]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/migration.json
Merge tag 'migration-20231031-pull-request' of https://gitlab.com/juan.quintela/qemu...
[mirror_qemu.git] / qapi / migration.json
1 # -*- Mode: Python -*-
2 # vim: filetype=python
3 #
4
5 ##
6 # = Migration
7 ##
8
9 { 'include': 'common.json' }
10 { 'include': 'sockets.json' }
11
12 ##
13 # @MigrationStats:
14 #
15 # Detailed migration status.
16 #
17 # @transferred: amount of bytes already transferred to the target VM
18 #
19 # @remaining: amount of bytes remaining to be transferred to the
20 # target VM
21 #
22 # @total: total amount of bytes involved in the migration process
23 #
24 # @duplicate: number of duplicate (zero) pages (since 1.2)
25 #
26 # @skipped: number of skipped zero pages. Always zero, only provided for
27 # compatibility (since 1.5)
28 #
29 # @normal: number of normal pages (since 1.2)
30 #
31 # @normal-bytes: number of normal bytes sent (since 1.2)
32 #
33 # @dirty-pages-rate: number of pages dirtied by second by the guest
34 # (since 1.3)
35 #
36 # @mbps: throughput in megabits/sec. (since 1.6)
37 #
38 # @dirty-sync-count: number of times that dirty ram was synchronized
39 # (since 2.1)
40 #
41 # @postcopy-requests: The number of page requests received from the
42 # destination (since 2.7)
43 #
44 # @page-size: The number of bytes per page for the various page-based
45 # statistics (since 2.10)
46 #
47 # @multifd-bytes: The number of bytes sent through multifd (since 3.0)
48 #
49 # @pages-per-second: the number of memory pages transferred per second
50 # (Since 4.0)
51 #
52 # @precopy-bytes: The number of bytes sent in the pre-copy phase
53 # (since 7.0).
54 #
55 # @downtime-bytes: The number of bytes sent while the guest is paused
56 # (since 7.0).
57 #
58 # @postcopy-bytes: The number of bytes sent during the post-copy phase
59 # (since 7.0).
60 #
61 # @dirty-sync-missed-zero-copy: Number of times dirty RAM
62 # synchronization could not avoid copying dirty pages. This is
63 # between 0 and @dirty-sync-count * @multifd-channels. (since
64 # 7.1)
65 #
66 # Features:
67 #
68 # @deprecated: Member @skipped is always zero since 1.5.3
69 #
70 # Since: 0.14
71 #
72 ##
73 { 'struct': 'MigrationStats',
74 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
75 'duplicate': 'int',
76 'skipped': { 'type': 'int', 'features': [ 'deprecated' ] },
77 'normal': 'int',
78 'normal-bytes': 'int', 'dirty-pages-rate': 'int',
79 'mbps': 'number', 'dirty-sync-count': 'int',
80 'postcopy-requests': 'int', 'page-size': 'int',
81 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64',
82 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64',
83 'postcopy-bytes': 'uint64',
84 'dirty-sync-missed-zero-copy': 'uint64' } }
85
86 ##
87 # @XBZRLECacheStats:
88 #
89 # Detailed XBZRLE migration cache statistics
90 #
91 # @cache-size: XBZRLE cache size
92 #
93 # @bytes: amount of bytes already transferred to the target VM
94 #
95 # @pages: amount of pages transferred to the target VM
96 #
97 # @cache-miss: number of cache miss
98 #
99 # @cache-miss-rate: rate of cache miss (since 2.1)
100 #
101 # @encoding-rate: rate of encoded bytes (since 5.1)
102 #
103 # @overflow: number of overflows
104 #
105 # Since: 1.2
106 ##
107 { 'struct': 'XBZRLECacheStats',
108 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
109 'cache-miss': 'int', 'cache-miss-rate': 'number',
110 'encoding-rate': 'number', 'overflow': 'int' } }
111
112 ##
113 # @CompressionStats:
114 #
115 # Detailed migration compression statistics
116 #
117 # @pages: amount of pages compressed and transferred to the target VM
118 #
119 # @busy: count of times that no free thread was available to compress
120 # data
121 #
122 # @busy-rate: rate of thread busy
123 #
124 # @compressed-size: amount of bytes after compression
125 #
126 # @compression-rate: rate of compressed size
127 #
128 # Since: 3.1
129 ##
130 { 'struct': 'CompressionStats',
131 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
132 'compressed-size': 'int', 'compression-rate': 'number' } }
133
134 ##
135 # @MigrationStatus:
136 #
137 # An enumeration of migration status.
138 #
139 # @none: no migration has ever happened.
140 #
141 # @setup: migration process has been initiated.
142 #
143 # @cancelling: in the process of cancelling migration.
144 #
145 # @cancelled: cancelling migration is finished.
146 #
147 # @active: in the process of doing migration.
148 #
149 # @postcopy-active: like active, but now in postcopy mode. (since
150 # 2.5)
151 #
152 # @postcopy-paused: during postcopy but paused. (since 3.0)
153 #
154 # @postcopy-recover: trying to recover from a paused postcopy. (since
155 # 3.0)
156 #
157 # @completed: migration is finished.
158 #
159 # @failed: some error occurred during migration process.
160 #
161 # @colo: VM is in the process of fault tolerance, VM can not get into
162 # this state unless colo capability is enabled for migration.
163 # (since 2.8)
164 #
165 # @pre-switchover: Paused before device serialisation. (since 2.11)
166 #
167 # @device: During device serialisation when pause-before-switchover is
168 # enabled (since 2.11)
169 #
170 # @wait-unplug: wait for device unplug request by guest OS to be
171 # completed. (since 4.2)
172 #
173 # Since: 2.3
174 ##
175 { 'enum': 'MigrationStatus',
176 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
177 'active', 'postcopy-active', 'postcopy-paused',
178 'postcopy-recover', 'completed', 'failed', 'colo',
179 'pre-switchover', 'device', 'wait-unplug' ] }
180 ##
181 # @VfioStats:
182 #
183 # Detailed VFIO devices migration statistics
184 #
185 # @transferred: amount of bytes transferred to the target VM by VFIO
186 # devices
187 #
188 # Since: 5.2
189 ##
190 { 'struct': 'VfioStats',
191 'data': {'transferred': 'int' } }
192
193 ##
194 # @MigrationInfo:
195 #
196 # Information about current migration process.
197 #
198 # @status: @MigrationStatus describing the current migration status.
199 # If this field is not returned, no migration process has been
200 # initiated
201 #
202 # @ram: @MigrationStats containing detailed migration status, only
203 # returned if status is 'active' or 'completed'(since 1.2)
204 #
205 # @disk: @MigrationStats containing detailed disk migration status,
206 # only returned if status is 'active' and it is a block migration
207 #
208 # @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
209 # migration statistics, only returned if XBZRLE feature is on and
210 # status is 'active' or 'completed' (since 1.2)
211 #
212 # @total-time: total amount of milliseconds since migration started.
213 # If migration has ended, it returns the total migration time.
214 # (since 1.2)
215 #
216 # @downtime: only present when migration finishes correctly total
217 # downtime in milliseconds for the guest. (since 1.3)
218 #
219 # @expected-downtime: only present while migration is active expected
220 # downtime in milliseconds for the guest in last walk of the dirty
221 # bitmap. (since 1.3)
222 #
223 # @setup-time: amount of setup time in milliseconds *before* the
224 # iterations begin but *after* the QMP command is issued. This is
225 # designed to provide an accounting of any activities (such as
226 # RDMA pinning) which may be expensive, but do not actually occur
227 # during the iterative migration rounds themselves. (since 1.6)
228 #
229 # @cpu-throttle-percentage: percentage of time guest cpus are being
230 # throttled during auto-converge. This is only present when
231 # auto-converge has started throttling guest cpus. (Since 2.7)
232 #
233 # @error-desc: the human readable error description string. Clients
234 # should not attempt to parse the error strings. (Since 2.7)
235 #
236 # @postcopy-blocktime: total time when all vCPU were blocked during
237 # postcopy live migration. This is only present when the
238 # postcopy-blocktime migration capability is enabled. (Since 3.0)
239 #
240 # @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.
241 # This is only present when the postcopy-blocktime migration
242 # capability is enabled. (Since 3.0)
243 #
244 # @compression: migration compression statistics, only returned if
245 # compression feature is on and status is 'active' or 'completed'
246 # (Since 3.1)
247 #
248 # @socket-address: Only used for tcp, to know what the real port is
249 # (Since 4.0)
250 #
251 # @vfio: @VfioStats containing detailed VFIO devices migration
252 # statistics, only returned if VFIO device is present, migration
253 # is supported by all VFIO devices and status is 'active' or
254 # 'completed' (since 5.2)
255 #
256 # @blocked-reasons: A list of reasons an outgoing migration is
257 # blocked. Present and non-empty when migration is blocked.
258 # (since 6.0)
259 #
260 # @dirty-limit-throttle-time-per-round: Maximum throttle time
261 # (in microseconds) of virtual CPUs each dirty ring full round,
262 # which shows how MigrationCapability dirty-limit affects the
263 # guest during live migration. (Since 8.1)
264 #
265 # @dirty-limit-ring-full-time: Estimated average dirty ring full time
266 # (in microseconds) for each dirty ring full round. The value
267 # equals the dirty ring memory size divided by the average dirty
268 # page rate of the virtual CPU, which can be used to observe the
269 # average memory load of the virtual CPU indirectly. Note that
270 # zero means guest doesn't dirty memory. (Since 8.1)
271 #
272 # Features:
273 #
274 # @deprecated: Member @disk is deprecated because block migration is.
275 # Member @compression is deprecated because it is unreliable and
276 # untested. It is recommended to use multifd migration, which
277 # offers an alternative compression implementation that is
278 # reliable and tested.
279 #
280 # Since: 0.14
281 ##
282 { 'struct': 'MigrationInfo',
283 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
284 '*disk': { 'type': 'MigrationStats', 'features': [ 'deprecated' ] },
285 '*vfio': 'VfioStats',
286 '*xbzrle-cache': 'XBZRLECacheStats',
287 '*total-time': 'int',
288 '*expected-downtime': 'int',
289 '*downtime': 'int',
290 '*setup-time': 'int',
291 '*cpu-throttle-percentage': 'int',
292 '*error-desc': 'str',
293 '*blocked-reasons': ['str'],
294 '*postcopy-blocktime': 'uint32',
295 '*postcopy-vcpu-blocktime': ['uint32'],
296 '*compression': { 'type': 'CompressionStats', 'features': [ 'deprecated' ] },
297 '*socket-address': ['SocketAddress'],
298 '*dirty-limit-throttle-time-per-round': 'uint64',
299 '*dirty-limit-ring-full-time': 'uint64'} }
300
301 ##
302 # @query-migrate:
303 #
304 # Returns information about current migration process. If migration
305 # is active there will be another json-object with RAM migration
306 # status and if block migration is active another one with block
307 # migration status.
