]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/machine.json
dump: Add command interface for kdump-raw formats
[mirror_qemu.git] / qapi / machine.json
1 # -*- Mode: Python -*-
2 # vim: filetype=python
3 #
4 # This work is licensed under the terms of the GNU GPL, version 2 or later.
5 # See the COPYING file in the top-level directory.
6
7 ##
8 # = Machines
9 ##
10
11 { 'include': 'common.json' }
12 { 'include': 'machine-common.json' }
13
14 ##
15 # @SysEmuTarget:
16 #
17 # The comprehensive enumeration of QEMU system emulation ("softmmu")
18 # targets. Run "./configure --help" in the project root directory,
19 # and look for the \*-softmmu targets near the "--target-list" option.
20 # The individual target constants are not documented here, for the
21 # time being.
22 #
23 # @rx: since 5.0
24 #
25 # @avr: since 5.1
26 #
27 # Notes: The resulting QMP strings can be appended to the
28 # "qemu-system-" prefix to produce the corresponding QEMU
29 # executable name. This is true even for "qemu-system-x86_64".
30 #
31 # Since: 3.0
32 ##
33 { 'enum' : 'SysEmuTarget',
34 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
35 'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
36 'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
37 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
38 'sh4eb', 'sparc', 'sparc64', 'tricore',
39 'x86_64', 'xtensa', 'xtensaeb' ] }
40
41 ##
42 # @CpuS390State:
43 #
44 # An enumeration of cpu states that can be assumed by a virtual S390
45 # CPU
46 #
47 # Since: 2.12
48 ##
49 { 'enum': 'CpuS390State',
50 'prefix': 'S390_CPU_STATE',
51 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
52
53 ##
54 # @CpuInfoS390:
55 #
56 # Additional information about a virtual S390 CPU
57 #
58 # @cpu-state: the virtual CPU's state
59 #
60 # @dedicated: the virtual CPU's dedication (since 8.2)
61 #
62 # @entitlement: the virtual CPU's entitlement (since 8.2)
63 #
64 # Since: 2.12
65 ##
66 { 'struct': 'CpuInfoS390',
67 'data': { 'cpu-state': 'CpuS390State',
68 '*dedicated': 'bool',
69 '*entitlement': 'CpuS390Entitlement' } }
70
71 ##
72 # @CpuInfoFast:
73 #
74 # Information about a virtual CPU
75 #
76 # @cpu-index: index of the virtual CPU
77 #
78 # @qom-path: path to the CPU object in the QOM tree
79 #
80 # @thread-id: ID of the underlying host thread
81 #
82 # @props: properties associated with a virtual CPU, e.g. the socket id
83 #
84 # @target: the QEMU system emulation target, which determines which
85 # additional fields will be listed (since 3.0)
86 #
87 # Since: 2.12
88 ##
89 { 'union' : 'CpuInfoFast',
90 'base' : { 'cpu-index' : 'int',
91 'qom-path' : 'str',
92 'thread-id' : 'int',
93 '*props' : 'CpuInstanceProperties',
94 'target' : 'SysEmuTarget' },
95 'discriminator' : 'target',
96 'data' : { 's390x' : 'CpuInfoS390' } }
97
98 ##
99 # @query-cpus-fast:
100 #
101 # Returns information about all virtual CPUs.
102 #
103 # Returns: list of @CpuInfoFast
104 #
105 # Since: 2.12
106 #
107 # Example:
108 #
109 # -> { "execute": "query-cpus-fast" }
110 # <- { "return": [
111 # {
112 # "thread-id": 25627,
113 # "props": {
114 # "core-id": 0,
115 # "thread-id": 0,
116 # "socket-id": 0
117 # },
118 # "qom-path": "/machine/unattached/device[0]",
119 # "target":"x86_64",
120 # "cpu-index": 0
121 # },
122 # {
123 # "thread-id": 25628,
124 # "props": {
125 # "core-id": 0,
126 # "thread-id": 0,
127 # "socket-id": 1
128 # },
129 # "qom-path": "/machine/unattached/device[2]",
130 # "target":"x86_64",
131 # "cpu-index": 1
132 # }
133 # ]
134 # }
135 ##
136 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
137
138 ##
139 # @MachineInfo:
140 #
141 # Information describing a machine.
142 #
143 # @name: the name of the machine
144 #
145 # @alias: an alias for the machine name
146 #
147 # @is-default: whether the machine is default
148 #
149 # @cpu-max: maximum number of CPUs supported by the machine type
150 # (since 1.5)
151 #
152 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
153 #
154 # @numa-mem-supported: true if '-numa node,mem' option is supported by
155 # the machine type and false otherwise (since 4.1)
156 #
157 # @deprecated: if true, the machine type is deprecated and may be
158 # removed in future versions of QEMU according to the QEMU
159 # deprecation policy (since 4.1)
160 #
161 # @default-cpu-type: default CPU model typename if none is requested
162 # via the -cpu argument. (since 4.2)
163 #
164 # @default-ram-id: the default ID of initial RAM memory backend (since
165 # 5.2)
166 #
167 # @acpi: machine type supports ACPI (since 8.0)
168 #
169 # Since: 1.2
170 ##
171 { 'struct': 'MachineInfo',
172 'data': { 'name': 'str', '*alias': 'str',
173 '*is-default': 'bool', 'cpu-max': 'int',
174 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool',
175 'deprecated': 'bool', '*default-cpu-type': 'str',
176 '*default-ram-id': 'str', 'acpi': 'bool' } }
177
178 ##
179 # @query-machines:
180 #
181 # Return a list of supported machines
182 #
183 # Returns: a list of MachineInfo
184 #
185 # Since: 1.2
186 ##
187 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
188
189 ##
190 # @CurrentMachineParams:
191 #
192 # Information describing the running machine parameters.
193 #
194 # @wakeup-suspend-support: true if the machine supports wake up from
195 # suspend
196 #
197 # Since: 4.0
198 ##
199 { 'struct': 'CurrentMachineParams',
200 'data': { 'wakeup-suspend-support': 'bool'} }
201
202 ##
203 # @query-current-machine:
204 #
205 # Return information on the current virtual machine.
206 #
207 # Returns: CurrentMachineParams
208 #
209 # Since: 4.0
210 ##
211 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
212
213 ##
214 # @TargetInfo:
215 #
216 # Information describing the QEMU target.
