]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-options.hx
usb: Deprecate the legacy -usbdevice option
[mirror_qemu.git] / qemu-options.hx
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
8
9 DEFHEADING(Standard options)
10 STEXI
11 @table @option
12 ETEXI
13
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
21
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
29
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, hax or tcg (default: tcg)\n"
35 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
36 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
37 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n"
38 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
39 " mem-merge=on|off controls memory merge support (default: on)\n"
40 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
41 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
42 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
43 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
44 " nvdimm=on|off controls NVDIMM support (default=off)\n"
45 " enforce-config-section=on|off enforce configuration section migration (default=off)\n",
46 QEMU_ARCH_ALL)
47 STEXI
48 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
49 @findex -machine
50 Select the emulated machine by @var{name}. Use @code{-machine help} to list
51 available machines. Supported machine properties are:
52 @table @option
53 @item accel=@var{accels1}[:@var{accels2}[:...]]
54 This is used to enable an accelerator. Depending on the target architecture,
55 kvm, xen, hax or tcg can be available. By default, tcg is used. If there is
56 more than one accelerator specified, the next one is used if the previous one
57 fails to initialize.
58 @item kernel_irqchip=on|off
59 Controls in-kernel irqchip support for the chosen accelerator when available.
60 @item gfx_passthru=on|off
61 Enables IGD GFX passthrough support for the chosen machine when available.
62 @item vmport=on|off|auto
63 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
64 value based on accel. For accel=xen the default is off otherwise the default
65 is on.
66 @item kvm_shadow_mem=size
67 Defines the size of the KVM shadow MMU.
68 @item dump-guest-core=on|off
69 Include guest memory in a core dump. The default is on.
70 @item mem-merge=on|off
71 Enables or disables memory merge support. This feature, when supported by
72 the host, de-duplicates identical memory pages among VMs instances
73 (enabled by default).
74 @item aes-key-wrap=on|off
75 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
76 controls whether AES wrapping keys will be created to allow
77 execution of AES cryptographic functions. The default is on.
78 @item dea-key-wrap=on|off
79 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
80 controls whether DEA wrapping keys will be created to allow
81 execution of DEA cryptographic functions. The default is on.
82 @item nvdimm=on|off
83 Enables or disables NVDIMM support. The default is off.
84 @end table
85 ETEXI
86
87 HXCOMM Deprecated by -machine
88 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
89
90 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
91 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
92 STEXI
93 @item -cpu @var{model}
94 @findex -cpu
95 Select CPU model (@code{-cpu help} for list and additional feature selection)
96 ETEXI
97
98 DEF("accel", HAS_ARG, QEMU_OPTION_accel,
99 "-accel [accel=]accelerator[,thread=single|multi]\n"
100 " select accelerator (kvm, xen, hax or tcg; use 'help' for a list)\n"
101 " thread=single|multi (enable multi-threaded TCG)", QEMU_ARCH_ALL)
102 STEXI
103 @item -accel @var{name}[,prop=@var{value}[,...]]
104 @findex -accel
105 This is used to enable an accelerator. Depending on the target architecture,
106 kvm, xen, hax or tcg can be available. By default, tcg is used. If there is
107 more than one accelerator specified, the next one is used if the previous one
108 fails to initialize.
109 @table @option
110 @item thread=single|multi
111 Controls number of TCG threads. When the TCG is multi-threaded there will be one
112 thread per vCPU therefor taking advantage of additional host cores. The default
113 is to enable multi-threading where both the back-end and front-ends support it and
114 no incompatible TCG features have been enabled (e.g. icount/replay).
115 @end table
116 ETEXI
117
118 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
119 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
120 " set the number of CPUs to 'n' [default=1]\n"
121 " maxcpus= maximum number of total cpus, including\n"
122 " offline CPUs for hotplug, etc\n"
123 " cores= number of CPU cores on one socket\n"
124 " threads= number of threads on one CPU core\n"
125 " sockets= number of discrete sockets in the system\n",
126 QEMU_ARCH_ALL)
127 STEXI
128 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
129 @findex -smp
130 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
131 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
132 to 4.
133 For the PC target, the number of @var{cores} per socket, the number
134 of @var{threads} per cores and the total number of @var{sockets} can be
135 specified. Missing values will be computed. If any on the three values is
136 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
137 specifies the maximum number of hotpluggable CPUs.
138 ETEXI
139
140 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
141 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
142 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
143 "-numa dist,src=source,dst=destination,val=distance\n", QEMU_ARCH_ALL)
144 STEXI
145 @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
146 @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
147 @itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance}
148 @itemx -numa cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}]
149 @findex -numa
150 Define a NUMA node and assign RAM and VCPUs to it.
151 Set the NUMA distance from a source node to a destination node.
152
153 Legacy VCPU assignment uses @samp{cpus} option where
154 @var{firstcpu} and @var{lastcpu} are CPU indexes. Each
155 @samp{cpus} option represent a contiguous range of CPU indexes
156 (or a single VCPU if @var{lastcpu} is omitted). A non-contiguous
157 set of VCPUs can be represented by providing multiple @samp{cpus}
158 options. If @samp{cpus} is omitted on all nodes, VCPUs are automatically
159 split between them.
160
161 For example, the following option assigns VCPUs 0, 1, 2 and 5 to
162 a NUMA node:
163 @example
164 -numa node,cpus=0-2,cpus=5
165 @end example
166
167 @samp{cpu} option is a new alternative to @samp{cpus} option
168 which uses @samp{socket-id|core-id|thread-id} properties to assign
169 CPU objects to a @var{node} using topology layout properties of CPU.
170 The set of properties is machine specific, and depends on used
171 machine type/@samp{smp} options. It could be queried with
172 @samp{hotpluggable-cpus} monitor command.
173 @samp{node-id} property specifies @var{node} to which CPU object
174 will be assigned, it's required for @var{node} to be declared
175 with @samp{node} option before it's used with @samp{cpu} option.
176
177 For example:
178 @example
179 -M pc \
180 -smp 1,sockets=2,maxcpus=2 \
181 -numa node,nodeid=0 -numa node,nodeid=1 \
182 -numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1
183 @end example
184
185 @samp{mem} assigns a given RAM amount to a node. @samp{memdev}
186 assigns RAM from a given memory backend device to a node. If
187 @samp{mem} and @samp{memdev} are omitted in all nodes, RAM is
188 split equally between them.
189
190 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore,
191 if one node uses @samp{memdev}, all of them have to use it.
192
193 @var{source} and @var{destination} are NUMA node IDs.
194 @var{distance} is the NUMA distance from @var{source} to @var{destination}.
195 The distance from a node to itself is always 10. If any pair of nodes is
196 given a distance, then all pairs must be given distances. Although, when
197 distances are only given in one direction for each pair of nodes, then
198 the distances in the opposite directions are assumed to be the same. If,
199 however, an asymmetrical pair of distances is given for even one node
200 pair, then all node pairs must be provided distance values for both
201 directions, even when they are symmetrical. When a node is unreachable
202 from another node, set the pair's distance to 255.
203
204 Note that the -@option{numa} option doesn't allocate any of the
205 specified resources, it just assigns existing resources to NUMA
206 nodes. This means that one still has to use the @option{-m},
207 @option{-smp} options to allocate RAM and VCPUs respectively.
208
209 ETEXI
210
211 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
212 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
213 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
214 STEXI
215 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
216 @findex -add-fd
217
218 Add a file descriptor to an fd set. Valid options are:
219
220 @table @option
221 @item fd=@var{fd}
222 This option defines the file descriptor of which a duplicate is added to fd set.
223 The file descriptor cannot be stdin, stdout, or stderr.
224 @item set=@var{set}
225 This option defines the ID of the fd set to add the file descriptor to.
226 @item opaque=@var{opaque}
227 This option defines a free-form string that can be used to describe @var{fd}.
228 @end table
229
230 You can open an image using pre-opened file descriptors from an fd set:
231 @example
232 qemu-system-i386
233 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
234 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
235 -drive file=/dev/fdset/2,index=0,media=disk
236 @end example
237 ETEXI
238
239 DEF("set", HAS_ARG, QEMU_OPTION_set,
240 "-set group.id.arg=value\n"
241 " set <arg> parameter for item <id> of type <group>\n"
242 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
243 STEXI
244 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
245 @findex -set
246 Set parameter @var{arg} for item @var{id} of type @var{group}
247 ETEXI
248
249 DEF("global", HAS_ARG, QEMU_OPTION_global,
250 "-global driver.property=value\n"
251 "-global driver=driver,property=property,value=value\n"
252 " set a global default for a driver property\n",
253 QEMU_ARCH_ALL)
254 STEXI
255 @item -global @var{driver}.@var{prop}=@var{value}
256 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
257 @findex -global
258 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
259
260 @example
261 qemu-system-i386 -global ide-drive.physical_block_size=4096 -drive file=file,if=ide,index=0,media=disk
262 @end example
263
264 In particular, you can use this to set driver properties for devices which are
265 created automatically by the machine model. To create a device which is not
266 created automatically and set properties on it, use -@option{device}.
267
268 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
269 driver=@var{driver},property=@var{prop},value=@var{value}. The
270 longhand syntax works even when @var{driver} contains a dot.
271 ETEXI
272
273 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
274 "-boot [order=drives][,once=drives][,menu=on|off]\n"
275 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
276 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
277 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
278 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
279 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
280 QEMU_ARCH_ALL)
281 STEXI
282 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
283 @findex -boot
284 Specify boot order @var{drives} as a string of drive letters. Valid
285 drive letters depend on the target architecture. The x86 PC uses: a, b
286 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
287 from network adapter 1-4), hard disk boot is the default. To apply a
288 particular boot order only on the first startup, specify it via
289 @option{once}. Note that the @option{order} or @option{once} parameter
290 should not be used together with the @option{bootindex} property of
291 devices, since the firmware implementations normally do not support both
292 at the same time.
293
294 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
295 as firmware/BIOS supports them. The default is non-interactive boot.
296
297 A splash picture could be passed to bios, enabling user to show it as logo,
298 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
299 supports them. Currently Seabios for X86 system support it.
300 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
301 format(true color). The resolution should be supported by the SVGA mode, so
302 the recommended is 320x240, 640x480, 800x640.
303
304 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
305 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
306 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
307 system support it.
308
309 Do strict boot via @option{strict=on} as far as firmware/BIOS
310 supports it. This only effects when boot priority is changed by
311 bootindex options. The default is non-strict boot.
312
313 @example
314 # try to boot from network first, then from hard disk
315 qemu-system-i386 -boot order=nc
316 # boot from CD-ROM first, switch back to default order after reboot
317 qemu-system-i386 -boot once=d
318 # boot with a splash picture for 5 seconds.
319 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
320 @end example
321
322 Note: The legacy format '-boot @var{drives}' is still supported but its
323 use is discouraged as it may be removed from future versions.
324 ETEXI
325
326 DEF("m", HAS_ARG, QEMU_OPTION_m,
327 "-m [size=]megs[,slots=n,maxmem=size]\n"
328 " configure guest RAM\n"
329 " size: initial amount of guest memory\n"
330 " slots: number of hotplug slots (default: none)\n"
331 " maxmem: maximum amount of guest memory (default: none)\n"
332 "NOTE: Some architectures might enforce a specific granularity\n",
333 QEMU_ARCH_ALL)
334 STEXI
335 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
336 @findex -m
337 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
338 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
339 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
340 could be used to set amount of hotpluggable memory slots and maximum amount of
341 memory. Note that @var{maxmem} must be aligned to the page size.
342
343 For example, the following command-line sets the guest startup RAM size to
344 1GB, creates 3 slots to hotplug additional memory and sets the maximum
345 memory the guest can reach to 4GB:
346
347 @example
348 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
349 @end example
350
351 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
352 be enabled and the guest startup RAM will never increase.
353 ETEXI
354
355 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
356 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
357 STEXI
358 @item -mem-path @var{path}
359 @findex -mem-path
360 Allocate guest RAM from a temporarily created file in @var{path}.
361 ETEXI
362
363 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
364 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
365 QEMU_ARCH_ALL)
366 STEXI
367 @item -mem-prealloc
368 @findex -mem-prealloc
369 Preallocate memory when using -mem-path.
370 ETEXI
371
372 DEF("k", HAS_ARG, QEMU_OPTION_k,
373 "-k language use keyboard layout (for example 'fr' for French)\n",
374 QEMU_ARCH_ALL)
375 STEXI
376 @item -k @var{language}
377 @findex -k
378 Use keyboard layout @var{language} (for example @code{fr} for
379 French). This option is only needed where it is not easy to get raw PC
380 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
381 display). You don't normally need to use it on PC/Linux or PC/Windows
382 hosts.
383
384 The available layouts are:
385 @example
386 ar de-ch es fo fr-ca hu ja mk no pt-br sv
387 da en-gb et fr fr-ch is lt nl pl ru th
388 de en-us fi fr-be hr it lv nl-be pt sl tr
389 @end example
390
391 The default is @code{en-us}.
392 ETEXI
393
394
395 DEF("audio-help", 0, QEMU_OPTION_audio_help,
396 "-audio-help print list of audio drivers and their options\n",
397 QEMU_ARCH_ALL)
398 STEXI
399 @item -audio-help
400 @findex -audio-help
401 Will show the audio subsystem help: list of drivers, tunable
402 parameters.
403 ETEXI
404
405 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
406 "-soundhw c1,... enable audio support\n"
407 " and only specified sound cards (comma separated list)\n"
408 " use '-soundhw help' to get the list of supported cards\n"
409 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
410 STEXI
411 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
412 @findex -soundhw
413 Enable audio and selected sound hardware. Use 'help' to print all
414 available sound hardware.
415
416 @example
417 qemu-system-i386 -soundhw sb16,adlib disk.img
418 qemu-system-i386 -soundhw es1370 disk.img
419 qemu-system-i386 -soundhw ac97 disk.img
420 qemu-system-i386 -soundhw hda disk.img
421 qemu-system-i386 -soundhw all disk.img
422 qemu-system-i386 -soundhw help
423 @end example
424
425 Note that Linux's i810_audio OSS kernel (for AC97) module might
426 require manually specifying clocking.
427
428 @example
429 modprobe i810_audio clocking=48000
430 @end example
431 ETEXI
432
433 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
434 "-balloon none disable balloon device\n"
435 "-balloon virtio[,addr=str]\n"
436 " enable virtio balloon device (default)\n", QEMU_ARCH_ALL)
437 STEXI
438 @item -balloon none
439 @findex -balloon
440 Disable balloon device.
441 @item -balloon virtio[,addr=@var{addr}]
442 Enable virtio balloon device (default), optionally with PCI address
443 @var{addr}.
444 ETEXI
445
446 DEF("device", HAS_ARG, QEMU_OPTION_device,
447 "-device driver[,prop[=value][,...]]\n"
448 " add device (based on driver)\n"
449 " prop=value,... sets driver properties\n"
450 " use '-device help' to print all possible drivers\n"
451 " use '-device driver,help' to print all possible properties\n",
452 QEMU_ARCH_ALL)
453 STEXI
454 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
455 @findex -device
456 Add device @var{driver}. @var{prop}=@var{value} sets driver
457 properties. Valid properties depend on the driver. To get help on
458 possible drivers and properties, use @code{-device help} and
459 @code{-device @var{driver},help}.
460
461 Some drivers are:
462 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}][,sdrfile=@var{file}][,furareasize=@var{val}][,furdatafile=@var{file}]
463
464 Add an IPMI BMC. This is a simulation of a hardware management
465 interface processor that normally sits on a system. It provides
466 a watchdog and the ability to reset and power control the system.
467 You need to connect this to an IPMI interface to make it useful
468
469 The IPMI slave address to use for the BMC. The default is 0x20.
470 This address is the BMC's address on the I2C network of management
471 controllers. If you don't know what this means, it is safe to ignore
472 it.
473
474 @table @option
475 @item bmc=@var{id}
476 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
477 @item slave_addr=@var{val}
478 Define slave address to use for the BMC. The default is 0x20.
479 @item sdrfile=@var{file}
480 file containing raw Sensor Data Records (SDR) data. The default is none.
481 @item fruareasize=@var{val}
482 size of a Field Replaceable Unit (FRU) area. The default is 1024.
483 @item frudatafile=@var{file}
484 file containing raw Field Replaceable Unit (FRU) inventory data. The default is none.
485 @end table
486
487 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
488
489 Add a connection to an external IPMI BMC simulator. Instead of
490 locally emulating the BMC like the above item, instead connect
491 to an external entity that provides the IPMI services.
492
493 A connection is made to an external BMC simulator. If you do this, it
494 is strongly recommended that you use the "reconnect=" chardev option
495 to reconnect to the simulator if the connection is lost. Note that if
496 this is not used carefully, it can be a security issue, as the
497 interface has the ability to send resets, NMIs, and power off the VM.
498 It's best if QEMU makes a connection to an external simulator running
499 on a secure port on localhost, so neither the simulator nor QEMU is
500 exposed to any outside network.
501
502 See the "lanserv/README.vm" file in the OpenIPMI library for more
503 details on the external interface.
504
505 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
506
507 Add a KCS IPMI interafce on the ISA bus. This also adds a
508 corresponding ACPI and SMBIOS entries, if appropriate.
509
510 @table @option
511 @item bmc=@var{id}
512 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
513 @item ioport=@var{val}
514 Define the I/O address of the interface. The default is 0xca0 for KCS.
515 @item irq=@var{val}
516 Define the interrupt to use. The default is 5. To disable interrupts,
517 set this to 0.
518 @end table
519
520 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
521
522 Like the KCS interface, but defines a BT interface. The default port is
523 0xe4 and the default interrupt is 5.
