]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-doc.texi
Revert "vl: Fix to create migration object before block backends again"
[mirror_qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @include version.texi
5
6 @documentlanguage en
7 @documentencoding UTF-8
8
9 @settitle QEMU version @value{VERSION} User Documentation
10 @exampleindent 0
11 @paragraphindent 0
12 @c %**end of header
13
14 @ifinfo
15 @direntry
16 * QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17 @end direntry
18 @end ifinfo
19
20 @iftex
21 @titlepage
22 @sp 7
23 @center @titlefont{QEMU version @value{VERSION}}
24 @sp 1
25 @center @titlefont{User Documentation}
26 @sp 3
27 @end titlepage
28 @end iftex
29
30 @ifnottex
31 @node Top
32 @top
33
34 @menu
35 * Introduction::
36 * QEMU PC System emulator::
37 * QEMU System emulator for non PC targets::
38 * QEMU Guest Agent::
39 * QEMU User space emulator::
40 * System requirements::
41 * Implementation notes::
42 * Deprecated features::
43 * Supported build platforms::
44 * License::
45 * Index::
46 @end menu
47 @end ifnottex
48
49 @contents
50
51 @node Introduction
52 @chapter Introduction
53
54 @menu
55 * intro_features:: Features
56 @end menu
57
58 @node intro_features
59 @section Features
60
61 QEMU is a FAST! processor emulator using dynamic translation to
62 achieve good emulation speed.
63
64 @cindex operating modes
65 QEMU has two operating modes:
66
67 @itemize
68 @cindex system emulation
69 @item Full system emulation. In this mode, QEMU emulates a full system (for
70 example a PC), including one or several processors and various
71 peripherals. It can be used to launch different Operating Systems
72 without rebooting the PC or to debug system code.
73
74 @cindex user mode emulation
75 @item User mode emulation. In this mode, QEMU can launch
76 processes compiled for one CPU on another CPU. It can be used to
77 launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
78 to ease cross-compilation and cross-debugging.
79
80 @end itemize
81
82 QEMU has the following features:
83
84 @itemize
85 @item QEMU can run without a host kernel driver and yet gives acceptable
86 performance. It uses dynamic translation to native code for reasonable speed,
87 with support for self-modifying code and precise exceptions.
88
89 @item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
90 Windows) and architectures.
91
92 @item It performs accurate software emulation of the FPU.
93 @end itemize
94
95 QEMU user mode emulation has the following features:
96 @itemize
97 @item Generic Linux system call converter, including most ioctls.
98
99 @item clone() emulation using native CPU clone() to use Linux scheduler for threads.
100
101 @item Accurate signal handling by remapping host signals to target signals.
102 @end itemize
103
104 QEMU full system emulation has the following features:
105 @itemize
106 @item
107 QEMU uses a full software MMU for maximum portability.
108
109 @item
110 QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
111 execute most of the guest code natively, while
112 continuing to emulate the rest of the machine.
113
114 @item
115 Various hardware devices can be emulated and in some cases, host
116 devices (e.g. serial and parallel ports, USB, drives) can be used
117 transparently by the guest Operating System. Host device passthrough
118 can be used for talking to external physical peripherals (e.g. a
119 webcam, modem or tape drive).
120
121 @item
122 Symmetric multiprocessing (SMP) support. Currently, an in-kernel
123 accelerator is required to use more than one host CPU for emulation.
124
125 @end itemize
126
127
128 @node QEMU PC System emulator
129 @chapter QEMU PC System emulator
130 @cindex system emulation (PC)
131
132 @menu
133 * pcsys_introduction:: Introduction
134 * pcsys_quickstart:: Quick Start
135 * sec_invocation:: Invocation
136 * pcsys_keys:: Keys in the graphical frontends
137 * mux_keys:: Keys in the character backend multiplexer
138 * pcsys_monitor:: QEMU Monitor
139 * cpu_models:: CPU models
140 * disk_images:: Disk Images
141 * pcsys_network:: Network emulation
142 * pcsys_other_devs:: Other Devices
143 * direct_linux_boot:: Direct Linux Boot
144 * pcsys_usb:: USB emulation
145 * vnc_security:: VNC security
146 * network_tls:: TLS setup for network services
147 * gdb_usage:: GDB usage
148 * pcsys_os_specific:: Target OS specific information
149 @end menu
150
151 @node pcsys_introduction
152 @section Introduction
153
154 @c man begin DESCRIPTION
155
156 The QEMU PC System emulator simulates the
157 following peripherals:
158
159 @itemize @minus
160 @item
161 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
162 @item
163 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
164 extensions (hardware level, including all non standard modes).
165 @item
166 PS/2 mouse and keyboard
167 @item
168 2 PCI IDE interfaces with hard disk and CD-ROM support
169 @item
170 Floppy disk
171 @item
172 PCI and ISA network adapters
173 @item
174 Serial ports
175 @item
176 IPMI BMC, either and internal or external one
177 @item
178 Creative SoundBlaster 16 sound card
179 @item
180 ENSONIQ AudioPCI ES1370 sound card
181 @item
182 Intel 82801AA AC97 Audio compatible sound card
183 @item
184 Intel HD Audio Controller and HDA codec
185 @item
186 Adlib (OPL2) - Yamaha YM3812 compatible chip
187 @item
188 Gravis Ultrasound GF1 sound card
189 @item
190 CS4231A compatible sound card
191 @item
192 PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
193 @end itemize
194
195 SMP is supported with up to 255 CPUs.
196
197 QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
198 VGA BIOS.
199
200 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
201
202 QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
203 by Tibor "TS" Schütz.
204
205 Note that, by default, GUS shares IRQ(7) with parallel ports and so
206 QEMU must be told to not have parallel ports to have working GUS.
207
208 @example
209 qemu-system-i386 dos.img -soundhw gus -parallel none
210 @end example
211
212 Alternatively:
213 @example
214 qemu-system-i386 dos.img -device gus,irq=5
215 @end example
216
217 Or some other unclaimed IRQ.
218
219 CS4231A is the chip used in Windows Sound System and GUSMAX products
220
221 @c man end
222
223 @node pcsys_quickstart
224 @section Quick Start
225 @cindex quick start
226
227 Download and uncompress the linux image (@file{linux.img}) and type:
228
229 @example
230 qemu-system-i386 linux.img
231 @end example
232
233 Linux should boot and give you a prompt.
234
235 @node sec_invocation
236 @section Invocation
237
238 @example
239 @c man begin SYNOPSIS
240 @command{qemu-system-i386} [@var{options}] [@var{disk_image}]
241 @c man end
242 @end example
243
244 @c man begin OPTIONS
245 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
246 targets do not need a disk image.
247
248 @include qemu-options.texi
249
250 @c man end
251
252 @subsection Device URL Syntax
253 @c TODO merge this with section Disk Images
254
255 @c man begin NOTES
256
257 In addition to using normal file images for the emulated storage devices,
258 QEMU can also use networked resources such as iSCSI devices. These are
259 specified using a special URL syntax.
260
261 @table @option
262 @item iSCSI
263 iSCSI support allows QEMU to access iSCSI resources directly and use as
264 images for the guest storage. Both disk and cdrom images are supported.
265
266 Syntax for specifying iSCSI LUNs is
267 ``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
268
269 By default qemu will use the iSCSI initiator-name
270 'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
271 line or a configuration file.
272
273 Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
274 stalled requests and force a reestablishment of the session. The timeout
275 is specified in seconds. The default is 0 which means no timeout. Libiscsi
276 1.15.0 or greater is required for this feature.
277
278 Example (without authentication):
279 @example
280 qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
281 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
282 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
283 @end example
284
285 Example (CHAP username/password via URL):
286 @example
287 qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
288 @end example
289
290 Example (CHAP username/password via environment variables):
291 @example
292 LIBISCSI_CHAP_USERNAME="user" \
293 LIBISCSI_CHAP_PASSWORD="password" \
294 qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
295 @end example
296
297 @item NBD
298 QEMU supports NBD (Network Block Devices) both using TCP protocol as well
299 as Unix Domain Sockets.
300
301 Syntax for specifying a NBD device using TCP
302 ``nbd:<server-ip>:<port>[:exportname=<export>]''
303
304 Syntax for specifying a NBD device using Unix Domain Sockets
305 ``nbd:unix:<domain-socket>[:exportname=<export>]''
306
307 Example for TCP
308 @example
309 qemu-system-i386 --drive file=nbd:192.0.2.1:30000
310 @end example
311
312 Example for Unix Domain Sockets
313 @example
314 qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
315 @end example
316
317 @item SSH
318 QEMU supports SSH (Secure Shell) access to remote disks.
319
320 Examples:
321 @example
322 qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
323 qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
324 @end example
325
326 Currently authentication must be done using ssh-agent. Other
327 authentication methods may be supported in future.
328
329 @item Sheepdog
330 Sheepdog is a distributed storage system for QEMU.
331 QEMU supports using either local sheepdog devices or remote networked
332 devices.
333
334 Syntax for specifying a sheepdog device
335 @example
336 sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
337 @end example
338
339 Example
340 @example
341 qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
342 @end example
343
344 See also @url{https://sheepdog.github.io/sheepdog/}.
345
346 @item GlusterFS
347 GlusterFS is a user space distributed file system.
348 QEMU supports the use of GlusterFS volumes for hosting VM disk images using
349 TCP, Unix Domain Sockets and RDMA transport protocols.
350
351 Syntax for specifying a VM disk image on GlusterFS volume is
352 @example
353
354 URI:
355 gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
356
357 JSON:
358 'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
359 @ "server":[@{"type":"tcp","host":"...","port":"..."@},
360 @ @{"type":"unix","socket":"..."@}]@}@}'
361 @end example
362
363
364 Example
365 @example
366 URI:
367 qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
368 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log
369
370 JSON:
371 qemu-system-x86_64 'json:@{"driver":"qcow2",
372 @ "file":@{"driver":"gluster",
373 @ "volume":"testvol","path":"a.img",
374 @ "debug":9,"logfile":"/var/log/qemu-gluster.log",
375 @ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
376 @ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
377 qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
378 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
379 @ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
380 @ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
381 @end example
382
383 See also @url{http://www.gluster.org}.
384
385 @item HTTP/HTTPS/FTP/FTPS
386 QEMU supports read-only access to files accessed over http(s) and ftp(s).
387
388 Syntax using a single filename:
389 @example
390 <protocol>://[<username>[:<password>]@@]<host>/<path>
391 @end example
392
393 where:
394 @table @option
395 @item protocol
396 'http', 'https', 'ftp', or 'ftps'.
397
398 @item username
399 Optional username for authentication to the remote server.
400
401 @item password
402 Optional password for authentication to the remote server.
403
404 @item host
405 Address of the remote server.
406
407 @item path
408 Path on the remote server, including any query string.
409 @end table
410
411 The following options are also supported:
412 @table @option
413 @item url
414 The full URL when passing options to the driver explicitly.
415
416 @item readahead
417 The amount of data to read ahead with each range request to the remote server.
418 This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
419 does not have a suffix, it will be assumed to be in bytes. The value must be a
420 multiple of 512 bytes. It defaults to 256k.
421
422 @item sslverify
423 Whether to verify the remote server's certificate when connecting over SSL. It
424 can have the value 'on' or 'off'. It defaults to 'on'.
425
426 @item cookie
427 Send this cookie (it can also be a list of cookies separated by ';') with
428 each outgoing request. Only supported when using protocols such as HTTP
429 which support cookies, otherwise ignored.
430
431 @item timeout
432 Set the timeout in seconds of the CURL connection. This timeout is the time
433 that CURL waits for a response from the remote server to get the size of the
434 image to be downloaded. If not set, the default timeout of 5 seconds is used.
