]> git.proxmox.com Git - mirror_qemu.git/blob - qapi-schema.json
rbd: Clean up qemu_rbd_create()'s detour through QemuOpts
[mirror_qemu.git] / qapi-schema.json
1 # -*- Mode: Python -*-
2 ##
3 # = Introduction
4 #
5 # This document describes all commands currently supported by QMP.
6 #
7 # Most of the time their usage is exactly the same as in the user Monitor, this
8 # means that any other document which also describe commands (the manpage,
9 # QEMU's manual, etc) can and should be consulted.
10 #
11 # QMP has two types of commands: regular and query commands. Regular commands
12 # usually change the Virtual Machine's state someway, while query commands just
13 # return information. The sections below are divided accordingly.
14 #
15 # It's important to observe that all communication examples are formatted in
16 # a reader-friendly way, so that they're easier to understand. However, in real
17 # protocol usage, they're emitted as a single line.
18 #
19 # Also, the following notation is used to denote data flow:
20 #
21 # Example:
22 #
23 # | -> data issued by the Client
24 # | <- Server data response
25 #
26 # Please, refer to the QMP specification (docs/qmp-spec.txt) for
27 # detailed information on the Server command and response formats.
28 #
29 # = Stability Considerations
30 #
31 # The current QMP command set (described in this file) may be useful for a
32 # number of use cases, however it's limited and several commands have bad
33 # defined semantics, specially with regard to command completion.
34 #
35 # These problems are going to be solved incrementally in the next QEMU releases
36 # and we're going to establish a deprecation policy for badly defined commands.
37 #
38 # If you're planning to adopt QMP, please observe the following:
39 #
40 # 1. The deprecation policy will take effect and be documented soon, please
41 # check the documentation of each used command as soon as a new release of
42 # QEMU is available
43 #
44 # 2. DO NOT rely on anything which is not explicit documented
45 #
46 # 3. Errors, in special, are not documented. Applications should NOT check
47 # for specific errors classes or data (it's strongly recommended to only
48 # check for the "error" key)
49 #
50 ##
51
52 { 'pragma': { 'doc-required': true } }
53
54 # Whitelists to permit QAPI rule violations; think twice before you
55 # add to them!
56 { 'pragma': {
57 # Commands allowed to return a non-dictionary:
58 'returns-whitelist': [
59 'human-monitor-command',
60 'qom-get',
61 'query-migrate-cache-size',
62 'query-tpm-models',
63 'query-tpm-types',
64 'ringbuf-read' ],
65 'name-case-whitelist': [
66 'ACPISlotType', # DIMM, visible through query-acpi-ospm-status
67 'CpuInfoMIPS', # PC, visible through query-cpu
68 'CpuInfoTricore', # PC, visible through query-cpu
69 'QapiErrorClass', # all members, visible through errors
70 'UuidInfo', # UUID, visible through query-uuid
71 'X86CPURegister32', # all members, visible indirectly through qom-get
72 'q_obj_CpuInfo-base' # CPU, visible through query-cpu
73 ] } }
74
75 # QAPI common definitions
76 { 'include': 'qapi/common.json' }
77
78 # QAPI crypto definitions
79 { 'include': 'qapi/crypto.json' }
80
81 # QAPI block definitions
82 { 'include': 'qapi/block.json' }
83
84 # QAPI event definitions
85 { 'include': 'qapi/event.json' }
86
87 # Tracing commands
88 { 'include': 'qapi/trace.json' }
89
90 # QAPI introspection
91 { 'include': 'qapi/introspect.json' }
92
93 ##
94 # = QMP commands
95 ##
96
97 ##
98 # @qmp_capabilities:
99 #
100 # Enable QMP capabilities.
101 #
102 # Arguments: None.
103 #
104 # Example:
105 #
106 # -> { "execute": "qmp_capabilities" }
107 # <- { "return": {} }
108 #
109 # Notes: This command is valid exactly when first connecting: it must be
110 # issued before any other command will be accepted, and will fail once the
111 # monitor is accepting other commands. (see qemu docs/qmp-spec.txt)
112 #
113 # Since: 0.13
114 #
115 ##
116 { 'command': 'qmp_capabilities' }
117
118 ##
119 # @LostTickPolicy:
120 #
121 # Policy for handling lost ticks in timer devices.
122 #
123 # @discard: throw away the missed tick(s) and continue with future injection
124 # normally. Guest time may be delayed, unless the OS has explicit
125 # handling of lost ticks
126 #
127 # @delay: continue to deliver ticks at the normal rate. Guest time will be
128 # delayed due to the late tick
129 #
130 # @merge: merge the missed tick(s) into one tick and inject. Guest time
131 # may be delayed, depending on how the OS reacts to the merging
132 # of ticks
133 #
134 # @slew: deliver ticks at a higher rate to catch up with the missed tick. The
135 # guest time should not be delayed once catchup is complete.
136 #
137 # Since: 2.0
138 ##
139 { 'enum': 'LostTickPolicy',
140 'data': ['discard', 'delay', 'merge', 'slew' ] }
141
142 ##
143 # @add_client:
144 #
145 # Allow client connections for VNC, Spice and socket based
146 # character devices to be passed in to QEMU via SCM_RIGHTS.
147 #
148 # @protocol: protocol name. Valid names are "vnc", "spice" or the
149 # name of a character device (eg. from -chardev id=XXXX)
150 #
151 # @fdname: file descriptor name previously passed via 'getfd' command
152 #
153 # @skipauth: whether to skip authentication. Only applies
154 # to "vnc" and "spice" protocols
155 #
156 # @tls: whether to perform TLS. Only applies to the "spice"
157 # protocol
158 #
159 # Returns: nothing on success.
160 #
161 # Since: 0.14.0
162 #
163 # Example:
164 #
165 # -> { "execute": "add_client", "arguments": { "protocol": "vnc",
166 # "fdname": "myclient" } }
167 # <- { "return": {} }
168 #
169 ##
170 { 'command': 'add_client',
171 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
172 '*tls': 'bool' } }
173
174 ##
175 # @NameInfo:
176 #
177 # Guest name information.
178 #
179 # @name: The name of the guest
180 #
181 # Since: 0.14.0
182 ##
183 { 'struct': 'NameInfo', 'data': {'*name': 'str'} }
184
185 ##
186 # @query-name:
187 #
188 # Return the name information of a guest.
189 #
190 # Returns: @NameInfo of the guest
191 #
192 # Since: 0.14.0
193 #
194 # Example:
195 #
196 # -> { "execute": "query-name" }
197 # <- { "return": { "name": "qemu-name" } }
198 #
199 ##
200 { 'command': 'query-name', 'returns': 'NameInfo' }
201
202 ##
203 # @KvmInfo:
204 #
205 # Information about support for KVM acceleration
206 #
207 # @enabled: true if KVM acceleration is active
208 #
209 # @present: true if KVM acceleration is built into this executable
210 #
211 # Since: 0.14.0
212 ##
213 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
214
215 ##
216 # @query-kvm:
217 #
218 # Returns information about KVM acceleration
219 #
220 # Returns: @KvmInfo
221 #
222 # Since: 0.14.0
223 #
224 # Example:
225 #
226 # -> { "execute": "query-kvm" }
227 # <- { "return": { "enabled": true, "present": true } }
228 #
229 ##
230 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
231
232 ##
233 # @RunState:
234 #
235 # An enumeration of VM run states.
236 #
237 # @debug: QEMU is running on a debugger
238 #
239 # @finish-migrate: guest is paused to finish the migration process
240 #
241 # @inmigrate: guest is paused waiting for an incoming migration. Note
242 # that this state does not tell whether the machine will start at the
243 # end of the migration. This depends on the command-line -S option and
244 # any invocation of 'stop' or 'cont' that has happened since QEMU was
245 # started.
246 #
247 # @internal-error: An internal error that prevents further guest execution
248 # has occurred
249 #
250 # @io-error: the last IOP has failed and the device is configured to pause
251 # on I/O errors
252 #
253 # @paused: guest has been paused via the 'stop' command
254 #
255 # @postmigrate: guest is paused following a successful 'migrate'
256 #
257 # @prelaunch: QEMU was started with -S and guest has not started
258 #
259 # @restore-vm: guest is paused to restore VM state
260 #
261 # @running: guest is actively running
262 #
263 # @save-vm: guest is paused to save the VM state
264 #
265 # @shutdown: guest is shut down (and -no-shutdown is in use)
266 #
267 # @suspended: guest is suspended (ACPI S3)
268 #
269 # @watchdog: the watchdog action is configured to pause and has been triggered
270 #
271 # @guest-panicked: guest has been panicked as a result of guest OS panic
272 #
273 # @colo: guest is paused to save/restore VM state under colo checkpoint,
274 # VM can not get into this state unless colo capability is enabled
275 # for migration. (since 2.8)
276 ##
277 { 'enum': 'RunState',
278 'data': [ 'debug', 'inmigrate', 'internal-error', 'io-error', 'paused',
279 'postmigrate', 'prelaunch', 'finish-migrate', 'restore-vm',
280 'running', 'save-vm', 'shutdown', 'suspended', 'watchdog',
281 'guest-panicked', 'colo' ] }
282
283 ##
284 # @StatusInfo:
285 #
286 # Information about VCPU run state
287 #
288 # @running: true if all VCPUs are runnable, false if not runnable
289 #
290 # @singlestep: true if VCPUs are in single-step mode
291 #
292 # @status: the virtual machine @RunState
293 #
294 # Since: 0.14.0
295 #
296 # Notes: @singlestep is enabled through the GDB stub
297 ##
298 { 'struct': 'StatusInfo',
299 'data': {'running': 'bool', 'singlestep': 'bool', 'status': 'RunState'} }
300
301 ##
302 # @query-status:
303 #
304 # Query the run status of all VCPUs
305 #
306 # Returns: @StatusInfo reflecting all VCPUs
307 #
308 # Since: 0.14.0
309 #
310 # Example:
311 #
312 # -> { "execute": "query-status" }
313 # <- { "return": { "running": true,
314 # "singlestep": false,
315 # "status": "running" } }
316 #
317 ##
318 { 'command': 'query-status', 'returns': 'StatusInfo' }
319
320 ##
321 # @UuidInfo:
322 #
323 # Guest UUID information (Universally Unique Identifier).
324 #
325 # @UUID: the UUID of the guest
326 #
327 # Since: 0.14.0
328 #
329 # Notes: If no UUID was specified for the guest, a null UUID is returned.
330 ##
331 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
332
333 ##
334 # @query-uuid:
335 #
336 # Query the guest UUID information.
337 #
338 # Returns: The @UuidInfo for the guest
339 #
340 # Since: 0.14.0
341 #
342 # Example:
343 #
344 # -> { "execute": "query-uuid" }
345 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
346 #
347 ##
348 { 'command': 'query-uuid', 'returns': 'UuidInfo' }
349
350 ##
351 # @ChardevInfo:
352 #
353 # Information about a character device.
354 #
355 # @label: the label of the character device
356 #
357 # @filename: the filename of the character device
358 #
359 # @frontend-open: shows whether the frontend device attached to this backend
360 # (eg. with the chardev=... option) is in open or closed state
361 # (since 2.1)
362 #
363 # Notes: @filename is encoded using the QEMU command line character device
364 # encoding. See the QEMU man page for details.
365 #
366 # Since: 0.14.0
367 ##
368 { 'struct': 'ChardevInfo', 'data': {'label': 'str',
369 'filename': 'str',
370 'frontend-open': 'bool'} }
371
372 ##
373 # @query-chardev:
374 #
375 # Returns information about current character devices.
376 #
377 # Returns: a list of @ChardevInfo
378 #
379 # Since: 0.14.0
380 #
381 # Example:
382 #
383 # -> { "execute": "query-chardev" }
384 # <- {
385 # "return": [
386 # {
387 # "label": "charchannel0",
388 # "filename": "unix:/var/lib/libvirt/qemu/seabios.rhel6.agent,server",
389 # "frontend-open": false
390 # },
391 # {
392 # "label": "charmonitor",
393 # "filename": "unix:/var/lib/libvirt/qemu/seabios.rhel6.monitor,server",
394 # "frontend-open": true
395 # },
396 # {
397 # "label": "charserial0",
398 # "filename": "pty:/dev/pts/2",
399 # "frontend-open": true
400 # }
401 # ]
402 # }
403 #
404 ##
405 { 'command': 'query-chardev', 'returns': ['ChardevInfo'] }
406
407 ##
408 # @ChardevBackendInfo:
409 #
410 # Information about a character device backend
411 #
412 # @name: The backend name
413 #
414 # Since: 2.0
415 ##
416 { 'struct': 'ChardevBackendInfo', 'data': {'name': 'str'} }
417
418 ##
419 # @query-chardev-backends:
420 #
421 # Returns information about character device backends.
422 #
423 # Returns: a list of @ChardevBackendInfo
424 #
425 # Since: 2.0
426 #
427 # Example:
428 #
429 # -> { "execute": "query-chardev-backends" }
430 # <- {
431 # "return":[
432 # {
433 # "name":"udp"
434 # },
435 # {
436 # "name":"tcp"
437 # },
438 # {
439 # "name":"unix"
440 # },
441 # {
442 # "name":"spiceport"
443 # }
444 # ]
445 # }
446 #
447 ##
448 { 'command': 'query-chardev-backends', 'returns': ['ChardevBackendInfo'] }
449
450 ##
451 # @DataFormat:
452 #
453 # An enumeration of data format.
454 #
455 # @utf8: Data is a UTF-8 string (RFC 3629)
456 #
457 # @base64: Data is Base64 encoded binary (RFC 3548)
458 #
459 # Since: 1.4
460 ##
461 { 'enum': 'DataFormat',
462 'data': [ 'utf8', 'base64' ] }
463
464 ##
465 # @ringbuf-write:
466 #
467 # Write to a ring buffer character device.
468 #
469 # @device: the ring buffer character device name
470 #
471 # @data: data to write
472 #
473 # @format: data encoding (default 'utf8').
474 # - base64: data must be base64 encoded text. Its binary
475 # decoding gets written.
476 # - utf8: data's UTF-8 encoding is written
477 # - data itself is always Unicode regardless of format, like
478 # any other string.
479 #
480 # Returns: Nothing on success
481 #
482 # Since: 1.4
483 #
484 # Example:
485 #
486 # -> { "execute": "ringbuf-write",
487 # "arguments": { "device": "foo",
488 # "data": "abcdefgh",
489 # "format": "utf8" } }
490 # <- { "return": {} }
491 #
492 ##
493 { 'command': 'ringbuf-write',
494 'data': {'device': 'str', 'data': 'str',
495 '*format': 'DataFormat'} }
496
497 ##
498 # @ringbuf-read:
499 #
500 # Read from a ring buffer character device.
501 #
502 # @device: the ring buffer character device name
503 #
504 # @size: how many bytes to read at most
505 #
506 # @format: data encoding (default 'utf8').
507 # - base64: the data read is returned in base64 encoding.
508 # - utf8: the data read is interpreted as UTF-8.
509 # Bug: can screw up when the buffer contains invalid UTF-8
510 # sequences, NUL characters, after the ring buffer lost
511 # data, and when reading stops because the size limit is
512 # reached.
513 # - The return value is always Unicode regardless of format,
514 # like any other string.
515 #
516 # Returns: data read from the device
517 #
518 # Since: 1.4
519 #
520 # Example:
521 #
522 # -> { "execute": "ringbuf-read",
523 # "arguments": { "device": "foo",
524 # "size": 1000,
525 # "format": "utf8" } }
526 # <- { "return": "abcdefgh" }
527 #
528 ##
529 { 'command': 'ringbuf-read',
530 'data': {'device': 'str', 'size': 'int', '*format': 'DataFormat'},
531 'returns': 'str' }
532
533 ##
534 # @EventInfo:
535 #
536 # Information about a QMP event
537 #
538 # @name: The event name
539 #
540 # Since: 1.2.0
541 ##
542 { 'struct': 'EventInfo', 'data': {'name': 'str'} }
543
544 ##
545 # @query-events:
546 #
547 # Return a list of supported QMP events by this server
548 #
549 # Returns: A list of @EventInfo for all supported events
550 #
551 # Since: 1.2.0
552 #
553 # Example:
554 #
555 # -> { "execute": "query-events" }
556 # <- {
557 # "return": [
558 # {
559 # "name":"SHUTDOWN"
560 # },
561 # {
562 # "name":"RESET"
563 # }
564 # ]
565 # }
566 #
567 # Note: This example has been shortened as the real response is too long.
568 #
569 ##
570 { 'command': 'query-events', 'returns': ['EventInfo'] }
571
572 ##
573 # @MigrationStats:
574 #
575 # Detailed migration status.
576 #
577 # @transferred: amount of bytes already transferred to the target VM
578 #
579 # @remaining: amount of bytes remaining to be transferred to the target VM
580 #
581 # @total: total amount of bytes involved in the migration process
582 #
583 # @duplicate: number of duplicate (zero) pages (since 1.2)
584 #
585 # @skipped: number of skipped zero pages (since 1.5)
586 #
587 # @normal: number of normal pages (since 1.2)
588 #
589 # @normal-bytes: number of normal bytes sent (since 1.2)
590 #
591 # @dirty-pages-rate: number of pages dirtied by second by the
592 # guest (since 1.3)
593 #
594 # @mbps: throughput in megabits/sec. (since 1.6)
595 #
596 # @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1)
597 #
598 # @postcopy-requests: The number of page requests received from the destination
599 # (since 2.7)
600 #
601 # Since: 0.14.0
602 ##
603 { 'struct': 'MigrationStats',
604 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
605 'duplicate': 'int', 'skipped': 'int', 'normal': 'int',
606 'normal-bytes': 'int', 'dirty-pages-rate' : 'int',
607 'mbps' : 'number', 'dirty-sync-count' : 'int',
608 'postcopy-requests' : 'int' } }
609
610 ##
611 # @XBZRLECacheStats:
612 #
613 # Detailed XBZRLE migration cache statistics
614 #
615 # @cache-size: XBZRLE cache size
616 #
617 # @bytes: amount of bytes already transferred to the target VM
618 #
619 # @pages: amount of pages transferred to the target VM
620 #
621 # @cache-miss: number of cache miss
622 #
623 # @cache-miss-rate: rate of cache miss (since 2.1)
624 #
625 # @overflow: number of overflows
626 #
627 # Since: 1.2
628 ##
629 { 'struct': 'XBZRLECacheStats',
630 'data': {'cache-size': 'int', 'bytes': 'int', 'pages': 'int',
631 'cache-miss': 'int', 'cache-miss-rate': 'number',
632 'overflow': 'int' } }
633
634 ##
635 # @MigrationStatus:
636 #
637 # An enumeration of migration status.
638 #
639 # @none: no migration has ever happened.
640 #
641 # @setup: migration process has been initiated.
642 #
643 # @cancelling: in the process of cancelling migration.
644 #
645 # @cancelled: cancelling migration is finished.
646 #
647 # @active: in the process of doing migration.
648 #
649 # @postcopy-active: like active, but now in postcopy mode. (since 2.5)
650 #
651 # @completed: migration is finished.
652 #
653 # @failed: some error occurred during migration process.
654 #
655 # @colo: VM is in the process of fault tolerance, VM can not get into this
656 # state unless colo capability is enabled for migration. (since 2.8)
657 #
658 # Since: 2.3
659 #
660 ##
661 { 'enum': 'MigrationStatus',
662 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
663 'active', 'postcopy-active', 'completed', 'failed', 'colo' ] }
664
665 ##
666 # @MigrationInfo:
667 #
668 # Information about current migration process.
669 #
670 # @status: @MigrationStatus describing the current migration status.
671 # If this field is not returned, no migration process
672 # has been initiated
673 #
674 # @ram: @MigrationStats containing detailed migration
675 # status, only returned if status is 'active' or
676 # 'completed'(since 1.2)
677 #
678 # @disk: @MigrationStats containing detailed disk migration
679 # status, only returned if status is 'active' and it is a block
680 # migration
681 #
682 # @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
683 # migration statistics, only returned if XBZRLE feature is on and
684 # status is 'active' or 'completed' (since 1.2)
685 #
686 # @total-time: total amount of milliseconds since migration started.
687 # If migration has ended, it returns the total migration
688 # time. (since 1.2)
689 #
690 # @downtime: only present when migration finishes correctly
691 # total downtime in milliseconds for the guest.
692 # (since 1.3)
693 #
694 # @expected-downtime: only present while migration is active
695 # expected downtime in milliseconds for the guest in last walk
696 # of the dirty bitmap. (since 1.3)
697 #
698 # @setup-time: amount of setup time in milliseconds _before_ the
699 # iterations begin but _after_ the QMP command is issued. This is designed
700 # to provide an accounting of any activities (such as RDMA pinning) which
701 # may be expensive, but do not actually occur during the iterative
702 # migration rounds themselves. (since 1.6)
703 #
704 # @cpu-throttle-percentage: percentage of time guest cpus are being
705 # throttled during auto-converge. This is only present when auto-converge
706 # has started throttling guest cpus. (Since 2.7)
707 #
708 # @error-desc: the human readable error description string, when
709 # @status is 'failed'. Clients should not attempt to parse the
710 # error strings. (Since 2.7)
711 #
712 # Since: 0.14.0
713 ##
714 { 'struct': 'MigrationInfo',
715 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
716 '*disk': 'MigrationStats',
717 '*xbzrle-cache': 'XBZRLECacheStats',
718 '*total-time': 'int',
719 '*expected-downtime': 'int',
720 '*downtime': 'int',
721 '*setup-time': 'int',
722 '*cpu-throttle-percentage': 'int',
723 '*error-desc': 'str'} }
724
725 ##
726 # @query-migrate:
727 #
728 # Returns information about current migration process. If migration
729 # is active there will be another json-object with RAM migration
730 # status and if block migration is active another one with block
731 # migration status.
732 #
733 # Returns: @MigrationInfo
734 #
735 # Since: 0.14.0
736 #
737 # Example:
738 #
739 # 1. Before the first migration
740 #
741 # -> { "execute": "query-migrate" }
742 # <- { "return": {} }
743 #
744 # 2. Migration is done and has succeeded
745 #
746 # -> { "execute": "query-migrate" }
747 # <- { "return": {
748 # "status": "completed",
749 # "ram":{
750 # "transferred":123,
751 # "remaining":123,
752 # "total":246,
753 # "total-time":12345,
754 # "setup-time":12345,
755 # "downtime":12345,
756 # "duplicate":123,
757 # "normal":123,
758 # "normal-bytes":123456,
759 # "dirty-sync-count":15
760 # }
761 # }
762 # }
763 #
764 # 3. Migration is done and has failed
765 #
766 # -> { "execute": "query-migrate" }
767 # <- { "return": { "status": "failed" } }
768 #
769 # 4. Migration is being performed and is not a block migration:
770 #
771 # -> { "execute": "query-migrate" }
772 # <- {
773 # "return":{
774 # "status":"active",
775 # "ram":{
776 # "transferred":123,
777 # "remaining":123,
778 # "total":246,
779 # "total-time":12345,
780 # "setup-time":12345,
781 # "expected-downtime":12345,
782 # "duplicate":123,
783 # "normal":123,
784 # "normal-bytes":123456,
785 # "dirty-sync-count":15
786 # }
787 # }
788 # }
789 #
790 # 5. Migration is being performed and is a block migration:
791 #
792 # -> { "execute": "query-migrate" }
793 # <- {
794 # "return":{
795 # "status":"active",
796 # "ram":{
797 # "total":1057024,
798 # "remaining":1053304,
799 # "transferred":3720,
800 # "total-time":12345,
801 # "setup-time":12345,
802 # "expected-downtime":12345,
803 # "duplicate":123,
804 # "normal":123,
805 # "normal-bytes":123456,
806 # "dirty-sync-count":15
807 # },
808 # "disk":{
809 # "total":20971520,
810 # "remaining":20880384,
811 # "transferred":91136
812 # }
813 # }
814 # }
815 #
816 # 6. Migration is being performed and XBZRLE is active:
817 #
818 # -> { "execute": "query-migrate" }
819 # <- {
820 # "return":{
821 # "status":"active",
822 # "capabilities" : [ { "capability": "xbzrle", "state" : true } ],
823 # "ram":{
824 # "total":1057024,
825 # "remaining":1053304,
826 # "transferred":3720,
827 # "total-time":12345,
828 # "setup-time":12345,
829 # "expected-downtime":12345,
830 # "duplicate":10,
831 # "normal":3333,
832 # "normal-bytes":3412992,
833 # "dirty-sync-count":15
834 # },
835 # "xbzrle-cache":{
836 # "cache-size":67108864,
837 # "bytes":20971520,
838 # "pages":2444343,
839 # "cache-miss":2244,
840 # "cache-miss-rate":0.123,
841 # "overflow":34434
842 # }
843 # }
844 # }
845 #
846 ##
847 { 'command': 'query-migrate', 'returns': 'MigrationInfo' }
848
849 ##
850 # @MigrationCapability:
851 #
852 # Migration capabilities enumeration
853 #
854 # @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding).