524
525 ETEXI
526
527 DEF("name", HAS_ARG, QEMU_OPTION_name,
528 "-name string1[,process=string2][,debug-threads=on|off]\n"
529 " set the name of the guest\n"
530 " string1 sets the window title and string2 the process name (on Linux)\n"
531 " When debug-threads is enabled, individual threads are given a separate name (on Linux)\n"
532 " NOTE: The thread names are for debugging and not a stable API.\n",
533 QEMU_ARCH_ALL)
534 STEXI
535 @item -name @var{name}
536 @findex -name
537 Sets the @var{name} of the guest.
538 This name will be displayed in the SDL window caption.
539 The @var{name} will also be used for the VNC server.
540 Also optionally set the top visible process name in Linux.
541 Naming of individual threads can also be enabled on Linux to aid debugging.
542 ETEXI
543
544 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
545 "-uuid %08x-%04x-%04x-%04x-%012x\n"
546 " specify machine UUID\n", QEMU_ARCH_ALL)
547 STEXI
548 @item -uuid @var{uuid}
549 @findex -uuid
550 Set system UUID.
551 ETEXI
552
553 STEXI
554 @end table
555 ETEXI
556 DEFHEADING()
557
558 DEFHEADING(Block device options)
559 STEXI
560 @table @option
561 ETEXI
562
563 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
564 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
565 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
566 STEXI
567 @item -fda @var{file}
568 @itemx -fdb @var{file}
569 @findex -fda
570 @findex -fdb
571 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
572 ETEXI
573
574 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
575 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
576 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
577 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
578 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
579 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
580 STEXI
581 @item -hda @var{file}
582 @itemx -hdb @var{file}
583 @itemx -hdc @var{file}
584 @itemx -hdd @var{file}
585 @findex -hda
586 @findex -hdb
587 @findex -hdc
588 @findex -hdd
589 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
590 ETEXI
591
592 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
593 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
594 QEMU_ARCH_ALL)
595 STEXI
596 @item -cdrom @var{file}
597 @findex -cdrom
598 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
599 @option{-cdrom} at the same time). You can use the host CD-ROM by
600 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
601 ETEXI
602
603 DEF("blockdev", HAS_ARG, QEMU_OPTION_blockdev,
604 "-blockdev [driver=]driver[,node-name=N][,discard=ignore|unmap]\n"
605 " [,cache.direct=on|off][,cache.no-flush=on|off]\n"
606 " [,read-only=on|off][,detect-zeroes=on|off|unmap]\n"
607 " [,driver specific parameters...]\n"
608 " configure a block backend\n", QEMU_ARCH_ALL)
609
610 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
611 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
612 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
613 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
614 " [,serial=s][,addr=A][,rerror=ignore|stop|report]\n"
615 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
616 " [,readonly=on|off][,copy-on-read=on|off]\n"
617 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
618 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
619 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
620 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
621 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
622 " [[,iops_size=is]]\n"
623 " [[,group=g]]\n"
624 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
625 STEXI
626 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
627 @findex -drive
628
629 Define a new drive. Valid options are:
630
631 @table @option
632 @item file=@var{file}
633 This option defines which disk image (@pxref{disk_images}) to use with
634 this drive. If the filename contains comma, you must double it
635 (for instance, "file=my,,file" to use file "my,file").
636
637 Special files such as iSCSI devices can be specified using protocol
638 specific URLs. See the section for "Device URL Syntax" for more information.
639 @item if=@var{interface}
640 This option defines on which type on interface the drive is connected.
641 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio, none.
642 @item bus=@var{bus},unit=@var{unit}
643 These options define where is connected the drive by defining the bus number and
644 the unit id.
645 @item index=@var{index}
646 This option defines where is connected the drive by using an index in the list
647 of available connectors of a given interface type.
648 @item media=@var{media}
649 This option defines the type of the media: disk or cdrom.
650 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
651 These options have the same definition as they have in @option{-hdachs}.
652 @item snapshot=@var{snapshot}
653 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
654 (see @option{-snapshot}).
655 @item cache=@var{cache}
656 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough" and controls how the host cache is used to access block data.
657 @item aio=@var{aio}
658 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
659 @item discard=@var{discard}
660 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls whether @dfn{discard} (also known as @dfn{trim} or @dfn{unmap}) requests are ignored or passed to the filesystem. Some machine types may not support discard requests.
661 @item format=@var{format}
662 Specify which disk @var{format} will be used rather than detecting
663 the format. Can be used to specify format=raw to avoid interpreting
664 an untrusted format header.
665 @item serial=@var{serial}
666 This option specifies the serial number to assign to the device.
667 @item addr=@var{addr}
668 Specify the controller's PCI address (if=virtio only).
669 @item werror=@var{action},rerror=@var{action}
670 Specify which @var{action} to take on write and read errors. Valid actions are:
671 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
672 "report" (report the error to the guest), "enospc" (pause QEMU only if the
673 host disk is full; report the error to the guest otherwise).
674 The default setting is @option{werror=enospc} and @option{rerror=report}.
675 @item readonly
676 Open drive @option{file} as read-only. Guest write attempts will fail.
677 @item copy-on-read=@var{copy-on-read}
678 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
679 file sectors into the image file.
680 @item detect-zeroes=@var{detect-zeroes}
681 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
682 conversion of plain zero writes by the OS to driver specific optimized
683 zero write commands. You may even choose "unmap" if @var{discard} is set
684 to "unmap" to allow a zero write to be converted to an UNMAP operation.
685 @item bps=@var{b},bps_rd=@var{r},bps_wr=@var{w}
686 Specify bandwidth throttling limits in bytes per second, either for all request
687 types or for reads or writes only. Small values can lead to timeouts or hangs
688 inside the guest. A safe minimum for disks is 2 MB/s.
689 @item bps_max=@var{bm},bps_rd_max=@var{rm},bps_wr_max=@var{wm}
690 Specify bursts in bytes per second, either for all request types or for reads
691 or writes only. Bursts allow the guest I/O to spike above the limit
692 temporarily.
693 @item iops=@var{i},iops_rd=@var{r},iops_wr=@var{w}
694 Specify request rate limits in requests per second, either for all request
695 types or for reads or writes only.
696 @item iops_max=@var{bm},iops_rd_max=@var{rm},iops_wr_max=@var{wm}
697 Specify bursts in requests per second, either for all request types or for reads
698 or writes only. Bursts allow the guest I/O to spike above the limit
699 temporarily.
700 @item iops_size=@var{is}
701 Let every @var{is} bytes of a request count as a new request for iops
702 throttling purposes. Use this option to prevent guests from circumventing iops
703 limits by sending fewer but larger requests.
704 @item group=@var{g}
705 Join a throttling quota group with given name @var{g}. All drives that are
706 members of the same group are accounted for together. Use this option to
707 prevent guests from circumventing throttling limits by using many small disks
708 instead of a single larger disk.
709 @end table
710
711 By default, the @option{cache=writeback} mode is used. It will report data
712 writes as completed as soon as the data is present in the host page cache.
713 This is safe as long as your guest OS makes sure to correctly flush disk caches
714 where needed. If your guest OS does not handle volatile disk write caches
715 correctly and your host crashes or loses power, then the guest may experience
716 data corruption.
717
718 For such guests, you should consider using @option{cache=writethrough}. This
719 means that the host page cache will be used to read and write data, but write
720 notification will be sent to the guest only after QEMU has made sure to flush
721 each write to the disk. Be aware that this has a major impact on performance.
722
723 The host page cache can be avoided entirely with @option{cache=none}. This will
724 attempt to do disk IO directly to the guest's memory. QEMU may still perform
725 an internal copy of the data. Note that this is considered a writeback mode and
726 the guest OS must handle the disk write cache correctly in order to avoid data
727 corruption on host crashes.
728
729 The host page cache can be avoided while only sending write notifications to
730 the guest when the data has been flushed to the disk using
731 @option{cache=directsync}.
732
733 In case you don't care about data integrity over host failures, use
734 @option{cache=unsafe}. This option tells QEMU that it never needs to write any
735 data to the disk but can instead keep things in cache. If anything goes wrong,
736 like your host losing power, the disk storage getting disconnected accidentally,
737 etc. your image will most probably be rendered unusable. When using
738 the @option{-snapshot} option, unsafe caching is always used.
739
740 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
741 useful when the backing file is over a slow network. By default copy-on-read
742 is off.
743
744 Instead of @option{-cdrom} you can use:
745 @example
746 qemu-system-i386 -drive file=file,index=2,media=cdrom
747 @end example
748
749 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
750 use:
751 @example
752 qemu-system-i386 -drive file=file,index=0,media=disk
753 qemu-system-i386 -drive file=file,index=1,media=disk
754 qemu-system-i386 -drive file=file,index=2,media=disk
755 qemu-system-i386 -drive file=file,index=3,media=disk
756 @end example
757
758 You can open an image using pre-opened file descriptors from an fd set:
759 @example
760 qemu-system-i386
761 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
762 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
763 -drive file=/dev/fdset/2,index=0,media=disk
764 @end example
765
766 You can connect a CDROM to the slave of ide0:
767 @example
768 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
769 @end example
770
771 If you don't specify the "file=" argument, you define an empty drive:
772 @example
773 qemu-system-i386 -drive if=ide,index=1,media=cdrom
774 @end example
775
776 Instead of @option{-fda}, @option{-fdb}, you can use:
777 @example
778 qemu-system-i386 -drive file=file,index=0,if=floppy
779 qemu-system-i386 -drive file=file,index=1,if=floppy
780 @end example
781
782 By default, @var{interface} is "ide" and @var{index} is automatically
783 incremented:
784 @example
785 qemu-system-i386 -drive file=a -drive file=b"
786 @end example
787 is interpreted like:
788 @example
789 qemu-system-i386 -hda a -hdb b
790 @end example
791 ETEXI
792
793 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
794 "-mtdblock file use 'file' as on-board Flash memory image\n",
795 QEMU_ARCH_ALL)
796 STEXI
797 @item -mtdblock @var{file}
798 @findex -mtdblock
799 Use @var{file} as on-board Flash memory image.
800 ETEXI
801
802 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
803 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
804 STEXI
805 @item -sd @var{file}
806 @findex -sd
807 Use @var{file} as SecureDigital card image.
808 ETEXI
809
810 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
811 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
812 STEXI
813 @item -pflash @var{file}
814 @findex -pflash
815 Use @var{file} as a parallel flash image.
816 ETEXI
817
818 DEF("snapshot", 0, QEMU_OPTION_snapshot,
819 "-snapshot write to temporary files instead of disk image files\n",
820 QEMU_ARCH_ALL)
821 STEXI
822 @item -snapshot
823 @findex -snapshot
824 Write to temporary files instead of disk image files. In this case,
825 the raw disk image you use is not written back. You can however force
826 the write back by pressing @key{C-a s} (@pxref{disk_images}).
827 ETEXI
828
829 DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
830 "-hdachs c,h,s[,t]\n" \
831 " force hard disk 0 physical geometry and the optional BIOS\n" \
832 " translation (t=none or lba) (usually QEMU can guess them)\n",
833 QEMU_ARCH_ALL)
834 STEXI
835 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
836 @findex -hdachs
837 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
838 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
839 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
840 all those parameters. This option is deprecated, please use
841 @code{-device ide-hd,cyls=c,heads=h,secs=s,...} instead.
842 ETEXI
843
844 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
845 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n"
846 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n"
847 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
848 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
849 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
850 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
851 " [[,throttling.iops-size=is]]\n",
852 QEMU_ARCH_ALL)
853
854 STEXI
855
856 @item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
857 @findex -fsdev
858 Define a new file system device. Valid options are:
859 @table @option
860 @item @var{fsdriver}
861 This option specifies the fs driver backend to use.
862 Currently "local", "handle" and "proxy" file system drivers are supported.
863 @item id=@var{id}
864 Specifies identifier for this device
865 @item path=@var{path}
866 Specifies the export path for the file system device. Files under
867 this path will be available to the 9p client on the guest.
868 @item security_model=@var{security_model}
869 Specifies the security model to be used for this export path.
870 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
871 In "passthrough" security model, files are stored using the same
872 credentials as they are created on the guest. This requires QEMU
873 to run as root. In "mapped-xattr" security model, some of the file
874 attributes like uid, gid, mode bits and link target are stored as
875 file attributes. For "mapped-file" these attributes are stored in the
876 hidden .virtfs_metadata directory. Directories exported by this security model cannot
877 interact with other unix tools. "none" security model is same as
878 passthrough except the sever won't report failures if it fails to
879 set file attributes like ownership. Security model is mandatory
880 only for local fsdriver. Other fsdrivers (like handle, proxy) don't take
881 security model as a parameter.
882 @item writeout=@var{writeout}
883 This is an optional argument. The only supported value is "immediate".
884 This means that host page cache will be used to read and write data but
885 write notification will be sent to the guest only when the data has been
886 reported as written by the storage subsystem.
887 @item readonly
888 Enables exporting 9p share as a readonly mount for guests. By default
889 read-write access is given.
890 @item socket=@var{socket}
891 Enables proxy filesystem driver to use passed socket file for communicating
892 with virtfs-proxy-helper
893 @item sock_fd=@var{sock_fd}
894 Enables proxy filesystem driver to use passed socket descriptor for
895 communicating with virtfs-proxy-helper. Usually a helper like libvirt
896 will create socketpair and pass one of the fds as sock_fd
897 @end table
898
899 -fsdev option is used along with -device driver "virtio-9p-pci".
900 @item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag}
901 Options for virtio-9p-pci driver are:
902 @table @option
903 @item fsdev=@var{id}
904 Specifies the id value specified along with -fsdev option
905 @item mount_tag=@var{mount_tag}
906 Specifies the tag name to be used by the guest to mount this export point
907 @end table
908
909 ETEXI
910
911 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
912 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n"
913 " [,id=id][,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
914 QEMU_ARCH_ALL)
915
916 STEXI
917
918 @item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
919 @findex -virtfs
920
921 The general form of a Virtual File system pass-through options are:
922 @table @option
923 @item @var{fsdriver}
924 This option specifies the fs driver backend to use.
925 Currently "local", "handle" and "proxy" file system drivers are supported.
926 @item id=@var{id}
927 Specifies identifier for this device
928 @item path=@var{path}
929 Specifies the export path for the file system device. Files under
930 this path will be available to the 9p client on the guest.
931 @item security_model=@var{security_model}
932 Specifies the security model to be used for this export path.
933 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
934 In "passthrough" security model, files are stored using the same
935 credentials as they are created on the guest. This requires QEMU
936 to run as root. In "mapped-xattr" security model, some of the file
937 attributes like uid, gid, mode bits and link target are stored as
938 file attributes. For "mapped-file" these attributes are stored in the
939 hidden .virtfs_metadata directory. Directories exported by this security model cannot
940 interact with other unix tools. "none" security model is same as
941 passthrough except the sever won't report failures if it fails to
942 set file attributes like ownership. Security model is mandatory only
943 for local fsdriver. Other fsdrivers (like handle, proxy) don't take security
944 model as a parameter.
945 @item writeout=@var{writeout}
946 This is an optional argument. The only supported value is "immediate".
947 This means that host page cache will be used to read and write data but
948 write notification will be sent to the guest only when the data has been
949 reported as written by the storage subsystem.
950 @item readonly
951 Enables exporting 9p share as a readonly mount for guests. By default
952 read-write access is given.
953 @item socket=@var{socket}
954 Enables proxy filesystem driver to use passed socket file for
955 communicating with virtfs-proxy-helper. Usually a helper like libvirt
956 will create socketpair and pass one of the fds as sock_fd
957 @item sock_fd
958 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
959 descriptor for interfacing with virtfs-proxy-helper
960 @end table
961 ETEXI
962
963 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
964 "-virtfs_synth Create synthetic file system image\n",
965 QEMU_ARCH_ALL)
966 STEXI
967 @item -virtfs_synth
968 @findex -virtfs_synth
969 Create synthetic file system image
970 ETEXI
971
972 STEXI
973 @end table
974 ETEXI
975 DEFHEADING()
976
977 DEFHEADING(USB options)
978 STEXI
979 @table @option
980 ETEXI
981
982 DEF("usb", 0, QEMU_OPTION_usb,
983 "-usb enable the USB driver (if it is not used by default yet)\n",
984 QEMU_ARCH_ALL)
985 STEXI
986 @item -usb
987 @findex -usb
988 Enable the USB driver (if it is not used by default yet).
989 ETEXI
990
991 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
992 "-usbdevice name add the host or guest USB device 'name'\n",
993 QEMU_ARCH_ALL)
994 STEXI
995
996 @item -usbdevice @var{devname}
997 @findex -usbdevice
998 Add the USB device @var{devname}. Note that this option is deprecated,
999 please use @code{-device usb-...} instead. @xref{usb_devices}.
1000
1001 @table @option
1002
1003 @item mouse
1004 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1005
1006 @item tablet
1007 Pointer device that uses absolute coordinates (like a touchscreen). This
1008 means QEMU is able to report the mouse position without having to grab the
1009 mouse. Also overrides the PS/2 mouse emulation when activated.
1010
1011 @item disk:[format=@var{format}]:@var{file}
1012 Mass storage device based on file. The optional @var{format} argument
1013 will be used rather than detecting the format. Can be used to specify
1014 @code{format=raw} to avoid interpreting an untrusted format header.
1015
1016 @item host:@var{bus}.@var{addr}
1017 Pass through the host device identified by @var{bus}.@var{addr} (Linux only).
1018
1019 @item host:@var{vendor_id}:@var{product_id}
1020 Pass through the host device identified by @var{vendor_id}:@var{product_id}
1021 (Linux only).
1022
1023 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
1024 Serial converter to host character device @var{dev}, see @code{-serial} for the
1025 available devices.
1026
1027 @item braille
1028 Braille device. This will use BrlAPI to display the braille output on a real
1029 or fake device.