308 #
309 # Returns: @MigrationInfo
310 #
311 # Since: 0.14
312 #
313 # Examples:
314 #
315 # 1. Before the first migration
316 #
317 # -> { "execute": "query-migrate" }
318 # <- { "return": {} }
319 #
320 # 2. Migration is done and has succeeded
321 #
322 # -> { "execute": "query-migrate" }
323 # <- { "return": {
324 # "status": "completed",
325 # "total-time":12345,
326 # "setup-time":12345,
327 # "downtime":12345,
328 # "ram":{
329 # "transferred":123,
330 # "remaining":123,
331 # "total":246,
332 # "duplicate":123,
333 # "normal":123,
334 # "normal-bytes":123456,
335 # "dirty-sync-count":15
336 # }
337 # }
338 # }
339 #
340 # 3. Migration is done and has failed
341 #
342 # -> { "execute": "query-migrate" }
343 # <- { "return": { "status": "failed" } }
344 #
345 # 4. Migration is being performed and is not a block migration:
346 #
347 # -> { "execute": "query-migrate" }
348 # <- {
349 # "return":{
350 # "status":"active",
351 # "total-time":12345,
352 # "setup-time":12345,
353 # "expected-downtime":12345,
354 # "ram":{
355 # "transferred":123,
356 # "remaining":123,
357 # "total":246,
358 # "duplicate":123,
359 # "normal":123,
360 # "normal-bytes":123456,
361 # "dirty-sync-count":15
362 # }
363 # }
364 # }
365 #
366 # 5. Migration is being performed and is a block migration:
367 #
368 # -> { "execute": "query-migrate" }
369 # <- {
370 # "return":{
371 # "status":"active",
372 # "total-time":12345,
373 # "setup-time":12345,
374 # "expected-downtime":12345,
375 # "ram":{
376 # "total":1057024,
377 # "remaining":1053304,
378 # "transferred":3720,
379 # "duplicate":123,
380 # "normal":123,
381 # "normal-bytes":123456,
382 # "dirty-sync-count":15
383 # },
384 # "disk":{
385 # "total":20971520,
386 # "remaining":20880384,
387 # "transferred":91136
388 # }
389 # }
390 # }
391 #
392 # 6. Migration is being performed and XBZRLE is active:
393 #
394 # -> { "execute": "query-migrate" }
395 # <- {
396 # "return":{
397 # "status":"active",
398 # "total-time":12345,
399 # "setup-time":12345,
400 # "expected-downtime":12345,
401 # "ram":{
402 # "total":1057024,
403 # "remaining":1053304,
404 # "transferred":3720,
405 # "duplicate":10,
406 # "normal":3333,
407 # "normal-bytes":3412992,
408 # "dirty-sync-count":15
409 # },
410 # "xbzrle-cache":{
411 # "cache-size":67108864,
412 # "bytes":20971520,
413 # "pages":2444343,
414 # "cache-miss":2244,
415 # "cache-miss-rate":0.123,
416 # "encoding-rate":80.1,
417 # "overflow":34434
418 # }
419 # }
420 # }
421 ##
422 { 'command': 'query-migrate', 'returns': 'MigrationInfo' }
423
424 ##
425 # @MigrationCapability:
426 #
427 # Migration capabilities enumeration
428 #
429 # @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length
430 # Encoding). This feature allows us to minimize migration traffic
431 # for certain work loads, by sending compressed difference of the
432 # pages
433 #
434 # @rdma-pin-all: Controls whether or not the entire VM memory
435 # footprint is mlock()'d on demand or all at once. Refer to
436 # docs/rdma.txt for usage. Disabled by default. (since 2.0)
437 #
438 # @zero-blocks: During storage migration encode blocks of zeroes
439 # efficiently. This essentially saves 1MB of zeroes per block on
440 # the wire. Enabling requires source and target VM to support
441 # this feature. To enable it is sufficient to enable the
442 # capability on the source VM. The feature is disabled by default.
443 # (since 1.6)
444 #
445 # @compress: Use multiple compression threads to accelerate live
446 # migration. This feature can help to reduce the migration
447 # traffic, by sending compressed pages. Please note that if
448 # compress and xbzrle are both on, compress only takes effect in
449 # the ram bulk stage, after that, it will be disabled and only
450 # xbzrle takes effect, this can help to minimize migration
451 # traffic. The feature is disabled by default. (since 2.4)
452 #
453 # @events: generate events for each migration state change (since 2.4)
454 #
455 # @auto-converge: If enabled, QEMU will automatically throttle down
456 # the guest to speed up convergence of RAM migration. (since 1.6)
457 #
458 # @postcopy-ram: Start executing on the migration target before all of
459 # RAM has been migrated, pulling the remaining pages along as
460 # needed. The capacity must have the same setting on both source
461 # and target or migration will not even start. NOTE: If the
462 # migration fails during postcopy the VM will fail. (since 2.6)
463 #
464 # @x-colo: If enabled, migration will never end, and the state of the
465 # VM on the primary side will be migrated continuously to the VM
466 # on secondary side, this process is called COarse-Grain LOck
467 # Stepping (COLO) for Non-stop Service. (since 2.8)
468 #
469 # @release-ram: if enabled, qemu will free the migrated ram pages on
470 # the source during postcopy-ram migration. (since 2.9)
471 #
472 # @block: If enabled, QEMU will also migrate the contents of all block
473 # devices. Default is disabled. A possible alternative uses
474 # mirror jobs to a builtin NBD server on the destination, which
475 # offers more flexibility. (Since 2.10)
476 #
477 # @return-path: If enabled, migration will use the return path even
478 # for precopy. (since 2.10)
479 #
480 # @pause-before-switchover: Pause outgoing migration before
481 # serialising device state and before disabling block IO (since
482 # 2.11)
483 #
484 # @multifd: Use more than one fd for migration (since 4.0)
485 #
486 # @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
487 # (since 2.12)
488 #
489 # @postcopy-blocktime: Calculate downtime for postcopy live migration
490 # (since 3.0)
491 #
492 # @late-block-activate: If enabled, the destination will not activate
493 # block devices (and thus take locks) immediately at the end of
494 # migration. (since 3.0)
495 #
496 # @x-ignore-shared: If enabled, QEMU will not migrate shared memory
497 # that is accessible on the destination machine. (since 4.0)
498 #
499 # @validate-uuid: Send the UUID of the source to allow the destination
500 # to ensure it is the same. (since 4.2)
501 #
502 # @background-snapshot: If enabled, the migration stream will be a
503 # snapshot of the VM exactly at the point when the migration
504 # procedure starts. The VM RAM is saved with running VM. (since
505 # 6.0)
506 #
507 # @zero-copy-send: Controls behavior on sending memory pages on
508 # migration. When true, enables a zero-copy mechanism for sending
509 # memory pages, if host supports it. Requires that QEMU be
510 # permitted to use locked memory for guest RAM pages. (since 7.1)
511 #
512 # @postcopy-preempt: If enabled, the migration process will allow
513 # postcopy requests to preempt precopy stream, so postcopy
514 # requests will be handled faster. This is a performance feature
515 # and should not affect the correctness of postcopy migration.
516 # (since 7.1)
517 #
518 # @switchover-ack: If enabled, migration will not stop the source VM
519 # and complete the migration until an ACK is received from the
520 # destination that it's OK to do so. Exactly when this ACK is
521 # sent depends on the migrated devices that use this feature. For
522 # example, a device can use it to make sure some of its data is
523 # sent and loaded in the destination before doing switchover.
524 # This can reduce downtime if devices that support this capability
525 # are present. 'return-path' capability must be enabled to use
526 # it. (since 8.1)
527 #
528 # @dirty-limit: If enabled, migration will throttle vCPUs as needed to
529 # keep their dirty page rate within @vcpu-dirty-limit. This can
530 # improve responsiveness of large guests during live migration,
531 # and can result in more stable read performance. Requires KVM
532 # with accelerator property "dirty-ring-size" set. (Since 8.1)
533 #
534 # Features:
535 #
536 # @deprecated: Member @block is deprecated. Use blockdev-mirror with
537 # NBD instead. Member @compression is deprecated because it is
538 # unreliable and untested. It is recommended to use multifd
539 # migration, which offers an alternative compression
540 # implementation that is reliable and tested.
541 #
542 # @unstable: Members @x-colo and @x-ignore-shared are experimental.
543 #
544 # Since: 1.2
545 ##
546 { 'enum': 'MigrationCapability',
547 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
548 { 'name': 'compress', 'features': [ 'deprecated' ] },
549 'events', 'postcopy-ram',
550 { 'name': 'x-colo', 'features': [ 'unstable' ] },
551 'release-ram',
552 { 'name': 'block', 'features': [ 'deprecated' ] },
553 'return-path', 'pause-before-switchover', 'multifd',
554 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
555 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
556 'validate-uuid', 'background-snapshot',
557 'zero-copy-send', 'postcopy-preempt', 'switchover-ack',
558 'dirty-limit'] }
559
560 ##
561 # @MigrationCapabilityStatus:
562 #
563 # Migration capability information
564 #
565 # @capability: capability enum
566 #
567 # @state: capability state bool
568 #
569 # Since: 1.2
570 ##
571 { 'struct': 'MigrationCapabilityStatus',
572 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } }
573
574 ##
575 # @migrate-set-capabilities:
576 #
577 # Enable/Disable the following migration capabilities (like xbzrle)
578 #
579 # @capabilities: json array of capability modifications to make
580 #
581 # Since: 1.2
582 #
583 # Example:
584 #
585 # -> { "execute": "migrate-set-capabilities" , "arguments":
586 # { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
587 # <- { "return": {} }
588 ##
589 { 'command': 'migrate-set-capabilities',
590 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
591
592 ##
593 # @query-migrate-capabilities:
594 #
595 # Returns information about the current migration capabilities status
596 #
597 # Returns: @MigrationCapabilityStatus
598 #
599 # Since: 1.2
600 #
601 # Example:
602 #
603 # -> { "execute": "query-migrate-capabilities" }
604 # <- { "return": [
605 # {"state": false, "capability": "xbzrle"},
606 # {"state": false, "capability": "rdma-pin-all"},
607 # {"state": false, "capability": "auto-converge"},
608 # {"state": false, "capability": "zero-blocks"},
609 # {"state": false, "capability": "compress"},
610 # {"state": true, "capability": "events"},
611 # {"state": false, "capability": "postcopy-ram"},
612 # {"state": false, "capability": "x-colo"}
613 # ]}
614 ##
615 { 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
616
617 ##
618 # @MultiFDCompression:
619 #
620 # An enumeration of multifd compression methods.
