]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/migration.json
eb2f8835133480e8439716303a1b97a87a1f67c8
[mirror_qemu.git] / qapi / migration.json
1 # -*- Mode: Python -*-
2 # vim: filetype=python
3 #
4
5 ##
6 # = Migration
7 ##
8
9 { 'include': 'common.json' }
10 { 'include': 'sockets.json' }
11
12 ##
13 # @MigrationStats:
14 #
15 # Detailed migration status.
16 #
17 # @transferred: amount of bytes already transferred to the target VM
18 #
19 # @remaining: amount of bytes remaining to be transferred to the
20 # target VM
21 #
22 # @total: total amount of bytes involved in the migration process
23 #
24 # @duplicate: number of duplicate (zero) pages (since 1.2)
25 #
26 # @skipped: number of skipped zero pages. Always zero, only provided for
27 # compatibility (since 1.5)
28 #
29 # @normal: number of normal pages (since 1.2)
30 #
31 # @normal-bytes: number of normal bytes sent (since 1.2)
32 #
33 # @dirty-pages-rate: number of pages dirtied by second by the guest
34 # (since 1.3)
35 #
36 # @mbps: throughput in megabits/sec. (since 1.6)
37 #
38 # @dirty-sync-count: number of times that dirty ram was synchronized
39 # (since 2.1)
40 #
41 # @postcopy-requests: The number of page requests received from the
42 # destination (since 2.7)
43 #
44 # @page-size: The number of bytes per page for the various page-based
45 # statistics (since 2.10)
46 #
47 # @multifd-bytes: The number of bytes sent through multifd (since 3.0)
48 #
49 # @pages-per-second: the number of memory pages transferred per second
50 # (Since 4.0)
51 #
52 # @precopy-bytes: The number of bytes sent in the pre-copy phase
53 # (since 7.0).
54 #
55 # @downtime-bytes: The number of bytes sent while the guest is paused
56 # (since 7.0).
57 #
58 # @postcopy-bytes: The number of bytes sent during the post-copy phase
59 # (since 7.0).
60 #
61 # @dirty-sync-missed-zero-copy: Number of times dirty RAM
62 # synchronization could not avoid copying dirty pages. This is
63 # between 0 and @dirty-sync-count * @multifd-channels. (since
64 # 7.1)
65 #
66 # Features:
67 #
68 # @deprecated: Member @skipped is always zero since 1.5.3
69 #
70 # Since: 0.14
71 #
72 ##
73 { 'struct': 'MigrationStats',
74 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
75 'duplicate': 'int',
76 'skipped': { 'type': 'int', 'features': [ 'deprecated' ] },
77 'normal': 'int',
78 'normal-bytes': 'int', 'dirty-pages-rate': 'int',
79 'mbps': 'number', 'dirty-sync-count': 'int',
80 'postcopy-requests': 'int', 'page-size': 'int',
81 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64',
82 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64',
83 'postcopy-bytes': 'uint64',
84 'dirty-sync-missed-zero-copy': 'uint64' } }
85
86 ##
87 # @XBZRLECacheStats:
88 #
89 # Detailed XBZRLE migration cache statistics
90 #
91 # @cache-size: XBZRLE cache size
92 #
93 # @bytes: amount of bytes already transferred to the target VM
94 #
95 # @pages: amount of pages transferred to the target VM
96 #
97 # @cache-miss: number of cache miss
98 #
99 # @cache-miss-rate: rate of cache miss (since 2.1)
100 #
101 # @encoding-rate: rate of encoded bytes (since 5.1)
102 #
103 # @overflow: number of overflows
104 #
105 # Since: 1.2
106 ##
107 { 'struct': 'XBZRLECacheStats',
108 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
109 'cache-miss': 'int', 'cache-miss-rate': 'number',
110 'encoding-rate': 'number', 'overflow': 'int' } }
111
112 ##
113 # @CompressionStats:
114 #
115 # Detailed migration compression statistics
116 #
117 # @pages: amount of pages compressed and transferred to the target VM
118 #
119 # @busy: count of times that no free thread was available to compress
120 # data
121 #
122 # @busy-rate: rate of thread busy
123 #
124 # @compressed-size: amount of bytes after compression
125 #
126 # @compression-rate: rate of compressed size
127 #
128 # Since: 3.1
129 ##
130 { 'struct': 'CompressionStats',
131 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
132 'compressed-size': 'int', 'compression-rate': 'number' } }
133
134 ##
135 # @MigrationStatus:
136 #
137 # An enumeration of migration status.
138 #
139 # @none: no migration has ever happened.
140 #
141 # @setup: migration process has been initiated.
142 #
143 # @cancelling: in the process of cancelling migration.
144 #
145 # @cancelled: cancelling migration is finished.
146 #
147 # @active: in the process of doing migration.
148 #
149 # @postcopy-active: like active, but now in postcopy mode. (since
150 # 2.5)
151 #
152 # @postcopy-paused: during postcopy but paused. (since 3.0)
153 #
154 # @postcopy-recover: trying to recover from a paused postcopy. (since
155 # 3.0)
156 #
157 # @completed: migration is finished.
158 #
159 # @failed: some error occurred during migration process.
160 #
161 # @colo: VM is in the process of fault tolerance, VM can not get into
162 # this state unless colo capability is enabled for migration.
163 # (since 2.8)
164 #
165 # @pre-switchover: Paused before device serialisation. (since 2.11)
166 #
167 # @device: During device serialisation when pause-before-switchover is
168 # enabled (since 2.11)
169 #
170 # @wait-unplug: wait for device unplug request by guest OS to be
171 # completed. (since 4.2)
172 #
173 # Since: 2.3
174 ##
175 { 'enum': 'MigrationStatus',
176 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
177 'active', 'postcopy-active', 'postcopy-paused',
178 'postcopy-recover', 'completed', 'failed', 'colo',
179 'pre-switchover', 'device', 'wait-unplug' ] }
180 ##
181 # @VfioStats:
182 #
183 # Detailed VFIO devices migration statistics
184 #
185 # @transferred: amount of bytes transferred to the target VM by VFIO
186 # devices
187 #
188 # Since: 5.2
189 ##
190 { 'struct': 'VfioStats',
191 'data': {'transferred': 'int' } }
192
193 ##
194 # @MigrationInfo:
195 #
196 # Information about current migration process.
197 #
198 # @status: @MigrationStatus describing the current migration status.
199 # If this field is not returned, no migration process has been
200 # initiated
201 #
202 # @ram: @MigrationStats containing detailed migration status, only
203 # returned if status is 'active' or 'completed'(since 1.2)
204 #
205 # @disk: @MigrationStats containing detailed disk migration status,
206 # only returned if status is 'active' and it is a block migration
207 #
208 # @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
209 # migration statistics, only returned if XBZRLE feature is on and
210 # status is 'active' or 'completed' (since 1.2)
211 #
212 # @total-time: total amount of milliseconds since migration started.
213 # If migration has ended, it returns the total migration time.
214 # (since 1.2)
215 #
216 # @downtime: only present when migration finishes correctly total
217 # downtime in milliseconds for the guest. (since 1.3)
218 #
219 # @expected-downtime: only present while migration is active expected
220 # downtime in milliseconds for the guest in last walk of the dirty
221 # bitmap. (since 1.3)
222 #
223 # @setup-time: amount of setup time in milliseconds *before* the
224 # iterations begin but *after* the QMP command is issued. This is
225 # designed to provide an accounting of any activities (such as
226 # RDMA pinning) which may be expensive, but do not actually occur
227 # during the iterative migration rounds themselves. (since 1.6)
228 #
229 # @cpu-throttle-percentage: percentage of time guest cpus are being
230 # throttled during auto-converge. This is only present when
231 # auto-converge has started throttling guest cpus. (Since 2.7)
232 #
233 # @error-desc: the human readable error description string. Clients
234 # should not attempt to parse the error strings. (Since 2.7)
235 #
236 # @postcopy-blocktime: total time when all vCPU were blocked during
237 # postcopy live migration. This is only present when the
238 # postcopy-blocktime migration capability is enabled. (Since 3.0)
239 #
240 # @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.
241 # This is only present when the postcopy-blocktime migration
242 # capability is enabled. (Since 3.0)
243 #
244 # @compression: migration compression statistics, only returned if
245 # compression feature is on and status is 'active' or 'completed'
246 # (Since 3.1)
247 #
248 # @socket-address: Only used for tcp, to know what the real port is
249 # (Since 4.0)
250 #
251 # @vfio: @VfioStats containing detailed VFIO devices migration
252 # statistics, only returned if VFIO device is present, migration
253 # is supported by all VFIO devices and status is 'active' or
254 # 'completed' (since 5.2)
255 #
256 # @blocked-reasons: A list of reasons an outgoing migration is
257 # blocked. Present and non-empty when migration is blocked.
258 # (since 6.0)
259 #
260 # @dirty-limit-throttle-time-per-round: Maximum throttle time
261 # (in microseconds) of virtual CPUs each dirty ring full round,
262 # which shows how MigrationCapability dirty-limit affects the
263 # guest during live migration. (Since 8.1)
264 #
265 # @dirty-limit-ring-full-time: Estimated average dirty ring full time
266 # (in microseconds) for each dirty ring full round. The value
267 # equals the dirty ring memory size divided by the average dirty
268 # page rate of the virtual CPU, which can be used to observe the
269 # average memory load of the virtual CPU indirectly. Note that
270 # zero means guest doesn't dirty memory. (Since 8.1)
271 #
272 # Features:
273 #
274 # @deprecated: Member @disk is deprecated because block migration is.
275 # Member @compression is deprecated because it is unreliable and
276 # untested. It is recommended to use multifd migration, which
277 # offers an alternative compression implementation that is
278 # reliable and tested.
279 #
280 # Since: 0.14
281 ##
282 { 'struct': 'MigrationInfo',
283 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
284 '*disk': { 'type': 'MigrationStats', 'features': [ 'deprecated' ] },
285 '*vfio': 'VfioStats',
286 '*xbzrle-cache': 'XBZRLECacheStats',
287 '*total-time': 'int',
288 '*expected-downtime': 'int',
289 '*downtime': 'int',
290 '*setup-time': 'int',
291 '*cpu-throttle-percentage': 'int',
292 '*error-desc': 'str',
293 '*blocked-reasons': ['str'],
294 '*postcopy-blocktime': 'uint32',
295 '*postcopy-vcpu-blocktime': ['uint32'],
296 '*compression': { 'type': 'CompressionStats', 'features': [ 'deprecated' ] },
297 '*socket-address': ['SocketAddress'],
298 '*dirty-limit-throttle-time-per-round': 'uint64',
299 '*dirty-limit-ring-full-time': 'uint64'} }
300
301 ##
302 # @query-migrate:
303 #
304 # Returns information about current migration process. If migration
305 # is active there will be another json-object with RAM migration
306 # status and if block migration is active another one with block
307 # migration status.