217 #
218 # @arch: the target architecture
219 #
220 # Since: 1.2
221 ##
222 { 'struct': 'TargetInfo',
223 'data': { 'arch': 'SysEmuTarget' } }
224
225 ##
226 # @query-target:
227 #
228 # Return information about the target for this QEMU
229 #
230 # Returns: TargetInfo
231 #
232 # Since: 1.2
233 ##
234 { 'command': 'query-target', 'returns': 'TargetInfo' }
235
236 ##
237 # @UuidInfo:
238 #
239 # Guest UUID information (Universally Unique Identifier).
240 #
241 # @UUID: the UUID of the guest
242 #
243 # Since: 0.14
244 #
245 # Notes: If no UUID was specified for the guest, a null UUID is
246 # returned.
247 ##
248 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
249
250 ##
251 # @query-uuid:
252 #
253 # Query the guest UUID information.
254 #
255 # Returns: The @UuidInfo for the guest
256 #
257 # Since: 0.14
258 #
259 # Example:
260 #
261 # -> { "execute": "query-uuid" }
262 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
263 ##
264 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
265
266 ##
267 # @GuidInfo:
268 #
269 # GUID information.
270 #
271 # @guid: the globally unique identifier
272 #
273 # Since: 2.9
274 ##
275 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
276
277 ##
278 # @query-vm-generation-id:
279 #
280 # Show Virtual Machine Generation ID
281 #
282 # Since: 2.9
283 ##
284 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
285
286 ##
287 # @system_reset:
288 #
289 # Performs a hard reset of a guest.
290 #
291 # Since: 0.14
292 #
293 # Example:
294 #
295 # -> { "execute": "system_reset" }
296 # <- { "return": {} }
297 ##
298 { 'command': 'system_reset' }
299
300 ##
301 # @system_powerdown:
302 #
303 # Requests that a guest perform a powerdown operation.
304 #
305 # Since: 0.14
306 #
307 # Notes: A guest may or may not respond to this command. This command
308 # returning does not indicate that a guest has accepted the
309 # request or that it has shut down. Many guests will respond to
310 # this command by prompting the user in some way.
311 #
312 # Example:
313 #
314 # -> { "execute": "system_powerdown" }
315 # <- { "return": {} }
316 ##
317 { 'command': 'system_powerdown' }
318
319 ##
320 # @system_wakeup:
321 #
322 # Wake up guest from suspend. If the guest has wake-up from suspend
323 # support enabled (wakeup-suspend-support flag from
324 # query-current-machine), wake-up guest from suspend if the guest is
325 # in SUSPENDED state. Return an error otherwise.
326 #
327 # Since: 1.1
328 #
329 # Returns: nothing.
330 #
331 # Note: prior to 4.0, this command does nothing in case the guest
332 # isn't suspended.
333 #
334 # Example:
335 #
336 # -> { "execute": "system_wakeup" }
337 # <- { "return": {} }
338 ##
339 { 'command': 'system_wakeup' }
340
341 ##
342 # @LostTickPolicy:
343 #
344 # Policy for handling lost ticks in timer devices. Ticks end up
345 # getting lost when, for example, the guest is paused.
346 #
347 # @discard: throw away the missed ticks and continue with future
348 # injection normally. The guest OS will see the timer jump ahead
349 # by a potentially quite significant amount all at once, as if the
350 # intervening chunk of time had simply not existed; needless to
351 # say, such a sudden jump can easily confuse a guest OS which is
352 # not specifically prepared to deal with it. Assuming the guest
353 # OS can deal correctly with the time jump, the time in the guest
354 # and in the host should now match.
355 #
356 # @delay: continue to deliver ticks at the normal rate. The guest OS
357 # will not notice anything is amiss, as from its point of view
358 # time will have continued to flow normally. The time in the
359 # guest should now be behind the time in the host by exactly the
360 # amount of time during which ticks have been missed.
361 #
362 # @slew: deliver ticks at a higher rate to catch up with the missed
363 # ticks. The guest OS will not notice anything is amiss, as from
364 # its point of view time will have continued to flow normally.
365 # Once the timer has managed to catch up with all the missing
366 # ticks, the time in the guest and in the host should match.
367 #
368 # Since: 2.0
369 ##
370 { 'enum': 'LostTickPolicy',
371 'data': ['discard', 'delay', 'slew' ] }
372
373 ##
374 # @inject-nmi:
375 #
376 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or
377 # all CPUs (ppc64). The command fails when the guest doesn't support
378 # injecting.
379 #
380 # Returns: If successful, nothing
381 #
382 # Since: 0.14
383 #
384 # Note: prior to 2.1, this command was only supported for x86 and s390
385 # VMs
386 #
387 # Example:
388 #
389 # -> { "execute": "inject-nmi" }
390 # <- { "return": {} }
391 ##
392 { 'command': 'inject-nmi' }
393
394 ##
395 # @KvmInfo:
396 #
397 # Information about support for KVM acceleration
398 #
399 # @enabled: true if KVM acceleration is active
400 #
401 # @present: true if KVM acceleration is built into this executable
402 #
403 # Since: 0.14
404 ##
405 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
406
407 ##
408 # @query-kvm:
409 #
410 # Returns information about KVM acceleration
411 #
412 # Returns: @KvmInfo
413 #
414 # Since: 0.14
415 #
416 # Example:
417 #
418 # -> { "execute": "query-kvm" }
419 # <- { "return": { "enabled": true, "present": true } }
420 ##
421 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
422
423 ##
424 # @NumaOptionsType:
425 #
426 # @node: NUMA nodes configuration
427 #
428 # @dist: NUMA distance configuration (since 2.10)
429 #
430 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
431 #
432 # @hmat-lb: memory latency and bandwidth information (Since: 5.0)
433 #
434 # @hmat-cache: memory side cache information (Since: 5.0)
435 #
436 # Since: 2.1
437 ##
438 { 'enum': 'NumaOptionsType',
439 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
440
441 ##
442 # @NumaOptions:
443 #
444 # A discriminated record of NUMA options. (for OptsVisitor)
445 #
446 # Since: 2.1
447 ##
448 { 'union': 'NumaOptions',
449 'base': { 'type': 'NumaOptionsType' },
450 'discriminator': 'type',
451 'data': {
452 'node': 'NumaNodeOptions',
453 'dist': 'NumaDistOptions',
454 'cpu': 'NumaCpuOptions',
455 'hmat-lb': 'NumaHmatLBOptions',
456 'hmat-cache': 'NumaHmatCacheOptions' }}
457
458 ##
459 # @NumaNodeOptions:
460 #
461 # Create a guest NUMA node. (for OptsVisitor)
462 #
463 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
464 #
465 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin if
466 # omitted)
467 #
468 # @mem: memory size of this node; mutually exclusive with @memdev.