621 #
622 # @none: no compression.
623 #
624 # @zlib: use zlib compression method.
625 #
626 # @zstd: use zstd compression method.
627 #
628 # Since: 5.0
629 ##
630 { 'enum': 'MultiFDCompression',
631 'data': [ 'none', 'zlib',
632 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
633
634 ##
635 # @BitmapMigrationBitmapAliasTransform:
636 #
637 # @persistent: If present, the bitmap will be made persistent or
638 # transient depending on this parameter.
639 #
640 # Since: 6.0
641 ##
642 { 'struct': 'BitmapMigrationBitmapAliasTransform',
643 'data': {
644 '*persistent': 'bool'
645 } }
646
647 ##
648 # @BitmapMigrationBitmapAlias:
649 #
650 # @name: The name of the bitmap.
651 #
652 # @alias: An alias name for migration (for example the bitmap name on
653 # the opposite site).
654 #
655 # @transform: Allows the modification of the migrated bitmap. (since
656 # 6.0)
657 #
658 # Since: 5.2
659 ##
660 { 'struct': 'BitmapMigrationBitmapAlias',
661 'data': {
662 'name': 'str',
663 'alias': 'str',
664 '*transform': 'BitmapMigrationBitmapAliasTransform'
665 } }
666
667 ##
668 # @BitmapMigrationNodeAlias:
669 #
670 # Maps a block node name and the bitmaps it has to aliases for dirty
671 # bitmap migration.
672 #
673 # @node-name: A block node name.
674 #
675 # @alias: An alias block node name for migration (for example the node
676 # name on the opposite site).
677 #
678 # @bitmaps: Mappings for the bitmaps on this node.
679 #
680 # Since: 5.2
681 ##
682 { 'struct': 'BitmapMigrationNodeAlias',
683 'data': {
684 'node-name': 'str',
685 'alias': 'str',
686 'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
687 } }
688
689 ##
690 # @MigrationParameter:
691 #
692 # Migration parameters enumeration
693 #
694 # @announce-initial: Initial delay (in milliseconds) before sending
695 # the first announce (Since 4.0)
696 #
697 # @announce-max: Maximum delay (in milliseconds) between packets in
698 # the announcement (Since 4.0)
699 #
700 # @announce-rounds: Number of self-announce packets sent after
701 # migration (Since 4.0)
702 #
703 # @announce-step: Increase in delay (in milliseconds) between
704 # subsequent packets in the announcement (Since 4.0)
705 #
706 # @compress-level: Set the compression level to be used in live
707 # migration, the compression level is an integer between 0 and 9,
708 # where 0 means no compression, 1 means the best compression
709 # speed, and 9 means best compression ratio which will consume
710 # more CPU.
711 #
712 # @compress-threads: Set compression thread count to be used in live
713 # migration, the compression thread count is an integer between 1
714 # and 255.
715 #
716 # @compress-wait-thread: Controls behavior when all compression
717 # threads are currently busy. If true (default), wait for a free
718 # compression thread to become available; otherwise, send the page
719 # uncompressed. (Since 3.1)
720 #
721 # @decompress-threads: Set decompression thread count to be used in
722 # live migration, the decompression thread count is an integer
723 # between 1 and 255. Usually, decompression is at least 4 times as
724 # fast as compression, so set the decompress-threads to the number
725 # about 1/4 of compress-threads is adequate.
726 #
727 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and
728 # bytes_xfer_period to trigger throttling. It is expressed as
729 # percentage. The default value is 50. (Since 5.0)
730 #
731 # @cpu-throttle-initial: Initial percentage of time guest cpus are
732 # throttled when migration auto-converge is activated. The
733 # default value is 20. (Since 2.7)
734 #
735 # @cpu-throttle-increment: throttle percentage increase each time
736 # auto-converge detects that migration is not making progress.
737 # The default value is 10. (Since 2.7)
738 #
739 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
740 # the tail stage of throttling, the Guest is very sensitive to CPU
741 # percentage while the @cpu-throttle -increment is excessive
742 # usually at tail stage. If this parameter is true, we will
743 # compute the ideal CPU percentage used by the Guest, which may
744 # exactly make the dirty rate match the dirty rate threshold.
745 # Then we will choose a smaller throttle increment between the one
746 # specified by @cpu-throttle-increment and the one generated by
747 # ideal CPU percentage. Therefore, it is compatible to
748 # traditional throttling, meanwhile the throttle increment won't
749 # be excessive at tail stage. The default value is false. (Since
750 # 5.1)
751 #
752 # @tls-creds: ID of the 'tls-creds' object that provides credentials
753 # for establishing a TLS connection over the migration data
754 # channel. On the outgoing side of the migration, the credentials
755 # must be for a 'client' endpoint, while for the incoming side the
756 # credentials must be for a 'server' endpoint. Setting this will
757 # enable TLS for all migrations. The default is unset, resulting
758 # in unsecured migration at the QEMU level. (Since 2.7)
759 #
760 # @tls-hostname: hostname of the target host for the migration. This
761 # is required when using x509 based TLS credentials and the
762 # migration URI does not already include a hostname. For example
763 # if using fd: or exec: based migration, the hostname must be
764 # provided so that the server's x509 certificate identity can be
765 # validated. (Since 2.7)
766 #
767 # @tls-authz: ID of the 'authz' object subclass that provides access
768 # control checking of the TLS x509 certificate distinguished name.
769 # This object is only resolved at time of use, so can be deleted
770 # and recreated on the fly while the migration server is active.
771 # If missing, it will default to denying access (Since 4.0)
772 #
773 # @max-bandwidth: to set maximum speed for migration. maximum speed
774 # in bytes per second. (Since 2.8)
775 #
776 # @avail-switchover-bandwidth: to set the available bandwidth that
777 # migration can use during switchover phase. NOTE! This does not
778 # limit the bandwidth during switchover, but only for calculations when
779 # making decisions to switchover. By default, this value is zero,
780 # which means QEMU will estimate the bandwidth automatically. This can
781 # be set when the estimated value is not accurate, while the user is
782 # able to guarantee such bandwidth is available when switching over.
783 # When specified correctly, this can make the switchover decision much
784 # more accurate. (Since 8.2)
785 #
786 # @downtime-limit: set maximum tolerated downtime for migration.
787 # maximum downtime in milliseconds (Since 2.8)
788 #
789 # @x-checkpoint-delay: The delay time (in ms) between two COLO
790 # checkpoints in periodic mode. (Since 2.8)
791 #
792 # @block-incremental: Affects how much storage is migrated when the
793 # block migration capability is enabled. When false, the entire
794 # storage backing chain is migrated into a flattened image at the
795 # destination; when true, only the active qcow2 layer is migrated
796 # and the destination must already have access to the same backing
797 # chain as was used on the source. (since 2.10)
798 #
799 # @multifd-channels: Number of channels used to migrate data in
800 # parallel. This is the same number that the number of sockets
801 # used for migration. The default value is 2 (since 4.0)
802 #
803 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
804 # needs to be a multiple of the target page size and a power of 2
805 # (Since 2.11)
806 #
807 # @max-postcopy-bandwidth: Background transfer bandwidth during
808 # postcopy. Defaults to 0 (unlimited). In bytes per second.
809 # (Since 3.0)
810 #
811 # @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99.
812 # (Since 3.1)
813 #
814 # @multifd-compression: Which compression method to use. Defaults to
815 # none. (Since 5.0)
816 #
817 # @multifd-zlib-level: Set the compression level to be used in live
818 # migration, the compression level is an integer between 0 and 9,
819 # where 0 means no compression, 1 means the best compression
820 # speed, and 9 means best compression ratio which will consume
821 # more CPU. Defaults to 1. (Since 5.0)
822 #
823 # @multifd-zstd-level: Set the compression level to be used in live
824 # migration, the compression level is an integer between 0 and 20,
825 # where 0 means no compression, 1 means the best compression
826 # speed, and 20 means best compression ratio which will consume
827 # more CPU. Defaults to 1. (Since 5.0)
828 #
829 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
830 # aliases for the purpose of dirty bitmap migration. Such aliases
831 # may for example be the corresponding names on the opposite site.
832 # The mapping must be one-to-one, but not necessarily complete: On
833 # the source, unmapped bitmaps and all bitmaps on unmapped nodes
834 # will be ignored. On the destination, encountering an unmapped
835 # alias in the incoming migration stream will result in a report,
836 # and all further bitmap migration data will then be discarded.
837 # Note that the destination does not know about bitmaps it does
838 # not receive, so there is no limitation or requirement regarding
839 # the number of bitmaps received, or how they are named, or on
840 # which nodes they are placed. By default (when this parameter
841 # has never been set), bitmap names are mapped to themselves.
842 # Nodes are mapped to their block device name if there is one, and
843 # to their node name otherwise. (Since 5.2)
844 #
845 # @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
846 # limit during live migration. Should be in the range 1 to 1000ms.
847 # Defaults to 1000ms. (Since 8.1)
848 #
849 # @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
850 # Defaults to 1. (Since 8.1)
851 #
852 # Features:
853 #
854 # @deprecated: Member @block-incremental is deprecated. Use
855 # blockdev-mirror with NBD instead. Members @compress-level,
856 # @compress-threads, @decompress-threads and @compress-wait-thread
857 # are deprecated because @compression is deprecated.
858 #
859 # @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
860 # are experimental.