435 @end table
436
437 Note that when passing options to qemu explicitly, @option{driver} is the value
438 of <protocol>.
439
440 Example: boot from a remote Fedora 20 live ISO image
441 @example
442 qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
443
444 qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
445 @end example
446
447 Example: boot from a remote Fedora 20 cloud image using a local overlay for
448 writes, copy-on-read, and a readahead of 64k
449 @example
450 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
451
452 qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
453 @end example
454
455 Example: boot from an image stored on a VMware vSphere server with a self-signed
456 certificate using a local overlay for writes, a readahead of 64k and a timeout
457 of 10 seconds.
458 @example
459 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
460
461 qemu-system-x86_64 -drive file=/tmp/test.qcow2
462 @end example
463
464 @end table
465
466 @c man end
467
468 @node pcsys_keys
469 @section Keys in the graphical frontends
470
471 @c man begin OPTIONS
472
473 During the graphical emulation, you can use special key combinations to change
474 modes. The default key mappings are shown below, but if you use @code{-alt-grab}
475 then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
476 @code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
477
478 @table @key
479 @item Ctrl-Alt-f
480 @kindex Ctrl-Alt-f
481 Toggle full screen
482
483 @item Ctrl-Alt-+
484 @kindex Ctrl-Alt-+
485 Enlarge the screen
486
487 @item Ctrl-Alt--
488 @kindex Ctrl-Alt--
489 Shrink the screen
490
491 @item Ctrl-Alt-u
492 @kindex Ctrl-Alt-u
493 Restore the screen's un-scaled dimensions
494
495 @item Ctrl-Alt-n
496 @kindex Ctrl-Alt-n
497 Switch to virtual console 'n'. Standard console mappings are:
498 @table @emph
499 @item 1
500 Target system display
501 @item 2
502 Monitor
503 @item 3
504 Serial port
505 @end table
506
507 @item Ctrl-Alt
508 @kindex Ctrl-Alt
509 Toggle mouse and keyboard grab.
510 @end table
511
512 @kindex Ctrl-Up
513 @kindex Ctrl-Down
514 @kindex Ctrl-PageUp
515 @kindex Ctrl-PageDown
516 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
517 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
518
519 @c man end
520
521 @node mux_keys
522 @section Keys in the character backend multiplexer
523
524 @c man begin OPTIONS
525
526 During emulation, if you are using a character backend multiplexer
527 (which is the default if you are using @option{-nographic}) then
528 several commands are available via an escape sequence. These
529 key sequences all start with an escape character, which is @key{Ctrl-a}
530 by default, but can be changed with @option{-echr}. The list below assumes
531 you're using the default.
532
533 @table @key
534 @item Ctrl-a h
535 @kindex Ctrl-a h
536 Print this help
537 @item Ctrl-a x
538 @kindex Ctrl-a x
539 Exit emulator
540 @item Ctrl-a s
541 @kindex Ctrl-a s
542 Save disk data back to file (if -snapshot)
543 @item Ctrl-a t
544 @kindex Ctrl-a t
545 Toggle console timestamps
546 @item Ctrl-a b
547 @kindex Ctrl-a b
548 Send break (magic sysrq in Linux)
549 @item Ctrl-a c
550 @kindex Ctrl-a c
551 Rotate between the frontends connected to the multiplexer (usually
552 this switches between the monitor and the console)
553 @item Ctrl-a Ctrl-a
554 @kindex Ctrl-a Ctrl-a
555 Send the escape character to the frontend
556 @end table
557 @c man end
558
559 @ignore
560
561 @c man begin SEEALSO
562 The HTML documentation of QEMU for more precise information and Linux
563 user mode emulator invocation.
564 @c man end
565
566 @c man begin AUTHOR
567 Fabrice Bellard
568 @c man end
569
570 @end ignore
571
572 @node pcsys_monitor
573 @section QEMU Monitor
574 @cindex QEMU monitor
575
576 The QEMU monitor is used to give complex commands to the QEMU
577 emulator. You can use it to:
578
579 @itemize @minus
580
581 @item
582 Remove or insert removable media images
583 (such as CD-ROM or floppies).
584
585 @item
586 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
587 from a disk file.
588
589 @item Inspect the VM state without an external debugger.
590
591 @end itemize
592
593 @subsection Commands
594
595 The following commands are available:
596
597 @include qemu-monitor.texi
598
599 @include qemu-monitor-info.texi
600
601 @subsection Integer expressions
602
603 The monitor understands integers expressions for every integer
604 argument. You can use register names to get the value of specifics
605 CPU registers by prefixing them with @emph{$}.
606
607 @node cpu_models
608 @section CPU models
609
610 @include docs/qemu-cpu-models.texi
611
612 @node disk_images
613 @section Disk Images
614
615 QEMU supports many disk image formats, including growable disk images
616 (their size increase as non empty sectors are written), compressed and
617 encrypted disk images.
618
619 @menu
620 * disk_images_quickstart:: Quick start for disk image creation
621 * disk_images_snapshot_mode:: Snapshot mode
622 * vm_snapshots:: VM snapshots
623 * qemu_img_invocation:: qemu-img Invocation
624 * qemu_nbd_invocation:: qemu-nbd Invocation
625 * disk_images_formats:: Disk image file formats
626 * host_drives:: Using host drives
627 * disk_images_fat_images:: Virtual FAT disk images
628 * disk_images_nbd:: NBD access
629 * disk_images_sheepdog:: Sheepdog disk images
630 * disk_images_iscsi:: iSCSI LUNs
631 * disk_images_gluster:: GlusterFS disk images
632 * disk_images_ssh:: Secure Shell (ssh) disk images
633 * disk_images_nvme:: NVMe userspace driver
634 * disk_image_locking:: Disk image file locking
635 @end menu
636
637 @node disk_images_quickstart
638 @subsection Quick start for disk image creation
639
640 You can create a disk image with the command:
641 @example
642 qemu-img create myimage.img mysize
643 @end example
644 where @var{myimage.img} is the disk image filename and @var{mysize} is its
645 size in kilobytes. You can add an @code{M} suffix to give the size in
646 megabytes and a @code{G} suffix for gigabytes.
647
648 See @ref{qemu_img_invocation} for more information.
649
650 @node disk_images_snapshot_mode
651 @subsection Snapshot mode
652
653 If you use the option @option{-snapshot}, all disk images are
654 considered as read only. When sectors in written, they are written in
655 a temporary file created in @file{/tmp}. You can however force the
656 write back to the raw disk images by using the @code{commit} monitor
657 command (or @key{C-a s} in the serial console).
658
659 @node vm_snapshots
660 @subsection VM snapshots
661
662 VM snapshots are snapshots of the complete virtual machine including
663 CPU state, RAM, device state and the content of all the writable
664 disks. In order to use VM snapshots, you must have at least one non
665 removable and writable block device using the @code{qcow2} disk image
666 format. Normally this device is the first virtual hard drive.
667
668 Use the monitor command @code{savevm} to create a new VM snapshot or
669 replace an existing one. A human readable name can be assigned to each
670 snapshot in addition to its numerical ID.
671
672 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
673 a VM snapshot. @code{info snapshots} lists the available snapshots
674 with their associated information:
675
676 @example
677 (qemu) info snapshots
678 Snapshot devices: hda
679 Snapshot list (from hda):
680 ID TAG VM SIZE DATE VM CLOCK
681 1 start 41M 2006-08-06 12:38:02 00:00:14.954
682 2 40M 2006-08-06 12:43:29 00:00:18.633
683 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
684 @end example
685
686 A VM snapshot is made of a VM state info (its size is shown in
687 @code{info snapshots}) and a snapshot of every writable disk image.
688 The VM state info is stored in the first @code{qcow2} non removable
689 and writable block device. The disk image snapshots are stored in
690 every disk image. The size of a snapshot in a disk image is difficult
691 to evaluate and is not shown by @code{info snapshots} because the
692 associated disk sectors are shared among all the snapshots to save
693 disk space (otherwise each snapshot would need a full copy of all the
694 disk images).
695
696 When using the (unrelated) @code{-snapshot} option
697 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
698 but they are deleted as soon as you exit QEMU.
699
700 VM snapshots currently have the following known limitations:
701 @itemize
702 @item
703 They cannot cope with removable devices if they are removed or
704 inserted after a snapshot is done.
705 @item
706 A few device drivers still have incomplete snapshot support so their
707 state is not saved or restored properly (in particular USB).
708 @end itemize
709
710 @node qemu_img_invocation
711 @subsection @code{qemu-img} Invocation
712
713 @include qemu-img.texi
714
715 @node qemu_nbd_invocation
716 @subsection @code{qemu-nbd} Invocation
717
718 @include qemu-nbd.texi
719
720 @include docs/qemu-block-drivers.texi
721
722 @node pcsys_network
723 @section Network emulation
724
725 QEMU can simulate several network cards (e.g. PCI or ISA cards on the PC
726 target) and can connect them to a network backend on the host or an emulated
727 hub. The various host network backends can either be used to connect the NIC of
728 the guest to a real network (e.g. by using a TAP devices or the non-privileged
729 user mode network stack), or to other guest instances running in another QEMU
730 process (e.g. by using the socket host network backend).
731
732 @subsection Using TAP network interfaces
733
734 This is the standard way to connect QEMU to a real network. QEMU adds
735 a virtual network device on your host (called @code{tapN}), and you
736 can then configure it as if it was a real ethernet card.
737
738 @subsubsection Linux host
739
740 As an example, you can download the @file{linux-test-xxx.tar.gz}
741 archive and copy the script @file{qemu-ifup} in @file{/etc} and
742 configure properly @code{sudo} so that the command @code{ifconfig}
743 contained in @file{qemu-ifup} can be executed as root. You must verify
744 that your host kernel supports the TAP network interfaces: the
745 device @file{/dev/net/tun} must be present.
746
747 See @ref{sec_invocation} to have examples of command lines using the
748 TAP network interfaces.
749
750 @subsubsection Windows host
751
752 There is a virtual ethernet driver for Windows 2000/XP systems, called
753 TAP-Win32. But it is not included in standard QEMU for Windows,
754 so you will need to get it separately. It is part of OpenVPN package,
755 so download OpenVPN from : @url{https://openvpn.net/}.
756
757 @subsection Using the user mode network stack
758
759 By using the option @option{-net user} (default configuration if no
760 @option{-net} option is specified), QEMU uses a completely user mode
761 network stack (you don't need root privilege to use the virtual
762 network). The virtual network configuration is the following:
763
764 @example
765
766 guest (10.0.2.15) <------> Firewall/DHCP server <-----> Internet
767 | (10.0.2.2)
768 |
769 ----> DNS server (10.0.2.3)
770 |
771 ----> SMB server (10.0.2.4)
772 @end example
773
774 The QEMU VM behaves as if it was behind a firewall which blocks all
775 incoming connections. You can use a DHCP client to automatically
776 configure the network in the QEMU VM. The DHCP server assign addresses
777 to the hosts starting from 10.0.2.15.
778
779 In order to check that the user mode network is working, you can ping
780 the address 10.0.2.2 and verify that you got an address in the range
781 10.0.2.x from the QEMU virtual DHCP server.
782
783 Note that ICMP traffic in general does not work with user mode networking.
784 @code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
785 however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
786 ping sockets to allow @code{ping} to the Internet. The host admin has to set
787 the ping_group_range in order to grant access to those sockets. To allow ping
788 for GID 100 (usually users group):
789
790 @example
791 echo 100 100 > /proc/sys/net/ipv4/ping_group_range
792 @end example
793
794 When using the built-in TFTP server, the router is also the TFTP
795 server.
796
797 When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
798 connections can be redirected from the host to the guest. It allows for
799 example to redirect X11, telnet or SSH connections.