1030
1031 @item net:@var{options}
1032 Network adapter that supports CDC ethernet and RNDIS protocols.
1033
1034 @end table
1035 ETEXI
1036
1037 STEXI
1038 @end table
1039 ETEXI
1040 DEFHEADING()
1041
1042 DEFHEADING(Display options)
1043 STEXI
1044 @table @option
1045 ETEXI
1046
1047 DEF("display", HAS_ARG, QEMU_OPTION_display,
1048 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
1049 " [,window_close=on|off][,gl=on|off]\n"
1050 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
1051 "-display vnc=<display>[,<optargs>]\n"
1052 "-display curses\n"
1053 "-display none"
1054 " select display type\n"
1055 "The default display is equivalent to\n"
1056 #if defined(CONFIG_GTK)
1057 "\t\"-display gtk\"\n"
1058 #elif defined(CONFIG_SDL)
1059 "\t\"-display sdl\"\n"
1060 #elif defined(CONFIG_COCOA)
1061 "\t\"-display cocoa\"\n"
1062 #elif defined(CONFIG_VNC)
1063 "\t\"-vnc localhost:0,to=99,id=default\"\n"
1064 #else
1065 "\t\"-display none\"\n"
1066 #endif
1067 , QEMU_ARCH_ALL)
1068 STEXI
1069 @item -display @var{type}
1070 @findex -display
1071 Select type of display to use. This option is a replacement for the
1072 old style -sdl/-curses/... options. Valid values for @var{type} are
1073 @table @option
1074 @item sdl
1075 Display video output via SDL (usually in a separate graphics
1076 window; see the SDL documentation for other possibilities).
1077 @item curses
1078 Display video output via curses. For graphics device models which
1079 support a text mode, QEMU can display this output using a
1080 curses/ncurses interface. Nothing is displayed when the graphics
1081 device is in graphical mode or if the graphics device does not support
1082 a text mode. Generally only the VGA device models support text mode.
1083 @item none
1084 Do not display video output. The guest will still see an emulated
1085 graphics card, but its output will not be displayed to the QEMU
1086 user. This option differs from the -nographic option in that it
1087 only affects what is done with video output; -nographic also changes
1088 the destination of the serial and parallel port data.
1089 @item gtk
1090 Display video output in a GTK window. This interface provides drop-down
1091 menus and other UI elements to configure and control the VM during
1092 runtime.
1093 @item vnc
1094 Start a VNC server on display <arg>
1095 @end table
1096 ETEXI
1097
1098 DEF("nographic", 0, QEMU_OPTION_nographic,
1099 "-nographic disable graphical output and redirect serial I/Os to console\n",
1100 QEMU_ARCH_ALL)
1101 STEXI
1102 @item -nographic
1103 @findex -nographic
1104 Normally, if QEMU is compiled with graphical window support, it displays
1105 output such as guest graphics, guest console, and the QEMU monitor in a
1106 window. With this option, you can totally disable graphical output so
1107 that QEMU is a simple command line application. The emulated serial port
1108 is redirected on the console and muxed with the monitor (unless
1109 redirected elsewhere explicitly). Therefore, you can still use QEMU to
1110 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
1111 switching between the console and monitor.
1112 ETEXI
1113
1114 DEF("curses", 0, QEMU_OPTION_curses,
1115 "-curses shorthand for -display curses\n",
1116 QEMU_ARCH_ALL)
1117 STEXI
1118 @item -curses
1119 @findex -curses
1120 Normally, if QEMU is compiled with graphical window support, it displays
1121 output such as guest graphics, guest console, and the QEMU monitor in a
1122 window. With this option, QEMU can display the VGA output when in text
1123 mode using a curses/ncurses interface. Nothing is displayed in graphical
1124 mode.
1125 ETEXI
1126
1127 DEF("no-frame", 0, QEMU_OPTION_no_frame,
1128 "-no-frame open SDL window without a frame and window decorations\n",
1129 QEMU_ARCH_ALL)
1130 STEXI
1131 @item -no-frame
1132 @findex -no-frame
1133 Do not use decorations for SDL windows and start them using the whole
1134 available screen space. This makes the using QEMU in a dedicated desktop
1135 workspace more convenient.
1136 ETEXI
1137
1138 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1139 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1140 QEMU_ARCH_ALL)
1141 STEXI
1142 @item -alt-grab
1143 @findex -alt-grab
1144 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1145 affects the special keys (for fullscreen, monitor-mode switching, etc).
1146 ETEXI
1147
1148 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1149 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1150 QEMU_ARCH_ALL)
1151 STEXI
1152 @item -ctrl-grab
1153 @findex -ctrl-grab
1154 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1155 affects the special keys (for fullscreen, monitor-mode switching, etc).
1156 ETEXI
1157
1158 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1159 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1160 STEXI
1161 @item -no-quit
1162 @findex -no-quit
1163 Disable SDL window close capability.
1164 ETEXI
1165
1166 DEF("sdl", 0, QEMU_OPTION_sdl,
1167 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1168 STEXI
1169 @item -sdl
1170 @findex -sdl
1171 Enable SDL.
1172 ETEXI
1173
1174 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1175 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1176 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1177 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1178 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1179 " [,tls-ciphers=<list>]\n"
1180 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1181 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1182 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1183 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1184 " [,jpeg-wan-compression=[auto|never|always]]\n"
1185 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1186 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1187 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1188 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1189 " [,gl=[on|off]][,rendernode=<file>]\n"
1190 " enable spice\n"
1191 " at least one of {port, tls-port} is mandatory\n",
1192 QEMU_ARCH_ALL)
1193 STEXI
1194 @item -spice @var{option}[,@var{option}[,...]]
1195 @findex -spice
1196 Enable the spice remote desktop protocol. Valid options are
1197
1198 @table @option
1199
1200 @item port=<nr>
1201 Set the TCP port spice is listening on for plaintext channels.
1202
1203 @item addr=<addr>
1204 Set the IP address spice is listening on. Default is any address.
1205
1206 @item ipv4
1207 @itemx ipv6
1208 @itemx unix
1209 Force using the specified IP version.
1210
1211 @item password=<secret>
1212 Set the password you need to authenticate.
1213
1214 @item sasl
1215 Require that the client use SASL to authenticate with the spice.
1216 The exact choice of authentication method used is controlled from the
1217 system / user's SASL configuration file for the 'qemu' service. This
1218 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1219 unprivileged user, an environment variable SASL_CONF_PATH can be used
1220 to make it search alternate locations for the service config.
1221 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1222 it is recommended that SASL always be combined with the 'tls' and
1223 'x509' settings to enable use of SSL and server certificates. This
1224 ensures a data encryption preventing compromise of authentication
1225 credentials.
1226
1227 @item disable-ticketing
1228 Allow client connects without authentication.
1229
1230 @item disable-copy-paste
1231 Disable copy paste between the client and the guest.
1232
1233 @item disable-agent-file-xfer
1234 Disable spice-vdagent based file-xfer between the client and the guest.
1235
1236 @item tls-port=<nr>
1237 Set the TCP port spice is listening on for encrypted channels.
1238
1239 @item x509-dir=<dir>
1240 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1241
1242 @item x509-key-file=<file>
1243 @itemx x509-key-password=<file>
1244 @itemx x509-cert-file=<file>
1245 @itemx x509-cacert-file=<file>
1246 @itemx x509-dh-key-file=<file>
1247 The x509 file names can also be configured individually.
1248
1249 @item tls-ciphers=<list>
1250 Specify which ciphers to use.
1251
1252 @item tls-channel=[main|display|cursor|inputs|record|playback]
1253 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1254 Force specific channel to be used with or without TLS encryption. The
1255 options can be specified multiple times to configure multiple
1256 channels. The special name "default" can be used to set the default
1257 mode. For channels which are not explicitly forced into one mode the
1258 spice client is allowed to pick tls/plaintext as he pleases.
1259
1260 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1261 Configure image compression (lossless).
1262 Default is auto_glz.
1263
1264 @item jpeg-wan-compression=[auto|never|always]
1265 @itemx zlib-glz-wan-compression=[auto|never|always]
1266 Configure wan image compression (lossy for slow links).
1267 Default is auto.
1268
1269 @item streaming-video=[off|all|filter]
1270 Configure video stream detection. Default is off.
1271
1272 @item agent-mouse=[on|off]
1273 Enable/disable passing mouse events via vdagent. Default is on.
1274
1275 @item playback-compression=[on|off]
1276 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1277
1278 @item seamless-migration=[on|off]
1279 Enable/disable spice seamless migration. Default is off.
1280
1281 @item gl=[on|off]
1282 Enable/disable OpenGL context. Default is off.
1283
1284 @item rendernode=<file>
1285 DRM render node for OpenGL rendering. If not specified, it will pick
1286 the first available. (Since 2.9)
1287
1288 @end table
1289 ETEXI
1290
1291 DEF("portrait", 0, QEMU_OPTION_portrait,
1292 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1293 QEMU_ARCH_ALL)
1294 STEXI
1295 @item -portrait
1296 @findex -portrait
1297 Rotate graphical output 90 deg left (only PXA LCD).
1298 ETEXI
1299
1300 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1301 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1302 QEMU_ARCH_ALL)
1303 STEXI
1304 @item -rotate @var{deg}
1305 @findex -rotate
1306 Rotate graphical output some deg left (only PXA LCD).
1307 ETEXI
1308
1309 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1310 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1311 " select video card type\n", QEMU_ARCH_ALL)
1312 STEXI
1313 @item -vga @var{type}
1314 @findex -vga
1315 Select type of VGA card to emulate. Valid values for @var{type} are
1316 @table @option
1317 @item cirrus
1318 Cirrus Logic GD5446 Video card. All Windows versions starting from
1319 Windows 95 should recognize and use this graphic card. For optimal
1320 performances, use 16 bit color depth in the guest and the host OS.
1321 (This card was the default before QEMU 2.2)
1322 @item std
1323 Standard VGA card with Bochs VBE extensions. If your guest OS
1324 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1325 to use high resolution modes (>= 1280x1024x16) then you should use
1326 this option. (This card is the default since QEMU 2.2)
1327 @item vmware
1328 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1329 recent XFree86/XOrg server or Windows guest with a driver for this
1330 card.
1331 @item qxl
1332 QXL paravirtual graphic card. It is VGA compatible (including VESA
1333 2.0 VBE support). Works best with qxl guest drivers installed though.
1334 Recommended choice when using the spice protocol.
1335 @item tcx
1336 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1337 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1338 fixed resolution of 1024x768.
1339 @item cg3
1340 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1341 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1342 resolutions aimed at people wishing to run older Solaris versions.
1343 @item virtio
1344 Virtio VGA card.
1345 @item none
1346 Disable VGA card.
1347 @end table
1348 ETEXI
1349
1350 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1351 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1352 STEXI
1353 @item -full-screen
1354 @findex -full-screen
1355 Start in full screen.
1356 ETEXI
1357
1358 DEF("g", 1, QEMU_OPTION_g ,
1359 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1360 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1361 STEXI
1362 @item -g @var{width}x@var{height}[x@var{depth}]
1363 @findex -g
1364 Set the initial graphical resolution and depth (PPC, SPARC only).
1365 ETEXI
1366
1367 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1368 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1369 STEXI
1370 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1371 @findex -vnc
1372 Normally, if QEMU is compiled with graphical window support, it displays
1373 output such as guest graphics, guest console, and the QEMU monitor in a
1374 window. With this option, you can have QEMU listen on VNC display
1375 @var{display} and redirect the VGA display over the VNC session. It is
1376 very useful to enable the usb tablet device when using this option
1377 (option @option{-device usb-tablet}). When using the VNC display, you
1378 must use the @option{-k} parameter to set the keyboard layout if you are
1379 not using en-us. Valid syntax for the @var{display} is
1380
1381 @table @option
1382
1383 @item to=@var{L}
1384
1385 With this option, QEMU will try next available VNC @var{display}s, until the
1386 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1387 available, e.g. port 5900+@var{display} is already used by another
1388 application. By default, to=0.
1389
1390 @item @var{host}:@var{d}
1391
1392 TCP connections will only be allowed from @var{host} on display @var{d}.
1393 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1394 be omitted in which case the server will accept connections from any host.
1395
1396 @item unix:@var{path}
1397
1398 Connections will be allowed over UNIX domain sockets where @var{path} is the
1399 location of a unix socket to listen for connections on.
1400
1401 @item none
1402
1403 VNC is initialized but not started. The monitor @code{change} command
1404 can be used to later start the VNC server.
1405
1406 @end table
1407
1408 Following the @var{display} value there may be one or more @var{option} flags
1409 separated by commas. Valid options are
1410
1411 @table @option
1412
1413 @item reverse
1414
1415 Connect to a listening VNC client via a ``reverse'' connection. The
1416 client is specified by the @var{display}. For reverse network
1417 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1418 is a TCP port number, not a display number.
1419
1420 @item websocket
1421
1422 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1423 If a bare @var{websocket} option is given, the Websocket port is
1424 5700+@var{display}. An alternative port can be specified with the
1425 syntax @code{websocket}=@var{port}.
1426
1427 If @var{host} is specified connections will only be allowed from this host.
1428 It is possible to control the websocket listen address independently, using
1429 the syntax @code{websocket}=@var{host}:@var{port}.
1430
1431 If no TLS credentials are provided, the websocket connection runs in
1432 unencrypted mode. If TLS credentials are provided, the websocket connection
1433 requires encrypted client connections.
1434
1435 @item password
1436
1437 Require that password based authentication is used for client connections.
1438
1439 The password must be set separately using the @code{set_password} command in
1440 the @ref{pcsys_monitor}. The syntax to change your password is:
1441 @code{set_password <protocol> <password>} where <protocol> could be either
1442 "vnc" or "spice".
1443
1444 If you would like to change <protocol> password expiration, you should use
1445 @code{expire_password <protocol> <expiration-time>} where expiration time could
1446 be one of the following options: now, never, +seconds or UNIX time of
1447 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1448 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1449 date and time).
1450
1451 You can also use keywords "now" or "never" for the expiration time to
1452 allow <protocol> password to expire immediately or never expire.
1453
1454 @item tls-creds=@var{ID}
1455
1456 Provides the ID of a set of TLS credentials to use to secure the
1457 VNC server. They will apply to both the normal VNC server socket
1458 and the websocket socket (if enabled). Setting TLS credentials
1459 will cause the VNC server socket to enable the VeNCrypt auth
1460 mechanism. The credentials should have been previously created
1461 using the @option{-object tls-creds} argument.
1462
1463 The @option{tls-creds} parameter obsoletes the @option{tls},
1464 @option{x509}, and @option{x509verify} options, and as such
1465 it is not permitted to set both new and old type options at
1466 the same time.
1467
1468 @item tls
1469
1470 Require that client use TLS when communicating with the VNC server. This
1471 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
1472 attack. It is recommended that this option be combined with either the
1473 @option{x509} or @option{x509verify} options.
1474
1475 This option is now deprecated in favor of using the @option{tls-creds}
1476 argument.
1477
1478 @item x509=@var{/path/to/certificate/dir}
1479
1480 Valid if @option{tls} is specified. Require that x509 credentials are used
1481 for negotiating the TLS session. The server will send its x509 certificate
1482 to the client. It is recommended that a password be set on the VNC server
1483 to provide authentication of the client when this is used. The path following
1484 this option specifies where the x509 certificates are to be loaded from.
1485 See the @ref{vnc_security} section for details on generating certificates.
1486
1487 This option is now deprecated in favour of using the @option{tls-creds}
1488 argument.
1489
1490 @item x509verify=@var{/path/to/certificate/dir}
1491
1492 Valid if @option{tls} is specified. Require that x509 credentials are used
1493 for negotiating the TLS session. The server will send its x509 certificate
1494 to the client, and request that the client send its own x509 certificate.
1495 The server will validate the client's certificate against the CA certificate,
1496 and reject clients when validation fails. If the certificate authority is
1497 trusted, this is a sufficient authentication mechanism. You may still wish
1498 to set a password on the VNC server as a second authentication layer. The
1499 path following this option specifies where the x509 certificates are to
1500 be loaded from. See the @ref{vnc_security} section for details on generating
1501 certificates.
1502
1503 This option is now deprecated in favour of using the @option{tls-creds}
1504 argument.
1505
1506 @item sasl
1507
1508 Require that the client use SASL to authenticate with the VNC server.
1509 The exact choice of authentication method used is controlled from the
1510 system / user's SASL configuration file for the 'qemu' service. This
1511 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1512 unprivileged user, an environment variable SASL_CONF_PATH can be used
1513 to make it search alternate locations for the service config.
1514 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1515 it is recommended that SASL always be combined with the 'tls' and
1516 'x509' settings to enable use of SSL and server certificates. This
1517 ensures a data encryption preventing compromise of authentication
1518 credentials. See the @ref{vnc_security} section for details on using
1519 SASL authentication.
1520
1521 @item acl
1522
1523 Turn on access control lists for checking of the x509 client certificate
1524 and SASL party. For x509 certs, the ACL check is made against the
1525 certificate's distinguished name. This is something that looks like
1526 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
1527 made against the username, which depending on the SASL plugin, may
1528 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
1529 When the @option{acl} flag is set, the initial access list will be
1530 empty, with a @code{deny} policy. Thus no one will be allowed to
1531 use the VNC server until the ACLs have been loaded. This can be
1532 achieved using the @code{acl} monitor command.
1533
1534 @item lossy
1535
1536 Enable lossy compression methods (gradient, JPEG, ...). If this
1537 option is set, VNC client may receive lossy framebuffer updates
1538 depending on its encoding settings. Enabling this option can save
1539 a lot of bandwidth at the expense of quality.
1540
1541 @item non-adaptive
1542
1543 Disable adaptive encodings. Adaptive encodings are enabled by default.
1544 An adaptive encoding will try to detect frequently updated screen regions,
1545 and send updates in these regions using a lossy encoding (like JPEG).
1546 This can be really helpful to save bandwidth when playing videos. Disabling
1547 adaptive encodings restores the original static behavior of encodings
1548 like Tight.