469 # Equally divide total memory among nodes if both @mem and @memdev
470 # are omitted.
471 #
472 # @memdev: memory backend object. If specified for one node, it must
473 # be specified for all nodes.
474 #
475 # @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points
476 # to the nodeid which has the memory controller responsible for
477 # this NUMA node. This field provides additional information as
478 # to the initiator node that is closest (as in directly attached)
479 # to this node, and therefore has the best performance (since 5.0)
480 #
481 # Since: 2.1
482 ##
483 { 'struct': 'NumaNodeOptions',
484 'data': {
485 '*nodeid': 'uint16',
486 '*cpus': ['uint16'],
487 '*mem': 'size',
488 '*memdev': 'str',
489 '*initiator': 'uint16' }}
490
491 ##
492 # @NumaDistOptions:
493 #
494 # Set the distance between 2 NUMA nodes.
495 #
496 # @src: source NUMA node.
497 #
498 # @dst: destination NUMA node.
499 #
500 # @val: NUMA distance from source node to destination node. When a
501 # node is unreachable from another node, set the distance between
502 # them to 255.
503 #
504 # Since: 2.10
505 ##
506 { 'struct': 'NumaDistOptions',
507 'data': {
508 'src': 'uint16',
509 'dst': 'uint16',
510 'val': 'uint8' }}
511
512 ##
513 # @CXLFixedMemoryWindowOptions:
514 #
515 # Create a CXL Fixed Memory Window
516 #
517 # @size: Size of the Fixed Memory Window in bytes. Must be a multiple
518 # of 256MiB.
519 #
520 # @interleave-granularity: Number of contiguous bytes for which
521 # accesses will go to a given interleave target. Accepted values
522 # [256, 512, 1k, 2k, 4k, 8k, 16k]
523 #
524 # @targets: Target root bridge IDs from -device ...,id=<ID> for each
525 # root bridge.
526 #
527 # Since: 7.1
528 ##
529 { 'struct': 'CXLFixedMemoryWindowOptions',
530 'data': {
531 'size': 'size',
532 '*interleave-granularity': 'size',
533 'targets': ['str'] }}
534
535 ##
536 # @CXLFMWProperties:
537 #
538 # List of CXL Fixed Memory Windows.
539 #
540 # @cxl-fmw: List of CXLFixedMemoryWindowOptions
541 #
542 # Since: 7.1
543 ##
544 { 'struct' : 'CXLFMWProperties',
545 'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
546 }
547
548 ##
549 # @X86CPURegister32:
550 #
551 # A X86 32-bit register
552 #
553 # Since: 1.5
554 ##
555 { 'enum': 'X86CPURegister32',
556 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
557
558 ##
559 # @X86CPUFeatureWordInfo:
560 #
561 # Information about a X86 CPU feature word
562 #
563 # @cpuid-input-eax: Input EAX value for CPUID instruction for that
564 # feature word
565 #
566 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
567 # feature word
568 #
569 # @cpuid-register: Output register containing the feature bits
570 #
571 # @features: value of output register, containing the feature bits
572 #
573 # Since: 1.5
574 ##
575 { 'struct': 'X86CPUFeatureWordInfo',
576 'data': { 'cpuid-input-eax': 'int',
577 '*cpuid-input-ecx': 'int',
578 'cpuid-register': 'X86CPURegister32',
579 'features': 'int' } }
580
581 ##
582 # @DummyForceArrays:
583 #
584 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList
585 # internally
586 #
587 # Since: 2.5
588 ##
589 { 'struct': 'DummyForceArrays',
590 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
591
592 ##
593 # @NumaCpuOptions:
594 #
595 # Option "-numa cpu" overrides default cpu to node mapping. It
596 # accepts the same set of cpu properties as returned by
597 # query-hotpluggable-cpus[].props, where node-id could be used to
598 # override default node mapping.
599 #
600 # Since: 2.10
601 ##
602 { 'struct': 'NumaCpuOptions',
603 'base': 'CpuInstanceProperties',
604 'data' : {} }
605
606 ##
607 # @HmatLBMemoryHierarchy:
608 #
609 # The memory hierarchy in the System Locality Latency and Bandwidth
610 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
611 #
612 # For more information about @HmatLBMemoryHierarchy, see chapter
613 # 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
614 #
615 # @memory: the structure represents the memory performance
616 #
617 # @first-level: first level of memory side cache
618 #
619 # @second-level: second level of memory side cache
620 #
621 # @third-level: third level of memory side cache
622 #
623 # Since: 5.0
624 ##
625 { 'enum': 'HmatLBMemoryHierarchy',
626 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
627
628 ##
629 # @HmatLBDataType:
630 #
631 # Data type in the System Locality Latency and Bandwidth Information
632 # Structure of HMAT (Heterogeneous Memory Attribute Table)
633 #
634 # For more information about @HmatLBDataType, see chapter 5.2.27.4:
635 # Table 5-146: Field "Data Type" of ACPI 6.3 spec.
636 #
637 # @access-latency: access latency (nanoseconds)
638 #
639 # @read-latency: read latency (nanoseconds)
640 #
641 # @write-latency: write latency (nanoseconds)
642 #
643 # @access-bandwidth: access bandwidth (Bytes per second)
644 #
645 # @read-bandwidth: read bandwidth (Bytes per second)
646 #
647 # @write-bandwidth: write bandwidth (Bytes per second)
648 #
649 # Since: 5.0
650 ##
651 { 'enum': 'HmatLBDataType',
652 'data': [ 'access-latency', 'read-latency', 'write-latency',
653 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
654
655 ##
656 # @NumaHmatLBOptions:
657 #
658 # Set the system locality latency and bandwidth information between
659 # Initiator and Target proximity Domains.