800
801 @subsection Hubs
802
803 QEMU can simulate several hubs. A hub can be thought of as a virtual connection
804 between several network devices. These devices can be for example QEMU virtual
805 ethernet cards or virtual Host ethernet devices (TAP devices). You can connect
806 guest NICs or host network backends to such a hub using the @option{-netdev
807 hubport} or @option{-nic hubport} options. The legacy @option{-net} option
808 also connects the given device to the emulated hub with ID 0 (i.e. the default
809 hub) unless you specify a netdev with @option{-net nic,netdev=xxx} here.
810
811 @subsection Connecting emulated networks between QEMU instances
812
813 Using the @option{-netdev socket} (or @option{-nic socket} or
814 @option{-net socket}) option, it is possible to create emulated
815 networks that span several QEMU instances.
816 See the description of the @option{-netdev socket} option in the
817 @ref{sec_invocation,,Invocation chapter} to have a basic example.
818
819 @node pcsys_other_devs
820 @section Other Devices
821
822 @subsection Inter-VM Shared Memory device
823
824 On Linux hosts, a shared memory device is available. The basic syntax
825 is:
826
827 @example
828 qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
829 @end example
830
831 where @var{hostmem} names a host memory backend. For a POSIX shared
832 memory backend, use something like
833
834 @example
835 -object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
836 @end example
837
838 If desired, interrupts can be sent between guest VMs accessing the same shared
839 memory region. Interrupt support requires using a shared memory server and
840 using a chardev socket to connect to it. The code for the shared memory server
841 is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
842 memory server is:
843
844 @example
845 # First start the ivshmem server once and for all
846 ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
847
848 # Then start your qemu instances with matching arguments
849 qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
850 -chardev socket,path=@var{path},id=@var{id}
851 @end example
852
853 When using the server, the guest will be assigned a VM ID (>=0) that allows guests
854 using the same server to communicate via interrupts. Guests can read their
855 VM ID from a device register (see ivshmem-spec.txt).
856
857 @subsubsection Migration with ivshmem
858
859 With device property @option{master=on}, the guest will copy the shared
860 memory on migration to the destination host. With @option{master=off},
861 the guest will not be able to migrate with the device attached. In the
862 latter case, the device should be detached and then reattached after
863 migration using the PCI hotplug support.
864
865 At most one of the devices sharing the same memory can be master. The
866 master must complete migration before you plug back the other devices.
867
868 @subsubsection ivshmem and hugepages
869
870 Instead of specifying the <shm size> using POSIX shm, you may specify
871 a memory backend that has hugepage support:
872
873 @example
874 qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
875 -device ivshmem-plain,memdev=mb1
876 @end example
877
878 ivshmem-server also supports hugepages mount points with the
879 @option{-m} memory path argument.
880
881 @node direct_linux_boot
882 @section Direct Linux Boot
883
884 This section explains how to launch a Linux kernel inside QEMU without
885 having to make a full bootable image. It is very useful for fast Linux
886 kernel testing.
887
888 The syntax is:
889 @example
890 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
891 @end example
892
893 Use @option{-kernel} to provide the Linux kernel image and
894 @option{-append} to give the kernel command line arguments. The
895 @option{-initrd} option can be used to provide an INITRD image.
896
897 When using the direct Linux boot, a disk image for the first hard disk
898 @file{hda} is required because its boot sector is used to launch the
899 Linux kernel.
900
901 If you do not need graphical output, you can disable it and redirect
902 the virtual serial port and the QEMU monitor to the console with the
903 @option{-nographic} option. The typical command line is:
904 @example
905 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
906 -append "root=/dev/hda console=ttyS0" -nographic
907 @end example
908
909 Use @key{Ctrl-a c} to switch between the serial console and the
910 monitor (@pxref{pcsys_keys}).
911
912 @node pcsys_usb
913 @section USB emulation
914
915 QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
916 plug virtual USB devices or real host USB devices (only works with certain
917 host operating systems). QEMU will automatically create and connect virtual
918 USB hubs as necessary to connect multiple USB devices.
919
920 @menu
921 * usb_devices::
922 * host_usb_devices::
923 @end menu
924 @node usb_devices
925 @subsection Connecting USB devices
926
927 USB devices can be connected with the @option{-device usb-...} command line
928 option or the @code{device_add} monitor command. Available devices are:
929
930 @table @code
931 @item usb-mouse
932 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
933 @item usb-tablet
934 Pointer device that uses absolute coordinates (like a touchscreen).
935 This means QEMU is able to report the mouse position without having
936 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
937 @item usb-storage,drive=@var{drive_id}
938 Mass storage device backed by @var{drive_id} (@pxref{disk_images})
939 @item usb-uas
940 USB attached SCSI device, see
941 @url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
942 for details
943 @item usb-bot
944 Bulk-only transport storage device, see
945 @url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
946 for details here, too
947 @item usb-mtp,rootdir=@var{dir}
948 Media transfer protocol device, using @var{dir} as root of the file tree
949 that is presented to the guest.
950 @item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
951 Pass through the host device identified by @var{bus} and @var{addr}
952 @item usb-host,vendorid=@var{vendor},productid=@var{product}
953 Pass through the host device identified by @var{vendor} and @var{product} ID
954 @item usb-wacom-tablet
955 Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
956 above but it can be used with the tslib library because in addition to touch
957 coordinates it reports touch pressure.
958 @item usb-kbd
959 Standard USB keyboard. Will override the PS/2 keyboard (if present).
960 @item usb-serial,chardev=@var{id}
961 Serial converter. This emulates an FTDI FT232BM chip connected to host character
962 device @var{id}.
963 @item usb-braille,chardev=@var{id}
964 Braille device. This will use BrlAPI to display the braille output on a real
965 or fake device referenced by @var{id}.
966 @item usb-net[,netdev=@var{id}]
967 Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
968 specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
969 For instance, user-mode networking can be used with
970 @example
971 qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
972 @end example
973 @item usb-ccid
974 Smartcard reader device
975 @item usb-audio
976 USB audio device
977 @item usb-bt-dongle
978 Bluetooth dongle for the transport layer of HCI. It is connected to HCI
979 scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
980 Note that the syntax for the @code{-device usb-bt-dongle} option is not as
981 useful yet as it was with the legacy @code{-usbdevice} option. So to
982 configure an USB bluetooth device, you might need to use
983 "@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
984 bluetooth dongle whose type is specified in the same format as with
985 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
986 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
987 This USB device implements the USB Transport Layer of HCI. Example
988 usage:
989 @example
990 @command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
991 @end example
992 @end table
993
994 @node host_usb_devices
995 @subsection Using host USB devices on a Linux host
996
997 WARNING: this is an experimental feature. QEMU will slow down when
998 using it. USB devices requiring real time streaming (i.e. USB Video
999 Cameras) are not supported yet.
1000
1001 @enumerate
1002 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1003 is actually using the USB device. A simple way to do that is simply to
1004 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1005 to @file{mydriver.o.disabled}.
1006
1007 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1008 @example
1009 ls /proc/bus/usb
1010 001 devices drivers
1011 @end example
1012
1013 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1014 @example
1015 chown -R myuid /proc/bus/usb
1016 @end example
1017
1018 @item Launch QEMU and do in the monitor:
1019 @example
1020 info usbhost
1021 Device 1.2, speed 480 Mb/s
1022 Class 00: USB device 1234:5678, USB DISK
1023 @end example
1024 You should see the list of the devices you can use (Never try to use
1025 hubs, it won't work).
1026
1027 @item Add the device in QEMU by using:
1028 @example
1029 device_add usb-host,vendorid=0x1234,productid=0x5678
1030 @end example
1031
1032 Normally the guest OS should report that a new USB device is plugged.
1033 You can use the option @option{-device usb-host,...} to do the same.
1034
1035 @item Now you can try to use the host USB device in QEMU.
1036
1037 @end enumerate
1038
1039 When relaunching QEMU, you may have to unplug and plug again the USB
1040 device to make it work again (this is a bug).
1041
1042 @node vnc_security
1043 @section VNC security
1044
1045 The VNC server capability provides access to the graphical console
1046 of the guest VM across the network. This has a number of security
1047 considerations depending on the deployment scenarios.
1048
1049 @menu
1050 * vnc_sec_none::
1051 * vnc_sec_password::
1052 * vnc_sec_certificate::
1053 * vnc_sec_certificate_verify::
1054 * vnc_sec_certificate_pw::
1055 * vnc_sec_sasl::
1056 * vnc_sec_certificate_sasl::
1057 * vnc_setup_sasl::
1058 @end menu
1059 @node vnc_sec_none
1060 @subsection Without passwords
1061
1062 The simplest VNC server setup does not include any form of authentication.
1063 For this setup it is recommended to restrict it to listen on a UNIX domain
1064 socket only. For example
1065
1066 @example
1067 qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1068 @end example
1069
1070 This ensures that only users on local box with read/write access to that
1071 path can access the VNC server. To securely access the VNC server from a
1072 remote machine, a combination of netcat+ssh can be used to provide a secure
1073 tunnel.
1074
1075 @node vnc_sec_password
1076 @subsection With passwords
1077
1078 The VNC protocol has limited support for password based authentication. Since
1079 the protocol limits passwords to 8 characters it should not be considered
1080 to provide high security. The password can be fairly easily brute-forced by
1081 a client making repeat connections. For this reason, a VNC server using password
1082 authentication should be restricted to only listen on the loopback interface
1083 or UNIX domain sockets. Password authentication is not supported when operating
1084 in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1085 authentication is requested with the @code{password} option, and then once QEMU
1086 is running the password is set with the monitor. Until the monitor is used to
1087 set the password all clients will be rejected.
1088
1089 @example
1090 qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1091 (qemu) change vnc password
1092 Password: ********
1093 (qemu)
1094 @end example
1095
1096 @node vnc_sec_certificate
1097 @subsection With x509 certificates
1098
1099 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1100 TLS for encryption of the session, and x509 certificates for authentication.
1101 The use of x509 certificates is strongly recommended, because TLS on its
1102 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1103 support provides a secure session, but no authentication. This allows any
1104 client to connect, and provides an encrypted session.
1105
1106 @example
1107 qemu-system-i386 [...OPTIONS...] \
1108 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=no \
1109 -vnc :1,tls-creds=tls0 -monitor stdio
1110 @end example
1111
1112 In the above example @code{/etc/pki/qemu} should contain at least three files,
1113 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1114 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1115 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1116 only be readable by the user owning it.
1117
1118 @node vnc_sec_certificate_verify
1119 @subsection With x509 certificates and client verification
1120
1121 Certificates can also provide a means to authenticate the client connecting.
1122 The server will request that the client provide a certificate, which it will
1123 then validate against the CA certificate. This is a good choice if deploying
1124 in an environment with a private internal certificate authority. It uses the
1125 same syntax as previously, but with @code{verify-peer} set to @code{yes}
1126 instead.
1127
1128 @example
1129 qemu-system-i386 [...OPTIONS...] \
1130 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1131 -vnc :1,tls-creds=tls0 -monitor stdio
1132 @end example
1133
1134
1135 @node vnc_sec_certificate_pw
1136 @subsection With x509 certificates, client verification and passwords
1137
1138 Finally, the previous method can be combined with VNC password authentication
1139 to provide two layers of authentication for clients.
1140
1141 @example
1142 qemu-system-i386 [...OPTIONS...] \
1143 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1144 -vnc :1,tls-creds=tls0,password -monitor stdio
1145 (qemu) change vnc password
1146 Password: ********
1147 (qemu)
1148 @end example
1149
1150
1151 @node vnc_sec_sasl
1152 @subsection With SASL authentication
1153
1154 The SASL authentication method is a VNC extension, that provides an
1155 easily extendable, pluggable authentication method. This allows for
1156 integration with a wide range of authentication mechanisms, such as
1157 PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1158 The strength of the authentication depends on the exact mechanism
1159 configured. If the chosen mechanism also provides a SSF layer, then
1160 it will encrypt the datastream as well.