855 # This feature allows us to minimize migration traffic for certain work
856 # loads, by sending compressed difference of the pages
857 #
858 # @rdma-pin-all: Controls whether or not the entire VM memory footprint is
859 # mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage.
860 # Disabled by default. (since 2.0)
861 #
862 # @zero-blocks: During storage migration encode blocks of zeroes efficiently. This
863 # essentially saves 1MB of zeroes per block on the wire. Enabling requires
864 # source and target VM to support this feature. To enable it is sufficient
865 # to enable the capability on the source VM. The feature is disabled by
866 # default. (since 1.6)
867 #
868 # @compress: Use multiple compression threads to accelerate live migration.
869 # This feature can help to reduce the migration traffic, by sending
870 # compressed pages. Please note that if compress and xbzrle are both
871 # on, compress only takes effect in the ram bulk stage, after that,
872 # it will be disabled and only xbzrle takes effect, this can help to
873 # minimize migration traffic. The feature is disabled by default.
874 # (since 2.4 )
875 #
876 # @events: generate events for each migration state change
877 # (since 2.4 )
878 #
879 # @auto-converge: If enabled, QEMU will automatically throttle down the guest
880 # to speed up convergence of RAM migration. (since 1.6)
881 #
882 # @postcopy-ram: Start executing on the migration target before all of RAM has
883 # been migrated, pulling the remaining pages along as needed. NOTE: If
884 # the migration fails during postcopy the VM will fail. (since 2.6)
885 #
886 # @x-colo: If enabled, migration will never end, and the state of the VM on the
887 # primary side will be migrated continuously to the VM on secondary
888 # side, this process is called COarse-Grain LOck Stepping (COLO) for
889 # Non-stop Service. (since 2.8)
890 #
891 # @release-ram: if enabled, qemu will free the migrated ram pages on the source
892 # during postcopy-ram migration. (since 2.9)
893 #
894 # Since: 1.2
895 ##
896 { 'enum': 'MigrationCapability',
897 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
898 'compress', 'events', 'postcopy-ram', 'x-colo', 'release-ram'] }
899
900 ##
901 # @MigrationCapabilityStatus:
902 #
903 # Migration capability information
904 #
905 # @capability: capability enum
906 #
907 # @state: capability state bool
908 #
909 # Since: 1.2
910 ##
911 { 'struct': 'MigrationCapabilityStatus',
912 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } }
913
914 ##
915 # @migrate-set-capabilities:
916 #
917 # Enable/Disable the following migration capabilities (like xbzrle)
918 #
919 # @capabilities: json array of capability modifications to make
920 #
921 # Since: 1.2
922 #
923 # Example:
924 #
925 # -> { "execute": "migrate-set-capabilities" , "arguments":
926 # { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
927 #
928 ##
929 { 'command': 'migrate-set-capabilities',
930 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
931
932 ##
933 # @query-migrate-capabilities:
934 #
935 # Returns information about the current migration capabilities status
936 #
937 # Returns: @MigrationCapabilitiesStatus
938 #
939 # Since: 1.2
940 #
941 # Example:
942 #
943 # -> { "execute": "query-migrate-capabilities" }
944 # <- { "return": [
945 # {"state": false, "capability": "xbzrle"},
946 # {"state": false, "capability": "rdma-pin-all"},
947 # {"state": false, "capability": "auto-converge"},
948 # {"state": false, "capability": "zero-blocks"},
949 # {"state": false, "capability": "compress"},
950 # {"state": true, "capability": "events"},
951 # {"state": false, "capability": "postcopy-ram"},
952 # {"state": false, "capability": "x-colo"}
953 # ]}
954 #
955 ##
956 { 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
957
958 ##
959 # @MigrationParameter:
960 #
961 # Migration parameters enumeration
962 #
963 # @compress-level: Set the compression level to be used in live migration,
964 # the compression level is an integer between 0 and 9, where 0 means
965 # no compression, 1 means the best compression speed, and 9 means best
966 # compression ratio which will consume more CPU.
967 #
968 # @compress-threads: Set compression thread count to be used in live migration,
969 # the compression thread count is an integer between 1 and 255.
970 #
971 # @decompress-threads: Set decompression thread count to be used in live
972 # migration, the decompression thread count is an integer between 1
973 # and 255. Usually, decompression is at least 4 times as fast as
974 # compression, so set the decompress-threads to the number about 1/4
975 # of compress-threads is adequate.
976 #
977 # @cpu-throttle-initial: Initial percentage of time guest cpus are throttled
978 # when migration auto-converge is activated. The
979 # default value is 20. (Since 2.7)
980 #
981 # @cpu-throttle-increment: throttle percentage increase each time
982 # auto-converge detects that migration is not making
983 # progress. The default value is 10. (Since 2.7)
984 #
985 # @tls-creds: ID of the 'tls-creds' object that provides credentials for
986 # establishing a TLS connection over the migration data channel.
987 # On the outgoing side of the migration, the credentials must
988 # be for a 'client' endpoint, while for the incoming side the
989 # credentials must be for a 'server' endpoint. Setting this
990 # will enable TLS for all migrations. The default is unset,
991 # resulting in unsecured migration at the QEMU level. (Since 2.7)
992 #
993 # @tls-hostname: hostname of the target host for the migration. This is
994 # required when using x509 based TLS credentials and the
995 # migration URI does not already include a hostname. For
996 # example if using fd: or exec: based migration, the
997 # hostname must be provided so that the server's x509
998 # certificate identity can be validated. (Since 2.7)
999 #
1000 # @max-bandwidth: to set maximum speed for migration. maximum speed in
1001 # bytes per second. (Since 2.8)
1002 #
1003 # @downtime-limit: set maximum tolerated downtime for migration. maximum
1004 # downtime in milliseconds (Since 2.8)
1005 #
1006 # @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in
1007 # periodic mode. (Since 2.8)
1008 #
1009 # Since: 2.4
1010 ##
1011 { 'enum': 'MigrationParameter',
1012 'data': ['compress-level', 'compress-threads', 'decompress-threads',
1013 'cpu-throttle-initial', 'cpu-throttle-increment',
1014 'tls-creds', 'tls-hostname', 'max-bandwidth',
1015 'downtime-limit', 'x-checkpoint-delay' ] }
1016
1017 ##
1018 # @migrate-set-parameters:
1019 #
1020 # Set various migration parameters.
1021 #
1022 # Since: 2.4
1023 #
1024 # Example:
1025 #
1026 # -> { "execute": "migrate-set-parameters" ,
1027 # "arguments": { "compress-level": 1 } }
1028 #
1029 ##
1030 { 'command': 'migrate-set-parameters', 'boxed': true,
1031 'data': 'MigrationParameters' }
1032
1033 ##
1034 # @MigrationParameters:
1035 #
1036 # Optional members can be omitted on input ('migrate-set-parameters')
1037 # but most members will always be present on output
1038 # ('query-migrate-parameters'), with the exception of tls-creds and
1039 # tls-hostname.
1040 #
1041 # @compress-level: compression level
1042 #
1043 # @compress-threads: compression thread count
1044 #
1045 # @decompress-threads: decompression thread count
1046 #
1047 # @cpu-throttle-initial: Initial percentage of time guest cpus are
1048 # throttledwhen migration auto-converge is activated.
1049 # The default value is 20. (Since 2.7)
1050 #
1051 # @cpu-throttle-increment: throttle percentage increase each time
1052 # auto-converge detects that migration is not making
1053 # progress. The default value is 10. (Since 2.7)
1054 #
1055 # @tls-creds: ID of the 'tls-creds' object that provides credentials
1056 # for establishing a TLS connection over the migration data
1057 # channel. On the outgoing side of the migration, the credentials
1058 # must be for a 'client' endpoint, while for the incoming side the
1059 # credentials must be for a 'server' endpoint. Setting this
1060 # will enable TLS for all migrations. The default is unset,
1061 # resulting in unsecured migration at the QEMU level. (Since 2.7)
1062 # An empty string means that QEMU will use plain text mode for
1063 # migration, rather than TLS (Since 2.9)
1064 #
1065 # @tls-hostname: hostname of the target host for the migration. This
1066 # is required when using x509 based TLS credentials and the
1067 # migration URI does not already include a hostname. For
1068 # example if using fd: or exec: based migration, the
1069 # hostname must be provided so that the server's x509
1070 # certificate identity can be validated. (Since 2.7)
1071 # An empty string means that QEMU will use the hostname
1072 # associated with the migration URI, if any. (Since 2.9)
1073 #
1074 # @max-bandwidth: to set maximum speed for migration. maximum speed in
1075 # bytes per second. (Since 2.8)
1076 #
1077 # @downtime-limit: set maximum tolerated downtime for migration. maximum
1078 # downtime in milliseconds (Since 2.8)
1079 #
1080 # @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
1081 #
1082 # Since: 2.4
1083 ##
1084 { 'struct': 'MigrationParameters',
1085 'data': { '*compress-level': 'int',
1086 '*compress-threads': 'int',
1087 '*decompress-threads': 'int',
1088 '*cpu-throttle-initial': 'int',
1089 '*cpu-throttle-increment': 'int',
1090 '*tls-creds': 'str',
1091 '*tls-hostname': 'str',
1092 '*max-bandwidth': 'int',
1093 '*downtime-limit': 'int',
1094 '*x-checkpoint-delay': 'int'} }
1095
1096 ##
1097 # @query-migrate-parameters:
1098 #
1099 # Returns information about the current migration parameters
1100 #
1101 # Returns: @MigrationParameters
1102 #
1103 # Since: 2.4
1104 #
1105 # Example:
1106 #
1107 # -> { "execute": "query-migrate-parameters" }
1108 # <- { "return": {
1109 # "decompress-threads": 2,
1110 # "cpu-throttle-increment": 10,
1111 # "compress-threads": 8,
1112 # "compress-level": 1,
1113 # "cpu-throttle-initial": 20,
1114 # "max-bandwidth": 33554432,
1115 # "downtime-limit": 300
1116 # }
1117 # }
1118 #
1119 ##
1120 { 'command': 'query-migrate-parameters',
1121 'returns': 'MigrationParameters' }
1122
1123 ##
1124 # @client_migrate_info:
1125 #
1126 # Set migration information for remote display. This makes the server
1127 # ask the client to automatically reconnect using the new parameters
1128 # once migration finished successfully. Only implemented for SPICE.
1129 #
1130 # @protocol: must be "spice"
1131 # @hostname: migration target hostname
1132 # @port: spice tcp port for plaintext channels
1133 # @tls-port: spice tcp port for tls-secured channels
1134 # @cert-subject: server certificate subject
1135 #
1136 # Since: 0.14.0
1137 #
1138 # Example:
1139 #
1140 # -> { "execute": "client_migrate_info",
1141 # "arguments": { "protocol": "spice",
1142 # "hostname": "virt42.lab.kraxel.org",
1143 # "port": 1234 } }
1144 # <- { "return": {} }
1145 #
1146 ##
1147 { 'command': 'client_migrate_info',
1148 'data': { 'protocol': 'str', 'hostname': 'str', '*port': 'int',
1149 '*tls-port': 'int', '*cert-subject': 'str' } }
1150
1151 ##
1152 # @migrate-start-postcopy:
1153 #
1154 # Followup to a migration command to switch the migration to postcopy mode.
1155 # The postcopy-ram capability must be set before the original migration
1156 # command.
1157 #
1158 # Since: 2.5
1159 #
1160 # Example:
1161 #
1162 # -> { "execute": "migrate-start-postcopy" }
1163 # <- { "return": {} }
1164 #
1165 ##
1166 { 'command': 'migrate-start-postcopy' }
1167
1168 ##
1169 # @COLOMessage:
1170 #
1171 # The message transmission between Primary side and Secondary side.
1172 #
1173 # @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1174 #
1175 # @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing
1176 #
1177 # @checkpoint-reply: SVM gets PVM's checkpoint request
1178 #
1179 # @vmstate-send: VM's state will be sent by PVM.
1180 #
1181 # @vmstate-size: The total size of VMstate.
1182 #
1183 # @vmstate-received: VM's state has been received by SVM.
1184 #
1185 # @vmstate-loaded: VM's state has been loaded by SVM.
1186 #
1187 # Since: 2.8
1188 ##
1189 { 'enum': 'COLOMessage',
1190 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1191 'vmstate-send', 'vmstate-size', 'vmstate-received',
1192 'vmstate-loaded' ] }
1193
1194 ##
1195 # @COLOMode:
1196 #
1197 # The colo mode
1198 #
1199 # @unknown: unknown mode
1200 #
1201 # @primary: master side
1202 #
1203 # @secondary: slave side
1204 #
1205 # Since: 2.8
1206 ##
1207 { 'enum': 'COLOMode',
1208 'data': [ 'unknown', 'primary', 'secondary'] }
1209
1210 ##
1211 # @FailoverStatus:
1212 #
1213 # An enumeration of COLO failover status
1214 #
1215 # @none: no failover has ever happened
1216 #
1217 # @require: got failover requirement but not handled
1218 #
1219 # @active: in the process of doing failover
1220 #
1221 # @completed: finish the process of failover
1222 #
1223 # @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9)
1224 #
1225 # Since: 2.8
1226 ##
1227 { 'enum': 'FailoverStatus',
1228 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1229
1230 ##
1231 # @x-colo-lost-heartbeat:
1232 #
1233 # Tell qemu that heartbeat is lost, request it to do takeover procedures.
1234 # If this command is sent to the PVM, the Primary side will exit COLO mode.
1235 # If sent to the Secondary, the Secondary side will run failover work,
1236 # then takes over server operation to become the service VM.
1237 #
1238 # Since: 2.8
1239 #
1240 # Example:
1241 #
1242 # -> { "execute": "x-colo-lost-heartbeat" }
1243 # <- { "return": {} }
1244 #
1245 ##
1246 { 'command': 'x-colo-lost-heartbeat' }
1247
1248 ##
1249 # @MouseInfo:
1250 #
1251 # Information about a mouse device.
1252 #
1253 # @name: the name of the mouse device
1254 #
1255 # @index: the index of the mouse device
1256 #
1257 # @current: true if this device is currently receiving mouse events
1258 #
1259 # @absolute: true if this device supports absolute coordinates as input
1260 #
1261 # Since: 0.14.0
1262 ##
1263 { 'struct': 'MouseInfo',
1264 'data': {'name': 'str', 'index': 'int', 'current': 'bool',
1265 'absolute': 'bool'} }
1266
1267 ##
1268 # @query-mice:
1269 #
1270 # Returns information about each active mouse device
1271 #
1272 # Returns: a list of @MouseInfo for each device
1273 #
1274 # Since: 0.14.0
1275 #
1276 # Example:
1277 #
1278 # -> { "execute": "query-mice" }
1279 # <- { "return": [
1280 # {
1281 # "name":"QEMU Microsoft Mouse",
1282 # "index":0,
1283 # "current":false,
1284 # "absolute":false
1285 # },
1286 # {
1287 # "name":"QEMU PS/2 Mouse",
1288 # "index":1,
1289 # "current":true,
1290 # "absolute":true
1291 # }
1292 # ]
1293 # }
1294 #
1295 ##
1296 { 'command': 'query-mice', 'returns': ['MouseInfo'] }
1297
1298 ##
1299 # @CpuInfoArch:
1300 #
1301 # An enumeration of cpu types that enable additional information during
1302 # @query-cpus.
1303 #
1304 # Since: 2.6
1305 ##
1306 { 'enum': 'CpuInfoArch',
1307 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 'other' ] }
1308
1309 ##
1310 # @CpuInfo:
1311 #
1312 # Information about a virtual CPU
1313 #
1314 # @CPU: the index of the virtual CPU
1315 #
1316 # @current: this only exists for backwards compatibility and should be ignored
1317 #
1318 # @halted: true if the virtual CPU is in the halt state. Halt usually refers
1319 # to a processor specific low power mode.
1320 #
1321 # @qom_path: path to the CPU object in the QOM tree (since 2.4)
1322 #
1323 # @thread_id: ID of the underlying host thread
1324 #
1325 # @arch: architecture of the cpu, which determines which additional fields
1326 # will be listed (since 2.6)
1327 #
1328 # Since: 0.14.0
1329 #
1330 # Notes: @halted is a transient state that changes frequently. By the time the
1331 # data is sent to the client, the guest may no longer be halted.
1332 ##
1333 { 'union': 'CpuInfo',
1334 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
1335 'qom_path': 'str', 'thread_id': 'int', 'arch': 'CpuInfoArch' },
1336 'discriminator': 'arch',
1337 'data': { 'x86': 'CpuInfoX86',
1338 'sparc': 'CpuInfoSPARC',
1339 'ppc': 'CpuInfoPPC',
1340 'mips': 'CpuInfoMIPS',
1341 'tricore': 'CpuInfoTricore',
1342 'other': 'CpuInfoOther' } }
1343
1344 ##
1345 # @CpuInfoX86:
1346 #
1347 # Additional information about a virtual i386 or x86_64 CPU
1348 #
1349 # @pc: the 64-bit instruction pointer
1350 #
1351 # Since: 2.6
1352 ##
1353 { 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
1354
1355 ##
1356 # @CpuInfoSPARC:
1357 #
1358 # Additional information about a virtual SPARC CPU
1359 #
1360 # @pc: the PC component of the instruction pointer
1361 #
1362 # @npc: the NPC component of the instruction pointer
1363 #
1364 # Since: 2.6
1365 ##
1366 { 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
1367
1368 ##
1369 # @CpuInfoPPC:
1370 #
1371 # Additional information about a virtual PPC CPU
1372 #
1373 # @nip: the instruction pointer
1374 #
1375 # Since: 2.6
1376 ##
1377 { 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
1378
1379 ##
1380 # @CpuInfoMIPS:
1381 #
1382 # Additional information about a virtual MIPS CPU
1383 #
1384 # @PC: the instruction pointer
1385 #
1386 # Since: 2.6
1387 ##
1388 { 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
1389
1390 ##
1391 # @CpuInfoTricore:
1392 #
1393 # Additional information about a virtual Tricore CPU
1394 #
1395 # @PC: the instruction pointer
1396 #
1397 # Since: 2.6
1398 ##
1399 { 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
1400
1401 ##
1402 # @CpuInfoOther:
1403 #
1404 # No additional information is available about the virtual CPU
1405 #
1406 # Since: 2.6
1407 #
1408 ##
1409 { 'struct': 'CpuInfoOther', 'data': { } }
1410
1411 ##
1412 # @query-cpus:
1413 #
1414 # Returns a list of information about each virtual CPU.
1415 #
1416 # Returns: a list of @CpuInfo for each virtual CPU
1417 #
1418 # Since: 0.14.0
1419 #
1420 # Example:
1421 #
1422 # -> { "execute": "query-cpus" }
1423 # <- { "return": [
1424 # {
1425 # "CPU":0,
1426 # "current":true,
1427 # "halted":false,
1428 # "qom_path":"/machine/unattached/device[0]",
1429 # "arch":"x86",
1430 # "pc":3227107138,
1431 # "thread_id":3134
1432 # },
1433 # {
1434 # "CPU":1,
1435 # "current":false,
1436 # "halted":true,
1437 # "qom_path":"/machine/unattached/device[2]",
1438 # "arch":"x86",
1439 # "pc":7108165,
1440 # "thread_id":3135
1441 # }
1442 # ]
1443 # }
1444 #
1445 ##
1446 { 'command': 'query-cpus', 'returns': ['CpuInfo'] }
1447
1448 ##
1449 # @IOThreadInfo:
1450 #
1451 # Information about an iothread
1452 #
1453 # @id: the identifier of the iothread
1454 #
1455 # @thread-id: ID of the underlying host thread
1456 #
1457 # @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
1458 # (since 2.9)
1459 #
1460 # @poll-grow: how many ns will be added to polling time, 0 means that it's not
1461 # configured (since 2.9)
1462 #
1463 # @poll-shrink: how many ns will be removed from polling time, 0 means that
1464 # it's not configured (since 2.9)
1465 #
1466 # Since: 2.0
1467 ##
1468 { 'struct': 'IOThreadInfo',
1469 'data': {'id': 'str',
1470 'thread-id': 'int',
1471 'poll-max-ns': 'int',
1472 'poll-grow': 'int',
1473 'poll-shrink': 'int' } }
1474
1475 ##
1476 # @query-iothreads:
1477 #
1478 # Returns a list of information about each iothread.
1479 #
1480 # Note: this list excludes the QEMU main loop thread, which is not declared
1481 # using the -object iothread command-line option. It is always the main thread
1482 # of the process.
1483 #
1484 # Returns: a list of @IOThreadInfo for each iothread
1485 #
1486 # Since: 2.0
1487 #
1488 # Example:
1489 #
1490 # -> { "execute": "query-iothreads" }
1491 # <- { "return": [
1492 # {
1493 # "id":"iothread0",
1494 # "thread-id":3134
1495 # },
1496 # {
1497 # "id":"iothread1",
1498 # "thread-id":3135
1499 # }
1500 # ]
1501 # }
1502 #
1503 ##
1504 { 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
1505
1506 ##
1507 # @NetworkAddressFamily:
1508 #
1509 # The network address family
1510 #
1511 # @ipv4: IPV4 family
1512 #
1513 # @ipv6: IPV6 family
1514 #
1515 # @unix: unix socket
1516 #
1517 # @vsock: vsock family (since 2.8)
1518 #
1519 # @unknown: otherwise
1520 #
1521 # Since: 2.1
1522 ##
1523 { 'enum': 'NetworkAddressFamily',
1524 'data': [ 'ipv4', 'ipv6', 'unix', 'vsock', 'unknown' ] }
1525
1526 ##
1527 # @VncBasicInfo:
1528 #
1529 # The basic information for vnc network connection
1530 #
1531 # @host: IP address
1532 #
1533 # @service: The service name of the vnc port. This may depend on the host
1534 # system's service database so symbolic names should not be relied
1535 # on.
1536 #
1537 # @family: address family
1538 #
1539 # @websocket: true in case the socket is a websocket (since 2.3).
1540 #
1541 # Since: 2.1
1542 ##
1543 { 'struct': 'VncBasicInfo',
1544 'data': { 'host': 'str',
1545 'service': 'str',
1546 'family': 'NetworkAddressFamily',
1547 'websocket': 'bool' } }
1548
1549 ##
1550 # @VncServerInfo:
1551 #
1552 # The network connection information for server
1553 #
1554 # @auth: authentication method used for
1555 # the plain (non-websocket) VNC server
1556 #
1557 # Since: 2.1
1558 ##
1559 { 'struct': 'VncServerInfo',
1560 'base': 'VncBasicInfo',
1561 'data': { '*auth': 'str' } }
1562
1563 ##
1564 # @VncClientInfo:
1565 #
1566 # Information about a connected VNC client.
1567 #
1568 # @x509_dname: If x509 authentication is in use, the Distinguished
1569 # Name of the client.
1570 #
1571 # @sasl_username: If SASL authentication is in use, the SASL username
1572 # used for authentication.
1573 #
1574 # Since: 0.14.0
1575 ##
1576 { 'struct': 'VncClientInfo',
1577 'base': 'VncBasicInfo',
1578 'data': { '*x509_dname': 'str', '*sasl_username': 'str' } }
1579
1580 ##
1581 # @VncInfo:
1582 #
1583 # Information about the VNC session.
1584 #
1585 # @enabled: true if the VNC server is enabled, false otherwise
1586 #
1587 # @host: The hostname the VNC server is bound to. This depends on
1588 # the name resolution on the host and may be an IP address.
1589 #
1590 # @family: 'ipv6' if the host is listening for IPv6 connections
1591 # 'ipv4' if the host is listening for IPv4 connections
1592 # 'unix' if the host is listening on a unix domain socket
1593 # 'unknown' otherwise
1594 #
1595 # @service: The service name of the server's port. This may depends
1596 # on the host system's service database so symbolic names should not
1597 # be relied on.