660 #
661 # For more information about @NumaHmatLBOptions, see chapter 5.2.27.4:
662 # Table 5-146 of ACPI 6.3 spec.
663 #
664 # @initiator: the Initiator Proximity Domain.
665 #
666 # @target: the Target Proximity Domain.
667 #
668 # @hierarchy: the Memory Hierarchy. Indicates the performance of
669 # memory or side cache.
670 #
671 # @data-type: presents the type of data, access/read/write latency or
672 # hit latency.
673 #
674 # @latency: the value of latency from @initiator to @target proximity
675 # domain, the latency unit is "ns(nanosecond)".
676 #
677 # @bandwidth: the value of bandwidth between @initiator and @target
678 # proximity domain, the bandwidth unit is "Bytes per second".
679 #
680 # Since: 5.0
681 ##
682 { 'struct': 'NumaHmatLBOptions',
683 'data': {
684 'initiator': 'uint16',
685 'target': 'uint16',
686 'hierarchy': 'HmatLBMemoryHierarchy',
687 'data-type': 'HmatLBDataType',
688 '*latency': 'uint64',
689 '*bandwidth': 'size' }}
690
691 ##
692 # @HmatCacheAssociativity:
693 #
694 # Cache associativity in the Memory Side Cache Information Structure
695 # of HMAT
696 #
697 # For more information of @HmatCacheAssociativity, see chapter
698 # 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
699 #
700 # @none: None (no memory side cache in this proximity domain, or cache
701 # associativity unknown)
702 #
703 # @direct: Direct Mapped
704 #
705 # @complex: Complex Cache Indexing (implementation specific)
706 #
707 # Since: 5.0
708 ##
709 { 'enum': 'HmatCacheAssociativity',
710 'data': [ 'none', 'direct', 'complex' ] }
711
712 ##
713 # @HmatCacheWritePolicy:
714 #
715 # Cache write policy in the Memory Side Cache Information Structure of
716 # HMAT
717 #
718 # For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5:
719 # Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
720 #
721 # @none: None (no memory side cache in this proximity domain, or cache
722 # write policy unknown)
723 #
724 # @write-back: Write Back (WB)
725 #
726 # @write-through: Write Through (WT)
727 #
728 # Since: 5.0
729 ##
730 { 'enum': 'HmatCacheWritePolicy',
731 'data': [ 'none', 'write-back', 'write-through' ] }
732
733 ##
734 # @NumaHmatCacheOptions:
735 #
736 # Set the memory side cache information for a given memory domain.
737 #
738 # For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5:
739 # Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
740 #
741 # @node-id: the memory proximity domain to which the memory belongs.
742 #
743 # @size: the size of memory side cache in bytes.
744 #
745 # @level: the cache level described in this structure.
746 #
747 # @associativity: the cache associativity,
748 # none/direct-mapped/complex(complex cache indexing).
749 #
750 # @policy: the write policy, none/write-back/write-through.
751 #
752 # @line: the cache Line size in bytes.
753 #
754 # Since: 5.0
755 ##
756 { 'struct': 'NumaHmatCacheOptions',
757 'data': {
758 'node-id': 'uint32',
759 'size': 'size',
760 'level': 'uint8',
761 'associativity': 'HmatCacheAssociativity',
762 'policy': 'HmatCacheWritePolicy',
763 'line': 'uint16' }}
764
765 ##
766 # @memsave:
767 #
768 # Save a portion of guest memory to a file.
769 #
770 # @val: the virtual address of the guest to start from
771 #
772 # @size: the size of memory region to save
773 #
774 # @filename: the file to save the memory to as binary data
775 #
776 # @cpu-index: the index of the virtual CPU to use for translating the
777 # virtual address (defaults to CPU 0)
778 #
779 # Returns: Nothing on success
780 #
781 # Since: 0.14
782 #
783 # Notes: Errors were not reliably returned until 1.1
784 #
785 # Example:
786 #
787 # -> { "execute": "memsave",
788 # "arguments": { "val": 10,
789 # "size": 100,
790 # "filename": "/tmp/virtual-mem-dump" } }
791 # <- { "return": {} }
792 ##
793 { 'command': 'memsave',
794 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
795
796 ##
797 # @pmemsave:
798 #
799 # Save a portion of guest physical memory to a file.
800 #
801 # @val: the physical address of the guest to start from
802 #
803 # @size: the size of memory region to save
804 #
805 # @filename: the file to save the memory to as binary data
806 #
807 # Returns: Nothing on success
808 #
809 # Since: 0.14
810 #
811 # Notes: Errors were not reliably returned until 1.1
812 #
813 # Example:
814 #
815 # -> { "execute": "pmemsave",
816 # "arguments": { "val": 10,
817 # "size": 100,
818 # "filename": "/tmp/physical-mem-dump" } }
819 # <- { "return": {} }
820 ##
821 { 'command': 'pmemsave',
822 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
823
824 ##
825 # @Memdev:
826 #
827 # Information about memory backend
828 #
829 # @id: backend's ID if backend has 'id' property (since 2.9)
830 #
831 # @size: memory backend size
832 #
833 # @merge: whether memory merge support is enabled
834 #
835 # @dump: whether memory backend's memory is included in a core dump
836 #
837 # @prealloc: whether memory was preallocated
838 #
839 # @share: whether memory is private to QEMU or shared (since 6.1)
840 #
841 # @reserve: whether swap space (or huge pages) was reserved if
842 # applicable. This corresponds to the user configuration and not
843 # the actual behavior implemented in the OS to perform the
844 # reservation. For example, Linux will never reserve swap space
845 # for shared file mappings. (since 6.1)
846 #
847 # @host-nodes: host nodes for its memory policy
848 #
849 # @policy: memory policy of memory backend
850 #
851 # Since: 2.1
852 ##
853 { 'struct': 'Memdev',
854 'data': {
855 '*id': 'str',
856 'size': 'size',
857 'merge': 'bool',
858 'dump': 'bool',
859 'prealloc': 'bool',
860 'share': 'bool',
861 '*reserve': 'bool',
862 'host-nodes': ['uint16'],
863 'policy': 'HostMemPolicy' }}
864
865 ##
866 # @query-memdev:
867 #
868 # Returns information for all memory backends.
869 #
870 # Returns: a list of @Memdev.