1549
1550 @item share=[allow-exclusive|force-shared|ignore]
1551
1552 Set display sharing policy. 'allow-exclusive' allows clients to ask
1553 for exclusive access. As suggested by the rfb spec this is
1554 implemented by dropping other connections. Connecting multiple
1555 clients in parallel requires all clients asking for a shared session
1556 (vncviewer: -shared switch). This is the default. 'force-shared'
1557 disables exclusive client access. Useful for shared desktop sessions,
1558 where you don't want someone forgetting specify -shared disconnect
1559 everybody else. 'ignore' completely ignores the shared flag and
1560 allows everybody connect unconditionally. Doesn't conform to the rfb
1561 spec but is traditional QEMU behavior.
1562
1563 @item key-delay-ms
1564
1565 Set keyboard delay, for key down and key up events, in milliseconds.
1566 Default is 1. Keyboards are low-bandwidth devices, so this slowdown
1567 can help the device and guest to keep up and not lose events in case
1568 events are arriving in bulk. Possible causes for the latter are flaky
1569 network connections, or scripts for automated testing.
1570
1571 @end table
1572 ETEXI
1573
1574 STEXI
1575 @end table
1576 ETEXI
1577 ARCHHEADING(, QEMU_ARCH_I386)
1578
1579 ARCHHEADING(i386 target only, QEMU_ARCH_I386)
1580 STEXI
1581 @table @option
1582 ETEXI
1583
1584 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
1585 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
1586 QEMU_ARCH_I386)
1587 STEXI
1588 @item -win2k-hack
1589 @findex -win2k-hack
1590 Use it when installing Windows 2000 to avoid a disk full bug. After
1591 Windows 2000 is installed, you no longer need this option (this option
1592 slows down the IDE transfers).
1593 ETEXI
1594
1595 HXCOMM Deprecated by -rtc
1596 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "", QEMU_ARCH_I386)
1597
1598 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
1599 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
1600 QEMU_ARCH_I386)
1601 STEXI
1602 @item -no-fd-bootchk
1603 @findex -no-fd-bootchk
1604 Disable boot signature checking for floppy disks in BIOS. May
1605 be needed to boot from old floppy disks.
1606 ETEXI
1607
1608 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
1609 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1610 STEXI
1611 @item -no-acpi
1612 @findex -no-acpi
1613 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1614 it if your guest OS complains about ACPI problems (PC target machine
1615 only).
1616 ETEXI
1617
1618 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
1619 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
1620 STEXI
1621 @item -no-hpet
1622 @findex -no-hpet
1623 Disable HPET support.
1624 ETEXI
1625
1626 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
1627 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
1628 " ACPI table description\n", QEMU_ARCH_I386)
1629 STEXI
1630 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
1631 @findex -acpitable
1632 Add ACPI table with specified header fields and context from specified files.
1633 For file=, take whole ACPI table from the specified files, including all
1634 ACPI headers (possible overridden by other options).
1635 For data=, only data
1636 portion of the table is used, all header information is specified in the
1637 command line.
1638 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
1639 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
1640 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
1641 spec.
1642 ETEXI
1643
1644 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
1645 "-smbios file=binary\n"
1646 " load SMBIOS entry from binary file\n"
1647 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
1648 " [,uefi=on|off]\n"
1649 " specify SMBIOS type 0 fields\n"
1650 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1651 " [,uuid=uuid][,sku=str][,family=str]\n"
1652 " specify SMBIOS type 1 fields\n"
1653 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1654 " [,asset=str][,location=str]\n"
1655 " specify SMBIOS type 2 fields\n"
1656 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
1657 " [,sku=str]\n"
1658 " specify SMBIOS type 3 fields\n"
1659 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
1660 " [,asset=str][,part=str]\n"
1661 " specify SMBIOS type 4 fields\n"
1662 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
1663 " [,asset=str][,part=str][,speed=%d]\n"
1664 " specify SMBIOS type 17 fields\n",
1665 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1666 STEXI
1667 @item -smbios file=@var{binary}
1668 @findex -smbios
1669 Load SMBIOS entry from binary file.
1670
1671 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
1672 Specify SMBIOS type 0 fields
1673
1674 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
1675 Specify SMBIOS type 1 fields
1676
1677 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}]
1678 Specify SMBIOS type 2 fields
1679
1680 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
1681 Specify SMBIOS type 3 fields
1682
1683 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
1684 Specify SMBIOS type 4 fields
1685
1686 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
1687 Specify SMBIOS type 17 fields
1688 ETEXI
1689
1690 STEXI
1691 @end table
1692 ETEXI
1693 DEFHEADING()
1694
1695 DEFHEADING(Network options)
1696 STEXI
1697 @table @option
1698 ETEXI
1699
1700 HXCOMM Legacy slirp options (now moved to -net user):
1701 #ifdef CONFIG_SLIRP
1702 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "", QEMU_ARCH_ALL)
1703 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "", QEMU_ARCH_ALL)
1704 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "", QEMU_ARCH_ALL)
1705 #ifndef _WIN32
1706 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "", QEMU_ARCH_ALL)
1707 #endif
1708 #endif
1709
1710 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
1711 #ifdef CONFIG_SLIRP
1712 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
1713 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
1714 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
1715 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,tftp=dir]\n"
1716 " [,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
1717 #ifndef _WIN32
1718 "[,smb=dir[,smbserver=addr]]\n"
1719 #endif
1720 " configure a user mode network backend with ID 'str',\n"
1721 " its DHCP server and optional services\n"
1722 #endif
1723 #ifdef _WIN32
1724 "-netdev tap,id=str,ifname=name\n"
1725 " configure a host TAP network backend with ID 'str'\n"
1726 #else
1727 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
1728 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
1729 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
1730 " [,poll-us=n]\n"
1731 " configure a host TAP network backend with ID 'str'\n"
1732 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1733 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
1734 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
1735 " to deconfigure it\n"
1736 " use '[down]script=no' to disable script execution\n"
1737 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
1738 " configure it\n"
1739 " use 'fd=h' to connect to an already opened TAP interface\n"
1740 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
1741 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
1742 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
1743 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
1744 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
1745 " use vhost=on to enable experimental in kernel accelerator\n"
1746 " (only has effect for virtio guests which use MSIX)\n"
1747 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
1748 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
1749 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
1750 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
1751 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
1752 " spent on busy polling for vhost net\n"
1753 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
1754 " configure a host TAP network backend with ID 'str' that is\n"
1755 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1756 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
1757 #endif
1758 #ifdef __linux__
1759 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
1760 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
1761 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
1762 " [,rxcookie=rxcookie][,offset=offset]\n"
1763 " configure a network backend with ID 'str' connected to\n"
1764 " an Ethernet over L2TPv3 pseudowire.\n"
1765 " Linux kernel 3.3+ as well as most routers can talk\n"
1766 " L2TPv3. This transport allows connecting a VM to a VM,\n"
1767 " VM to a router and even VM to Host. It is a nearly-universal\n"
1768 " standard (RFC3391). Note - this implementation uses static\n"
1769 " pre-configured tunnels (same as the Linux kernel).\n"
1770 " use 'src=' to specify source address\n"
1771 " use 'dst=' to specify destination address\n"
1772 " use 'udp=on' to specify udp encapsulation\n"
1773 " use 'srcport=' to specify source udp port\n"
1774 " use 'dstport=' to specify destination udp port\n"
1775 " use 'ipv6=on' to force v6\n"
1776 " L2TPv3 uses cookies to prevent misconfiguration as\n"
1777 " well as a weak security measure\n"
1778 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
1779 " use 'txcookie=0x012345678' to specify a txcookie\n"
1780 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
1781 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
1782 " use 'pincounter=on' to work around broken counter handling in peer\n"
1783 " use 'offset=X' to add an extra offset between header and data\n"
1784 #endif
1785 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
1786 " configure a network backend to connect to another network\n"
1787 " using a socket connection\n"
1788 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
1789 " configure a network backend to connect to a multicast maddr and port\n"
1790 " use 'localaddr=addr' to specify the host address to send packets from\n"
1791 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
1792 " configure a network backend to connect to another network\n"
1793 " using an UDP tunnel\n"
1794 #ifdef CONFIG_VDE
1795 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
1796 " configure a network backend to connect to port 'n' of a vde switch\n"
1797 " running on host and listening for incoming connections on 'socketpath'.\n"
1798 " Use group 'groupname' and mode 'octalmode' to change default\n"
1799 " ownership and permissions for communication port.\n"
1800 #endif
1801 #ifdef CONFIG_NETMAP
1802 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
1803 " attach to the existing netmap-enabled network interface 'name', or to a\n"
1804 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
1805 " netmap device, defaults to '/dev/netmap')\n"
1806 #endif
1807 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
1808 " configure a vhost-user network, backed by a chardev 'dev'\n"
1809 "-netdev hubport,id=str,hubid=n\n"
1810 " configure a hub port on QEMU VLAN 'n'\n", QEMU_ARCH_ALL)
1811 DEF("net", HAS_ARG, QEMU_OPTION_net,
1812 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
1813 " old way to create a new NIC and connect it to VLAN 'n'\n"
1814 " (use the '-device devtype,netdev=str' option if possible instead)\n"
1815 "-net dump[,vlan=n][,file=f][,len=n]\n"
1816 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
1817 "-net none use it alone to have zero network devices. If no -net option\n"
1818 " is provided, the default is '-net nic -net user'\n"
1819 "-net ["
1820 #ifdef CONFIG_SLIRP
1821 "user|"
1822 #endif
1823 "tap|"
1824 "bridge|"
1825 #ifdef CONFIG_VDE
1826 "vde|"
1827 #endif
1828 #ifdef CONFIG_NETMAP
1829 "netmap|"
1830 #endif
1831 "socket][,vlan=n][,option][,option][,...]\n"
1832 " old way to initialize a host network interface\n"
1833 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
1834 STEXI
1835 @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
1836 @findex -net
1837 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
1838 = 0 is the default). The NIC is an e1000 by default on the PC
1839 target. Optionally, the MAC address can be changed to @var{mac}, the
1840 device address set to @var{addr} (PCI cards only),
1841 and a @var{name} can be assigned for use in monitor commands.
1842 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
1843 that the card should have; this option currently only affects virtio cards; set
1844 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
1845 NIC is created. QEMU can emulate several different models of network card.
1846 Valid values for @var{type} are
1847 @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
1848 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
1849 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
1850 Not all devices are supported on all targets. Use @code{-net nic,model=help}
1851 for a list of available devices for your target.
1852
1853 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
1854 @findex -netdev
1855 @item -net user[,@var{option}][,@var{option}][,...]
1856 Use the user mode network stack which requires no administrator
1857 privilege to run. Valid options are:
1858
1859 @table @option
1860 @item vlan=@var{n}
1861 Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
1862
1863 @item id=@var{id}
1864 @itemx name=@var{name}
1865 Assign symbolic name for use in monitor commands.
1866
1867 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must
1868 be enabled. If neither is specified both protocols are enabled.
1869
1870 @item net=@var{addr}[/@var{mask}]
1871 Set IP network address the guest will see. Optionally specify the netmask,
1872 either in the form a.b.c.d or as number of valid top-most bits. Default is
1873 10.0.2.0/24.
1874
1875 @item host=@var{addr}
1876 Specify the guest-visible address of the host. Default is the 2nd IP in the
1877 guest network, i.e. x.x.x.2.
1878
1879 @item ipv6-net=@var{addr}[/@var{int}]
1880 Set IPv6 network address the guest will see (default is fec0::/64). The
1881 network prefix is given in the usual hexadecimal IPv6 address
1882 notation. The prefix size is optional, and is given as the number of
1883 valid top-most bits (default is 64).
1884
1885 @item ipv6-host=@var{addr}
1886 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
1887 the guest network, i.e. xxxx::2.
1888
1889 @item restrict=on|off
1890 If this option is enabled, the guest will be isolated, i.e. it will not be
1891 able to contact the host and no guest IP packets will be routed over the host
1892 to the outside. This option does not affect any explicitly set forwarding rules.
1893
1894 @item hostname=@var{name}
1895 Specifies the client hostname reported by the built-in DHCP server.
1896
1897 @item dhcpstart=@var{addr}
1898 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
1899 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
1900
1901 @item dns=@var{addr}
1902 Specify the guest-visible address of the virtual nameserver. The address must
1903 be different from the host address. Default is the 3rd IP in the guest network,
1904 i.e. x.x.x.3.
1905
1906 @item ipv6-dns=@var{addr}
1907 Specify the guest-visible address of the IPv6 virtual nameserver. The address
1908 must be different from the host address. Default is the 3rd IP in the guest
1909 network, i.e. xxxx::3.
1910
1911 @item dnssearch=@var{domain}
1912 Provides an entry for the domain-search list sent by the built-in
1913 DHCP server. More than one domain suffix can be transmitted by specifying
1914 this option multiple times. If supported, this will cause the guest to
1915 automatically try to append the given domain suffix(es) in case a domain name
1916 can not be resolved.
1917
1918 Example:
1919 @example
1920 qemu -net user,dnssearch=mgmt.example.org,dnssearch=example.org [...]
1921 @end example
1922
1923 @item tftp=@var{dir}
1924 When using the user mode network stack, activate a built-in TFTP
1925 server. The files in @var{dir} will be exposed as the root of a TFTP server.
1926 The TFTP client on the guest must be configured in binary mode (use the command
1927 @code{bin} of the Unix TFTP client).
1928
1929 @item bootfile=@var{file}
1930 When using the user mode network stack, broadcast @var{file} as the BOOTP
1931 filename. In conjunction with @option{tftp}, this can be used to network boot
1932 a guest from a local directory.
1933
1934 Example (using pxelinux):
1935 @example
1936 qemu-system-i386 -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
1937 @end example
1938
1939 @item smb=@var{dir}[,smbserver=@var{addr}]
1940 When using the user mode network stack, activate a built-in SMB
1941 server so that Windows OSes can access to the host files in @file{@var{dir}}
1942 transparently. The IP address of the SMB server can be set to @var{addr}. By
1943 default the 4th IP in the guest network is used, i.e. x.x.x.4.
1944
1945 In the guest Windows OS, the line:
1946 @example
1947 10.0.2.4 smbserver
1948 @end example
1949 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
1950 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
1951
1952 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
1953
1954 Note that a SAMBA server must be installed on the host OS.
1955 QEMU was tested successfully with smbd versions from Red Hat 9,
1956 Fedora Core 3 and OpenSUSE 11.x.
1957
1958 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
1959 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
1960 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
1961 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
1962 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
1963 be bound to a specific host interface. If no connection type is set, TCP is
1964 used. This option can be given multiple times.
1965
1966 For example, to redirect host X11 connection from screen 1 to guest
1967 screen 0, use the following:
1968
1969 @example
1970 # on the host
1971 qemu-system-i386 -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
1972 # this host xterm should open in the guest X11 server
1973 xterm -display :1
1974 @end example
1975
1976 To redirect telnet connections from host port 5555 to telnet port on
1977 the guest, use the following:
1978
1979 @example
1980 # on the host
1981 qemu-system-i386 -net user,hostfwd=tcp::5555-:23 [...]
1982 telnet localhost 5555
1983 @end example
1984
1985 Then when you use on the host @code{telnet localhost 5555}, you
1986 connect to the guest telnet server.
1987
1988 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
1989 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
1990 Forward guest TCP connections to the IP address @var{server} on port @var{port}
1991 to the character device @var{dev} or to a program executed by @var{cmd:command}
1992 which gets spawned for each connection. This option can be given multiple times.
1993
1994 You can either use a chardev directly and have that one used throughout QEMU's
1995 lifetime, like in the following example:
1996
1997 @example
1998 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
1999 # the guest accesses it
2000 qemu -net user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321 [...]
2001 @end example
2002
2003 Or you can execute a command on every TCP connection established by the guest,
2004 so that QEMU behaves similar to an inetd process for that virtual server:
2005
2006 @example
2007 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
2008 # and connect the TCP stream to its stdin/stdout
2009 qemu -net 'user,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
2010 @end example
2011
2012 @end table
2013
2014 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
2015 processed and applied to -net user. Mixing them with the new configuration
2016 syntax gives undefined results. Their use for new applications is discouraged
2017 as they will be removed from future versions.
2018
2019 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
2020 @itemx -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
2021 Connect the host TAP network interface @var{name} to VLAN @var{n}.
2022
2023 Use the network script @var{file} to configure it and the network script
2024 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
2025 automatically provides one. The default network configure script is
2026 @file{/etc/qemu-ifup} and the default network deconfigure script is
2027 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
2028 to disable script execution.
2029
2030 If running QEMU as an unprivileged user, use the network helper
2031 @var{helper} to configure the TAP interface and attach it to the bridge.
2032 The default network helper executable is @file{/path/to/qemu-bridge-helper}
2033 and the default bridge device is @file{br0}.
2034
2035 @option{fd}=@var{h} can be used to specify the handle of an already
2036 opened host TAP interface.
2037
2038 Examples:
2039
2040 @example
2041 #launch a QEMU instance with the default network script
2042 qemu-system-i386 linux.img -net nic -net tap
2043 @end example
2044
2045 @example
2046 #launch a QEMU instance with two NICs, each one connected
2047 #to a TAP device
2048 qemu-system-i386 linux.img \
2049 -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
2050 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
2051 @end example
2052
2053 @example
2054 #launch a QEMU instance with the default network helper to
2055 #connect a TAP device to bridge br0
2056 qemu-system-i386 linux.img \
2057 -net nic -net tap,"helper=/path/to/qemu-bridge-helper"
2058 @end example
2059
2060 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
2061 @itemx -net bridge[,vlan=@var{n}][,name=@var{name}][,br=@var{bridge}][,helper=@var{helper}]
2062 Connect a host TAP network interface to a host bridge device.
2063
2064 Use the network helper @var{helper} to configure the TAP interface and
2065 attach it to the bridge. The default network helper executable is
2066 @file{/path/to/qemu-bridge-helper} and the default bridge
2067 device is @file{br0}.