861 #
862 # Since: 2.4
863 ##
864 { 'enum': 'MigrationParameter',
865 'data': ['announce-initial', 'announce-max',
866 'announce-rounds', 'announce-step',
867 { 'name': 'compress-level', 'features': [ 'deprecated' ] },
868 { 'name': 'compress-threads', 'features': [ 'deprecated' ] },
869 { 'name': 'decompress-threads', 'features': [ 'deprecated' ] },
870 { 'name': 'compress-wait-thread', 'features': [ 'deprecated' ] },
871 'throttle-trigger-threshold',
872 'cpu-throttle-initial', 'cpu-throttle-increment',
873 'cpu-throttle-tailslow',
874 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
875 'avail-switchover-bandwidth', 'downtime-limit',
876 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
877 { 'name': 'block-incremental', 'features': [ 'deprecated' ] },
878 'multifd-channels',
879 'xbzrle-cache-size', 'max-postcopy-bandwidth',
880 'max-cpu-throttle', 'multifd-compression',
881 'multifd-zlib-level', 'multifd-zstd-level',
882 'block-bitmap-mapping',
883 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] },
884 'vcpu-dirty-limit'] }
885
886 ##
887 # @MigrateSetParameters:
888 #
889 # @announce-initial: Initial delay (in milliseconds) before sending
890 # the first announce (Since 4.0)
891 #
892 # @announce-max: Maximum delay (in milliseconds) between packets in
893 # the announcement (Since 4.0)
894 #
895 # @announce-rounds: Number of self-announce packets sent after
896 # migration (Since 4.0)
897 #
898 # @announce-step: Increase in delay (in milliseconds) between
899 # subsequent packets in the announcement (Since 4.0)
900 #
901 # @compress-level: compression level
902 #
903 # @compress-threads: compression thread count
904 #
905 # @compress-wait-thread: Controls behavior when all compression
906 # threads are currently busy. If true (default), wait for a free
907 # compression thread to become available; otherwise, send the page
908 # uncompressed. (Since 3.1)
909 #
910 # @decompress-threads: decompression thread count
911 #
912 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and
913 # bytes_xfer_period to trigger throttling. It is expressed as
914 # percentage. The default value is 50. (Since 5.0)
915 #
916 # @cpu-throttle-initial: Initial percentage of time guest cpus are
917 # throttled when migration auto-converge is activated. The
918 # default value is 20. (Since 2.7)
919 #
920 # @cpu-throttle-increment: throttle percentage increase each time
921 # auto-converge detects that migration is not making progress.
922 # The default value is 10. (Since 2.7)
923 #
924 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
925 # the tail stage of throttling, the Guest is very sensitive to CPU
926 # percentage while the @cpu-throttle -increment is excessive
927 # usually at tail stage. If this parameter is true, we will
928 # compute the ideal CPU percentage used by the Guest, which may
929 # exactly make the dirty rate match the dirty rate threshold.
930 # Then we will choose a smaller throttle increment between the one
931 # specified by @cpu-throttle-increment and the one generated by
932 # ideal CPU percentage. Therefore, it is compatible to
933 # traditional throttling, meanwhile the throttle increment won't
934 # be excessive at tail stage. The default value is false. (Since
935 # 5.1)
936 #
937 # @tls-creds: ID of the 'tls-creds' object that provides credentials
938 # for establishing a TLS connection over the migration data
939 # channel. On the outgoing side of the migration, the credentials
940 # must be for a 'client' endpoint, while for the incoming side the
941 # credentials must be for a 'server' endpoint. Setting this to a
942 # non-empty string enables TLS for all migrations. An empty
943 # string means that QEMU will use plain text mode for migration,
944 # rather than TLS (Since 2.9) Previously (since 2.7), this was
945 # reported by omitting tls-creds instead.
946 #
947 # @tls-hostname: hostname of the target host for the migration. This
948 # is required when using x509 based TLS credentials and the
949 # migration URI does not already include a hostname. For example
950 # if using fd: or exec: based migration, the hostname must be
951 # provided so that the server's x509 certificate identity can be
952 # validated. (Since 2.7) An empty string means that QEMU will use
953 # the hostname associated with the migration URI, if any. (Since
954 # 2.9) Previously (since 2.7), this was reported by omitting
955 # tls-hostname instead.
956 #
957 # @max-bandwidth: to set maximum speed for migration. maximum speed
958 # in bytes per second. (Since 2.8)
959 #
960 # @avail-switchover-bandwidth: to set the available bandwidth that
961 # migration can use during switchover phase. NOTE! This does not
962 # limit the bandwidth during switchover, but only for calculations when
963 # making decisions to switchover. By default, this value is zero,
964 # which means QEMU will estimate the bandwidth automatically. This can
965 # be set when the estimated value is not accurate, while the user is
966 # able to guarantee such bandwidth is available when switching over.
967 # When specified correctly, this can make the switchover decision much
968 # more accurate. (Since 8.2)
969 #
970 # @downtime-limit: set maximum tolerated downtime for migration.
971 # maximum downtime in milliseconds (Since 2.8)
972 #
973 # @x-checkpoint-delay: the delay time between two COLO checkpoints.
974 # (Since 2.8)
975 #
976 # @block-incremental: Affects how much storage is migrated when the
977 # block migration capability is enabled. When false, the entire
978 # storage backing chain is migrated into a flattened image at the
979 # destination; when true, only the active qcow2 layer is migrated
980 # and the destination must already have access to the same backing
981 # chain as was used on the source. (since 2.10)
982 #
983 # @multifd-channels: Number of channels used to migrate data in
984 # parallel. This is the same number that the number of sockets
985 # used for migration. The default value is 2 (since 4.0)
986 #
987 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
988 # needs to be a multiple of the target page size and a power of 2
989 # (Since 2.11)
990 #
991 # @max-postcopy-bandwidth: Background transfer bandwidth during
992 # postcopy. Defaults to 0 (unlimited). In bytes per second.
993 # (Since 3.0)
994 #
995 # @max-cpu-throttle: maximum cpu throttle percentage. The default
996 # value is 99. (Since 3.1)
997 #
998 # @multifd-compression: Which compression method to use. Defaults to
999 # none. (Since 5.0)
1000 #
1001 # @multifd-zlib-level: Set the compression level to be used in live
1002 # migration, the compression level is an integer between 0 and 9,
1003 # where 0 means no compression, 1 means the best compression
1004 # speed, and 9 means best compression ratio which will consume
1005 # more CPU. Defaults to 1. (Since 5.0)
1006 #
1007 # @multifd-zstd-level: Set the compression level to be used in live
1008 # migration, the compression level is an integer between 0 and 20,
1009 # where 0 means no compression, 1 means the best compression
1010 # speed, and 20 means best compression ratio which will consume
1011 # more CPU. Defaults to 1. (Since 5.0)
1012 #
1013 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1014 # aliases for the purpose of dirty bitmap migration. Such aliases
1015 # may for example be the corresponding names on the opposite site.
1016 # The mapping must be one-to-one, but not necessarily complete: On
1017 # the source, unmapped bitmaps and all bitmaps on unmapped nodes
1018 # will be ignored. On the destination, encountering an unmapped
1019 # alias in the incoming migration stream will result in a report,
1020 # and all further bitmap migration data will then be discarded.
1021 # Note that the destination does not know about bitmaps it does
1022 # not receive, so there is no limitation or requirement regarding
1023 # the number of bitmaps received, or how they are named, or on
1024 # which nodes they are placed. By default (when this parameter
1025 # has never been set), bitmap names are mapped to themselves.
1026 # Nodes are mapped to their block device name if there is one, and
1027 # to their node name otherwise. (Since 5.2)
1028 #
1029 # @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1030 # limit during live migration. Should be in the range 1 to 1000ms.
1031 # Defaults to 1000ms. (Since 8.1)
1032 #
1033 # @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1034 # Defaults to 1. (Since 8.1)
1035 #
1036 # Features:
1037 #
1038 # @deprecated: Member @block-incremental is deprecated. Use
1039 # blockdev-mirror with NBD instead. Members @compress-level,
1040 # @compress-threads, @decompress-threads and @compress-wait-thread
1041 # are deprecated because @compression is deprecated.
1042 #
1043 # @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1044 # are experimental.
1045 #
1046 # TODO: either fuse back into MigrationParameters, or make
1047 # MigrationParameters members mandatory
1048 #
1049 # Since: 2.4
1050 ##
1051 { 'struct': 'MigrateSetParameters',
1052 'data': { '*announce-initial': 'size',
1053 '*announce-max': 'size',
1054 '*announce-rounds': 'size',
1055 '*announce-step': 'size',
1056 '*compress-level': { 'type': 'uint8',
1057 'features': [ 'deprecated' ] },
1058 '*compress-threads': { 'type': 'uint8',
1059 'features': [ 'deprecated' ] },
1060 '*compress-wait-thread': { 'type': 'bool',
1061 'features': [ 'deprecated' ] },
1062 '*decompress-threads': { 'type': 'uint8',
1063 'features': [ 'deprecated' ] },
1064 '*throttle-trigger-threshold': 'uint8',
1065 '*cpu-throttle-initial': 'uint8',
1066 '*cpu-throttle-increment': 'uint8',
1067 '*cpu-throttle-tailslow': 'bool',
1068 '*tls-creds': 'StrOrNull',
1069 '*tls-hostname': 'StrOrNull',
1070 '*tls-authz': 'StrOrNull',
1071 '*max-bandwidth': 'size',
1072 '*avail-switchover-bandwidth': 'size',
1073 '*downtime-limit': 'uint64',
1074 '*x-checkpoint-delay': { 'type': 'uint32',
1075 'features': [ 'unstable' ] },
1076 '*block-incremental': { 'type': 'bool',
1077 'features': [ 'deprecated' ] },
1078 '*multifd-channels': 'uint8',
1079 '*xbzrle-cache-size': 'size',
1080 '*max-postcopy-bandwidth': 'size',
1081 '*max-cpu-throttle': 'uint8',
1082 '*multifd-compression': 'MultiFDCompression',
1083 '*multifd-zlib-level': 'uint8',
1084 '*multifd-zstd-level': 'uint8',
1085 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1086 '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1087 'features': [ 'unstable' ] },
1088 '*vcpu-dirty-limit': 'uint64'} }
1089
1090 ##
1091 # @migrate-set-parameters:
1092 #
1093 # Set various migration parameters.
1094 #
1095 # Since: 2.4
1096 #
1097 # Example:
1098 #
1099 # -> { "execute": "migrate-set-parameters" ,
1100 # "arguments": { "multifd-channels": 5 } }
1101 # <- { "return": {} }
1102 ##
1103 { 'command': 'migrate-set-parameters', 'boxed': true,
1104 'data': 'MigrateSetParameters' }
1105
1106 ##
1107 # @MigrationParameters:
1108 #
1109 # The optional members aren't actually optional.
1110 #
1111 # @announce-initial: Initial delay (in milliseconds) before sending
1112 # the first announce (Since 4.0)
1113 #
1114 # @announce-max: Maximum delay (in milliseconds) between packets in
1115 # the announcement (Since 4.0)
1116 #
1117 # @announce-rounds: Number of self-announce packets sent after
1118 # migration (Since 4.0)
1119 #
1120 # @announce-step: Increase in delay (in milliseconds) between
1121 # subsequent packets in the announcement (Since 4.0)
1122 #
1123 # @compress-level: compression level
1124 #
1125 # @compress-threads: compression thread count
1126 #
1127 # @compress-wait-thread: Controls behavior when all compression
1128 # threads are currently busy. If true (default), wait for a free
1129 # compression thread to become available; otherwise, send the page
1130 # uncompressed. (Since 3.1)
1131 #
1132 # @decompress-threads: decompression thread count
1133 #
1134 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and
1135 # bytes_xfer_period to trigger throttling. It is expressed as
1136 # percentage. The default value is 50. (Since 5.0)
1137 #
1138 # @cpu-throttle-initial: Initial percentage of time guest cpus are
1139 # throttled when migration auto-converge is activated. (Since
1140 # 2.7)
1141 #
1142 # @cpu-throttle-increment: throttle percentage increase each time
1143 # auto-converge detects that migration is not making progress.