871 #
872 # Since: 2.1
873 #
874 # Example:
875 #
876 # -> { "execute": "query-memdev" }
877 # <- { "return": [
878 # {
879 # "id": "mem1",
880 # "size": 536870912,
881 # "merge": false,
882 # "dump": true,
883 # "prealloc": false,
884 # "share": false,
885 # "host-nodes": [0, 1],
886 # "policy": "bind"
887 # },
888 # {
889 # "size": 536870912,
890 # "merge": false,
891 # "dump": true,
892 # "prealloc": true,
893 # "share": false,
894 # "host-nodes": [2, 3],
895 # "policy": "preferred"
896 # }
897 # ]
898 # }
899 ##
900 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
901
902 ##
903 # @CpuInstanceProperties:
904 #
905 # List of properties to be used for hotplugging a CPU instance, it
906 # should be passed by management with device_add command when a CPU is
907 # being hotplugged.
908 #
909 # Which members are optional and which mandatory depends on the
910 # architecture and board.
911 #
912 # For s390x see :ref:`cpu-topology-s390x`.
913 #
914 # The ids other than the node-id specify the position of the CPU
915 # within the CPU topology (as defined by the machine property "smp",
916 # thus see also type @SMPConfiguration)
917 #
918 # @node-id: NUMA node ID the CPU belongs to
919 #
920 # @drawer-id: drawer number within CPU topology the CPU belongs to
921 # (since 8.2)
922 #
923 # @book-id: book number within parent container the CPU belongs to
924 # (since 8.2)
925 #
926 # @socket-id: socket number within parent container the CPU belongs to
927 #
928 # @die-id: die number within the parent container the CPU belongs to
929 # (since 4.1)
930 #
931 # @cluster-id: cluster number within the parent container the CPU
932 # belongs to (since 7.1)
933 #
934 # @core-id: core number within the parent container the CPU
935 # belongs to
936 #
937 # @thread-id: thread number within the core the CPU belongs to
938 #
939 # Note: management should be prepared to pass through additional
940 # properties with device_add.
941 #
942 # Since: 2.7
943 ##
944 { 'struct': 'CpuInstanceProperties',
945 # Keep these in sync with the properties device_add accepts
946 'data': { '*node-id': 'int',
947 '*drawer-id': 'int',
948 '*book-id': 'int',
949 '*socket-id': 'int',
950 '*die-id': 'int',
951 '*cluster-id': 'int',
952 '*core-id': 'int',
953 '*thread-id': 'int'
954 }
955 }
956
957 ##
958 # @HotpluggableCPU:
959 #
960 # @type: CPU object type for usage with device_add command
961 #
962 # @props: list of properties to be used for hotplugging CPU
963 #
964 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU
965 # provides
966 #
967 # @qom-path: link to existing CPU object if CPU is present or omitted
968 # if CPU is not present.
969 #
970 # Since: 2.7
971 ##
972 { 'struct': 'HotpluggableCPU',
973 'data': { 'type': 'str',
974 'vcpus-count': 'int',
975 'props': 'CpuInstanceProperties',
976 '*qom-path': 'str'
977 }
978 }
979
980 ##
981 # @query-hotpluggable-cpus:
982 #
983 # TODO: Better documentation; currently there is none.
984 #
985 # Returns: a list of HotpluggableCPU objects.
986 #
987 # Since: 2.7
988 #
989 # Examples:
990 #
991 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu
992 # POWER8:
993 #
994 # -> { "execute": "query-hotpluggable-cpus" }
995 # <- {"return": [
996 # { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
997 # "vcpus-count": 1 },
998 # { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
999 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
1000 # ]}'
1001 #
1002 # For pc machine type started with -smp 1,maxcpus=2:
1003 #
1004 # -> { "execute": "query-hotpluggable-cpus" }
1005 # <- {"return": [
1006 # {
1007 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1008 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
1009 # },
1010 # {
1011 # "qom-path": "/machine/unattached/device[0]",
1012 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1013 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
1014 # }
1015 # ]}
1016 #
1017 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu
1018 # qemu (Since: 2.11):
1019 #
1020 # -> { "execute": "query-hotpluggable-cpus" }
1021 # <- {"return": [
1022 # {
1023 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
1024 # "props": { "core-id": 1 }
1025 # },
1026 # {
1027 # "qom-path": "/machine/unattached/device[0]",
1028 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
1029 # "props": { "core-id": 0 }
1030 # }
1031 # ]}
1032 ##
1033 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1034 'allow-preconfig': true }
1035
1036 ##
1037 # @set-numa-node:
1038 #
1039 # Runtime equivalent of '-numa' CLI option, available at preconfigure
1040 # stage to configure numa mapping before initializing machine.
1041 #
1042 # Since: 3.0
1043 ##
1044 { 'command': 'set-numa-node', 'boxed': true,
1045 'data': 'NumaOptions',
1046 'allow-preconfig': true
1047 }
1048
1049 ##
1050 # @balloon:
1051 #
1052 # Request the balloon driver to change its balloon size.
1053 #
1054 # @value: the target logical size of the VM in bytes. We can deduce
1055 # the size of the balloon using this formula:
1056 #
1057 # logical_vm_size = vm_ram_size - balloon_size
1058 #
1059 # From it we have: balloon_size = vm_ram_size - @value
1060 #
1061 # Returns:
1062 # - Nothing on success
1063 # - If the balloon driver is enabled but not functional because the
1064 # KVM kernel module cannot support it, KVMMissingCap
1065 # - If no balloon device is present, DeviceNotActive
1066 #
1067 # Notes: This command just issues a request to the guest. When it
1068 # returns, the balloon size may not have changed. A guest can
1069 # change the balloon size independent of this command.
1070 #
1071 # Since: 0.14
1072 #
1073 # Example:
1074 #
1075 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1076 # <- { "return": {} }
1077 #
1078 # With a 2.5GiB guest this command inflated the ballon to 3GiB.
1079 ##
1080 { 'command': 'balloon', 'data': {'value': 'int'} }
1081
1082 ##
1083 # @BalloonInfo:
1084 #
1085 # Information about the guest balloon device.
1086 #
1087 # @actual: the logical size of the VM in bytes Formula used:
1088 # logical_vm_size = vm_ram_size - balloon_size
1089 #
1090 # Since: 0.14
1091 ##
1092 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1093
1094 ##
1095 # @query-balloon:
1096 #
1097 # Return information about the balloon device.