2068
2069 Examples:
2070
2071 @example
2072 #launch a QEMU instance with the default network helper to
2073 #connect a TAP device to bridge br0
2074 qemu-system-i386 linux.img -net bridge -net nic,model=virtio
2075 @end example
2076
2077 @example
2078 #launch a QEMU instance with the default network helper to
2079 #connect a TAP device to bridge qemubr0
2080 qemu-system-i386 linux.img -net bridge,br=qemubr0 -net nic,model=virtio
2081 @end example
2082
2083 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2084 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}] [,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2085
2086 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
2087 machine using a TCP socket connection. If @option{listen} is
2088 specified, QEMU waits for incoming connections on @var{port}
2089 (@var{host} is optional). @option{connect} is used to connect to
2090 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
2091 specifies an already opened TCP socket.
2092
2093 Example:
2094 @example
2095 # launch a first QEMU instance
2096 qemu-system-i386 linux.img \
2097 -net nic,macaddr=52:54:00:12:34:56 \
2098 -net socket,listen=:1234
2099 # connect the VLAN 0 of this instance to the VLAN 0
2100 # of the first instance
2101 qemu-system-i386 linux.img \
2102 -net nic,macaddr=52:54:00:12:34:57 \
2103 -net socket,connect=127.0.0.1:1234
2104 @end example
2105
2106 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2107 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2108
2109 Create a VLAN @var{n} shared with another QEMU virtual
2110 machines using a UDP multicast socket, effectively making a bus for
2111 every QEMU with same multicast address @var{maddr} and @var{port}.
2112 NOTES:
2113 @enumerate
2114 @item
2115 Several QEMU can be running on different hosts and share same bus (assuming
2116 correct multicast setup for these hosts).
2117 @item
2118 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
2119 @url{http://user-mode-linux.sf.net}.
2120 @item
2121 Use @option{fd=h} to specify an already opened UDP multicast socket.
2122 @end enumerate
2123
2124 Example:
2125 @example
2126 # launch one QEMU instance
2127 qemu-system-i386 linux.img \
2128 -net nic,macaddr=52:54:00:12:34:56 \
2129 -net socket,mcast=230.0.0.1:1234
2130 # launch another QEMU instance on same "bus"
2131 qemu-system-i386 linux.img \
2132 -net nic,macaddr=52:54:00:12:34:57 \
2133 -net socket,mcast=230.0.0.1:1234
2134 # launch yet another QEMU instance on same "bus"
2135 qemu-system-i386 linux.img \
2136 -net nic,macaddr=52:54:00:12:34:58 \
2137 -net socket,mcast=230.0.0.1:1234
2138 @end example
2139
2140 Example (User Mode Linux compat.):
2141 @example
2142 # launch QEMU instance (note mcast address selected
2143 # is UML's default)
2144 qemu-system-i386 linux.img \
2145 -net nic,macaddr=52:54:00:12:34:56 \
2146 -net socket,mcast=239.192.168.1:1102
2147 # launch UML
2148 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2149 @end example
2150
2151 Example (send packets from host's 1.2.3.4):
2152 @example
2153 qemu-system-i386 linux.img \
2154 -net nic,macaddr=52:54:00:12:34:56 \
2155 -net socket,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2156 @end example
2157
2158 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2159 @itemx -net l2tpv3[,vlan=@var{n}][,name=@var{name}],src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2160 Connect VLAN @var{n} to L2TPv3 pseudowire. L2TPv3 (RFC3391) is a popular
2161 protocol to transport Ethernet (and other Layer 2) data frames between
2162 two systems. It is present in routers, firewalls and the Linux kernel
2163 (from version 3.3 onwards).
2164
2165 This transport allows a VM to communicate to another VM, router or firewall directly.
2166
2167 @item src=@var{srcaddr}
2168 source address (mandatory)
2169 @item dst=@var{dstaddr}
2170 destination address (mandatory)
2171 @item udp
2172 select udp encapsulation (default is ip).
2173 @item srcport=@var{srcport}
2174 source udp port.
2175 @item dstport=@var{dstport}
2176 destination udp port.
2177 @item ipv6
2178 force v6, otherwise defaults to v4.
2179 @item rxcookie=@var{rxcookie}
2180 @itemx txcookie=@var{txcookie}
2181 Cookies are a weak form of security in the l2tpv3 specification.
2182 Their function is mostly to prevent misconfiguration. By default they are 32
2183 bit.
2184 @item cookie64
2185 Set cookie size to 64 bit instead of the default 32
2186 @item counter=off
2187 Force a 'cut-down' L2TPv3 with no counter as in
2188 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2189 @item pincounter=on
2190 Work around broken counter handling in peer. This may also help on
2191 networks which have packet reorder.
2192 @item offset=@var{offset}
2193 Add an extra offset between header and data
2194
2195 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2196 on the remote Linux host 1.2.3.4:
2197 @example
2198 # Setup tunnel on linux host using raw ip as encapsulation
2199 # on 1.2.3.4
2200 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2201 encap udp udp_sport 16384 udp_dport 16384
2202 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2203 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2204 ifconfig vmtunnel0 mtu 1500
2205 ifconfig vmtunnel0 up
2206 brctl addif br-lan vmtunnel0
2207
2208
2209 # on 4.3.2.1
2210 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2211
2212 qemu-system-i386 linux.img -net nic -net l2tpv3,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2213
2214
2215 @end example
2216
2217 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2218 @itemx -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}] [,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2219 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
2220 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2221 and MODE @var{octalmode} to change default ownership and permissions for
2222 communication port. This option is only available if QEMU has been compiled
2223 with vde support enabled.
2224
2225 Example:
2226 @example
2227 # launch vde switch
2228 vde_switch -F -sock /tmp/myswitch
2229 # launch QEMU instance
2230 qemu-system-i386 linux.img -net nic -net vde,sock=/tmp/myswitch
2231 @end example
2232
2233 @item -netdev hubport,id=@var{id},hubid=@var{hubid}
2234
2235 Create a hub port on QEMU "vlan" @var{hubid}.
2236
2237 The hubport netdev lets you connect a NIC to a QEMU "vlan" instead of a single
2238 netdev. @code{-net} and @code{-device} with parameter @option{vlan} create the
2239 required hub automatically.
2240
2241 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2242
2243 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2244 be a unix domain socket backed one. The vhost-user uses a specifically defined
2245 protocol to pass vhost ioctl replacement messages to an application on the other
2246 end of the socket. On non-MSIX guests, the feature can be forced with
2247 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2248 be created for multiqueue vhost-user.
2249
2250 Example:
2251 @example
2252 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2253 -numa node,memdev=mem \
2254 -chardev socket,id=chr0,path=/path/to/socket \
2255 -netdev type=vhost-user,id=net0,chardev=chr0 \
2256 -device virtio-net-pci,netdev=net0
2257 @end example
2258
2259 @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
2260 Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
2261 At most @var{len} bytes (64k by default) per packet are stored. The file format is
2262 libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
2263 Note: For devices created with '-netdev', use '-object filter-dump,...' instead.
2264
2265 @item -net none
2266 Indicate that no network devices should be configured. It is used to
2267 override the default configuration (@option{-net nic -net user}) which
2268 is activated if no @option{-net} options are provided.
2269 ETEXI
2270
2271 STEXI
2272 @end table
2273 ETEXI
2274 DEFHEADING()
2275
2276 DEFHEADING(Character device options)
2277 STEXI
2278
2279 The general form of a character device option is:
2280 @table @option
2281 ETEXI
2282
2283 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2284 "-chardev help\n"
2285 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2286 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2287 " [,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off]\n"
2288 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n"
2289 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,reconnect=seconds]\n"
2290 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2291 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2292 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2293 " [,logfile=PATH][,logappend=on|off]\n"
2294 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2295 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2296 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2297 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2298 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2299 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2300 #ifdef _WIN32
2301 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2302 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2303 #else
2304 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2305 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2306 #endif
2307 #ifdef CONFIG_BRLAPI
2308 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2309 #endif
2310 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2311 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2312 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2313 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2314 #endif
2315 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2316 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2317 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2318 #endif
2319 #if defined(CONFIG_SPICE)
2320 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2321 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2322 #endif
2323 , QEMU_ARCH_ALL
2324 )
2325
2326 STEXI
2327 @item -chardev @var{backend} ,id=@var{id} [,mux=on|off] [,@var{options}]
2328 @findex -chardev
2329 Backend is one of:
2330 @option{null},
2331 @option{socket},
2332 @option{udp},
2333 @option{msmouse},
2334 @option{vc},
2335 @option{ringbuf},
2336 @option{file},
2337 @option{pipe},
2338 @option{console},
2339 @option{serial},
2340 @option{pty},
2341 @option{stdio},
2342 @option{braille},
2343 @option{tty},
2344 @option{parallel},
2345 @option{parport},
2346 @option{spicevmc}.
2347 @option{spiceport}.
2348 The specific backend will determine the applicable options.
2349
2350 Use "-chardev help" to print all available chardev backend types.
2351
2352 All devices must have an id, which can be any string up to 127 characters long.
2353 It is used to uniquely identify this device in other command line directives.
2354
2355 A character device may be used in multiplexing mode by multiple front-ends.
2356 Specify @option{mux=on} to enable this mode.
2357 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2358 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2359 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2360 create a multiplexer with your specified ID, and you can then configure multiple
2361 front ends to use that chardev ID for their input/output. Up to four different
2362 front ends can be connected to a single multiplexed chardev. (Without
2363 multiplexing enabled, a chardev can only be used by a single front end.)
2364 For instance you could use this to allow a single stdio chardev to be used by
2365 two serial ports and the QEMU monitor:
2366
2367 @example
2368 -chardev stdio,mux=on,id=char0 \
2369 -mon chardev=char0,mode=readline \
2370 -serial chardev:char0 \
2371 -serial chardev:char0
2372 @end example
2373
2374 You can have more than one multiplexer in a system configuration; for instance
2375 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2376 multiplexed between the QEMU monitor and a parallel port:
2377
2378 @example
2379 -chardev stdio,mux=on,id=char0 \
2380 -mon chardev=char0,mode=readline \
2381 -parallel chardev:char0 \
2382 -chardev tcp,...,mux=on,id=char1 \
2383 -serial chardev:char1 \
2384 -serial chardev:char1
2385 @end example
2386
2387 When you're using a multiplexed character device, some escape sequences are
2388 interpreted in the input. @xref{mux_keys, Keys in the character backend
2389 multiplexer}.
2390
2391 Note that some other command line options may implicitly create multiplexed
2392 character backends; for instance @option{-serial mon:stdio} creates a
2393 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2394 and @option{-nographic} also multiplexes the console and the monitor to
2395 stdio.
2396
2397 There is currently no support for multiplexing in the other direction
2398 (where a single QEMU front end takes input and output from multiple chardevs).
2399
2400 Every backend supports the @option{logfile} option, which supplies the path
2401 to a file to record all data transmitted via the backend. The @option{logappend}
2402 option controls whether the log file will be truncated or appended to when
2403 opened.
2404
2405 Further options to each backend are described below.
2406
2407 @item -chardev null ,id=@var{id}
2408 A void device. This device will not emit any data, and will drop any data it
2409 receives. The null backend does not take any options.
2410
2411 @item -chardev socket ,id=@var{id} [@var{TCP options} or @var{unix options}] [,server] [,nowait] [,telnet] [,reconnect=@var{seconds}] [,tls-creds=@var{id}]
2412
2413 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2414 unix socket will be created if @option{path} is specified. Behaviour is
2415 undefined if TCP options are specified for a unix socket.
2416
2417 @option{server} specifies that the socket shall be a listening socket.
2418
2419 @option{nowait} specifies that QEMU should not block waiting for a client to
2420 connect to a listening socket.
2421
2422 @option{telnet} specifies that traffic on the socket should interpret telnet
2423 escape sequences.
2424
2425 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2426 the remote end goes away. qemu will delay this many seconds and then attempt
2427 to reconnect. Zero disables reconnecting, and is the default.
2428
2429 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2430 and specifies the id of the TLS credentials to use for the handshake. The
2431 credentials must be previously created with the @option{-object tls-creds}
2432 argument.
2433
2434 TCP and unix socket options are given below:
2435
2436 @table @option
2437
2438 @item TCP options: port=@var{port} [,host=@var{host}] [,to=@var{to}] [,ipv4] [,ipv6] [,nodelay]
2439
2440 @option{host} for a listening socket specifies the local address to be bound.
2441 For a connecting socket species the remote host to connect to. @option{host} is
2442 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2443
2444 @option{port} for a listening socket specifies the local port to be bound. For a
2445 connecting socket specifies the port on the remote host to connect to.
2446 @option{port} can be given as either a port number or a service name.
2447 @option{port} is required.
2448
2449 @option{to} is only relevant to listening sockets. If it is specified, and
2450 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2451 to and including @option{to} until it succeeds. @option{to} must be specified
2452 as a port number.
2453
2454 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2455 If neither is specified the socket may use either protocol.
2456
2457 @option{nodelay} disables the Nagle algorithm.
2458
2459 @item unix options: path=@var{path}
2460
2461 @option{path} specifies the local path of the unix socket. @option{path} is
2462 required.
2463
2464 @end table
2465
2466 @item -chardev udp ,id=@var{id} [,host=@var{host}] ,port=@var{port} [,localaddr=@var{localaddr}] [,localport=@var{localport}] [,ipv4] [,ipv6]
2467
2468 Sends all traffic from the guest to a remote host over UDP.
2469
2470 @option{host} specifies the remote host to connect to. If not specified it
2471 defaults to @code{localhost}.
2472
2473 @option{port} specifies the port on the remote host to connect to. @option{port}
2474 is required.
2475
2476 @option{localaddr} specifies the local address to bind to. If not specified it
2477 defaults to @code{0.0.0.0}.
2478
2479 @option{localport} specifies the local port to bind to. If not specified any
2480 available local port will be used.
2481
2482 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2483 If neither is specified the device may use either protocol.
2484
2485 @item -chardev msmouse ,id=@var{id}
2486
2487 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2488 take any options.
2489
2490 @item -chardev vc ,id=@var{id} [[,width=@var{width}] [,height=@var{height}]] [[,cols=@var{cols}] [,rows=@var{rows}]]
2491
2492 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2493 size.
2494
2495 @option{width} and @option{height} specify the width and height respectively of
2496 the console, in pixels.
2497
2498 @option{cols} and @option{rows} specify that the console be sized to fit a text
2499 console with the given dimensions.
2500
2501 @item -chardev ringbuf ,id=@var{id} [,size=@var{size}]
2502
2503 Create a ring buffer with fixed size @option{size}.
2504 @var{size} must be a power of two and defaults to @code{64K}.
2505
2506 @item -chardev file ,id=@var{id} ,path=@var{path}
2507
2508 Log all traffic received from the guest to a file.
2509
2510 @option{path} specifies the path of the file to be opened. This file will be
2511 created if it does not already exist, and overwritten if it does. @option{path}
2512 is required.
2513
2514 @item -chardev pipe ,id=@var{id} ,path=@var{path}
2515
2516 Create a two-way connection to the guest. The behaviour differs slightly between
2517 Windows hosts and other hosts:
2518
2519 On Windows, a single duplex pipe will be created at
2520 @file{\\.pipe\@option{path}}.
2521
2522 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2523 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2524 received by the guest. Data written by the guest can be read from
2525 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2526 be present.
2527
2528 @option{path} forms part of the pipe path as described above. @option{path} is
2529 required.
2530
2531 @item -chardev console ,id=@var{id}
2532
2533 Send traffic from the guest to QEMU's standard output. @option{console} does not
2534 take any options.
2535
2536 @option{console} is only available on Windows hosts.
2537
2538 @item -chardev serial ,id=@var{id} ,path=@option{path}
2539
2540 Send traffic from the guest to a serial device on the host.
2541
2542 On Unix hosts serial will actually accept any tty device,
2543 not only serial lines.
2544
2545 @option{path} specifies the name of the serial device to open.
2546
2547 @item -chardev pty ,id=@var{id}
2548
2549 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2550 not take any options.
2551
2552 @option{pty} is not available on Windows hosts.
2553
2554 @item -chardev stdio ,id=@var{id} [,signal=on|off]
2555 Connect to standard input and standard output of the QEMU process.
2556
2557 @option{signal} controls if signals are enabled on the terminal, that includes
2558 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
2559 default, use @option{signal=off} to disable it.
2560
2561 @item -chardev braille ,id=@var{id}
2562
2563 Connect to a local BrlAPI server. @option{braille} does not take any options.
2564
2565 @item -chardev tty ,id=@var{id} ,path=@var{path}
2566
2567 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
2568 DragonFlyBSD hosts. It is an alias for @option{serial}.
2569
2570 @option{path} specifies the path to the tty. @option{path} is required.
2571
2572 @item -chardev parallel ,id=@var{id} ,path=@var{path}
2573 @itemx -chardev parport ,id=@var{id} ,path=@var{path}
2574
2575 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
2576
2577 Connect to a local parallel port.
2578
2579 @option{path} specifies the path to the parallel port device. @option{path} is
2580 required.
2581
2582 @item -chardev spicevmc ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2583
2584 @option{spicevmc} is only available when spice support is built in.
2585
2586 @option{debug} debug level for spicevmc
2587
2588 @option{name} name of spice channel to connect to
2589
2590 Connect to a spice virtual machine channel, such as vdiport.
2591
2592 @item -chardev spiceport ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2593
2594 @option{spiceport} is only available when spice support is built in.
2595
2596 @option{debug} debug level for spicevmc
2597
2598 @option{name} name of spice port to connect to
2599
2600 Connect to a spice port, allowing a Spice client to handle the traffic
2601 identified by a name (preferably a fqdn).
2602 ETEXI
2603
2604 STEXI
2605 @end table
2606 ETEXI
2607 DEFHEADING()
2608
2609 DEFHEADING(Device URL Syntax)
2610 STEXI
2611
2612 In addition to using normal file images for the emulated storage devices,
2613 QEMU can also use networked resources such as iSCSI devices. These are
2614 specified using a special URL syntax.
2615
2616 @table @option
2617 @item iSCSI
2618 iSCSI support allows QEMU to access iSCSI resources directly and use as
2619 images for the guest storage. Both disk and cdrom images are supported.