1598 #
1599 # @auth: the current authentication type used by the server
1600 # 'none' if no authentication is being used
1601 # 'vnc' if VNC authentication is being used
1602 # 'vencrypt+plain' if VEncrypt is used with plain text authentication
1603 # 'vencrypt+tls+none' if VEncrypt is used with TLS and no authentication
1604 # 'vencrypt+tls+vnc' if VEncrypt is used with TLS and VNC authentication
1605 # 'vencrypt+tls+plain' if VEncrypt is used with TLS and plain text auth
1606 # 'vencrypt+x509+none' if VEncrypt is used with x509 and no auth
1607 # 'vencrypt+x509+vnc' if VEncrypt is used with x509 and VNC auth
1608 # 'vencrypt+x509+plain' if VEncrypt is used with x509 and plain text auth
1609 # 'vencrypt+tls+sasl' if VEncrypt is used with TLS and SASL auth
1610 # 'vencrypt+x509+sasl' if VEncrypt is used with x509 and SASL auth
1611 #
1612 # @clients: a list of @VncClientInfo of all currently connected clients
1613 #
1614 # Since: 0.14.0
1615 ##
1616 { 'struct': 'VncInfo',
1617 'data': {'enabled': 'bool', '*host': 'str',
1618 '*family': 'NetworkAddressFamily',
1619 '*service': 'str', '*auth': 'str', '*clients': ['VncClientInfo']} }
1620
1621 ##
1622 # @VncPrimaryAuth:
1623 #
1624 # vnc primary authentication method.
1625 #
1626 # Since: 2.3
1627 ##
1628 { 'enum': 'VncPrimaryAuth',
1629 'data': [ 'none', 'vnc', 'ra2', 'ra2ne', 'tight', 'ultra',
1630 'tls', 'vencrypt', 'sasl' ] }
1631
1632 ##
1633 # @VncVencryptSubAuth:
1634 #
1635 # vnc sub authentication method with vencrypt.
1636 #
1637 # Since: 2.3
1638 ##
1639 { 'enum': 'VncVencryptSubAuth',
1640 'data': [ 'plain',
1641 'tls-none', 'x509-none',
1642 'tls-vnc', 'x509-vnc',
1643 'tls-plain', 'x509-plain',
1644 'tls-sasl', 'x509-sasl' ] }
1645
1646
1647 ##
1648 # @VncServerInfo2:
1649 #
1650 # The network connection information for server
1651 #
1652 # @auth: The current authentication type used by the servers
1653 #
1654 # @vencrypt: The vencrypt sub authentication type used by the
1655 # servers, only specified in case auth == vencrypt.
1656 #
1657 # Since: 2.9
1658 ##
1659 { 'struct': 'VncServerInfo2',
1660 'base': 'VncBasicInfo',
1661 'data': { 'auth' : 'VncPrimaryAuth',
1662 '*vencrypt' : 'VncVencryptSubAuth' } }
1663
1664
1665 ##
1666 # @VncInfo2:
1667 #
1668 # Information about a vnc server
1669 #
1670 # @id: vnc server name.
1671 #
1672 # @server: A list of @VncBasincInfo describing all listening sockets.
1673 # The list can be empty (in case the vnc server is disabled).
1674 # It also may have multiple entries: normal + websocket,
1675 # possibly also ipv4 + ipv6 in the future.
1676 #
1677 # @clients: A list of @VncClientInfo of all currently connected clients.
1678 # The list can be empty, for obvious reasons.
1679 #
1680 # @auth: The current authentication type used by the non-websockets servers
1681 #
1682 # @vencrypt: The vencrypt authentication type used by the servers,
1683 # only specified in case auth == vencrypt.
1684 #
1685 # @display: The display device the vnc server is linked to.
1686 #
1687 # Since: 2.3
1688 ##
1689 { 'struct': 'VncInfo2',
1690 'data': { 'id' : 'str',
1691 'server' : ['VncServerInfo2'],
1692 'clients' : ['VncClientInfo'],
1693 'auth' : 'VncPrimaryAuth',
1694 '*vencrypt' : 'VncVencryptSubAuth',
1695 '*display' : 'str' } }
1696
1697 ##
1698 # @query-vnc:
1699 #
1700 # Returns information about the current VNC server
1701 #
1702 # Returns: @VncInfo
1703 #
1704 # Since: 0.14.0
1705 #
1706 # Example:
1707 #
1708 # -> { "execute": "query-vnc" }
1709 # <- { "return": {
1710 # "enabled":true,
1711 # "host":"0.0.0.0",
1712 # "service":"50402",
1713 # "auth":"vnc",
1714 # "family":"ipv4",
1715 # "clients":[
1716 # {
1717 # "host":"127.0.0.1",
1718 # "service":"50401",
1719 # "family":"ipv4"
1720 # }
1721 # ]
1722 # }
1723 # }
1724 #
1725 ##
1726 { 'command': 'query-vnc', 'returns': 'VncInfo' }
1727
1728 ##
1729 # @query-vnc-servers:
1730 #
1731 # Returns a list of vnc servers. The list can be empty.
1732 #
1733 # Returns: a list of @VncInfo2
1734 #
1735 # Since: 2.3
1736 ##
1737 { 'command': 'query-vnc-servers', 'returns': ['VncInfo2'] }
1738
1739 ##
1740 # @SpiceBasicInfo:
1741 #
1742 # The basic information for SPICE network connection
1743 #
1744 # @host: IP address
1745 #
1746 # @port: port number
1747 #
1748 # @family: address family
1749 #
1750 # Since: 2.1
1751 ##
1752 { 'struct': 'SpiceBasicInfo',
1753 'data': { 'host': 'str',
1754 'port': 'str',
1755 'family': 'NetworkAddressFamily' } }
1756
1757 ##
1758 # @SpiceServerInfo:
1759 #
1760 # Information about a SPICE server
1761 #
1762 # @auth: authentication method
1763 #
1764 # Since: 2.1
1765 ##
1766 { 'struct': 'SpiceServerInfo',
1767 'base': 'SpiceBasicInfo',
1768 'data': { '*auth': 'str' } }
1769
1770 ##
1771 # @SpiceChannel:
1772 #
1773 # Information about a SPICE client channel.
1774 #
1775 # @connection-id: SPICE connection id number. All channels with the same id
1776 # belong to the same SPICE session.
1777 #
1778 # @channel-type: SPICE channel type number. "1" is the main control
1779 # channel, filter for this one if you want to track spice
1780 # sessions only
1781 #
1782 # @channel-id: SPICE channel ID number. Usually "0", might be different when
1783 # multiple channels of the same type exist, such as multiple
1784 # display channels in a multihead setup
1785 #
1786 # @tls: true if the channel is encrypted, false otherwise.
1787 #
1788 # Since: 0.14.0
1789 ##
1790 { 'struct': 'SpiceChannel',
1791 'base': 'SpiceBasicInfo',
1792 'data': {'connection-id': 'int', 'channel-type': 'int', 'channel-id': 'int',
1793 'tls': 'bool'} }
1794
1795 ##
1796 # @SpiceQueryMouseMode:
1797 #
1798 # An enumeration of Spice mouse states.
1799 #
1800 # @client: Mouse cursor position is determined by the client.
1801 #
1802 # @server: Mouse cursor position is determined by the server.
1803 #
1804 # @unknown: No information is available about mouse mode used by
1805 # the spice server.
1806 #
1807 # Note: spice/enums.h has a SpiceMouseMode already, hence the name.
1808 #
1809 # Since: 1.1
1810 ##
1811 { 'enum': 'SpiceQueryMouseMode',
1812 'data': [ 'client', 'server', 'unknown' ] }
1813
1814 ##
1815 # @SpiceInfo:
1816 #
1817 # Information about the SPICE session.
1818 #
1819 # @enabled: true if the SPICE server is enabled, false otherwise
1820 #
1821 # @migrated: true if the last guest migration completed and spice
1822 # migration had completed as well. false otherwise. (since 1.4)
1823 #
1824 # @host: The hostname the SPICE server is bound to. This depends on
1825 # the name resolution on the host and may be an IP address.
1826 #
1827 # @port: The SPICE server's port number.
1828 #
1829 # @compiled-version: SPICE server version.
1830 #
1831 # @tls-port: The SPICE server's TLS port number.
1832 #
1833 # @auth: the current authentication type used by the server
1834 # 'none' if no authentication is being used
1835 # 'spice' uses SASL or direct TLS authentication, depending on command
1836 # line options
1837 #
1838 # @mouse-mode: The mode in which the mouse cursor is displayed currently. Can
1839 # be determined by the client or the server, or unknown if spice
1840 # server doesn't provide this information. (since: 1.1)
1841 #
1842 # @channels: a list of @SpiceChannel for each active spice channel
1843 #
1844 # Since: 0.14.0
1845 ##
1846 { 'struct': 'SpiceInfo',
1847 'data': {'enabled': 'bool', 'migrated': 'bool', '*host': 'str', '*port': 'int',
1848 '*tls-port': 'int', '*auth': 'str', '*compiled-version': 'str',
1849 'mouse-mode': 'SpiceQueryMouseMode', '*channels': ['SpiceChannel']} }
1850
1851 ##
1852 # @query-spice:
1853 #
1854 # Returns information about the current SPICE server
1855 #
1856 # Returns: @SpiceInfo
1857 #
1858 # Since: 0.14.0
1859 #
1860 # Example:
1861 #
1862 # -> { "execute": "query-spice" }
1863 # <- { "return": {
1864 # "enabled": true,
1865 # "auth": "spice",
1866 # "port": 5920,
1867 # "tls-port": 5921,
1868 # "host": "0.0.0.0",
1869 # "channels": [
1870 # {
1871 # "port": "54924",
1872 # "family": "ipv4",
1873 # "channel-type": 1,
1874 # "connection-id": 1804289383,
1875 # "host": "127.0.0.1",
1876 # "channel-id": 0,
1877 # "tls": true
1878 # },
1879 # {
1880 # "port": "36710",
1881 # "family": "ipv4",
1882 # "channel-type": 4,
1883 # "connection-id": 1804289383,
1884 # "host": "127.0.0.1",
1885 # "channel-id": 0,
1886 # "tls": false
1887 # },
1888 # [ ... more channels follow ... ]
1889 # ]
1890 # }
1891 # }
1892 #
1893 ##
1894 { 'command': 'query-spice', 'returns': 'SpiceInfo' }
1895
1896 ##
1897 # @BalloonInfo:
1898 #
1899 # Information about the guest balloon device.
1900 #
1901 # @actual: the number of bytes the balloon currently contains
1902 #
1903 # Since: 0.14.0
1904 #
1905 ##
1906 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1907
1908 ##
1909 # @query-balloon:
1910 #
1911 # Return information about the balloon device.
1912 #
1913 # Returns: @BalloonInfo on success
1914 #
1915 # If the balloon driver is enabled but not functional because the KVM
1916 # kernel module cannot support it, KvmMissingCap
1917 #
1918 # If no balloon device is present, DeviceNotActive
1919 #
1920 # Since: 0.14.0
1921 #
1922 # Example:
1923 #
1924 # -> { "execute": "query-balloon" }
1925 # <- { "return": {
1926 # "actual": 1073741824,
1927 # }
1928 # }
1929 #
1930 ##
1931 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1932
1933 ##
1934 # @PciMemoryRange:
1935 #
1936 # A PCI device memory region
1937 #
1938 # @base: the starting address (guest physical)
1939 #
1940 # @limit: the ending address (guest physical)
1941 #
1942 # Since: 0.14.0
1943 ##
1944 { 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
1945
1946 ##
1947 # @PciMemoryRegion:
1948 #
1949 # Information about a PCI device I/O region.
1950 #
1951 # @bar: the index of the Base Address Register for this region
1952 #
1953 # @type: 'io' if the region is a PIO region
1954 # 'memory' if the region is a MMIO region
1955 #
1956 # @size: memory size
1957 #
1958 # @prefetch: if @type is 'memory', true if the memory is prefetchable
1959 #
1960 # @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
1961 #
1962 # Since: 0.14.0
1963 ##
1964 { 'struct': 'PciMemoryRegion',
1965 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
1966 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
1967
1968 ##
1969 # @PciBusInfo:
1970 #
1971 # Information about a bus of a PCI Bridge device
1972 #
1973 # @number: primary bus interface number. This should be the number of the
1974 # bus the device resides on.
1975 #
1976 # @secondary: secondary bus interface number. This is the number of the
1977 # main bus for the bridge
1978 #
1979 # @subordinate: This is the highest number bus that resides below the
1980 # bridge.
1981 #
1982 # @io_range: The PIO range for all devices on this bridge
1983 #
1984 # @memory_range: The MMIO range for all devices on this bridge
1985 #
1986 # @prefetchable_range: The range of prefetchable MMIO for all devices on
1987 # this bridge
1988 #
1989 # Since: 2.4
1990 ##
1991 { 'struct': 'PciBusInfo',
1992 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
1993 'io_range': 'PciMemoryRange',
1994 'memory_range': 'PciMemoryRange',
1995 'prefetchable_range': 'PciMemoryRange' } }
1996
1997 ##
1998 # @PciBridgeInfo:
1999 #
2000 # Information about a PCI Bridge device
2001 #
2002 # @bus: information about the bus the device resides on
2003 #
2004 # @devices: a list of @PciDeviceInfo for each device on this bridge
2005 #
2006 # Since: 0.14.0
2007 ##
2008 { 'struct': 'PciBridgeInfo',
2009 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
2010
2011 ##
2012 # @PciDeviceClass:
2013 #
2014 # Information about the Class of a PCI device
2015 #
2016 # @desc: a string description of the device's class
2017 #
2018 # @class: the class code of the device
2019 #
2020 # Since: 2.4
2021 ##
2022 { 'struct': 'PciDeviceClass',
2023 'data': {'*desc': 'str', 'class': 'int'} }
2024
2025 ##
2026 # @PciDeviceId:
2027 #
2028 # Information about the Id of a PCI device
2029 #
2030 # @device: the PCI device id
2031 #
2032 # @vendor: the PCI vendor id
2033 #
2034 # Since: 2.4
2035 ##
2036 { 'struct': 'PciDeviceId',
2037 'data': {'device': 'int', 'vendor': 'int'} }
2038
2039 ##
2040 # @PciDeviceInfo:
2041 #
2042 # Information about a PCI device
2043 #
2044 # @bus: the bus number of the device
2045 #
2046 # @slot: the slot the device is located in
2047 #
2048 # @function: the function of the slot used by the device
2049 #
2050 # @class_info: the class of the device
2051 #
2052 # @id: the PCI device id
2053 #
2054 # @irq: if an IRQ is assigned to the device, the IRQ number
2055 #
2056 # @qdev_id: the device name of the PCI device
2057 #
2058 # @pci_bridge: if the device is a PCI bridge, the bridge information
2059 #
2060 # @regions: a list of the PCI I/O regions associated with the device
2061 #
2062 # Notes: the contents of @class_info.desc are not stable and should only be
2063 # treated as informational.
2064 #
2065 # Since: 0.14.0
2066 ##
2067 { 'struct': 'PciDeviceInfo',
2068 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
2069 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
2070 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
2071 'regions': ['PciMemoryRegion']} }
2072
2073 ##
2074 # @PciInfo:
2075 #
2076 # Information about a PCI bus
2077 #
2078 # @bus: the bus index
2079 #
2080 # @devices: a list of devices on this bus
2081 #
2082 # Since: 0.14.0
2083 ##
2084 { 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
2085
2086 ##
2087 # @query-pci:
2088 #
2089 # Return information about the PCI bus topology of the guest.
2090 #
2091 # Returns: a list of @PciInfo for each PCI bus. Each bus is
2092 # represented by a json-object, which has a key with a json-array of
2093 # all PCI devices attached to it. Each device is represented by a
2094 # json-object.
2095 #
2096 # Since: 0.14.0
2097 #
2098 # Example:
2099 #
2100 # -> { "execute": "query-pci" }
2101 # <- { "return": [
2102 # {
2103 # "bus": 0,
2104 # "devices": [
2105 # {
2106 # "bus": 0,
2107 # "qdev_id": "",
2108 # "slot": 0,
2109 # "class_info": {
2110 # "class": 1536,
2111 # "desc": "Host bridge"
2112 # },
2113 # "id": {
2114 # "device": 32902,
2115 # "vendor": 4663
2116 # },
2117 # "function": 0,
2118 # "regions": [
2119 # ]
2120 # },
2121 # {
2122 # "bus": 0,
2123 # "qdev_id": "",
2124 # "slot": 1,
2125 # "class_info": {
2126 # "class": 1537,
2127 # "desc": "ISA bridge"
2128 # },
2129 # "id": {
2130 # "device": 32902,
2131 # "vendor": 28672
2132 # },
2133 # "function": 0,
2134 # "regions": [
2135 # ]
2136 # },
2137 # {
2138 # "bus": 0,
2139 # "qdev_id": "",
2140 # "slot": 1,
2141 # "class_info": {
2142 # "class": 257,
2143 # "desc": "IDE controller"
2144 # },
2145 # "id": {
2146 # "device": 32902,
2147 # "vendor": 28688
2148 # },
2149 # "function": 1,
2150 # "regions": [
2151 # {
2152 # "bar": 4,
2153 # "size": 16,
2154 # "address": 49152,
2155 # "type": "io"
2156 # }
2157 # ]
2158 # },
2159 # {
2160 # "bus": 0,
2161 # "qdev_id": "",
2162 # "slot": 2,
2163 # "class_info": {
2164 # "class": 768,
2165 # "desc": "VGA controller"
2166 # },
2167 # "id": {
2168 # "device": 4115,
2169 # "vendor": 184
2170 # },
2171 # "function": 0,
2172 # "regions": [
2173 # {
2174 # "prefetch": true,
2175 # "mem_type_64": false,
2176 # "bar": 0,
2177 # "size": 33554432,
2178 # "address": 4026531840,
2179 # "type": "memory"
2180 # },
2181 # {
2182 # "prefetch": false,
2183 # "mem_type_64": false,
2184 # "bar": 1,
2185 # "size": 4096,
2186 # "address": 4060086272,
2187 # "type": "memory"
2188 # },
2189 # {
2190 # "prefetch": false,
2191 # "mem_type_64": false,
2192 # "bar": 6,
2193 # "size": 65536,
2194 # "address": -1,
2195 # "type": "memory"
2196 # }
2197 # ]
2198 # },
2199 # {
2200 # "bus": 0,
2201 # "qdev_id": "",
2202 # "irq": 11,
2203 # "slot": 4,
2204 # "class_info": {
2205 # "class": 1280,
2206 # "desc": "RAM controller"
2207 # },
2208 # "id": {
2209 # "device": 6900,
2210 # "vendor": 4098
2211 # },
2212 # "function": 0,
2213 # "regions": [
2214 # {
2215 # "bar": 0,
2216 # "size": 32,
2217 # "address": 49280,
2218 # "type": "io"
2219 # }
2220 # ]
2221 # }
2222 # ]
2223 # }
2224 # ]
2225 # }
2226 #
2227 # Note: This example has been shortened as the real response is too long.
2228 #
2229 ##
2230 { 'command': 'query-pci', 'returns': ['PciInfo'] }
2231
2232 ##
2233 # @quit:
2234 #
2235 # This command will cause the QEMU process to exit gracefully. While every
2236 # attempt is made to send the QMP response before terminating, this is not
2237 # guaranteed. When using this interface, a premature EOF would not be
2238 # unexpected.
2239 #
2240 # Since: 0.14.0
2241 #
2242 # Example:
2243 #
2244 # -> { "execute": "quit" }
2245 # <- { "return": {} }
2246 ##
2247 { 'command': 'quit' }
2248
2249 ##
2250 # @stop:
2251 #
2252 # Stop all guest VCPU execution.
2253 #
2254 # Since: 0.14.0
2255 #
2256 # Notes: This function will succeed even if the guest is already in the stopped
2257 # state. In "inmigrate" state, it will ensure that the guest
2258 # remains paused once migration finishes, as if the -S option was
2259 # passed on the command line.
2260 #
2261 # Example:
2262 #
2263 # -> { "execute": "stop" }
2264 # <- { "return": {} }
2265 #
2266 ##
2267 { 'command': 'stop' }
2268
2269 ##
2270 # @system_reset:
2271 #
2272 # Performs a hard reset of a guest.
2273 #
2274 # Since: 0.14.0
2275 #
2276 # Example:
2277 #
2278 # -> { "execute": "system_reset" }
2279 # <- { "return": {} }
2280 #
2281 ##
2282 { 'command': 'system_reset' }
2283
2284 ##
2285 # @system_powerdown:
2286 #
2287 # Requests that a guest perform a powerdown operation.
2288 #
2289 # Since: 0.14.0
2290 #
2291 # Notes: A guest may or may not respond to this command. This command
2292 # returning does not indicate that a guest has accepted the request or
2293 # that it has shut down. Many guests will respond to this command by
2294 # prompting the user in some way.
2295 # Example:
2296 #
2297 # -> { "execute": "system_powerdown" }
2298 # <- { "return": {} }
2299 #
2300 ##
2301 { 'command': 'system_powerdown' }
2302
2303 ##
2304 # @cpu:
2305 #
2306 # This command is a nop that is only provided for the purposes of compatibility.
2307 #
2308 # Since: 0.14.0
2309 #
2310 # Notes: Do not use this command.
2311 ##
2312 { 'command': 'cpu', 'data': {'index': 'int'} }
2313
2314 ##
2315 # @cpu-add:
2316 #
2317 # Adds CPU with specified ID
2318 #
2319 # @id: ID of CPU to be created, valid values [0..max_cpus)
2320 #
2321 # Returns: Nothing on success
2322 #
2323 # Since: 1.5
2324 #
2325 # Example:
2326 #
2327 # -> { "execute": "cpu-add", "arguments": { "id": 2 } }
2328 # <- { "return": {} }
2329 #
2330 ##
2331 { 'command': 'cpu-add', 'data': {'id': 'int'} }
2332
2333 ##
2334 # @memsave:
2335 #
2336 # Save a portion of guest memory to a file.
2337 #
2338 # @val: the virtual address of the guest to start from
2339 #
2340 # @size: the size of memory region to save
2341 #
2342 # @filename: the file to save the memory to as binary data
2343 #
2344 # @cpu-index: the index of the virtual CPU to use for translating the
2345 # virtual address (defaults to CPU 0)
2346 #
2347 # Returns: Nothing on success
2348 #
2349 # Since: 0.14.0
2350 #
2351 # Notes: Errors were not reliably returned until 1.1
2352 #
2353 # Example:
2354 #
2355 # -> { "execute": "memsave",
2356 # "arguments": { "val": 10,
2357 # "size": 100,
2358 # "filename": "/tmp/virtual-mem-dump" } }
2359 # <- { "return": {} }
2360 #
2361 ##
2362 { 'command': 'memsave',
2363 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
2364
2365 ##
2366 # @pmemsave:
2367 #
2368 # Save a portion of guest physical memory to a file.
2369 #
2370 # @val: the physical address of the guest to start from
2371 #
2372 # @size: the size of memory region to save
2373 #
2374 # @filename: the file to save the memory to as binary data
2375 #
2376 # Returns: Nothing on success
2377 #
2378 # Since: 0.14.0
2379 #
2380 # Notes: Errors were not reliably returned until 1.1
2381 #
2382 # Example:
2383 #
2384 # -> { "execute": "pmemsave",
2385 # "arguments": { "val": 10,
2386 # "size": 100,
2387 # "filename": "/tmp/physical-mem-dump" } }
2388 # <- { "return": {} }
2389 #
2390 ##
2391 { 'command': 'pmemsave',
2392 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
2393
2394 ##
2395 # @cont:
2396 #
2397 # Resume guest VCPU execution.
2398 #
2399 # Since: 0.14.0
2400 #
2401 # Returns: If successful, nothing
2402 # If QEMU was started with an encrypted block device and a key has
2403 # not yet been set, DeviceEncrypted.
2404 #
2405 # Notes: This command will succeed if the guest is currently running. It
2406 # will also succeed if the guest is in the "inmigrate" state; in
2407 # this case, the effect of the command is to make sure the guest
2408 # starts once migration finishes, removing the effect of the -S
2409 # command line option if it was passed.
2410 #
2411 # Example:
2412 #
2413 # -> { "execute": "cont" }
2414 # <- { "return": {} }
2415 #
2416 ##
2417 { 'command': 'cont' }
2418
2419 ##
2420 # @system_wakeup:
2421 #
2422 # Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
2423 #
2424 # Since: 1.1
2425 #
2426 # Returns: nothing.
2427 #
2428 # Example:
2429 #
2430 # -> { "execute": "system_wakeup" }
2431 # <- { "return": {} }
2432 #
2433 ##
2434 { 'command': 'system_wakeup' }
2435
2436 ##
2437 # @inject-nmi:
2438 #
2439 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
2440 # The command fails when the guest doesn't support injecting.
2441 #
2442 # Returns: If successful, nothing
2443 #
2444 # Since: 0.14.0
2445 #
2446 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
2447 #
2448 # Example:
2449 #
2450 # -> { "execute": "inject-nmi" }
2451 # <- { "return": {} }
2452 #
2453 ##
2454 { 'command': 'inject-nmi' }
2455
2456 ##
2457 # @set_link:
2458 #
2459 # Sets the link status of a virtual network adapter.