1098 #
1099 # Returns:
1100 # - @BalloonInfo on success
1101 # - If the balloon driver is enabled but not functional because the
1102 # KVM kernel module cannot support it, KVMMissingCap
1103 # - If no balloon device is present, DeviceNotActive
1104 #
1105 # Since: 0.14
1106 #
1107 # Example:
1108 #
1109 # -> { "execute": "query-balloon" }
1110 # <- { "return": {
1111 # "actual": 1073741824
1112 # }
1113 # }
1114 ##
1115 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1116
1117 ##
1118 # @BALLOON_CHANGE:
1119 #
1120 # Emitted when the guest changes the actual BALLOON level. This value
1121 # is equivalent to the @actual field return by the 'query-balloon'
1122 # command
1123 #
1124 # @actual: the logical size of the VM in bytes Formula used:
1125 # logical_vm_size = vm_ram_size - balloon_size
1126 #
1127 # Note: this event is rate-limited.
1128 #
1129 # Since: 1.2
1130 #
1131 # Example:
1132 #
1133 # <- { "event": "BALLOON_CHANGE",
1134 # "data": { "actual": 944766976 },
1135 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1136 ##
1137 { 'event': 'BALLOON_CHANGE',
1138 'data': { 'actual': 'int' } }
1139
1140 ##
1141 # @MemoryInfo:
1142 #
1143 # Actual memory information in bytes.
1144 #
1145 # @base-memory: size of "base" memory specified with command line
1146 # option -m.
1147 #
1148 # @plugged-memory: size of memory that can be hot-unplugged. This
1149 # field is omitted if target doesn't support memory hotplug (i.e.
1150 # CONFIG_MEM_DEVICE not defined at build time).
1151 #
1152 # Since: 2.11
1153 ##
1154 { 'struct': 'MemoryInfo',
1155 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1156
1157 ##
1158 # @query-memory-size-summary:
1159 #
1160 # Return the amount of initially allocated and present hotpluggable
1161 # (if enabled) memory in bytes.
1162 #
1163 # Example:
1164 #
1165 # -> { "execute": "query-memory-size-summary" }
1166 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1167 #
1168 # Since: 2.11
1169 ##
1170 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1171
1172 ##
1173 # @PCDIMMDeviceInfo:
1174 #
1175 # PCDIMMDevice state information
1176 #
1177 # @id: device's ID
1178 #
1179 # @addr: physical address, where device is mapped
1180 #
1181 # @size: size of memory that the device provides
1182 #
1183 # @slot: slot number at which device is plugged in
1184 #
1185 # @node: NUMA node number where device is plugged in
1186 #
1187 # @memdev: memory backend linked with device
1188 #
1189 # @hotplugged: true if device was hotplugged
1190 #
1191 # @hotpluggable: true if device if could be added/removed while
1192 # machine is running
1193 #
1194 # Since: 2.1
1195 ##
1196 { 'struct': 'PCDIMMDeviceInfo',
1197 'data': { '*id': 'str',
1198 'addr': 'int',
1199 'size': 'int',
1200 'slot': 'int',
1201 'node': 'int',
1202 'memdev': 'str',
1203 'hotplugged': 'bool',
1204 'hotpluggable': 'bool'
1205 }
1206 }
1207
1208 ##
1209 # @VirtioPMEMDeviceInfo:
1210 #
1211 # VirtioPMEM state information
1212 #
1213 # @id: device's ID
1214 #
1215 # @memaddr: physical address in memory, where device is mapped
1216 #
1217 # @size: size of memory that the device provides
1218 #
1219 # @memdev: memory backend linked with device
1220 #
1221 # Since: 4.1
1222 ##
1223 { 'struct': 'VirtioPMEMDeviceInfo',
1224 'data': { '*id': 'str',
1225 'memaddr': 'size',
1226 'size': 'size',
1227 'memdev': 'str'
1228 }
1229 }
1230
1231 ##
1232 # @VirtioMEMDeviceInfo:
1233 #
1234 # VirtioMEMDevice state information
1235 #
1236 # @id: device's ID
1237 #
1238 # @memaddr: physical address in memory, where device is mapped
1239 #
1240 # @requested-size: the user requested size of the device
1241 #
1242 # @size: the (current) size of memory that the device provides
1243 #
1244 # @max-size: the maximum size of memory that the device can provide
1245 #
1246 # @block-size: the block size of memory that the device provides
1247 #
1248 # @node: NUMA node number where device is assigned to
1249 #
1250 # @memdev: memory backend linked with the region
1251 #
1252 # Since: 5.1
1253 ##
1254 { 'struct': 'VirtioMEMDeviceInfo',
1255 'data': { '*id': 'str',
1256 'memaddr': 'size',
1257 'requested-size': 'size',
1258 'size': 'size',
1259 'max-size': 'size',
1260 'block-size': 'size',
1261 'node': 'int',
1262 'memdev': 'str'
1263 }
1264 }
1265
1266 ##
1267 # @SgxEPCDeviceInfo:
1268 #
1269 # Sgx EPC state information
1270 #
1271 # @id: device's ID
1272 #
1273 # @memaddr: physical address in memory, where device is mapped
1274 #
1275 # @size: size of memory that the device provides
1276 #
1277 # @memdev: memory backend linked with device
1278 #
1279 # @node: the numa node (Since: 7.0)
1280 #
1281 # Since: 6.2
1282 ##
1283 { 'struct': 'SgxEPCDeviceInfo',
1284 'data': { '*id': 'str',
1285 'memaddr': 'size',
1286 'size': 'size',
1287 'node': 'int',
1288 'memdev': 'str'
1289 }
1290 }
1291
1292 ##
1293 # @MemoryDeviceInfoKind:
1294 #
1295 # @nvdimm: since 2.12
1296 #
1297 # @virtio-pmem: since 4.1
1298 #
1299 # @virtio-mem: since 5.1
1300 #
1301 # @sgx-epc: since 6.2.