1161
1162 Refer to the later docs on how to choose the exact SASL mechanism
1163 used for authentication, but assuming use of one supporting SSF,
1164 then QEMU can be launched with:
1165
1166 @example
1167 qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1168 @end example
1169
1170 @node vnc_sec_certificate_sasl
1171 @subsection With x509 certificates and SASL authentication
1172
1173 If the desired SASL authentication mechanism does not supported
1174 SSF layers, then it is strongly advised to run it in combination
1175 with TLS and x509 certificates. This provides securely encrypted
1176 data stream, avoiding risk of compromising of the security
1177 credentials. This can be enabled, by combining the 'sasl' option
1178 with the aforementioned TLS + x509 options:
1179
1180 @example
1181 qemu-system-i386 [...OPTIONS...] \
1182 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1183 -vnc :1,tls-creds=tls0,sasl -monitor stdio
1184 @end example
1185
1186 @node vnc_setup_sasl
1187
1188 @subsection Configuring SASL mechanisms
1189
1190 The following documentation assumes use of the Cyrus SASL implementation on a
1191 Linux host, but the principles should apply to any other SASL implementation
1192 or host. When SASL is enabled, the mechanism configuration will be loaded from
1193 system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1194 unprivileged user, an environment variable SASL_CONF_PATH can be used to make
1195 it search alternate locations for the service config file.
1196
1197 If the TLS option is enabled for VNC, then it will provide session encryption,
1198 otherwise the SASL mechanism will have to provide encryption. In the latter
1199 case the list of possible plugins that can be used is drastically reduced. In
1200 fact only the GSSAPI SASL mechanism provides an acceptable level of security
1201 by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1202 mechanism, however, it has multiple serious flaws described in detail in
1203 RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1204 provides a simple username/password auth facility similar to DIGEST-MD5, but
1205 does not support session encryption, so can only be used in combination with
1206 TLS.
1207
1208 When not using TLS the recommended configuration is
1209
1210 @example
1211 mech_list: gssapi
1212 keytab: /etc/qemu/krb5.tab
1213 @end example
1214
1215 This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1216 the server principal stored in /etc/qemu/krb5.tab. For this to work the
1217 administrator of your KDC must generate a Kerberos principal for the server,
1218 with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1219 'somehost.example.com' with the fully qualified host name of the machine
1220 running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1221
1222 When using TLS, if username+password authentication is desired, then a
1223 reasonable configuration is
1224
1225 @example
1226 mech_list: scram-sha-1
1227 sasldb_path: /etc/qemu/passwd.db
1228 @end example
1229
1230 The @code{saslpasswd2} program can be used to populate the @code{passwd.db}
1231 file with accounts.
1232
1233 Other SASL configurations will be left as an exercise for the reader. Note that
1234 all mechanisms, except GSSAPI, should be combined with use of TLS to ensure a
1235 secure data channel.
1236
1237
1238 @node network_tls
1239 @section TLS setup for network services
1240
1241 Almost all network services in QEMU have the ability to use TLS for
1242 session data encryption, along with x509 certificates for simple
1243 client authentication. What follows is a description of how to
1244 generate certificates suitable for usage with QEMU, and applies to
1245 the VNC server, character devices with the TCP backend, NBD server
1246 and client, and migration server and client.
1247
1248 At a high level, QEMU requires certificates and private keys to be
1249 provided in PEM format. Aside from the core fields, the certificates
1250 should include various extension data sets, including v3 basic
1251 constraints data, key purpose, key usage and subject alt name.
1252
1253 The GnuTLS package includes a command called @code{certtool} which can
1254 be used to easily generate certificates and keys in the required format
1255 with expected data present. Alternatively a certificate management
1256 service may be used.
1257
1258 At a minimum it is necessary to setup a certificate authority, and
1259 issue certificates to each server. If using x509 certificates for
1260 authentication, then each client will also need to be issued a
1261 certificate.
1262
1263 Assuming that the QEMU network services will only ever be exposed to
1264 clients on a private intranet, there is no need to use a commercial
1265 certificate authority to create certificates. A self-signed CA is
1266 sufficient, and in fact likely to be more secure since it removes
1267 the ability of malicious 3rd parties to trick the CA into mis-issuing
1268 certs for impersonating your services. The only likely exception
1269 where a commercial CA might be desirable is if enabling the VNC
1270 websockets server and exposing it directly to remote browser clients.
1271 In such a case it might be useful to use a commercial CA to avoid
1272 needing to install custom CA certs in the web browsers.
1273
1274 The recommendation is for the server to keep its certificates in either
1275 @code{/etc/pki/qemu} or for unprivileged users in @code{$HOME/.pki/qemu}.
1276
1277 @menu
1278 * tls_generate_ca::
1279 * tls_generate_server::
1280 * tls_generate_client::
1281 * tls_creds_setup::
1282 * tls_psk::
1283 @end menu
1284 @node tls_generate_ca
1285 @subsection Setup the Certificate Authority
1286
1287 This step only needs to be performed once per organization / organizational
1288 unit. First the CA needs a private key. This key must be kept VERY secret
1289 and secure. If this key is compromised the entire trust chain of the certificates
1290 issued with it is lost.
1291
1292 @example
1293 # certtool --generate-privkey > ca-key.pem
1294 @end example
1295
1296 To generate a self-signed certificate requires one core piece of information,
1297 the name of the organization. A template file @code{ca.info} should be
1298 populated with the desired data to avoid having to deal with interactive
1299 prompts from certtool:
1300 @example
1301 # cat > ca.info <<EOF
1302 cn = Name of your organization
1303 ca
1304 cert_signing_key
1305 EOF
1306 # certtool --generate-self-signed \
1307 --load-privkey ca-key.pem
1308 --template ca.info \
1309 --outfile ca-cert.pem
1310 @end example
1311
1312 The @code{ca} keyword in the template sets the v3 basic constraints extension
1313 to indicate this certificate is for a CA, while @code{cert_signing_key} sets
1314 the key usage extension to indicate this will be used for signing other keys.
1315 The generated @code{ca-cert.pem} file should be copied to all servers and
1316 clients wishing to utilize TLS support in the VNC server. The @code{ca-key.pem}
1317 must not be disclosed/copied anywhere except the host responsible for issuing
1318 certificates.
1319
1320 @node tls_generate_server
1321 @subsection Issuing server certificates
1322
1323 Each server (or host) needs to be issued with a key and certificate. When connecting
1324 the certificate is sent to the client which validates it against the CA certificate.
1325 The core pieces of information for a server certificate are the hostnames and/or IP
1326 addresses that will be used by clients when connecting. The hostname / IP address
1327 that the client specifies when connecting will be validated against the hostname(s)
1328 and IP address(es) recorded in the server certificate, and if no match is found
1329 the client will close the connection.
1330
1331 Thus it is recommended that the server certificate include both the fully qualified
1332 and unqualified hostnames. If the server will have permanently assigned IP address(es),
1333 and clients are likely to use them when connecting, they may also be included in the
1334 certificate. Both IPv4 and IPv6 addresses are supported. Historically certificates
1335 only included 1 hostname in the @code{CN} field, however, usage of this field for
1336 validation is now deprecated. Instead modern TLS clients will validate against the
1337 Subject Alt Name extension data, which allows for multiple entries. In the future
1338 usage of the @code{CN} field may be discontinued entirely, so providing SAN
1339 extension data is strongly recommended.
1340
1341 On the host holding the CA, create template files containing the information
1342 for each server, and use it to issue server certificates.
1343
1344 @example
1345 # cat > server-hostNNN.info <<EOF
1346 organization = Name of your organization
1347 cn = hostNNN.foo.example.com
1348 dns_name = hostNNN
1349 dns_name = hostNNN.foo.example.com
1350 ip_address = 10.0.1.87
1351 ip_address = 192.8.0.92
1352 ip_address = 2620:0:cafe::87
1353 ip_address = 2001:24::92
1354 tls_www_server
1355 encryption_key
1356 signing_key
1357 EOF
1358 # certtool --generate-privkey > server-hostNNN-key.pem
1359 # certtool --generate-certificate \
1360 --load-ca-certificate ca-cert.pem \
1361 --load-ca-privkey ca-key.pem \
1362 --load-privkey server-hostNNN-key.pem \
1363 --template server-hostNNN.info \
1364 --outfile server-hostNNN-cert.pem
1365 @end example
1366
1367 The @code{dns_name} and @code{ip_address} fields in the template are setting
1368 the subject alt name extension data. The @code{tls_www_server} keyword is the
1369 key purpose extension to indicate this certificate is intended for usage in
1370 a web server. Although QEMU network services are not in fact HTTP servers
1371 (except for VNC websockets), setting this key purpose is still recommended.
1372 The @code{encryption_key} and @code{signing_key} keyword is the key usage
1373 extension to indicate this certificate is intended for usage in the data
1374 session.
1375
1376 The @code{server-hostNNN-key.pem} and @code{server-hostNNN-cert.pem} files
1377 should now be securely copied to the server for which they were generated,
1378 and renamed to @code{server-key.pem} and @code{server-cert.pem} when added
1379 to the @code{/etc/pki/qemu} directory on the target host. The @code{server-key.pem}
1380 file is security sensitive and should be kept protected with file mode 0600
1381 to prevent disclosure.
1382
1383 @node tls_generate_client
1384 @subsection Issuing client certificates
1385
1386 The QEMU x509 TLS credential setup defaults to enabling client verification
1387 using certificates, providing a simple authentication mechanism. If this
1388 default is used, each client also needs to be issued a certificate. The client
1389 certificate contains enough metadata to uniquely identify the client with the
1390 scope of the certificate authority. The client certificate would typically
1391 include fields for organization, state, city, building, etc.
1392
1393 Once again on the host holding the CA, create template files containing the
1394 information for each client, and use it to issue client certificates.
1395
1396
1397 @example
1398 # cat > client-hostNNN.info <<EOF
1399 country = GB
1400 state = London
1401 locality = City Of London
1402 organization = Name of your organization
1403 cn = hostNNN.foo.example.com
1404 tls_www_client
1405 encryption_key
1406 signing_key
1407 EOF
1408 # certtool --generate-privkey > client-hostNNN-key.pem
1409 # certtool --generate-certificate \
1410 --load-ca-certificate ca-cert.pem \
1411 --load-ca-privkey ca-key.pem \
1412 --load-privkey client-hostNNN-key.pem \
1413 --template client-hostNNN.info \
1414 --outfile client-hostNNN-cert.pem
1415 @end example
1416
1417 The subject alt name extension data is not required for clients, so the
1418 the @code{dns_name} and @code{ip_address} fields are not included.
1419 The @code{tls_www_client} keyword is the key purpose extension to indicate
1420 this certificate is intended for usage in a web client. Although QEMU
1421 network clients are not in fact HTTP clients, setting this key purpose is
1422 still recommended. The @code{encryption_key} and @code{signing_key} keyword
1423 is the key usage extension to indicate this certificate is intended for
1424 usage in the data session.
1425
1426 The @code{client-hostNNN-key.pem} and @code{client-hostNNN-cert.pem} files
1427 should now be securely copied to the client for which they were generated,
1428 and renamed to @code{client-key.pem} and @code{client-cert.pem} when added
1429 to the @code{/etc/pki/qemu} directory on the target host. The @code{client-key.pem}
1430 file is security sensitive and should be kept protected with file mode 0600
1431 to prevent disclosure.
1432
1433 If a single host is going to be using TLS in both a client and server
1434 role, it is possible to create a single certificate to cover both roles.