2620
2621 Syntax for specifying iSCSI LUNs is
2622 ``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
2623
2624 By default qemu will use the iSCSI initiator-name
2625 'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
2626 line or a configuration file.
2627
2628 Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
2629 stalled requests and force a reestablishment of the session. The timeout
2630 is specified in seconds. The default is 0 which means no timeout. Libiscsi
2631 1.15.0 or greater is required for this feature.
2632
2633 Example (without authentication):
2634 @example
2635 qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
2636 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
2637 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2638 @end example
2639
2640 Example (CHAP username/password via URL):
2641 @example
2642 qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
2643 @end example
2644
2645 Example (CHAP username/password via environment variables):
2646 @example
2647 LIBISCSI_CHAP_USERNAME="user" \
2648 LIBISCSI_CHAP_PASSWORD="password" \
2649 qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2650 @end example
2651
2652 iSCSI support is an optional feature of QEMU and only available when
2653 compiled and linked against libiscsi.
2654 ETEXI
2655 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
2656 "-iscsi [user=user][,password=password]\n"
2657 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
2658 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
2659 " [,timeout=timeout]\n"
2660 " iSCSI session parameters\n", QEMU_ARCH_ALL)
2661 STEXI
2662
2663 iSCSI parameters such as username and password can also be specified via
2664 a configuration file. See qemu-doc for more information and examples.
2665
2666 @item NBD
2667 QEMU supports NBD (Network Block Devices) both using TCP protocol as well
2668 as Unix Domain Sockets.
2669
2670 Syntax for specifying a NBD device using TCP
2671 ``nbd:<server-ip>:<port>[:exportname=<export>]''
2672
2673 Syntax for specifying a NBD device using Unix Domain Sockets
2674 ``nbd:unix:<domain-socket>[:exportname=<export>]''
2675
2676
2677 Example for TCP
2678 @example
2679 qemu-system-i386 --drive file=nbd:192.0.2.1:30000
2680 @end example
2681
2682 Example for Unix Domain Sockets
2683 @example
2684 qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
2685 @end example
2686
2687 @item SSH
2688 QEMU supports SSH (Secure Shell) access to remote disks.
2689
2690 Examples:
2691 @example
2692 qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
2693 qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
2694 @end example
2695
2696 Currently authentication must be done using ssh-agent. Other
2697 authentication methods may be supported in future.
2698
2699 @item Sheepdog
2700 Sheepdog is a distributed storage system for QEMU.
2701 QEMU supports using either local sheepdog devices or remote networked
2702 devices.
2703
2704 Syntax for specifying a sheepdog device
2705 @example
2706 sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
2707 @end example
2708
2709 Example
2710 @example
2711 qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
2712 @end example
2713
2714 See also @url{https://sheepdog.github.io/sheepdog/}.
2715
2716 @item GlusterFS
2717 GlusterFS is a user space distributed file system.
2718 QEMU supports the use of GlusterFS volumes for hosting VM disk images using
2719 TCP, Unix Domain Sockets and RDMA transport protocols.
2720
2721 Syntax for specifying a VM disk image on GlusterFS volume is
2722 @example
2723
2724 URI:
2725 gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
2726
2727 JSON:
2728 'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
2729 @ "server":[@{"type":"tcp","host":"...","port":"..."@},
2730 @ @{"type":"unix","socket":"..."@}]@}@}'
2731 @end example
2732
2733
2734 Example
2735 @example
2736 URI:
2737 qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
2738 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log
2739
2740 JSON:
2741 qemu-system-x86_64 'json:@{"driver":"qcow2",
2742 @ "file":@{"driver":"gluster",
2743 @ "volume":"testvol","path":"a.img",
2744 @ "debug":9,"logfile":"/var/log/qemu-gluster.log",
2745 @ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
2746 @ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
2747 qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
2748 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
2749 @ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
2750 @ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
2751 @end example
2752
2753 See also @url{http://www.gluster.org}.
2754
2755 @item HTTP/HTTPS/FTP/FTPS
2756 QEMU supports read-only access to files accessed over http(s) and ftp(s).
2757
2758 Syntax using a single filename:
2759 @example
2760 <protocol>://[<username>[:<password>]@@]<host>/<path>
2761 @end example
2762
2763 where:
2764 @table @option
2765 @item protocol
2766 'http', 'https', 'ftp', or 'ftps'.
2767
2768 @item username
2769 Optional username for authentication to the remote server.
2770
2771 @item password
2772 Optional password for authentication to the remote server.
2773
2774 @item host
2775 Address of the remote server.
2776
2777 @item path
2778 Path on the remote server, including any query string.
2779 @end table
2780
2781 The following options are also supported:
2782 @table @option
2783 @item url
2784 The full URL when passing options to the driver explicitly.
2785
2786 @item readahead
2787 The amount of data to read ahead with each range request to the remote server.
2788 This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
2789 does not have a suffix, it will be assumed to be in bytes. The value must be a
2790 multiple of 512 bytes. It defaults to 256k.
2791
2792 @item sslverify
2793 Whether to verify the remote server's certificate when connecting over SSL. It
2794 can have the value 'on' or 'off'. It defaults to 'on'.
2795
2796 @item cookie
2797 Send this cookie (it can also be a list of cookies separated by ';') with
2798 each outgoing request. Only supported when using protocols such as HTTP
2799 which support cookies, otherwise ignored.
2800
2801 @item timeout
2802 Set the timeout in seconds of the CURL connection. This timeout is the time
2803 that CURL waits for a response from the remote server to get the size of the
2804 image to be downloaded. If not set, the default timeout of 5 seconds is used.
2805 @end table
2806
2807 Note that when passing options to qemu explicitly, @option{driver} is the value
2808 of <protocol>.
2809
2810 Example: boot from a remote Fedora 20 live ISO image
2811 @example
2812 qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2813
2814 qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2815 @end example
2816
2817 Example: boot from a remote Fedora 20 cloud image using a local overlay for
2818 writes, copy-on-read, and a readahead of 64k
2819 @example
2820 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
2821
2822 qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
2823 @end example
2824
2825 Example: boot from an image stored on a VMware vSphere server with a self-signed
2826 certificate using a local overlay for writes, a readahead of 64k and a timeout
2827 of 10 seconds.
2828 @example
2829 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
2830
2831 qemu-system-x86_64 -drive file=/tmp/test.qcow2
2832 @end example
2833 ETEXI
2834
2835 STEXI
2836 @end table
2837 ETEXI
2838
2839 DEFHEADING(Bluetooth(R) options)
2840 STEXI
2841 @table @option
2842 ETEXI
2843
2844 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
2845 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
2846 "-bt hci,host[:id]\n" \
2847 " use host's HCI with the given name\n" \
2848 "-bt hci[,vlan=n]\n" \
2849 " emulate a standard HCI in virtual scatternet 'n'\n" \
2850 "-bt vhci[,vlan=n]\n" \
2851 " add host computer to virtual scatternet 'n' using VHCI\n" \
2852 "-bt device:dev[,vlan=n]\n" \
2853 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
2854 QEMU_ARCH_ALL)
2855 STEXI
2856 @item -bt hci[...]
2857 @findex -bt
2858 Defines the function of the corresponding Bluetooth HCI. -bt options
2859 are matched with the HCIs present in the chosen machine type. For
2860 example when emulating a machine with only one HCI built into it, only
2861 the first @code{-bt hci[...]} option is valid and defines the HCI's
2862 logic. The Transport Layer is decided by the machine type. Currently
2863 the machines @code{n800} and @code{n810} have one HCI and all other
2864 machines have none.
2865
2866 @anchor{bt-hcis}
2867 The following three types are recognized:
2868
2869 @table @option
2870 @item -bt hci,null
2871 (default) The corresponding Bluetooth HCI assumes no internal logic
2872 and will not respond to any HCI commands or emit events.
2873
2874 @item -bt hci,host[:@var{id}]
2875 (@code{bluez} only) The corresponding HCI passes commands / events
2876 to / from the physical HCI identified by the name @var{id} (default:
2877 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
2878 capable systems like Linux.
2879
2880 @item -bt hci[,vlan=@var{n}]
2881 Add a virtual, standard HCI that will participate in the Bluetooth
2882 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
2883 VLANs, devices inside a bluetooth network @var{n} can only communicate
2884 with other devices in the same network (scatternet).
2885 @end table
2886
2887 @item -bt vhci[,vlan=@var{n}]
2888 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
2889 to the host bluetooth stack instead of to the emulated target. This
2890 allows the host and target machines to participate in a common scatternet
2891 and communicate. Requires the Linux @code{vhci} driver installed. Can
2892 be used as following:
2893
2894 @example
2895 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
2896 @end example
2897
2898 @item -bt device:@var{dev}[,vlan=@var{n}]
2899 Emulate a bluetooth device @var{dev} and place it in network @var{n}
2900 (default @code{0}). QEMU can only emulate one type of bluetooth devices
2901 currently:
2902
2903 @table @option
2904 @item keyboard
2905 Virtual wireless keyboard implementing the HIDP bluetooth profile.
2906 @end table
2907 ETEXI
2908
2909 STEXI
2910 @end table
2911 ETEXI
2912 DEFHEADING()
2913
2914 #ifdef CONFIG_TPM
2915 DEFHEADING(TPM device options)
2916
2917 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
2918 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
2919 " use path to provide path to a character device; default is /dev/tpm0\n"
2920 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
2921 " not provided it will be searched for in /sys/class/misc/tpm?/device\n",
2922 QEMU_ARCH_ALL)
2923 STEXI
2924
2925 The general form of a TPM device option is:
2926 @table @option
2927
2928 @item -tpmdev @var{backend} ,id=@var{id} [,@var{options}]
2929 @findex -tpmdev
2930 Backend type must be:
2931 @option{passthrough}.
2932
2933 The specific backend type will determine the applicable options.
2934 The @code{-tpmdev} option creates the TPM backend and requires a
2935 @code{-device} option that specifies the TPM frontend interface model.
2936
2937 Options to each backend are described below.
2938
2939 Use 'help' to print all available TPM backend types.
2940 @example
2941 qemu -tpmdev help
2942 @end example
2943
2944 @item -tpmdev passthrough, id=@var{id}, path=@var{path}, cancel-path=@var{cancel-path}
2945
2946 (Linux-host only) Enable access to the host's TPM using the passthrough
2947 driver.
2948
2949 @option{path} specifies the path to the host's TPM device, i.e., on
2950 a Linux host this would be @code{/dev/tpm0}.
2951 @option{path} is optional and by default @code{/dev/tpm0} is used.
2952
2953 @option{cancel-path} specifies the path to the host TPM device's sysfs
2954 entry allowing for cancellation of an ongoing TPM command.
2955 @option{cancel-path} is optional and by default QEMU will search for the
2956 sysfs entry to use.
2957
2958 Some notes about using the host's TPM with the passthrough driver:
2959
2960 The TPM device accessed by the passthrough driver must not be
2961 used by any other application on the host.
2962
2963 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
2964 the VM's firmware (BIOS/UEFI) will not be able to initialize the
2965 TPM again and may therefore not show a TPM-specific menu that would
2966 otherwise allow the user to configure the TPM, e.g., allow the user to
2967 enable/disable or activate/deactivate the TPM.
2968 Further, if TPM ownership is released from within a VM then the host's TPM
2969 will get disabled and deactivated. To enable and activate the
2970 TPM again afterwards, the host has to be rebooted and the user is
2971 required to enter the firmware's menu to enable and activate the TPM.
2972 If the TPM is left disabled and/or deactivated most TPM commands will fail.
2973
2974 To create a passthrough TPM use the following two options:
2975 @example
2976 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
2977 @end example
2978 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
2979 @code{tpmdev=tpm0} in the device option.
2980
2981 @end table
2982
2983 ETEXI
2984
2985 DEFHEADING()
2986
2987 #endif
2988
2989 DEFHEADING(Linux/Multiboot boot specific)
2990 STEXI
2991
2992 When using these options, you can use a given Linux or Multiboot
2993 kernel without installing it in the disk image. It can be useful
2994 for easier testing of various kernels.
2995
2996 @table @option
2997 ETEXI
2998
2999 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
3000 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
3001 STEXI
3002 @item -kernel @var{bzImage}
3003 @findex -kernel
3004 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
3005 or in multiboot format.
3006 ETEXI
3007
3008 DEF("append", HAS_ARG, QEMU_OPTION_append, \
3009 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
3010 STEXI
3011 @item -append @var{cmdline}
3012 @findex -append
3013 Use @var{cmdline} as kernel command line
3014 ETEXI
3015
3016 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
3017 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
3018 STEXI
3019 @item -initrd @var{file}
3020 @findex -initrd
3021 Use @var{file} as initial ram disk.
3022
3023 @item -initrd "@var{file1} arg=foo,@var{file2}"
3024
3025 This syntax is only available with multiboot.
3026
3027 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
3028 first module.
3029 ETEXI
3030
3031 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
3032 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
3033 STEXI
3034 @item -dtb @var{file}
3035 @findex -dtb
3036 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
3037 on boot.
3038 ETEXI
3039
3040 STEXI
3041 @end table
3042 ETEXI
3043 DEFHEADING()
3044
3045 DEFHEADING(Debug/Expert options)
3046 STEXI
3047 @table @option
3048 ETEXI
3049
3050 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
3051 "-fw_cfg [name=]<name>,file=<file>\n"
3052 " add named fw_cfg entry with contents from file\n"
3053 "-fw_cfg [name=]<name>,string=<str>\n"
3054 " add named fw_cfg entry with contents from string\n",
3055 QEMU_ARCH_ALL)
3056 STEXI
3057
3058 @item -fw_cfg [name=]@var{name},file=@var{file}
3059 @findex -fw_cfg
3060 Add named fw_cfg entry with contents from file @var{file}.
3061
3062 @item -fw_cfg [name=]@var{name},string=@var{str}
3063 Add named fw_cfg entry with contents from string @var{str}.
3064
3065 The terminating NUL character of the contents of @var{str} will not be
3066 included as part of the fw_cfg item data. To insert contents with
3067 embedded NUL characters, you have to use the @var{file} parameter.
3068
3069 The fw_cfg entries are passed by QEMU through to the guest.
3070
3071 Example:
3072 @example
3073 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
3074 @end example
3075 creates an fw_cfg entry named opt/com.mycompany/blob with contents
3076 from ./my_blob.bin.
3077
3078 ETEXI
3079
3080 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
3081 "-serial dev redirect the serial port to char device 'dev'\n",
3082 QEMU_ARCH_ALL)
3083 STEXI
3084 @item -serial @var{dev}
3085 @findex -serial
3086 Redirect the virtual serial port to host character device
3087 @var{dev}. The default device is @code{vc} in graphical mode and
3088 @code{stdio} in non graphical mode.
3089
3090 This option can be used several times to simulate up to 4 serial
3091 ports.
3092
3093 Use @code{-serial none} to disable all serial ports.
3094
3095 Available character devices are:
3096 @table @option
3097 @item vc[:@var{W}x@var{H}]
3098 Virtual console. Optionally, a width and height can be given in pixel with
3099 @example
3100 vc:800x600
3101 @end example
3102 It is also possible to specify width or height in characters:
3103 @example
3104 vc:80Cx24C
3105 @end example
3106 @item pty
3107 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
3108 @item none
3109 No device is allocated.
3110 @item null
3111 void device
3112 @item chardev:@var{id}
3113 Use a named character device defined with the @code{-chardev} option.
3114 @item /dev/XXX
3115 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
3116 parameters are set according to the emulated ones.
3117 @item /dev/parport@var{N}
3118 [Linux only, parallel port only] Use host parallel port
3119 @var{N}. Currently SPP and EPP parallel port features can be used.
3120 @item file:@var{filename}
3121 Write output to @var{filename}. No character can be read.
3122 @item stdio
3123 [Unix only] standard input/output
3124 @item pipe:@var{filename}
3125 name pipe @var{filename}
3126 @item COM@var{n}
3127 [Windows only] Use host serial port @var{n}
3128 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
3129 This implements UDP Net Console.
3130 When @var{remote_host} or @var{src_ip} are not specified
3131 they default to @code{0.0.0.0}.
3132 When not using a specified @var{src_port} a random port is automatically chosen.
3133
3134 If you just want a simple readonly console you can use @code{netcat} or
3135 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
3136 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
3137 will appear in the netconsole session.
3138
3139 If you plan to send characters back via netconsole or you want to stop
3140 and start QEMU a lot of times, you should have QEMU use the same
3141 source port each time by using something like @code{-serial
3142 udp::4555@@:4556} to QEMU. Another approach is to use a patched
3143 version of netcat which can listen to a TCP port and send and receive
3144 characters via udp. If you have a patched version of netcat which
3145 activates telnet remote echo and single char transfer, then you can
3146 use the following options to set up a netcat redirector to allow
3147 telnet on port 5555 to access the QEMU port.
3148 @table @code
3149 @item QEMU Options:
3150 -serial udp::4555@@:4556
3151 @item netcat options:
3152 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3153 @item telnet options:
3154 localhost 5555
3155 @end table
3156
3157 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3158 The TCP Net Console has two modes of operation. It can send the serial
3159 I/O to a location or wait for a connection from a location. By default
3160 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3161 the @var{server} option QEMU will wait for a client socket application
3162 to connect to the port before continuing, unless the @code{nowait}
3163 option was specified. The @code{nodelay} option disables the Nagle buffering
3164 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3165 set, if the connection goes down it will attempt to reconnect at the
3166 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3167 one TCP connection at a time is accepted. You can use @code{telnet} to
3168 connect to the corresponding character device.