1302 #
1303 # Since: 2.1
1304 ##
1305 { 'enum': 'MemoryDeviceInfoKind',
1306 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] }
1307
1308 ##
1309 # @PCDIMMDeviceInfoWrapper:
1310 #
1311 # Since: 2.1
1312 ##
1313 { 'struct': 'PCDIMMDeviceInfoWrapper',
1314 'data': { 'data': 'PCDIMMDeviceInfo' } }
1315
1316 ##
1317 # @VirtioPMEMDeviceInfoWrapper:
1318 #
1319 # Since: 2.1
1320 ##
1321 { 'struct': 'VirtioPMEMDeviceInfoWrapper',
1322 'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1323
1324 ##
1325 # @VirtioMEMDeviceInfoWrapper:
1326 #
1327 # Since: 2.1
1328 ##
1329 { 'struct': 'VirtioMEMDeviceInfoWrapper',
1330 'data': { 'data': 'VirtioMEMDeviceInfo' } }
1331
1332 ##
1333 # @SgxEPCDeviceInfoWrapper:
1334 #
1335 # Since: 6.2
1336 ##
1337 { 'struct': 'SgxEPCDeviceInfoWrapper',
1338 'data': { 'data': 'SgxEPCDeviceInfo' } }
1339
1340 ##
1341 # @MemoryDeviceInfo:
1342 #
1343 # Union containing information about a memory device
1344 #
1345 # Since: 2.1
1346 ##
1347 { 'union': 'MemoryDeviceInfo',
1348 'base': { 'type': 'MemoryDeviceInfoKind' },
1349 'discriminator': 'type',
1350 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1351 'nvdimm': 'PCDIMMDeviceInfoWrapper',
1352 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1353 'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1354 'sgx-epc': 'SgxEPCDeviceInfoWrapper'
1355 }
1356 }
1357
1358 ##
1359 # @SgxEPC:
1360 #
1361 # Sgx EPC cmdline information
1362 #
1363 # @memdev: memory backend linked with device
1364 #
1365 # @node: the numa node (Since: 7.0)
1366 #
1367 # Since: 6.2
1368 ##
1369 { 'struct': 'SgxEPC',
1370 'data': { 'memdev': 'str',
1371 'node': 'int'
1372 }
1373 }
1374
1375 ##
1376 # @SgxEPCProperties:
1377 #
1378 # SGX properties of machine types.
1379 #
1380 # @sgx-epc: list of ids of memory-backend-epc objects.
1381 #
1382 # Since: 6.2
1383 ##
1384 { 'struct': 'SgxEPCProperties',
1385 'data': { 'sgx-epc': ['SgxEPC'] }
1386 }
1387
1388 ##
1389 # @query-memory-devices:
1390 #
1391 # Lists available memory devices and their state
1392 #
1393 # Since: 2.1
1394 #
1395 # Example:
1396 #
1397 # -> { "execute": "query-memory-devices" }
1398 # <- { "return": [ { "data":
1399 # { "addr": 5368709120,
1400 # "hotpluggable": true,
1401 # "hotplugged": true,
1402 # "id": "d1",
1403 # "memdev": "/objects/memX",
1404 # "node": 0,
1405 # "size": 1073741824,
1406 # "slot": 0},
1407 # "type": "dimm"
1408 # } ] }
1409 ##
1410 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1411
1412 ##
1413 # @MEMORY_DEVICE_SIZE_CHANGE:
1414 #
1415 # Emitted when the size of a memory device changes. Only emitted for
1416 # memory devices that can actually change the size (e.g., virtio-mem
1417 # due to guest action).
1418 #
1419 # @id: device's ID
1420 #
1421 # @size: the new size of memory that the device provides
1422 #
1423 # @qom-path: path to the device object in the QOM tree (since 6.2)
1424 #
1425 # Note: this event is rate-limited.
1426 #
1427 # Since: 5.1
1428 #
1429 # Example:
1430 #
1431 # <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1432 # "data": { "id": "vm0", "size": 1073741824,
1433 # "qom-path": "/machine/unattached/device[2]" },
1434 # "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1435 ##
1436 { 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1437 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1438
1439 ##
1440 # @MEM_UNPLUG_ERROR:
1441 #
1442 # Emitted when memory hot unplug error occurs.
1443 #
1444 # @device: device name
1445 #
1446 # @msg: Informative message
1447 #
1448 # Features:
1449 #
1450 # @deprecated: This event is deprecated. Use
1451 # @DEVICE_UNPLUG_GUEST_ERROR instead.
1452 #
1453 # Since: 2.4
1454 #
1455 # Example:
1456 #
1457 # <- { "event": "MEM_UNPLUG_ERROR",
1458 # "data": { "device": "dimm1",
1459 # "msg": "acpi: device unplug for unsupported device"
1460 # },
1461 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1462 ##
1463 { 'event': 'MEM_UNPLUG_ERROR',
1464 'data': { 'device': 'str', 'msg': 'str' },
1465 'features': ['deprecated'] }
1466
1467 ##
1468 # @BootConfiguration:
1469 #
1470 # Schema for virtual machine boot configuration.
1471 #
1472 # @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1473 #
1474 # @once: Boot order to apply on first boot
1475 #
1476 # @menu: Whether to show a boot menu
1477 #
1478 # @splash: The name of the file to be passed to the firmware as logo
1479 # picture, if @menu is true.
1480 #
1481 # @splash-time: How long to show the logo picture, in milliseconds
1482 #
1483 # @reboot-timeout: Timeout before guest reboots after boot fails
1484 #
1485 # @strict: Whether to attempt booting from devices not included in the
1486 # boot order
1487 #
1488 # Since: 7.1
1489 ##
1490 { 'struct': 'BootConfiguration', 'data': {
1491 '*order': 'str',
1492 '*once': 'str',
1493 '*menu': 'bool',
1494 '*splash': 'str',
1495 '*splash-time': 'int',
1496 '*reboot-timeout': 'int',
1497 '*strict': 'bool' } }
1498
1499 ##
1500 # @SMPConfiguration:
1501 #
1502 # Schema for CPU topology configuration. A missing value lets QEMU
1503 # figure out a suitable value based on the ones that are provided.
1504 #
1505 # The members other than @cpus and @maxcpus define a topology of
1506 # containers.
1507 #
1508 # The ordering from highest/coarsest to lowest/finest is:
1509 # @drawers, @books, @sockets, @dies, @clusters, @cores, @threads.
1510 #
1511 # Different architectures support different subsets of topology
1512 # containers.