1144 # (Since 2.7)
1145 #
1146 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1147 # the tail stage of throttling, the Guest is very sensitive to CPU
1148 # percentage while the @cpu-throttle -increment is excessive
1149 # usually at tail stage. If this parameter is true, we will
1150 # compute the ideal CPU percentage used by the Guest, which may
1151 # exactly make the dirty rate match the dirty rate threshold.
1152 # Then we will choose a smaller throttle increment between the one
1153 # specified by @cpu-throttle-increment and the one generated by
1154 # ideal CPU percentage. Therefore, it is compatible to
1155 # traditional throttling, meanwhile the throttle increment won't
1156 # be excessive at tail stage. The default value is false. (Since
1157 # 5.1)
1158 #
1159 # @tls-creds: ID of the 'tls-creds' object that provides credentials
1160 # for establishing a TLS connection over the migration data
1161 # channel. On the outgoing side of the migration, the credentials
1162 # must be for a 'client' endpoint, while for the incoming side the
1163 # credentials must be for a 'server' endpoint. An empty string
1164 # means that QEMU will use plain text mode for migration, rather
1165 # than TLS (Since 2.7) Note: 2.8 reports this by omitting
1166 # tls-creds instead.
1167 #
1168 # @tls-hostname: hostname of the target host for the migration. This
1169 # is required when using x509 based TLS credentials and the
1170 # migration URI does not already include a hostname. For example
1171 # if using fd: or exec: based migration, the hostname must be
1172 # provided so that the server's x509 certificate identity can be
1173 # validated. (Since 2.7) An empty string means that QEMU will use
1174 # the hostname associated with the migration URI, if any. (Since
1175 # 2.9) Note: 2.8 reports this by omitting tls-hostname instead.
1176 #
1177 # @tls-authz: ID of the 'authz' object subclass that provides access
1178 # control checking of the TLS x509 certificate distinguished name.
1179 # (Since 4.0)
1180 #
1181 # @max-bandwidth: to set maximum speed for migration. maximum speed
1182 # in bytes per second. (Since 2.8)
1183 #
1184 # @avail-switchover-bandwidth: to set the available bandwidth that
1185 # migration can use during switchover phase. NOTE! This does not
1186 # limit the bandwidth during switchover, but only for calculations when
1187 # making decisions to switchover. By default, this value is zero,
1188 # which means QEMU will estimate the bandwidth automatically. This can
1189 # be set when the estimated value is not accurate, while the user is
1190 # able to guarantee such bandwidth is available when switching over.
1191 # When specified correctly, this can make the switchover decision much
1192 # more accurate. (Since 8.2)
1193 #
1194 # @downtime-limit: set maximum tolerated downtime for migration.
1195 # maximum downtime in milliseconds (Since 2.8)
1196 #
1197 # @x-checkpoint-delay: the delay time between two COLO checkpoints.
1198 # (Since 2.8)
1199 #
1200 # @block-incremental: Affects how much storage is migrated when the
1201 # block migration capability is enabled. When false, the entire
1202 # storage backing chain is migrated into a flattened image at the
1203 # destination; when true, only the active qcow2 layer is migrated
1204 # and the destination must already have access to the same backing
1205 # chain as was used on the source. (since 2.10)
1206 #
1207 # @multifd-channels: Number of channels used to migrate data in
1208 # parallel. This is the same number that the number of sockets
1209 # used for migration. The default value is 2 (since 4.0)
1210 #
1211 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
1212 # needs to be a multiple of the target page size and a power of 2
1213 # (Since 2.11)
1214 #
1215 # @max-postcopy-bandwidth: Background transfer bandwidth during
1216 # postcopy. Defaults to 0 (unlimited). In bytes per second.
1217 # (Since 3.0)
1218 #
1219 # @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99.
1220 # (Since 3.1)
1221 #
1222 # @multifd-compression: Which compression method to use. Defaults to
1223 # none. (Since 5.0)
1224 #
1225 # @multifd-zlib-level: Set the compression level to be used in live
1226 # migration, the compression level is an integer between 0 and 9,
1227 # where 0 means no compression, 1 means the best compression
1228 # speed, and 9 means best compression ratio which will consume
1229 # more CPU. Defaults to 1. (Since 5.0)
1230 #
1231 # @multifd-zstd-level: Set the compression level to be used in live
1232 # migration, the compression level is an integer between 0 and 20,
1233 # where 0 means no compression, 1 means the best compression
1234 # speed, and 20 means best compression ratio which will consume
1235 # more CPU. Defaults to 1. (Since 5.0)
1236 #
1237 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1238 # aliases for the purpose of dirty bitmap migration. Such aliases
1239 # may for example be the corresponding names on the opposite site.
1240 # The mapping must be one-to-one, but not necessarily complete: On
1241 # the source, unmapped bitmaps and all bitmaps on unmapped nodes
1242 # will be ignored. On the destination, encountering an unmapped
1243 # alias in the incoming migration stream will result in a report,
1244 # and all further bitmap migration data will then be discarded.
1245 # Note that the destination does not know about bitmaps it does
1246 # not receive, so there is no limitation or requirement regarding
1247 # the number of bitmaps received, or how they are named, or on
1248 # which nodes they are placed. By default (when this parameter
1249 # has never been set), bitmap names are mapped to themselves.
1250 # Nodes are mapped to their block device name if there is one, and
1251 # to their node name otherwise. (Since 5.2)
1252 #
1253 # @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1254 # limit during live migration. Should be in the range 1 to 1000ms.
1255 # Defaults to 1000ms. (Since 8.1)
1256 #
1257 # @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1258 # Defaults to 1. (Since 8.1)
1259 #
1260 # Features:
1261 #
1262 # @deprecated: Member @block-incremental is deprecated. Use
1263 # blockdev-mirror with NBD instead. Members @compress-level,
1264 # @compress-threads, @decompress-threads and @compress-wait-thread
1265 # are deprecated because @compression is deprecated.
1266 #
1267 # @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1268 # are experimental.
1269 #
1270 # Since: 2.4
1271 ##
1272 { 'struct': 'MigrationParameters',
1273 'data': { '*announce-initial': 'size',
1274 '*announce-max': 'size',
1275 '*announce-rounds': 'size',
1276 '*announce-step': 'size',
1277 '*compress-level': { 'type': 'uint8',
1278 'features': [ 'deprecated' ] },
1279 '*compress-threads': { 'type': 'uint8',
1280 'features': [ 'deprecated' ] },
1281 '*compress-wait-thread': { 'type': 'bool',
1282 'features': [ 'deprecated' ] },
1283 '*decompress-threads': { 'type': 'uint8',
1284 'features': [ 'deprecated' ] },
1285 '*throttle-trigger-threshold': 'uint8',
1286 '*cpu-throttle-initial': 'uint8',
1287 '*cpu-throttle-increment': 'uint8',
1288 '*cpu-throttle-tailslow': 'bool',
1289 '*tls-creds': 'str',
1290 '*tls-hostname': 'str',
1291 '*tls-authz': 'str',
1292 '*max-bandwidth': 'size',
1293 '*avail-switchover-bandwidth': 'size',
1294 '*downtime-limit': 'uint64',
1295 '*x-checkpoint-delay': { 'type': 'uint32',
1296 'features': [ 'unstable' ] },
1297 '*block-incremental': { 'type': 'bool',
1298 'features': [ 'deprecated' ] },
1299 '*multifd-channels': 'uint8',
1300 '*xbzrle-cache-size': 'size',
1301 '*max-postcopy-bandwidth': 'size',
1302 '*max-cpu-throttle': 'uint8',
1303 '*multifd-compression': 'MultiFDCompression',
1304 '*multifd-zlib-level': 'uint8',
1305 '*multifd-zstd-level': 'uint8',
1306 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1307 '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1308 'features': [ 'unstable' ] },
1309 '*vcpu-dirty-limit': 'uint64'} }
1310
1311 ##
1312 # @query-migrate-parameters:
1313 #
1314 # Returns information about the current migration parameters
1315 #
1316 # Returns: @MigrationParameters
1317 #
1318 # Since: 2.4
1319 #
1320 # Example:
1321 #
1322 # -> { "execute": "query-migrate-parameters" }
1323 # <- { "return": {
1324 # "multifd-channels": 2,
1325 # "cpu-throttle-increment": 10,
1326 # "cpu-throttle-initial": 20,
1327 # "max-bandwidth": 33554432,
1328 # "downtime-limit": 300
1329 # }
1330 # }
1331 ##
1332 { 'command': 'query-migrate-parameters',
1333 'returns': 'MigrationParameters' }
1334
1335 ##
1336 # @migrate-start-postcopy:
1337 #
1338 # Followup to a migration command to switch the migration to postcopy
1339 # mode. The postcopy-ram capability must be set on both source and
1340 # destination before the original migration command.
1341 #
1342 # Since: 2.5
1343 #
1344 # Example:
1345 #
1346 # -> { "execute": "migrate-start-postcopy" }
1347 # <- { "return": {} }
1348 ##
1349 { 'command': 'migrate-start-postcopy' }
1350
1351 ##
1352 # @MIGRATION:
1353 #
1354 # Emitted when a migration event happens
1355 #
1356 # @status: @MigrationStatus describing the current migration status.
1357 #
1358 # Since: 2.4
1359 #
1360 # Example:
1361 #
1362 # <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1363 # "event": "MIGRATION",
1364 # "data": {"status": "completed"} }
1365 ##
1366 { 'event': 'MIGRATION',
1367 'data': {'status': 'MigrationStatus'}}
1368
1369 ##
1370 # @MIGRATION_PASS:
1371 #
1372 # Emitted from the source side of a migration at the start of each
1373 # pass (when it syncs the dirty bitmap)
1374 #
1375 # @pass: An incrementing count (starting at 1 on the first pass)
1376 #
1377 # Since: 2.6
1378 #
1379 # Example:
1380 #
1381 # <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1382 # "event": "MIGRATION_PASS", "data": {"pass": 2} }
1383 ##
1384 { 'event': 'MIGRATION_PASS',
1385 'data': { 'pass': 'int' } }
1386
1387 ##
1388 # @COLOMessage:
1389 #
1390 # The message transmission between Primary side and Secondary side.
1391 #
1392 # @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1393 #
1394 # @checkpoint-request: Primary VM (PVM) tells SVM to prepare for
1395 # checkpointing
1396 #
1397 # @checkpoint-reply: SVM gets PVM's checkpoint request
1398 #
1399 # @vmstate-send: VM's state will be sent by PVM.