308 #
309 # Returns: @MigrationInfo
310 #
311 # Since: 0.14
312 #
313 # Examples:
314 #
315 # 1. Before the first migration
316 #
317 # -> { "execute": "query-migrate" }
318 # <- { "return": {} }
319 #
320 # 2. Migration is done and has succeeded
321 #
322 # -> { "execute": "query-migrate" }
323 # <- { "return": {
324 # "status": "completed",
325 # "total-time":12345,
326 # "setup-time":12345,
327 # "downtime":12345,
328 # "ram":{
329 # "transferred":123,
330 # "remaining":123,
331 # "total":246,
332 # "duplicate":123,
333 # "normal":123,
334 # "normal-bytes":123456,
335 # "dirty-sync-count":15
336 # }
337 # }
338 # }
339 #
340 # 3. Migration is done and has failed
341 #
342 # -> { "execute": "query-migrate" }
343 # <- { "return": { "status": "failed" } }
344 #
345 # 4. Migration is being performed and is not a block migration:
346 #
347 # -> { "execute": "query-migrate" }
348 # <- {
349 # "return":{
350 # "status":"active",
351 # "total-time":12345,
352 # "setup-time":12345,
353 # "expected-downtime":12345,
354 # "ram":{
355 # "transferred":123,
356 # "remaining":123,
357 # "total":246,
358 # "duplicate":123,
359 # "normal":123,
360 # "normal-bytes":123456,
361 # "dirty-sync-count":15
362 # }
363 # }
364 # }
365 #
366 # 5. Migration is being performed and is a block migration:
367 #
368 # -> { "execute": "query-migrate" }
369 # <- {
370 # "return":{
371 # "status":"active",
372 # "total-time":12345,
373 # "setup-time":12345,
374 # "expected-downtime":12345,
375 # "ram":{
376 # "total":1057024,
377 # "remaining":1053304,
378 # "transferred":3720,
379 # "duplicate":123,
380 # "normal":123,
381 # "normal-bytes":123456,
382 # "dirty-sync-count":15
383 # },
384 # "disk":{
385 # "total":20971520,
386 # "remaining":20880384,
387 # "transferred":91136
388 # }
389 # }
390 # }
391 #
392 # 6. Migration is being performed and XBZRLE is active:
393 #
394 # -> { "execute": "query-migrate" }
395 # <- {
396 # "return":{
397 # "status":"active",
398 # "total-time":12345,
399 # "setup-time":12345,
400 # "expected-downtime":12345,
401 # "ram":{
402 # "total":1057024,
403 # "remaining":1053304,
404 # "transferred":3720,
405 # "duplicate":10,
406 # "normal":3333,
407 # "normal-bytes":3412992,
408 # "dirty-sync-count":15
409 # },
410 # "xbzrle-cache":{
411 # "cache-size":67108864,
412 # "bytes":20971520,
413 # "pages":2444343,
414 # "cache-miss":2244,
415 # "cache-miss-rate":0.123,
416 # "encoding-rate":80.1,
417 # "overflow":34434
418 # }
419 # }
420 # }
421 ##
422 { 'command': 'query-migrate', 'returns': 'MigrationInfo' }
423
424 ##
425 # @MigrationCapability:
426 #
427 # Migration capabilities enumeration
428 #
429 # @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length
430 # Encoding). This feature allows us to minimize migration traffic
431 # for certain work loads, by sending compressed difference of the
432 # pages
433 #
434 # @rdma-pin-all: Controls whether or not the entire VM memory
435 # footprint is mlock()'d on demand or all at once. Refer to
436 # docs/rdma.txt for usage. Disabled by default. (since 2.0)
437 #
438 # @zero-blocks: During storage migration encode blocks of zeroes
439 # efficiently. This essentially saves 1MB of zeroes per block on
440 # the wire. Enabling requires source and target VM to support
441 # this feature. To enable it is sufficient to enable the
442 # capability on the source VM. The feature is disabled by default.
443 # (since 1.6)
444 #
445 # @compress: Use multiple compression threads to accelerate live
446 # migration. This feature can help to reduce the migration
447 # traffic, by sending compressed pages. Please note that if
448 # compress and xbzrle are both on, compress only takes effect in
449 # the ram bulk stage, after that, it will be disabled and only
450 # xbzrle takes effect, this can help to minimize migration
451 # traffic. The feature is disabled by default. (since 2.4)
452 #
453 # @events: generate events for each migration state change (since 2.4)
454 #
455 # @auto-converge: If enabled, QEMU will automatically throttle down
456 # the guest to speed up convergence of RAM migration. (since 1.6)
457 #
458 # @postcopy-ram: Start executing on the migration target before all of
459 # RAM has been migrated, pulling the remaining pages along as
460 # needed. The capacity must have the same setting on both source
461 # and target or migration will not even start. NOTE: If the
462 # migration fails during postcopy the VM will fail. (since 2.6)
463 #
464 # @x-colo: If enabled, migration will never end, and the state of the
465 # VM on the primary side will be migrated continuously to the VM
466 # on secondary side, this process is called COarse-Grain LOck
467 # Stepping (COLO) for Non-stop Service. (since 2.8)
468 #
469 # @release-ram: if enabled, qemu will free the migrated ram pages on
470 # the source during postcopy-ram migration. (since 2.9)
471 #
472 # @block: If enabled, QEMU will also migrate the contents of all block
473 # devices. Default is disabled. A possible alternative uses
474 # mirror jobs to a builtin NBD server on the destination, which
475 # offers more flexibility. (Since 2.10)
476 #
477 # @return-path: If enabled, migration will use the return path even
478 # for precopy. (since 2.10)
479 #
480 # @pause-before-switchover: Pause outgoing migration before
481 # serialising device state and before disabling block IO (since
482 # 2.11)
483 #
484 # @multifd: Use more than one fd for migration (since 4.0)
485 #
486 # @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
487 # (since 2.12)
488 #
489 # @postcopy-blocktime: Calculate downtime for postcopy live migration
490 # (since 3.0)
491 #
492 # @late-block-activate: If enabled, the destination will not activate
493 # block devices (and thus take locks) immediately at the end of
494 # migration. (since 3.0)
495 #
496 # @x-ignore-shared: If enabled, QEMU will not migrate shared memory
497 # that is accessible on the destination machine. (since 4.0)
498 #
499 # @validate-uuid: Send the UUID of the source to allow the destination
500 # to ensure it is the same. (since 4.2)
501 #
502 # @background-snapshot: If enabled, the migration stream will be a
503 # snapshot of the VM exactly at the point when the migration
504 # procedure starts. The VM RAM is saved with running VM. (since
505 # 6.0)
506 #
507 # @zero-copy-send: Controls behavior on sending memory pages on
508 # migration. When true, enables a zero-copy mechanism for sending
509 # memory pages, if host supports it. Requires that QEMU be
510 # permitted to use locked memory for guest RAM pages. (since 7.1)
511 #
512 # @postcopy-preempt: If enabled, the migration process will allow
513 # postcopy requests to preempt precopy stream, so postcopy
514 # requests will be handled faster. This is a performance feature
515 # and should not affect the correctness of postcopy migration.
516 # (since 7.1)
517 #
518 # @switchover-ack: If enabled, migration will not stop the source VM
519 # and complete the migration until an ACK is received from the
520 # destination that it's OK to do so. Exactly when this ACK is
521 # sent depends on the migrated devices that use this feature. For
522 # example, a device can use it to make sure some of its data is
523 # sent and loaded in the destination before doing switchover.
524 # This can reduce downtime if devices that support this capability
525 # are present. 'return-path' capability must be enabled to use
526 # it. (since 8.1)
527 #
528 # @dirty-limit: If enabled, migration will throttle vCPUs as needed to
529 # keep their dirty page rate within @vcpu-dirty-limit. This can
530 # improve responsiveness of large guests during live migration,
531 # and can result in more stable read performance. Requires KVM
532 # with accelerator property "dirty-ring-size" set. (Since 8.1)
533 #
534 # Features:
535 #
536 # @deprecated: Member @block is deprecated. Use blockdev-mirror with
537 # NBD instead. Member @compression is deprecated because it is
538 # unreliable and untested. It is recommended to use multifd
539 # migration, which offers an alternative compression
540 # implementation that is reliable and tested.
541 #
542 # @unstable: Members @x-colo and @x-ignore-shared are experimental.
543 #
544 # Since: 1.2
545 ##
546 { 'enum': 'MigrationCapability',
547 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
548 { 'name': 'compress', 'features': [ 'deprecated' ] },
549 'events', 'postcopy-ram',
550 { 'name': 'x-colo', 'features': [ 'unstable' ] },
551 'release-ram',
552 { 'name': 'block', 'features': [ 'deprecated' ] },
553 'return-path', 'pause-before-switchover', 'multifd',
554 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
555 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
556 'validate-uuid', 'background-snapshot',
557 'zero-copy-send', 'postcopy-preempt', 'switchover-ack',
558 'dirty-limit'] }
559
560 ##
561 # @MigrationCapabilityStatus:
562 #
563 # Migration capability information
564 #
565 # @capability: capability enum
566 #
567 # @state: capability state bool
568 #
569 # Since: 1.2
570 ##
571 { 'struct': 'MigrationCapabilityStatus',
572 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } }
573
574 ##
575 # @migrate-set-capabilities:
576 #
577 # Enable/Disable the following migration capabilities (like xbzrle)
578 #
579 # @capabilities: json array of capability modifications to make
580 #
581 # Since: 1.2
582 #
583 # Example:
584 #
585 # -> { "execute": "migrate-set-capabilities" , "arguments":
586 # { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
587 # <- { "return": {} }
588 ##
589 { 'command': 'migrate-set-capabilities',
590 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
591
592 ##
593 # @query-migrate-capabilities:
594 #
595 # Returns information about the current migration capabilities status
596 #
597 # Returns: @MigrationCapabilityStatus
598 #
599 # Since: 1.2
600 #
601 # Example:
602 #
603 # -> { "execute": "query-migrate-capabilities" }
604 # <- { "return": [
605 # {"state": false, "capability": "xbzrle"},
606 # {"state": false, "capability": "rdma-pin-all"},
607 # {"state": false, "capability": "auto-converge"},
608 # {"state": false, "capability": "zero-blocks"},
609 # {"state": false, "capability": "compress"},
610 # {"state": true, "capability": "events"},
611 # {"state": false, "capability": "postcopy-ram"},
612 # {"state": false, "capability": "x-colo"}
613 # ]}
614 ##
615 { 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
616
617 ##
618 # @MultiFDCompression:
619 #
620 # An enumeration of multifd compression methods.
621 #
622 # @none: no compression.
623 #
624 # @zlib: use zlib compression method.
625 #
626 # @zstd: use zstd compression method.
627 #
628 # Since: 5.0
629 ##
630 { 'enum': 'MultiFDCompression',
631 'data': [ 'none', 'zlib',
632 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
633
634 ##
635 # @MigMode:
636 #
637 # @normal: the original form of migration. (since 8.2)
638 #
639 # @cpr-reboot: The migrate command saves state to a file, allowing one to
640 # quit qemu, reboot to an updated kernel, and restart an updated
641 # version of qemu. The caller must specify a migration URI
642 # that writes to and reads from a file. Unlike normal mode,
643 # the use of certain local storage options does not block the
644 # migration, but the caller must not modify guest block devices
645 # between the quit and restart. To avoid saving guest RAM to the
646 # file, the memory backend must be shared, and the @x-ignore-shared
647 # migration capability must be set. Guest RAM must be non-volatile
648 # across reboot, such as by backing it with a dax device, but this
649 # is not enforced. The restarted qemu arguments must match those
650 # used to initially start qemu, plus the -incoming option.
651 # (since 8.2)
652 ##
653 { 'enum': 'MigMode',
654 'data': [ 'normal', 'cpr-reboot' ] }
655
656 ##
657 # @BitmapMigrationBitmapAliasTransform:
658 #
659 # @persistent: If present, the bitmap will be made persistent or
660 # transient depending on this parameter.
661 #
662 # Since: 6.0
663 ##
664 { 'struct': 'BitmapMigrationBitmapAliasTransform',
665 'data': {
666 '*persistent': 'bool'
667 } }
668
669 ##
670 # @BitmapMigrationBitmapAlias:
671 #
672 # @name: The name of the bitmap.