3169 @table @code
3170 @item Example to send tcp console to 192.168.0.2 port 4444
3171 -serial tcp:192.168.0.2:4444
3172 @item Example to listen and wait on port 4444 for connection
3173 -serial tcp::4444,server
3174 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3175 -serial tcp:192.168.0.100:4444,server,nowait
3176 @end table
3177
3178 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3179 The telnet protocol is used instead of raw tcp sockets. The options
3180 work the same as if you had specified @code{-serial tcp}. The
3181 difference is that the port acts like a telnet server or client using
3182 telnet option negotiation. This will also allow you to send the
3183 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3184 sequence. Typically in unix telnet you do it with Control-] and then
3185 type "send break" followed by pressing the enter key.
3186
3187 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3188 A unix domain socket is used instead of a tcp socket. The option works the
3189 same as if you had specified @code{-serial tcp} except the unix domain socket
3190 @var{path} is used for connections.
3191
3192 @item mon:@var{dev_string}
3193 This is a special option to allow the monitor to be multiplexed onto
3194 another serial port. The monitor is accessed with key sequence of
3195 @key{Control-a} and then pressing @key{c}.
3196 @var{dev_string} should be any one of the serial devices specified
3197 above. An example to multiplex the monitor onto a telnet server
3198 listening on port 4444 would be:
3199 @table @code
3200 @item -serial mon:telnet::4444,server,nowait
3201 @end table
3202 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3203 QEMU any more but will be passed to the guest instead.
3204
3205 @item braille
3206 Braille device. This will use BrlAPI to display the braille output on a real
3207 or fake device.
3208
3209 @item msmouse
3210 Three button serial mouse. Configure the guest to use Microsoft protocol.
3211 @end table
3212 ETEXI
3213
3214 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3215 "-parallel dev redirect the parallel port to char device 'dev'\n",
3216 QEMU_ARCH_ALL)
3217 STEXI
3218 @item -parallel @var{dev}
3219 @findex -parallel
3220 Redirect the virtual parallel port to host device @var{dev} (same
3221 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3222 be used to use hardware devices connected on the corresponding host
3223 parallel port.
3224
3225 This option can be used several times to simulate up to 3 parallel
3226 ports.
3227
3228 Use @code{-parallel none} to disable all parallel ports.
3229 ETEXI
3230
3231 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3232 "-monitor dev redirect the monitor to char device 'dev'\n",
3233 QEMU_ARCH_ALL)
3234 STEXI
3235 @item -monitor @var{dev}
3236 @findex -monitor
3237 Redirect the monitor to host device @var{dev} (same devices as the
3238 serial port).
3239 The default device is @code{vc} in graphical mode and @code{stdio} in
3240 non graphical mode.
3241 Use @code{-monitor none} to disable the default monitor.
3242 ETEXI
3243 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3244 "-qmp dev like -monitor but opens in 'control' mode\n",
3245 QEMU_ARCH_ALL)
3246 STEXI
3247 @item -qmp @var{dev}
3248 @findex -qmp
3249 Like -monitor but opens in 'control' mode.
3250 ETEXI
3251 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3252 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3253 QEMU_ARCH_ALL)
3254 STEXI
3255 @item -qmp-pretty @var{dev}
3256 @findex -qmp-pretty
3257 Like -qmp but uses pretty JSON formatting.
3258 ETEXI
3259
3260 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3261 "-mon [chardev=]name[,mode=readline|control]\n", QEMU_ARCH_ALL)
3262 STEXI
3263 @item -mon [chardev=]name[,mode=readline|control]
3264 @findex -mon
3265 Setup monitor on chardev @var{name}.
3266 ETEXI
3267
3268 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3269 "-debugcon dev redirect the debug console to char device 'dev'\n",
3270 QEMU_ARCH_ALL)
3271 STEXI
3272 @item -debugcon @var{dev}
3273 @findex -debugcon
3274 Redirect the debug console to host device @var{dev} (same devices as the
3275 serial port). The debug console is an I/O port which is typically port
3276 0xe9; writing to that I/O port sends output to this device.
3277 The default device is @code{vc} in graphical mode and @code{stdio} in
3278 non graphical mode.
3279 ETEXI
3280
3281 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3282 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3283 STEXI
3284 @item -pidfile @var{file}
3285 @findex -pidfile
3286 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3287 from a script.
3288 ETEXI
3289
3290 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3291 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3292 STEXI
3293 @item -singlestep
3294 @findex -singlestep
3295 Run the emulation in single step mode.
3296 ETEXI
3297
3298 DEF("S", 0, QEMU_OPTION_S, \
3299 "-S freeze CPU at startup (use 'c' to start execution)\n",
3300 QEMU_ARCH_ALL)
3301 STEXI
3302 @item -S
3303 @findex -S
3304 Do not start CPU at startup (you must type 'c' in the monitor).
3305 ETEXI
3306
3307 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3308 "-realtime [mlock=on|off]\n"
3309 " run qemu with realtime features\n"
3310 " mlock=on|off controls mlock support (default: on)\n",
3311 QEMU_ARCH_ALL)
3312 STEXI
3313 @item -realtime mlock=on|off
3314 @findex -realtime
3315 Run qemu with realtime features.
3316 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3317 (enabled by default).
3318 ETEXI
3319
3320 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3321 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3322 STEXI
3323 @item -gdb @var{dev}
3324 @findex -gdb
3325 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3326 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3327 stdio are reasonable use case. The latter is allowing to start QEMU from
3328 within gdb and establish the connection via a pipe:
3329 @example
3330 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3331 @end example
3332 ETEXI
3333
3334 DEF("s", 0, QEMU_OPTION_s, \
3335 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3336 QEMU_ARCH_ALL)
3337 STEXI
3338 @item -s
3339 @findex -s
3340 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3341 (@pxref{gdb_usage}).
3342 ETEXI
3343
3344 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3345 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3346 QEMU_ARCH_ALL)
3347 STEXI
3348 @item -d @var{item1}[,...]
3349 @findex -d
3350 Enable logging of specified items. Use '-d help' for a list of log items.
3351 ETEXI
3352
3353 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3354 "-D logfile output log to logfile (default stderr)\n",
3355 QEMU_ARCH_ALL)
3356 STEXI
3357 @item -D @var{logfile}
3358 @findex -D
3359 Output log in @var{logfile} instead of to stderr
3360 ETEXI
3361
3362 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3363 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3364 QEMU_ARCH_ALL)
3365 STEXI
3366 @item -dfilter @var{range1}[,...]
3367 @findex -dfilter
3368 Filter debug output to that relevant to a range of target addresses. The filter
3369 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3370 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3371 addresses and sizes required. For example:
3372 @example
3373 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3374 @end example
3375 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3376 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3377 block starting at 0xffffffc00005f000.
3378 ETEXI
3379
3380 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3381 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3382 QEMU_ARCH_ALL)
3383 STEXI
3384 @item -L @var{path}
3385 @findex -L
3386 Set the directory for the BIOS, VGA BIOS and keymaps.
3387
3388 To list all the data directories, use @code{-L help}.
3389 ETEXI
3390
3391 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3392 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3393 STEXI
3394 @item -bios @var{file}
3395 @findex -bios
3396 Set the filename for the BIOS.
3397 ETEXI
3398
3399 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3400 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3401 STEXI
3402 @item -enable-kvm
3403 @findex -enable-kvm
3404 Enable KVM full virtualization support. This option is only available
3405 if KVM support is enabled when compiling.
3406 ETEXI
3407
3408 DEF("enable-hax", 0, QEMU_OPTION_enable_hax, \
3409 "-enable-hax enable HAX virtualization support\n", QEMU_ARCH_I386)
3410 STEXI
3411 @item -enable-hax
3412 @findex -enable-hax
3413 Enable HAX (Hardware-based Acceleration eXecution) support. This option
3414 is only available if HAX support is enabled when compiling. HAX is only
3415 applicable to MAC and Windows platform, and thus does not conflict with
3416 KVM.
3417 ETEXI
3418
3419 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3420 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3421 DEF("xen-create", 0, QEMU_OPTION_xen_create,
3422 "-xen-create create domain using xen hypercalls, bypassing xend\n"
3423 " warning: should not be used when xend is in use\n",
3424 QEMU_ARCH_ALL)
3425 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3426 "-xen-attach attach to existing xen domain\n"
3427 " xend will use this when starting QEMU\n",
3428 QEMU_ARCH_ALL)
3429 DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict,
3430 "-xen-domid-restrict restrict set of available xen operations\n"
3431 " to specified domain id. (Does not affect\n"
3432 " xenpv machine type).\n",
3433 QEMU_ARCH_ALL)
3434 STEXI
3435 @item -xen-domid @var{id}
3436 @findex -xen-domid
3437 Specify xen guest domain @var{id} (XEN only).
3438 @item -xen-create
3439 @findex -xen-create
3440 Create domain using xen hypercalls, bypassing xend.
3441 Warning: should not be used when xend is in use (XEN only).
3442 @item -xen-attach
3443 @findex -xen-attach
3444 Attach to existing xen domain.
3445 xend will use this when starting QEMU (XEN only).
3446 @findex -xen-domid-restrict
3447 Restrict set of available xen operations to specified domain id (XEN only).
3448 ETEXI
3449
3450 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3451 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3452 STEXI
3453 @item -no-reboot
3454 @findex -no-reboot
3455 Exit instead of rebooting.
3456 ETEXI
3457
3458 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3459 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3460 STEXI
3461 @item -no-shutdown
3462 @findex -no-shutdown
3463 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3464 This allows for instance switching to monitor to commit changes to the
3465 disk image.
3466 ETEXI
3467
3468 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3469 "-loadvm [tag|id]\n" \
3470 " start right away with a saved state (loadvm in monitor)\n",
3471 QEMU_ARCH_ALL)
3472 STEXI
3473 @item -loadvm @var{file}
3474 @findex -loadvm
3475 Start right away with a saved state (@code{loadvm} in monitor)
3476 ETEXI
3477
3478 #ifndef _WIN32
3479 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3480 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3481 #endif
3482 STEXI
3483 @item -daemonize
3484 @findex -daemonize
3485 Daemonize the QEMU process after initialization. QEMU will not detach from
3486 standard IO until it is ready to receive connections on any of its devices.
3487 This option is a useful way for external programs to launch QEMU without having
3488 to cope with initialization race conditions.
3489 ETEXI
3490
3491 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3492 "-option-rom rom load a file, rom, into the option ROM space\n",
3493 QEMU_ARCH_ALL)
3494 STEXI
3495 @item -option-rom @var{file}
3496 @findex -option-rom
3497 Load the contents of @var{file} as an option ROM.
3498 This option is useful to load things like EtherBoot.
3499 ETEXI
3500
3501 HXCOMM Silently ignored for compatibility
3502 DEF("clock", HAS_ARG, QEMU_OPTION_clock, "", QEMU_ARCH_ALL)
3503
3504 HXCOMM Options deprecated by -rtc
3505 DEF("localtime", 0, QEMU_OPTION_localtime, "", QEMU_ARCH_ALL)
3506 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "", QEMU_ARCH_ALL)
3507
3508 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3509 "-rtc [base=utc|localtime|date][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3510 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3511 QEMU_ARCH_ALL)
3512
3513 STEXI
3514
3515 @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
3516 @findex -rtc
3517 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3518 UTC or local time, respectively. @code{localtime} is required for correct date in
3519 MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
3520 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3521
3522 By default the RTC is driven by the host system time. This allows using of the
3523 RTC as accurate reference clock inside the guest, specifically if the host
3524 time is smoothly following an accurate external reference clock, e.g. via NTP.
3525 If you want to isolate the guest time from the host, you can set @option{clock}
3526 to @code{rt} instead. To even prevent it from progressing during suspension,
3527 you can set it to @code{vm}.
3528
3529 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3530 specifically with Windows' ACPI HAL. This option will try to figure out how
3531 many timer interrupts were not processed by the Windows guest and will
3532 re-inject them.
3533 ETEXI
3534
3535 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3536 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3537 " enable virtual instruction counter with 2^N clock ticks per\n" \
3538 " instruction, enable aligning the host and virtual clocks\n" \
3539 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3540 STEXI
3541 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}]
3542 @findex -icount
3543 Enable virtual instruction counter. The virtual cpu will execute one
3544 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3545 then the virtual cpu speed will be automatically adjusted to keep virtual
3546 time within a few seconds of real time.
3547
3548 When the virtual cpu is sleeping, the virtual time will advance at default
3549 speed unless @option{sleep=on|off} is specified.
3550 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3551 instantly whenever the virtual cpu goes to sleep mode and will not advance
3552 if no timer is enabled. This behavior give deterministic execution times from
3553 the guest point of view.
3554
3555 Note that while this option can give deterministic behavior, it does not
3556 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3557 order cores with complex cache hierarchies. The number of instructions
3558 executed often has little or no correlation with actual performance.
3559
3560 @option{align=on} will activate the delay algorithm which will try
3561 to synchronise the host clock and the virtual clock. The goal is to
3562 have a guest running at the real frequency imposed by the shift option.
3563 Whenever the guest clock is behind the host clock and if
3564 @option{align=on} is specified then we print a message to the user
3565 to inform about the delay.
3566 Currently this option does not work when @option{shift} is @code{auto}.
3567 Note: The sync algorithm will work for those shift values for which
3568 the guest clock runs ahead of the host clock. Typically this happens
3569 when the shift value is high (how high depends on the host machine).
3570
3571 When @option{rr} option is specified deterministic record/replay is enabled.
3572 Replay log is written into @var{filename} file in record mode and
3573 read from this file in replay mode.
3574
3575 Option rrsnapshot is used to create new vm snapshot named @var{snapshot}
3576 at the start of execution recording. In replay mode this option is used
3577 to load the initial VM state.
3578 ETEXI
3579
3580 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3581 "-watchdog model\n" \
3582 " enable virtual hardware watchdog [default=none]\n",
3583 QEMU_ARCH_ALL)
3584 STEXI
3585 @item -watchdog @var{model}
3586 @findex -watchdog
3587 Create a virtual hardware watchdog device. Once enabled (by a guest
3588 action), the watchdog must be periodically polled by an agent inside
3589 the guest or else the guest will be restarted. Choose a model for
3590 which your guest has drivers.
3591
3592 The @var{model} is the model of hardware watchdog to emulate. Use
3593 @code{-watchdog help} to list available hardware models. Only one
3594 watchdog can be enabled for a guest.
3595
3596 The following models may be available:
3597 @table @option
3598 @item ib700
3599 iBASE 700 is a very simple ISA watchdog with a single timer.
3600 @item i6300esb
3601 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3602 dual-timer watchdog.
3603 @item diag288
3604 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3605 (currently KVM only).
3606 @end table
3607 ETEXI
3608
3609 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3610 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
3611 " action when watchdog fires [default=reset]\n",
3612 QEMU_ARCH_ALL)
3613 STEXI
3614 @item -watchdog-action @var{action}
3615 @findex -watchdog-action
3616
3617 The @var{action} controls what QEMU will do when the watchdog timer
3618 expires.
3619 The default is
3620 @code{reset} (forcefully reset the guest).
3621 Other possible actions are:
3622 @code{shutdown} (attempt to gracefully shutdown the guest),
3623 @code{poweroff} (forcefully poweroff the guest),
3624 @code{pause} (pause the guest),
3625 @code{debug} (print a debug message and continue), or
3626 @code{none} (do nothing).
3627
3628 Note that the @code{shutdown} action requires that the guest responds
3629 to ACPI signals, which it may not be able to do in the sort of
3630 situations where the watchdog would have expired, and thus
3631 @code{-watchdog-action shutdown} is not recommended for production use.
3632
3633 Examples:
3634
3635 @table @code
3636 @item -watchdog i6300esb -watchdog-action pause
3637 @itemx -watchdog ib700
3638 @end table
3639 ETEXI
3640
3641 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3642 "-echr chr set terminal escape character instead of ctrl-a\n",
3643 QEMU_ARCH_ALL)
3644 STEXI
3645
3646 @item -echr @var{numeric_ascii_value}
3647 @findex -echr
3648 Change the escape character used for switching to the monitor when using
3649 monitor and serial sharing. The default is @code{0x01} when using the
3650 @code{-nographic} option. @code{0x01} is equal to pressing
3651 @code{Control-a}. You can select a different character from the ascii
3652 control keys where 1 through 26 map to Control-a through Control-z. For
3653 instance you could use the either of the following to change the escape
3654 character to Control-t.
3655 @table @code
3656 @item -echr 0x14
3657 @itemx -echr 20
3658 @end table
3659 ETEXI
3660
3661 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
3662 "-virtioconsole c\n" \
3663 " set virtio console\n", QEMU_ARCH_ALL)
3664 STEXI
3665 @item -virtioconsole @var{c}
3666 @findex -virtioconsole
3667 Set virtio console.
3668
3669 This option is maintained for backward compatibility.
3670
3671 Please use @code{-device virtconsole} for the new way of invocation.
3672 ETEXI
3673
3674 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3675 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3676 STEXI
3677 @item -show-cursor
3678 @findex -show-cursor
3679 Show cursor.
3680 ETEXI
3681
3682 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3683 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3684 STEXI
3685 @item -tb-size @var{n}
3686 @findex -tb-size
3687 Set TB size.
3688 ETEXI
3689
3690 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3691 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3692 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3693 "-incoming unix:socketpath\n" \
3694 " prepare for incoming migration, listen on\n" \
3695 " specified protocol and socket address\n" \
3696 "-incoming fd:fd\n" \
3697 "-incoming exec:cmdline\n" \
3698 " accept incoming migration on given file descriptor\n" \
3699 " or from given external command\n" \
3700 "-incoming defer\n" \
3701 " wait for the URI to be specified via migrate_incoming\n",
3702 QEMU_ARCH_ALL)
3703 STEXI
3704 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3705 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3706 @findex -incoming
3707 Prepare for incoming migration, listen on a given tcp port.
3708
3709 @item -incoming unix:@var{socketpath}
3710 Prepare for incoming migration, listen on a given unix socket.
3711
3712 @item -incoming fd:@var{fd}
3713 Accept incoming migration from a given filedescriptor.
3714
3715 @item -incoming exec:@var{cmdline}
3716 Accept incoming migration as an output from specified external command.
3717
3718 @item -incoming defer
3719 Wait for the URI to be specified via migrate_incoming. The monitor can
3720 be used to change settings (such as migration parameters) prior to issuing
3721 the migrate_incoming to allow the migration to begin.