1400 #
1401 # @vmstate-size: The total size of VMstate.
1402 #
1403 # @vmstate-received: VM's state has been received by SVM.
1404 #
1405 # @vmstate-loaded: VM's state has been loaded by SVM.
1406 #
1407 # Since: 2.8
1408 ##
1409 { 'enum': 'COLOMessage',
1410 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1411 'vmstate-send', 'vmstate-size', 'vmstate-received',
1412 'vmstate-loaded' ] }
1413
1414 ##
1415 # @COLOMode:
1416 #
1417 # The COLO current mode.
1418 #
1419 # @none: COLO is disabled.
1420 #
1421 # @primary: COLO node in primary side.
1422 #
1423 # @secondary: COLO node in slave side.
1424 #
1425 # Since: 2.8
1426 ##
1427 { 'enum': 'COLOMode',
1428 'data': [ 'none', 'primary', 'secondary'] }
1429
1430 ##
1431 # @FailoverStatus:
1432 #
1433 # An enumeration of COLO failover status
1434 #
1435 # @none: no failover has ever happened
1436 #
1437 # @require: got failover requirement but not handled
1438 #
1439 # @active: in the process of doing failover
1440 #
1441 # @completed: finish the process of failover
1442 #
1443 # @relaunch: restart the failover process, from 'none' -> 'completed'
1444 # (Since 2.9)
1445 #
1446 # Since: 2.8
1447 ##
1448 { 'enum': 'FailoverStatus',
1449 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1450
1451 ##
1452 # @COLO_EXIT:
1453 #
1454 # Emitted when VM finishes COLO mode due to some errors happening or
1455 # at the request of users.
1456 #
1457 # @mode: report COLO mode when COLO exited.
1458 #
1459 # @reason: describes the reason for the COLO exit.
1460 #
1461 # Since: 3.1
1462 #
1463 # Example:
1464 #
1465 # <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1466 # "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1467 ##
1468 { 'event': 'COLO_EXIT',
1469 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1470
1471 ##
1472 # @COLOExitReason:
1473 #
1474 # The reason for a COLO exit.
1475 #
1476 # @none: failover has never happened. This state does not occur in
1477 # the COLO_EXIT event, and is only visible in the result of
1478 # query-colo-status.
1479 #
1480 # @request: COLO exit is due to an external request.
1481 #
1482 # @error: COLO exit is due to an internal error.
1483 #
1484 # @processing: COLO is currently handling a failover (since 4.0).
1485 #
1486 # Since: 3.1
1487 ##
1488 { 'enum': 'COLOExitReason',
1489 'data': [ 'none', 'request', 'error' , 'processing' ] }
1490
1491 ##
1492 # @x-colo-lost-heartbeat:
1493 #
1494 # Tell qemu that heartbeat is lost, request it to do takeover
1495 # procedures. If this command is sent to the PVM, the Primary side
1496 # will exit COLO mode. If sent to the Secondary, the Secondary side
1497 # will run failover work, then takes over server operation to become
1498 # the service VM.
1499 #
1500 # Features:
1501 #
1502 # @unstable: This command is experimental.
1503 #
1504 # Since: 2.8
1505 #
1506 # Example:
1507 #
1508 # -> { "execute": "x-colo-lost-heartbeat" }
1509 # <- { "return": {} }
1510 ##
1511 { 'command': 'x-colo-lost-heartbeat',
1512 'features': [ 'unstable' ],
1513 'if': 'CONFIG_REPLICATION' }
1514
1515 ##
1516 # @migrate_cancel:
1517 #
1518 # Cancel the current executing migration process.
1519 #
1520 # Returns: nothing on success
1521 #
1522 # Notes: This command succeeds even if there is no migration process
1523 # running.
1524 #
1525 # Since: 0.14
1526 #
1527 # Example:
1528 #
1529 # -> { "execute": "migrate_cancel" }
1530 # <- { "return": {} }
1531 ##
1532 { 'command': 'migrate_cancel' }
1533
1534 ##
1535 # @migrate-continue:
1536 #
1537 # Continue migration when it's in a paused state.
1538 #
1539 # @state: The state the migration is currently expected to be in
1540 #
1541 # Returns: nothing on success
1542 #
1543 # Since: 2.11
1544 #
1545 # Example:
1546 #
1547 # -> { "execute": "migrate-continue" , "arguments":
1548 # { "state": "pre-switchover" } }
1549 # <- { "return": {} }
1550 ##
1551 { 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1552
1553 ##
1554 # @migrate:
1555 #
1556 # Migrates the current running guest to another Virtual Machine.
1557 #
1558 # @uri: the Uniform Resource Identifier of the destination VM
1559 #
1560 # @blk: do block migration (full disk copy)
1561 #
1562 # @inc: incremental disk copy migration
1563 #
1564 # @detach: this argument exists only for compatibility reasons and is
1565 # ignored by QEMU
1566 #
1567 # @resume: resume one paused migration, default "off". (since 3.0)
1568 #
1569 # Features:
1570 #
1571 # @deprecated: Members @inc and @blk are deprecated. Use
1572 # blockdev-mirror with NBD instead.
1573 #
1574 # Returns: nothing on success
1575 #
1576 # Since: 0.14
1577 #
1578 # Notes:
1579 #
1580 # 1. The 'query-migrate' command should be used to check migration's
1581 # progress and final result (this information is provided by the
1582 # 'status' member)
1583 #
1584 # 2. All boolean arguments default to false
1585 #
1586 # 3. The user Monitor's "detach" argument is invalid in QMP and should
1587 # not be used
1588 #
1589 # Example:
1590 #
1591 # -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1592 # <- { "return": {} }
1593 ##
1594 { 'command': 'migrate',
1595 'data': {'uri': 'str',
1596 '*blk': { 'type': 'bool', 'features': [ 'deprecated' ] },
1597 '*inc': { 'type': 'bool', 'features': [ 'deprecated' ] },
1598 '*detach': 'bool', '*resume': 'bool' } }
1599
1600 ##
1601 # @migrate-incoming:
1602 #
1603 # Start an incoming migration, the qemu must have been started with
1604 # -incoming defer
1605 #
1606 # @uri: The Uniform Resource Identifier identifying the source or
1607 # address to listen on
1608 #
1609 # Returns: nothing on success
1610 #
1611 # Since: 2.3
1612 #
1613 # Notes:
1614 #
1615 # 1. It's a bad idea to use a string for the uri, but it needs
1616 # to stay compatible with -incoming and the format of the uri
1617 # is already exposed above libvirt.
1618 #
1619 # 2. QEMU must be started with -incoming defer to allow
1620 # migrate-incoming to be used.
1621 #
1622 # 3. The uri format is the same as for -incoming
1623 #
1624 # Example:
1625 #
1626 # -> { "execute": "migrate-incoming",
1627 # "arguments": { "uri": "tcp::4446" } }
1628 # <- { "return": {} }
1629 ##
1630 { 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
1631
1632 ##
1633 # @xen-save-devices-state:
1634 #
1635 # Save the state of all devices to file. The RAM and the block
1636 # devices of the VM are not saved by this command.
1637 #
1638 # @filename: the file to save the state of the devices to as binary
1639 # data. See xen-save-devices-state.txt for a description of the
1640 # binary format.
1641 #
1642 # @live: Optional argument to ask QEMU to treat this command as part
1643 # of a live migration. Default to true. (since 2.11)
1644 #
1645 # Returns: Nothing on success
1646 #
1647 # Since: 1.1
1648 #
1649 # Example:
1650 #
1651 # -> { "execute": "xen-save-devices-state",
1652 # "arguments": { "filename": "/tmp/save" } }
1653 # <- { "return": {} }
1654 ##
1655 { 'command': 'xen-save-devices-state',
1656 'data': {'filename': 'str', '*live':'bool' } }
1657
1658 ##
1659 # @xen-set-global-dirty-log:
1660 #
1661 # Enable or disable the global dirty log mode.
1662 #
1663 # @enable: true to enable, false to disable.
1664 #
1665 # Returns: nothing
1666 #
1667 # Since: 1.3
1668 #
1669 # Example:
1670 #
1671 # -> { "execute": "xen-set-global-dirty-log",
1672 # "arguments": { "enable": true } }
1673 # <- { "return": {} }
1674 ##
1675 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1676
1677 ##
1678 # @xen-load-devices-state:
1679 #
1680 # Load the state of all devices from file. The RAM and the block
1681 # devices of the VM are not loaded by this command.
1682 #
1683 # @filename: the file to load the state of the devices from as binary
1684 # data. See xen-save-devices-state.txt for a description of the
1685 # binary format.
1686 #
1687 # Since: 2.7
1688 #
1689 # Example:
1690 #
1691 # -> { "execute": "xen-load-devices-state",
1692 # "arguments": { "filename": "/tmp/resume" } }
1693 # <- { "return": {} }
1694 ##
1695 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1696
1697 ##
1698 # @xen-set-replication:
1699 #
1700 # Enable or disable replication.
1701 #
1702 # @enable: true to enable, false to disable.
1703 #
1704 # @primary: true for primary or false for secondary.
1705 #
1706 # @failover: true to do failover, false to stop. but cannot be
1707 # specified if 'enable' is true. default value is false.
1708 #
1709 # Returns: nothing.
1710 #
1711 # Example:
1712 #
1713 # -> { "execute": "xen-set-replication",
1714 # "arguments": {"enable": true, "primary": false} }
1715 # <- { "return": {} }
1716 #
1717 # Since: 2.9
1718 ##
1719 { 'command': 'xen-set-replication',
1720 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' },
1721 'if': 'CONFIG_REPLICATION' }
1722
1723 ##
1724 # @ReplicationStatus:
1725 #
1726 # The result format for 'query-xen-replication-status'.
1727 #
1728 # @error: true if an error happened, false if replication is normal.
1729 #
1730 # @desc: the human readable error description string, when @error is
1731 # 'true'.
1732 #
1733 # Since: 2.9
1734 ##
1735 { 'struct': 'ReplicationStatus',
1736 'data': { 'error': 'bool', '*desc': 'str' },
1737 'if': 'CONFIG_REPLICATION' }
1738
1739 ##
1740 # @query-xen-replication-status:
1741 #
1742 # Query replication status while the vm is running.
1743 #
1744 # Returns: A @ReplicationStatus object showing the status.