1435 This would be quite common for the migration and NBD services, where a
1436 QEMU process will be started by accepting a TLS protected incoming migration,
1437 and later itself be migrated out to another host. To generate a single
1438 certificate, simply include the template data from both the client and server
1439 instructions in one.
1440
1441 @example
1442 # cat > both-hostNNN.info <<EOF
1443 country = GB
1444 state = London
1445 locality = City Of London
1446 organization = Name of your organization
1447 cn = hostNNN.foo.example.com
1448 dns_name = hostNNN
1449 dns_name = hostNNN.foo.example.com
1450 ip_address = 10.0.1.87
1451 ip_address = 192.8.0.92
1452 ip_address = 2620:0:cafe::87
1453 ip_address = 2001:24::92
1454 tls_www_server
1455 tls_www_client
1456 encryption_key
1457 signing_key
1458 EOF
1459 # certtool --generate-privkey > both-hostNNN-key.pem
1460 # certtool --generate-certificate \
1461 --load-ca-certificate ca-cert.pem \
1462 --load-ca-privkey ca-key.pem \
1463 --load-privkey both-hostNNN-key.pem \
1464 --template both-hostNNN.info \
1465 --outfile both-hostNNN-cert.pem
1466 @end example
1467
1468 When copying the PEM files to the target host, save them twice,
1469 once as @code{server-cert.pem} and @code{server-key.pem}, and
1470 again as @code{client-cert.pem} and @code{client-key.pem}.
1471
1472 @node tls_creds_setup
1473 @subsection TLS x509 credential configuration
1474
1475 QEMU has a standard mechanism for loading x509 credentials that will be
1476 used for network services and clients. It requires specifying the
1477 @code{tls-creds-x509} class name to the @code{--object} command line
1478 argument for the system emulators. Each set of credentials loaded should
1479 be given a unique string identifier via the @code{id} parameter. A single
1480 set of TLS credentials can be used for multiple network backends, so VNC,
1481 migration, NBD, character devices can all share the same credentials. Note,
1482 however, that credentials for use in a client endpoint must be loaded
1483 separately from those used in a server endpoint.
1484
1485 When specifying the object, the @code{dir} parameters specifies which
1486 directory contains the credential files. This directory is expected to
1487 contain files with the names mentioned previously, @code{ca-cert.pem},
1488 @code{server-key.pem}, @code{server-cert.pem}, @code{client-key.pem}
1489 and @code{client-cert.pem} as appropriate. It is also possible to
1490 include a set of pre-generated Diffie-Hellman (DH) parameters in a file
1491 @code{dh-params.pem}, which can be created using the
1492 @code{certtool --generate-dh-params} command. If omitted, QEMU will
1493 dynamically generate DH parameters when loading the credentials.
1494
1495 The @code{endpoint} parameter indicates whether the credentials will
1496 be used for a network client or server, and determines which PEM
1497 files are loaded.
1498
1499 The @code{verify} parameter determines whether x509 certificate
1500 validation should be performed. This defaults to enabled, meaning
1501 clients will always validate the server hostname against the
1502 certificate subject alt name fields and/or CN field. It also
1503 means that servers will request that clients provide a certificate
1504 and validate them. Verification should never be turned off for
1505 client endpoints, however, it may be turned off for server endpoints
1506 if an alternative mechanism is used to authenticate clients. For
1507 example, the VNC server can use SASL to authenticate clients
1508 instead.
1509
1510 To load server credentials with client certificate validation
1511 enabled
1512
1513 @example
1514 $QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
1515 @end example
1516
1517 while to load client credentials use
1518
1519 @example
1520 $QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
1521 @end example
1522
1523 Network services which support TLS will all have a @code{tls-creds}
1524 parameter which expects the ID of the TLS credentials object. For
1525 example with VNC:
1526
1527 @example
1528 $QEMU -vnc 0.0.0.0:0,tls-creds=tls0
1529 @end example
1530
1531 @node tls_psk
1532 @subsection TLS Pre-Shared Keys (PSK)
1533
1534 Instead of using certificates, you may also use TLS Pre-Shared Keys
1535 (TLS-PSK). This can be simpler to set up than certificates but is
1536 less scalable.
1537
1538 Use the GnuTLS @code{psktool} program to generate a @code{keys.psk}
1539 file containing one or more usernames and random keys:
1540
1541 @example
1542 mkdir -m 0700 /tmp/keys
1543 psktool -u rich -p /tmp/keys/keys.psk
1544 @end example
1545
1546 TLS-enabled servers such as qemu-nbd can use this directory like so:
1547
1548 @example
1549 qemu-nbd \
1550 -t -x / \
1551 --object tls-creds-psk,id=tls0,endpoint=server,dir=/tmp/keys \
1552 --tls-creds tls0 \
1553 image.qcow2
1554 @end example
1555
1556 When connecting from a qemu-based client you must specify the
1557 directory containing @code{keys.psk} and an optional @var{username}
1558 (defaults to ``qemu''):
1559
1560 @example
1561 qemu-img info \
1562 --object tls-creds-psk,id=tls0,dir=/tmp/keys,username=rich,endpoint=client \
1563 --image-opts \
1564 file.driver=nbd,file.host=localhost,file.port=10809,file.tls-creds=tls0,file.export=/
1565 @end example
1566
1567 @node gdb_usage
1568 @section GDB usage
1569
1570 QEMU has a primitive support to work with gdb, so that you can do
1571 'Ctrl-C' while the virtual machine is running and inspect its state.
1572
1573 In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1574 gdb connection:
1575 @example
1576 qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1577 -append "root=/dev/hda"
1578 Connected to host network interface: tun0
1579 Waiting gdb connection on port 1234
1580 @end example
1581
1582 Then launch gdb on the 'vmlinux' executable:
1583 @example
1584 > gdb vmlinux
1585 @end example
1586
1587 In gdb, connect to QEMU:
1588 @example
1589 (gdb) target remote localhost:1234
1590 @end example
1591
1592 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1593 @example
1594 (gdb) c
1595 @end example
1596
1597 Here are some useful tips in order to use gdb on system code:
1598
1599 @enumerate
1600 @item
1601 Use @code{info reg} to display all the CPU registers.
1602 @item
1603 Use @code{x/10i $eip} to display the code at the PC position.
1604 @item
1605 Use @code{set architecture i8086} to dump 16 bit code. Then use
1606 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1607 @end enumerate
1608
1609 Advanced debugging options:
1610
1611 The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1612 @table @code
1613 @item maintenance packet qqemu.sstepbits
1614
1615 This will display the MASK bits used to control the single stepping IE:
1616 @example
1617 (gdb) maintenance packet qqemu.sstepbits
1618 sending: "qqemu.sstepbits"
1619 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1620 @end example
1621 @item maintenance packet qqemu.sstep
1622
1623 This will display the current value of the mask used when single stepping IE:
1624 @example
1625 (gdb) maintenance packet qqemu.sstep
1626 sending: "qqemu.sstep"
1627 received: "0x7"
1628 @end example
1629 @item maintenance packet Qqemu.sstep=HEX_VALUE
1630
1631 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1632 @example
1633 (gdb) maintenance packet Qqemu.sstep=0x5
1634 sending: "qemu.sstep=0x5"
1635 received: "OK"
1636 @end example
1637 @end table
1638
1639 @node pcsys_os_specific
1640 @section Target OS specific information
1641
1642 @subsection Linux
1643
1644 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1645 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1646 color depth in the guest and the host OS.
1647
1648 When using a 2.6 guest Linux kernel, you should add the option
1649 @code{clock=pit} on the kernel command line because the 2.6 Linux
1650 kernels make very strict real time clock checks by default that QEMU
1651 cannot simulate exactly.
1652
1653 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1654 not activated because QEMU is slower with this patch. The QEMU
1655 Accelerator Module is also much slower in this case. Earlier Fedora
1656 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1657 patch by default. Newer kernels don't have it.
1658
1659 @subsection Windows
1660
1661 If you have a slow host, using Windows 95 is better as it gives the
1662 best speed. Windows 2000 is also a good choice.
1663
1664 @subsubsection SVGA graphic modes support
1665
1666 QEMU emulates a Cirrus Logic GD5446 Video
1667 card. All Windows versions starting from Windows 95 should recognize
1668 and use this graphic card. For optimal performances, use 16 bit color
1669 depth in the guest and the host OS.
1670
1671 If you are using Windows XP as guest OS and if you want to use high
1672 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1673 1280x1024x16), then you should use the VESA VBE virtual graphic card
1674 (option @option{-std-vga}).
1675
1676 @subsubsection CPU usage reduction
1677
1678 Windows 9x does not correctly use the CPU HLT
1679 instruction. The result is that it takes host CPU cycles even when
1680 idle. You can install the utility from
1681 @url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
1682 to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1683
1684 @subsubsection Windows 2000 disk full problem
1685
1686 Windows 2000 has a bug which gives a disk full problem during its
1687 installation. When installing it, use the @option{-win2k-hack} QEMU
1688 option to enable a specific workaround. After Windows 2000 is
1689 installed, you no longer need this option (this option slows down the
1690 IDE transfers).
1691
1692 @subsubsection Windows 2000 shutdown
1693
1694 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1695 can. It comes from the fact that Windows 2000 does not automatically
1696 use the APM driver provided by the BIOS.
1697
1698 In order to correct that, do the following (thanks to Struan
1699 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1700 Add/Troubleshoot a device => Add a new device & Next => No, select the
1701 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1702 (again) a few times. Now the driver is installed and Windows 2000 now
1703 correctly instructs QEMU to shutdown at the appropriate moment.
1704
1705 @subsubsection Share a directory between Unix and Windows
1706
1707 See @ref{sec_invocation} about the help of the option
1708 @option{'-netdev user,smb=...'}.
1709
1710 @subsubsection Windows XP security problem
1711
1712 Some releases of Windows XP install correctly but give a security
1713 error when booting:
1714 @example
1715 A problem is preventing Windows from accurately checking the
1716 license for this computer. Error code: 0x800703e6.
1717 @end example
1718
1719 The workaround is to install a service pack for XP after a boot in safe
1720 mode. Then reboot, and the problem should go away. Since there is no
1721 network while in safe mode, its recommended to download the full
1722 installation of SP1 or SP2 and transfer that via an ISO or using the
1723 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1724
1725 @subsection MS-DOS and FreeDOS
1726
1727 @subsubsection CPU usage reduction
1728
1729 DOS does not correctly use the CPU HLT instruction. The result is that
1730 it takes host CPU cycles even when idle. You can install the utility from
1731 @url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
1732 to solve this problem.
1733
1734 @node QEMU System emulator for non PC targets
1735 @chapter QEMU System emulator for non PC targets
1736
1737 QEMU is a generic emulator and it emulates many non PC
1738 machines. Most of the options are similar to the PC emulator. The
1739 differences are mentioned in the following sections.
1740
1741 @menu
1742 * PowerPC System emulator::
1743 * Sparc32 System emulator::
1744 * Sparc64 System emulator::
1745 * MIPS System emulator::
1746 * ARM System emulator::
1747 * ColdFire System emulator::
1748 * Cris System emulator::
1749 * Microblaze System emulator::
1750 * SH4 System emulator::
1751 * Xtensa System emulator::
1752 @end menu
1753
1754 @node PowerPC System emulator
1755 @section PowerPC System emulator
1756 @cindex system emulation (PowerPC)
1757
1758 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1759 or PowerMac PowerPC system.