673 #
674 # @alias: An alias name for migration (for example the bitmap name on
675 # the opposite site).
676 #
677 # @transform: Allows the modification of the migrated bitmap. (since
678 # 6.0)
679 #
680 # Since: 5.2
681 ##
682 { 'struct': 'BitmapMigrationBitmapAlias',
683 'data': {
684 'name': 'str',
685 'alias': 'str',
686 '*transform': 'BitmapMigrationBitmapAliasTransform'
687 } }
688
689 ##
690 # @BitmapMigrationNodeAlias:
691 #
692 # Maps a block node name and the bitmaps it has to aliases for dirty
693 # bitmap migration.
694 #
695 # @node-name: A block node name.
696 #
697 # @alias: An alias block node name for migration (for example the node
698 # name on the opposite site).
699 #
700 # @bitmaps: Mappings for the bitmaps on this node.
701 #
702 # Since: 5.2
703 ##
704 { 'struct': 'BitmapMigrationNodeAlias',
705 'data': {
706 'node-name': 'str',
707 'alias': 'str',
708 'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
709 } }
710
711 ##
712 # @MigrationParameter:
713 #
714 # Migration parameters enumeration
715 #
716 # @announce-initial: Initial delay (in milliseconds) before sending
717 # the first announce (Since 4.0)
718 #
719 # @announce-max: Maximum delay (in milliseconds) between packets in
720 # the announcement (Since 4.0)
721 #
722 # @announce-rounds: Number of self-announce packets sent after
723 # migration (Since 4.0)
724 #
725 # @announce-step: Increase in delay (in milliseconds) between
726 # subsequent packets in the announcement (Since 4.0)
727 #
728 # @compress-level: Set the compression level to be used in live
729 # migration, the compression level is an integer between 0 and 9,
730 # where 0 means no compression, 1 means the best compression
731 # speed, and 9 means best compression ratio which will consume
732 # more CPU.
733 #
734 # @compress-threads: Set compression thread count to be used in live
735 # migration, the compression thread count is an integer between 1
736 # and 255.
737 #
738 # @compress-wait-thread: Controls behavior when all compression
739 # threads are currently busy. If true (default), wait for a free
740 # compression thread to become available; otherwise, send the page
741 # uncompressed. (Since 3.1)
742 #
743 # @decompress-threads: Set decompression thread count to be used in
744 # live migration, the decompression thread count is an integer
745 # between 1 and 255. Usually, decompression is at least 4 times as
746 # fast as compression, so set the decompress-threads to the number
747 # about 1/4 of compress-threads is adequate.
748 #
749 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and
750 # bytes_xfer_period to trigger throttling. It is expressed as
751 # percentage. The default value is 50. (Since 5.0)
752 #
753 # @cpu-throttle-initial: Initial percentage of time guest cpus are
754 # throttled when migration auto-converge is activated. The
755 # default value is 20. (Since 2.7)
756 #
757 # @cpu-throttle-increment: throttle percentage increase each time
758 # auto-converge detects that migration is not making progress.
759 # The default value is 10. (Since 2.7)
760 #
761 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
762 # the tail stage of throttling, the Guest is very sensitive to CPU
763 # percentage while the @cpu-throttle -increment is excessive
764 # usually at tail stage. If this parameter is true, we will
765 # compute the ideal CPU percentage used by the Guest, which may
766 # exactly make the dirty rate match the dirty rate threshold.
767 # Then we will choose a smaller throttle increment between the one
768 # specified by @cpu-throttle-increment and the one generated by
769 # ideal CPU percentage. Therefore, it is compatible to
770 # traditional throttling, meanwhile the throttle increment won't
771 # be excessive at tail stage. The default value is false. (Since
772 # 5.1)
773 #
774 # @tls-creds: ID of the 'tls-creds' object that provides credentials
775 # for establishing a TLS connection over the migration data
776 # channel. On the outgoing side of the migration, the credentials
777 # must be for a 'client' endpoint, while for the incoming side the
778 # credentials must be for a 'server' endpoint. Setting this will
779 # enable TLS for all migrations. The default is unset, resulting
780 # in unsecured migration at the QEMU level. (Since 2.7)
781 #
782 # @tls-hostname: hostname of the target host for the migration. This
783 # is required when using x509 based TLS credentials and the
784 # migration URI does not already include a hostname. For example
785 # if using fd: or exec: based migration, the hostname must be
786 # provided so that the server's x509 certificate identity can be
787 # validated. (Since 2.7)
788 #
789 # @tls-authz: ID of the 'authz' object subclass that provides access
790 # control checking of the TLS x509 certificate distinguished name.
791 # This object is only resolved at time of use, so can be deleted
792 # and recreated on the fly while the migration server is active.
793 # If missing, it will default to denying access (Since 4.0)
794 #
795 # @max-bandwidth: to set maximum speed for migration. maximum speed
796 # in bytes per second. (Since 2.8)
797 #
798 # @avail-switchover-bandwidth: to set the available bandwidth that
799 # migration can use during switchover phase. NOTE! This does not
800 # limit the bandwidth during switchover, but only for calculations when
801 # making decisions to switchover. By default, this value is zero,
802 # which means QEMU will estimate the bandwidth automatically. This can
803 # be set when the estimated value is not accurate, while the user is
804 # able to guarantee such bandwidth is available when switching over.
805 # When specified correctly, this can make the switchover decision much
806 # more accurate. (Since 8.2)
807 #
808 # @downtime-limit: set maximum tolerated downtime for migration.
809 # maximum downtime in milliseconds (Since 2.8)
810 #
811 # @x-checkpoint-delay: The delay time (in ms) between two COLO
812 # checkpoints in periodic mode. (Since 2.8)
813 #
814 # @block-incremental: Affects how much storage is migrated when the
815 # block migration capability is enabled. When false, the entire
816 # storage backing chain is migrated into a flattened image at the
817 # destination; when true, only the active qcow2 layer is migrated
818 # and the destination must already have access to the same backing
819 # chain as was used on the source. (since 2.10)
820 #
821 # @multifd-channels: Number of channels used to migrate data in
822 # parallel. This is the same number that the number of sockets
823 # used for migration. The default value is 2 (since 4.0)
824 #
825 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
826 # needs to be a multiple of the target page size and a power of 2
827 # (Since 2.11)
828 #
829 # @max-postcopy-bandwidth: Background transfer bandwidth during
830 # postcopy. Defaults to 0 (unlimited). In bytes per second.
831 # (Since 3.0)
832 #
833 # @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99.
834 # (Since 3.1)
835 #
836 # @multifd-compression: Which compression method to use. Defaults to
837 # none. (Since 5.0)
838 #
839 # @multifd-zlib-level: Set the compression level to be used in live
840 # migration, the compression level is an integer between 0 and 9,
841 # where 0 means no compression, 1 means the best compression
842 # speed, and 9 means best compression ratio which will consume
843 # more CPU. Defaults to 1. (Since 5.0)
844 #
845 # @multifd-zstd-level: Set the compression level to be used in live
846 # migration, the compression level is an integer between 0 and 20,
847 # where 0 means no compression, 1 means the best compression
848 # speed, and 20 means best compression ratio which will consume
849 # more CPU. Defaults to 1. (Since 5.0)
850 #
851 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
852 # aliases for the purpose of dirty bitmap migration. Such aliases
853 # may for example be the corresponding names on the opposite site.
854 # The mapping must be one-to-one, but not necessarily complete: On
855 # the source, unmapped bitmaps and all bitmaps on unmapped nodes
856 # will be ignored. On the destination, encountering an unmapped
857 # alias in the incoming migration stream will result in a report,
858 # and all further bitmap migration data will then be discarded.
859 # Note that the destination does not know about bitmaps it does
860 # not receive, so there is no limitation or requirement regarding
861 # the number of bitmaps received, or how they are named, or on
862 # which nodes they are placed. By default (when this parameter
863 # has never been set), bitmap names are mapped to themselves.
864 # Nodes are mapped to their block device name if there is one, and
865 # to their node name otherwise. (Since 5.2)
866 #
867 # @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
868 # limit during live migration. Should be in the range 1 to 1000ms.
869 # Defaults to 1000ms. (Since 8.1)
870 #
871 # @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
872 # Defaults to 1. (Since 8.1)
873 #
874 # @mode: Migration mode. See description in @MigMode. Default is 'normal'.
875 # (Since 8.2)
876 #
877 # Features:
878 #
879 # @deprecated: Member @block-incremental is deprecated. Use
880 # blockdev-mirror with NBD instead. Members @compress-level,
881 # @compress-threads, @decompress-threads and @compress-wait-thread
882 # are deprecated because @compression is deprecated.
883 #
884 # @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
885 # are experimental.
886 #
887 # Since: 2.4
888 ##
889 { 'enum': 'MigrationParameter',
890 'data': ['announce-initial', 'announce-max',
891 'announce-rounds', 'announce-step',
892 { 'name': 'compress-level', 'features': [ 'deprecated' ] },
893 { 'name': 'compress-threads', 'features': [ 'deprecated' ] },
894 { 'name': 'decompress-threads', 'features': [ 'deprecated' ] },
895 { 'name': 'compress-wait-thread', 'features': [ 'deprecated' ] },
896 'throttle-trigger-threshold',
897 'cpu-throttle-initial', 'cpu-throttle-increment',
898 'cpu-throttle-tailslow',
899 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
900 'avail-switchover-bandwidth', 'downtime-limit',
901 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
902 { 'name': 'block-incremental', 'features': [ 'deprecated' ] },
903 'multifd-channels',
904 'xbzrle-cache-size', 'max-postcopy-bandwidth',
905 'max-cpu-throttle', 'multifd-compression',
906 'multifd-zlib-level', 'multifd-zstd-level',
907 'block-bitmap-mapping',
908 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] },
909 'vcpu-dirty-limit',
910 'mode'] }
911
912 ##
913 # @MigrateSetParameters:
914 #
915 # @announce-initial: Initial delay (in milliseconds) before sending
916 # the first announce (Since 4.0)
917 #
918 # @announce-max: Maximum delay (in milliseconds) between packets in
919 # the announcement (Since 4.0)
920 #
921 # @announce-rounds: Number of self-announce packets sent after
922 # migration (Since 4.0)
923 #
924 # @announce-step: Increase in delay (in milliseconds) between
925 # subsequent packets in the announcement (Since 4.0)
926 #
927 # @compress-level: compression level
928 #
929 # @compress-threads: compression thread count
930 #
931 # @compress-wait-thread: Controls behavior when all compression
932 # threads are currently busy. If true (default), wait for a free
933 # compression thread to become available; otherwise, send the page
934 # uncompressed. (Since 3.1)
935 #
936 # @decompress-threads: decompression thread count
937 #
938 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and
939 # bytes_xfer_period to trigger throttling. It is expressed as
940 # percentage. The default value is 50. (Since 5.0)
941 #
942 # @cpu-throttle-initial: Initial percentage of time guest cpus are
943 # throttled when migration auto-converge is activated. The
944 # default value is 20. (Since 2.7)
945 #
946 # @cpu-throttle-increment: throttle percentage increase each time
947 # auto-converge detects that migration is not making progress.
948 # The default value is 10. (Since 2.7)
949 #
950 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
951 # the tail stage of throttling, the Guest is very sensitive to CPU
952 # percentage while the @cpu-throttle -increment is excessive
953 # usually at tail stage. If this parameter is true, we will
954 # compute the ideal CPU percentage used by the Guest, which may
955 # exactly make the dirty rate match the dirty rate threshold.