3722 ETEXI
3723
3724 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
3725 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
3726 STEXI
3727 @item -only-migratable
3728 @findex -only-migratable
3729 Only allow migratable devices. Devices will not be allowed to enter an
3730 unmigratable state.
3731 ETEXI
3732
3733 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3734 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3735 STEXI
3736 @item -nodefaults
3737 @findex -nodefaults
3738 Don't create default devices. Normally, QEMU sets the default devices like serial
3739 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3740 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3741 default devices.
3742 ETEXI
3743
3744 #ifndef _WIN32
3745 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3746 "-chroot dir chroot to dir just before starting the VM\n",
3747 QEMU_ARCH_ALL)
3748 #endif
3749 STEXI
3750 @item -chroot @var{dir}
3751 @findex -chroot
3752 Immediately before starting guest execution, chroot to the specified
3753 directory. Especially useful in combination with -runas.
3754 ETEXI
3755
3756 #ifndef _WIN32
3757 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
3758 "-runas user change to user id user just before starting the VM\n",
3759 QEMU_ARCH_ALL)
3760 #endif
3761 STEXI
3762 @item -runas @var{user}
3763 @findex -runas
3764 Immediately before starting guest execution, drop root privileges, switching
3765 to the specified user.
3766 ETEXI
3767
3768 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
3769 "-prom-env variable=value\n"
3770 " set OpenBIOS nvram variables\n",
3771 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
3772 STEXI
3773 @item -prom-env @var{variable}=@var{value}
3774 @findex -prom-env
3775 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
3776 ETEXI
3777 DEF("semihosting", 0, QEMU_OPTION_semihosting,
3778 "-semihosting semihosting mode\n",
3779 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3780 QEMU_ARCH_MIPS)
3781 STEXI
3782 @item -semihosting
3783 @findex -semihosting
3784 Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).
3785 ETEXI
3786 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
3787 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \
3788 " semihosting configuration\n",
3789 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3790 QEMU_ARCH_MIPS)
3791 STEXI
3792 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]
3793 @findex -semihosting-config
3794 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).
3795 @table @option
3796 @item target=@code{native|gdb|auto}
3797 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
3798 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
3799 during debug sessions and @code{native} otherwise.
3800 @item arg=@var{str1},arg=@var{str2},...
3801 Allows the user to pass input arguments, and can be used multiple times to build
3802 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
3803 command line is still supported for backward compatibility. If both the
3804 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
3805 specified, the former is passed to semihosting as it always takes precedence.
3806 @end table
3807 ETEXI
3808 DEF("old-param", 0, QEMU_OPTION_old_param,
3809 "-old-param old param mode\n", QEMU_ARCH_ARM)
3810 STEXI
3811 @item -old-param
3812 @findex -old-param (ARM)
3813 Old param mode (ARM only).
3814 ETEXI
3815
3816 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
3817 "-sandbox <arg> Enable seccomp mode 2 system call filter (default 'off').\n",
3818 QEMU_ARCH_ALL)
3819 STEXI
3820 @item -sandbox @var{arg}
3821 @findex -sandbox
3822 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
3823 disable it. The default is 'off'.
3824 ETEXI
3825
3826 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
3827 "-readconfig <file>\n", QEMU_ARCH_ALL)
3828 STEXI
3829 @item -readconfig @var{file}
3830 @findex -readconfig
3831 Read device configuration from @var{file}. This approach is useful when you want to spawn
3832 QEMU process with many command line options but you don't want to exceed the command line
3833 character limit.
3834 ETEXI
3835 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
3836 "-writeconfig <file>\n"
3837 " read/write config file\n", QEMU_ARCH_ALL)
3838 STEXI
3839 @item -writeconfig @var{file}
3840 @findex -writeconfig
3841 Write device configuration to @var{file}. The @var{file} can be either filename to save
3842 command line and device configuration into file or dash @code{-}) character to print the
3843 output to stdout. This can be later used as input file for @code{-readconfig} option.
3844 ETEXI
3845 DEF("nodefconfig", 0, QEMU_OPTION_nodefconfig,
3846 "-nodefconfig\n"
3847 " do not load default config files at startup\n",
3848 QEMU_ARCH_ALL)
3849 STEXI
3850 @item -nodefconfig
3851 @findex -nodefconfig
3852 Normally QEMU loads configuration files from @var{sysconfdir} and @var{datadir} at startup.
3853 The @code{-nodefconfig} option will prevent QEMU from loading any of those config files.
3854 ETEXI
3855 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
3856 "-no-user-config\n"
3857 " do not load user-provided config files at startup\n",
3858 QEMU_ARCH_ALL)
3859 STEXI
3860 @item -no-user-config
3861 @findex -no-user-config
3862 The @code{-no-user-config} option makes QEMU not load any of the user-provided
3863 config files on @var{sysconfdir}, but won't make it skip the QEMU-provided config
3864 files from @var{datadir}.
3865 ETEXI
3866 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
3867 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
3868 " specify tracing options\n",
3869 QEMU_ARCH_ALL)
3870 STEXI
3871 HXCOMM This line is not accurate, as some sub-options are backend-specific but
3872 HXCOMM HX does not support conditional compilation of text.
3873 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
3874 @findex -trace
3875 @include qemu-option-trace.texi
3876 ETEXI
3877
3878 HXCOMM Internal use
3879 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
3880 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
3881
3882 #ifdef __linux__
3883 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
3884 "-enable-fips enable FIPS 140-2 compliance\n",
3885 QEMU_ARCH_ALL)
3886 #endif
3887 STEXI
3888 @item -enable-fips
3889 @findex -enable-fips
3890 Enable FIPS 140-2 compliance mode.
3891 ETEXI
3892
3893 HXCOMM Deprecated by -machine accel=tcg property
3894 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
3895
3896 HXCOMM Deprecated by kvm-pit driver properties
3897 DEF("no-kvm-pit-reinjection", 0, QEMU_OPTION_no_kvm_pit_reinjection,
3898 "", QEMU_ARCH_I386)
3899
3900 HXCOMM Deprecated (ignored)
3901 DEF("no-kvm-pit", 0, QEMU_OPTION_no_kvm_pit, "", QEMU_ARCH_I386)
3902
3903 HXCOMM Deprecated by -machine kernel_irqchip=on|off property
3904 DEF("no-kvm-irqchip", 0, QEMU_OPTION_no_kvm_irqchip, "", QEMU_ARCH_I386)
3905
3906 HXCOMM Deprecated (ignored)
3907 DEF("tdf", 0, QEMU_OPTION_tdf,"", QEMU_ARCH_ALL)
3908
3909 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
3910 "-msg timestamp[=on|off]\n"
3911 " change the format of messages\n"
3912 " on|off controls leading timestamps (default:on)\n",
3913 QEMU_ARCH_ALL)
3914 STEXI
3915 @item -msg timestamp[=on|off]
3916 @findex -msg
3917 prepend a timestamp to each log message.(default:on)
3918 ETEXI
3919
3920 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
3921 "-dump-vmstate <file>\n"
3922 " Output vmstate information in JSON format to file.\n"
3923 " Use the scripts/vmstate-static-checker.py file to\n"
3924 " check for possible regressions in migration code\n"
3925 " by comparing two such vmstate dumps.\n",
3926 QEMU_ARCH_ALL)
3927 STEXI
3928 @item -dump-vmstate @var{file}
3929 @findex -dump-vmstate
3930 Dump json-encoded vmstate information for current machine type to file
3931 in @var{file}
3932 ETEXI
3933
3934 STEXI
3935 @end table
3936 ETEXI
3937 DEFHEADING()
3938 DEFHEADING(Generic object creation)
3939 STEXI
3940 @table @option
3941 ETEXI
3942
3943 DEF("object", HAS_ARG, QEMU_OPTION_object,
3944 "-object TYPENAME[,PROP1=VALUE1,...]\n"
3945 " create a new object of type TYPENAME setting properties\n"
3946 " in the order they are specified. Note that the 'id'\n"
3947 " property must be set. These objects are placed in the\n"
3948 " '/objects' path.\n",
3949 QEMU_ARCH_ALL)
3950 STEXI
3951 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
3952 @findex -object
3953 Create a new object of type @var{typename} setting properties
3954 in the order they are specified. Note that the 'id'
3955 property must be set. These objects are placed in the
3956 '/objects' path.
3957
3958 @table @option
3959
3960 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off}
3961
3962 Creates a memory file backend object, which can be used to back
3963 the guest RAM with huge pages. The @option{id} parameter is a
3964 unique ID that will be used to reference this memory region
3965 when configuring the @option{-numa} argument. The @option{size}
3966 option provides the size of the memory region, and accepts
3967 common suffixes, eg @option{500M}. The @option{mem-path} provides
3968 the path to either a shared memory or huge page filesystem mount.
3969 The @option{share} boolean option determines whether the memory
3970 region is marked as private to QEMU, or shared. The latter allows
3971 a co-operating external process to access the QEMU memory region.
3972
3973 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
3974
3975 Creates a random number generator backend which obtains entropy from
3976 a device on the host. The @option{id} parameter is a unique ID that
3977 will be used to reference this entropy backend from the @option{virtio-rng}
3978 device. The @option{filename} parameter specifies which file to obtain
3979 entropy from and if omitted defaults to @option{/dev/random}.
3980
3981 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
3982
3983 Creates a random number generator backend which obtains entropy from
3984 an external daemon running on the host. The @option{id} parameter is
3985 a unique ID that will be used to reference this entropy backend from
3986 the @option{virtio-rng} device. The @option{chardev} parameter is
3987 the unique ID of a character device backend that provides the connection
3988 to the RNG daemon.
3989
3990 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
3991
3992 Creates a TLS anonymous credentials object, which can be used to provide
3993 TLS support on network backends. The @option{id} parameter is a unique
3994 ID which network backends will use to access the credentials. The
3995 @option{endpoint} is either @option{server} or @option{client} depending
3996 on whether the QEMU network backend that uses the credentials will be
3997 acting as a client or as a server. If @option{verify-peer} is enabled
3998 (the default) then once the handshake is completed, the peer credentials
3999 will be verified, though this is a no-op for anonymous credentials.
4000
4001 The @var{dir} parameter tells QEMU where to find the credential
4002 files. For server endpoints, this directory may contain a file
4003 @var{dh-params.pem} providing diffie-hellman parameters to use
4004 for the TLS server. If the file is missing, QEMU will generate
4005 a set of DH parameters at startup. This is a computationally
4006 expensive operation that consumes random pool entropy, so it is
4007 recommended that a persistent set of parameters be generated
4008 upfront and saved.
4009
4010 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off},passwordid=@var{id}
4011
4012 Creates a TLS anonymous credentials object, which can be used to provide
4013 TLS support on network backends. The @option{id} parameter is a unique
4014 ID which network backends will use to access the credentials. The
4015 @option{endpoint} is either @option{server} or @option{client} depending
4016 on whether the QEMU network backend that uses the credentials will be
4017 acting as a client or as a server. If @option{verify-peer} is enabled
4018 (the default) then once the handshake is completed, the peer credentials
4019 will be verified. With x509 certificates, this implies that the clients
4020 must be provided with valid client certificates too.
4021
4022 The @var{dir} parameter tells QEMU where to find the credential
4023 files. For server endpoints, this directory may contain a file
4024 @var{dh-params.pem} providing diffie-hellman parameters to use
4025 for the TLS server. If the file is missing, QEMU will generate
4026 a set of DH parameters at startup. This is a computationally
4027 expensive operation that consumes random pool entropy, so it is
4028 recommended that a persistent set of parameters be generated
4029 upfront and saved.
4030
4031 For x509 certificate credentials the directory will contain further files
4032 providing the x509 certificates. The certificates must be stored
4033 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
4034 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
4035 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
4036
4037 For the @var{server-key.pem} and @var{client-key.pem} files which
4038 contain sensitive private keys, it is possible to use an encrypted
4039 version by providing the @var{passwordid} parameter. This provides
4040 the ID of a previously created @code{secret} object containing the
4041 password for decryption.
4042
4043 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
4044
4045 Interval @var{t} can't be 0, this filter batches the packet delivery: all
4046 packets arriving in a given interval on netdev @var{netdevid} are delayed
4047 until the end of the interval. Interval is in microseconds.
4048 @option{status} is optional that indicate whether the netfilter is
4049 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
4050
4051 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
4052
4053 @option{all}: the filter is attached both to the receive and the transmit
4054 queue of the netdev (default).
4055
4056 @option{rx}: the filter is attached to the receive queue of the netdev,
4057 where it will receive packets sent to the netdev.
4058
4059 @option{tx}: the filter is attached to the transmit queue of the netdev,
4060 where it will receive packets sent by the netdev.
4061
4062 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
4063
4064 filter-mirror on netdev @var{netdevid},mirror net packet to chardev
4065 @var{chardevid}
4066
4067 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},
4068 outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
4069
4070 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
4071 @var{chardevid},and redirect indev's packet to filter.
4072 Create a filter-redirector we need to differ outdev id from indev id, id can not
4073 be the same. we can just use indev or outdev, but at least one of indev or outdev
4074 need to be specified.
4075
4076 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid}[,queue=@var{all|rx|tx}]
4077
4078 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
4079 secondary from primary to keep secondary tcp connection,and rewrite
4080 tcp packet to primary from secondary make tcp packet can be handled by
4081 client.
4082
4083 usage:
4084 colo secondary:
4085 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4086 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4087 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
4088
4089 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
4090
4091 Dump the network traffic on netdev @var{dev} to the file specified by
4092 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
4093 The file format is libpcap, so it can be analyzed with tools such as tcpdump
4094 or Wireshark.
4095
4096 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},
4097 outdev=@var{chardevid}
4098
4099 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
4100 secondary packet. If the packets are same, we will output primary
4101 packet to outdev@var{chardevid}, else we will notify colo-frame
4102 do checkpoint and send primary packet to outdev@var{chardevid}.
4103
4104 we must use it with the help of filter-mirror and filter-redirector.
4105
4106 @example
4107
4108 primary:
4109 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4110 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4111 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4112 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4113 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4114 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4115 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4116 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4117 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4118 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4119 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4120 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0
4121
4122 secondary:
4123 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4124 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4125 -chardev socket,id=red0,host=3.3.3.3,port=9003
4126 -chardev socket,id=red1,host=3.3.3.3,port=9004
4127 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4128 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4129
4130 @end example
4131
4132 If you want to know the detail of above command line, you can read
4133 the colo-compare git log.
4134
4135 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
4136
4137 Creates a cryptodev backend which executes crypto opreation from
4138 the QEMU cipher APIS. The @var{id} parameter is
4139 a unique ID that will be used to reference this cryptodev backend from
4140 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
4141 which specify the queue number of cryptodev backend, the default of
4142 @var{queues} is 1.
4143
4144 @example
4145
4146 # qemu-system-x86_64 \
4147 [...] \
4148 -object cryptodev-backend-builtin,id=cryptodev0 \
4149 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4150 [...]
4151 @end example
4152
4153 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4154 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4155
4156 Defines a secret to store a password, encryption key, or some other sensitive
4157 data. The sensitive data can either be passed directly via the @var{data}
4158 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
4159 parameter is insecure unless the sensitive data is encrypted.
4160
4161 The sensitive data can be provided in raw format (the default), or base64.
4162 When encoded as JSON, the raw format only supports valid UTF-8 characters,
4163 so base64 is recommended for sending binary data. QEMU will convert from
4164 which ever format is provided to the format it needs internally. eg, an
4165 RBD password can be provided in raw format, even though it will be base64
4166 encoded when passed onto the RBD sever.
4167
4168 For added protection, it is possible to encrypt the data associated with
4169 a secret using the AES-256-CBC cipher. Use of encryption is indicated
4170 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
4171 parameter provides the ID of a previously defined secret that contains
4172 the AES-256 decryption key. This key should be 32-bytes long and be
4173 base64 encoded. The @var{iv} parameter provides the random initialization
4174 vector used for encryption of this particular secret and should be a
4175 base64 encrypted string of the 16-byte IV.
4176
4177 The simplest (insecure) usage is to provide the secret inline
4178
4179 @example
4180
4181 # $QEMU -object secret,id=sec0,data=letmein,format=raw
4182
4183 @end example
4184
4185 The simplest secure usage is to provide the secret via a file
4186
4187 # echo -n "letmein" > mypasswd.txt
4188 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
4189
4190 For greater security, AES-256-CBC should be used. To illustrate usage,
4191 consider the openssl command line tool which can encrypt the data. Note
4192 that when encrypting, the plaintext must be padded to the cipher block
4193 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4194
4195 First a master key needs to be created in base64 encoding:
4196
4197 @example
4198 # openssl rand -base64 32 > key.b64
4199 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4200 @end example
4201
4202 Each secret to be encrypted needs to have a random initialization vector
4203 generated. These do not need to be kept secret
4204
4205 @example
4206 # openssl rand -base64 16 > iv.b64
4207 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4208 @end example
4209
4210 The secret to be defined can now be encrypted, in this case we're
4211 telling openssl to base64 encode the result, but it could be left
4212 as raw bytes if desired.
4213
4214 @example
4215 # SECRET=$(echo -n "letmein" |
4216 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4217 @end example
4218
4219 When launching QEMU, create a master secret pointing to @code{key.b64}
4220 and specify that to be used to decrypt the user password. Pass the
4221 contents of @code{iv.b64} to the second secret
4222
4223 @example
4224 # $QEMU \
4225 -object secret,id=secmaster0,format=base64,file=key.b64 \
4226 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4227 data=$SECRET,iv=$(<iv.b64)
4228 @end example
4229
4230 @end table
4231
4232 ETEXI
4233
4234
4235 HXCOMM This is the last statement. Insert new options before this line!
4236 STEXI
4237 @end table
4238 ETEXI