2460 #
2461 # @name: the device name of the virtual network adapter
2462 #
2463 # @up: true to set the link status to be up
2464 #
2465 # Returns: Nothing on success
2466 # If @name is not a valid network device, DeviceNotFound
2467 #
2468 # Since: 0.14.0
2469 #
2470 # Notes: Not all network adapters support setting link status. This command
2471 # will succeed even if the network adapter does not support link status
2472 # notification.
2473 #
2474 # Example:
2475 #
2476 # -> { "execute": "set_link",
2477 # "arguments": { "name": "e1000.0", "up": false } }
2478 # <- { "return": {} }
2479 #
2480 ##
2481 { 'command': 'set_link', 'data': {'name': 'str', 'up': 'bool'} }
2482
2483 ##
2484 # @balloon:
2485 #
2486 # Request the balloon driver to change its balloon size.
2487 #
2488 # @value: the target size of the balloon in bytes
2489 #
2490 # Returns: Nothing on success
2491 # If the balloon driver is enabled but not functional because the KVM
2492 # kernel module cannot support it, KvmMissingCap
2493 # If no balloon device is present, DeviceNotActive
2494 #
2495 # Notes: This command just issues a request to the guest. When it returns,
2496 # the balloon size may not have changed. A guest can change the balloon
2497 # size independent of this command.
2498 #
2499 # Since: 0.14.0
2500 #
2501 # Example:
2502 #
2503 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
2504 # <- { "return": {} }
2505 #
2506 ##
2507 { 'command': 'balloon', 'data': {'value': 'int'} }
2508
2509 ##
2510 # @Abort:
2511 #
2512 # This action can be used to test transaction failure.
2513 #
2514 # Since: 1.6
2515 ##
2516 { 'struct': 'Abort',
2517 'data': { } }
2518
2519 ##
2520 # @ActionCompletionMode:
2521 #
2522 # An enumeration of Transactional completion modes.
2523 #
2524 # @individual: Do not attempt to cancel any other Actions if any Actions fail
2525 # after the Transaction request succeeds. All Actions that
2526 # can complete successfully will do so without waiting on others.
2527 # This is the default.
2528 #
2529 # @grouped: If any Action fails after the Transaction succeeds, cancel all
2530 # Actions. Actions do not complete until all Actions are ready to
2531 # complete. May be rejected by Actions that do not support this
2532 # completion mode.
2533 #
2534 # Since: 2.5
2535 ##
2536 { 'enum': 'ActionCompletionMode',
2537 'data': [ 'individual', 'grouped' ] }
2538
2539 ##
2540 # @TransactionAction:
2541 #
2542 # A discriminated record of operations that can be performed with
2543 # @transaction. Action @type can be:
2544 #
2545 # - @abort: since 1.6
2546 # - @block-dirty-bitmap-add: since 2.5
2547 # - @block-dirty-bitmap-clear: since 2.5
2548 # - @blockdev-backup: since 2.3
2549 # - @blockdev-snapshot: since 2.5
2550 # - @blockdev-snapshot-internal-sync: since 1.7
2551 # - @blockdev-snapshot-sync: since 1.1
2552 # - @drive-backup: since 1.6
2553 #
2554 # Since: 1.1
2555 ##
2556 { 'union': 'TransactionAction',
2557 'data': {
2558 'abort': 'Abort',
2559 'block-dirty-bitmap-add': 'BlockDirtyBitmapAdd',
2560 'block-dirty-bitmap-clear': 'BlockDirtyBitmap',
2561 'blockdev-backup': 'BlockdevBackup',
2562 'blockdev-snapshot': 'BlockdevSnapshot',
2563 'blockdev-snapshot-internal-sync': 'BlockdevSnapshotInternal',
2564 'blockdev-snapshot-sync': 'BlockdevSnapshotSync',
2565 'drive-backup': 'DriveBackup'
2566 } }
2567
2568 ##
2569 # @TransactionProperties:
2570 #
2571 # Optional arguments to modify the behavior of a Transaction.
2572 #
2573 # @completion-mode: Controls how jobs launched asynchronously by
2574 # Actions will complete or fail as a group.
2575 # See @ActionCompletionMode for details.
2576 #
2577 # Since: 2.5
2578 ##
2579 { 'struct': 'TransactionProperties',
2580 'data': {
2581 '*completion-mode': 'ActionCompletionMode'
2582 }
2583 }
2584
2585 ##
2586 # @transaction:
2587 #
2588 # Executes a number of transactionable QMP commands atomically. If any
2589 # operation fails, then the entire set of actions will be abandoned and the
2590 # appropriate error returned.
2591 #
2592 # For external snapshots, the dictionary contains the device, the file to use for
2593 # the new snapshot, and the format. The default format, if not specified, is
2594 # qcow2.
2595 #
2596 # Each new snapshot defaults to being created by QEMU (wiping any
2597 # contents if the file already exists), but it is also possible to reuse
2598 # an externally-created file. In the latter case, you should ensure that
2599 # the new image file has the same contents as the current one; QEMU cannot
2600 # perform any meaningful check. Typically this is achieved by using the
2601 # current image file as the backing file for the new image.
2602 #
2603 # On failure, the original disks pre-snapshot attempt will be used.
2604 #
2605 # For internal snapshots, the dictionary contains the device and the snapshot's
2606 # name. If an internal snapshot matching name already exists, the request will
2607 # be rejected. Only some image formats support it, for example, qcow2, rbd,
2608 # and sheepdog.
2609 #
2610 # On failure, qemu will try delete the newly created internal snapshot in the
2611 # transaction. When an I/O error occurs during deletion, the user needs to fix
2612 # it later with qemu-img or other command.
2613 #
2614 # @actions: List of @TransactionAction;
2615 # information needed for the respective operations.
2616 #
2617 # @properties: structure of additional options to control the
2618 # execution of the transaction. See @TransactionProperties
2619 # for additional detail.
2620 #
2621 # Returns: nothing on success
2622 #
2623 # Errors depend on the operations of the transaction
2624 #
2625 # Note: The transaction aborts on the first failure. Therefore, there will be
2626 # information on only one failed operation returned in an error condition, and
2627 # subsequent actions will not have been attempted.
2628 #
2629 # Since: 1.1
2630 #
2631 # Example:
2632 #
2633 # -> { "execute": "transaction",
2634 # "arguments": { "actions": [
2635 # { "type": "blockdev-snapshot-sync", "data" : { "device": "ide-hd0",
2636 # "snapshot-file": "/some/place/my-image",
2637 # "format": "qcow2" } },
2638 # { "type": "blockdev-snapshot-sync", "data" : { "node-name": "myfile",
2639 # "snapshot-file": "/some/place/my-image2",
2640 # "snapshot-node-name": "node3432",
2641 # "mode": "existing",
2642 # "format": "qcow2" } },
2643 # { "type": "blockdev-snapshot-sync", "data" : { "device": "ide-hd1",
2644 # "snapshot-file": "/some/place/my-image2",
2645 # "mode": "existing",
2646 # "format": "qcow2" } },
2647 # { "type": "blockdev-snapshot-internal-sync", "data" : {
2648 # "device": "ide-hd2",
2649 # "name": "snapshot0" } } ] } }
2650 # <- { "return": {} }
2651 #
2652 ##
2653 { 'command': 'transaction',
2654 'data': { 'actions': [ 'TransactionAction' ],
2655 '*properties': 'TransactionProperties'
2656 }
2657 }
2658
2659 ##
2660 # @human-monitor-command:
2661 #
2662 # Execute a command on the human monitor and return the output.
2663 #
2664 # @command-line: the command to execute in the human monitor
2665 #
2666 # @cpu-index: The CPU to use for commands that require an implicit CPU
2667 #
2668 # Returns: the output of the command as a string
2669 #
2670 # Since: 0.14.0
2671 #
2672 # Notes: This command only exists as a stop-gap. Its use is highly
2673 # discouraged. The semantics of this command are not
2674 # guaranteed: this means that command names, arguments and
2675 # responses can change or be removed at ANY time. Applications
2676 # that rely on long term stability guarantees should NOT
2677 # use this command.
2678 #
2679 # Known limitations:
2680 #
2681 # * This command is stateless, this means that commands that depend
2682 # on state information (such as getfd) might not work
2683 #
2684 # * Commands that prompt the user for data (eg. 'cont' when the block
2685 # device is encrypted) don't currently work
2686 #
2687 # Example:
2688 #
2689 # -> { "execute": "human-monitor-command",
2690 # "arguments": { "command-line": "info kvm" } }
2691 # <- { "return": "kvm support: enabled\r\n" }
2692 #
2693 ##
2694 { 'command': 'human-monitor-command',
2695 'data': {'command-line': 'str', '*cpu-index': 'int'},
2696 'returns': 'str' }
2697
2698 ##
2699 # @migrate_cancel:
2700 #
2701 # Cancel the current executing migration process.
2702 #
2703 # Returns: nothing on success
2704 #
2705 # Notes: This command succeeds even if there is no migration process running.
2706 #
2707 # Since: 0.14.0
2708 #
2709 # Example:
2710 #
2711 # -> { "execute": "migrate_cancel" }
2712 # <- { "return": {} }
2713 #
2714 ##
2715 { 'command': 'migrate_cancel' }
2716
2717 ##
2718 # @migrate_set_downtime:
2719 #
2720 # Set maximum tolerated downtime for migration.
2721 #
2722 # @value: maximum downtime in seconds
2723 #
2724 # Returns: nothing on success
2725 #
2726 # Notes: This command is deprecated in favor of 'migrate-set-parameters'
2727 #
2728 # Since: 0.14.0
2729 #
2730 # Example:
2731 #
2732 # -> { "execute": "migrate_set_downtime", "arguments": { "value": 0.1 } }
2733 # <- { "return": {} }
2734 #
2735 ##
2736 { 'command': 'migrate_set_downtime', 'data': {'value': 'number'} }
2737
2738 ##
2739 # @migrate_set_speed:
2740 #
2741 # Set maximum speed for migration.
2742 #
2743 # @value: maximum speed in bytes per second.
2744 #
2745 # Returns: nothing on success
2746 #
2747 # Notes: This command is deprecated in favor of 'migrate-set-parameters'
2748 #
2749 # Since: 0.14.0
2750 #
2751 # Example:
2752 #
2753 # -> { "execute": "migrate_set_speed", "arguments": { "value": 1024 } }
2754 # <- { "return": {} }
2755 #
2756 ##
2757 { 'command': 'migrate_set_speed', 'data': {'value': 'int'} }
2758
2759 ##
2760 # @migrate-set-cache-size:
2761 #
2762 # Set cache size to be used by XBZRLE migration
2763 #
2764 # @value: cache size in bytes
2765 #
2766 # The size will be rounded down to the nearest power of 2.
2767 # The cache size can be modified before and during ongoing migration
2768 #
2769 # Returns: nothing on success
2770 #
2771 # Since: 1.2
2772 #
2773 # Example:
2774 #
2775 # -> { "execute": "migrate-set-cache-size",
2776 # "arguments": { "value": 536870912 } }
2777 # <- { "return": {} }
2778 #
2779 ##
2780 { 'command': 'migrate-set-cache-size', 'data': {'value': 'int'} }
2781
2782 ##
2783 # @query-migrate-cache-size:
2784 #
2785 # Query migration XBZRLE cache size
2786 #
2787 # Returns: XBZRLE cache size in bytes
2788 #
2789 # Since: 1.2
2790 #
2791 # Example:
2792 #
2793 # -> { "execute": "query-migrate-cache-size" }
2794 # <- { "return": 67108864 }
2795 #
2796 ##
2797 { 'command': 'query-migrate-cache-size', 'returns': 'int' }
2798
2799 ##
2800 # @ObjectPropertyInfo:
2801 #
2802 # @name: the name of the property
2803 #
2804 # @type: the type of the property. This will typically come in one of four
2805 # forms:
2806 #
2807 # 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
2808 # These types are mapped to the appropriate JSON type.
2809 #
2810 # 2) A child type in the form 'child<subtype>' where subtype is a qdev
2811 # device type name. Child properties create the composition tree.
2812 #
2813 # 3) A link type in the form 'link<subtype>' where subtype is a qdev
2814 # device type name. Link properties form the device model graph.
2815 #
2816 # Since: 1.2
2817 ##
2818 { 'struct': 'ObjectPropertyInfo',
2819 'data': { 'name': 'str', 'type': 'str' } }
2820
2821 ##
2822 # @qom-list:
2823 #
2824 # This command will list any properties of a object given a path in the object
2825 # model.
2826 #
2827 # @path: the path within the object model. See @qom-get for a description of
2828 # this parameter.
2829 #
2830 # Returns: a list of @ObjectPropertyInfo that describe the properties of the
2831 # object.
2832 #
2833 # Since: 1.2
2834 ##
2835 { 'command': 'qom-list',
2836 'data': { 'path': 'str' },
2837 'returns': [ 'ObjectPropertyInfo' ] }
2838
2839 ##
2840 # @qom-get:
2841 #
2842 # This command will get a property from a object model path and return the
2843 # value.
2844 #
2845 # @path: The path within the object model. There are two forms of supported
2846 # paths--absolute and partial paths.
2847 #
2848 # Absolute paths are derived from the root object and can follow child<>
2849 # or link<> properties. Since they can follow link<> properties, they
2850 # can be arbitrarily long. Absolute paths look like absolute filenames
2851 # and are prefixed with a leading slash.
2852 #
2853 # Partial paths look like relative filenames. They do not begin
2854 # with a prefix. The matching rules for partial paths are subtle but
2855 # designed to make specifying objects easy. At each level of the
2856 # composition tree, the partial path is matched as an absolute path.
2857 # The first match is not returned. At least two matches are searched
2858 # for. A successful result is only returned if only one match is
2859 # found. If more than one match is found, a flag is return to
2860 # indicate that the match was ambiguous.
2861 #
2862 # @property: The property name to read
2863 #
2864 # Returns: The property value. The type depends on the property
2865 # type. child<> and link<> properties are returned as #str
2866 # pathnames. All integer property types (u8, u16, etc) are
2867 # returned as #int.
2868 #
2869 # Since: 1.2
2870 ##
2871 { 'command': 'qom-get',
2872 'data': { 'path': 'str', 'property': 'str' },
2873 'returns': 'any' }
2874
2875 ##
2876 # @qom-set:
2877 #
2878 # This command will set a property from a object model path.
2879 #
2880 # @path: see @qom-get for a description of this parameter
2881 #
2882 # @property: the property name to set
2883 #
2884 # @value: a value who's type is appropriate for the property type. See @qom-get
2885 # for a description of type mapping.
2886 #
2887 # Since: 1.2
2888 ##
2889 { 'command': 'qom-set',
2890 'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
2891
2892 ##
2893 # @set_password:
2894 #
2895 # Sets the password of a remote display session.
2896 #
2897 # @protocol: `vnc' to modify the VNC server password
2898 # `spice' to modify the Spice server password
2899 #
2900 # @password: the new password
2901 #
2902 # @connected: how to handle existing clients when changing the
2903 # password. If nothing is specified, defaults to `keep'
2904 # `fail' to fail the command if clients are connected
2905 # `disconnect' to disconnect existing clients
2906 # `keep' to maintain existing clients
2907 #
2908 # Returns: Nothing on success
2909 # If Spice is not enabled, DeviceNotFound
2910 #
2911 # Since: 0.14.0
2912 #
2913 # Example:
2914 #
2915 # -> { "execute": "set_password", "arguments": { "protocol": "vnc",
2916 # "password": "secret" } }
2917 # <- { "return": {} }
2918 #
2919 ##
2920 { 'command': 'set_password',
2921 'data': {'protocol': 'str', 'password': 'str', '*connected': 'str'} }
2922
2923 ##
2924 # @expire_password:
2925 #
2926 # Expire the password of a remote display server.
2927 #
2928 # @protocol: the name of the remote display protocol `vnc' or `spice'
2929 #
2930 # @time: when to expire the password.
2931 # `now' to expire the password immediately
2932 # `never' to cancel password expiration
2933 # `+INT' where INT is the number of seconds from now (integer)
2934 # `INT' where INT is the absolute time in seconds
2935 #
2936 # Returns: Nothing on success
2937 # If @protocol is `spice' and Spice is not active, DeviceNotFound
2938 #
2939 # Since: 0.14.0
2940 #
2941 # Notes: Time is relative to the server and currently there is no way to
2942 # coordinate server time with client time. It is not recommended to
2943 # use the absolute time version of the @time parameter unless you're
2944 # sure you are on the same machine as the QEMU instance.
2945 #
2946 # Example:
2947 #
2948 # -> { "execute": "expire_password", "arguments": { "protocol": "vnc",
2949 # "time": "+60" } }
2950 # <- { "return": {} }
2951 #
2952 ##
2953 { 'command': 'expire_password', 'data': {'protocol': 'str', 'time': 'str'} }
2954
2955 ##
2956 # @change-vnc-password:
2957 #
2958 # Change the VNC server password.
2959 #
2960 # @password: the new password to use with VNC authentication
2961 #
2962 # Since: 1.1
2963 #
2964 # Notes: An empty password in this command will set the password to the empty
2965 # string. Existing clients are unaffected by executing this command.
2966 ##
2967 { 'command': 'change-vnc-password', 'data': {'password': 'str'} }
2968
2969 ##
2970 # @change:
2971 #
2972 # This command is multiple commands multiplexed together.
2973 #
2974 # @device: This is normally the name of a block device but it may also be 'vnc'.
2975 # when it's 'vnc', then sub command depends on @target
2976 #
2977 # @target: If @device is a block device, then this is the new filename.
2978 # If @device is 'vnc', then if the value 'password' selects the vnc
2979 # change password command. Otherwise, this specifies a new server URI
2980 # address to listen to for VNC connections.
2981 #
2982 # @arg: If @device is a block device, then this is an optional format to open
2983 # the device with.
2984 # If @device is 'vnc' and @target is 'password', this is the new VNC
2985 # password to set. If this argument is an empty string, then no future
2986 # logins will be allowed.
2987 #
2988 # Returns: Nothing on success.
2989 # If @device is not a valid block device, DeviceNotFound
2990 # If the new block device is encrypted, DeviceEncrypted. Note that
2991 # if this error is returned, the device has been opened successfully
2992 # and an additional call to @block_passwd is required to set the
2993 # device's password. The behavior of reads and writes to the block
2994 # device between when these calls are executed is undefined.
2995 #
2996 # Notes: This interface is deprecated, and it is strongly recommended that you
2997 # avoid using it. For changing block devices, use
2998 # blockdev-change-medium; for changing VNC parameters, use
2999 # change-vnc-password.
3000 #
3001 # Since: 0.14.0
3002 #
3003 # Example:
3004 #
3005 # 1. Change a removable medium
3006 #
3007 # -> { "execute": "change",
3008 # "arguments": { "device": "ide1-cd0",
3009 # "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
3010 # <- { "return": {} }
3011 #
3012 # 2. Change VNC password
3013 #
3014 # -> { "execute": "change",
3015 # "arguments": { "device": "vnc", "target": "password",
3016 # "arg": "foobar1" } }
3017 # <- { "return": {} }
3018 #
3019 ##
3020 { 'command': 'change',
3021 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
3022
3023 ##
3024 # @ObjectTypeInfo:
3025 #
3026 # This structure describes a search result from @qom-list-types
3027 #
3028 # @name: the type name found in the search
3029 #
3030 # Since: 1.1
3031 #
3032 # Notes: This command is experimental and may change syntax in future releases.
3033 ##
3034 { 'struct': 'ObjectTypeInfo',
3035 'data': { 'name': 'str' } }
3036
3037 ##
3038 # @qom-list-types:
3039 #
3040 # This command will return a list of types given search parameters
3041 #
3042 # @implements: if specified, only return types that implement this type name
3043 #
3044 # @abstract: if true, include abstract types in the results
3045 #
3046 # Returns: a list of @ObjectTypeInfo or an empty list if no results are found
3047 #
3048 # Since: 1.1
3049 ##
3050 { 'command': 'qom-list-types',
3051 'data': { '*implements': 'str', '*abstract': 'bool' },
3052 'returns': [ 'ObjectTypeInfo' ] }
3053
3054 ##
3055 # @DevicePropertyInfo:
3056 #
3057 # Information about device properties.
3058 #
3059 # @name: the name of the property
3060 # @type: the typename of the property
3061 # @description: if specified, the description of the property.
3062 # (since 2.2)
3063 #
3064 # Since: 1.2
3065 ##
3066 { 'struct': 'DevicePropertyInfo',
3067 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
3068
3069 ##
3070 # @device-list-properties:
3071 #
3072 # List properties associated with a device.
3073 #
3074 # @typename: the type name of a device
3075 #
3076 # Returns: a list of DevicePropertyInfo describing a devices properties
3077 #
3078 # Since: 1.2
3079 ##
3080 { 'command': 'device-list-properties',
3081 'data': { 'typename': 'str'},
3082 'returns': [ 'DevicePropertyInfo' ] }
3083
3084 ##
3085 # @migrate:
3086 #
3087 # Migrates the current running guest to another Virtual Machine.
3088 #
3089 # @uri: the Uniform Resource Identifier of the destination VM
3090 #
3091 # @blk: do block migration (full disk copy)
3092 #
3093 # @inc: incremental disk copy migration
3094 #
3095 # @detach: this argument exists only for compatibility reasons and
3096 # is ignored by QEMU
3097 #
3098 # Returns: nothing on success
3099 #
3100 # Since: 0.14.0
3101 #
3102 # Notes:
3103 #
3104 # 1. The 'query-migrate' command should be used to check migration's progress
3105 # and final result (this information is provided by the 'status' member)
3106 #
3107 # 2. All boolean arguments default to false
3108 #
3109 # 3. The user Monitor's "detach" argument is invalid in QMP and should not
3110 # be used
3111 #
3112 # Example:
3113 #
3114 # -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
3115 # <- { "return": {} }
3116 #
3117 ##
3118 { 'command': 'migrate',
3119 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool', '*detach': 'bool' } }
3120
3121 ##
3122 # @migrate-incoming:
3123 #
3124 # Start an incoming migration, the qemu must have been started
3125 # with -incoming defer
3126 #
3127 # @uri: The Uniform Resource Identifier identifying the source or
3128 # address to listen on
3129 #
3130 # Returns: nothing on success
3131 #
3132 # Since: 2.3
3133 #
3134 # Notes:
3135 #
3136 # 1. It's a bad idea to use a string for the uri, but it needs to stay
3137 # compatible with -incoming and the format of the uri is already exposed
3138 # above libvirt.
3139 #
3140 # 2. QEMU must be started with -incoming defer to allow migrate-incoming to
3141 # be used.
3142 #
3143 # 3. The uri format is the same as for -incoming
3144 #
3145 # Example:
3146 #
3147 # -> { "execute": "migrate-incoming",
3148 # "arguments": { "uri": "tcp::4446" } }
3149 # <- { "return": {} }
3150 #
3151 ##
3152 { 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
3153
3154 ##
3155 # @xen-save-devices-state:
3156 #
3157 # Save the state of all devices to file. The RAM and the block devices
3158 # of the VM are not saved by this command.
3159 #
3160 # @filename: the file to save the state of the devices to as binary
3161 # data. See xen-save-devices-state.txt for a description of the binary
3162 # format.
3163 #
3164 # Returns: Nothing on success
3165 #
3166 # Since: 1.1
3167 #
3168 # Example:
3169 #
3170 # -> { "execute": "xen-save-devices-state",
3171 # "arguments": { "filename": "/tmp/save" } }
3172 # <- { "return": {} }
3173 #
3174 ##
3175 { 'command': 'xen-save-devices-state', 'data': {'filename': 'str'} }
3176
3177 ##
3178 # @xen-set-global-dirty-log:
3179 #
3180 # Enable or disable the global dirty log mode.
3181 #
3182 # @enable: true to enable, false to disable.
3183 #
3184 # Returns: nothing
3185 #
3186 # Since: 1.3
3187 #
3188 # Example:
3189 #
3190 # -> { "execute": "xen-set-global-dirty-log",
3191 # "arguments": { "enable": true } }
3192 # <- { "return": {} }
3193 #
3194 ##
3195 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
3196
3197 ##
3198 # @device_add:
3199 #
3200 # @driver: the name of the new device's driver
3201 #
3202 # @bus: the device's parent bus (device tree path)
3203 #
3204 # @id: the device's ID, must be unique
3205 #
3206 # Additional arguments depend on the type.
3207 #
3208 # Add a device.
3209 #
3210 # Notes:
3211 # 1. For detailed information about this command, please refer to the
3212 # 'docs/qdev-device-use.txt' file.