956 # Then we will choose a smaller throttle increment between the one
957 # specified by @cpu-throttle-increment and the one generated by
958 # ideal CPU percentage. Therefore, it is compatible to
959 # traditional throttling, meanwhile the throttle increment won't
960 # be excessive at tail stage. The default value is false. (Since
961 # 5.1)
962 #
963 # @tls-creds: ID of the 'tls-creds' object that provides credentials
964 # for establishing a TLS connection over the migration data
965 # channel. On the outgoing side of the migration, the credentials
966 # must be for a 'client' endpoint, while for the incoming side the
967 # credentials must be for a 'server' endpoint. Setting this to a
968 # non-empty string enables TLS for all migrations. An empty
969 # string means that QEMU will use plain text mode for migration,
970 # rather than TLS (Since 2.9) Previously (since 2.7), this was
971 # reported by omitting tls-creds instead.
972 #
973 # @tls-hostname: hostname of the target host for the migration. This
974 # is required when using x509 based TLS credentials and the
975 # migration URI does not already include a hostname. For example
976 # if using fd: or exec: based migration, the hostname must be
977 # provided so that the server's x509 certificate identity can be
978 # validated. (Since 2.7) An empty string means that QEMU will use
979 # the hostname associated with the migration URI, if any. (Since
980 # 2.9) Previously (since 2.7), this was reported by omitting
981 # tls-hostname instead.
982 #
983 # @max-bandwidth: to set maximum speed for migration. maximum speed
984 # in bytes per second. (Since 2.8)
985 #
986 # @avail-switchover-bandwidth: to set the available bandwidth that
987 # migration can use during switchover phase. NOTE! This does not
988 # limit the bandwidth during switchover, but only for calculations when
989 # making decisions to switchover. By default, this value is zero,
990 # which means QEMU will estimate the bandwidth automatically. This can
991 # be set when the estimated value is not accurate, while the user is
992 # able to guarantee such bandwidth is available when switching over.
993 # When specified correctly, this can make the switchover decision much
994 # more accurate. (Since 8.2)
995 #
996 # @downtime-limit: set maximum tolerated downtime for migration.
997 # maximum downtime in milliseconds (Since 2.8)
998 #
999 # @x-checkpoint-delay: the delay time between two COLO checkpoints.
1000 # (Since 2.8)
1001 #
1002 # @block-incremental: Affects how much storage is migrated when the
1003 # block migration capability is enabled. When false, the entire
1004 # storage backing chain is migrated into a flattened image at the
1005 # destination; when true, only the active qcow2 layer is migrated
1006 # and the destination must already have access to the same backing
1007 # chain as was used on the source. (since 2.10)
1008 #
1009 # @multifd-channels: Number of channels used to migrate data in
1010 # parallel. This is the same number that the number of sockets
1011 # used for migration. The default value is 2 (since 4.0)
1012 #
1013 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
1014 # needs to be a multiple of the target page size and a power of 2
1015 # (Since 2.11)
1016 #
1017 # @max-postcopy-bandwidth: Background transfer bandwidth during
1018 # postcopy. Defaults to 0 (unlimited). In bytes per second.
1019 # (Since 3.0)
1020 #
1021 # @max-cpu-throttle: maximum cpu throttle percentage. The default
1022 # value is 99. (Since 3.1)
1023 #
1024 # @multifd-compression: Which compression method to use. Defaults to
1025 # none. (Since 5.0)
1026 #
1027 # @multifd-zlib-level: Set the compression level to be used in live
1028 # migration, the compression level is an integer between 0 and 9,
1029 # where 0 means no compression, 1 means the best compression
1030 # speed, and 9 means best compression ratio which will consume
1031 # more CPU. Defaults to 1. (Since 5.0)
1032 #
1033 # @multifd-zstd-level: Set the compression level to be used in live
1034 # migration, the compression level is an integer between 0 and 20,
1035 # where 0 means no compression, 1 means the best compression
1036 # speed, and 20 means best compression ratio which will consume
1037 # more CPU. Defaults to 1. (Since 5.0)
1038 #
1039 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1040 # aliases for the purpose of dirty bitmap migration. Such aliases
1041 # may for example be the corresponding names on the opposite site.
1042 # The mapping must be one-to-one, but not necessarily complete: On
1043 # the source, unmapped bitmaps and all bitmaps on unmapped nodes
1044 # will be ignored. On the destination, encountering an unmapped
1045 # alias in the incoming migration stream will result in a report,
1046 # and all further bitmap migration data will then be discarded.
1047 # Note that the destination does not know about bitmaps it does
1048 # not receive, so there is no limitation or requirement regarding
1049 # the number of bitmaps received, or how they are named, or on
1050 # which nodes they are placed. By default (when this parameter
1051 # has never been set), bitmap names are mapped to themselves.
1052 # Nodes are mapped to their block device name if there is one, and
1053 # to their node name otherwise. (Since 5.2)
1054 #
1055 # @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1056 # limit during live migration. Should be in the range 1 to 1000ms.
1057 # Defaults to 1000ms. (Since 8.1)
1058 #
1059 # @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1060 # Defaults to 1. (Since 8.1)
1061 #
1062 # @mode: Migration mode. See description in @MigMode. Default is 'normal'.
1063 # (Since 8.2)
1064 #
1065 # Features:
1066 #
1067 # @deprecated: Member @block-incremental is deprecated. Use
1068 # blockdev-mirror with NBD instead. Members @compress-level,
1069 # @compress-threads, @decompress-threads and @compress-wait-thread
1070 # are deprecated because @compression is deprecated.
1071 #
1072 # @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1073 # are experimental.
1074 #
1075 # TODO: either fuse back into MigrationParameters, or make
1076 # MigrationParameters members mandatory
1077 #
1078 # Since: 2.4
1079 ##
1080 { 'struct': 'MigrateSetParameters',
1081 'data': { '*announce-initial': 'size',
1082 '*announce-max': 'size',
1083 '*announce-rounds': 'size',
1084 '*announce-step': 'size',
1085 '*compress-level': { 'type': 'uint8',
1086 'features': [ 'deprecated' ] },
1087 '*compress-threads': { 'type': 'uint8',
1088 'features': [ 'deprecated' ] },
1089 '*compress-wait-thread': { 'type': 'bool',
1090 'features': [ 'deprecated' ] },
1091 '*decompress-threads': { 'type': 'uint8',
1092 'features': [ 'deprecated' ] },
1093 '*throttle-trigger-threshold': 'uint8',
1094 '*cpu-throttle-initial': 'uint8',
1095 '*cpu-throttle-increment': 'uint8',
1096 '*cpu-throttle-tailslow': 'bool',
1097 '*tls-creds': 'StrOrNull',
1098 '*tls-hostname': 'StrOrNull',
1099 '*tls-authz': 'StrOrNull',
1100 '*max-bandwidth': 'size',
1101 '*avail-switchover-bandwidth': 'size',
1102 '*downtime-limit': 'uint64',
1103 '*x-checkpoint-delay': { 'type': 'uint32',
1104 'features': [ 'unstable' ] },
1105 '*block-incremental': { 'type': 'bool',
1106 'features': [ 'deprecated' ] },
1107 '*multifd-channels': 'uint8',
1108 '*xbzrle-cache-size': 'size',
1109 '*max-postcopy-bandwidth': 'size',
1110 '*max-cpu-throttle': 'uint8',
1111 '*multifd-compression': 'MultiFDCompression',
1112 '*multifd-zlib-level': 'uint8',
1113 '*multifd-zstd-level': 'uint8',
1114 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1115 '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1116 'features': [ 'unstable' ] },
1117 '*vcpu-dirty-limit': 'uint64',
1118 '*mode': 'MigMode'} }
1119
1120 ##
1121 # @migrate-set-parameters:
1122 #
1123 # Set various migration parameters.
1124 #
1125 # Since: 2.4
1126 #
1127 # Example:
1128 #
1129 # -> { "execute": "migrate-set-parameters" ,
1130 # "arguments": { "multifd-channels": 5 } }
1131 # <- { "return": {} }
1132 ##
1133 { 'command': 'migrate-set-parameters', 'boxed': true,
1134 'data': 'MigrateSetParameters' }
1135
1136 ##
1137 # @MigrationParameters:
1138 #
1139 # The optional members aren't actually optional.
1140 #
1141 # @announce-initial: Initial delay (in milliseconds) before sending
1142 # the first announce (Since 4.0)
1143 #
1144 # @announce-max: Maximum delay (in milliseconds) between packets in
1145 # the announcement (Since 4.0)
1146 #
1147 # @announce-rounds: Number of self-announce packets sent after
1148 # migration (Since 4.0)
1149 #
1150 # @announce-step: Increase in delay (in milliseconds) between
1151 # subsequent packets in the announcement (Since 4.0)
1152 #
1153 # @compress-level: compression level
1154 #
1155 # @compress-threads: compression thread count
1156 #
1157 # @compress-wait-thread: Controls behavior when all compression
1158 # threads are currently busy. If true (default), wait for a free
1159 # compression thread to become available; otherwise, send the page
1160 # uncompressed. (Since 3.1)
1161 #
1162 # @decompress-threads: decompression thread count
1163 #
1164 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and
1165 # bytes_xfer_period to trigger throttling. It is expressed as
1166 # percentage. The default value is 50. (Since 5.0)
1167 #
1168 # @cpu-throttle-initial: Initial percentage of time guest cpus are
1169 # throttled when migration auto-converge is activated. (Since
1170 # 2.7)
1171 #
1172 # @cpu-throttle-increment: throttle percentage increase each time
1173 # auto-converge detects that migration is not making progress.
1174 # (Since 2.7)
1175 #
1176 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1177 # the tail stage of throttling, the Guest is very sensitive to CPU
1178 # percentage while the @cpu-throttle -increment is excessive
1179 # usually at tail stage. If this parameter is true, we will
1180 # compute the ideal CPU percentage used by the Guest, which may
1181 # exactly make the dirty rate match the dirty rate threshold.
1182 # Then we will choose a smaller throttle increment between the one
1183 # specified by @cpu-throttle-increment and the one generated by
1184 # ideal CPU percentage. Therefore, it is compatible to
1185 # traditional throttling, meanwhile the throttle increment won't
1186 # be excessive at tail stage. The default value is false. (Since
1187 # 5.1)
1188 #
1189 # @tls-creds: ID of the 'tls-creds' object that provides credentials
1190 # for establishing a TLS connection over the migration data
1191 # channel. On the outgoing side of the migration, the credentials
1192 # must be for a 'client' endpoint, while for the incoming side the
1193 # credentials must be for a 'server' endpoint. An empty string
1194 # means that QEMU will use plain text mode for migration, rather
1195 # than TLS (Since 2.7) Note: 2.8 reports this by omitting
1196 # tls-creds instead.
1197 #
1198 # @tls-hostname: hostname of the target host for the migration. This
1199 # is required when using x509 based TLS credentials and the
1200 # migration URI does not already include a hostname. For example
1201 # if using fd: or exec: based migration, the hostname must be
1202 # provided so that the server's x509 certificate identity can be
1203 # validated. (Since 2.7) An empty string means that QEMU will use
1204 # the hostname associated with the migration URI, if any. (Since
1205 # 2.9) Note: 2.8 reports this by omitting tls-hostname instead.
1206 #
1207 # @tls-authz: ID of the 'authz' object subclass that provides access
1208 # control checking of the TLS x509 certificate distinguished name.