1760
1761 QEMU emulates the following PowerMac peripherals:
1762
1763 @itemize @minus
1764 @item
1765 UniNorth or Grackle PCI Bridge
1766 @item
1767 PCI VGA compatible card with VESA Bochs Extensions
1768 @item
1769 2 PMAC IDE interfaces with hard disk and CD-ROM support
1770 @item
1771 NE2000 PCI adapters
1772 @item
1773 Non Volatile RAM
1774 @item
1775 VIA-CUDA with ADB keyboard and mouse.
1776 @end itemize
1777
1778 QEMU emulates the following PREP peripherals:
1779
1780 @itemize @minus
1781 @item
1782 PCI Bridge
1783 @item
1784 PCI VGA compatible card with VESA Bochs Extensions
1785 @item
1786 2 IDE interfaces with hard disk and CD-ROM support
1787 @item
1788 Floppy disk
1789 @item
1790 NE2000 network adapters
1791 @item
1792 Serial port
1793 @item
1794 PREP Non Volatile RAM
1795 @item
1796 PC compatible keyboard and mouse.
1797 @end itemize
1798
1799 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1800 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1801
1802 Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
1803 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1804 v2) portable firmware implementation. The goal is to implement a 100%
1805 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1806
1807 @c man begin OPTIONS
1808
1809 The following options are specific to the PowerPC emulation:
1810
1811 @table @option
1812
1813 @item -g @var{W}x@var{H}[x@var{DEPTH}]
1814
1815 Set the initial VGA graphic mode. The default is 800x600x32.
1816
1817 @item -prom-env @var{string}
1818
1819 Set OpenBIOS variables in NVRAM, for example:
1820
1821 @example
1822 qemu-system-ppc -prom-env 'auto-boot?=false' \
1823 -prom-env 'boot-device=hd:2,\yaboot' \
1824 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1825 @end example
1826
1827 These variables are not used by Open Hack'Ware.
1828
1829 @end table
1830
1831 @c man end
1832
1833
1834 More information is available at
1835 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1836
1837 @node Sparc32 System emulator
1838 @section Sparc32 System emulator
1839 @cindex system emulation (Sparc32)
1840
1841 Use the executable @file{qemu-system-sparc} to simulate the following
1842 Sun4m architecture machines:
1843 @itemize @minus
1844 @item
1845 SPARCstation 4
1846 @item
1847 SPARCstation 5
1848 @item
1849 SPARCstation 10
1850 @item
1851 SPARCstation 20
1852 @item
1853 SPARCserver 600MP
1854 @item
1855 SPARCstation LX
1856 @item
1857 SPARCstation Voyager
1858 @item
1859 SPARCclassic
1860 @item
1861 SPARCbook
1862 @end itemize
1863
1864 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1865 but Linux limits the number of usable CPUs to 4.
1866
1867 QEMU emulates the following sun4m peripherals:
1868
1869 @itemize @minus
1870 @item
1871 IOMMU
1872 @item
1873 TCX or cgthree Frame buffer
1874 @item
1875 Lance (Am7990) Ethernet
1876 @item
1877 Non Volatile RAM M48T02/M48T08
1878 @item
1879 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1880 and power/reset logic
1881 @item
1882 ESP SCSI controller with hard disk and CD-ROM support
1883 @item
1884 Floppy drive (not on SS-600MP)
1885 @item
1886 CS4231 sound device (only on SS-5, not working yet)
1887 @end itemize
1888
1889 The number of peripherals is fixed in the architecture. Maximum
1890 memory size depends on the machine type, for SS-5 it is 256MB and for
1891 others 2047MB.
1892
1893 Since version 0.8.2, QEMU uses OpenBIOS
1894 @url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1895 firmware implementation. The goal is to implement a 100% IEEE
1896 1275-1994 (referred to as Open Firmware) compliant firmware.
1897
1898 A sample Linux 2.6 series kernel and ram disk image are available on
1899 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1900 most kernel versions work. Please note that currently older Solaris kernels
1901 don't work probably due to interface issues between OpenBIOS and
1902 Solaris.
1903
1904 @c man begin OPTIONS
1905
1906 The following options are specific to the Sparc32 emulation:
1907
1908 @table @option
1909
1910 @item -g @var{W}x@var{H}x[x@var{DEPTH}]
1911
1912 Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1913 option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1914 of 1152x900x8 for people who wish to use OBP.
1915
1916 @item -prom-env @var{string}
1917
1918 Set OpenBIOS variables in NVRAM, for example:
1919
1920 @example
1921 qemu-system-sparc -prom-env 'auto-boot?=false' \
1922 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1923 @end example
1924
1925 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
1926
1927 Set the emulated machine type. Default is SS-5.
1928
1929 @end table
1930
1931 @c man end
1932
1933 @node Sparc64 System emulator
1934 @section Sparc64 System emulator
1935 @cindex system emulation (Sparc64)
1936
1937 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1938 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1939 Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1940 able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
1941 Sun4v emulator is still a work in progress.
1942
1943 The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1944 of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1945 and is able to boot the disk.s10hw2 Solaris image.
1946 @example
1947 qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1948 -nographic -m 256 \
1949 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1950 @end example
1951
1952
1953 QEMU emulates the following peripherals:
1954
1955 @itemize @minus
1956 @item
1957 UltraSparc IIi APB PCI Bridge
1958 @item
1959 PCI VGA compatible card with VESA Bochs Extensions
1960 @item
1961 PS/2 mouse and keyboard
1962 @item
1963 Non Volatile RAM M48T59
1964 @item
1965 PC-compatible serial ports
1966 @item
1967 2 PCI IDE interfaces with hard disk and CD-ROM support
1968 @item
1969 Floppy disk
1970 @end itemize
1971
1972 @c man begin OPTIONS
1973
1974 The following options are specific to the Sparc64 emulation:
1975
1976 @table @option
1977
1978 @item -prom-env @var{string}
1979
1980 Set OpenBIOS variables in NVRAM, for example:
1981
1982 @example
1983 qemu-system-sparc64 -prom-env 'auto-boot?=false'
1984 @end example
1985
1986 @item -M [sun4u|sun4v|niagara]
1987
1988 Set the emulated machine type. The default is sun4u.
1989
1990 @end table
1991
1992 @c man end
1993
1994 @node MIPS System emulator
1995 @section MIPS System emulator
1996 @cindex system emulation (MIPS)
1997
1998 @menu
1999 * nanoMIPS System emulator ::
2000 @end menu
2001
2002 Four executables cover simulation of 32 and 64-bit MIPS systems in
2003 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2004 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2005 Five different machine types are emulated:
2006
2007 @itemize @minus
2008 @item
2009 A generic ISA PC-like machine "mips"
2010 @item
2011 The MIPS Malta prototype board "malta"
2012 @item
2013 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2014 @item
2015 MIPS emulator pseudo board "mipssim"
2016 @item
2017 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2018 @end itemize
2019
2020 The generic emulation is supported by Debian 'Etch' and is able to
2021 install Debian into a virtual disk image. The following devices are
2022 emulated:
2023
2024 @itemize @minus
2025 @item
2026 A range of MIPS CPUs, default is the 24Kf
2027 @item
2028 PC style serial port
2029 @item
2030 PC style IDE disk
2031 @item
2032 NE2000 network card
2033 @end itemize
2034
2035 The Malta emulation supports the following devices:
2036
2037 @itemize @minus
2038 @item
2039 Core board with MIPS 24Kf CPU and Galileo system controller
2040 @item
2041 PIIX4 PCI/USB/SMbus controller
2042 @item
2043 The Multi-I/O chip's serial device
2044 @item
2045 PCI network cards (PCnet32 and others)
2046 @item
2047 Malta FPGA serial device
2048 @item
2049 Cirrus (default) or any other PCI VGA graphics card
2050 @end itemize
2051
2052 The Boston board emulation supports the following devices:
2053
2054 @itemize @minus
2055 @item
2056 Xilinx FPGA, which includes a PCIe root port and an UART
2057 @item
2058 Intel EG20T PCH connects the I/O peripherals, but only the SATA bus is emulated
2059 @end itemize
2060
2061 The ACER Pica emulation supports:
2062
2063 @itemize @minus
2064 @item
2065 MIPS R4000 CPU
2066 @item
2067 PC-style IRQ and DMA controllers
2068 @item
2069 PC Keyboard
2070 @item
2071 IDE controller
2072 @end itemize
2073
2074 The MIPS Magnum R4000 emulation supports:
2075
2076 @itemize @minus
2077 @item
2078 MIPS R4000 CPU
2079 @item
2080 PC-style IRQ controller
2081 @item
2082 PC Keyboard
2083 @item
2084 SCSI controller
2085 @item
2086 G364 framebuffer
2087 @end itemize
2088
2089 The Fulong 2E emulation supports:
2090
2091 @itemize @minus
2092 @item
2093 Loongson 2E CPU
2094 @item
2095 Bonito64 system controller as North Bridge
2096 @item
2097 VT82C686 chipset as South Bridge
2098 @item
2099 RTL8139D as a network card chipset
2100 @end itemize
2101
2102 The mipssim pseudo board emulation provides an environment similar
2103 to what the proprietary MIPS emulator uses for running Linux.
2104 It supports:
2105
2106 @itemize @minus
2107 @item
2108 A range of MIPS CPUs, default is the 24Kf
2109 @item
2110 PC style serial port
2111 @item
2112 MIPSnet network emulation
2113 @end itemize
2114
2115 @node nanoMIPS System emulator
2116 @subsection nanoMIPS System emulator
2117 @cindex system emulation (nanoMIPS)
2118
2119 Executable @file{qemu-system-mipsel} also covers simulation of
2120 32-bit nanoMIPS system in little endian mode:
2121
2122 @itemize @minus
2123 @item
2124 nanoMIPS I7200 CPU
2125 @end itemize
2126
2127 Example of @file{qemu-system-mipsel} usage for nanoMIPS is shown below:
2128
2129 Download @code{<disk_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/buildroot/index.html}.
2130
2131 Download @code{<kernel_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/kernels/v4.15.18-432-gb2eb9a8b07a1-20180627102142/index.html}.
2132
2133 Start system emulation of Malta board with nanoMIPS I7200 CPU:
2134 @example
2135 qemu-system-mipsel -cpu I7200 -kernel @code{<kernel_image_file>} \
2136 -M malta -serial stdio -m @code{<memory_size>} -hda @code{<disk_image_file>} \
2137 -append "mem=256m@@0x0 rw console=ttyS0 vga=cirrus vesa=0x111 root=/dev/sda"
2138 @end example
2139
2140
2141 @node ARM System emulator
2142 @section ARM System emulator
2143 @cindex system emulation (ARM)
2144
2145 Use the executable @file{qemu-system-arm} to simulate a ARM
2146 machine. The ARM Integrator/CP board is emulated with the following
2147 devices:
2148
2149 @itemize @minus
2150 @item
2151 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2152 @item
2153 Two PL011 UARTs
2154 @item
2155 SMC 91c111 Ethernet adapter
2156 @item
2157 PL110 LCD controller
2158 @item
2159 PL050 KMI with PS/2 keyboard and mouse.
2160 @item
2161 PL181 MultiMedia Card Interface with SD card.
2162 @end itemize
2163
2164 The ARM Versatile baseboard is emulated with the following devices:
2165
2166 @itemize @minus
2167 @item
2168 ARM926E, ARM1136 or Cortex-A8 CPU
2169 @item
2170 PL190 Vectored Interrupt Controller
2171 @item
2172 Four PL011 UARTs
2173 @item
2174 SMC 91c111 Ethernet adapter
2175 @item
2176 PL110 LCD controller
2177 @item
2178 PL050 KMI with PS/2 keyboard and mouse.
2179 @item
2180 PCI host bridge. Note the emulated PCI bridge only provides access to
2181 PCI memory space. It does not provide access to PCI IO space.
2182 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2183 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2184 mapped control registers.
2185 @item
2186 PCI OHCI USB controller.
2187 @item
2188 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2189 @item
2190 PL181 MultiMedia Card Interface with SD card.
2191 @end itemize
2192
2193 Several variants of the ARM RealView baseboard are emulated,
2194 including the EB, PB-A8 and PBX-A9. Due to interactions with the
2195 bootloader, only certain Linux kernel configurations work out
2196 of the box on these boards.