1745 #
1746 # Example:
1747 #
1748 # -> { "execute": "query-xen-replication-status" }
1749 # <- { "return": { "error": false } }
1750 #
1751 # Since: 2.9
1752 ##
1753 { 'command': 'query-xen-replication-status',
1754 'returns': 'ReplicationStatus',
1755 'if': 'CONFIG_REPLICATION' }
1756
1757 ##
1758 # @xen-colo-do-checkpoint:
1759 #
1760 # Xen uses this command to notify replication to trigger a checkpoint.
1761 #
1762 # Returns: nothing.
1763 #
1764 # Example:
1765 #
1766 # -> { "execute": "xen-colo-do-checkpoint" }
1767 # <- { "return": {} }
1768 #
1769 # Since: 2.9
1770 ##
1771 { 'command': 'xen-colo-do-checkpoint',
1772 'if': 'CONFIG_REPLICATION' }
1773
1774 ##
1775 # @COLOStatus:
1776 #
1777 # The result format for 'query-colo-status'.
1778 #
1779 # @mode: COLO running mode. If COLO is running, this field will
1780 # return 'primary' or 'secondary'.
1781 #
1782 # @last-mode: COLO last running mode. If COLO is running, this field
1783 # will return same like mode field, after failover we can use this
1784 # field to get last colo mode. (since 4.0)
1785 #
1786 # @reason: describes the reason for the COLO exit.
1787 #
1788 # Since: 3.1
1789 ##
1790 { 'struct': 'COLOStatus',
1791 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
1792 'reason': 'COLOExitReason' },
1793 'if': 'CONFIG_REPLICATION' }
1794
1795 ##
1796 # @query-colo-status:
1797 #
1798 # Query COLO status while the vm is running.
1799 #
1800 # Returns: A @COLOStatus object showing the status.
1801 #
1802 # Example:
1803 #
1804 # -> { "execute": "query-colo-status" }
1805 # <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
1806 #
1807 # Since: 3.1
1808 ##
1809 { 'command': 'query-colo-status',
1810 'returns': 'COLOStatus',
1811 'if': 'CONFIG_REPLICATION' }
1812
1813 ##
1814 # @migrate-recover:
1815 #
1816 # Provide a recovery migration stream URI.
1817 #
1818 # @uri: the URI to be used for the recovery of migration stream.
1819 #
1820 # Returns: nothing.
1821 #
1822 # Example:
1823 #
1824 # -> { "execute": "migrate-recover",
1825 # "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1826 # <- { "return": {} }
1827 #
1828 # Since: 3.0
1829 ##
1830 { 'command': 'migrate-recover',
1831 'data': { 'uri': 'str' },
1832 'allow-oob': true }
1833
1834 ##
1835 # @migrate-pause:
1836 #
1837 # Pause a migration. Currently it only supports postcopy.
1838 #
1839 # Returns: nothing.
1840 #
1841 # Example:
1842 #
1843 # -> { "execute": "migrate-pause" }
1844 # <- { "return": {} }
1845 #
1846 # Since: 3.0
1847 ##
1848 { 'command': 'migrate-pause', 'allow-oob': true }
1849
1850 ##
1851 # @UNPLUG_PRIMARY:
1852 #
1853 # Emitted from source side of a migration when migration state is
1854 # WAIT_UNPLUG. Device was unplugged by guest operating system. Device
1855 # resources in QEMU are kept on standby to be able to re-plug it in
1856 # case of migration failure.
1857 #
1858 # @device-id: QEMU device id of the unplugged device
1859 #
1860 # Since: 4.2
1861 #
1862 # Example:
1863 #
1864 # <- { "event": "UNPLUG_PRIMARY",
1865 # "data": { "device-id": "hostdev0" },
1866 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1867 ##
1868 { 'event': 'UNPLUG_PRIMARY',
1869 'data': { 'device-id': 'str' } }
1870
1871 ##
1872 # @DirtyRateVcpu:
1873 #
1874 # Dirty rate of vcpu.
1875 #
1876 # @id: vcpu index.
1877 #
1878 # @dirty-rate: dirty rate.
1879 #
1880 # Since: 6.2
1881 ##
1882 { 'struct': 'DirtyRateVcpu',
1883 'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1884
1885 ##
1886 # @DirtyRateStatus:
1887 #
1888 # Dirty page rate measurement status.
1889 #
1890 # @unstarted: measuring thread has not been started yet
1891 #
1892 # @measuring: measuring thread is running
1893 #
1894 # @measured: dirty page rate is measured and the results are available
1895 #
1896 # Since: 5.2
1897 ##
1898 { 'enum': 'DirtyRateStatus',
1899 'data': [ 'unstarted', 'measuring', 'measured'] }
1900
1901 ##
1902 # @DirtyRateMeasureMode:
1903 #
1904 # Method used to measure dirty page rate. Differences between
1905 # available methods are explained in @calc-dirty-rate.
1906 #
1907 # @page-sampling: use page sampling
1908 #
1909 # @dirty-ring: use dirty ring
1910 #
1911 # @dirty-bitmap: use dirty bitmap
1912 #
1913 # Since: 6.2
1914 ##
1915 { 'enum': 'DirtyRateMeasureMode',
1916 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
1917
1918 ##
1919 # @TimeUnit:
1920 #
1921 # Specifies unit in which time-related value is specified.
1922 #
1923 # @second: value is in seconds
1924 #
1925 # @millisecond: value is in milliseconds
1926 #
1927 # Since 8.2
1928 #
1929 ##
1930 { 'enum': 'TimeUnit',
1931 'data': ['second', 'millisecond'] }
1932
1933 ##
1934 # @DirtyRateInfo:
1935 #
1936 # Information about measured dirty page rate.
1937 #
1938 # @dirty-rate: an estimate of the dirty page rate of the VM in units
1939 # of MiB/s. Value is present only when @status is 'measured'.
1940 #
1941 # @status: current status of dirty page rate measurements
1942 #
1943 # @start-time: start time in units of second for calculation
1944 #
1945 # @calc-time: time period for which dirty page rate was measured,
1946 # expressed and rounded down to @calc-time-unit.
1947 #
1948 # @calc-time-unit: time unit of @calc-time (Since 8.2)
1949 #
1950 # @sample-pages: number of sampled pages per GiB of guest memory.
1951 # Valid only in page-sampling mode (Since 6.1)
1952 #
1953 # @mode: mode that was used to measure dirty page rate (Since 6.2)
1954 #
1955 # @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was
1956 # specified (Since 6.2)
1957 #
1958 # Since: 5.2
1959 ##
1960 { 'struct': 'DirtyRateInfo',
1961 'data': {'*dirty-rate': 'int64',
1962 'status': 'DirtyRateStatus',
1963 'start-time': 'int64',
1964 'calc-time': 'int64',
1965 'calc-time-unit': 'TimeUnit',
1966 'sample-pages': 'uint64',
1967 'mode': 'DirtyRateMeasureMode',
1968 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
1969
1970 ##
1971 # @calc-dirty-rate:
1972 #
1973 # Start measuring dirty page rate of the VM. Results can be retrieved
1974 # with @query-dirty-rate after measurements are completed.
1975 #
1976 # Dirty page rate is the number of pages changed in a given time
1977 # period expressed in MiB/s. The following methods of calculation are
1978 # available:
1979 #
1980 # 1. In page sampling mode, a random subset of pages are selected and
1981 # hashed twice: once at the beginning of measurement time period,
1982 # and once again at the end. If two hashes for some page are
1983 # different, the page is counted as changed. Since this method
1984 # relies on sampling and hashing, calculated dirty page rate is
1985 # only an estimate of its true value. Increasing @sample-pages
1986 # improves estimation quality at the cost of higher computational
1987 # overhead.
1988 #
1989 # 2. Dirty bitmap mode captures writes to memory (for example by
1990 # temporarily revoking write access to all pages) and counting page
1991 # faults. Information about modified pages is collected into a
1992 # bitmap, where each bit corresponds to one guest page. This mode
1993 # requires that KVM accelerator property "dirty-ring-size" is *not*
1994 # set.
1995 #
1996 # 3. Dirty ring mode is similar to dirty bitmap mode, but the
1997 # information about modified pages is collected into ring buffer.
1998 # This mode tracks page modification per each vCPU separately. It
1999 # requires that KVM accelerator property "dirty-ring-size" is set.
2000 #
2001 # @calc-time: time period for which dirty page rate is calculated.
2002 # By default it is specified in seconds, but the unit can be set
2003 # explicitly with @calc-time-unit. Note that larger @calc-time
2004 # values will typically result in smaller dirty page rates because
2005 # page dirtying is a one-time event. Once some page is counted
2006 # as dirty during @calc-time period, further writes to this page
2007 # will not increase dirty page rate anymore.
2008 #
2009 # @calc-time-unit: time unit in which @calc-time is specified.
2010 # By default it is seconds. (Since 8.2)
2011 #
2012 # @sample-pages: number of sampled pages per each GiB of guest memory.
2013 # Default value is 512. For 4KiB guest pages this corresponds to
2014 # sampling ratio of 0.2%. This argument is used only in page
2015 # sampling mode. (Since 6.1)
2016 #
2017 # @mode: mechanism for tracking dirty pages. Default value is
2018 # 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'.
2019 # (Since 6.1)
2020 #
2021 # Since: 5.2
2022 #
2023 # Example:
2024 #
2025 # -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
2026 # 'sample-pages': 512} }
2027 # <- { "return": {} }
2028 #
2029 # Measure dirty rate using dirty bitmap for 500 milliseconds:
2030 #
2031 # -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500,
2032 # "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} }
2033 #
2034 # <- { "return": {} }
2035 ##
2036 { 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
2037 '*calc-time-unit': 'TimeUnit',
2038 '*sample-pages': 'int',
2039 '*mode': 'DirtyRateMeasureMode'} }
2040
2041 ##
2042 # @query-dirty-rate:
2043 #
2044 # Query results of the most recent invocation of @calc-dirty-rate.
2045 #
2046 # @calc-time-unit: time unit in which to report calculation time.
2047 # By default it is reported in seconds. (Since 8.2)
2048 #
2049 # Since: 5.2
2050 #
2051 # Examples:
2052 #
2053 # 1. Measurement is in progress:
2054 #
2055 # <- {"status": "measuring", "sample-pages": 512,
2056 # "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2057 # "calc-time-unit": "second"}
2058 #
2059 # 2. Measurement has been completed:
2060 #
2061 # <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108,
2062 # "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2063 # "calc-time-unit": "second"}
2064 ##
2065 { 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' },
2066 'returns': 'DirtyRateInfo' }
2067
2068 ##
2069 # @DirtyLimitInfo:
2070 #
2071 # Dirty page rate limit information of a virtual CPU.
2072 #
2073 # @cpu-index: index of a virtual CPU.
2074 #
2075 # @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
2076 # CPU, 0 means unlimited.
2077 #
2078 # @current-rate: current dirty page rate (MB/s) for a virtual CPU.
2079 #
2080 # Since: 7.1
2081 ##
2082 { 'struct': 'DirtyLimitInfo',
2083 'data': { 'cpu-index': 'int',
2084 'limit-rate': 'uint64',
2085 'current-rate': 'uint64' } }
2086
2087 ##
2088 # @set-vcpu-dirty-limit:
2089 #
2090 # Set the upper limit of dirty page rate for virtual CPUs.
2091 #
2092 # Requires KVM with accelerator property "dirty-ring-size" set. A
2093 # virtual CPU's dirty page rate is a measure of its memory load. To
2094 # observe dirty page rates, use @calc-dirty-rate.
2095 #
2096 # @cpu-index: index of a virtual CPU, default is all.
2097 #
2098 # @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
2099 #
2100 # Since: 7.1
2101 #
2102 # Example:
2103 #
2104 # -> {"execute": "set-vcpu-dirty-limit"}
2105 # "arguments": { "dirty-rate": 200,
2106 # "cpu-index": 1 } }
2107 # <- { "return": {} }
2108 ##
2109 { 'command': 'set-vcpu-dirty-limit',
2110 'data': { '*cpu-index': 'int',
2111 'dirty-rate': 'uint64' } }
2112
2113 ##
2114 # @cancel-vcpu-dirty-limit:
2115 #
2116 # Cancel the upper limit of dirty page rate for virtual CPUs.
2117 #
2118 # Cancel the dirty page limit for the vCPU which has been set with
2119 # set-vcpu-dirty-limit command. Note that this command requires
2120 # support from dirty ring, same as the "set-vcpu-dirty-limit".
2121 #
2122 # @cpu-index: index of a virtual CPU, default is all.
2123 #
2124 # Since: 7.1
2125 #
2126 # Example:
2127 #
2128 # -> {"execute": "cancel-vcpu-dirty-limit"},
2129 # "arguments": { "cpu-index": 1 } }
2130 # <- { "return": {} }
2131 ##
2132 { 'command': 'cancel-vcpu-dirty-limit',
2133 'data': { '*cpu-index': 'int'} }
2134
2135 ##
2136 # @query-vcpu-dirty-limit:
2137 #
2138 # Returns information about virtual CPU dirty page rate limits, if
2139 # any.
2140 #
2141 # Since: 7.1
2142 #
2143 # Example:
2144 #
2145 # -> {"execute": "query-vcpu-dirty-limit"}
2146 # <- {"return": [
2147 # { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
2148 # { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
2149 ##
2150 { 'command': 'query-vcpu-dirty-limit',
2151 'returns': [ 'DirtyLimitInfo' ] }
2152
2153 ##
2154 # @MigrationThreadInfo:
2155 #
2156 # Information about migrationthreads
2157 #
2158 # @name: the name of migration thread
2159 #
2160 # @thread-id: ID of the underlying host thread
2161 #
2162 # Since: 7.2
2163 ##
2164 { 'struct': 'MigrationThreadInfo',
2165 'data': {'name': 'str',
2166 'thread-id': 'int'} }
2167
2168 ##
2169 # @query-migrationthreads:
2170 #
2171 # Returns information of migration threads
2172 #
2173 # data: migration thread name
2174 #
2175 # Returns: information about migration threads
2176 #
2177 # Since: 7.2
2178 ##
2179 { 'command': 'query-migrationthreads',
2180 'returns': ['MigrationThreadInfo'] }
2181
2182 ##
2183 # @snapshot-save:
2184 #
2185 # Save a VM snapshot
2186 #
2187 # @job-id: identifier for the newly created job
2188 #
2189 # @tag: name of the snapshot to create
2190 #
2191 # @vmstate: block device node name to save vmstate to
2192 #
2193 # @devices: list of block device node names to save a snapshot to
2194 #
2195 # Applications should not assume that the snapshot save is complete
2196 # when this command returns. The job commands / events must be used
2197 # to determine completion and to fetch details of any errors that
2198 # arise.
2199 #
2200 # Note that execution of the guest CPUs may be stopped during the time
2201 # it takes to save the snapshot. A future version of QEMU may ensure
2202 # CPUs are executing continuously.
2203 #
2204 # It is strongly recommended that @devices contain all writable block
2205 # device nodes if a consistent snapshot is required.
2206 #
2207 # If @tag already exists, an error will be reported
2208 #
2209 # Returns: nothing
2210 #
2211 # Example:
2212 #
2213 # -> { "execute": "snapshot-save",
2214 # "arguments": {
2215 # "job-id": "snapsave0",
2216 # "tag": "my-snap",
2217 # "vmstate": "disk0",
2218 # "devices": ["disk0", "disk1"]
2219 # }
2220 # }
2221 # <- { "return": { } }
2222 # <- {"event": "JOB_STATUS_CHANGE",
2223 # "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2224 # "data": {"status": "created", "id": "snapsave0"}}
2225 # <- {"event": "JOB_STATUS_CHANGE",
2226 # "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2227 # "data": {"status": "running", "id": "snapsave0"}}
2228 # <- {"event": "STOP",
2229 # "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2230 # <- {"event": "RESUME",
2231 # "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2232 # <- {"event": "JOB_STATUS_CHANGE",
2233 # "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2234 # "data": {"status": "waiting", "id": "snapsave0"}}
2235 # <- {"event": "JOB_STATUS_CHANGE",
2236 # "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2237 # "data": {"status": "pending", "id": "snapsave0"}}
2238 # <- {"event": "JOB_STATUS_CHANGE",
2239 # "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2240 # "data": {"status": "concluded", "id": "snapsave0"}}
2241 # -> {"execute": "query-jobs"}
2242 # <- {"return": [{"current-progress": 1,
2243 # "status": "concluded",
2244 # "total-progress": 1,
2245 # "type": "snapshot-save",
2246 # "id": "snapsave0"}]}
2247 #
2248 # Since: 6.0
2249 ##
2250 { 'command': 'snapshot-save',
2251 'data': { 'job-id': 'str',
2252 'tag': 'str',
2253 'vmstate': 'str',
2254 'devices': ['str'] } }
2255
2256 ##
2257 # @snapshot-load:
2258 #
2259 # Load a VM snapshot
2260 #
2261 # @job-id: identifier for the newly created job
2262 #
2263 # @tag: name of the snapshot to load.
2264 #
2265 # @vmstate: block device node name to load vmstate from
2266 #
2267 # @devices: list of block device node names to load a snapshot from
2268 #
2269 # Applications should not assume that the snapshot load is complete
2270 # when this command returns. The job commands / events must be used
2271 # to determine completion and to fetch details of any errors that
2272 # arise.
2273 #
2274 # Note that execution of the guest CPUs will be stopped during the
2275 # time it takes to load the snapshot.
2276 #
2277 # It is strongly recommended that @devices contain all writable block
2278 # device nodes that can have changed since the original @snapshot-save
2279 # command execution.
2280 #
2281 # Returns: nothing
2282 #
2283 # Example:
2284 #
2285 # -> { "execute": "snapshot-load",
2286 # "arguments": {
2287 # "job-id": "snapload0",
2288 # "tag": "my-snap",
2289 # "vmstate": "disk0",
2290 # "devices": ["disk0", "disk1"]
2291 # }
2292 # }
2293 # <- { "return": { } }
2294 # <- {"event": "JOB_STATUS_CHANGE",
2295 # "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2296 # "data": {"status": "created", "id": "snapload0"}}
2297 # <- {"event": "JOB_STATUS_CHANGE",
2298 # "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2299 # "data": {"status": "running", "id": "snapload0"}}
2300 # <- {"event": "STOP",
2301 # "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2302 # <- {"event": "RESUME",
2303 # "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2304 # <- {"event": "JOB_STATUS_CHANGE",
2305 # "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2306 # "data": {"status": "waiting", "id": "snapload0"}}
2307 # <- {"event": "JOB_STATUS_CHANGE",
2308 # "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2309 # "data": {"status": "pending", "id": "snapload0"}}
2310 # <- {"event": "JOB_STATUS_CHANGE",
2311 # "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2312 # "data": {"status": "concluded", "id": "snapload0"}}
2313 # -> {"execute": "query-jobs"}
2314 # <- {"return": [{"current-progress": 1,
2315 # "status": "concluded",
2316 # "total-progress": 1,
2317 # "type": "snapshot-load",
2318 # "id": "snapload0"}]}
2319 #
2320 # Since: 6.0
2321 ##
2322 { 'command': 'snapshot-load',
2323 'data': { 'job-id': 'str',
2324 'tag': 'str',
2325 'vmstate': 'str',
2326 'devices': ['str'] } }
2327
2328 ##
2329 # @snapshot-delete:
2330 #
2331 # Delete a VM snapshot
2332 #
2333 # @job-id: identifier for the newly created job
2334 #
2335 # @tag: name of the snapshot to delete.
2336 #
2337 # @devices: list of block device node names to delete a snapshot from
2338 #
2339 # Applications should not assume that the snapshot delete is complete
2340 # when this command returns. The job commands / events must be used
2341 # to determine completion and to fetch details of any errors that
2342 # arise.
2343 #
2344 # Returns: nothing
2345 #
2346 # Example:
2347 #
2348 # -> { "execute": "snapshot-delete",
2349 # "arguments": {
2350 # "job-id": "snapdelete0",
2351 # "tag": "my-snap",
2352 # "devices": ["disk0", "disk1"]
2353 # }
2354 # }
2355 # <- { "return": { } }
2356 # <- {"event": "JOB_STATUS_CHANGE",
2357 # "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2358 # "data": {"status": "created", "id": "snapdelete0"}}
2359 # <- {"event": "JOB_STATUS_CHANGE",
2360 # "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2361 # "data": {"status": "running", "id": "snapdelete0"}}
2362 # <- {"event": "JOB_STATUS_CHANGE",
2363 # "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2364 # "data": {"status": "waiting", "id": "snapdelete0"}}
2365 # <- {"event": "JOB_STATUS_CHANGE",
2366 # "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2367 # "data": {"status": "pending", "id": "snapdelete0"}}
2368 # <- {"event": "JOB_STATUS_CHANGE",
2369 # "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2370 # "data": {"status": "concluded", "id": "snapdelete0"}}
2371 # -> {"execute": "query-jobs"}
2372 # <- {"return": [{"current-progress": 1,
2373 # "status": "concluded",
2374 # "total-progress": 1,
2375 # "type": "snapshot-delete",
2376 # "id": "snapdelete0"}]}
2377 #
2378 # Since: 6.0
2379 ##
2380 { 'command': 'snapshot-delete',
2381 'data': { 'job-id': 'str',
2382 'tag': 'str',
2383 'devices': ['str'] } }