1209 # (Since 4.0)
1210 #
1211 # @max-bandwidth: to set maximum speed for migration. maximum speed
1212 # in bytes per second. (Since 2.8)
1213 #
1214 # @avail-switchover-bandwidth: to set the available bandwidth that
1215 # migration can use during switchover phase. NOTE! This does not
1216 # limit the bandwidth during switchover, but only for calculations when
1217 # making decisions to switchover. By default, this value is zero,
1218 # which means QEMU will estimate the bandwidth automatically. This can
1219 # be set when the estimated value is not accurate, while the user is
1220 # able to guarantee such bandwidth is available when switching over.
1221 # When specified correctly, this can make the switchover decision much
1222 # more accurate. (Since 8.2)
1223 #
1224 # @downtime-limit: set maximum tolerated downtime for migration.
1225 # maximum downtime in milliseconds (Since 2.8)
1226 #
1227 # @x-checkpoint-delay: the delay time between two COLO checkpoints.
1228 # (Since 2.8)
1229 #
1230 # @block-incremental: Affects how much storage is migrated when the
1231 # block migration capability is enabled. When false, the entire
1232 # storage backing chain is migrated into a flattened image at the
1233 # destination; when true, only the active qcow2 layer is migrated
1234 # and the destination must already have access to the same backing
1235 # chain as was used on the source. (since 2.10)
1236 #
1237 # @multifd-channels: Number of channels used to migrate data in
1238 # parallel. This is the same number that the number of sockets
1239 # used for migration. The default value is 2 (since 4.0)
1240 #
1241 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
1242 # needs to be a multiple of the target page size and a power of 2
1243 # (Since 2.11)
1244 #
1245 # @max-postcopy-bandwidth: Background transfer bandwidth during
1246 # postcopy. Defaults to 0 (unlimited). In bytes per second.
1247 # (Since 3.0)
1248 #
1249 # @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99.
1250 # (Since 3.1)
1251 #
1252 # @multifd-compression: Which compression method to use. Defaults to
1253 # none. (Since 5.0)
1254 #
1255 # @multifd-zlib-level: Set the compression level to be used in live
1256 # migration, the compression level is an integer between 0 and 9,
1257 # where 0 means no compression, 1 means the best compression
1258 # speed, and 9 means best compression ratio which will consume
1259 # more CPU. Defaults to 1. (Since 5.0)
1260 #
1261 # @multifd-zstd-level: Set the compression level to be used in live
1262 # migration, the compression level is an integer between 0 and 20,
1263 # where 0 means no compression, 1 means the best compression
1264 # speed, and 20 means best compression ratio which will consume
1265 # more CPU. Defaults to 1. (Since 5.0)
1266 #
1267 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1268 # aliases for the purpose of dirty bitmap migration. Such aliases
1269 # may for example be the corresponding names on the opposite site.
1270 # The mapping must be one-to-one, but not necessarily complete: On
1271 # the source, unmapped bitmaps and all bitmaps on unmapped nodes
1272 # will be ignored. On the destination, encountering an unmapped
1273 # alias in the incoming migration stream will result in a report,
1274 # and all further bitmap migration data will then be discarded.
1275 # Note that the destination does not know about bitmaps it does
1276 # not receive, so there is no limitation or requirement regarding
1277 # the number of bitmaps received, or how they are named, or on
1278 # which nodes they are placed. By default (when this parameter
1279 # has never been set), bitmap names are mapped to themselves.
1280 # Nodes are mapped to their block device name if there is one, and
1281 # to their node name otherwise. (Since 5.2)
1282 #
1283 # @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1284 # limit during live migration. Should be in the range 1 to 1000ms.
1285 # Defaults to 1000ms. (Since 8.1)
1286 #
1287 # @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1288 # Defaults to 1. (Since 8.1)
1289 #
1290 # @mode: Migration mode. See description in @MigMode. Default is 'normal'.
1291 # (Since 8.2)
1292 #
1293 # Features:
1294 #
1295 # @deprecated: Member @block-incremental is deprecated. Use
1296 # blockdev-mirror with NBD instead. Members @compress-level,
1297 # @compress-threads, @decompress-threads and @compress-wait-thread
1298 # are deprecated because @compression is deprecated.
1299 #
1300 # @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1301 # are experimental.
1302 #
1303 # Since: 2.4
1304 ##
1305 { 'struct': 'MigrationParameters',
1306 'data': { '*announce-initial': 'size',
1307 '*announce-max': 'size',
1308 '*announce-rounds': 'size',
1309 '*announce-step': 'size',
1310 '*compress-level': { 'type': 'uint8',
1311 'features': [ 'deprecated' ] },
1312 '*compress-threads': { 'type': 'uint8',
1313 'features': [ 'deprecated' ] },
1314 '*compress-wait-thread': { 'type': 'bool',
1315 'features': [ 'deprecated' ] },
1316 '*decompress-threads': { 'type': 'uint8',
1317 'features': [ 'deprecated' ] },
1318 '*throttle-trigger-threshold': 'uint8',
1319 '*cpu-throttle-initial': 'uint8',
1320 '*cpu-throttle-increment': 'uint8',
1321 '*cpu-throttle-tailslow': 'bool',
1322 '*tls-creds': 'str',
1323 '*tls-hostname': 'str',
1324 '*tls-authz': 'str',
1325 '*max-bandwidth': 'size',
1326 '*avail-switchover-bandwidth': 'size',
1327 '*downtime-limit': 'uint64',
1328 '*x-checkpoint-delay': { 'type': 'uint32',
1329 'features': [ 'unstable' ] },
1330 '*block-incremental': { 'type': 'bool',
1331 'features': [ 'deprecated' ] },
1332 '*multifd-channels': 'uint8',
1333 '*xbzrle-cache-size': 'size',
1334 '*max-postcopy-bandwidth': 'size',
1335 '*max-cpu-throttle': 'uint8',
1336 '*multifd-compression': 'MultiFDCompression',
1337 '*multifd-zlib-level': 'uint8',
1338 '*multifd-zstd-level': 'uint8',
1339 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1340 '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1341 'features': [ 'unstable' ] },
1342 '*vcpu-dirty-limit': 'uint64',
1343 '*mode': 'MigMode'} }
1344
1345 ##
1346 # @query-migrate-parameters:
1347 #
1348 # Returns information about the current migration parameters
1349 #
1350 # Returns: @MigrationParameters
1351 #
1352 # Since: 2.4
1353 #
1354 # Example:
1355 #
1356 # -> { "execute": "query-migrate-parameters" }
1357 # <- { "return": {
1358 # "multifd-channels": 2,
1359 # "cpu-throttle-increment": 10,
1360 # "cpu-throttle-initial": 20,
1361 # "max-bandwidth": 33554432,
1362 # "downtime-limit": 300
1363 # }
1364 # }
1365 ##
1366 { 'command': 'query-migrate-parameters',
1367 'returns': 'MigrationParameters' }
1368
1369 ##
1370 # @migrate-start-postcopy:
1371 #
1372 # Followup to a migration command to switch the migration to postcopy
1373 # mode. The postcopy-ram capability must be set on both source and
1374 # destination before the original migration command.
1375 #
1376 # Since: 2.5
1377 #
1378 # Example:
1379 #
1380 # -> { "execute": "migrate-start-postcopy" }
1381 # <- { "return": {} }
1382 ##
1383 { 'command': 'migrate-start-postcopy' }
1384
1385 ##
1386 # @MIGRATION:
1387 #
1388 # Emitted when a migration event happens
1389 #
1390 # @status: @MigrationStatus describing the current migration status.
1391 #
1392 # Since: 2.4
1393 #
1394 # Example:
1395 #
1396 # <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1397 # "event": "MIGRATION",
1398 # "data": {"status": "completed"} }
1399 ##
1400 { 'event': 'MIGRATION',
1401 'data': {'status': 'MigrationStatus'}}
1402
1403 ##
1404 # @MIGRATION_PASS:
1405 #
1406 # Emitted from the source side of a migration at the start of each
1407 # pass (when it syncs the dirty bitmap)
1408 #
1409 # @pass: An incrementing count (starting at 1 on the first pass)
1410 #
1411 # Since: 2.6
1412 #
1413 # Example:
1414 #
1415 # <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1416 # "event": "MIGRATION_PASS", "data": {"pass": 2} }
1417 ##
1418 { 'event': 'MIGRATION_PASS',
1419 'data': { 'pass': 'int' } }
1420
1421 ##
1422 # @COLOMessage:
1423 #
1424 # The message transmission between Primary side and Secondary side.
1425 #
1426 # @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1427 #
1428 # @checkpoint-request: Primary VM (PVM) tells SVM to prepare for
1429 # checkpointing
1430 #
1431 # @checkpoint-reply: SVM gets PVM's checkpoint request
1432 #
1433 # @vmstate-send: VM's state will be sent by PVM.
1434 #
1435 # @vmstate-size: The total size of VMstate.
1436 #
1437 # @vmstate-received: VM's state has been received by SVM.
1438 #
1439 # @vmstate-loaded: VM's state has been loaded by SVM.
1440 #
1441 # Since: 2.8
1442 ##
1443 { 'enum': 'COLOMessage',
1444 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1445 'vmstate-send', 'vmstate-size', 'vmstate-received',
1446 'vmstate-loaded' ] }
1447
1448 ##
1449 # @COLOMode:
1450 #
1451 # The COLO current mode.
1452 #
1453 # @none: COLO is disabled.
1454 #
1455 # @primary: COLO node in primary side.
1456 #
1457 # @secondary: COLO node in slave side.
1458 #
1459 # Since: 2.8
1460 ##
1461 { 'enum': 'COLOMode',
1462 'data': [ 'none', 'primary', 'secondary'] }
1463
1464 ##
1465 # @FailoverStatus:
1466 #
1467 # An enumeration of COLO failover status
1468 #
1469 # @none: no failover has ever happened
1470 #
1471 # @require: got failover requirement but not handled
1472 #
1473 # @active: in the process of doing failover
1474 #
1475 # @completed: finish the process of failover
1476 #
1477 # @relaunch: restart the failover process, from 'none' -> 'completed'
1478 # (Since 2.9)
1479 #
1480 # Since: 2.8
1481 ##
1482 { 'enum': 'FailoverStatus',
1483 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1484
1485 ##
1486 # @COLO_EXIT:
1487 #
1488 # Emitted when VM finishes COLO mode due to some errors happening or
1489 # at the request of users.
1490 #
1491 # @mode: report COLO mode when COLO exited.
1492 #
1493 # @reason: describes the reason for the COLO exit.
1494 #
1495 # Since: 3.1
1496 #
1497 # Example:
1498 #
1499 # <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1500 # "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1501 ##
1502 { 'event': 'COLO_EXIT',
1503 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1504
1505 ##
1506 # @COLOExitReason:
1507 #
1508 # The reason for a COLO exit.
1509 #
1510 # @none: failover has never happened. This state does not occur in
1511 # the COLO_EXIT event, and is only visible in the result of
1512 # query-colo-status.
1513 #
1514 # @request: COLO exit is due to an external request.
1515 #
1516 # @error: COLO exit is due to an internal error.
1517 #
1518 # @processing: COLO is currently handling a failover (since 4.0).
1519 #
1520 # Since: 3.1
1521 ##
1522 { 'enum': 'COLOExitReason',
1523 'data': [ 'none', 'request', 'error' , 'processing' ] }
1524
1525 ##
1526 # @x-colo-lost-heartbeat:
1527 #
1528 # Tell qemu that heartbeat is lost, request it to do takeover
1529 # procedures. If this command is sent to the PVM, the Primary side
1530 # will exit COLO mode. If sent to the Secondary, the Secondary side
1531 # will run failover work, then takes over server operation to become
1532 # the service VM.
1533 #
1534 # Features:
1535 #
1536 # @unstable: This command is experimental.