3213 #
3214 # 2. It's possible to list device properties by running QEMU with the
3215 # "-device DEVICE,help" command-line argument, where DEVICE is the
3216 # device's name
3217 #
3218 # Example:
3219 #
3220 # -> { "execute": "device_add",
3221 # "arguments": { "driver": "e1000", "id": "net1",
3222 # "bus": "pci.0",
3223 # "mac": "52:54:00:12:34:56" } }
3224 # <- { "return": {} }
3225 #
3226 # TODO: This command effectively bypasses QAPI completely due to its
3227 # "additional arguments" business. It shouldn't have been added to
3228 # the schema in this form. It should be qapified properly, or
3229 # replaced by a properly qapified command.
3230 #
3231 # Since: 0.13
3232 ##
3233 { 'command': 'device_add',
3234 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
3235 'gen': false } # so we can get the additional arguments
3236
3237 ##
3238 # @device_del:
3239 #
3240 # Remove a device from a guest
3241 #
3242 # @id: the device's ID or QOM path
3243 #
3244 # Returns: Nothing on success
3245 # If @id is not a valid device, DeviceNotFound
3246 #
3247 # Notes: When this command completes, the device may not be removed from the
3248 # guest. Hot removal is an operation that requires guest cooperation.
3249 # This command merely requests that the guest begin the hot removal
3250 # process. Completion of the device removal process is signaled with a
3251 # DEVICE_DELETED event. Guest reset will automatically complete removal
3252 # for all devices.
3253 #
3254 # Since: 0.14.0
3255 #
3256 # Example:
3257 #
3258 # -> { "execute": "device_del",
3259 # "arguments": { "id": "net1" } }
3260 # <- { "return": {} }
3261 #
3262 # -> { "execute": "device_del",
3263 # "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
3264 # <- { "return": {} }
3265 #
3266 ##
3267 { 'command': 'device_del', 'data': {'id': 'str'} }
3268
3269 ##
3270 # @DumpGuestMemoryFormat:
3271 #
3272 # An enumeration of guest-memory-dump's format.
3273 #
3274 # @elf: elf format
3275 #
3276 # @kdump-zlib: kdump-compressed format with zlib-compressed
3277 #
3278 # @kdump-lzo: kdump-compressed format with lzo-compressed
3279 #
3280 # @kdump-snappy: kdump-compressed format with snappy-compressed
3281 #
3282 # Since: 2.0
3283 ##
3284 { 'enum': 'DumpGuestMemoryFormat',
3285 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
3286
3287 ##
3288 # @dump-guest-memory:
3289 #
3290 # Dump guest's memory to vmcore. It is a synchronous operation that can take
3291 # very long depending on the amount of guest memory.
3292 #
3293 # @paging: if true, do paging to get guest's memory mapping. This allows
3294 # using gdb to process the core file.
3295 #
3296 # IMPORTANT: this option can make QEMU allocate several gigabytes
3297 # of RAM. This can happen for a large guest, or a
3298 # malicious guest pretending to be large.
3299 #
3300 # Also, paging=true has the following limitations:
3301 #
3302 # 1. The guest may be in a catastrophic state or can have corrupted
3303 # memory, which cannot be trusted
3304 # 2. The guest can be in real-mode even if paging is enabled. For
3305 # example, the guest uses ACPI to sleep, and ACPI sleep state
3306 # goes in real-mode
3307 # 3. Currently only supported on i386 and x86_64.
3308 #
3309 # @protocol: the filename or file descriptor of the vmcore. The supported
3310 # protocols are:
3311 #
3312 # 1. file: the protocol starts with "file:", and the following
3313 # string is the file's path.
3314 # 2. fd: the protocol starts with "fd:", and the following string
3315 # is the fd's name.
3316 #
3317 # @detach: if true, QMP will return immediately rather than
3318 # waiting for the dump to finish. The user can track progress
3319 # using "query-dump". (since 2.6).
3320 #
3321 # @begin: if specified, the starting physical address.
3322 #
3323 # @length: if specified, the memory size, in bytes. If you don't
3324 # want to dump all guest's memory, please specify the start @begin
3325 # and @length
3326 #
3327 # @format: if specified, the format of guest memory dump. But non-elf
3328 # format is conflict with paging and filter, ie. @paging, @begin and
3329 # @length is not allowed to be specified with non-elf @format at the
3330 # same time (since 2.0)
3331 #
3332 # Note: All boolean arguments default to false
3333 #
3334 # Returns: nothing on success
3335 #
3336 # Since: 1.2
3337 #
3338 # Example:
3339 #
3340 # -> { "execute": "dump-guest-memory",
3341 # "arguments": { "protocol": "fd:dump" } }
3342 # <- { "return": {} }
3343 #
3344 ##
3345 { 'command': 'dump-guest-memory',
3346 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
3347 '*begin': 'int', '*length': 'int',
3348 '*format': 'DumpGuestMemoryFormat'} }
3349
3350 ##
3351 # @DumpStatus:
3352 #
3353 # Describe the status of a long-running background guest memory dump.
3354 #
3355 # @none: no dump-guest-memory has started yet.
3356 #
3357 # @active: there is one dump running in background.
3358 #
3359 # @completed: the last dump has finished successfully.
3360 #
3361 # @failed: the last dump has failed.
3362 #
3363 # Since: 2.6
3364 ##
3365 { 'enum': 'DumpStatus',
3366 'data': [ 'none', 'active', 'completed', 'failed' ] }
3367
3368 ##
3369 # @DumpQueryResult:
3370 #
3371 # The result format for 'query-dump'.
3372 #
3373 # @status: enum of @DumpStatus, which shows current dump status
3374 #
3375 # @completed: bytes written in latest dump (uncompressed)
3376 #
3377 # @total: total bytes to be written in latest dump (uncompressed)
3378 #
3379 # Since: 2.6
3380 ##
3381 { 'struct': 'DumpQueryResult',
3382 'data': { 'status': 'DumpStatus',
3383 'completed': 'int',
3384 'total': 'int' } }
3385
3386 ##
3387 # @query-dump:
3388 #
3389 # Query latest dump status.
3390 #
3391 # Returns: A @DumpStatus object showing the dump status.
3392 #
3393 # Since: 2.6
3394 #
3395 # Example:
3396 #
3397 # -> { "execute": "query-dump" }
3398 # <- { "return": { "status": "active", "completed": 1024000,
3399 # "total": 2048000 } }
3400 #
3401 ##
3402 { 'command': 'query-dump', 'returns': 'DumpQueryResult' }
3403
3404 ##
3405 # @DumpGuestMemoryCapability:
3406 #
3407 # A list of the available formats for dump-guest-memory
3408 #
3409 # Since: 2.0
3410 ##
3411 { 'struct': 'DumpGuestMemoryCapability',
3412 'data': {
3413 'formats': ['DumpGuestMemoryFormat'] } }
3414
3415 ##
3416 # @query-dump-guest-memory-capability:
3417 #
3418 # Returns the available formats for dump-guest-memory
3419 #
3420 # Returns: A @DumpGuestMemoryCapability object listing available formats for
3421 # dump-guest-memory
3422 #
3423 # Since: 2.0
3424 #
3425 # Example:
3426 #
3427 # -> { "execute": "query-dump-guest-memory-capability" }
3428 # <- { "return": { "formats":
3429 # ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
3430 #
3431 ##
3432 { 'command': 'query-dump-guest-memory-capability',
3433 'returns': 'DumpGuestMemoryCapability' }
3434
3435 ##
3436 # @dump-skeys:
3437 #
3438 # Dump guest's storage keys
3439 #
3440 # @filename: the path to the file to dump to
3441 #
3442 # This command is only supported on s390 architecture.
3443 #
3444 # Since: 2.5
3445 #
3446 # Example:
3447 #
3448 # -> { "execute": "dump-skeys",
3449 # "arguments": { "filename": "/tmp/skeys" } }
3450 # <- { "return": {} }
3451 #
3452 ##
3453 { 'command': 'dump-skeys',
3454 'data': { 'filename': 'str' } }
3455
3456 ##
3457 # @netdev_add:
3458 #
3459 # Add a network backend.
3460 #
3461 # @type: the type of network backend. Current valid values are 'user', 'tap',
3462 # 'vde', 'socket', 'dump' and 'bridge'
3463 #
3464 # @id: the name of the new network backend
3465 #
3466 # Additional arguments depend on the type.
3467 #
3468 # TODO: This command effectively bypasses QAPI completely due to its
3469 # "additional arguments" business. It shouldn't have been added to
3470 # the schema in this form. It should be qapified properly, or
3471 # replaced by a properly qapified command.
3472 #
3473 # Since: 0.14.0
3474 #
3475 # Returns: Nothing on success
3476 # If @type is not a valid network backend, DeviceNotFound
3477 #
3478 # Example:
3479 #
3480 # -> { "execute": "netdev_add",
3481 # "arguments": { "type": "user", "id": "netdev1",
3482 # "dnssearch": "example.org" } }
3483 # <- { "return": {} }
3484 #
3485 ##
3486 { 'command': 'netdev_add',
3487 'data': {'type': 'str', 'id': 'str'},
3488 'gen': false } # so we can get the additional arguments
3489
3490 ##
3491 # @netdev_del:
3492 #
3493 # Remove a network backend.
3494 #
3495 # @id: the name of the network backend to remove
3496 #
3497 # Returns: Nothing on success
3498 # If @id is not a valid network backend, DeviceNotFound
3499 #
3500 # Since: 0.14.0
3501 #
3502 # Example:
3503 #
3504 # -> { "execute": "netdev_del", "arguments": { "id": "netdev1" } }
3505 # <- { "return": {} }
3506 #
3507 ##
3508 { 'command': 'netdev_del', 'data': {'id': 'str'} }
3509
3510 ##
3511 # @object-add:
3512 #
3513 # Create a QOM object.
3514 #
3515 # @qom-type: the class name for the object to be created
3516 #
3517 # @id: the name of the new object
3518 #
3519 # @props: a dictionary of properties to be passed to the backend
3520 #
3521 # Returns: Nothing on success
3522 # Error if @qom-type is not a valid class name
3523 #
3524 # Since: 2.0
3525 #
3526 # Example:
3527 #
3528 # -> { "execute": "object-add",
3529 # "arguments": { "qom-type": "rng-random", "id": "rng1",
3530 # "props": { "filename": "/dev/hwrng" } } }
3531 # <- { "return": {} }
3532 #
3533 ##
3534 { 'command': 'object-add',
3535 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
3536
3537 ##
3538 # @object-del:
3539 #
3540 # Remove a QOM object.
3541 #
3542 # @id: the name of the QOM object to remove
3543 #
3544 # Returns: Nothing on success
3545 # Error if @id is not a valid id for a QOM object
3546 #
3547 # Since: 2.0
3548 #
3549 # Example:
3550 #
3551 # -> { "execute": "object-del", "arguments": { "id": "rng1" } }
3552 # <- { "return": {} }
3553 #
3554 ##
3555 { 'command': 'object-del', 'data': {'id': 'str'} }
3556
3557 ##
3558 # @NetdevNoneOptions:
3559 #
3560 # Use it alone to have zero network devices.
3561 #
3562 # Since: 1.2
3563 ##
3564 { 'struct': 'NetdevNoneOptions',
3565 'data': { } }
3566
3567 ##
3568 # @NetLegacyNicOptions:
3569 #
3570 # Create a new Network Interface Card.
3571 #
3572 # @netdev: id of -netdev to connect to
3573 #
3574 # @macaddr: MAC address
3575 #
3576 # @model: device model (e1000, rtl8139, virtio etc.)
3577 #
3578 # @addr: PCI device address
3579 #
3580 # @vectors: number of MSI-x vectors, 0 to disable MSI-X
3581 #
3582 # Since: 1.2
3583 ##
3584 { 'struct': 'NetLegacyNicOptions',
3585 'data': {
3586 '*netdev': 'str',
3587 '*macaddr': 'str',
3588 '*model': 'str',
3589 '*addr': 'str',
3590 '*vectors': 'uint32' } }
3591
3592 ##
3593 # @String:
3594 #
3595 # A fat type wrapping 'str', to be embedded in lists.
3596 #
3597 # Since: 1.2
3598 ##
3599 { 'struct': 'String',
3600 'data': {
3601 'str': 'str' } }
3602
3603 ##
3604 # @NetdevUserOptions:
3605 #
3606 # Use the user mode network stack which requires no administrator privilege to
3607 # run.
3608 #
3609 # @hostname: client hostname reported by the builtin DHCP server
3610 #
3611 # @restrict: isolate the guest from the host
3612 #
3613 # @ipv4: whether to support IPv4, default true for enabled
3614 # (since 2.6)
3615 #
3616 # @ipv6: whether to support IPv6, default true for enabled
3617 # (since 2.6)
3618 #
3619 # @ip: legacy parameter, use net= instead
3620 #
3621 # @net: IP network address that the guest will see, in the
3622 # form addr[/netmask] The netmask is optional, and can be
3623 # either in the form a.b.c.d or as a number of valid top-most
3624 # bits. Default is 10.0.2.0/24.
3625 #
3626 # @host: guest-visible address of the host
3627 #
3628 # @tftp: root directory of the built-in TFTP server
3629 #
3630 # @bootfile: BOOTP filename, for use with tftp=
3631 #
3632 # @dhcpstart: the first of the 16 IPs the built-in DHCP server can
3633 # assign
3634 #
3635 # @dns: guest-visible address of the virtual nameserver
3636 #
3637 # @dnssearch: list of DNS suffixes to search, passed as DHCP option
3638 # to the guest
3639 #
3640 # @ipv6-prefix: IPv6 network prefix (default is fec0::) (since
3641 # 2.6). The network prefix is given in the usual
3642 # hexadecimal IPv6 address notation.
3643 #
3644 # @ipv6-prefixlen: IPv6 network prefix length (default is 64)
3645 # (since 2.6)
3646 #
3647 # @ipv6-host: guest-visible IPv6 address of the host (since 2.6)
3648 #
3649 # @ipv6-dns: guest-visible IPv6 address of the virtual
3650 # nameserver (since 2.6)
3651 #
3652 # @smb: root directory of the built-in SMB server
3653 #
3654 # @smbserver: IP address of the built-in SMB server
3655 #
3656 # @hostfwd: redirect incoming TCP or UDP host connections to guest
3657 # endpoints
3658 #
3659 # @guestfwd: forward guest TCP connections
3660 #
3661 # Since: 1.2
3662 ##
3663 { 'struct': 'NetdevUserOptions',
3664 'data': {
3665 '*hostname': 'str',
3666 '*restrict': 'bool',
3667 '*ipv4': 'bool',
3668 '*ipv6': 'bool',
3669 '*ip': 'str',
3670 '*net': 'str',
3671 '*host': 'str',
3672 '*tftp': 'str',
3673 '*bootfile': 'str',
3674 '*dhcpstart': 'str',
3675 '*dns': 'str',
3676 '*dnssearch': ['String'],
3677 '*ipv6-prefix': 'str',
3678 '*ipv6-prefixlen': 'int',
3679 '*ipv6-host': 'str',
3680 '*ipv6-dns': 'str',
3681 '*smb': 'str',
3682 '*smbserver': 'str',
3683 '*hostfwd': ['String'],
3684 '*guestfwd': ['String'] } }
3685
3686 ##
3687 # @NetdevTapOptions:
3688 #
3689 # Connect the host TAP network interface name to the VLAN.
3690 #
3691 # @ifname: interface name
3692 #
3693 # @fd: file descriptor of an already opened tap
3694 #
3695 # @fds: multiple file descriptors of already opened multiqueue capable
3696 # tap
3697 #
3698 # @script: script to initialize the interface
3699 #
3700 # @downscript: script to shut down the interface
3701 #
3702 # @br: bridge name (since 2.8)
3703 #
3704 # @helper: command to execute to configure bridge
3705 #
3706 # @sndbuf: send buffer limit. Understands [TGMKkb] suffixes.
3707 #
3708 # @vnet_hdr: enable the IFF_VNET_HDR flag on the tap interface
3709 #
3710 # @vhost: enable vhost-net network accelerator
3711 #
3712 # @vhostfd: file descriptor of an already opened vhost net device
3713 #
3714 # @vhostfds: file descriptors of multiple already opened vhost net
3715 # devices
3716 #
3717 # @vhostforce: vhost on for non-MSIX virtio guests
3718 #
3719 # @queues: number of queues to be created for multiqueue capable tap
3720 #
3721 # @poll-us: maximum number of microseconds that could
3722 # be spent on busy polling for tap (since 2.7)
3723 #
3724 # Since: 1.2
3725 ##
3726 { 'struct': 'NetdevTapOptions',
3727 'data': {
3728 '*ifname': 'str',
3729 '*fd': 'str',
3730 '*fds': 'str',
3731 '*script': 'str',
3732 '*downscript': 'str',
3733 '*br': 'str',
3734 '*helper': 'str',
3735 '*sndbuf': 'size',
3736 '*vnet_hdr': 'bool',
3737 '*vhost': 'bool',
3738 '*vhostfd': 'str',
3739 '*vhostfds': 'str',
3740 '*vhostforce': 'bool',
3741 '*queues': 'uint32',
3742 '*poll-us': 'uint32'} }
3743
3744 ##
3745 # @NetdevSocketOptions:
3746 #
3747 # Connect the VLAN to a remote VLAN in another QEMU virtual machine using a TCP
3748 # socket connection.
3749 #
3750 # @fd: file descriptor of an already opened socket
3751 #
3752 # @listen: port number, and optional hostname, to listen on
3753 #
3754 # @connect: port number, and optional hostname, to connect to
3755 #
3756 # @mcast: UDP multicast address and port number
3757 #
3758 # @localaddr: source address and port for multicast and udp packets
3759 #
3760 # @udp: UDP unicast address and port number
3761 #
3762 # Since: 1.2
3763 ##
3764 { 'struct': 'NetdevSocketOptions',
3765 'data': {
3766 '*fd': 'str',
3767 '*listen': 'str',
3768 '*connect': 'str',
3769 '*mcast': 'str',
3770 '*localaddr': 'str',
3771 '*udp': 'str' } }
3772
3773 ##
3774 # @NetdevL2TPv3Options:
3775 #
3776 # Connect the VLAN to Ethernet over L2TPv3 Static tunnel
3777 #
3778 # @src: source address
3779 #
3780 # @dst: destination address
3781 #
3782 # @srcport: source port - mandatory for udp, optional for ip
3783 #
3784 # @dstport: destination port - mandatory for udp, optional for ip
3785 #
3786 # @ipv6: force the use of ipv6
3787 #
3788 # @udp: use the udp version of l2tpv3 encapsulation
3789 #
3790 # @cookie64: use 64 bit coookies
3791 #
3792 # @counter: have sequence counter
3793 #
3794 # @pincounter: pin sequence counter to zero -
3795 # workaround for buggy implementations or
3796 # networks with packet reorder
3797 #
3798 # @txcookie: 32 or 64 bit transmit cookie
3799 #
3800 # @rxcookie: 32 or 64 bit receive cookie
3801 #
3802 # @txsession: 32 bit transmit session
3803 #
3804 # @rxsession: 32 bit receive session - if not specified
3805 # set to the same value as transmit
3806 #
3807 # @offset: additional offset - allows the insertion of
3808 # additional application-specific data before the packet payload
3809 #
3810 # Since: 2.1
3811 ##
3812 { 'struct': 'NetdevL2TPv3Options',
3813 'data': {
3814 'src': 'str',
3815 'dst': 'str',
3816 '*srcport': 'str',
3817 '*dstport': 'str',
3818 '*ipv6': 'bool',
3819 '*udp': 'bool',
3820 '*cookie64': 'bool',
3821 '*counter': 'bool',
3822 '*pincounter': 'bool',
3823 '*txcookie': 'uint64',
3824 '*rxcookie': 'uint64',
3825 'txsession': 'uint32',
3826 '*rxsession': 'uint32',
3827 '*offset': 'uint32' } }
3828
3829 ##
3830 # @NetdevVdeOptions:
3831 #
3832 # Connect the VLAN to a vde switch running on the host.
3833 #
3834 # @sock: socket path
3835 #
3836 # @port: port number
3837 #
3838 # @group: group owner of socket
3839 #
3840 # @mode: permissions for socket
3841 #
3842 # Since: 1.2
3843 ##
3844 { 'struct': 'NetdevVdeOptions',
3845 'data': {
3846 '*sock': 'str',
3847 '*port': 'uint16',
3848 '*group': 'str',
3849 '*mode': 'uint16' } }
3850
3851 ##
3852 # @NetdevDumpOptions:
3853 #
3854 # Dump VLAN network traffic to a file.
3855 #
3856 # @len: per-packet size limit (64k default). Understands [TGMKkb]
3857 # suffixes.
3858 #
3859 # @file: dump file path (default is qemu-vlan0.pcap)
3860 #
3861 # Since: 1.2
3862 ##
3863 { 'struct': 'NetdevDumpOptions',
3864 'data': {
3865 '*len': 'size',
3866 '*file': 'str' } }
3867
3868 ##
3869 # @NetdevBridgeOptions:
3870 #
3871 # Connect a host TAP network interface to a host bridge device.
3872 #
3873 # @br: bridge name
3874 #
3875 # @helper: command to execute to configure bridge
3876 #
3877 # Since: 1.2
3878 ##
3879 { 'struct': 'NetdevBridgeOptions',
3880 'data': {
3881 '*br': 'str',
3882 '*helper': 'str' } }
3883
3884 ##
3885 # @NetdevHubPortOptions:
3886 #
3887 # Connect two or more net clients through a software hub.
3888 #
3889 # @hubid: hub identifier number
3890 #
3891 # Since: 1.2
3892 ##
3893 { 'struct': 'NetdevHubPortOptions',
3894 'data': {
3895 'hubid': 'int32' } }
3896
3897 ##
3898 # @NetdevNetmapOptions:
3899 #
3900 # Connect a client to a netmap-enabled NIC or to a VALE switch port
3901 #
3902 # @ifname: Either the name of an existing network interface supported by
3903 # netmap, or the name of a VALE port (created on the fly).
3904 # A VALE port name is in the form 'valeXXX:YYY', where XXX and
3905 # YYY are non-negative integers. XXX identifies a switch and
3906 # YYY identifies a port of the switch. VALE ports having the
3907 # same XXX are therefore connected to the same switch.
3908 #
3909 # @devname: path of the netmap device (default: '/dev/netmap').
3910 #
3911 # Since: 2.0
3912 ##
3913 { 'struct': 'NetdevNetmapOptions',
3914 'data': {
3915 'ifname': 'str',
3916 '*devname': 'str' } }
3917
3918 ##
3919 # @NetdevVhostUserOptions:
3920 #
3921 # Vhost-user network backend
3922 #
3923 # @chardev: name of a unix socket chardev
3924 #
3925 # @vhostforce: vhost on for non-MSIX virtio guests (default: false).
3926 #
3927 # @queues: number of queues to be created for multiqueue vhost-user
3928 # (default: 1) (Since 2.5)
3929 #
3930 # Since: 2.1
3931 ##
3932 { 'struct': 'NetdevVhostUserOptions',
3933 'data': {
3934 'chardev': 'str',
3935 '*vhostforce': 'bool',
3936 '*queues': 'int' } }
3937
3938 ##
3939 # @NetClientDriver:
3940 #
3941 # Available netdev drivers.
3942 #
3943 # Since: 2.7
3944 ##
3945 { 'enum': 'NetClientDriver',
3946 'data': [ 'none', 'nic', 'user', 'tap', 'l2tpv3', 'socket', 'vde', 'dump',
3947 'bridge', 'hubport', 'netmap', 'vhost-user' ] }
3948
3949 ##
3950 # @Netdev:
3951 #
3952 # Captures the configuration of a network device.
3953 #
3954 # @id: identifier for monitor commands.
3955 #
3956 # @type: Specify the driver used for interpreting remaining arguments.
3957 #
3958 # Since: 1.2
3959 #
3960 # 'l2tpv3' - since 2.1
3961 ##
3962 { 'union': 'Netdev',
3963 'base': { 'id': 'str', 'type': 'NetClientDriver' },
3964 'discriminator': 'type',
3965 'data': {
3966 'none': 'NetdevNoneOptions',
3967 'nic': 'NetLegacyNicOptions',
3968 'user': 'NetdevUserOptions',
3969 'tap': 'NetdevTapOptions',
3970 'l2tpv3': 'NetdevL2TPv3Options',
3971 'socket': 'NetdevSocketOptions',
3972 'vde': 'NetdevVdeOptions',
3973 'dump': 'NetdevDumpOptions',
3974 'bridge': 'NetdevBridgeOptions',
3975 'hubport': 'NetdevHubPortOptions',
3976 'netmap': 'NetdevNetmapOptions',
3977 'vhost-user': 'NetdevVhostUserOptions' } }
3978
3979 ##
3980 # @NetLegacy:
3981 #
3982 # Captures the configuration of a network device; legacy.