2197
2198 Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2199 enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2200 should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2201 disabled and expect 1024M RAM.
2202
2203 The following devices are emulated:
2204
2205 @itemize @minus
2206 @item
2207 ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2208 @item
2209 ARM AMBA Generic/Distributed Interrupt Controller
2210 @item
2211 Four PL011 UARTs
2212 @item
2213 SMC 91c111 or SMSC LAN9118 Ethernet adapter
2214 @item
2215 PL110 LCD controller
2216 @item
2217 PL050 KMI with PS/2 keyboard and mouse
2218 @item
2219 PCI host bridge
2220 @item
2221 PCI OHCI USB controller
2222 @item
2223 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2224 @item
2225 PL181 MultiMedia Card Interface with SD card.
2226 @end itemize
2227
2228 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2229 and "Terrier") emulation includes the following peripherals:
2230
2231 @itemize @minus
2232 @item
2233 Intel PXA270 System-on-chip (ARM V5TE core)
2234 @item
2235 NAND Flash memory
2236 @item
2237 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2238 @item
2239 On-chip OHCI USB controller
2240 @item
2241 On-chip LCD controller
2242 @item
2243 On-chip Real Time Clock
2244 @item
2245 TI ADS7846 touchscreen controller on SSP bus
2246 @item
2247 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2248 @item
2249 GPIO-connected keyboard controller and LEDs
2250 @item
2251 Secure Digital card connected to PXA MMC/SD host
2252 @item
2253 Three on-chip UARTs
2254 @item
2255 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2256 @end itemize
2257
2258 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2259 following elements:
2260
2261 @itemize @minus
2262 @item
2263 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2264 @item
2265 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2266 @item
2267 On-chip LCD controller
2268 @item
2269 On-chip Real Time Clock
2270 @item
2271 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2272 CODEC, connected through MicroWire and I@math{^2}S busses
2273 @item
2274 GPIO-connected matrix keypad
2275 @item
2276 Secure Digital card connected to OMAP MMC/SD host
2277 @item
2278 Three on-chip UARTs
2279 @end itemize
2280
2281 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2282 emulation supports the following elements:
2283
2284 @itemize @minus
2285 @item
2286 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2287 @item
2288 RAM and non-volatile OneNAND Flash memories
2289 @item
2290 Display connected to EPSON remote framebuffer chip and OMAP on-chip
2291 display controller and a LS041y3 MIPI DBI-C controller
2292 @item
2293 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2294 driven through SPI bus
2295 @item
2296 National Semiconductor LM8323-controlled qwerty keyboard driven
2297 through I@math{^2}C bus
2298 @item
2299 Secure Digital card connected to OMAP MMC/SD host
2300 @item
2301 Three OMAP on-chip UARTs and on-chip STI debugging console
2302 @item
2303 A Bluetooth(R) transceiver and HCI connected to an UART
2304 @item
2305 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2306 TUSB6010 chip - only USB host mode is supported
2307 @item
2308 TI TMP105 temperature sensor driven through I@math{^2}C bus
2309 @item
2310 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2311 @item
2312 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2313 through CBUS
2314 @end itemize
2315
2316 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2317 devices:
2318
2319 @itemize @minus
2320 @item
2321 Cortex-M3 CPU core.
2322 @item
2323 64k Flash and 8k SRAM.
2324 @item
2325 Timers, UARTs, ADC and I@math{^2}C interface.
2326 @item
2327 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2328 @end itemize
2329
2330 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2331 devices:
2332
2333 @itemize @minus
2334 @item
2335 Cortex-M3 CPU core.
2336 @item
2337 256k Flash and 64k SRAM.
2338 @item
2339 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2340 @item
2341 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2342 @end itemize
2343
2344 The Freecom MusicPal internet radio emulation includes the following
2345 elements:
2346
2347 @itemize @minus
2348 @item
2349 Marvell MV88W8618 ARM core.
2350 @item
2351 32 MB RAM, 256 KB SRAM, 8 MB flash.
2352 @item
2353 Up to 2 16550 UARTs
2354 @item
2355 MV88W8xx8 Ethernet controller
2356 @item
2357 MV88W8618 audio controller, WM8750 CODEC and mixer
2358 @item
2359 128×64 display with brightness control
2360 @item
2361 2 buttons, 2 navigation wheels with button function
2362 @end itemize
2363
2364 The Siemens SX1 models v1 and v2 (default) basic emulation.
2365 The emulation includes the following elements:
2366
2367 @itemize @minus
2368 @item
2369 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2370 @item
2371 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2372 V1
2373 1 Flash of 16MB and 1 Flash of 8MB
2374 V2
2375 1 Flash of 32MB
2376 @item
2377 On-chip LCD controller
2378 @item
2379 On-chip Real Time Clock
2380 @item
2381 Secure Digital card connected to OMAP MMC/SD host
2382 @item
2383 Three on-chip UARTs
2384 @end itemize
2385
2386 A Linux 2.6 test image is available on the QEMU web site. More
2387 information is available in the QEMU mailing-list archive.
2388
2389 @c man begin OPTIONS
2390
2391 The following options are specific to the ARM emulation:
2392
2393 @table @option
2394
2395 @item -semihosting
2396 Enable semihosting syscall emulation.
2397
2398 On ARM this implements the "Angel" interface.
2399
2400 Note that this allows guest direct access to the host filesystem,
2401 so should only be used with trusted guest OS.
2402
2403 @end table
2404
2405 @c man end
2406
2407 @node ColdFire System emulator
2408 @section ColdFire System emulator
2409 @cindex system emulation (ColdFire)
2410 @cindex system emulation (M68K)
2411
2412 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2413 The emulator is able to boot a uClinux kernel.
2414
2415 The M5208EVB emulation includes the following devices:
2416
2417 @itemize @minus
2418 @item
2419 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2420 @item
2421 Three Two on-chip UARTs.
2422 @item
2423 Fast Ethernet Controller (FEC)
2424 @end itemize
2425
2426 The AN5206 emulation includes the following devices:
2427
2428 @itemize @minus
2429 @item
2430 MCF5206 ColdFire V2 Microprocessor.
2431 @item
2432 Two on-chip UARTs.
2433 @end itemize
2434
2435 @c man begin OPTIONS
2436
2437 The following options are specific to the ColdFire emulation:
2438
2439 @table @option
2440
2441 @item -semihosting
2442 Enable semihosting syscall emulation.
2443
2444 On M68K this implements the "ColdFire GDB" interface used by libgloss.
2445
2446 Note that this allows guest direct access to the host filesystem,
2447 so should only be used with trusted guest OS.
2448
2449 @end table
2450
2451 @c man end
2452
2453 @node Cris System emulator
2454 @section Cris System emulator
2455 @cindex system emulation (Cris)
2456
2457 TODO
2458
2459 @node Microblaze System emulator
2460 @section Microblaze System emulator
2461 @cindex system emulation (Microblaze)
2462
2463 TODO
2464
2465 @node SH4 System emulator
2466 @section SH4 System emulator
2467 @cindex system emulation (SH4)
2468
2469 TODO
2470
2471 @node Xtensa System emulator
2472 @section Xtensa System emulator
2473 @cindex system emulation (Xtensa)
2474
2475 Two executables cover simulation of both Xtensa endian options,
2476 @file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2477 Two different machine types are emulated:
2478
2479 @itemize @minus
2480 @item
2481 Xtensa emulator pseudo board "sim"
2482 @item
2483 Avnet LX60/LX110/LX200 board
2484 @end itemize
2485
2486 The sim pseudo board emulation provides an environment similar
2487 to one provided by the proprietary Tensilica ISS.
2488 It supports:
2489
2490 @itemize @minus
2491 @item
2492 A range of Xtensa CPUs, default is the DC232B
2493 @item
2494 Console and filesystem access via semihosting calls
2495 @end itemize
2496
2497 The Avnet LX60/LX110/LX200 emulation supports:
2498
2499 @itemize @minus
2500 @item
2501 A range of Xtensa CPUs, default is the DC232B
2502 @item
2503 16550 UART
2504 @item
2505 OpenCores 10/100 Mbps Ethernet MAC
2506 @end itemize
2507
2508 @c man begin OPTIONS
2509
2510 The following options are specific to the Xtensa emulation:
2511
2512 @table @option
2513
2514 @item -semihosting
2515 Enable semihosting syscall emulation.
2516
2517 Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2518 Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2519
2520 Note that this allows guest direct access to the host filesystem,
2521 so should only be used with trusted guest OS.
2522
2523 @end table
2524
2525 @c man end
2526
2527 @node QEMU Guest Agent
2528 @chapter QEMU Guest Agent invocation
2529
2530 @include qemu-ga.texi
2531
2532 @node QEMU User space emulator
2533 @chapter QEMU User space emulator
2534
2535 @menu
2536 * Supported Operating Systems ::
2537 * Features::
2538 * Linux User space emulator::
2539 * BSD User space emulator ::
2540 @end menu
2541
2542 @node Supported Operating Systems
2543 @section Supported Operating Systems
2544
2545 The following OS are supported in user space emulation:
2546
2547 @itemize @minus
2548 @item
2549 Linux (referred as qemu-linux-user)
2550 @item
2551 BSD (referred as qemu-bsd-user)
2552 @end itemize
2553
2554 @node Features
2555 @section Features
2556
2557 QEMU user space emulation has the following notable features:
2558
2559 @table @strong
2560 @item System call translation:
2561 QEMU includes a generic system call translator. This means that
2562 the parameters of the system calls can be converted to fix
2563 endianness and 32/64-bit mismatches between hosts and targets.
2564 IOCTLs can be converted too.
2565
2566 @item POSIX signal handling:
2567 QEMU can redirect to the running program all signals coming from
2568 the host (such as @code{SIGALRM}), as well as synthesize signals from
2569 virtual CPU exceptions (for example @code{SIGFPE} when the program
2570 executes a division by zero).
2571
2572 QEMU relies on the host kernel to emulate most signal system
2573 calls, for example to emulate the signal mask. On Linux, QEMU
2574 supports both normal and real-time signals.
2575
2576 @item Threading:
2577 On Linux, QEMU can emulate the @code{clone} syscall and create a real
2578 host thread (with a separate virtual CPU) for each emulated thread.
2579 Note that not all targets currently emulate atomic operations correctly.
2580 x86 and ARM use a global lock in order to preserve their semantics.
2581 @end table
2582
2583 QEMU was conceived so that ultimately it can emulate itself. Although
2584 it is not very useful, it is an important test to show the power of the
2585 emulator.
2586
2587 @node Linux User space emulator
2588 @section Linux User space emulator
2589
2590 @menu
2591 * Quick Start::
2592 * Wine launch::
2593 * Command line options::
2594 * Other binaries::
2595 @end menu
2596
2597 @node Quick Start
2598 @subsection Quick Start
2599
2600 In order to launch a Linux process, QEMU needs the process executable
2601 itself and all the target (x86) dynamic libraries used by it.
2602
2603 @itemize
2604
2605 @item On x86, you can just try to launch any process by using the native
2606 libraries:
2607
2608 @example
2609 qemu-i386 -L / /bin/ls
2610 @end example
2611
2612 @code{-L /} tells that the x86 dynamic linker must be searched with a
2613 @file{/} prefix.
