINUE;
1373 }
1374 qemu_put_be64(f, offset);
1375 size = 8;
1376
1377 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1378 len = strlen(block->idstr);
1379 qemu_put_byte(f, len);
1380 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1381 size += 1 + len;
1382 rs->last_sent_block = block;
1383 }
1384 return size;
1385 }
1386
1387 /**
1388 * mig_throttle_guest_down: throotle down the guest
1389 *
1390 * Reduce amount of guest cpu execution to hopefully slow down memory
1391 * writes. If guest dirty memory rate is reduced below the rate at
1392 * which we can transfer pages to the destination then we should be
1393 * able to complete migration. Some workloads dirty memory way too
1394 * fast and will not effectively converge, even with auto-converge.
1395 */
1396 static void mig_throttle_guest_down(void)
1397 {
1398 MigrationState *s = migrate_get_current();
1399 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1400 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1401 int pct_max = s->parameters.max_cpu_throttle;
1402
1403 /* We have not started throttling yet. Let's start it. */
1404 if (!cpu_throttle_active()) {
1405 cpu_throttle_set(pct_initial);
1406 } else {
1407 /* Throttling already on, just increase the rate */
1408 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1409 pct_max));
1410 }
1411 }
1412
1413 /**
1414 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1415 *
1416 * @rs: current RAM state
1417 * @current_addr: address for the zero page
1418 *
1419 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1420 * The important thing is that a stale (not-yet-0'd) page be replaced
1421 * by the new data.
1422 * As a bonus, if the page wasn't in the cache it gets added so that
1423 * when a small write is made into the 0'd page it gets XBZRLE sent.
1424 */
1425 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1426 {
1427 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1428 return;
1429 }
1430
1431 /* We don't care if this fails to allocate a new cache page
1432 * as long as it updated an old one */
1433 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1434 ram_counters.dirty_sync_count);
1435 }
1436
1437 #define ENCODING_FLAG_XBZRLE 0x1
1438
1439 /**
1440 * save_xbzrle_page: compress and send current page
1441 *
1442 * Returns: 1 means that we wrote the page
1443 * 0 means that page is identical to the one already sent
1444 * -1 means that xbzrle would be longer than normal
1445 *
1446 * @rs: current RAM state
1447 * @current_data: pointer to the address of the page contents
1448 * @current_addr: addr of the page
1449 * @block: block that contains the page we want to send
1450 * @offset: offset inside the block for the page
1451 * @last_stage: if we are at the completion stage
1452 */
1453 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1454 ram_addr_t current_addr, RAMBlock *block,
1455 ram_addr_t offset, bool last_stage)
1456 {
1457 int encoded_len = 0, bytes_xbzrle;
1458 uint8_t *prev_cached_page;
1459
1460 if (!cache_is_cached(XBZRLE.cache, current_addr,
1461 ram_counters.dirty_sync_count)) {
1462 xbzrle_counters.cache_miss++;
1463 if (!last_stage) {
1464 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1465 ram_counters.dirty_sync_count) == -1) {
1466 return -1;
1467 } else {
1468 /* update *current_data when the page has been
1469 inserted into cache */
1470 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1471 }
1472 }
1473 return -1;
1474 }
1475
1476 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1477
1478 /* save current buffer into memory */
1479 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1480
1481 /* XBZRLE encoding (if there is no overflow) */
1482 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1483 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1484 TARGET_PAGE_SIZE);
1485 if (encoded_len == 0) {
1486 trace_save_xbzrle_page_skipping();
1487 return 0;
1488 } else if (encoded_len == -1) {
1489 trace_save_xbzrle_page_overflow();
1490 xbzrle_counters.overflow++;
1491 /* update data in the cache */
1492 if (!last_stage) {
1493 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
1494 *current_data = prev_cached_page;
1495 }
1496 return -1;
1497 }
1498
1499 /* we need to update the data in the cache, in order to get the same data */
1500 if (!last_stage) {
1501 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1502 }
1503
1504 /* Send XBZRLE based compressed page */
1505 bytes_xbzrle = save_page_header(rs, rs->f, block,
1506 offset | RAM_SAVE_FLAG_XBZRLE);
1507 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1508 qemu_put_be16(rs->f, encoded_len);
1509 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1510 bytes_xbzrle += encoded_len + 1 + 2;
1511 xbzrle_counters.pages++;
1512 xbzrle_counters.bytes += bytes_xbzrle;
1513 ram_counters.transferred += bytes_xbzrle;
1514
1515 return 1;
1516 }
1517
1518 /**
1519 * migration_bitmap_find_dirty: find the next dirty page from start
1520 *
1521 * Called with rcu_read_lock() to protect migration_bitmap
1522 *
1523 * Returns the byte offset within memory region of the start of a dirty page
1524 *
1525 * @rs: current RAM state
1526 * @rb: RAMBlock where to search for dirty pages
1527 * @start: page where we start the search
1528 */
1529 static inline
1530 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1531 unsigned long start)
1532 {
1533 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1534 unsigned long *bitmap = rb->bmap;
1535 unsigned long next;
1536
1537 if (!qemu_ram_is_migratable(rb)) {
1538 return size;
1539 }
1540
1541 if (rs->ram_bulk_stage && start > 0) {
1542 next = start + 1;
1543 } else {
1544 next = find_next_bit(bitmap, size, start);
1545 }
1546
1547 return next;
1548 }
1549
1550 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1551 RAMBlock *rb,
1552 unsigned long page)
1553 {
1554 bool ret;
1555
1556 ret = test_and_clear_bit(page, rb->bmap);
1557
1558 if (ret) {
1559 rs->migration_dirty_pages--;
1560 }
1561 return ret;
1562 }
1563
1564 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1565 ram_addr_t start, ram_addr_t length)
1566 {
1567 rs->migration_dirty_pages +=
1568 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
1569 &rs->num_dirty_pages_period);
1570 }
1571
1572 /**
1573 * ram_pagesize_summary: calculate all the pagesizes of a VM
1574 *
1575 * Returns a summary bitmap of the page sizes of all RAMBlocks
1576 *
1577 * For VMs with just normal pages this is equivalent to the host page
1578 * size. If it's got some huge pages then it's the OR of all the
1579 * different page sizes.
1580 */
1581 uint64_t ram_pagesize_summary(void)
1582 {
1583 RAMBlock *block;
1584 uint64_t summary = 0;
1585
1586 RAMBLOCK_FOREACH_MIGRATABLE(block) {
1587 summary |= block->page_size;
1588 }
1589
1590 return summary;
1591 }
1592
1593 static void migration_update_rates(RAMState *rs, int64_t end_time)
1594 {
1595 uint64_t iter_count = rs->iterations - rs->iterations_prev;
1596
1597 /* calculate period counters */
1598 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1599 / (end_time - rs->time_last_bitmap_sync);
1600
1601 if (!iter_count) {
1602 return;
1603 }
1604
1605 if (migrate_use_xbzrle()) {
1606 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1607 rs->xbzrle_cache_miss_prev) / iter_count;
1608 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1609 }
1610 }
1611
1612 static void migration_bitmap_sync(RAMState *rs)
1613 {
1614 RAMBlock *block;
1615 int64_t end_time;
1616 uint64_t bytes_xfer_now;
1617
1618 ram_counters.dirty_sync_count++;
1619
1620 if (!rs->time_last_bitmap_sync) {
1621 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1622 }
1623
1624 trace_migration_bitmap_sync_start();
1625 memory_global_dirty_log_sync();
1626
1627 qemu_mutex_lock(&rs->bitmap_mutex);
1628 rcu_read_lock();
1629 RAMBLOCK_FOREACH_MIGRATABLE(block) {
1630 migration_bitmap_sync_range(rs, block, 0, block->used_length);
1631 }
1632 ram_counters.remaining = ram_bytes_remaining();
1633 rcu_read_unlock();
1634 qemu_mutex_unlock(&rs->bitmap_mutex);
1635
1636 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1637
1638 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1639
1640 /* more than 1 second = 1000 millisecons */
1641 if (end_time > rs->time_last_bitmap_sync + 1000) {
1642 bytes_xfer_now = ram_counters.transferred;
1643
1644 /* During block migration the auto-converge logic incorrectly detects
1645 * that ram migration makes no progress. Avoid this by disabling the
1646 * throttling logic during the bulk phase of block migration. */
1647 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1648 /* The following detection logic can be refined later. For now:
1649 Check to see if the dirtied bytes is 50% more than the approx.
1650 amount of bytes that just got transferred since the last time we
1651 were in this routine. If that happens twice, start or increase
1652 throttling */
1653
1654 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1655 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1656 (++rs->dirty_rate_high_cnt >= 2)) {
1657 trace_migration_throttle();
1658 rs->dirty_rate_high_cnt = 0;
1659 mig_throttle_guest_down();
1660 }
1661 }
1662
1663 migration_update_rates(rs, end_time);
1664
1665 rs->iterations_prev = rs->iterations;
1666
1667 /* reset period counters */
1668 rs->time_last_bitmap_sync = end_time;
1669 rs->num_dirty_pages_period = 0;
1670 rs->bytes_xfer_prev = bytes_xfer_now;
1671 }
1672 if (migrate_use_events()) {
1673 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1674 }
1675 }
1676
1677 /**
1678 * save_zero_page_to_file: send the zero page to the file
1679 *
1680 * Returns the size of data written to the file, 0 means the page is not
1681 * a zero page
1682 *
1683 * @rs: current RAM state
1684 * @file: the file where the data is saved
1685 * @block: block that contains the page we want to send
1686 * @offset: offset inside the block for the page
1687 */
1688 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1689 RAMBlock *block, ram_addr_t offset)
1690 {
1691 uint8_t *p = block->host + offset;
1692 int len = 0;
1693
1694 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1695 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1696 qemu_put_byte(file, 0);
1697 len += 1;
1698 }
1699 return len;
1700 }
1701
1702 /**
1703 * save_zero_page: send the zero page to the stream
1704 *
1705 * Returns the number of pages written.
1706 *
1707 * @rs: current RAM state
1708 * @block: block that contains the page we want to send
1709 * @offset: offset inside the block for the page
1710 */
1711 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1712 {
1713 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1714
1715 if (len) {
1716 ram_counters.duplicate++;
1717 ram_counters.transferred += len;
1718 return 1;
1719 }
1720 return -1;
1721 }
1722
1723 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1724 {
1725 if (!migrate_release_ram() || !migration_in_postcopy()) {
1726 return;
1727 }
1728
1729 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1730 }
1731
1732 /*
1733 * @pages: the number of pages written by the control path,
1734 * < 0 - error
1735 * > 0 - number of pages written
1736 *
1737 * Return true if the pages has been saved, otherwise false is returned.
1738 */
1739 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1740 int *pages)
1741 {
1742 uint64_t bytes_xmit = 0;
1743 int ret;
1744
1745 *pages = -1;
1746 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1747 &bytes_xmit);
1748 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1749 return false;
1750 }
1751
1752 if (bytes_xmit) {
1753 ram_counters.transferred += bytes_xmit;
1754 *pages = 1;
1755 }
1756
1757 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1758 return true;
1759 }
1760
1761 if (bytes_xmit > 0) {
1762 ram_counters.normal++;
1763 } else if (bytes_xmit == 0) {
1764 ram_counters.duplicate++;
1765 }
1766
1767 return true;
1768 }
1769
1770 /*
1771 * directly send the page to the stream
1772 *
1773 * Returns the number of pages written.
1774 *
1775 * @rs: current RAM state
1776 * @block: block that contains the page we want to send
1777 * @offset: offset inside the block for the page
1778 * @buf: the page to be sent
1779 * @async: send to page asyncly
1780 */
1781 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1782 uint8_t *buf, bool async)
1783 {
1784 ram_counters.transferred += save_page_header(rs, rs->f, block,
1785 offset | RAM_SAVE_FLAG_PAGE);
1786 if (async) {
1787 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1788 migrate_release_ram() &
1789 migration_in_postcopy());
1790 } else {
1791 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1792 }
1793 ram_counters.transferred += TARGET_PAGE_SIZE;
1794 ram_counters.normal++;
1795 return 1;
1796 }
1797
1798 /**
1799 * ram_save_page: send the given page to the stream
1800 *
1801 * Returns the number of pages written.
1802 * < 0 - error
1803 * >=0 - Number of pages written - this might legally be 0
1804 * if xbzrle noticed the page was the same.
1805 *
1806 * @rs: current RAM state
1807 * @block: block that contains the page we want to send
1808 * @offset: offset inside the block for the page
1809 * @last_stage: if we are at the completion stage
1810 */
1811 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
1812 {
1813 int pages = -1;
1814 uint8_t *p;
1815 bool send_async = true;
1816 RAMBlock *block = pss->block;
1817 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
1818 ram_addr_t current_addr = block->offset + offset;
1819
1820 p = block->host + offset;
1821 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1822
1823 XBZRLE_cache_lock();
1824 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1825 migrate_use_xbzrle()) {
1826 pages = save_xbzrle_page(rs, &p, current_addr, block,
1827 offset, last_stage);
1828 if (!last_stage) {
1829 /* Can't send this cached data async, since the cache page
1830 * might get updated before it gets to the wire
1831 */
1832 send_async = false;
1833 }
1834 }
1835
1836 /* XBZRLE overflow or normal page */
1837 if (pages == -1) {
1838 pages = save_normal_page(rs, block, offset, p, send_async);
1839 }
1840
1841 XBZRLE_cache_unlock();
1842
1843 return pages;
1844 }
1845
1846 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
1847 ram_addr_t offset)
1848 {
1849 multifd_queue_page(block, offset);
1850 ram_counters.normal++;
1851
1852 return 1;
1853 }
1854
1855 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
1856 ram_addr_t offset, uint8_t *source_buf)
1857 {
1858 RAMState *rs = ram_state;
1859 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
1860 bool zero_page = false;
1861 int ret;
1862
1863 if (save_zero_page_to_file(rs, f, block, offset)) {
1864 zero_page = true;
1865 goto exit;
1866 }
1867
1868 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1869
1870 /*
1871 * copy it to a internal buffer to avoid it being modified by VM
1872 * so that we can catch up the error during compression and
1873 * decompression
1874 */
1875 memcpy(source_buf, p, TARGET_PAGE_SIZE);
1876 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
1877 if (ret < 0) {
1878 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
1879 error_report("compressed data failed!");
1880 return false;
1881 }
1882
1883 exit:
1884 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
1885 return zero_page;
1886 }
1887
1888 static void
1889 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
1890 {
1891 if (param->zero_page) {
1892 ram_counters.duplicate++;
1893 }
1894 ram_counters.transferred += bytes_xmit;
1895 }
1896
1897 static void flush_compressed_data(RAMState *rs)
1898 {
1899 int idx, len, thread_count;
1900
1901 if (!migrate_use_compression()) {
1902 return;
1903 }
1904 thread_count = migrate_compress_threads();
1905
1906 qemu_mutex_lock(&comp_done_lock);
1907 for (idx = 0; idx < thread_count; idx++) {
1908 while (!comp_param[idx].done) {
1909 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1910 }
1911 }
1912 qemu_mutex_unlock(&comp_done_lock);
1913
1914 for (idx = 0; idx < thread_count; idx++) {
1915 qemu_mutex_lock(&comp_param[idx].mutex);
1916 if (!comp_param[idx].quit) {
1917 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1918 /*
1919 * it's safe to fetch zero_page without holding comp_done_lock
1920 * as there is no further request submitted to the thread,
1921 * i.e, the thread should be waiting for a request at this point.
1922 */
1923 update_compress_thread_counts(&comp_param[idx], len);
1924 }
1925 qemu_mutex_unlock(&comp_param[idx].mutex);
1926 }
1927 }
1928
1929 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1930 ram_addr_t offset)
1931 {
1932 param->block = block;
1933 param->offset = offset;
1934 }
1935
1936 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1937 ram_addr_t offset)
1938 {
1939 int idx, thread_count, bytes_xmit = -1, pages = -1;
1940 bool wait = migrate_compress_wait_thread();
1941
1942 thread_count = migrate_compress_threads();
1943 qemu_mutex_lock(&comp_done_lock);
1944 retry:
1945 for (idx = 0; idx < thread_count; idx++) {
1946 if (comp_param[idx].done) {
1947 comp_param[idx].done = false;
1948 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1949 qemu_mutex_lock(&comp_param[idx].mutex);
1950 set_compress_params(&comp_param[idx], block, offset);
1951 qemu_cond_signal(&comp_param[idx].cond);
1952 qemu_mutex_unlock(&comp_param[idx].mutex);
1953 pages = 1;
1954 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
1955 break;
1956 }
1957 }
1958
1959 /*
1960 * wait for the free thread if the user specifies 'compress-wait-thread',
1961 * otherwise we will post the page out in the main thread as normal page.
1962 */
1963 if (pages < 0 && wait) {
1964 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1965 goto retry;
1966 }
1967 qemu_mutex_unlock(&comp_done_lock);
1968
1969 return pages;
1970 }
1971
1972 /**
1973 * find_dirty_block: find the next dirty page and update any state
1974 * associated with the search process.
1975 *
1976 * Returns if a page is found
1977 *
1978 * @rs: current RAM state
1979 * @pss: data about the state of the current dirty page scan
1980 * @again: set to false if the search has scanned the whole of RAM
1981 */
1982 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
1983 {
1984 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
1985 if (pss->complete_round && pss->block == rs->last_seen_block &&
1986 pss->page >= rs->last_page) {
1987 /*
1988 * We've been once around the RAM and haven't found anything.
1989 * Give up.
1990 */
1991 *again = false;
1992 return false;
1993 }
1994 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
1995 /* Didn't find anything in this RAM Block */
1996 pss->page = 0;
1997 pss->block = QLIST_NEXT_RCU(pss->block, next);
1998 if (!pss->block) {
1999 /* Hit the end of the list */
2000 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2001 /* Flag that we've looped */
2002 pss->complete_round = true;
2003 rs->ram_bulk_stage = false;
2004 if (migrate_use_xbzrle()) {
2005 /* If xbzrle is on, stop using the data compression at this
2006 * point. In theory, xbzrle can do better than compression.
2007 */
2008 flush_compressed_data(rs);
2009 }
2010 }
2011 /* Didn't find anything this time, but try again on the new block */
2012 *again = true;
2013 return false;
2014 } else {
2015 /* Can go around again, but... */
2016 *again = true;
2017 /* We've found something so probably don't need to */
2018 return true;
2019 }
2020 }
2021
2022 /**
2023 * unqueue_page: gets a page of the queue
2024 *
2025 * Helper for 'get_queued_page' - gets a page off the queue
2026 *
2027 * Returns the block of the page (or NULL if none available)
2028 *
2029 * @rs: current RAM state
2030 * @offset: used to return the offset within the RAMBlock
2031 */
2032 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2033 {
2034 RAMBlock *block = NULL;
2035
2036 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2037 return NULL;
2038 }
2039
2040 qemu_mutex_lock(&rs->src_page_req_mutex);
2041 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2042 struct RAMSrcPageRequest *entry =
2043 QSIMPLEQ_FIRST(&rs->src_page_requests);
2044 block = entry->rb;
2045 *offset = entry->offset;
2046
2047 if (entry->len > TARGET_PAGE_SIZE) {
2048 entry->len -= TARGET_PAGE_SIZE;
2049 entry->offset += TARGET_PAGE_SIZE;
2050 } else {
2051 memory_region_unref(block->mr);
2052 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2053 g_free(entry);
2054 migration_consume_urgent_request();
2055 }
2056 }
2057 qemu_mutex_unlock(&rs->src_page_req_mutex);
2058
2059 return block;
2060 }
2061
2062 /**
2063 * get_queued_page: unqueue a page from the postocpy requests
2064 *
2065 * Skips pages that are already sent (!dirty)
2066 *
2067 * Returns if a queued page is found
2068 *
2069 * @rs: current RAM state
2070 * @pss: data about the state of the current dirty page scan
2071 */
2072 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2073 {
2074 RAMBlock *block;
2075 ram_addr_t offset;
2076 bool dirty;
2077
2078 do {
2079 block = unqueue_page(rs, &offset);
2080 /*
2081 * We're sending this page, and since it's postcopy nothing else
2082 * will dirty it, and we must make sure it doesn't get sent again
2083 * even if this queue request was received after the background
2084 * search already sent it.