3983 #
3984 # @vlan: vlan number
3985 #
3986 # @id: identifier for monitor commands
3987 #
3988 # @name: identifier for monitor commands, ignored if @id is present
3989 #
3990 # @opts: device type specific properties (legacy)
3991 #
3992 # Since: 1.2
3993 ##
3994 { 'struct': 'NetLegacy',
3995 'data': {
3996 '*vlan': 'int32',
3997 '*id': 'str',
3998 '*name': 'str',
3999 'opts': 'NetLegacyOptions' } }
4000
4001 ##
4002 # @NetLegacyOptionsType:
4003 #
4004 # Since: 1.2
4005 ##
4006 { 'enum': 'NetLegacyOptionsType',
4007 'data': ['none', 'nic', 'user', 'tap', 'l2tpv3', 'socket', 'vde',
4008 'dump', 'bridge', 'netmap', 'vhost-user'] }
4009
4010 ##
4011 # @NetLegacyOptions:
4012 #
4013 # Like Netdev, but for use only by the legacy command line options
4014 #
4015 # Since: 1.2
4016 ##
4017 { 'union': 'NetLegacyOptions',
4018 'base': { 'type': 'NetLegacyOptionsType' },
4019 'discriminator': 'type',
4020 'data': {
4021 'none': 'NetdevNoneOptions',
4022 'nic': 'NetLegacyNicOptions',
4023 'user': 'NetdevUserOptions',
4024 'tap': 'NetdevTapOptions',
4025 'l2tpv3': 'NetdevL2TPv3Options',
4026 'socket': 'NetdevSocketOptions',
4027 'vde': 'NetdevVdeOptions',
4028 'dump': 'NetdevDumpOptions',
4029 'bridge': 'NetdevBridgeOptions',
4030 'netmap': 'NetdevNetmapOptions',
4031 'vhost-user': 'NetdevVhostUserOptions' } }
4032
4033 ##
4034 # @NetFilterDirection:
4035 #
4036 # Indicates whether a netfilter is attached to a netdev's transmit queue or
4037 # receive queue or both.
4038 #
4039 # @all: the filter is attached both to the receive and the transmit
4040 # queue of the netdev (default).
4041 #
4042 # @rx: the filter is attached to the receive queue of the netdev,
4043 # where it will receive packets sent to the netdev.
4044 #
4045 # @tx: the filter is attached to the transmit queue of the netdev,
4046 # where it will receive packets sent by the netdev.
4047 #
4048 # Since: 2.5
4049 ##
4050 { 'enum': 'NetFilterDirection',
4051 'data': [ 'all', 'rx', 'tx' ] }
4052
4053 ##
4054 # @InetSocketAddressBase:
4055 #
4056 # @host: host part of the address
4057 # @port: port part of the address
4058 ##
4059 { 'struct': 'InetSocketAddressBase',
4060 'data': {
4061 'host': 'str',
4062 'port': 'str' } }
4063
4064 ##
4065 # @InetSocketAddress:
4066 #
4067 # Captures a socket address or address range in the Internet namespace.
4068 #
4069 # @numeric: true if the host/port are guaranteed to be numeric,
4070 # false if name resolution should be attempted. Defaults to false.
4071 # (Since 2.9)
4072 #
4073 # @to: If present, this is range of possible addresses, with port
4074 # between @port and @to.
4075 #
4076 # @ipv4: whether to accept IPv4 addresses, default try both IPv4 and IPv6
4077 #
4078 # @ipv6: whether to accept IPv6 addresses, default try both IPv4 and IPv6
4079 #
4080 # Since: 1.3
4081 ##
4082 { 'struct': 'InetSocketAddress',
4083 'base': 'InetSocketAddressBase',
4084 'data': {
4085 '*numeric': 'bool',
4086 '*to': 'uint16',
4087 '*ipv4': 'bool',
4088 '*ipv6': 'bool' } }
4089
4090 ##
4091 # @UnixSocketAddress:
4092 #
4093 # Captures a socket address in the local ("Unix socket") namespace.
4094 #
4095 # @path: filesystem path to use
4096 #
4097 # Since: 1.3
4098 ##
4099 { 'struct': 'UnixSocketAddress',
4100 'data': {
4101 'path': 'str' } }
4102
4103 ##
4104 # @VsockSocketAddress:
4105 #
4106 # Captures a socket address in the vsock namespace.
4107 #
4108 # @cid: unique host identifier
4109 # @port: port
4110 #
4111 # Note: string types are used to allow for possible future hostname or
4112 # service resolution support.
4113 #
4114 # Since: 2.8
4115 ##
4116 { 'struct': 'VsockSocketAddress',
4117 'data': {
4118 'cid': 'str',
4119 'port': 'str' } }
4120
4121 ##
4122 # @SocketAddress:
4123 #
4124 # Captures the address of a socket, which could also be a named file descriptor
4125 #
4126 # Since: 1.3
4127 ##
4128 { 'union': 'SocketAddress',
4129 'data': {
4130 'inet': 'InetSocketAddress',
4131 'unix': 'UnixSocketAddress',
4132 'vsock': 'VsockSocketAddress',
4133 'fd': 'String' } }
4134
4135 ##
4136 # @SocketAddressFlatType:
4137 #
4138 # Available SocketAddressFlat types
4139 #
4140 # @inet: Internet address
4141 #
4142 # @unix: Unix domain socket
4143 #
4144 # Since: 2.9
4145 ##
4146 { 'enum': 'SocketAddressFlatType',
4147 'data': [ 'unix', 'inet' ] }
4148
4149 ##
4150 # @SocketAddressFlat:
4151 #
4152 # Captures the address of a socket
4153 #
4154 # @type: Transport type
4155 #
4156 # This is similar to SocketAddress, only distinction:
4157 #
4158 # 1. SocketAddressFlat is a flat union, SocketAddress is a simple union.
4159 # A flat union is nicer than simple because it avoids nesting
4160 # (i.e. more {}) on the wire.
4161 #
4162 # 2. SocketAddressFlat supports only types 'unix' and 'inet', because
4163 # that's what its current users need.
4164 #
4165 # Since: 2.9
4166 ##
4167 { 'union': 'SocketAddressFlat',
4168 'base': { 'type': 'SocketAddressFlatType' },
4169 'discriminator': 'type',
4170 'data': { 'unix': 'UnixSocketAddress',
4171 'inet': 'InetSocketAddress' } }
4172
4173 ##
4174 # @getfd:
4175 #
4176 # Receive a file descriptor via SCM rights and assign it a name
4177 #
4178 # @fdname: file descriptor name
4179 #
4180 # Returns: Nothing on success
4181 #
4182 # Since: 0.14.0
4183 #
4184 # Notes: If @fdname already exists, the file descriptor assigned to
4185 # it will be closed and replaced by the received file
4186 # descriptor.
4187 #
4188 # The 'closefd' command can be used to explicitly close the
4189 # file descriptor when it is no longer needed.
4190 #
4191 # Example:
4192 #
4193 # -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
4194 # <- { "return": {} }
4195 #
4196 ##
4197 { 'command': 'getfd', 'data': {'fdname': 'str'} }
4198
4199 ##
4200 # @closefd:
4201 #
4202 # Close a file descriptor previously passed via SCM rights
4203 #
4204 # @fdname: file descriptor name
4205 #
4206 # Returns: Nothing on success
4207 #
4208 # Since: 0.14.0
4209 #
4210 # Example:
4211 #
4212 # -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
4213 # <- { "return": {} }
4214 #
4215 ##
4216 { 'command': 'closefd', 'data': {'fdname': 'str'} }
4217
4218 ##
4219 # @MachineInfo:
4220 #
4221 # Information describing a machine.
4222 #
4223 # @name: the name of the machine
4224 #
4225 # @alias: an alias for the machine name
4226 #
4227 # @is-default: whether the machine is default
4228 #
4229 # @cpu-max: maximum number of CPUs supported by the machine type
4230 # (since 1.5.0)
4231 #
4232 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
4233 #
4234 # Since: 1.2.0
4235 ##
4236 { 'struct': 'MachineInfo',
4237 'data': { 'name': 'str', '*alias': 'str',
4238 '*is-default': 'bool', 'cpu-max': 'int',
4239 'hotpluggable-cpus': 'bool'} }
4240
4241 ##
4242 # @query-machines:
4243 #
4244 # Return a list of supported machines
4245 #
4246 # Returns: a list of MachineInfo
4247 #
4248 # Since: 1.2.0
4249 ##
4250 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
4251
4252 ##
4253 # @CpuDefinitionInfo:
4254 #
4255 # Virtual CPU definition.
4256 #
4257 # @name: the name of the CPU definition
4258 #
4259 # @migration-safe: whether a CPU definition can be safely used for
4260 # migration in combination with a QEMU compatibility machine
4261 # when migrating between different QMU versions and between
4262 # hosts with different sets of (hardware or software)
4263 # capabilities. If not provided, information is not available
4264 # and callers should not assume the CPU definition to be
4265 # migration-safe. (since 2.8)
4266 #
4267 # @static: whether a CPU definition is static and will not change depending on
4268 # QEMU version, machine type, machine options and accelerator options.
4269 # A static model is always migration-safe. (since 2.8)
4270 #
4271 # @unavailable-features: List of properties that prevent
4272 # the CPU model from running in the current
4273 # host. (since 2.8)
4274 # @typename: Type name that can be used as argument to @device-list-properties,
4275 # to introspect properties configurable using -cpu or -global.
4276 # (since 2.9)
4277 #
4278 # @unavailable-features is a list of QOM property names that
4279 # represent CPU model attributes that prevent the CPU from running.
4280 # If the QOM property is read-only, that means there's no known
4281 # way to make the CPU model run in the current host. Implementations
4282 # that choose not to provide specific information return the
4283 # property name "type".
4284 # If the property is read-write, it means that it MAY be possible
4285 # to run the CPU model in the current host if that property is
4286 # changed. Management software can use it as hints to suggest or
4287 # choose an alternative for the user, or just to generate meaningful
4288 # error messages explaining why the CPU model can't be used.
4289 # If @unavailable-features is an empty list, the CPU model is
4290 # runnable using the current host and machine-type.
4291 # If @unavailable-features is not present, runnability
4292 # information for the CPU is not available.
4293 #
4294 # Since: 1.2.0
4295 ##
4296 { 'struct': 'CpuDefinitionInfo',
4297 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
4298 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
4299
4300 ##
4301 # @query-cpu-definitions:
4302 #
4303 # Return a list of supported virtual CPU definitions
4304 #
4305 # Returns: a list of CpuDefInfo
4306 #
4307 # Since: 1.2.0
4308 ##
4309 { 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
4310
4311 ##
4312 # @CpuModelInfo:
4313 #
4314 # Virtual CPU model.
4315 #
4316 # A CPU model consists of the name of a CPU definition, to which
4317 # delta changes are applied (e.g. features added/removed). Most magic values
4318 # that an architecture might require should be hidden behind the name.
4319 # However, if required, architectures can expose relevant properties.
4320 #
4321 # @name: the name of the CPU definition the model is based on
4322 # @props: a dictionary of QOM properties to be applied
4323 #
4324 # Since: 2.8.0
4325 ##
4326 { 'struct': 'CpuModelInfo',
4327 'data': { 'name': 'str',
4328 '*props': 'any' } }
4329
4330 ##
4331 # @CpuModelExpansionType:
4332 #
4333 # An enumeration of CPU model expansion types.
4334 #
4335 # @static: Expand to a static CPU model, a combination of a static base
4336 # model name and property delta changes. As the static base model will
4337 # never change, the expanded CPU model will be the same, independant of
4338 # independent of QEMU version, machine type, machine options, and
4339 # accelerator options. Therefore, the resulting model can be used by
4340 # tooling without having to specify a compatibility machine - e.g. when
4341 # displaying the "host" model. static CPU models are migration-safe.
4342 #
4343 # @full: Expand all properties. The produced model is not guaranteed to be
4344 # migration-safe, but allows tooling to get an insight and work with
4345 # model details.
4346 #
4347 # Note: When a non-migration-safe CPU model is expanded in static mode, some
4348 # features enabled by the CPU model may be omitted, because they can't be
4349 # implemented by a static CPU model definition (e.g. cache info passthrough and
4350 # PMU passthrough in x86). If you need an accurate representation of the
4351 # features enabled by a non-migration-safe CPU model, use @full. If you need a
4352 # static representation that will keep ABI compatibility even when changing QEMU
4353 # version or machine-type, use @static (but keep in mind that some features may
4354 # be omitted).
4355 #
4356 # Since: 2.8.0
4357 ##
4358 { 'enum': 'CpuModelExpansionType',
4359 'data': [ 'static', 'full' ] }
4360
4361
4362 ##
4363 # @CpuModelExpansionInfo:
4364 #
4365 # The result of a cpu model expansion.
4366 #
4367 # @model: the expanded CpuModelInfo.
4368 #
4369 # Since: 2.8.0
4370 ##
4371 { 'struct': 'CpuModelExpansionInfo',
4372 'data': { 'model': 'CpuModelInfo' } }
4373
4374
4375 ##
4376 # @query-cpu-model-expansion:
4377 #
4378 # Expands a given CPU model (or a combination of CPU model + additional options)
4379 # to different granularities, allowing tooling to get an understanding what a
4380 # specific CPU model looks like in QEMU under a certain configuration.
4381 #
4382 # This interface can be used to query the "host" CPU model.
4383 #
4384 # The data returned by this command may be affected by:
4385 #
4386 # * QEMU version: CPU models may look different depending on the QEMU version.
4387 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4388 # * machine-type: CPU model may look different depending on the machine-type.
4389 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4390 # * machine options (including accelerator): in some architectures, CPU models
4391 # may look different depending on machine and accelerator options. (Except for
4392 # CPU models reported as "static" in query-cpu-definitions.)
4393 # * "-cpu" arguments and global properties: arguments to the -cpu option and
4394 # global properties may affect expansion of CPU models. Using
4395 # query-cpu-model-expansion while using these is not advised.
4396 #
4397 # Some architectures may not support all expansion types. s390x supports
4398 # "full" and "static".
4399 #
4400 # Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
4401 # not supported, if the model cannot be expanded, if the model contains
4402 # an unknown CPU definition name, unknown properties or properties
4403 # with a wrong type. Also returns an error if an expansion type is
4404 # not supported.
4405 #
4406 # Since: 2.8.0
4407 ##
4408 { 'command': 'query-cpu-model-expansion',
4409 'data': { 'type': 'CpuModelExpansionType',
4410 'model': 'CpuModelInfo' },
4411 'returns': 'CpuModelExpansionInfo' }
4412
4413 ##
4414 # @CpuModelCompareResult:
4415 #
4416 # An enumeration of CPU model comparation results. The result is usually
4417 # calculated using e.g. CPU features or CPU generations.
4418 #
4419 # @incompatible: If model A is incompatible to model B, model A is not
4420 # guaranteed to run where model B runs and the other way around.
4421 #
4422 # @identical: If model A is identical to model B, model A is guaranteed to run
4423 # where model B runs and the other way around.
4424 #
4425 # @superset: If model A is a superset of model B, model B is guaranteed to run
4426 # where model A runs. There are no guarantees about the other way.
4427 #
4428 # @subset: If model A is a subset of model B, model A is guaranteed to run
4429 # where model B runs. There are no guarantees about the other way.
4430 #
4431 # Since: 2.8.0
4432 ##
4433 { 'enum': 'CpuModelCompareResult',
4434 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
4435
4436 ##
4437 # @CpuModelCompareInfo:
4438 #
4439 # The result of a CPU model comparison.
4440 #
4441 # @result: The result of the compare operation.
4442 # @responsible-properties: List of properties that led to the comparison result
4443 # not being identical.
4444 #
4445 # @responsible-properties is a list of QOM property names that led to
4446 # both CPUs not being detected as identical. For identical models, this
4447 # list is empty.
4448 # If a QOM property is read-only, that means there's no known way to make the
4449 # CPU models identical. If the special property name "type" is included, the
4450 # models are by definition not identical and cannot be made identical.
4451 #
4452 # Since: 2.8.0
4453 ##
4454 { 'struct': 'CpuModelCompareInfo',
4455 'data': {'result': 'CpuModelCompareResult',
4456 'responsible-properties': ['str']
4457 }
4458 }
4459
4460 ##
4461 # @query-cpu-model-comparison:
4462 #
4463 # Compares two CPU models, returning how they compare in a specific
4464 # configuration. The results indicates how both models compare regarding
4465 # runnability. This result can be used by tooling to make decisions if a
4466 # certain CPU model will run in a certain configuration or if a compatible
4467 # CPU model has to be created by baselining.
4468 #
4469 # Usually, a CPU model is compared against the maximum possible CPU model
4470 # of a certain configuration (e.g. the "host" model for KVM). If that CPU
4471 # model is identical or a subset, it will run in that configuration.
4472 #
4473 # The result returned by this command may be affected by:
4474 #
4475 # * QEMU version: CPU models may look different depending on the QEMU version.
4476 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4477 # * machine-type: CPU model may look different depending on the machine-type.
4478 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4479 # * machine options (including accelerator): in some architectures, CPU models
4480 # may look different depending on machine and accelerator options. (Except for
4481 # CPU models reported as "static" in query-cpu-definitions.)
4482 # * "-cpu" arguments and global properties: arguments to the -cpu option and
4483 # global properties may affect expansion of CPU models. Using
4484 # query-cpu-model-expansion while using these is not advised.
4485 #
4486 # Some architectures may not support comparing CPU models. s390x supports
4487 # comparing CPU models.
4488 #
4489 # Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
4490 # not supported, if a model cannot be used, if a model contains
4491 # an unknown cpu definition name, unknown properties or properties
4492 # with wrong types.
4493 #
4494 # Since: 2.8.0
4495 ##
4496 { 'command': 'query-cpu-model-comparison',
4497 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
4498 'returns': 'CpuModelCompareInfo' }
4499
4500 ##
4501 # @CpuModelBaselineInfo:
4502 #
4503 # The result of a CPU model baseline.
4504 #
4505 # @model: the baselined CpuModelInfo.
4506 #
4507 # Since: 2.8.0
4508 ##
4509 { 'struct': 'CpuModelBaselineInfo',
4510 'data': { 'model': 'CpuModelInfo' } }
4511
4512 ##
4513 # @query-cpu-model-baseline:
4514 #
4515 # Baseline two CPU models, creating a compatible third model. The created
4516 # model will always be a static, migration-safe CPU model (see "static"
4517 # CPU model expansion for details).
4518 #
4519 # This interface can be used by tooling to create a compatible CPU model out
4520 # two CPU models. The created CPU model will be identical to or a subset of
4521 # both CPU models when comparing them. Therefore, the created CPU model is
4522 # guaranteed to run where the given CPU models run.
4523 #
4524 # The result returned by this command may be affected by:
4525 #
4526 # * QEMU version: CPU models may look different depending on the QEMU version.
4527 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4528 # * machine-type: CPU model may look different depending on the machine-type.
4529 # (Except for CPU models reported as "static" in query-cpu-definitions.)
4530 # * machine options (including accelerator): in some architectures, CPU models
4531 # may look different depending on machine and accelerator options. (Except for
4532 # CPU models reported as "static" in query-cpu-definitions.)
4533 # * "-cpu" arguments and global properties: arguments to the -cpu option and
4534 # global properties may affect expansion of CPU models. Using
4535 # query-cpu-model-expansion while using these is not advised.
4536 #
4537 # Some architectures may not support baselining CPU models. s390x supports
4538 # baselining CPU models.
4539 #
4540 # Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
4541 # not supported, if a model cannot be used, if a model contains
4542 # an unknown cpu definition name, unknown properties or properties
4543 # with wrong types.
4544 #
4545 # Since: 2.8.0
4546 ##
4547 { 'command': 'query-cpu-model-baseline',
4548 'data': { 'modela': 'CpuModelInfo',
4549 'modelb': 'CpuModelInfo' },
4550 'returns': 'CpuModelBaselineInfo' }
4551
4552 ##
4553 # @AddfdInfo:
4554 #
4555 # Information about a file descriptor that was added to an fd set.
4556 #
4557 # @fdset-id: The ID of the fd set that @fd was added to.
4558 #
4559 # @fd: The file descriptor that was received via SCM rights and
4560 # added to the fd set.
4561 #
4562 # Since: 1.2.0
4563 ##
4564 { 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
4565
4566 ##
4567 # @add-fd:
4568 #
4569 # Add a file descriptor, that was passed via SCM rights, to an fd set.
4570 #
4571 # @fdset-id: The ID of the fd set to add the file descriptor to.
4572 #
4573 # @opaque: A free-form string that can be used to describe the fd.
4574 #
4575 # Returns: @AddfdInfo on success
4576 #
4577 # If file descriptor was not received, FdNotSupplied
4578 #
4579 # If @fdset-id is a negative value, InvalidParameterValue
4580 #
4581 # Notes: The list of fd sets is shared by all monitor connections.
4582 #
4583 # If @fdset-id is not specified, a new fd set will be created.
4584 #
4585 # Since: 1.2.0
4586 #
4587 # Example:
4588 #
4589 # -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
4590 # <- { "return": { "fdset-id": 1, "fd": 3 } }
4591 #
4592 ##
4593 { 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
4594 'returns': 'AddfdInfo' }
4595
4596 ##
4597 # @remove-fd:
4598 #
4599 # Remove a file descriptor from an fd set.
4600 #
4601 # @fdset-id: The ID of the fd set that the file descriptor belongs to.
4602 #
4603 # @fd: The file descriptor that is to be removed.
4604 #
4605 # Returns: Nothing on success
4606 # If @fdset-id or @fd is not found, FdNotFound
4607 #
4608 # Since: 1.2.0
4609 #
4610 # Notes: The list of fd sets is shared by all monitor connections.
4611 #
4612 # If @fd is not specified, all file descriptors in @fdset-id
4613 # will be removed.
4614 #
4615 # Example:
4616 #
4617 # -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
4618 # <- { "return": {} }
4619 #
4620 ##
4621 { 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
4622
4623 ##
4624 # @FdsetFdInfo:
4625 #
4626 # Information about a file descriptor that belongs to an fd set.
4627 #
4628 # @fd: The file descriptor value.
4629 #
4630 # @opaque: A free-form string that can be used to describe the fd.
4631 #
4632 # Since: 1.2.0
4633 ##
4634 { 'struct': 'FdsetFdInfo',
4635 'data': {'fd': 'int', '*opaque': 'str'} }
4636
4637 ##
4638 # @FdsetInfo:
4639 #
4640 # Information about an fd set.
4641 #
4642 # @fdset-id: The ID of the fd set.
4643 #
4644 # @fds: A list of file descriptors that belong to this fd set.
4645 #
4646 # Since: 1.2.0
4647 ##
4648 { 'struct': 'FdsetInfo',
4649 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
4650
4651 ##
4652 # @query-fdsets:
4653 #
4654 # Return information describing all fd sets.
4655 #
4656 # Returns: A list of @FdsetInfo
4657 #
4658 # Since: 1.2.0
4659 #
4660 # Note: The list of fd sets is shared by all monitor connections.
4661 #
4662 # Example:
4663 #
4664 # -> { "execute": "query-fdsets" }
4665 # <- { "return": [
4666 # {
4667 # "fds": [
4668 # {
4669 # "fd": 30,
4670 # "opaque": "rdonly:/path/to/file"
4671 # },
4672 # {
4673 # "fd": 24,
4674 # "opaque": "rdwr:/path/to/file"
4675 # }
4676 # ],
4677 # "fdset-id": 1
4678 # },
4679 # {
4680 # "fds": [
4681 # {
4682 # "fd": 28
4683 # },
4684 # {
4685 # "fd": 29
4686 # }
4687 # ],
4688 # "fdset-id": 0
4689 # }
4690 # ]
4691 # }
4692 #
4693 ##
4694 { 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
4695
4696 ##
4697 # @TargetInfo:
4698 #
4699 # Information describing the QEMU target.
4700 #
4701 # @arch: the target architecture (eg "x86_64", "i386", etc)
4702 #
4703 # Since: 1.2.0
4704 ##
4705 { 'struct': 'TargetInfo',
4706 'data': { 'arch': 'str' } }
4707
4708 ##
4709 # @query-target:
4710 #
4711 # Return information about the target for this QEMU
4712 #
4713 # Returns: TargetInfo
4714 #
4715 # Since: 1.2.0
4716 ##
4717 { 'command': 'query-target', 'returns': 'TargetInfo' }
4718
4719 ##
4720 # @QKeyCode:
4721 #
4722 # An enumeration of key name.
4723 #
4724 # This is used by the @send-key command.