2614
2615 @item Since QEMU is also a linux process, you can launch QEMU with
2616 QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2617
2618 @example
2619 qemu-i386 -L / qemu-i386 -L / /bin/ls
2620 @end example
2621
2622 @item On non x86 CPUs, you need first to download at least an x86 glibc
2623 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2624 @code{LD_LIBRARY_PATH} is not set:
2625
2626 @example
2627 unset LD_LIBRARY_PATH
2628 @end example
2629
2630 Then you can launch the precompiled @file{ls} x86 executable:
2631
2632 @example
2633 qemu-i386 tests/i386/ls
2634 @end example
2635 You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2636 QEMU is automatically launched by the Linux kernel when you try to
2637 launch x86 executables. It requires the @code{binfmt_misc} module in the
2638 Linux kernel.
2639
2640 @item The x86 version of QEMU is also included. You can try weird things such as:
2641 @example
2642 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2643 /usr/local/qemu-i386/bin/ls-i386
2644 @end example
2645
2646 @end itemize
2647
2648 @node Wine launch
2649 @subsection Wine launch
2650
2651 @itemize
2652
2653 @item Ensure that you have a working QEMU with the x86 glibc
2654 distribution (see previous section). In order to verify it, you must be
2655 able to do:
2656
2657 @example
2658 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2659 @end example
2660
2661 @item Download the binary x86 Wine install
2662 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2663
2664 @item Configure Wine on your account. Look at the provided script
2665 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2666 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2667
2668 @item Then you can try the example @file{putty.exe}:
2669
2670 @example
2671 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2672 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2673 @end example
2674
2675 @end itemize
2676
2677 @node Command line options
2678 @subsection Command line options
2679
2680 @example
2681 @command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
2682 @end example
2683
2684 @table @option
2685 @item -h
2686 Print the help
2687 @item -L path
2688 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2689 @item -s size
2690 Set the x86 stack size in bytes (default=524288)
2691 @item -cpu model
2692 Select CPU model (-cpu help for list and additional feature selection)
2693 @item -E @var{var}=@var{value}
2694 Set environment @var{var} to @var{value}.
2695 @item -U @var{var}
2696 Remove @var{var} from the environment.
2697 @item -B offset
2698 Offset guest address by the specified number of bytes. This is useful when
2699 the address region required by guest applications is reserved on the host.
2700 This option is currently only supported on some hosts.
2701 @item -R size
2702 Pre-allocate a guest virtual address space of the given size (in bytes).
2703 "G", "M", and "k" suffixes may be used when specifying the size.
2704 @end table
2705
2706 Debug options:
2707
2708 @table @option
2709 @item -d item1,...
2710 Activate logging of the specified items (use '-d help' for a list of log items)
2711 @item -p pagesize
2712 Act as if the host page size was 'pagesize' bytes
2713 @item -g port
2714 Wait gdb connection to port
2715 @item -singlestep
2716 Run the emulation in single step mode.
2717 @end table
2718
2719 Environment variables:
2720
2721 @table @env
2722 @item QEMU_STRACE
2723 Print system calls and arguments similar to the 'strace' program
2724 (NOTE: the actual 'strace' program will not work because the user
2725 space emulator hasn't implemented ptrace). At the moment this is
2726 incomplete. All system calls that don't have a specific argument
2727 format are printed with information for six arguments. Many
2728 flag-style arguments don't have decoders and will show up as numbers.
2729 @end table
2730
2731 @node Other binaries
2732 @subsection Other binaries
2733
2734 @cindex user mode (Alpha)
2735 @command{qemu-alpha} TODO.
2736
2737 @cindex user mode (ARM)
2738 @command{qemu-armeb} TODO.
2739
2740 @cindex user mode (ARM)
2741 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2742 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2743 configurations), and arm-uclinux bFLT format binaries.
2744
2745 @cindex user mode (ColdFire)
2746 @cindex user mode (M68K)
2747 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2748 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2749 coldfire uClinux bFLT format binaries.
2750
2751 The binary format is detected automatically.
2752
2753 @cindex user mode (Cris)
2754 @command{qemu-cris} TODO.
2755
2756 @cindex user mode (i386)
2757 @command{qemu-i386} TODO.
2758 @command{qemu-x86_64} TODO.
2759
2760 @cindex user mode (Microblaze)
2761 @command{qemu-microblaze} TODO.
2762
2763 @cindex user mode (MIPS)
2764 @command{qemu-mips} executes 32-bit big endian MIPS binaries (MIPS O32 ABI).
2765
2766 @command{qemu-mipsel} executes 32-bit little endian MIPS binaries (MIPS O32 ABI).
2767
2768 @command{qemu-mips64} executes 64-bit big endian MIPS binaries (MIPS N64 ABI).
2769
2770 @command{qemu-mips64el} executes 64-bit little endian MIPS binaries (MIPS N64 ABI).
2771
2772 @command{qemu-mipsn32} executes 32-bit big endian MIPS binaries (MIPS N32 ABI).
2773
2774 @command{qemu-mipsn32el} executes 32-bit little endian MIPS binaries (MIPS N32 ABI).
2775
2776 @cindex user mode (NiosII)
2777 @command{qemu-nios2} TODO.
2778
2779 @cindex user mode (PowerPC)
2780 @command{qemu-ppc64abi32} TODO.
2781 @command{qemu-ppc64} TODO.
2782 @command{qemu-ppc} TODO.
2783
2784 @cindex user mode (SH4)
2785 @command{qemu-sh4eb} TODO.
2786 @command{qemu-sh4} TODO.
2787
2788 @cindex user mode (SPARC)
2789 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2790
2791 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2792 (Sparc64 CPU, 32 bit ABI).
2793
2794 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2795 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2796
2797 @node BSD User space emulator
2798 @section BSD User space emulator
2799
2800 @menu
2801 * BSD Status::
2802 * BSD Quick Start::
2803 * BSD Command line options::
2804 @end menu
2805
2806 @node BSD Status
2807 @subsection BSD Status
2808
2809 @itemize @minus
2810 @item
2811 target Sparc64 on Sparc64: Some trivial programs work.
2812 @end itemize
2813
2814 @node BSD Quick Start
2815 @subsection Quick Start
2816
2817 In order to launch a BSD process, QEMU needs the process executable
2818 itself and all the target dynamic libraries used by it.
2819
2820 @itemize
2821
2822 @item On Sparc64, you can just try to launch any process by using the native
2823 libraries:
2824
2825 @example
2826 qemu-sparc64 /bin/ls
2827 @end example
2828
2829 @end itemize
2830
2831 @node BSD Command line options
2832 @subsection Command line options
2833
2834 @example
2835 @command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
2836 @end example
2837
2838 @table @option
2839 @item -h
2840 Print the help
2841 @item -L path
2842 Set the library root path (default=/)
2843 @item -s size
2844 Set the stack size in bytes (default=524288)
2845 @item -ignore-environment
2846 Start with an empty environment. Without this option,
2847 the initial environment is a copy of the caller's environment.
2848 @item -E @var{var}=@var{value}
2849 Set environment @var{var} to @var{value}.
2850 @item -U @var{var}
2851 Remove @var{var} from the environment.
2852 @item -bsd type
2853 Set the type of the emulated BSD Operating system. Valid values are
2854 FreeBSD, NetBSD and OpenBSD (default).
2855 @end table
2856
2857 Debug options:
2858
2859 @table @option
2860 @item -d item1,...
2861 Activate logging of the specified items (use '-d help' for a list of log items)
2862 @item -p pagesize
2863 Act as if the host page size was 'pagesize' bytes
2864 @item -singlestep
2865 Run the emulation in single step mode.
2866 @end table
2867
2868 @node System requirements
2869 @chapter System requirements
2870
2871 @section KVM kernel module
2872
2873 On x86_64 hosts, the default set of CPU features enabled by the KVM accelerator
2874 require the host to be running Linux v4.5 or newer.
2875
2876 The OpteronG[345] CPU models require KVM support for RDTSCP, which was
2877 added with Linux 4.5 which is supported by the major distros. And even
2878 if RHEL7 has kernel 3.10, KVM there has the required functionality there
2879 to make it close to a 4.5 or newer kernel.
2880
2881 @include qemu-tech.texi
2882
2883 @include qemu-deprecated.texi
2884
2885 @node Supported build platforms
2886 @appendix Supported build platforms
2887
2888 QEMU aims to support building and executing on multiple host OS platforms.
2889 This appendix outlines which platforms are the major build targets. These
2890 platforms are used as the basis for deciding upon the minimum required
2891 versions of 3rd party software QEMU depends on. The supported platforms
2892 are the targets for automated testing performed by the project when patches
2893 are submitted for review, and tested before and after merge.
2894
2895 If a platform is not listed here, it does not imply that QEMU won't work.
2896 If an unlisted platform has comparable software versions to a listed platform,
2897 there is every expectation that it will work. Bug reports are welcome for
2898 problems encountered on unlisted platforms unless they are clearly older
2899 vintage than what is described here.
2900
2901 Note that when considering software versions shipped in distros as support
2902 targets, QEMU considers only the version number, and assumes the features in
2903 that distro match the upstream release with the same version. In other words,
2904 if a distro backports extra features to the software in their distro, QEMU
2905 upstream code will not add explicit support for those backports, unless the
2906 feature is auto-detectable in a manner that works for the upstream releases
2907 too.
2908
2909 The Repology site @url{https://repology.org} is a useful resource to identify
2910 currently shipped versions of software in various operating systems, though
2911 it does not cover all distros listed below.
2912
2913 @section Linux OS
2914
2915 For distributions with frequent, short-lifetime releases, the project will
2916 aim to support all versions that are not end of life by their respective
2917 vendors. For the purposes of identifying supported software versions, the
2918 project will look at Fedora, Ubuntu, and openSUSE distros. Other short-
2919 lifetime distros will be assumed to ship similar software versions.
2920
2921 For distributions with long-lifetime releases, the project will aim to support
2922 the most recent major version at all times. Support for the previous major
2923 version will be dropped 2 years after the new major version is released. For
2924 the purposes of identifying supported software versions, the project will look
2925 at RHEL, Debian, Ubuntu LTS, and SLES distros. Other long-lifetime distros will
2926 be assumed to ship similar software versions.
2927
2928 @section Windows
2929
2930 The project supports building with current versions of the MinGW toolchain,
2931 hosted on Linux.
2932
2933 @section macOS
2934
2935 The project supports building with the two most recent versions of macOS, with
2936 the current homebrew package set available.
2937
2938 @section FreeBSD
2939
2940 The project aims to support the all the versions which are not end of life.
2941
2942 @section NetBSD
2943
2944 The project aims to support the most recent major version at all times. Support
2945 for the previous major version will be dropped 2 years after the new major
2946 version is released.
2947
2948 @section OpenBSD
2949
2950 The project aims to support the all the versions which are not end of life.
2951
2952 @node License
2953 @appendix License
2954
2955 QEMU is a trademark of Fabrice Bellard.
2956
2957 QEMU is released under the
2958 @url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2959 version 2. Parts of QEMU have specific licenses, see file
2960 @url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
2961
2962 @node Index
2963 @appendix Index
2964 @menu
2965 * Concept Index::
2966 * Function Index::
2967 * Keystroke Index::
2968 * Program Index::
2969 * Data Type Index::
2970 * Variable Index::
2971 @end menu
2972
2973 @node Concept Index
2974 @section Concept Index
2975 This is the main index. Should we combine all keywords in one index? TODO
2976 @printindex cp
2977
2978 @node Function Index
2979 @section Function Index
2980 This index could be used for command line options and monitor functions.
2981 @printindex fn
2982
2983 @node Keystroke Index
2984 @section Keystroke Index
2985
2986 This is a list of all keystrokes which have a special function
2987 in system emulation.
2988
2989 @printindex ky
2990
2991 @node Program Index
2992 @section Program Index
2993 @printindex pg
2994
2995 @node Data Type Index
2996 @section Data Type Index
2997
2998 This index could be used for qdev device names and options.
2999
3000 @printindex tp
3001
3002 @node Variable Index
3003 @section Variable Index
3004 @printindex vr
3005
3006 @bye