2085 */
2086 if (block) {
2087 unsigned long page;
2088
2089 page = offset >> TARGET_PAGE_BITS;
2090 dirty = test_bit(page, block->bmap);
2091 if (!dirty) {
2092 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2093 page, test_bit(page, block->unsentmap));
2094 } else {
2095 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2096 }
2097 }
2098
2099 } while (block && !dirty);
2100
2101 if (block) {
2102 /*
2103 * As soon as we start servicing pages out of order, then we have
2104 * to kill the bulk stage, since the bulk stage assumes
2105 * in (migration_bitmap_find_and_reset_dirty) that every page is
2106 * dirty, that's no longer true.
2107 */
2108 rs->ram_bulk_stage = false;
2109
2110 /*
2111 * We want the background search to continue from the queued page
2112 * since the guest is likely to want other pages near to the page
2113 * it just requested.
2114 */
2115 pss->block = block;
2116 pss->page = offset >> TARGET_PAGE_BITS;
2117 }
2118
2119 return !!block;
2120 }
2121
2122 /**
2123 * migration_page_queue_free: drop any remaining pages in the ram
2124 * request queue
2125 *
2126 * It should be empty at the end anyway, but in error cases there may
2127 * be some left. in case that there is any page left, we drop it.
2128 *
2129 */
2130 static void migration_page_queue_free(RAMState *rs)
2131 {
2132 struct RAMSrcPageRequest *mspr, *next_mspr;
2133 /* This queue generally should be empty - but in the case of a failed
2134 * migration might have some droppings in.
2135 */
2136 rcu_read_lock();
2137 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2138 memory_region_unref(mspr->rb->mr);
2139 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2140 g_free(mspr);
2141 }
2142 rcu_read_unlock();
2143 }
2144
2145 /**
2146 * ram_save_queue_pages: queue the page for transmission
2147 *
2148 * A request from postcopy destination for example.
2149 *
2150 * Returns zero on success or negative on error
2151 *
2152 * @rbname: Name of the RAMBLock of the request. NULL means the
2153 * same that last one.
2154 * @start: starting address from the start of the RAMBlock
2155 * @len: length (in bytes) to send
2156 */
2157 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2158 {
2159 RAMBlock *ramblock;
2160 RAMState *rs = ram_state;
2161
2162 ram_counters.postcopy_requests++;
2163 rcu_read_lock();
2164 if (!rbname) {
2165 /* Reuse last RAMBlock */
2166 ramblock = rs->last_req_rb;
2167
2168 if (!ramblock) {
2169 /*
2170 * Shouldn't happen, we can't reuse the last RAMBlock if
2171 * it's the 1st request.
2172 */
2173 error_report("ram_save_queue_pages no previous block");
2174 goto err;
2175 }
2176 } else {
2177 ramblock = qemu_ram_block_by_name(rbname);
2178
2179 if (!ramblock) {
2180 /* We shouldn't be asked for a non-existent RAMBlock */
2181 error_report("ram_save_queue_pages no block '%s'", rbname);
2182 goto err;
2183 }
2184 rs->last_req_rb = ramblock;
2185 }
2186 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2187 if (start+len > ramblock->used_length) {
2188 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2189 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2190 __func__, start, len, ramblock->used_length);
2191 goto err;
2192 }
2193
2194 struct RAMSrcPageRequest *new_entry =
2195 g_malloc0(sizeof(struct RAMSrcPageRequest));
2196 new_entry->rb = ramblock;
2197 new_entry->offset = start;
2198 new_entry->len = len;
2199
2200 memory_region_ref(ramblock->mr);
2201 qemu_mutex_lock(&rs->src_page_req_mutex);
2202 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2203 migration_make_urgent_request();
2204 qemu_mutex_unlock(&rs->src_page_req_mutex);
2205 rcu_read_unlock();
2206
2207 return 0;
2208
2209 err:
2210 rcu_read_unlock();
2211 return -1;
2212 }
2213
2214 static bool save_page_use_compression(RAMState *rs)
2215 {
2216 if (!migrate_use_compression()) {
2217 return false;
2218 }
2219
2220 /*
2221 * If xbzrle is on, stop using the data compression after first
2222 * round of migration even if compression is enabled. In theory,
2223 * xbzrle can do better than compression.
2224 */
2225 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2226 return true;
2227 }
2228
2229 return false;
2230 }
2231
2232 /*
2233 * try to compress the page before posting it out, return true if the page
2234 * has been properly handled by compression, otherwise needs other
2235 * paths to handle it
2236 */
2237 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2238 {
2239 if (!save_page_use_compression(rs)) {
2240 return false;
2241 }
2242
2243 /*
2244 * When starting the process of a new block, the first page of
2245 * the block should be sent out before other pages in the same
2246 * block, and all the pages in last block should have been sent
2247 * out, keeping this order is important, because the 'cont' flag
2248 * is used to avoid resending the block name.
2249 *
2250 * We post the fist page as normal page as compression will take
2251 * much CPU resource.
2252 */
2253 if (block != rs->last_sent_block) {
2254 flush_compressed_data(rs);
2255 return false;
2256 }
2257
2258 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2259 return true;
2260 }
2261
2262 return false;
2263 }
2264
2265 /**
2266 * ram_save_target_page: save one target page
2267 *
2268 * Returns the number of pages written
2269 *
2270 * @rs: current RAM state
2271 * @pss: data about the page we want to send
2272 * @last_stage: if we are at the completion stage
2273 */
2274 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2275 bool last_stage)
2276 {
2277 RAMBlock *block = pss->block;
2278 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2279 int res;
2280
2281 if (control_save_page(rs, block, offset, &res)) {
2282 return res;
2283 }
2284
2285 if (save_compress_page(rs, block, offset)) {
2286 return 1;
2287 }
2288
2289 res = save_zero_page(rs, block, offset);
2290 if (res > 0) {
2291 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2292 * page would be stale
2293 */
2294 if (!save_page_use_compression(rs)) {
2295 XBZRLE_cache_lock();
2296 xbzrle_cache_zero_page(rs, block->offset + offset);
2297 XBZRLE_cache_unlock();
2298 }
2299 ram_release_pages(block->idstr, offset, res);
2300 return res;
2301 }
2302
2303 /*
2304 * do not use multifd for compression as the first page in the new
2305 * block should be posted out before sending the compressed page
2306 */
2307 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
2308 return ram_save_multifd_page(rs, block, offset);
2309 }
2310
2311 return ram_save_page(rs, pss, last_stage);
2312 }
2313
2314 /**
2315 * ram_save_host_page: save a whole host page
2316 *
2317 * Starting at *offset send pages up to the end of the current host
2318 * page. It's valid for the initial offset to point into the middle of
2319 * a host page in which case the remainder of the hostpage is sent.
2320 * Only dirty target pages are sent. Note that the host page size may
2321 * be a huge page for this block.
2322 * The saving stops at the boundary of the used_length of the block
2323 * if the RAMBlock isn't a multiple of the host page size.
2324 *
2325 * Returns the number of pages written or negative on error
2326 *
2327 * @rs: current RAM state
2328 * @ms: current migration state
2329 * @pss: data about the page we want to send
2330 * @last_stage: if we are at the completion stage
2331 */
2332 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2333 bool last_stage)
2334 {
2335 int tmppages, pages = 0;
2336 size_t pagesize_bits =
2337 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2338
2339 if (!qemu_ram_is_migratable(pss->block)) {
2340 error_report("block %s should not be migrated !", pss->block->idstr);
2341 return 0;
2342 }
2343
2344 do {
2345 /* Check the pages is dirty and if it is send it */
2346 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2347 pss->page++;
2348 continue;
2349 }
2350
2351 tmppages = ram_save_target_page(rs, pss, last_stage);
2352 if (tmppages < 0) {
2353 return tmppages;
2354 }
2355
2356 pages += tmppages;
2357 if (pss->block->unsentmap) {
2358 clear_bit(pss->page, pss->block->unsentmap);
2359 }
2360
2361 pss->page++;
2362 } while ((pss->page & (pagesize_bits - 1)) &&
2363 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2364
2365 /* The offset we leave with is the last one we looked at */
2366 pss->page--;
2367 return pages;
2368 }
2369
2370 /**
2371 * ram_find_and_save_block: finds a dirty page and sends it to f
2372 *
2373 * Called within an RCU critical section.
2374 *
2375 * Returns the number of pages written where zero means no dirty pages
2376 *
2377 * @rs: current RAM state
2378 * @last_stage: if we are at the completion stage
2379 *
2380 * On systems where host-page-size > target-page-size it will send all the
2381 * pages in a host page that are dirty.
2382 */
2383
2384 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2385 {
2386 PageSearchStatus pss;
2387 int pages = 0;
2388 bool again, found;
2389
2390 /* No dirty page as there is zero RAM */
2391 if (!ram_bytes_total()) {
2392 return pages;
2393 }
2394
2395 pss.block = rs->last_seen_block;
2396 pss.page = rs->last_page;
2397 pss.complete_round = false;
2398
2399 if (!pss.block) {
2400 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2401 }
2402
2403 do {
2404 again = true;
2405 found = get_queued_page(rs, &pss);
2406
2407 if (!found) {
2408 /* priority queue empty, so just search for something dirty */
2409 found = find_dirty_block(rs, &pss, &again);
2410 }
2411
2412 if (found) {
2413 pages = ram_save_host_page(rs, &pss, last_stage);
2414 }
2415 } while (!pages && again);
2416
2417 rs->last_seen_block = pss.block;
2418 rs->last_page = pss.page;
2419
2420 return pages;
2421 }
2422
2423 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2424 {
2425 uint64_t pages = size / TARGET_PAGE_SIZE;
2426
2427 if (zero) {
2428 ram_counters.duplicate += pages;
2429 } else {
2430 ram_counters.normal += pages;
2431 ram_counters.transferred += size;
2432 qemu_update_position(f, size);
2433 }
2434 }
2435
2436 uint64_t ram_bytes_total(void)
2437 {
2438 RAMBlock *block;
2439 uint64_t total = 0;
2440
2441 rcu_read_lock();
2442 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2443 total += block->used_length;
2444 }
2445 rcu_read_unlock();
2446 return total;
2447 }
2448
2449 static void xbzrle_load_setup(void)
2450 {
2451 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2452 }
2453
2454 static void xbzrle_load_cleanup(void)
2455 {
2456 g_free(XBZRLE.decoded_buf);
2457 XBZRLE.decoded_buf = NULL;
2458 }
2459
2460 static void ram_state_cleanup(RAMState **rsp)
2461 {
2462 if (*rsp) {
2463 migration_page_queue_free(*rsp);
2464 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2465 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2466 g_free(*rsp);
2467 *rsp = NULL;
2468 }
2469 }
2470
2471 static void xbzrle_cleanup(void)
2472 {
2473 XBZRLE_cache_lock();
2474 if (XBZRLE.cache) {
2475 cache_fini(XBZRLE.cache);
2476 g_free(XBZRLE.encoded_buf);
2477 g_free(XBZRLE.current_buf);
2478 g_free(XBZRLE.zero_target_page);
2479 XBZRLE.cache = NULL;
2480 XBZRLE.encoded_buf = NULL;
2481 XBZRLE.current_buf = NULL;
2482 XBZRLE.zero_target_page = NULL;
2483 }
2484 XBZRLE_cache_unlock();
2485 }
2486
2487 static void ram_save_cleanup(void *opaque)
2488 {
2489 RAMState **rsp = opaque;
2490 RAMBlock *block;
2491
2492 /* caller have hold iothread lock or is in a bh, so there is
2493 * no writing race against this migration_bitmap
2494 */
2495 memory_global_dirty_log_stop();
2496
2497 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2498 g_free(block->bmap);
2499 block->bmap = NULL;
2500 g_free(block->unsentmap);
2501 block->unsentmap = NULL;
2502 }
2503
2504 xbzrle_cleanup();
2505 compress_threads_save_cleanup();
2506 ram_state_cleanup(rsp);
2507 }
2508
2509 static void ram_state_reset(RAMState *rs)
2510 {
2511 rs->last_seen_block = NULL;
2512 rs->last_sent_block = NULL;
2513 rs->last_page = 0;
2514 rs->last_version = ram_list.version;
2515 rs->ram_bulk_stage = true;
2516 }
2517
2518 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2519
2520 /*
2521 * 'expected' is the value you expect the bitmap mostly to be full
2522 * of; it won't bother printing lines that are all this value.
2523 * If 'todump' is null the migration bitmap is dumped.
2524 */
2525 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2526 unsigned long pages)
2527 {
2528 int64_t cur;
2529 int64_t linelen = 128;
2530 char linebuf[129];
2531
2532 for (cur = 0; cur < pages; cur += linelen) {
2533 int64_t curb;
2534 bool found = false;
2535 /*
2536 * Last line; catch the case where the line length
2537 * is longer than remaining ram
2538 */
2539 if (cur + linelen > pages) {
2540 linelen = pages - cur;
2541 }
2542 for (curb = 0; curb < linelen; curb++) {
2543 bool thisbit = test_bit(cur + curb, todump);
2544 linebuf[curb] = thisbit ? '1' : '.';
2545 found = found || (thisbit != expected);
2546 }
2547 if (found) {
2548 linebuf[curb] = '\0';
2549 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2550 }
2551 }
2552 }
2553
2554 /* **** functions for postcopy ***** */
2555
2556 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2557 {
2558 struct RAMBlock *block;
2559
2560 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2561 unsigned long *bitmap = block->bmap;
2562 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2563 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2564
2565 while (run_start < range) {
2566 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2567 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2568 (run_end - run_start) << TARGET_PAGE_BITS);
2569 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2570 }
2571 }
2572 }
2573
2574 /**
2575 * postcopy_send_discard_bm_ram: discard a RAMBlock
2576 *
2577 * Returns zero on success
2578 *
2579 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2580 * Note: At this point the 'unsentmap' is the processed bitmap combined
2581 * with the dirtymap; so a '1' means it's either dirty or unsent.
2582 *
2583 * @ms: current migration state
2584 * @pds: state for postcopy
2585 * @start: RAMBlock starting page
2586 * @length: RAMBlock size
2587 */
2588 static int postcopy_send_discard_bm_ram(MigrationState *ms,
2589 PostcopyDiscardState *pds,
2590 RAMBlock *block)
2591 {
2592 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2593 unsigned long current;
2594 unsigned long *unsentmap = block->unsentmap;
2595
2596 for (current = 0; current < end; ) {
2597 unsigned long one = find_next_bit(unsentmap, end, current);
2598
2599 if (one <= end) {
2600 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2601 unsigned long discard_length;
2602
2603 if (zero >= end) {
2604 discard_length = end - one;
2605 } else {
2606 discard_length = zero - one;
2607 }
2608 if (discard_length) {
2609 postcopy_discard_send_range(ms, pds, one, discard_length);
2610 }
2611 current = one + discard_length;
2612 } else {
2613 current = one;
2614 }
2615 }
2616
2617 return 0;
2618 }
2619
2620 /**
2621 * postcopy_each_ram_send_discard: discard all RAMBlocks
2622 *
2623 * Returns 0 for success or negative for error
2624 *
2625 * Utility for the outgoing postcopy code.
2626 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2627 * passing it bitmap indexes and name.
2628 * (qemu_ram_foreach_block ends up passing unscaled lengths
2629 * which would mean postcopy code would have to deal with target page)
2630 *
2631 * @ms: current migration state
2632 */
2633 static int postcopy_each_ram_send_discard(MigrationState *ms)
2634 {
2635 struct RAMBlock *block;
2636 int ret;
2637
2638 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2639 PostcopyDiscardState *pds =
2640 postcopy_discard_send_init(ms, block->idstr);
2641
2642 /*
2643 * Postcopy sends chunks of bitmap over the wire, but it
2644 * just needs indexes at this point, avoids it having
2645 * target page specific code.
2646 */
2647 ret = postcopy_send_discard_bm_ram(ms, pds, block);
2648 postcopy_discard_send_finish(ms, pds);
2649 if (ret) {
2650 return ret;
2651 }
2652 }
2653
2654 return 0;
2655 }
2656
2657 /**
2658 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2659 *
2660 * Helper for postcopy_chunk_hostpages; it's called twice to
2661 * canonicalize the two bitmaps, that are similar, but one is
2662 * inverted.
2663 *
2664 * Postcopy requires that all target pages in a hostpage are dirty or
2665 * clean, not a mix. This function canonicalizes the bitmaps.
2666 *
2667 * @ms: current migration state
2668 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2669 * otherwise we need to canonicalize partially dirty host pages
2670 * @block: block that contains the page we want to canonicalize
2671 * @pds: state for postcopy
2672 */
2673 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2674 RAMBlock *block,
2675 PostcopyDiscardState *pds)
2676 {
2677 RAMState *rs = ram_state;
2678 unsigned long *bitmap = block->bmap;
2679 unsigned long *unsentmap = block->unsentmap;
2680 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2681 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2682 unsigned long run_start;
2683
2684 if (block->page_size == TARGET_PAGE_SIZE) {
2685 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2686 return;
2687 }
2688
2689 if (unsent_pass) {
2690 /* Find a sent page */
2691 run_start = find_next_zero_bit(unsentmap, pages, 0);
2692 } else {
2693 /* Find a dirty page */
2694 run_start = find_next_bit(bitmap, pages, 0);
2695 }
2696
2697 while (run_start < pages) {
2698 bool do_fixup = false;
2699 unsigned long fixup_start_addr;
2700 unsigned long host_offset;
2701
2702 /*
2703 * If the start of this run of pages is in the middle of a host
2704 * page, then we need to fixup this host page.
2705 */
2706 host_offset = run_start % host_ratio;
2707 if (host_offset) {
2708 do_fixup = true;
2709 run_start -= host_offset;
2710 fixup_start_addr = run_start;
2711 /* For the next pass */
2712 run_start = run_start + host_ratio;
2713 } else {
2714 /* Find the end of this run */
2715 unsigned long run_end;
2716 if (unsent_pass) {
2717 run_end = find_next_bit(unsentmap, pages, run_start + 1);
2718 } else {
2719 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
2720 }
2721 /*
2722 * If the end isn't at the start of a host page, then the
2723 * run doesn't finish at the end of a host page
2724 * and we need to discard.
2725 */
2726 host_offset = run_end % host_ratio;
2727 if (host_offset) {
2728 do_fixup = true;
2729 fixup_start_addr = run_end - host_offset;
2730 /*
2731 * This host page has gone, the next loop iteration starts
2732 * from after the fixup
2733 */
2734 run_start = fixup_start_addr + host_ratio;
2735 } else {
2736 /*
2737 * No discards on this iteration, next loop starts from
2738 * next sent/dirty page
2739 */
2740 run_start = run_end + 1;
2741 }
2742 }
2743
2744 if (do_fixup) {
2745 unsigned long page;
2746
2747 /* Tell the destination to discard this page */
2748 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2749 /* For the unsent_pass we:
2750 * discard partially sent pages
2751 * For the !unsent_pass (dirty) we:
2752 * discard partially dirty pages that were sent
2753 * (any partially sent pages were already discarded
2754 * by the previous unsent_pass)
2755 */
2756 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2757 host_ratio);
2758 }
2759
2760 /* Clean up the bitmap */
2761 for (page = fixup_start_addr;
2762 page < fixup_start_addr + host_ratio; page++) {
2763 /* All pages in this host page are now not sent */
2764 set_bit(page, unsentmap);
2765
2766 /*
2767 * Remark them as dirty, updating the count for any pages
2768 * that weren't previously dirty.
2769 */
2770 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2771 }
2772 }
2773
2774 if (unsent_pass) {
2775 /* Find the next sent page for the next iteration */
2776 run_start = find_next_zero_bit(unsentmap, pages, run_start);
2777 } else {
2778 /* Find the next dirty page for the next iteration */
2779 run_start = find_next_bit(bitmap, pages, run_start);
2780 }
2781 }
2782 }
2783
2784 /**
2785 * postcopy_chuck_hostpages: discrad any partially sent host page
2786 *
2787 * Utility for the outgoing postcopy code.
2788 *
2789 * Discard any partially sent host-page size chunks, mark any partially
2790 * dirty host-page size chunks as all dirty. In this case the host-page
2791 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
2792 *
2793 * Returns zero on success
2794 *
2795 * @ms: current migration state
2796 * @block: block we want to work with
2797 */
2798 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
2799 {
2800 PostcopyDiscardState *pds =
2801 postcopy_discard_send_init(ms, block->idstr);
2802
2803 /* First pass: Discard all partially sent host pages */
2804 postcopy_chunk_hostpages_pass(ms, true, block, pds);
2805 /*
2806 * Second pass: Ensure that all partially dirty host pages are made
2807 * fully dirty.
2808 */
2809 postcopy_chunk_hostpages_pass(ms, false, block, pds);
2810
2811 postcopy_discard_send_finish(ms, pds);
2812 return 0;
2813 }
2814
2815 /**
2816 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2817 *
2818 * Returns zero on success
2819 *
2820 * Transmit the set of pages to be discarded after precopy to the target
2821 * these are pages that:
2822 * a) Have been previously transmitted but are now dirty again
2823 * b) Pages that have never been transmitted, this ensures that
2824 * any pages on the destination that have been mapped by background
2825 * tasks get discarded (transparent huge pages is the specific concern)
2826 * Hopefully this is pretty sparse
2827 *
2828 * @ms: current migration state
2829 */
2830 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
2831 {
2832 RAMState *rs = ram_state;
2833 RAMBlock *block;
2834 int ret;
2835
2836 rcu_read_lock();
2837
2838 /* This should be our last sync, the src is now paused */
2839 migration_bitmap_sync(rs);
2840
2841 /* Easiest way to make sure we don't resume in the middle of a host-page */
2842 rs->last_seen_block = NULL;
2843 rs->last_sent_block = NULL;
2844 rs->last_page = 0;
2845
2846 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2847 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2848 unsigned long *bitmap = block->bmap;
2849 unsigned long *unsentmap = block->unsentmap;
2850
2851 if (!unsentmap) {
2852 /* We don't have a safe way to resize the sentmap, so
2853 * if the bitmap was resized it will be NULL at this
2854 * point.
2855 */
2856 error_report("migration ram resized during precopy phase");
2857 rcu_read_unlock();
2858 return -EINVAL;
2859 }
2860 /* Deal with TPS != HPS and huge pages */
2861 ret = postcopy_chunk_hostpages(ms, block);
2862 if (ret) {
2863 rcu_read_unlock();
2864 return ret;
2865 }
2866
2867 /*
2868 * Update the unsentmap to be unsentmap = unsentmap | dirty
2869 */
2870 bitmap_or(unsentmap, unsentmap, bitmap, pages);
2871 #ifdef DEBUG_POSTCOPY
2872 ram_debug_dump_bitmap(unsentmap, true, pages);
2873 #endif
2874 }
2875 trace_ram_postcopy_send_discard_bitmap();
2876
2877 ret = postcopy_each_ram_send_discard(ms);
2878 rcu_read_unlock();
2879
2880 return ret;
2881 }
2882
2883 /**
2884 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2885 *
2886 * Returns zero on success
2887 *
2888 * @rbname: name of the RAMBlock of the request. NULL means the
2889 * same that last one.
2890 * @start: RAMBlock starting page
2891 * @length: RAMBlock size
2892 */
2893 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2894 {
2895 int ret = -1;
2896
2897 trace_ram_discard_range(rbname, start, length);
2898
2899 rcu_read_lock();
2900 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2901
2902 if (!rb) {
2903 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2904 goto err;
2905 }
2906
2907 /*
2908 * On source VM, we don't need to update the received bitmap since
2909 * we don't even have one.
2910 */
2911 if (rb->receivedmap) {
2912 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2913 length >> qemu_target_page_bits());
2914 }
2915
2916 ret = ram_block_discard_range(rb, start, length);
2917
2918 err:
2919 rcu_read_unlock();
2920
2921 return ret;
2922 }
2923
2924 /*
2925 * For every allocation, we will try not to crash the VM if the
2926 * allocation failed.
2927 */
2928 static int xbzrle_init(void)
2929 {
2930 Error *local_err = NULL;
2931
2932 if (!migrate_use_xbzrle()) {
2933 return 0;
2934 }
2935
2936 XBZRLE_cache_lock();
2937
2938 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2939 if (!XBZRLE.zero_target_page) {
2940 error_report("%s: Error allocating zero page", __func__);
2941 goto err_out;
2942 }
2943
2944 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2945 TARGET_PAGE_SIZE, &local_err);
2946 if (!XBZRLE.cache) {
2947 error_report_err(local_err);
2948 goto free_zero_page;
2949 }
2950
2951 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2952 if (!XBZRLE.encoded_buf) {
2953 error_report("%s: Error allocating encoded_buf", __func__);
2954 goto free_cache;
2955 }
2956
2957 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2958 if (!XBZRLE.current_buf) {
2959 error_report("%s: Error allocating current_buf", __func__);
2960 goto free_encoded_buf;
2961 }
2962
2963 /* We are all good */
2964 XBZRLE_cache_unlock();
2965 return 0;
2966
2967 free_encoded_buf:
2968 g_free(XBZRLE.encoded_buf);
2969 XBZRLE.encoded_buf = NULL;
2970 free_cache:
2971 cache_fini(XBZRLE.cache);
2972 XBZRLE.cache = NULL;
2973 free_zero_page:
2974 g_free(XBZRLE.zero_target_page);
2975 XBZRLE.zero_target_page = NULL;
2976 err_out:
2977 XBZRLE_cache_unlock();
2978 return -ENOMEM;
2979 }
2980
2981 static int ram_state_init(RAMState **rsp)
2982 {
2983 *rsp = g_try_new0(RAMState, 1);
2984
2985 if (!*rsp) {
2986 error_report("%s: Init ramstate fail", __func__);
2987 return -1;
2988 }
2989
2990 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2991 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2992 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2993
2994 /*
2995 * Count the total number of pages used by ram blocks not including any
2996 * gaps due to alignment or unplugs.
2997 */
2998 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
2999
3000 ram_state_reset(*rsp);
3001
3002 return 0;
3003 }
3004
3005 static void ram_list_init_bitmaps(void)
3006 {
3007 RAMBlock *block;
3008 unsigned long pages;
3009
3010 /* Skip setting bitmap if there is no RAM */
3011 if (ram_bytes_total()) {
3012 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3013 pages = block->max_length >> TARGET_PAGE_BITS;
3014 block->bmap = bitmap_new(pages);
3015 bitmap_set(block->bmap, 0, pages);
3016 if (migrate_postcopy_ram()) {
3017 block->unsentmap = bitmap_new(pages);
3018 bitmap_set(block->unsentmap, 0, pages);
3019 }
3020 }
3021 }
3022 }
3023
3024 static void ram_init_bitmaps(RAMState *rs)
3025 {
3026 /* For memory_global_dirty_log_start below. */
3027 qemu_mutex_lock_iothread();
3028 qemu_mutex_lock_ramlist();
3029 rcu_read_lock();
3030
3031 ram_list_init_bitmaps();
3032 memory_global_dirty_log_start();
3033 migration_bitmap_sync(rs);
3034
3035 rcu_read_unlock();
3036 qemu_mutex_unlock_ramlist();
3037 qemu_mutex_unlock_iothread();
3038 }
3039
3040 static int ram_init_all(RAMState **rsp)
3041 {
3042 if (ram_state_init(rsp)) {
3043 return -1;
3044 }
3045
3046 if (xbzrle_init()) {
3047 ram_state_cleanup(rsp);
3048 return -1;
3049 }
3050
3051 ram_init_bitmaps(*rsp);
3052
3053 return 0;
3054 }
3055
3056 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3057 {
3058 RAMBlock *block;
3059 uint64_t pages = 0;
3060
3061 /*
3062 * Postcopy is not using xbzrle/compression, so no need for that.
3063 * Also, since source are already halted, we don't need to care
3064 * about dirty page logging as well.
3065 */
3066
3067 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3068 pages += bitmap_count_one(block->bmap,
3069 block->used_length >> TARGET_PAGE_BITS);
3070 }
3071
3072 /* This may not be aligned with current bitmaps. Recalculate. */
3073 rs->migration_dirty_pages = pages;
3074
3075 rs->last_seen_block = NULL;
3076 rs->last_sent_block = NULL;
3077 rs->last_page = 0;
3078 rs->last_version = ram_list.version;
3079 /*
3080 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3081 * matter what we have sent.
3082 */
3083 rs->ram_bulk_stage = false;
3084
3085 /* Update RAMState cache of output QEMUFile */
3086 rs->f = out;
3087
3088 trace_ram_state_resume_prepare(pages);
3089 }
3090
3091 /*
3092 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3093 * long-running RCU critical section. When rcu-reclaims in the code
3094 * start to become numerous it will be necessary to reduce the
3095 * granularity of these critical sections.
3096 */
3097
3098 /**
3099 * ram_save_setup: Setup RAM for migration
3100 *
3101 * Returns zero to indicate success and negative for error
3102 *
3103 * @f: QEMUFile where to send the data
3104 * @opaque: RAMState pointer
3105 */
3106 static int ram_save_setup(QEMUFile *f, void *opaque)
3107 {
3108 RAMState **rsp = opaque;
3109 RAMBlock *block;
3110
3111 if (compress_threads_save_setup()) {
3112 return -1;
3113 }
3114
3115 /* migration has already setup the bitmap, reuse it. */
3116 if (!migration_in_colo_state()) {
3117 if (ram_init_all(rsp) != 0) {
3118 compress_threads_save_cleanup();
3119 return -1;
3120 }
3121 }
3122 (*rsp)->f = f;
3123
3124 rcu_read_lock();
3125
3126 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
3127
3128 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3129 qemu_put_byte(f, strlen(block->idstr));
3130 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3131 qemu_put_be64(f, block->used_length);
3132 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3133 qemu_put_be64(f, block->page_size);
3134 }
3135 }
3136
3137 rcu_read_unlock();
3138
3139 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3140 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3141
3142 multifd_send_sync_main();
3143 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3144 qemu_fflush(f);
3145
3146 return 0;
3147 }
3148
3149 /**
3150 * ram_save_iterate: iterative stage for migration
3151 *
3152 * Returns zero to indicate success and negative for error
3153 *
3154 * @f: QEMUFile where to send the data
3155 * @opaque: RAMState pointer
3156 */
3157 static int ram_save_iterate(QEMUFile *f, void *opaque)
3158 {
3159 RAMState **temp = opaque;
3160 RAMState *rs = *temp;
3161 int ret;
3162 int i;
3163 int64_t t0;
3164 int done = 0;
3165
3166 if (blk_mig_bulk_active()) {
3167 /* Avoid transferring ram during bulk phase of block migration as
3168 * the bulk phase will usually take a long time and transferring
3169 * ram updates during that time is pointless. */
3170 goto out;
3171 }
3172
3173 rcu_read_lock();
3174 if (ram_list.version != rs->last_version) {
3175 ram_state_reset(rs);
3176 }
3177
3178 /* Read version before ram_list.blocks */
3179 smp_rmb();
3180
3181 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3182
3183 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3184 i = 0;
3185 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3186 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3187 int pages;
3188
3189 if (qemu_file_get_error(f)) {
3190 break;
3191 }
3192
3193 pages = ram_find_and_save_block(rs, false);
3194 /* no more pages to sent */
3195 if (pages == 0) {
3196 done = 1;
3197 break;
3198 }
3199 rs->iterations++;
3200
3201 /* we want to check in the 1st loop, just in case it was the 1st time
3202 and we had to sync the dirty bitmap.
3203 qemu_get_clock_ns() is a bit expensive, so we only check each some
3204 iterations
3205 */
3206 if ((i & 63) == 0) {
3207 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3208 if (t1 > MAX_WAIT) {
3209 trace_ram_save_iterate_big_wait(t1, i);
3210 break;
3211 }
3212 }
3213 i++;
3214 }
3215 flush_compressed_data(rs);
3216 rcu_read_unlock();
3217
3218 /*
3219 * Must occur before EOS (or any QEMUFile operation)
3220 * because of RDMA protocol.
3221 */
3222 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3223
3224 multifd_send_sync_main();
3225 out:
3226 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3227 qemu_fflush(f);
3228 ram_counters.transferred += 8;
3229
3230 ret = qemu_file_get_error(f);
3231 if (ret < 0) {
3232 return ret;
3233 }
3234
3235 return done;
3236 }
3237
3238 /**
3239 * ram_save_complete: function called to send the remaining amount of ram
3240 *
3241 * Returns zero to indicate success
3242 *
3243 * Called with iothread lock
3244 *
3245 * @f: QEMUFile where to send the data
3246 * @opaque: RAMState pointer
3247 */
3248 static int ram_save_complete(QEMUFile *f, void *opaque)
3249 {
3250 RAMState **temp = opaque;
3251 RAMState *rs = *temp;
3252
3253 rcu_read_lock();
3254
3255 if (!migration_in_postcopy()) {
3256 migration_bitmap_sync(rs);
3257 }
3258
3259 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3260
3261 /* try transferring iterative blocks of memory */
3262
3263 /* flush all remaining blocks regardless of rate limiting */
3264 while (true) {
3265 int pages;
3266
3267 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3268 /* no more blocks to sent */
3269 if (pages == 0) {
3270 break;
3271 }
3272 }
3273
3274 flush_compressed_data(rs);
3275 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3276
3277 rcu_read_unlock();
3278
3279 multifd_send_sync_main();
3280 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3281 qemu_fflush(f);
3282
3283 return 0;
3284 }
3285
3286 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3287 uint64_t *res_precopy_only,
3288 uint64_t *res_compatible,
3289 uint64_t *res_postcopy_only)
3290 {
3291 RAMState **temp = opaque;
3292 RAMState *rs = *temp;
3293 uint64_t remaining_size;
3294
3295 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3296
3297 if (!migration_in_postcopy() &&
3298 remaining_size < max_size) {
3299 qemu_mutex_lock_iothread();
3300 rcu_read_lock();
3301 migration_bitmap_sync(rs);
3302 rcu_read_unlock();
3303 qemu_mutex_unlock_iothread();
3304 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3305 }
3306
3307 if (migrate_postcopy_ram()) {
3308 /* We can do postcopy, and all the data is postcopiable */
3309 *res_compatible += remaining_size;
3310 } else {
3311 *res_precopy_only += remaining_size;
3312 }
3313 }
3314
3315 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3316 {
3317 unsigned int xh_len;
3318 int xh_flags;
3319 uint8_t *loaded_data;
3320
3321 /* extract RLE header */
3322 xh_flags = qemu_get_byte(f);
3323 xh_len = qemu_get_be16(f);
3324
3325 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3326 error_report("Failed to load XBZRLE page - wrong compression!");
3327 return -1;
3328 }
3329
3330 if (xh_len > TARGET_PAGE_SIZE) {
3331 error_report("Failed to load XBZRLE page - len overflow!");
3332 return -1;
3333 }
3334 loaded_data = XBZRLE.decoded_buf;
3335 /* load data and decode */
3336 /* it can change loaded_data to point to an internal buffer */
3337 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3338
3339 /* decode RLE */
3340 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3341 TARGET_PAGE_SIZE) == -1) {
3342 error_report("Failed to load XBZRLE page - decode error!");
3343 return -1;
3344 }
3345
3346 return 0;
3347 }
3348
3349 /**
3350 * ram_block_from_stream: read a RAMBlock id from the migration stream
3351 *
3352 * Must be called from within a rcu critical section.
3353 *
3354 * Returns a pointer from within the RCU-protected ram_list.
3355 *
3356 * @f: QEMUFile where to read the data from
3357 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3358 */
3359 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3360 {
3361 static RAMBlock *block = NULL;
3362 char id[256];
3363 uint8_t len;
3364
3365 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3366 if (!block) {
3367 error_report("Ack, bad migration stream!");
3368 return NULL;
3369 }
3370 return block;
3371 }
3372
3373 len = qemu_get_byte(f);
3374 qemu_get_buffer(f, (uint8_t *)id, len);
3375 id[len] = 0;
3376
3377 block = qemu_ram_block_by_name(id);
3378 if (!block) {
3379 error_report("Can't find block %s", id);
3380 return NULL;
3381 }
3382
3383 if (!qemu_ram_is_migratable(block)) {
3384 error_report("block %s should not be migrated !", id);
3385 return NULL;
3386 }
3387
3388 return block;
3389 }
3390
3391 static inline void *host_from_ram_block_offset(RAMBlock *block,
3392 ram_addr_t offset)
3393 {
3394 if (!offset_in_ramblock(block, offset)) {
3395 return NULL;
3396 }
3397
3398 return block->host + offset;
3399 }
3400
3401 /**
3402 * ram_handle_compressed: handle the zero page case
3403 *
3404 * If a page (or a whole RDMA chunk) has been
3405 * determined to be zero, then zap it.
3406 *
3407 * @host: host address for the zero page
3408 * @ch: what the page is filled from. We only support zero
3409 * @size: size of the zero page
3410 */
3411 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3412 {
3413 if (ch != 0 || !is_zero_range(host, size)) {
3414 memset(host, ch, size);
3415 }
3416 }
3417
3418 /* return the size after decompression, or negative value on error */
3419 static int
3420 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3421 const uint8_t *source, size_t source_len)
3422 {
3423 int err;
3424
3425 err = inflateReset(stream);
3426 if (err != Z_OK) {
3427 return -1;
3428 }
3429
3430 stream->avail_in = source_len;
3431 stream->next_in = (uint8_t *)source;
3432 stream->avail_out = dest_len;
3433 stream->next_out = dest;
3434
3435 err = inflate(stream, Z_NO_FLUSH);
3436 if (err != Z_STREAM_END) {
3437 return -1;
3438 }
3439
3440 return stream->total_out;
3441 }
3442
3443 static void *do_data_decompress(void *opaque)
3444 {
3445 DecompressParam *param = opaque;
3446 unsigned long pagesize;
3447 uint8_t *des;
3448 int len, ret;
3449
3450 qemu_mutex_lock(&param->mutex);
3451 while (!param->quit) {
3452 if (param->des) {
3453 des = param->des;
3454 len = param->len;
3455 param->des = 0;
3456 qemu_mutex_unlock(&param->mutex);
3457
3458 pagesize = TARGET_PAGE_SIZE;
3459
3460 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3461 param->compbuf, len);
3462 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3463 error_report("decompress data failed");
3464 qemu_file_set_error(decomp_file, ret);
3465 }
3466
3467 qemu_mutex_lock(&decomp_done_lock);
3468 param->done = true;
3469 qemu_cond_signal(&decomp_done_cond);
3470 qemu_mutex_unlock(&decomp_done_lock);
3471
3472 qemu_mutex_lock(&param->mutex);
3473 } else {
3474 qemu_cond_wait(&param->cond, &param->mutex);
3475 }
3476 }
3477 qemu_mutex_unlock(&param->mutex);
3478
3479 return NULL;
3480 }
3481
3482 static int wait_for_decompress_done(void)
3483 {
3484 int idx, thread_count;
3485
3486 if (!migrate_use_compression()) {
3487 return 0;
3488 }
3489
3490 thread_count = migrate_decompress_threads();
3491 qemu_mutex_lock(&decomp_done_lock);
3492 for (idx = 0; idx < thread_count; idx++) {
3493 while (!decomp_param[idx].done) {
3494 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3495 }
3496 }
3497 qemu_mutex_unlock(&decomp_done_lock);
3498 return qemu_file_get_error(decomp_file);
3499 }
3500
3501 static void compress_threads_load_cleanup(void)
3502 {
3503 int i, thread_count;
3504
3505 if (!migrate_use_compression()) {
3506 return;
3507 }
3508 thread_count = migrate_decompress_threads();
3509 for (i = 0; i < thread_count; i++) {
3510 /*
3511 * we use it as a indicator which shows if the thread is
3512 * properly init'd or not
3513 */
3514 if (!decomp_param[i].compbuf) {
3515 break;
3516 }
3517
3518 qemu_mutex_lock(&decomp_param[i].mutex);
3519 decomp_param[i].quit = true;
3520 qemu_cond_signal(&decomp_param[i].cond);
3521 qemu_mutex_unlock(&decomp_param[i].mutex);
3522 }
3523 for (i = 0; i < thread_count; i++) {
3524 if (!decomp_param[i].compbuf) {
3525 break;
3526 }
3527
3528 qemu_thread_join(decompress_threads + i);
3529 qemu_mutex_destroy(&decomp_param[i].mutex);
3530 qemu_cond_destroy(&decomp_param[i].cond);
3531 inflateEnd(&decomp_param[i].stream);
3532 g_free(decomp_param[i].compbuf);
3533 decomp_param[i].compbuf = NULL;
3534 }
3535 g_free(decompress_threads);
3536 g_free(decomp_param);
3537 decompress_threads = NULL;
3538 decomp_param = NULL;
3539 decomp_file = NULL;
3540 }
3541
3542 static int compress_threads_load_setup(QEMUFile *f)
3543 {
3544 int i, thread_count;
3545
3546 if (!migrate_use_compression()) {
3547 return 0;
3548 }
3549
3550 thread_count = migrate_decompress_threads();
3551 decompress_threads = g_new0(QemuThread, thread_count);
3552 decomp_param = g_new0(DecompressParam, thread_count);
3553 qemu_mutex_init(&decomp_done_lock);
3554 qemu_cond_init(&decomp_done_cond);
3555 decomp_file = f;
3556 for (i = 0; i < thread_count; i++) {
3557 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3558 goto exit;
3559 }
3560
3561 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3562 qemu_mutex_init(&decomp_param[i].mutex);
3563 qemu_cond_init(&decomp_param[i].cond);
3564 decomp_param[i].done = true;
3565 decomp_param[i].quit = false;
3566 qemu_thread_create(decompress_threads + i, "decompress",
3567 do_data_decompress, decomp_param + i,
3568 QEMU_THREAD_JOINABLE);
3569 }
3570 return 0;
3571 exit:
3572 compress_threads_load_cleanup();
3573 return -1;
3574 }
3575
3576 static void decompress_data_with_multi_threads(QEMUFile *f,
3577 void *host, int len)
3578 {
3579 int idx, thread_count;
3580
3581 thread_count = migrate_decompress_threads();
3582 qemu_mutex_lock(&decomp_done_lock);
3583 while (true) {
3584 for (idx = 0; idx < thread_count; idx++) {
3585 if (decomp_param[idx].done) {
3586 decomp_param[idx].done = false;
3587 qemu_mutex_lock(&decomp_param[idx].mutex);
3588 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3589 decomp_param[idx].des = host;
3590 decomp_param[idx].len = len;
3591 qemu_cond_signal(&decomp_param[idx].cond);
3592 qemu_mutex_unlock(&decomp_param[idx].mutex);
3593 break;
3594 }
3595 }
3596 if (idx < thread_count) {
3597 break;
3598 } else {
3599 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3600 }
3601 }
3602 qemu_mutex_unlock(&decomp_done_lock);
3603 }
3604
3605 /**
3606 * ram_load_setup: Setup RAM for migration incoming side
3607 *
3608 * Returns zero to indicate success and negative for error
3609 *
3610 * @f: QEMUFile where to receive the data
3611 * @opaque: RAMState pointer
3612 */
3613 static int ram_load_setup(QEMUFile *f, void *opaque)
3614 {
3615 if (compress_threads_load_setup(f)) {
3616 return -1;
3617 }
3618
3619 xbzrle_load_setup();
3620 ramblock_recv_map_init();
3621 return 0;
3622 }
3623
3624 static int ram_load_cleanup(void *opaque)
3625 {
3626 RAMBlock *rb;
3627
3628 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
3629 if (ramblock_is_pmem(rb)) {
3630 pmem_persist(rb->host, rb->used_length);
3631 }
3632 }
3633
3634 xbzrle_load_cleanup();
3635 compress_threads_load_cleanup();
3636
3637 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
3638 g_free(rb->receivedmap);
3639 rb->receivedmap = NULL;
3640 }
3641 return 0;
3642 }
3643
3644 /**
3645 * ram_postcopy_incoming_init: allocate postcopy data structures
3646 *
3647 * Returns 0 for success and negative if there was one error
3648 *
3649 * @mis: current migration incoming state
3650 *
3651 * Allocate data structures etc needed by incoming migration with
3652 * postcopy-ram. postcopy-ram's similarly names
3653 * postcopy_ram_incoming_init does the work.
3654 */
3655 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3656 {
3657 return postcopy_ram_incoming_init(mis);
3658 }
3659
3660 /**
3661 * ram_load_postcopy: load a page in postcopy case
3662 *
3663 * Returns 0 for success or -errno in case of error
3664 *
3665 * Called in postcopy mode by ram_load().
3666 * rcu_read_lock is taken prior to this being called.
3667 *
3668 * @f: QEMUFile where to send the data
3669 */
3670 static int ram_load_postcopy(QEMUFile *f)
3671 {
3672 int flags = 0, ret = 0;
3673 bool place_needed = false;
3674 bool matches_target_page_size = false;
3675 MigrationIncomingState *mis = migration_incoming_get_current();
3676 /* Temporary page that is later 'placed' */
3677 void *postcopy_host_page = postcopy_get_tmp_page(mis);
3678 void *last_host = NULL;
3679 bool all_zero = false;
3680
3681 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3682 ram_addr_t addr;
3683 void *host = NULL;
3684 void *page_buffer = NULL;
3685 void *place_source = NULL;
3686 RAMBlock *block = NULL;
3687 uint8_t ch;
3688
3689 addr = qemu_get_be64(f);
3690
3691 /*
3692 * If qemu file error, we should stop here, and then "addr"
3693 * may be invalid
3694 */
3695 ret = qemu_file_get_error(f);
3696 if (ret) {
3697 break;
3698 }
3699
3700 flags = addr & ~TARGET_PAGE_MASK;
3701 addr &= TARGET_PAGE_MASK;
3702
3703 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
3704 place_needed = false;
3705 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
3706 block = ram_block_from_stream(f, flags);
3707
3708 host = host_from_ram_block_offset(block, addr);
3709 if (!host) {
3710 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3711 ret = -EINVAL;
3712 break;
3713 }
3714 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3715 /*
3716 * Postcopy requires that we place whole host pages atomically;
3717 * these may be huge pages for RAMBlocks that are backed by
3718 * hugetlbfs.
3719 * To make it atomic, the data is read into a temporary page
3720 * that's moved into place later.
3721 * The migration protocol uses, possibly smaller, target-pages
3722 * however the source ensures it always sends all the components
3723 * of a host page in order.
3724 */
3725 page_buffer = postcopy_host_page +
3726 ((uintptr_t)host & (block->page_size - 1));
3727 /* If all TP are zero then we can optimise the place */
3728 if (!((uintptr_t)host & (block->page_size - 1))) {
3729 all_zero = true;
3730 } else {
3731 /* not the 1st TP within the HP */
3732 if (host != (last_host + TARGET_PAGE_SIZE)) {
3733 error_report("Non-sequential target page %p/%p",
3734 host, last_host);
3735 ret = -EINVAL;
3736 break;
3737 }
3738 }
3739
3740
3741 /*
3742 * If it's the last part of a host page then we place the host
3743 * page
3744 */
3745 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
3746 (block->page_size - 1)) == 0;
3747 place_source = postcopy_host_page;
3748 }
3749 last_host = host;
3750
3751 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3752 case RAM_SAVE_FLAG_ZERO:
3753 ch = qemu_get_byte(f);
3754 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3755 if (ch) {
3756 all_zero = false;
3757 }
3758 break;
3759
3760 case RAM_SAVE_FLAG_PAGE:
3761 all_zero = false;
3762 if (!matches_target_page_size) {
3763 /* For huge pages, we always use temporary buffer */
3764 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3765 } else {
3766 /*
3767 * For small pages that matches target page size, we
3768 * avoid the qemu_file copy. Instead we directly use
3769 * the buffer of QEMUFile to place the page. Note: we
3770 * cannot do any QEMUFile operation before using that
3771 * buffer to make sure the buffer is valid when
3772 * placing the page.
3773 */
3774 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3775 TARGET_PAGE_SIZE);
3776 }
3777 break;
3778 case RAM_SAVE_FLAG_EOS:
3779 /* normal exit */
3780 multifd_recv_sync_main();
3781 break;
3782 default:
3783 error_report("Unknown combination of migration flags: %#x"
3784 " (postcopy mode)", flags);
3785 ret = -EINVAL;
3786 break;
3787 }
3788
3789 /* Detect for any possible file errors */
3790 if (!ret && qemu_file_get_error(f)) {
3791 ret = qemu_file_get_error(f);
3792 }
3793
3794 if (!ret && place_needed) {
3795 /* This gets called at the last target page in the host page */
3796 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
3797
3798 if (all_zero) {
3799 ret = postcopy_place_page_zero(mis, place_dest,
3800 block);
3801 } else {
3802 ret = postcopy_place_page(mis, place_dest,
3803 place_source, block);
3804 }
3805 }
3806 }
3807
3808 return ret;
3809 }
3810
3811 static bool postcopy_is_advised(void)
3812 {
3813 PostcopyState ps = postcopy_state_get();
3814 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
3815 }
3816
3817 static bool postcopy_is_running(void)
3818 {
3819 PostcopyState ps = postcopy_state_get();
3820 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3821 }
3822
3823 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3824 {
3825 int flags = 0, ret = 0, invalid_flags = 0;
3826 static uint64_t seq_iter;
3827 int len = 0;
3828 /*
3829 * If system is running in postcopy mode, page inserts to host memory must
3830 * be atomic
3831 */
3832 bool postcopy_running = postcopy_is_running();
3833 /* ADVISE is earlier, it shows the source has the postcopy capability on */
3834 bool postcopy_advised = postcopy_is_advised();
3835
3836 seq_iter++;
3837
3838 if (version_id != 4) {
3839 ret = -EINVAL;
3840 }
3841
3842 if (!migrate_use_compression()) {
3843 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3844 }
3845 /* This RCU critical section can be very long running.
3846 * When RCU reclaims in the code start to become numerous,
3847 * it will be necessary to reduce the granularity of this
3848 * critical section.
3849 */
3850 rcu_read_lock();
3851
3852 if (postcopy_running) {
3853 ret = ram_load_postcopy(f);
3854 }
3855
3856 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3857 ram_addr_t addr, total_ram_bytes;
3858 void *host = NULL;
3859 uint8_t ch;
3860
3861 addr = qemu_get_be64(f);
3862 flags = addr & ~TARGET_PAGE_MASK;
3863 addr &= TARGET_PAGE_MASK;
3864
3865 if (flags & invalid_flags) {
3866 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3867 error_report("Received an unexpected compressed page");
3868 }
3869
3870 ret = -EINVAL;
3871 break;
3872 }
3873
3874 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3875 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3876 RAMBlock *block = ram_block_from_stream(f, flags);
3877
3878 host = host_from_ram_block_offset(block, addr);
3879 if (!host) {
3880 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3881 ret = -EINVAL;
3882 break;
3883 }
3884 ramblock_recv_bitmap_set(block, host);
3885 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
3886 }
3887
3888 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3889 case RAM_SAVE_FLAG_MEM_SIZE:
3890 /* Synchronize RAM block list */
3891 total_ram_bytes = addr;
3892 while (!ret && total_ram_bytes) {
3893 RAMBlock *block;
3894 char id[256];
3895 ram_addr_t length;
3896
3897 len = qemu_get_byte(f);
3898 qemu_get_buffer(f, (uint8_t *)id, len);
3899 id[len] = 0;
3900 length = qemu_get_be64(f);
3901
3902 block = qemu_ram_block_by_name(id);
3903 if (block && !qemu_ram_is_migratable(block)) {
3904 error_report("block %s should not be migrated !", id);
3905 ret = -EINVAL;
3906 } else if (block) {
3907 if (length != block->used_length) {
3908 Error *local_err = NULL;
3909
3910 ret = qemu_ram_resize(block, length,
3911 &local_err);
3912 if (local_err) {
3913 error_report_err(local_err);
3914 }
3915 }
3916 /* For postcopy we need to check hugepage sizes match */
3917 if (postcopy_advised &&
3918 block->page_size != qemu_host_page_size) {
3919 uint64_t remote_page_size = qemu_get_be64(f);
3920 if (remote_page_size != block->page_size) {
3921 error_report("Mismatched RAM page size %s "
3922 "(local) %zd != %" PRId64,
3923 id, block->page_size,
3924 remote_page_size);
3925 ret = -EINVAL;
3926 }
3927 }
3928 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
3929 block->idstr);
3930 } else {
3931 error_report("Unknown ramblock \"%s\", cannot "
3932 "accept migration", id);
3933 ret = -EINVAL;
3934 }
3935
3936 total_ram_bytes -= length;
3937 }
3938 break;
3939
3940 case RAM_SAVE_FLAG_ZERO:
3941 ch = qemu_get_byte(f);
3942 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
3943 break;
3944
3945 case RAM_SAVE_FLAG_PAGE:
3946 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
3947 break;
3948
3949 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3950 len = qemu_get_be32(f);
3951 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3952 error_report("Invalid compressed data length: %d", len);
3953 ret = -EINVAL;
3954 break;
3955 }
3956 decompress_data_with_multi_threads(f, host, len);
3957 break;
3958
3959 case RAM_SAVE_FLAG_XBZRLE:
3960 if (load_xbzrle(f, addr, host) < 0) {
3961 error_report("Failed to decompress XBZRLE page at "
3962 RAM_ADDR_FMT, addr);
3963 ret = -EINVAL;
3964 break;
3965 }
3966 break;
3967 case RAM_SAVE_FLAG_EOS:
3968 /* normal exit */
3969 multifd_recv_sync_main();
3970 break;
3971 default:
3972 if (flags & RAM_SAVE_FLAG_HOOK) {
3973 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
3974 } else {
3975 error_report("Unknown combination of migration flags: %#x",
3976 flags);
3977 ret = -EINVAL;
3978 }
3979 }
3980 if (!ret) {
3981 ret = qemu_file_get_error(f);
3982 }
3983 }
3984
3985 ret |= wait_for_decompress_done();
3986 rcu_read_unlock();
3987 trace_ram_load_complete(ret, seq_iter);
3988 return ret;
3989 }
3990
3991 static bool ram_has_postcopy(void *opaque)
3992 {
3993 RAMBlock *rb;
3994 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
3995 if (ramblock_is_pmem(rb)) {
3996 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
3997 "is not supported now!", rb->idstr, rb->host);
3998 return false;
3999 }
4000 }
4001
4002 return migrate_postcopy_ram();
4003 }
4004
4005 /* Sync all the dirty bitmap with destination VM. */
4006 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4007 {
4008 RAMBlock *block;
4009 QEMUFile *file = s->to_dst_file;
4010 int ramblock_count = 0;
4011
4012 trace_ram_dirty_bitmap_sync_start();
4013
4014 RAMBLOCK_FOREACH_MIGRATABLE(block) {
4015 qemu_savevm_send_recv_bitmap(file, block->idstr);
4016 trace_ram_dirty_bitmap_request(block->idstr);
4017 ramblock_count++;
4018 }
4019
4020 trace_ram_dirty_bitmap_sync_wait();
4021
4022 /* Wait until all the ramblocks' dirty bitmap synced */
4023 while (ramblock_count--) {
4024 qemu_sem_wait(&s->rp_state.rp_sem);
4025 }
4026
4027 trace_ram_dirty_bitmap_sync_complete();
4028
4029 return 0;
4030 }
4031
4032 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4033 {
4034 qemu_sem_post(&s->rp_state.rp_sem);
4035 }
4036
4037 /*
4038 * Read the received bitmap, revert it as the initial dirty bitmap.
4039 * This is only used when the postcopy migration is paused but wants
4040 * to resume from a middle point.
4041 */
4042 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4043 {
4044 int ret = -EINVAL;
4045 QEMUFile *file = s->rp_state.from_dst_file;
4046 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4047 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4048 uint64_t size, end_mark;
4049
4050 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4051
4052 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4053 error_report("%s: incorrect state %s", __func__,
4054 MigrationStatus_str(s->state));
4055 return -EINVAL;
4056 }
4057
4058 /*
4059 * Note: see comments in ramblock_recv_bitmap_send() on why we
4060 * need the endianess convertion, and the paddings.
4061 */
4062 local_size = ROUND_UP(local_size, 8);
4063
4064 /* Add paddings */
4065 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4066
4067 size = qemu_get_be64(file);
4068
4069 /* The size of the bitmap should match with our ramblock */
4070 if (size != local_size) {
4071 error_report("%s: ramblock '%s' bitmap size mismatch "
4072 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4073 block->idstr, size, local_size);
4074 ret = -EINVAL;
4075 goto out;
4076 }
4077
4078 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4079 end_mark = qemu_get_be64(file);
4080
4081 ret = qemu_file_get_error(file);
4082 if (ret || size != local_size) {
4083 error_report("%s: read bitmap failed for ramblock '%s': %d"
4084 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4085 __func__, block->idstr, ret, local_size, size);
4086 ret = -EIO;
4087 goto out;
4088 }
4089
4090 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4091 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4092 __func__, block->idstr, end_mark);
4093 ret = -EINVAL;
4094 goto out;
4095 }
4096
4097 /*
4098 * Endianess convertion. We are during postcopy (though paused).
4099 * The dirty bitmap won't change. We can directly modify it.
4100 */
4101 bitmap_from_le(block->bmap, le_bitmap, nbits);
4102
4103 /*
4104 * What we received is "received bitmap". Revert it as the initial
4105 * dirty bitmap for this ramblock.
4106 */
4107 bitmap_complement(block->bmap, block->bmap, nbits);
4108
4109 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4110
4111 /*
4112 * We succeeded to sync bitmap for current ramblock. If this is
4113 * the last one to sync, we need to notify the main send thread.
4114 */
4115 ram_dirty_bitmap_reload_notify(s);
4116
4117 ret = 0;
4118 out:
4119 g_free(le_bitmap);
4120 return ret;
4121 }
4122
4123 static int ram_resume_prepare(MigrationState *s, void *opaque)
4124 {
4125 RAMState *rs = *(RAMState **)opaque;
4126 int ret;
4127
4128 ret = ram_dirty_bitmap_sync_all(s, rs);
4129 if (ret) {
4130 return ret;
4131 }
4132
4133 ram_state_resume_prepare(rs, s->to_dst_file);
4134
4135 return 0;
4136 }
4137
4138 static SaveVMHandlers savevm_ram_handlers = {
4139 .save_setup = ram_save_setup,
4140 .save_live_iterate = ram_save_iterate,
4141 .save_live_complete_postcopy = ram_save_complete,
4142 .save_live_complete_precopy = ram_save_complete,
4143 .has_postcopy = ram_has_postcopy,
4144 .save_live_pending = ram_save_pending,
4145 .load_state = ram_load,
4146 .save_cleanup = ram_save_cleanup,
4147 .load_setup = ram_load_setup,
4148 .load_cleanup = ram_load_cleanup,
4149 .resume_prepare = ram_resume_prepare,
4150 };
4151
4152 void ram_mig_init(void)
4153 {
4154 qemu_mutex_init(&XBZRLE.lock);
4155 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
4156 }