4725 #
4726 # @unmapped: since 2.0
4727 # @pause: since 2.0
4728 # @ro: since 2.4
4729 # @kp_comma: since 2.4
4730 # @kp_equals: since 2.6
4731 # @power: since 2.6
4732 # @hiragana: since 2.9
4733 # @henkan: since 2.9
4734 # @yen: since 2.9
4735 #
4736 # Since: 1.3.0
4737 #
4738 ##
4739 { 'enum': 'QKeyCode',
4740 'data': [ 'unmapped',
4741 'shift', 'shift_r', 'alt', 'alt_r', 'altgr', 'altgr_r', 'ctrl',
4742 'ctrl_r', 'menu', 'esc', '1', '2', '3', '4', '5', '6', '7', '8',
4743 '9', '0', 'minus', 'equal', 'backspace', 'tab', 'q', 'w', 'e',
4744 'r', 't', 'y', 'u', 'i', 'o', 'p', 'bracket_left', 'bracket_right',
4745 'ret', 'a', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'semicolon',
4746 'apostrophe', 'grave_accent', 'backslash', 'z', 'x', 'c', 'v', 'b',
4747 'n', 'm', 'comma', 'dot', 'slash', 'asterisk', 'spc', 'caps_lock',
4748 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'f10',
4749 'num_lock', 'scroll_lock', 'kp_divide', 'kp_multiply',
4750 'kp_subtract', 'kp_add', 'kp_enter', 'kp_decimal', 'sysrq', 'kp_0',
4751 'kp_1', 'kp_2', 'kp_3', 'kp_4', 'kp_5', 'kp_6', 'kp_7', 'kp_8',
4752 'kp_9', 'less', 'f11', 'f12', 'print', 'home', 'pgup', 'pgdn', 'end',
4753 'left', 'up', 'down', 'right', 'insert', 'delete', 'stop', 'again',
4754 'props', 'undo', 'front', 'copy', 'open', 'paste', 'find', 'cut',
4755 'lf', 'help', 'meta_l', 'meta_r', 'compose', 'pause',
4756 'ro', 'hiragana', 'henkan', 'yen',
4757 'kp_comma', 'kp_equals', 'power' ] }
4758
4759 ##
4760 # @KeyValue:
4761 #
4762 # Represents a keyboard key.
4763 #
4764 # Since: 1.3.0
4765 ##
4766 { 'union': 'KeyValue',
4767 'data': {
4768 'number': 'int',
4769 'qcode': 'QKeyCode' } }
4770
4771 ##
4772 # @send-key:
4773 #
4774 # Send keys to guest.
4775 #
4776 # @keys: An array of @KeyValue elements. All @KeyValues in this array are
4777 # simultaneously sent to the guest. A @KeyValue.number value is sent
4778 # directly to the guest, while @KeyValue.qcode must be a valid
4779 # @QKeyCode value
4780 #
4781 # @hold-time: time to delay key up events, milliseconds. Defaults
4782 # to 100
4783 #
4784 # Returns: Nothing on success
4785 # If key is unknown or redundant, InvalidParameter
4786 #
4787 # Since: 1.3.0
4788 #
4789 # Example:
4790 #
4791 # -> { "execute": "send-key",
4792 # "arguments": { "keys": [ { "type": "qcode", "data": "ctrl" },
4793 # { "type": "qcode", "data": "alt" },
4794 # { "type": "qcode", "data": "delete" } ] } }
4795 # <- { "return": {} }
4796 #
4797 ##
4798 { 'command': 'send-key',
4799 'data': { 'keys': ['KeyValue'], '*hold-time': 'int' } }
4800
4801 ##
4802 # @screendump:
4803 #
4804 # Write a PPM of the VGA screen to a file.
4805 #
4806 # @filename: the path of a new PPM file to store the image
4807 #
4808 # Returns: Nothing on success
4809 #
4810 # Since: 0.14.0
4811 #
4812 # Example:
4813 #
4814 # -> { "execute": "screendump",
4815 # "arguments": { "filename": "/tmp/image" } }
4816 # <- { "return": {} }
4817 #
4818 ##
4819 { 'command': 'screendump', 'data': {'filename': 'str'} }
4820
4821
4822 ##
4823 # @ChardevCommon:
4824 #
4825 # Configuration shared across all chardev backends
4826 #
4827 # @logfile: The name of a logfile to save output
4828 # @logappend: true to append instead of truncate
4829 # (default to false to truncate)
4830 #
4831 # Since: 2.6
4832 ##
4833 { 'struct': 'ChardevCommon', 'data': { '*logfile': 'str',
4834 '*logappend': 'bool' } }
4835
4836 ##
4837 # @ChardevFile:
4838 #
4839 # Configuration info for file chardevs.
4840 #
4841 # @in: The name of the input file
4842 # @out: The name of the output file
4843 # @append: Open the file in append mode (default false to
4844 # truncate) (Since 2.6)
4845 #
4846 # Since: 1.4
4847 ##
4848 { 'struct': 'ChardevFile', 'data': { '*in' : 'str',
4849 'out' : 'str',
4850 '*append': 'bool' },
4851 'base': 'ChardevCommon' }
4852
4853 ##
4854 # @ChardevHostdev:
4855 #
4856 # Configuration info for device and pipe chardevs.
4857 #
4858 # @device: The name of the special file for the device,
4859 # i.e. /dev/ttyS0 on Unix or COM1: on Windows
4860 #
4861 # Since: 1.4
4862 ##
4863 { 'struct': 'ChardevHostdev', 'data': { 'device' : 'str' },
4864 'base': 'ChardevCommon' }
4865
4866 ##
4867 # @ChardevSocket:
4868 #
4869 # Configuration info for (stream) socket chardevs.
4870 #
4871 # @addr: socket address to listen on (server=true)
4872 # or connect to (server=false)
4873 # @tls-creds: the ID of the TLS credentials object (since 2.6)
4874 # @server: create server socket (default: true)
4875 # @wait: wait for incoming connection on server
4876 # sockets (default: false).
4877 # @nodelay: set TCP_NODELAY socket option (default: false)
4878 # @telnet: enable telnet protocol on server
4879 # sockets (default: false)
4880 # @reconnect: For a client socket, if a socket is disconnected,
4881 # then attempt a reconnect after the given number of seconds.
4882 # Setting this to zero disables this function. (default: 0)
4883 # (Since: 2.2)
4884 #
4885 # Since: 1.4
4886 ##
4887 { 'struct': 'ChardevSocket', 'data': { 'addr' : 'SocketAddress',
4888 '*tls-creds' : 'str',
4889 '*server' : 'bool',
4890 '*wait' : 'bool',
4891 '*nodelay' : 'bool',
4892 '*telnet' : 'bool',
4893 '*reconnect' : 'int' },
4894 'base': 'ChardevCommon' }
4895
4896 ##
4897 # @ChardevUdp:
4898 #
4899 # Configuration info for datagram socket chardevs.
4900 #
4901 # @remote: remote address
4902 # @local: local address
4903 #
4904 # Since: 1.5
4905 ##
4906 { 'struct': 'ChardevUdp', 'data': { 'remote' : 'SocketAddress',
4907 '*local' : 'SocketAddress' },
4908 'base': 'ChardevCommon' }
4909
4910 ##
4911 # @ChardevMux:
4912 #
4913 # Configuration info for mux chardevs.
4914 #
4915 # @chardev: name of the base chardev.
4916 #
4917 # Since: 1.5
4918 ##
4919 { 'struct': 'ChardevMux', 'data': { 'chardev' : 'str' },
4920 'base': 'ChardevCommon' }
4921
4922 ##
4923 # @ChardevStdio:
4924 #
4925 # Configuration info for stdio chardevs.
4926 #
4927 # @signal: Allow signals (such as SIGINT triggered by ^C)
4928 # be delivered to qemu. Default: true in -nographic mode,
4929 # false otherwise.
4930 #
4931 # Since: 1.5
4932 ##
4933 { 'struct': 'ChardevStdio', 'data': { '*signal' : 'bool' },
4934 'base': 'ChardevCommon' }
4935
4936
4937 ##
4938 # @ChardevSpiceChannel:
4939 #
4940 # Configuration info for spice vm channel chardevs.
4941 #
4942 # @type: kind of channel (for example vdagent).
4943 #
4944 # Since: 1.5
4945 ##
4946 { 'struct': 'ChardevSpiceChannel', 'data': { 'type' : 'str' },
4947 'base': 'ChardevCommon' }
4948
4949 ##
4950 # @ChardevSpicePort:
4951 #
4952 # Configuration info for spice port chardevs.
4953 #
4954 # @fqdn: name of the channel (see docs/spice-port-fqdn.txt)
4955 #
4956 # Since: 1.5
4957 ##
4958 { 'struct': 'ChardevSpicePort', 'data': { 'fqdn' : 'str' },
4959 'base': 'ChardevCommon' }
4960
4961 ##
4962 # @ChardevVC:
4963 #
4964 # Configuration info for virtual console chardevs.
4965 #
4966 # @width: console width, in pixels
4967 # @height: console height, in pixels
4968 # @cols: console width, in chars
4969 # @rows: console height, in chars
4970 #
4971 # Since: 1.5
4972 ##
4973 { 'struct': 'ChardevVC', 'data': { '*width' : 'int',
4974 '*height' : 'int',
4975 '*cols' : 'int',
4976 '*rows' : 'int' },
4977 'base': 'ChardevCommon' }
4978
4979 ##
4980 # @ChardevRingbuf:
4981 #
4982 # Configuration info for ring buffer chardevs.
4983 #
4984 # @size: ring buffer size, must be power of two, default is 65536
4985 #
4986 # Since: 1.5
4987 ##
4988 { 'struct': 'ChardevRingbuf', 'data': { '*size' : 'int' },
4989 'base': 'ChardevCommon' }
4990
4991 ##
4992 # @ChardevBackend:
4993 #
4994 # Configuration info for the new chardev backend.
4995 #
4996 # Since: 1.4 (testdev since 2.2, wctablet since 2.9)
4997 ##
4998 { 'union': 'ChardevBackend', 'data': { 'file' : 'ChardevFile',
4999 'serial' : 'ChardevHostdev',
5000 'parallel': 'ChardevHostdev',
5001 'pipe' : 'ChardevHostdev',
5002 'socket' : 'ChardevSocket',
5003 'udp' : 'ChardevUdp',
5004 'pty' : 'ChardevCommon',
5005 'null' : 'ChardevCommon',
5006 'mux' : 'ChardevMux',
5007 'msmouse': 'ChardevCommon',
5008 'wctablet' : 'ChardevCommon',
5009 'braille': 'ChardevCommon',
5010 'testdev': 'ChardevCommon',
5011 'stdio' : 'ChardevStdio',
5012 'console': 'ChardevCommon',
5013 'spicevmc' : 'ChardevSpiceChannel',
5014 'spiceport' : 'ChardevSpicePort',
5015 'vc' : 'ChardevVC',
5016 'ringbuf': 'ChardevRingbuf',
5017 # next one is just for compatibility
5018 'memory' : 'ChardevRingbuf' } }
5019
5020 ##
5021 # @ChardevReturn:
5022 #
5023 # Return info about the chardev backend just created.
5024 #
5025 # @pty: name of the slave pseudoterminal device, present if
5026 # and only if a chardev of type 'pty' was created
5027 #
5028 # Since: 1.4
5029 ##
5030 { 'struct' : 'ChardevReturn', 'data': { '*pty' : 'str' } }
5031
5032 ##
5033 # @chardev-add:
5034 #
5035 # Add a character device backend
5036 #
5037 # @id: the chardev's ID, must be unique
5038 # @backend: backend type and parameters
5039 #
5040 # Returns: ChardevReturn.
5041 #
5042 # Since: 1.4
5043 #
5044 # Example:
5045 #
5046 # -> { "execute" : "chardev-add",
5047 # "arguments" : { "id" : "foo",
5048 # "backend" : { "type" : "null", "data" : {} } } }
5049 # <- { "return": {} }
5050 #
5051 # -> { "execute" : "chardev-add",
5052 # "arguments" : { "id" : "bar",
5053 # "backend" : { "type" : "file",
5054 # "data" : { "out" : "/tmp/bar.log" } } } }
5055 # <- { "return": {} }
5056 #
5057 # -> { "execute" : "chardev-add",
5058 # "arguments" : { "id" : "baz",
5059 # "backend" : { "type" : "pty", "data" : {} } } }
5060 # <- { "return": { "pty" : "/dev/pty/42" } }
5061 #
5062 ##
5063 { 'command': 'chardev-add', 'data': {'id' : 'str',
5064 'backend' : 'ChardevBackend' },
5065 'returns': 'ChardevReturn' }
5066
5067 ##
5068 # @chardev-remove:
5069 #
5070 # Remove a character device backend
5071 #
5072 # @id: the chardev's ID, must exist and not be in use
5073 #
5074 # Returns: Nothing on success
5075 #
5076 # Since: 1.4
5077 #
5078 # Example:
5079 #
5080 # -> { "execute": "chardev-remove", "arguments": { "id" : "foo" } }
5081 # <- { "return": {} }
5082 #
5083 ##
5084 { 'command': 'chardev-remove', 'data': {'id': 'str'} }
5085
5086 ##
5087 # @TpmModel:
5088 #
5089 # An enumeration of TPM models
5090 #
5091 # @tpm-tis: TPM TIS model
5092 #
5093 # Since: 1.5
5094 ##
5095 { 'enum': 'TpmModel', 'data': [ 'tpm-tis' ] }
5096
5097 ##
5098 # @query-tpm-models:
5099 #
5100 # Return a list of supported TPM models
5101 #
5102 # Returns: a list of TpmModel
5103 #
5104 # Since: 1.5
5105 #
5106 # Example:
5107 #
5108 # -> { "execute": "query-tpm-models" }
5109 # <- { "return": [ "tpm-tis" ] }
5110 #
5111 ##
5112 { 'command': 'query-tpm-models', 'returns': ['TpmModel'] }
5113
5114 ##
5115 # @TpmType:
5116 #
5117 # An enumeration of TPM types
5118 #
5119 # @passthrough: TPM passthrough type
5120 #
5121 # Since: 1.5
5122 ##
5123 { 'enum': 'TpmType', 'data': [ 'passthrough' ] }
5124
5125 ##
5126 # @query-tpm-types:
5127 #
5128 # Return a list of supported TPM types
5129 #
5130 # Returns: a list of TpmType
5131 #
5132 # Since: 1.5
5133 #
5134 # Example:
5135 #
5136 # -> { "execute": "query-tpm-types" }
5137 # <- { "return": [ "passthrough" ] }
5138 #
5139 ##
5140 { 'command': 'query-tpm-types', 'returns': ['TpmType'] }
5141
5142 ##
5143 # @TPMPassthroughOptions:
5144 #
5145 # Information about the TPM passthrough type
5146 #
5147 # @path: string describing the path used for accessing the TPM device
5148 #
5149 # @cancel-path: string showing the TPM's sysfs cancel file
5150 # for cancellation of TPM commands while they are executing
5151 #
5152 # Since: 1.5
5153 ##
5154 { 'struct': 'TPMPassthroughOptions', 'data': { '*path' : 'str',
5155 '*cancel-path' : 'str'} }
5156
5157 ##
5158 # @TpmTypeOptions:
5159 #
5160 # A union referencing different TPM backend types' configuration options
5161 #
5162 # @type: 'passthrough' The configuration options for the TPM passthrough type
5163 #
5164 # Since: 1.5
5165 ##
5166 { 'union': 'TpmTypeOptions',
5167 'data': { 'passthrough' : 'TPMPassthroughOptions' } }
5168
5169 ##
5170 # @TPMInfo:
5171 #
5172 # Information about the TPM
5173 #
5174 # @id: The Id of the TPM
5175 #
5176 # @model: The TPM frontend model
5177 #
5178 # @options: The TPM (backend) type configuration options
5179 #
5180 # Since: 1.5
5181 ##
5182 { 'struct': 'TPMInfo',
5183 'data': {'id': 'str',
5184 'model': 'TpmModel',
5185 'options': 'TpmTypeOptions' } }
5186
5187 ##
5188 # @query-tpm:
5189 #
5190 # Return information about the TPM device
5191 #
5192 # Returns: @TPMInfo on success
5193 #
5194 # Since: 1.5
5195 #
5196 # Example:
5197 #
5198 # -> { "execute": "query-tpm" }
5199 # <- { "return":
5200 # [
5201 # { "model": "tpm-tis",
5202 # "options":
5203 # { "type": "passthrough",
5204 # "data":
5205 # { "cancel-path": "/sys/class/misc/tpm0/device/cancel",
5206 # "path": "/dev/tpm0"
5207 # }
5208 # },
5209 # "id": "tpm0"
5210 # }
5211 # ]
5212 # }
5213 #
5214 ##
5215 { 'command': 'query-tpm', 'returns': ['TPMInfo'] }
5216
5217 ##
5218 # @AcpiTableOptions:
5219 #
5220 # Specify an ACPI table on the command line to load.
5221 #
5222 # At most one of @file and @data can be specified. The list of files specified
5223 # by any one of them is loaded and concatenated in order. If both are omitted,
5224 # @data is implied.
5225 #
5226 # Other fields / optargs can be used to override fields of the generic ACPI
5227 # table header; refer to the ACPI specification 5.0, section 5.2.6 System
5228 # Description Table Header. If a header field is not overridden, then the
5229 # corresponding value from the concatenated blob is used (in case of @file), or
5230 # it is filled in with a hard-coded value (in case of @data).
5231 #
5232 # String fields are copied into the matching ACPI member from lowest address
5233 # upwards, and silently truncated / NUL-padded to length.
5234 #
5235 # @sig: table signature / identifier (4 bytes)
5236 #
5237 # @rev: table revision number (dependent on signature, 1 byte)
5238 #
5239 # @oem_id: OEM identifier (6 bytes)
5240 #
5241 # @oem_table_id: OEM table identifier (8 bytes)
5242 #
5243 # @oem_rev: OEM-supplied revision number (4 bytes)
5244 #
5245 # @asl_compiler_id: identifier of the utility that created the table
5246 # (4 bytes)
5247 #
5248 # @asl_compiler_rev: revision number of the utility that created the
5249 # table (4 bytes)
5250 #
5251 # @file: colon (:) separated list of pathnames to load and
5252 # concatenate as table data. The resultant binary blob is expected to
5253 # have an ACPI table header. At least one file is required. This field
5254 # excludes @data.
5255 #
5256 # @data: colon (:) separated list of pathnames to load and
5257 # concatenate as table data. The resultant binary blob must not have an
5258 # ACPI table header. At least one file is required. This field excludes
5259 # @file.
5260 #
5261 # Since: 1.5
5262 ##
5263 { 'struct': 'AcpiTableOptions',
5264 'data': {
5265 '*sig': 'str',
5266 '*rev': 'uint8',
5267 '*oem_id': 'str',
5268 '*oem_table_id': 'str',
5269 '*oem_rev': 'uint32',
5270 '*asl_compiler_id': 'str',
5271 '*asl_compiler_rev': 'uint32',
5272 '*file': 'str',
5273 '*data': 'str' }}
5274
5275 ##
5276 # @CommandLineParameterType:
5277 #
5278 # Possible types for an option parameter.
5279 #
5280 # @string: accepts a character string
5281 #
5282 # @boolean: accepts "on" or "off"
5283 #
5284 # @number: accepts a number
5285 #
5286 # @size: accepts a number followed by an optional suffix (K)ilo,
5287 # (M)ega, (G)iga, (T)era
5288 #
5289 # Since: 1.5
5290 ##
5291 { 'enum': 'CommandLineParameterType',
5292 'data': ['string', 'boolean', 'number', 'size'] }
5293
5294 ##
5295 # @CommandLineParameterInfo:
5296 #
5297 # Details about a single parameter of a command line option.
5298 #
5299 # @name: parameter name
5300 #
5301 # @type: parameter @CommandLineParameterType
5302 #
5303 # @help: human readable text string, not suitable for parsing.
5304 #
5305 # @default: default value string (since 2.1)
5306 #
5307 # Since: 1.5
5308 ##
5309 { 'struct': 'CommandLineParameterInfo',
5310 'data': { 'name': 'str',
5311 'type': 'CommandLineParameterType',
5312 '*help': 'str',
5313 '*default': 'str' } }
5314
5315 ##
5316 # @CommandLineOptionInfo:
5317 #
5318 # Details about a command line option, including its list of parameter details
5319 #
5320 # @option: option name
5321 #
5322 # @parameters: an array of @CommandLineParameterInfo
5323 #
5324 # Since: 1.5
5325 ##
5326 { 'struct': 'CommandLineOptionInfo',
5327 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
5328
5329 ##
5330 # @query-command-line-options:
5331 #
5332 # Query command line option schema.
5333 #
5334 # @option: option name
5335 #
5336 # Returns: list of @CommandLineOptionInfo for all options (or for the given
5337 # @option). Returns an error if the given @option doesn't exist.
5338 #
5339 # Since: 1.5
5340 #
5341 # Example:
5342 #
5343 # -> { "execute": "query-command-line-options",
5344 # "arguments": { "option": "option-rom" } }
5345 # <- { "return": [
5346 # {
5347 # "parameters": [
5348 # {
5349 # "name": "romfile",
5350 # "type": "string"
5351 # },
5352 # {
5353 # "name": "bootindex",
5354 # "type": "number"
5355 # }
5356 # ],
5357 # "option": "option-rom"
5358 # }
5359 # ]
5360 # }
5361 #
5362 ##
5363 {'command': 'query-command-line-options', 'data': { '*option': 'str' },
5364 'returns': ['CommandLineOptionInfo'] }
5365
5366 ##
5367 # @X86CPURegister32:
5368 #
5369 # A X86 32-bit register
5370 #
5371 # Since: 1.5
5372 ##
5373 { 'enum': 'X86CPURegister32',
5374 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
5375
5376 ##
5377 # @X86CPUFeatureWordInfo:
5378 #
5379 # Information about a X86 CPU feature word
5380 #
5381 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
5382 #
5383 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
5384 # feature word
5385 #
5386 # @cpuid-register: Output register containing the feature bits
5387 #
5388 # @features: value of output register, containing the feature bits
5389 #
5390 # Since: 1.5
5391 ##
5392 { 'struct': 'X86CPUFeatureWordInfo',
5393 'data': { 'cpuid-input-eax': 'int',
5394 '*cpuid-input-ecx': 'int',
5395 'cpuid-register': 'X86CPURegister32',
5396 'features': 'int' } }
5397
5398 ##
5399 # @DummyForceArrays:
5400 #
5401 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
5402 #
5403 # Since: 2.5
5404 ##
5405 { 'struct': 'DummyForceArrays',
5406 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
5407
5408
5409 ##
5410 # @RxState:
5411 #
5412 # Packets receiving state
5413 #
5414 # @normal: filter assigned packets according to the mac-table
5415 #
5416 # @none: don't receive any assigned packet
5417 #
5418 # @all: receive all assigned packets
5419 #
5420 # Since: 1.6
5421 ##
5422 { 'enum': 'RxState', 'data': [ 'normal', 'none', 'all' ] }
5423
5424 ##
5425 # @RxFilterInfo:
5426 #
5427 # Rx-filter information for a NIC.
5428 #
5429 # @name: net client name
5430 #
5431 # @promiscuous: whether promiscuous mode is enabled
5432 #
5433 # @multicast: multicast receive state
5434 #
5435 # @unicast: unicast receive state
5436 #
5437 # @vlan: vlan receive state (Since 2.0)
5438 #
5439 # @broadcast-allowed: whether to receive broadcast
5440 #
5441 # @multicast-overflow: multicast table is overflowed or not
5442 #
5443 # @unicast-overflow: unicast table is overflowed or not
5444 #
5445 # @main-mac: the main macaddr string
5446 #
5447 # @vlan-table: a list of active vlan id
5448 #
5449 # @unicast-table: a list of unicast macaddr string
5450 #
5451 # @multicast-table: a list of multicast macaddr string
5452 #
5453 # Since: 1.6
5454 ##
5455 { 'struct': 'RxFilterInfo',
5456 'data': {
5457 'name': 'str',
5458 'promiscuous': 'bool',
5459 'multicast': 'RxState',
5460 'unicast': 'RxState',
5461 'vlan': 'RxState',
5462 'broadcast-allowed': 'bool',
5463 'multicast-overflow': 'bool',
5464 'unicast-overflow': 'bool',
5465 'main-mac': 'str',
5466 'vlan-table': ['int'],
5467 'unicast-table': ['str'],
5468 'multicast-table': ['str'] }}
5469
5470 ##
5471 # @query-rx-filter:
5472 #
5473 # Return rx-filter information for all NICs (or for the given NIC).
5474 #
5475 # @name: net client name
5476 #
5477 # Returns: list of @RxFilterInfo for all NICs (or for the given NIC).