1537 #
1538 # Since: 2.8
1539 #
1540 # Example:
1541 #
1542 # -> { "execute": "x-colo-lost-heartbeat" }
1543 # <- { "return": {} }
1544 ##
1545 { 'command': 'x-colo-lost-heartbeat',
1546 'features': [ 'unstable' ],
1547 'if': 'CONFIG_REPLICATION' }
1548
1549 ##
1550 # @migrate_cancel:
1551 #
1552 # Cancel the current executing migration process.
1553 #
1554 # Returns: nothing on success
1555 #
1556 # Notes: This command succeeds even if there is no migration process
1557 # running.
1558 #
1559 # Since: 0.14
1560 #
1561 # Example:
1562 #
1563 # -> { "execute": "migrate_cancel" }
1564 # <- { "return": {} }
1565 ##
1566 { 'command': 'migrate_cancel' }
1567
1568 ##
1569 # @migrate-continue:
1570 #
1571 # Continue migration when it's in a paused state.
1572 #
1573 # @state: The state the migration is currently expected to be in
1574 #
1575 # Returns: nothing on success
1576 #
1577 # Since: 2.11
1578 #
1579 # Example:
1580 #
1581 # -> { "execute": "migrate-continue" , "arguments":
1582 # { "state": "pre-switchover" } }
1583 # <- { "return": {} }
1584 ##
1585 { 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1586
1587 ##
1588 # @MigrationAddressType:
1589 #
1590 # The migration stream transport mechanisms.
1591 #
1592 # @socket: Migrate via socket.
1593 #
1594 # @exec: Direct the migration stream to another process.
1595 #
1596 # @rdma: Migrate via RDMA.
1597 #
1598 # @file: Direct the migration stream to a file.
1599 #
1600 # Since 8.2
1601 ##
1602 { 'enum': 'MigrationAddressType',
1603 'data': [ 'socket', 'exec', 'rdma', 'file' ] }
1604
1605 ##
1606 # @FileMigrationArgs:
1607 #
1608 # @filename: The file to receive the migration stream
1609 #
1610 # @offset: The file offset where the migration stream will start
1611 #
1612 # Since 8.2
1613 ##
1614 { 'struct': 'FileMigrationArgs',
1615 'data': { 'filename': 'str',
1616 'offset': 'uint64' } }
1617
1618 ##
1619 # @MigrationExecCommand:
1620 #
1621 # @args: command (list head) and arguments to execute.
1622 #
1623 # Since 8.2
1624 ##
1625 { 'struct': 'MigrationExecCommand',
1626 'data': {'args': [ 'str' ] } }
1627
1628 ##
1629 # @MigrationAddress:
1630 #
1631 # Migration endpoint configuration.
1632 #
1633 # Since 8.2
1634 ##
1635 { 'union': 'MigrationAddress',
1636 'base': { 'transport' : 'MigrationAddressType'},
1637 'discriminator': 'transport',
1638 'data': {
1639 'socket': 'SocketAddress',
1640 'exec': 'MigrationExecCommand',
1641 'rdma': 'InetSocketAddress',
1642 'file': 'FileMigrationArgs' } }
1643
1644 ##
1645 # @MigrationChannelType:
1646 #
1647 # The migration channel-type request options.
1648 #
1649 # @main: Main outbound migration channel.
1650 #
1651 # Since 8.1
1652 ##
1653 { 'enum': 'MigrationChannelType',
1654 'data': [ 'main' ] }
1655
1656 ##
1657 # @MigrationChannel:
1658 #
1659 # Migration stream channel parameters.
1660 #
1661 # @channel-type: Channel type for transferring packet information.
1662 #
1663 # @addr: Migration endpoint configuration on destination interface.
1664 #
1665 # Since 8.1
1666 ##
1667 { 'struct': 'MigrationChannel',
1668 'data': {
1669 'channel-type': 'MigrationChannelType',
1670 'addr': 'MigrationAddress' } }
1671
1672 ##
1673 # @migrate:
1674 #
1675 # Migrates the current running guest to another Virtual Machine.
1676 #
1677 # @uri: the Uniform Resource Identifier of the destination VM
1678 #
1679 # @channels: list of migration stream channels with each stream in the
1680 # list connected to a destination interface endpoint.
1681 #
1682 # @blk: do block migration (full disk copy)
1683 #
1684 # @inc: incremental disk copy migration
1685 #
1686 # @detach: this argument exists only for compatibility reasons and is
1687 # ignored by QEMU
1688 #
1689 # @resume: resume one paused migration, default "off". (since 3.0)
1690 #
1691 # Features:
1692 #
1693 # @deprecated: Members @inc and @blk are deprecated. Use
1694 # blockdev-mirror with NBD instead.
1695 #
1696 # Returns: nothing on success
1697 #
1698 # Since: 0.14
1699 #
1700 # Notes:
1701 #
1702 # 1. The 'query-migrate' command should be used to check migration's
1703 # progress and final result (this information is provided by the
1704 # 'status' member)
1705 #
1706 # 2. All boolean arguments default to false
1707 #
1708 # 3. The user Monitor's "detach" argument is invalid in QMP and should
1709 # not be used
1710 #
1711 # 4. The uri argument should have the Uniform Resource Identifier of
1712 # default destination VM. This connection will be bound to default
1713 # network.
1714 #
1715 # 5. For now, number of migration streams is restricted to one, i.e
1716 # number of items in 'channels' list is just 1.
1717 #
1718 # 6. The 'uri' and 'channels' arguments are mutually exclusive;
1719 # exactly one of the two should be present.
1720 #
1721 # Example:
1722 #
1723 # -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1724 # <- { "return": {} }
1725 # -> { "execute": "migrate",
1726 # "arguments": {
1727 # "channels": [ { "channel-type": "main",
1728 # "addr": { "transport": "socket",
1729 # "type": "inet",
1730 # "host": "10.12.34.9",
1731 # "port": "1050" } } ] } }
1732 # <- { "return": {} }
1733 #
1734 # -> { "execute": "migrate",
1735 # "arguments": {
1736 # "channels": [ { "channel-type": "main",
1737 # "addr": { "transport": "exec",
1738 # "args": [ "/bin/nc", "-p", "6000",
1739 # "/some/sock" ] } } ] } }
1740 # <- { "return": {} }
1741 #
1742 # -> { "execute": "migrate",
1743 # "arguments": {
1744 # "channels": [ { "channel-type": "main",
1745 # "addr": { "transport": "rdma",
1746 # "host": "10.12.34.9",
1747 # "port": "1050" } } ] } }
1748 # <- { "return": {} }
1749 #
1750 # -> { "execute": "migrate",
1751 # "arguments": {
1752 # "channels": [ { "channel-type": "main",
1753 # "addr": { "transport": "file",
1754 # "filename": "/tmp/migfile",
1755 # "offset": "0x1000" } } ] } }
1756 # <- { "return": {} }
1757 #
1758 ##
1759 { 'command': 'migrate',
1760 'data': {'uri': 'str',
1761 '*channels': [ 'MigrationChannel' ],
1762 '*blk': { 'type': 'bool', 'features': [ 'deprecated' ] },
1763 '*inc': { 'type': 'bool', 'features': [ 'deprecated' ] },
1764 '*detach': 'bool', '*resume': 'bool' } }
1765
1766 ##
1767 # @migrate-incoming:
1768 #
1769 # Start an incoming migration, the qemu must have been started with
1770 # -incoming defer
1771 #
1772 # @uri: The Uniform Resource Identifier identifying the source or
1773 # address to listen on
1774 #
1775 # @channels: list of migration stream channels with each stream in the
1776 # list connected to a destination interface endpoint.
1777 #
1778 # Returns: nothing on success
1779 #
1780 # Since: 2.3
1781 #
1782 # Notes:
1783 #
1784 # 1. It's a bad idea to use a string for the uri, but it needs
1785 # to stay compatible with -incoming and the format of the uri
1786 # is already exposed above libvirt.
1787 #
1788 # 2. QEMU must be started with -incoming defer to allow
1789 # migrate-incoming to be used.
1790 #
1791 # 3. The uri format is the same as for -incoming
1792 #
1793 # 5. For now, number of migration streams is restricted to one, i.e
1794 # number of items in 'channels' list is just 1.
1795 #
1796 # 4. The 'uri' and 'channels' arguments are mutually exclusive;
1797 # exactly one of the two should be present.
1798 #
1799 # Example:
1800 #
1801 # -> { "execute": "migrate-incoming",
1802 # "arguments": { "uri": "tcp::4446" } }
1803 # <- { "return": {} }
1804 #
1805 # -> { "execute": "migrate",
1806 # "arguments": {
1807 # "channels": [ { "channel-type": "main",
1808 # "addr": { "transport": "socket",
1809 # "type": "inet",
1810 # "host": "10.12.34.9",
1811 # "port": "1050" } } ] } }
1812 # <- { "return": {} }
1813 #
1814 # -> { "execute": "migrate",
1815 # "arguments": {
1816 # "channels": [ { "channel-type": "main",
1817 # "addr": { "transport": "exec",
1818 # "args": [ "/bin/nc", "-p", "6000",
1819 # "/some/sock" ] } } ] } }
1820 # <- { "return": {} }
1821 #
1822 # -> { "execute": "migrate",
1823 # "arguments": {
1824 # "channels": [ { "channel-type": "main",
1825 # "addr": { "transport": "rdma",
1826 # "host": "10.12.34.9",
1827 # "port": "1050" } } ] } }
1828 # <- { "return": {} }
1829 ##
1830 { 'command': 'migrate-incoming',
1831 'data': {'*uri': 'str',
1832 '*channels': [ 'MigrationChannel' ] } }
1833
1834 ##
1835 # @xen-save-devices-state:
1836 #
1837 # Save the state of all devices to file. The RAM and the block
1838 # devices of the VM are not saved by this command.
1839 #
1840 # @filename: the file to save the state of the devices to as binary
1841 # data. See xen-save-devices-state.txt for a description of the
1842 # binary format.
1843 #
1844 # @live: Optional argument to ask QEMU to treat this command as part
1845 # of a live migration. Default to true. (since 2.11)
1846 #
1847 # Returns: Nothing on success
1848 #
1849 # Since: 1.1
1850 #
1851 # Example:
1852 #
1853 # -> { "execute": "xen-save-devices-state",
1854 # "arguments": { "filename": "/tmp/save" } }
1855 # <- { "return": {} }
1856 ##
1857 { 'command': 'xen-save-devices-state',
1858 'data': {'filename': 'str', '*live':'bool' } }
1859
1860 ##
1861 # @xen-set-global-dirty-log:
1862 #
1863 # Enable or disable the global dirty log mode.
1864 #
1865 # @enable: true to enable, false to disable.
1866 #
1867 # Returns: nothing
1868 #
1869 # Since: 1.3
1870 #
1871 # Example:
1872 #
1873 # -> { "execute": "xen-set-global-dirty-log",
1874 # "arguments": { "enable": true } }
1875 # <- { "return": {} }
1876 ##
1877 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1878
1879 ##
1880 # @xen-load-devices-state:
1881 #
1882 # Load the state of all devices from file. The RAM and the block
1883 # devices of the VM are not loaded by this command.
1884 #
1885 # @filename: the file to load the state of the devices from as binary
1886 # data. See xen-save-devices-state.txt for a description of the
1887 # binary format.
1888 #
1889 # Since: 2.7
1890 #
1891 # Example:
1892 #
1893 # -> { "execute": "xen-load-devices-state",
1894 # "arguments": { "filename": "/tmp/resume" } }
1895 # <- { "return": {} }
1896 ##
1897 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1898
1899 ##
1900 # @xen-set-replication:
1901 #
1902 # Enable or disable replication.
1903 #
1904 # @enable: true to enable, false to disable.
1905 #
1906 # @primary: true for primary or false for secondary.
1907 #
1908 # @failover: true to do failover, false to stop. but cannot be
1909 # specified if 'enable' is true. default value is false.
1910 #
1911 # Returns: nothing.
1912 #
1913 # Example:
1914 #
1915 # -> { "execute": "xen-set-replication",
1916 # "arguments": {"enable": true, "primary": false} }
1917 # <- { "return": {} }
1918 #
1919 # Since: 2.9
1920 ##
1921 { 'command': 'xen-set-replication',
1922 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' },
1923 'if': 'CONFIG_REPLICATION' }
1924
1925 ##
1926 # @ReplicationStatus:
1927 #
1928 # The result format for 'query-xen-replication-status'.
1929 #
1930 # @error: true if an error happened, false if replication is normal.
1931 #
1932 # @desc: the human readable error description string, when @error is
1933 # 'true'.
1934 #
1935 # Since: 2.9
1936 ##
1937 { 'struct': 'ReplicationStatus',
1938 'data': { 'error': 'bool', '*desc': 'str' },
1939 'if': 'CONFIG_REPLICATION' }
1940
1941 ##
1942 # @query-xen-replication-status:
1943 #
1944 # Query replication status while the vm is running.
1945 #
1946 # Returns: A @ReplicationStatus object showing the status.
1947 #
1948 # Example:
1949 #
1950 # -> { "execute": "query-xen-replication-status" }
1951 # <- { "return": { "error": false } }
1952 #
1953 # Since: 2.9
1954 ##
1955 { 'command': 'query-xen-replication-status',
1956 'returns': 'ReplicationStatus',
1957 'if': 'CONFIG_REPLICATION' }
1958
1959 ##
1960 # @xen-colo-do-checkpoint:
1961 #
1962 # Xen uses this command to notify replication to trigger a checkpoint.
1963 #
1964 # Returns: nothing.
1965 #
1966 # Example:
1967 #
1968 # -> { "execute": "xen-colo-do-checkpoint" }
1969 # <- { "return": {} }
1970 #
1971 # Since: 2.9
1972 ##
1973 { 'command': 'xen-colo-do-checkpoint',
1974 'if': 'CONFIG_REPLICATION' }
1975
1976 ##
1977 # @COLOStatus:
1978 #
1979 # The result format for 'query-colo-status'.
1980 #
1981 # @mode: COLO running mode. If COLO is running, this field will
1982 # return 'primary' or 'secondary'.
1983 #
1984 # @last-mode: COLO last running mode. If COLO is running, this field
1985 # will return same like mode field, after failover we can use this
1986 # field to get last colo mode. (since 4.0)
1987 #
1988 # @reason: describes the reason for the COLO exit.
1989 #
1990 # Since: 3.1
1991 ##
1992 { 'struct': 'COLOStatus',
1993 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
1994 'reason': 'COLOExitReason' },
1995 'if': 'CONFIG_REPLICATION' }
1996
1997 ##
1998 # @query-colo-status:
1999 #
2000 # Query COLO status while the vm is running.
2001 #
2002 # Returns: A @COLOStatus object showing the status.
2003 #
2004 # Example:
2005 #
2006 # -> { "execute": "query-colo-status" }
2007 # <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
2008 #
2009 # Since: 3.1
2010 ##
2011 { 'command': 'query-colo-status',
2012 'returns': 'COLOStatus',
2013 'if': 'CONFIG_REPLICATION' }
2014
2015 ##
2016 # @migrate-recover:
2017 #
2018 # Provide a recovery migration stream URI.
2019 #
2020 # @uri: the URI to be used for the recovery of migration stream.
2021 #
2022 # Returns: nothing.
2023 #
2024 # Example:
2025 #
2026 # -> { "execute": "migrate-recover",
2027 # "arguments": { "uri": "tcp:192.168.1.200:12345" } }
2028 # <- { "return": {} }
2029 #
2030 # Since: 3.0
2031 ##
2032 { 'command': 'migrate-recover',
2033 'data': { 'uri': 'str' },
2034 'allow-oob': true }
2035
2036 ##
2037 # @migrate-pause:
2038 #
2039 # Pause a migration. Currently it only supports postcopy.
2040 #
2041 # Returns: nothing.
2042 #
2043 # Example:
2044 #
2045 # -> { "execute": "migrate-pause" }
2046 # <- { "return": {} }
2047 #
2048 # Since: 3.0
2049 ##
2050 { 'command': 'migrate-pause', 'allow-oob': true }
2051
2052 ##
2053 # @UNPLUG_PRIMARY:
2054 #
2055 # Emitted from source side of a migration when migration state is
2056 # WAIT_UNPLUG. Device was unplugged by guest operating system. Device
2057 # resources in QEMU are kept on standby to be able to re-plug it in
2058 # case of migration failure.
2059 #
2060 # @device-id: QEMU device id of the unplugged device
2061 #
2062 # Since: 4.2
2063 #
2064 # Example:
2065 #
2066 # <- { "event": "UNPLUG_PRIMARY",
2067 # "data": { "device-id": "hostdev0" },
2068 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2069 ##
2070 { 'event': 'UNPLUG_PRIMARY',
2071 'data': { 'device-id': 'str' } }
2072
2073 ##
2074 # @DirtyRateVcpu:
2075 #
2076 # Dirty rate of vcpu.
2077 #
2078 # @id: vcpu index.
2079 #
2080 # @dirty-rate: dirty rate.
2081 #
2082 # Since: 6.2
2083 ##
2084 { 'struct': 'DirtyRateVcpu',
2085 'data': { 'id': 'int', 'dirty-rate': 'int64' } }
2086
2087 ##
2088 # @DirtyRateStatus:
2089 #
2090 # Dirty page rate measurement status.
2091 #
2092 # @unstarted: measuring thread has not been started yet
2093 #
2094 # @measuring: measuring thread is running
2095 #
2096 # @measured: dirty page rate is measured and the results are available
2097 #
2098 # Since: 5.2
2099 ##
2100 { 'enum': 'DirtyRateStatus',
2101 'data': [ 'unstarted', 'measuring', 'measured'] }
2102
2103 ##
2104 # @DirtyRateMeasureMode:
2105 #
2106 # Method used to measure dirty page rate. Differences between
2107 # available methods are explained in @calc-dirty-rate.
2108 #
2109 # @page-sampling: use page sampling
2110 #
2111 # @dirty-ring: use dirty ring
2112 #
2113 # @dirty-bitmap: use dirty bitmap
2114 #
2115 # Since: 6.2
2116 ##
2117 { 'enum': 'DirtyRateMeasureMode',
2118 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
2119
2120 ##
2121 # @TimeUnit:
2122 #
2123 # Specifies unit in which time-related value is specified.
2124 #
2125 # @second: value is in seconds
2126 #
2127 # @millisecond: value is in milliseconds
2128 #
2129 # Since 8.2
2130 #
2131 ##
2132 { 'enum': 'TimeUnit',
2133 'data': ['second', 'millisecond'] }
2134
2135 ##
2136 # @DirtyRateInfo:
2137 #
2138 # Information about measured dirty page rate.
2139 #
2140 # @dirty-rate: an estimate of the dirty page rate of the VM in units
2141 # of MiB/s. Value is present only when @status is 'measured'.
2142 #
2143 # @status: current status of dirty page rate measurements
2144 #
2145 # @start-time: start time in units of second for calculation
2146 #
2147 # @calc-time: time period for which dirty page rate was measured,
2148 # expressed and rounded down to @calc-time-unit.
2149 #
2150 # @calc-time-unit: time unit of @calc-time (Since 8.2)
2151 #
2152 # @sample-pages: number of sampled pages per GiB of guest memory.
2153 # Valid only in page-sampling mode (Since 6.1)
2154 #
2155 # @mode: mode that was used to measure dirty page rate (Since 6.2)
2156 #
2157 # @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was
2158 # specified (Since 6.2)
2159 #
2160 # Since: 5.2
2161 ##
2162 { 'struct': 'DirtyRateInfo',
2163 'data': {'*dirty-rate': 'int64',
2164 'status': 'DirtyRateStatus',
2165 'start-time': 'int64',
2166 'calc-time': 'int64',
2167 'calc-time-unit': 'TimeUnit',
2168 'sample-pages': 'uint64',
2169 'mode': 'DirtyRateMeasureMode',
2170 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
2171
2172 ##
2173 # @calc-dirty-rate:
2174 #
2175 # Start measuring dirty page rate of the VM. Results can be retrieved
2176 # with @query-dirty-rate after measurements are completed.
2177 #
2178 # Dirty page rate is the number of pages changed in a given time
2179 # period expressed in MiB/s. The following methods of calculation are
2180 # available:
2181 #
2182 # 1. In page sampling mode, a random subset of pages are selected and
2183 # hashed twice: once at the beginning of measurement time period,
2184 # and once again at the end. If two hashes for some page are
2185 # different, the page is counted as changed. Since this method
2186 # relies on sampling and hashing, calculated dirty page rate is
2187 # only an estimate of its true value. Increasing @sample-pages
2188 # improves estimation quality at the cost of higher computational
2189 # overhead.
2190 #
2191 # 2. Dirty bitmap mode captures writes to memory (for example by
2192 # temporarily revoking write access to all pages) and counting page
2193 # faults. Information about modified pages is collected into a
2194 # bitmap, where each bit corresponds to one guest page. This mode
2195 # requires that KVM accelerator property "dirty-ring-size" is *not*
2196 # set.
2197 #
2198 # 3. Dirty ring mode is similar to dirty bitmap mode, but the
2199 # information about modified pages is collected into ring buffer.
2200 # This mode tracks page modification per each vCPU separately. It
2201 # requires that KVM accelerator property "dirty-ring-size" is set.
2202 #
2203 # @calc-time: time period for which dirty page rate is calculated.
2204 # By default it is specified in seconds, but the unit can be set
2205 # explicitly with @calc-time-unit. Note that larger @calc-time
2206 # values will typically result in smaller dirty page rates because
2207 # page dirtying is a one-time event. Once some page is counted
2208 # as dirty during @calc-time period, further writes to this page
2209 # will not increase dirty page rate anymore.
2210 #
2211 # @calc-time-unit: time unit in which @calc-time is specified.
2212 # By default it is seconds. (Since 8.2)
2213 #
2214 # @sample-pages: number of sampled pages per each GiB of guest memory.
2215 # Default value is 512. For 4KiB guest pages this corresponds to
2216 # sampling ratio of 0.2%. This argument is used only in page
2217 # sampling mode. (Since 6.1)
2218 #
2219 # @mode: mechanism for tracking dirty pages. Default value is
2220 # 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'.
2221 # (Since 6.1)
2222 #
2223 # Since: 5.2
2224 #
2225 # Example:
2226 #
2227 # -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
2228 # 'sample-pages': 512} }
2229 # <- { "return": {} }
2230 #
2231 # Measure dirty rate using dirty bitmap for 500 milliseconds:
2232 #
2233 # -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500,
2234 # "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} }
2235 #
2236 # <- { "return": {} }
2237 ##
2238 { 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
2239 '*calc-time-unit': 'TimeUnit',
2240 '*sample-pages': 'int',
2241 '*mode': 'DirtyRateMeasureMode'} }
2242
2243 ##
2244 # @query-dirty-rate:
2245 #
2246 # Query results of the most recent invocation of @calc-dirty-rate.
2247 #
2248 # @calc-time-unit: time unit in which to report calculation time.
2249 # By default it is reported in seconds. (Since 8.2)
2250 #
2251 # Since: 5.2
2252 #
2253 # Examples:
2254 #
2255 # 1. Measurement is in progress:
2256 #
2257 # <- {"status": "measuring", "sample-pages": 512,
2258 # "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2259 # "calc-time-unit": "second"}
2260 #
2261 # 2. Measurement has been completed:
2262 #
2263 # <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108,
2264 # "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2265 # "calc-time-unit": "second"}
2266 ##
2267 { 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' },
2268 'returns': 'DirtyRateInfo' }
2269
2270 ##
2271 # @DirtyLimitInfo:
2272 #
2273 # Dirty page rate limit information of a virtual CPU.
2274 #
2275 # @cpu-index: index of a virtual CPU.
2276 #
2277 # @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
2278 # CPU, 0 means unlimited.
2279 #
2280 # @current-rate: current dirty page rate (MB/s) for a virtual CPU.
2281 #
2282 # Since: 7.1
2283 ##
2284 { 'struct': 'DirtyLimitInfo',
2285 'data': { 'cpu-index': 'int',
2286 'limit-rate': 'uint64',
2287 'current-rate': 'uint64' } }
2288
2289 ##
2290 # @set-vcpu-dirty-limit:
2291 #
2292 # Set the upper limit of dirty page rate for virtual CPUs.
2293 #
2294 # Requires KVM with accelerator property "dirty-ring-size" set. A
2295 # virtual CPU's dirty page rate is a measure of its memory load. To
2296 # observe dirty page rates, use @calc-dirty-rate.
2297 #
2298 # @cpu-index: index of a virtual CPU, default is all.
2299 #
2300 # @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
2301 #
2302 # Since: 7.1
2303 #
2304 # Example:
2305 #
2306 # -> {"execute": "set-vcpu-dirty-limit"}
2307 # "arguments": { "dirty-rate": 200,
2308 # "cpu-index": 1 } }
2309 # <- { "return": {} }
2310 ##
2311 { 'command': 'set-vcpu-dirty-limit',
2312 'data': { '*cpu-index': 'int',
2313 'dirty-rate': 'uint64' } }
2314
2315 ##
2316 # @cancel-vcpu-dirty-limit:
2317 #
2318 # Cancel the upper limit of dirty page rate for virtual CPUs.
2319 #
2320 # Cancel the dirty page limit for the vCPU which has been set with
2321 # set-vcpu-dirty-limit command. Note that this command requires
2322 # support from dirty ring, same as the "set-vcpu-dirty-limit".
2323 #
2324 # @cpu-index: index of a virtual CPU, default is all.
2325 #
2326 # Since: 7.1
2327 #
2328 # Example:
2329 #
2330 # -> {"execute": "cancel-vcpu-dirty-limit"},
2331 # "arguments": { "cpu-index": 1 } }
2332 # <- { "return": {} }
2333 ##
2334 { 'command': 'cancel-vcpu-dirty-limit',
2335 'data': { '*cpu-index': 'int'} }
2336
2337 ##
2338 # @query-vcpu-dirty-limit:
2339 #
2340 # Returns information about virtual CPU dirty page rate limits, if
2341 # any.
2342 #
2343 # Since: 7.1
2344 #
2345 # Example:
2346 #
2347 # -> {"execute": "query-vcpu-dirty-limit"}
2348 # <- {"return": [
2349 # { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
2350 # { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
2351 ##
2352 { 'command': 'query-vcpu-dirty-limit',
2353 'returns': [ 'DirtyLimitInfo' ] }
2354
2355 ##
2356 # @MigrationThreadInfo:
2357 #
2358 # Information about migrationthreads
2359 #
2360 # @name: the name of migration thread
2361 #
2362 # @thread-id: ID of the underlying host thread
2363 #
2364 # Since: 7.2
2365 ##
2366 { 'struct': 'MigrationThreadInfo',
2367 'data': {'name': 'str',
2368 'thread-id': 'int'} }
2369
2370 ##
2371 # @query-migrationthreads:
2372 #
2373 # Returns information of migration threads
2374 #
2375 # data: migration thread name
2376 #
2377 # Returns: information about migration threads
2378 #
2379 # Since: 7.2
2380 ##
2381 { 'command': 'query-migrationthreads',
2382 'returns': ['MigrationThreadInfo'] }
2383
2384 ##
2385 # @snapshot-save:
2386 #
2387 # Save a VM snapshot
2388 #
2389 # @job-id: identifier for the newly created job
2390 #
2391 # @tag: name of the snapshot to create
2392 #
2393 # @vmstate: block device node name to save vmstate to
2394 #
2395 # @devices: list of block device node names to save a snapshot to
2396 #
2397 # Applications should not assume that the snapshot save is complete
2398 # when this command returns. The job commands / events must be used
2399 # to determine completion and to fetch details of any errors that
2400 # arise.
2401 #
2402 # Note that execution of the guest CPUs may be stopped during the time
2403 # it takes to save the snapshot. A future version of QEMU may ensure
2404 # CPUs are executing continuously.
2405 #
2406 # It is strongly recommended that @devices contain all writable block
2407 # device nodes if a consistent snapshot is required.
2408 #
2409 # If @tag already exists, an error will be reported
2410 #
2411 # Returns: nothing
2412 #
2413 # Example:
2414 #
2415 # -> { "execute": "snapshot-save",
2416 # "arguments": {
2417 # "job-id": "snapsave0",
2418 # "tag": "my-snap",
2419 # "vmstate": "disk0",
2420 # "devices": ["disk0", "disk1"]
2421 # }
2422 # }
2423 # <- { "return": { } }
2424 # <- {"event": "JOB_STATUS_CHANGE",
2425 # "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2426 # "data": {"status": "created", "id": "snapsave0"}}
2427 # <- {"event": "JOB_STATUS_CHANGE",
2428 # "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2429 # "data": {"status": "running", "id": "snapsave0"}}
2430 # <- {"event": "STOP",
2431 # "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2432 # <- {"event": "RESUME",
2433 # "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2434 # <- {"event": "JOB_STATUS_CHANGE",
2435 # "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2436 # "data": {"status": "waiting", "id": "snapsave0"}}
2437 # <- {"event": "JOB_STATUS_CHANGE",
2438 # "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2439 # "data": {"status": "pending", "id": "snapsave0"}}
2440 # <- {"event": "JOB_STATUS_CHANGE",
2441 # "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2442 # "data": {"status": "concluded", "id": "snapsave0"}}
2443 # -> {"execute": "query-jobs"}
2444 # <- {"return": [{"current-progress": 1,
2445 # "status": "concluded",
2446 # "total-progress": 1,
2447 # "type": "snapshot-save",
2448 # "id": "snapsave0"}]}
2449 #
2450 # Since: 6.0
2451 ##
2452 { 'command': 'snapshot-save',
2453 'data': { 'job-id': 'str',
2454 'tag': 'str',
2455 'vmstate': 'str',
2456 'devices': ['str'] } }
2457
2458 ##
2459 # @snapshot-load:
2460 #
2461 # Load a VM snapshot
2462 #
2463 # @job-id: identifier for the newly created job
2464 #
2465 # @tag: name of the snapshot to load.
2466 #
2467 # @vmstate: block device node name to load vmstate from
2468 #
2469 # @devices: list of block device node names to load a snapshot from
2470 #
2471 # Applications should not assume that the snapshot load is complete
2472 # when this command returns. The job commands / events must be used
2473 # to determine completion and to fetch details of any errors that
2474 # arise.
2475 #
2476 # Note that execution of the guest CPUs will be stopped during the
2477 # time it takes to load the snapshot.
2478 #
2479 # It is strongly recommended that @devices contain all writable block
2480 # device nodes that can have changed since the original @snapshot-save
2481 # command execution.
2482 #
2483 # Returns: nothing
2484 #
2485 # Example:
2486 #
2487 # -> { "execute": "snapshot-load",
2488 # "arguments": {
2489 # "job-id": "snapload0",
2490 # "tag": "my-snap",
2491 # "vmstate": "disk0",
2492 # "devices": ["disk0", "disk1"]
2493 # }
2494 # }
2495 # <- { "return": { } }
2496 # <- {"event": "JOB_STATUS_CHANGE",
2497 # "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2498 # "data": {"status": "created", "id": "snapload0"}}
2499 # <- {"event": "JOB_STATUS_CHANGE",
2500 # "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2501 # "data": {"status": "running", "id": "snapload0"}}
2502 # <- {"event": "STOP",
2503 # "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2504 # <- {"event": "RESUME",
2505 # "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2506 # <- {"event": "JOB_STATUS_CHANGE",
2507 # "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2508 # "data": {"status": "waiting", "id": "snapload0"}}
2509 # <- {"event": "JOB_STATUS_CHANGE",
2510 # "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2511 # "data": {"status": "pending", "id": "snapload0"}}
2512 # <- {"event": "JOB_STATUS_CHANGE",
2513 # "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2514 # "data": {"status": "concluded", "id": "snapload0"}}
2515 # -> {"execute": "query-jobs"}
2516 # <- {"return": [{"current-progress": 1,
2517 # "status": "concluded",
2518 # "total-progress": 1,
2519 # "type": "snapshot-load",
2520 # "id": "snapload0"}]}
2521 #
2522 # Since: 6.0
2523 ##
2524 { 'command': 'snapshot-load',
2525 'data': { 'job-id': 'str',
2526 'tag': 'str',
2527 'vmstate': 'str',
2528 'devices': ['str'] } }
2529
2530 ##
2531 # @snapshot-delete:
2532 #
2533 # Delete a VM snapshot
2534 #
2535 # @job-id: identifier for the newly created job
2536 #
2537 # @tag: name of the snapshot to delete.
2538 #
2539 # @devices: list of block device node names to delete a snapshot from
2540 #
2541 # Applications should not assume that the snapshot delete is complete
2542 # when this command returns. The job commands / events must be used
2543 # to determine completion and to fetch details of any errors that
2544 # arise.
2545 #
2546 # Returns: nothing
2547 #
2548 # Example:
2549 #
2550 # -> { "execute": "snapshot-delete",
2551 # "arguments": {
2552 # "job-id": "snapdelete0",
2553 # "tag": "my-snap",
2554 # "devices": ["disk0", "disk1"]
2555 # }
2556 # }
2557 # <- { "return": { } }
2558 # <- {"event": "JOB_STATUS_CHANGE",
2559 # "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2560 # "data": {"status": "created", "id": "snapdelete0"}}
2561 # <- {"event": "JOB_STATUS_CHANGE",
2562 # "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2563 # "data": {"status": "running", "id": "snapdelete0"}}
2564 # <- {"event": "JOB_STATUS_CHANGE",
2565 # "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2566 # "data": {"status": "waiting", "id": "snapdelete0"}}
2567 # <- {"event": "JOB_STATUS_CHANGE",
2568 # "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2569 # "data": {"status": "pending", "id": "snapdelete0"}}
2570 # <- {"event": "JOB_STATUS_CHANGE",
2571 # "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2572 # "data": {"status": "concluded", "id": "snapdelete0"}}
2573 # -> {"execute": "query-jobs"}
2574 # <- {"return": [{"current-progress": 1,
2575 # "status": "concluded",
2576 # "total-progress": 1,
2577 # "type": "snapshot-delete",
2578 # "id": "snapdelete0"}]}
2579 #
2580 # Since: 6.0
2581 ##
2582 { 'command': 'snapshot-delete',
2583 'data': { 'job-id': 'str',
2584 'tag': 'str',
2585 'devices': ['str'] } }