1513 #
1514 # For example, s390x does not have clusters and dies, and the socket
1515 # is the parent container of cores.
1516 #
1517 # @cpus: number of virtual CPUs in the virtual machine
1518 #
1519 # @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual
1520 # machine
1521 #
1522 # @drawers: number of drawers in the CPU topology (since 8.2)
1523 #
1524 # @books: number of books in the CPU topology (since 8.2)
1525 #
1526 # @sockets: number of sockets per parent container
1527 #
1528 # @dies: number of dies per parent container
1529 #
1530 # @clusters: number of clusters per parent container (since 7.0)
1531 #
1532 # @cores: number of cores per parent container
1533 #
1534 # @threads: number of threads per core
1535 #
1536 # Since: 6.1
1537 ##
1538 { 'struct': 'SMPConfiguration', 'data': {
1539 '*cpus': 'int',
1540 '*drawers': 'int',
1541 '*books': 'int',
1542 '*sockets': 'int',
1543 '*dies': 'int',
1544 '*clusters': 'int',
1545 '*cores': 'int',
1546 '*threads': 'int',
1547 '*maxcpus': 'int' } }
1548
1549 ##
1550 # @x-query-irq:
1551 #
1552 # Query interrupt statistics
1553 #
1554 # Features:
1555 #
1556 # @unstable: This command is meant for debugging.
1557 #
1558 # Returns: interrupt statistics
1559 #
1560 # Since: 6.2
1561 ##
1562 { 'command': 'x-query-irq',
1563 'returns': 'HumanReadableText',
1564 'features': [ 'unstable' ] }
1565
1566 ##
1567 # @x-query-jit:
1568 #
1569 # Query TCG compiler statistics
1570 #
1571 # Features:
1572 #
1573 # @unstable: This command is meant for debugging.
1574 #
1575 # Returns: TCG compiler statistics
1576 #
1577 # Since: 6.2
1578 ##
1579 { 'command': 'x-query-jit',
1580 'returns': 'HumanReadableText',
1581 'if': 'CONFIG_TCG',
1582 'features': [ 'unstable' ] }
1583
1584 ##
1585 # @x-query-numa:
1586 #
1587 # Query NUMA topology information
1588 #
1589 # Features:
1590 #
1591 # @unstable: This command is meant for debugging.
1592 #
1593 # Returns: topology information
1594 #
1595 # Since: 6.2
1596 ##
1597 { 'command': 'x-query-numa',
1598 'returns': 'HumanReadableText',
1599 'features': [ 'unstable' ] }
1600
1601 ##
1602 # @x-query-opcount:
1603 #
1604 # Query TCG opcode counters
1605 #
1606 # Features:
1607 #
1608 # @unstable: This command is meant for debugging.
1609 #
1610 # Returns: TCG opcode counters
1611 #
1612 # Since: 6.2
1613 ##
1614 { 'command': 'x-query-opcount',
1615 'returns': 'HumanReadableText',
1616 'if': 'CONFIG_TCG',
1617 'features': [ 'unstable' ] }
1618
1619 ##
1620 # @x-query-ramblock:
1621 #
1622 # Query system ramblock information
1623 #
1624 # Features:
1625 #
1626 # @unstable: This command is meant for debugging.
1627 #
1628 # Returns: system ramblock information
1629 #
1630 # Since: 6.2
1631 ##
1632 { 'command': 'x-query-ramblock',
1633 'returns': 'HumanReadableText',
1634 'features': [ 'unstable' ] }
1635
1636 ##
1637 # @x-query-rdma:
1638 #
1639 # Query RDMA state
1640 #
1641 # Features:
1642 #
1643 # @unstable: This command is meant for debugging.
1644 #
1645 # Returns: RDMA state
1646 #
1647 # Since: 6.2
1648 ##
1649 { 'command': 'x-query-rdma',
1650 'returns': 'HumanReadableText',
1651 'features': [ 'unstable' ] }
1652
1653 ##
1654 # @x-query-roms:
1655 #
1656 # Query information on the registered ROMS
1657 #
1658 # Features:
1659 #
1660 # @unstable: This command is meant for debugging.
1661 #
1662 # Returns: registered ROMs
1663 #
1664 # Since: 6.2
1665 ##
1666 { 'command': 'x-query-roms',
1667 'returns': 'HumanReadableText',
1668 'features': [ 'unstable' ] }
1669
1670 ##
1671 # @x-query-usb:
1672 #
1673 # Query information on the USB devices
1674 #
1675 # Features:
1676 #
1677 # @unstable: This command is meant for debugging.
1678 #
1679 # Returns: USB device information
1680 #
1681 # Since: 6.2
1682 ##
1683 { 'command': 'x-query-usb',
1684 'returns': 'HumanReadableText',
1685 'features': [ 'unstable' ] }
1686
1687 ##
1688 # @SmbiosEntryPointType:
1689 #
1690 # @32: SMBIOS version 2.1 (32-bit) Entry Point
1691 #
1692 # @64: SMBIOS version 3.0 (64-bit) Entry Point
1693 #
1694 # Since: 7.0
1695 ##
1696 { 'enum': 'SmbiosEntryPointType',
1697 'data': [ '32', '64' ] }
1698
1699 ##
1700 # @MemorySizeConfiguration:
1701 #
1702 # Schema for memory size configuration.
1703 #
1704 # @size: memory size in bytes
1705 #
1706 # @max-size: maximum hotpluggable memory size in bytes
1707 #
1708 # @slots: number of available memory slots for hotplug
1709 #
1710 # Since: 7.1
1711 ##
1712 { 'struct': 'MemorySizeConfiguration', 'data': {
1713 '*size': 'size',
1714 '*max-size': 'size',
1715 '*slots': 'uint64' } }
1716
1717 ##
1718 # @dumpdtb:
1719 #
1720 # Save the FDT in dtb format.
1721 #
1722 # @filename: name of the dtb file to be created
1723 #
1724 # Since: 7.2
1725 #
1726 # Example:
1727 #
1728 # -> { "execute": "dumpdtb" }
1729 # "arguments": { "filename": "fdt.dtb" } }
1730 # <- { "return": {} }
1731 ##
1732 { 'command': 'dumpdtb',
1733 'data': { 'filename': 'str' },
1734 'if': 'CONFIG_FDT' }