5478 # Returns an error if the given @name doesn't exist, or given
5479 # NIC doesn't support rx-filter querying, or given net client
5480 # isn't a NIC.
5481 #
5482 # Since: 1.6
5483 #
5484 # Example:
5485 #
5486 # -> { "execute": "query-rx-filter", "arguments": { "name": "vnet0" } }
5487 # <- { "return": [
5488 # {
5489 # "promiscuous": true,
5490 # "name": "vnet0",
5491 # "main-mac": "52:54:00:12:34:56",
5492 # "unicast": "normal",
5493 # "vlan": "normal",
5494 # "vlan-table": [
5495 # 4,
5496 # 0
5497 # ],
5498 # "unicast-table": [
5499 # ],
5500 # "multicast": "normal",
5501 # "multicast-overflow": false,
5502 # "unicast-overflow": false,
5503 # "multicast-table": [
5504 # "01:00:5e:00:00:01",
5505 # "33:33:00:00:00:01",
5506 # "33:33:ff:12:34:56"
5507 # ],
5508 # "broadcast-allowed": false
5509 # }
5510 # ]
5511 # }
5512 #
5513 ##
5514 { 'command': 'query-rx-filter', 'data': { '*name': 'str' },
5515 'returns': ['RxFilterInfo'] }
5516
5517 ##
5518 # @InputButton:
5519 #
5520 # Button of a pointer input device (mouse, tablet).
5521 #
5522 # @side: front side button of a 5-button mouse (since 2.9)
5523 #
5524 # @extra: rear side button of a 5-button mouse (since 2.9)
5525 #
5526 # Since: 2.0
5527 ##
5528 { 'enum' : 'InputButton',
5529 'data' : [ 'left', 'middle', 'right', 'wheel-up', 'wheel-down', 'side',
5530 'extra' ] }
5531
5532 ##
5533 # @InputAxis:
5534 #
5535 # Position axis of a pointer input device (mouse, tablet).
5536 #
5537 # Since: 2.0
5538 ##
5539 { 'enum' : 'InputAxis',
5540 'data' : [ 'x', 'y' ] }
5541
5542 ##
5543 # @InputKeyEvent:
5544 #
5545 # Keyboard input event.
5546 #
5547 # @key: Which key this event is for.
5548 # @down: True for key-down and false for key-up events.
5549 #
5550 # Since: 2.0
5551 ##
5552 { 'struct' : 'InputKeyEvent',
5553 'data' : { 'key' : 'KeyValue',
5554 'down' : 'bool' } }
5555
5556 ##
5557 # @InputBtnEvent:
5558 #
5559 # Pointer button input event.
5560 #
5561 # @button: Which button this event is for.
5562 # @down: True for key-down and false for key-up events.
5563 #
5564 # Since: 2.0
5565 ##
5566 { 'struct' : 'InputBtnEvent',
5567 'data' : { 'button' : 'InputButton',
5568 'down' : 'bool' } }
5569
5570 ##
5571 # @InputMoveEvent:
5572 #
5573 # Pointer motion input event.
5574 #
5575 # @axis: Which axis is referenced by @value.
5576 # @value: Pointer position. For absolute coordinates the
5577 # valid range is 0 -> 0x7ffff
5578 #
5579 # Since: 2.0
5580 ##
5581 { 'struct' : 'InputMoveEvent',
5582 'data' : { 'axis' : 'InputAxis',
5583 'value' : 'int' } }
5584
5585 ##
5586 # @InputEvent:
5587 #
5588 # Input event union.
5589 #
5590 # @type: the input type, one of:
5591 # - 'key': Input event of Keyboard
5592 # - 'btn': Input event of pointer buttons
5593 # - 'rel': Input event of relative pointer motion
5594 # - 'abs': Input event of absolute pointer motion
5595 #
5596 # Since: 2.0
5597 ##
5598 { 'union' : 'InputEvent',
5599 'data' : { 'key' : 'InputKeyEvent',
5600 'btn' : 'InputBtnEvent',
5601 'rel' : 'InputMoveEvent',
5602 'abs' : 'InputMoveEvent' } }
5603
5604 ##
5605 # @input-send-event:
5606 #
5607 # Send input event(s) to guest.
5608 #
5609 # @device: display device to send event(s) to.
5610 # @head: head to send event(s) to, in case the
5611 # display device supports multiple scanouts.
5612 # @events: List of InputEvent union.
5613 #
5614 # Returns: Nothing on success.
5615 #
5616 # The @device and @head parameters can be used to send the input event
5617 # to specific input devices in case (a) multiple input devices of the
5618 # same kind are added to the virtual machine and (b) you have
5619 # configured input routing (see docs/multiseat.txt) for those input
5620 # devices. The parameters work exactly like the device and head
5621 # properties of input devices. If @device is missing, only devices
5622 # that have no input routing config are admissible. If @device is
5623 # specified, both input devices with and without input routing config
5624 # are admissible, but devices with input routing config take
5625 # precedence.
5626 #
5627 # Since: 2.6
5628 #
5629 # Note: The consoles are visible in the qom tree, under
5630 # /backend/console[$index]. They have a device link and head property,
5631 # so it is possible to map which console belongs to which device and
5632 # display.
5633 #
5634 # Example:
5635 #
5636 # 1. Press left mouse button.
5637 #
5638 # -> { "execute": "input-send-event",
5639 # "arguments": { "device": "video0",
5640 # "events": [ { "type": "btn",
5641 # "data" : { "down": true, "button": "left" } } ] } }
5642 # <- { "return": {} }
5643 #
5644 # -> { "execute": "input-send-event",
5645 # "arguments": { "device": "video0",
5646 # "events": [ { "type": "btn",
5647 # "data" : { "down": false, "button": "left" } } ] } }
5648 # <- { "return": {} }
5649 #
5650 # 2. Press ctrl-alt-del.
5651 #
5652 # -> { "execute": "input-send-event",
5653 # "arguments": { "events": [
5654 # { "type": "key", "data" : { "down": true,
5655 # "key": {"type": "qcode", "data": "ctrl" } } },
5656 # { "type": "key", "data" : { "down": true,
5657 # "key": {"type": "qcode", "data": "alt" } } },
5658 # { "type": "key", "data" : { "down": true,
5659 # "key": {"type": "qcode", "data": "delete" } } } ] } }
5660 # <- { "return": {} }
5661 #
5662 # 3. Move mouse pointer to absolute coordinates (20000, 400).
5663 #
5664 # -> { "execute": "input-send-event" ,
5665 # "arguments": { "events": [
5666 # { "type": "abs", "data" : { "axis": "x", "value" : 20000 } },
5667 # { "type": "abs", "data" : { "axis": "y", "value" : 400 } } ] } }
5668 # <- { "return": {} }
5669 #
5670 ##
5671 { 'command': 'input-send-event',
5672 'data': { '*device': 'str',
5673 '*head' : 'int',
5674 'events' : [ 'InputEvent' ] } }
5675
5676 ##
5677 # @NumaOptionsType:
5678 #
5679 # Since: 2.1
5680 ##
5681 { 'enum': 'NumaOptionsType',
5682 'data': [ 'node' ] }
5683
5684 ##
5685 # @NumaOptions:
5686 #
5687 # A discriminated record of NUMA options. (for OptsVisitor)
5688 #
5689 # Since: 2.1
5690 ##
5691 { 'union': 'NumaOptions',
5692 'base': { 'type': 'NumaOptionsType' },
5693 'discriminator': 'type',
5694 'data': {
5695 'node': 'NumaNodeOptions' }}
5696
5697 ##
5698 # @NumaNodeOptions:
5699 #
5700 # Create a guest NUMA node. (for OptsVisitor)
5701 #
5702 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
5703 #
5704 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
5705 # if omitted)
5706 #
5707 # @mem: memory size of this node; mutually exclusive with @memdev.
5708 # Equally divide total memory among nodes if both @mem and @memdev are
5709 # omitted.
5710 #
5711 # @memdev: memory backend object. If specified for one node,
5712 # it must be specified for all nodes.
5713 #
5714 # Since: 2.1
5715 ##
5716 { 'struct': 'NumaNodeOptions',
5717 'data': {
5718 '*nodeid': 'uint16',
5719 '*cpus': ['uint16'],
5720 '*mem': 'size',
5721 '*memdev': 'str' }}
5722
5723 ##
5724 # @HostMemPolicy:
5725 #
5726 # Host memory policy types
5727 #
5728 # @default: restore default policy, remove any nondefault policy
5729 #
5730 # @preferred: set the preferred host nodes for allocation
5731 #
5732 # @bind: a strict policy that restricts memory allocation to the
5733 # host nodes specified
5734 #
5735 # @interleave: memory allocations are interleaved across the set
5736 # of host nodes specified
5737 #
5738 # Since: 2.1
5739 ##
5740 { 'enum': 'HostMemPolicy',
5741 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
5742
5743 ##
5744 # @Memdev:
5745 #
5746 # Information about memory backend
5747 #
5748 # @id: backend's ID if backend has 'id' property (since 2.9)
5749 #
5750 # @size: memory backend size
5751 #
5752 # @merge: enables or disables memory merge support
5753 #
5754 # @dump: includes memory backend's memory in a core dump or not
5755 #
5756 # @prealloc: enables or disables memory preallocation
5757 #
5758 # @host-nodes: host nodes for its memory policy
5759 #
5760 # @policy: memory policy of memory backend
5761 #
5762 # Since: 2.1
5763 ##
5764 { 'struct': 'Memdev',
5765 'data': {
5766 '*id': 'str',
5767 'size': 'size',
5768 'merge': 'bool',
5769 'dump': 'bool',
5770 'prealloc': 'bool',
5771 'host-nodes': ['uint16'],
5772 'policy': 'HostMemPolicy' }}
5773
5774 ##
5775 # @query-memdev:
5776 #
5777 # Returns information for all memory backends.
5778 #
5779 # Returns: a list of @Memdev.
5780 #
5781 # Since: 2.1
5782 #
5783 # Example:
5784 #
5785 # -> { "execute": "query-memdev" }
5786 # <- { "return": [
5787 # {
5788 # "id": "mem1",
5789 # "size": 536870912,
5790 # "merge": false,
5791 # "dump": true,
5792 # "prealloc": false,
5793 # "host-nodes": [0, 1],
5794 # "policy": "bind"
5795 # },
5796 # {
5797 # "size": 536870912,
5798 # "merge": false,
5799 # "dump": true,
5800 # "prealloc": true,
5801 # "host-nodes": [2, 3],
5802 # "policy": "preferred"
5803 # }
5804 # ]
5805 # }
5806 #
5807 ##
5808 { 'command': 'query-memdev', 'returns': ['Memdev'] }
5809
5810 ##
5811 # @PCDIMMDeviceInfo:
5812 #
5813 # PCDIMMDevice state information
5814 #
5815 # @id: device's ID
5816 #
5817 # @addr: physical address, where device is mapped
5818 #
5819 # @size: size of memory that the device provides
5820 #
5821 # @slot: slot number at which device is plugged in
5822 #
5823 # @node: NUMA node number where device is plugged in
5824 #
5825 # @memdev: memory backend linked with device
5826 #
5827 # @hotplugged: true if device was hotplugged
5828 #
5829 # @hotpluggable: true if device if could be added/removed while machine is running
5830 #
5831 # Since: 2.1
5832 ##
5833 { 'struct': 'PCDIMMDeviceInfo',
5834 'data': { '*id': 'str',
5835 'addr': 'int',
5836 'size': 'int',
5837 'slot': 'int',
5838 'node': 'int',
5839 'memdev': 'str',
5840 'hotplugged': 'bool',
5841 'hotpluggable': 'bool'
5842 }
5843 }
5844
5845 ##
5846 # @MemoryDeviceInfo:
5847 #
5848 # Union containing information about a memory device
5849 #
5850 # Since: 2.1
5851 ##
5852 { 'union': 'MemoryDeviceInfo', 'data': {'dimm': 'PCDIMMDeviceInfo'} }
5853
5854 ##
5855 # @query-memory-devices:
5856 #
5857 # Lists available memory devices and their state
5858 #
5859 # Since: 2.1
5860 #
5861 # Example:
5862 #
5863 # -> { "execute": "query-memory-devices" }
5864 # <- { "return": [ { "data":
5865 # { "addr": 5368709120,
5866 # "hotpluggable": true,
5867 # "hotplugged": true,
5868 # "id": "d1",
5869 # "memdev": "/objects/memX",
5870 # "node": 0,
5871 # "size": 1073741824,
5872 # "slot": 0},
5873 # "type": "dimm"
5874 # } ] }
5875 #
5876 ##
5877 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
5878
5879 ##
5880 # @ACPISlotType:
5881 #
5882 # @DIMM: memory slot
5883 # @CPU: logical CPU slot (since 2.7)
5884 ##
5885 { 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
5886
5887 ##
5888 # @ACPIOSTInfo:
5889 #
5890 # OSPM Status Indication for a device
5891 # For description of possible values of @source and @status fields
5892 # see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
5893 #
5894 # @device: device ID associated with slot
5895 #
5896 # @slot: slot ID, unique per slot of a given @slot-type
5897 #
5898 # @slot-type: type of the slot
5899 #
5900 # @source: an integer containing the source event
5901 #
5902 # @status: an integer containing the status code
5903 #
5904 # Since: 2.1
5905 ##
5906 { 'struct': 'ACPIOSTInfo',
5907 'data' : { '*device': 'str',
5908 'slot': 'str',
5909 'slot-type': 'ACPISlotType',
5910 'source': 'int',
5911 'status': 'int' } }
5912
5913 ##
5914 # @query-acpi-ospm-status:
5915 #
5916 # Return a list of ACPIOSTInfo for devices that support status
5917 # reporting via ACPI _OST method.
5918 #
5919 # Since: 2.1
5920 #
5921 # Example:
5922 #
5923 # -> { "execute": "query-acpi-ospm-status" }
5924 # <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
5925 # { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
5926 # { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
5927 # { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
5928 # ]}
5929 #
5930 ##
5931 { 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
5932
5933 ##
5934 # @WatchdogExpirationAction:
5935 #
5936 # An enumeration of the actions taken when the watchdog device's timer is
5937 # expired
5938 #
5939 # @reset: system resets
5940 #
5941 # @shutdown: system shutdown, note that it is similar to @powerdown, which
5942 # tries to set to system status and notify guest
5943 #
5944 # @poweroff: system poweroff, the emulator program exits
5945 #
5946 # @pause: system pauses, similar to @stop
5947 #
5948 # @debug: system enters debug state
5949 #
5950 # @none: nothing is done
5951 #
5952 # @inject-nmi: a non-maskable interrupt is injected into the first VCPU (all
5953 # VCPUS on x86) (since 2.4)
5954 #
5955 # Since: 2.1
5956 ##
5957 { 'enum': 'WatchdogExpirationAction',
5958 'data': [ 'reset', 'shutdown', 'poweroff', 'pause', 'debug', 'none',
5959 'inject-nmi' ] }
5960
5961 ##
5962 # @IoOperationType:
5963 #
5964 # An enumeration of the I/O operation types
5965 #
5966 # @read: read operation
5967 #
5968 # @write: write operation
5969 #
5970 # Since: 2.1
5971 ##
5972 { 'enum': 'IoOperationType',
5973 'data': [ 'read', 'write' ] }
5974
5975 ##
5976 # @GuestPanicAction:
5977 #
5978 # An enumeration of the actions taken when guest OS panic is detected
5979 #
5980 # @pause: system pauses
5981 #
5982 # Since: 2.1 (poweroff since 2.8)
5983 ##
5984 { 'enum': 'GuestPanicAction',
5985 'data': [ 'pause', 'poweroff' ] }
5986
5987 ##
5988 # @GuestPanicInformationType:
5989 #
5990 # An enumeration of the guest panic information types
5991 #
5992 # Since: 2.9
5993 ##
5994 { 'enum': 'GuestPanicInformationType',
5995 'data': [ 'hyper-v'] }
5996
5997 ##
5998 # @GuestPanicInformation:
5999 #
6000 # Information about a guest panic
6001 #
6002 # Since: 2.9
6003 ##
6004 {'union': 'GuestPanicInformation',
6005 'base': {'type': 'GuestPanicInformationType'},
6006 'discriminator': 'type',
6007 'data': { 'hyper-v': 'GuestPanicInformationHyperV' } }
6008
6009 ##
6010 # @GuestPanicInformationHyperV:
6011 #
6012 # Hyper-V specific guest panic information (HV crash MSRs)
6013 #
6014 # Since: 2.9
6015 ##
6016 {'struct': 'GuestPanicInformationHyperV',
6017 'data': { 'arg1': 'uint64',
6018 'arg2': 'uint64',
6019 'arg3': 'uint64',
6020 'arg4': 'uint64',
6021 'arg5': 'uint64' } }
6022
6023 ##
6024 # @rtc-reset-reinjection:
6025 #
6026 # This command will reset the RTC interrupt reinjection backlog.
6027 # Can be used if another mechanism to synchronize guest time
6028 # is in effect, for example QEMU guest agent's guest-set-time
6029 # command.
6030 #
6031 # Since: 2.1
6032 #
6033 # Example:
6034 #
6035 # -> { "execute": "rtc-reset-reinjection" }
6036 # <- { "return": {} }
6037 #
6038 ##
6039 { 'command': 'rtc-reset-reinjection' }
6040
6041 # Rocker ethernet network switch
6042 { 'include': 'qapi/rocker.json' }
6043
6044 ##
6045 # @ReplayMode:
6046 #
6047 # Mode of the replay subsystem.
6048 #
6049 # @none: normal execution mode. Replay or record are not enabled.
6050 #
6051 # @record: record mode. All non-deterministic data is written into the
6052 # replay log.
6053 #
6054 # @play: replay mode. Non-deterministic data required for system execution
6055 # is read from the log.
6056 #
6057 # Since: 2.5
6058 ##
6059 { 'enum': 'ReplayMode',
6060 'data': [ 'none', 'record', 'play' ] }
6061
6062 ##
6063 # @xen-load-devices-state:
6064 #
6065 # Load the state of all devices from file. The RAM and the block devices
6066 # of the VM are not loaded by this command.
6067 #
6068 # @filename: the file to load the state of the devices from as binary
6069 # data. See xen-save-devices-state.txt for a description of the binary
6070 # format.
6071 #
6072 # Since: 2.7
6073 #
6074 # Example:
6075 #
6076 # -> { "execute": "xen-load-devices-state",
6077 # "arguments": { "filename": "/tmp/resume" } }
6078 # <- { "return": {} }
6079 #
6080 ##
6081 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
6082
6083 ##
6084 # @xen-set-replication:
6085 #
6086 # Enable or disable replication.
6087 #
6088 # @enable: true to enable, false to disable.
6089 #
6090 # @primary: true for primary or false for secondary.
6091 #
6092 # @failover: true to do failover, false to stop. but cannot be
6093 # specified if 'enable' is true. default value is false.
6094 #
6095 # Returns: nothing.
6096 #
6097 # Example:
6098 #
6099 # -> { "execute": "xen-set-replication",
6100 # "arguments": {"enable": true, "primary": false} }
6101 # <- { "return": {} }
6102 #
6103 # Since: 2.9
6104 ##
6105 { 'command': 'xen-set-replication',
6106 'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' } }
6107
6108 ##
6109 # @ReplicationStatus:
6110 #
6111 # The result format for 'query-xen-replication-status'.
6112 #
6113 # @error: true if an error happened, false if replication is normal.
6114 #
6115 # @desc: the human readable error description string, when
6116 # @error is 'true'.
6117 #
6118 # Since: 2.9
6119 ##
6120 { 'struct': 'ReplicationStatus',
6121 'data': { 'error': 'bool', '*desc': 'str' } }
6122
6123 ##
6124 # @query-xen-replication-status:
6125 #
6126 # Query replication status while the vm is running.
6127 #
6128 # Returns: A @ReplicationResult object showing the status.
6129 #
6130 # Example:
6131 #
6132 # -> { "execute": "query-xen-replication-status" }
6133 # <- { "return": { "error": false } }
6134 #
6135 # Since: 2.9
6136 ##
6137 { 'command': 'query-xen-replication-status',
6138 'returns': 'ReplicationStatus' }
6139
6140 ##
6141 # @xen-colo-do-checkpoint:
6142 #
6143 # Xen uses this command to notify replication to trigger a checkpoint.
6144 #
6145 # Returns: nothing.
6146 #
6147 # Example:
6148 #
6149 # -> { "execute": "xen-colo-do-checkpoint" }
6150 # <- { "return": {} }
6151 #
6152 # Since: 2.9
6153 ##
6154 { 'command': 'xen-colo-do-checkpoint' }
6155
6156 ##
6157 # @GICCapability:
6158 #
6159 # The struct describes capability for a specific GIC (Generic
6160 # Interrupt Controller) version. These bits are not only decided by
6161 # QEMU/KVM software version, but also decided by the hardware that
6162 # the program is running upon.
6163 #
6164 # @version: version of GIC to be described. Currently, only 2 and 3
6165 # are supported.
6166 #
6167 # @emulated: whether current QEMU/hardware supports emulated GIC
6168 # device in user space.
6169 #
6170 # @kernel: whether current QEMU/hardware supports hardware
6171 # accelerated GIC device in kernel.
6172 #
6173 # Since: 2.6
6174 ##
6175 { 'struct': 'GICCapability',
6176 'data': { 'version': 'int',
6177 'emulated': 'bool',
6178 'kernel': 'bool' } }
6179
6180 ##
6181 # @query-gic-capabilities:
6182 #
6183 # This command is ARM-only. It will return a list of GICCapability
6184 # objects that describe its capability bits.
6185 #
6186 # Returns: a list of GICCapability objects.
6187 #
6188 # Since: 2.6
6189 #
6190 # Example:
6191 #
6192 # -> { "execute": "query-gic-capabilities" }
6193 # <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
6194 # { "version": 3, "emulated": false, "kernel": true } ] }
6195 #
6196 ##
6197 { 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
6198
6199 ##
6200 # @CpuInstanceProperties:
6201 #
6202 # List of properties to be used for hotplugging a CPU instance,
6203 # it should be passed by management with device_add command when
6204 # a CPU is being hotplugged.
6205 #
6206 # @node-id: NUMA node ID the CPU belongs to
6207 # @socket-id: socket number within node/board the CPU belongs to
6208 # @core-id: core number within socket the CPU belongs to
6209 # @thread-id: thread number within core the CPU belongs to
6210 #
6211 # Note: currently there are 4 properties that could be present
6212 # but management should be prepared to pass through other
6213 # properties with device_add command to allow for future
6214 # interface extension. This also requires the filed names to be kept in
6215 # sync with the properties passed to -device/device_add.
6216 #
6217 # Since: 2.7
6218 ##
6219 { 'struct': 'CpuInstanceProperties',
6220 'data': { '*node-id': 'int',
6221 '*socket-id': 'int',
6222 '*core-id': 'int',
6223 '*thread-id': 'int'
6224 }
6225 }
6226
6227 ##
6228 # @HotpluggableCPU:
6229 #
6230 # @type: CPU object type for usage with device_add command
6231 # @props: list of properties to be used for hotplugging CPU
6232 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
6233 # @qom-path: link to existing CPU object if CPU is present or
6234 # omitted if CPU is not present.
6235 #
6236 # Since: 2.7
6237 ##
6238 { 'struct': 'HotpluggableCPU',
6239 'data': { 'type': 'str',
6240 'vcpus-count': 'int',
6241 'props': 'CpuInstanceProperties',
6242 '*qom-path': 'str'
6243 }
6244 }
6245
6246 ##
6247 # @query-hotpluggable-cpus:
6248 #
6249 # Returns: a list of HotpluggableCPU objects.
6250 #
6251 # Since: 2.7
6252 #
6253 # Example:
6254 #
6255 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
6256 #
6257 # -> { "execute": "query-hotpluggable-cpus" }
6258 # <- {"return": [
6259 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
6260 # "vcpus-count": 1 },
6261 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
6262 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
6263 # ]}'
6264 #
6265 # For pc machine type started with -smp 1,maxcpus=2:
6266 #
6267 # -> { "execute": "query-hotpluggable-cpus" }
6268 # <- {"return": [
6269 # {
6270 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
6271 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
6272 # },
6273 # {
6274 # "qom-path": "/machine/unattached/device[0]",
6275 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
6276 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
6277 # }
6278 # ]}
6279 #
6280 ##
6281 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'] }
6282
6283 ##
6284 # @GuidInfo:
6285 #
6286 # GUID information.
6287 #
6288 # @guid: the globally unique identifier
6289 #
6290 # Since: 2.9
6291 ##
6292 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
6293
6294 ##
6295 # @query-vm-generation-id:
6296 #
6297 # Show Virtual Machine Generation ID
6298 #
6299 # Since 2.9
6300 ##
6301 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }