]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-options.hx
Merge remote-tracking branch 'remotes/kraxel/tags/seabios-1.12-20181120-pull-request...
[mirror_qemu.git] / qemu-options.hx
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
8
9 DEFHEADING(Standard options:)
10 STEXI
11 @table @option
12 ETEXI
13
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
21
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
29
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, hax, hvf, whpx or tcg (default: tcg)\n"
35 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
36 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
37 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n"
38 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
39 " mem-merge=on|off controls memory merge support (default: on)\n"
40 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
41 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
42 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
43 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
44 " nvdimm=on|off controls NVDIMM support (default=off)\n"
45 " enforce-config-section=on|off enforce configuration section migration (default=off)\n"
46 " memory-encryption=@var{} memory encryption object to use (default=none)\n",
47 QEMU_ARCH_ALL)
48 STEXI
49 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
50 @findex -machine
51 Select the emulated machine by @var{name}. Use @code{-machine help} to list
52 available machines.
53
54 For architectures which aim to support live migration compatibility
55 across releases, each release will introduce a new versioned machine
56 type. For example, the 2.8.0 release introduced machine types
57 ``pc-i440fx-2.8'' and ``pc-q35-2.8'' for the x86_64/i686 architectures.
58
59 To allow live migration of guests from QEMU version 2.8.0, to QEMU
60 version 2.9.0, the 2.9.0 version must support the ``pc-i440fx-2.8''
61 and ``pc-q35-2.8'' machines too. To allow users live migrating VMs
62 to skip multiple intermediate releases when upgrading, new releases
63 of QEMU will support machine types from many previous versions.
64
65 Supported machine properties are:
66 @table @option
67 @item accel=@var{accels1}[:@var{accels2}[:...]]
68 This is used to enable an accelerator. Depending on the target architecture,
69 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
70 more than one accelerator specified, the next one is used if the previous one
71 fails to initialize.
72 @item kernel_irqchip=on|off
73 Controls in-kernel irqchip support for the chosen accelerator when available.
74 @item gfx_passthru=on|off
75 Enables IGD GFX passthrough support for the chosen machine when available.
76 @item vmport=on|off|auto
77 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
78 value based on accel. For accel=xen the default is off otherwise the default
79 is on.
80 @item kvm_shadow_mem=size
81 Defines the size of the KVM shadow MMU.
82 @item dump-guest-core=on|off
83 Include guest memory in a core dump. The default is on.
84 @item mem-merge=on|off
85 Enables or disables memory merge support. This feature, when supported by
86 the host, de-duplicates identical memory pages among VMs instances
87 (enabled by default).
88 @item aes-key-wrap=on|off
89 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
90 controls whether AES wrapping keys will be created to allow
91 execution of AES cryptographic functions. The default is on.
92 @item dea-key-wrap=on|off
93 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
94 controls whether DEA wrapping keys will be created to allow
95 execution of DEA cryptographic functions. The default is on.
96 @item nvdimm=on|off
97 Enables or disables NVDIMM support. The default is off.
98 @item enforce-config-section=on|off
99 If @option{enforce-config-section} is set to @var{on}, force migration
100 code to send configuration section even if the machine-type sets the
101 @option{migration.send-configuration} property to @var{off}.
102 NOTE: this parameter is deprecated. Please use @option{-global}
103 @option{migration.send-configuration}=@var{on|off} instead.
104 @item memory-encryption=@var{}
105 Memory encryption object to use. The default is none.
106 @end table
107 ETEXI
108
109 HXCOMM Deprecated by -machine
110 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
111
112 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
113 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
114 STEXI
115 @item -cpu @var{model}
116 @findex -cpu
117 Select CPU model (@code{-cpu help} for list and additional feature selection)
118 ETEXI
119
120 DEF("accel", HAS_ARG, QEMU_OPTION_accel,
121 "-accel [accel=]accelerator[,thread=single|multi]\n"
122 " select accelerator (kvm, xen, hax, hvf, whpx or tcg; use 'help' for a list)\n"
123 " thread=single|multi (enable multi-threaded TCG)\n", QEMU_ARCH_ALL)
124 STEXI
125 @item -accel @var{name}[,prop=@var{value}[,...]]
126 @findex -accel
127 This is used to enable an accelerator. Depending on the target architecture,
128 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
129 more than one accelerator specified, the next one is used if the previous one
130 fails to initialize.
131 @table @option
132 @item thread=single|multi
133 Controls number of TCG threads. When the TCG is multi-threaded there will be one
134 thread per vCPU therefor taking advantage of additional host cores. The default
135 is to enable multi-threading where both the back-end and front-ends support it and
136 no incompatible TCG features have been enabled (e.g. icount/replay).
137 @end table
138 ETEXI
139
140 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
141 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
142 " set the number of CPUs to 'n' [default=1]\n"
143 " maxcpus= maximum number of total cpus, including\n"
144 " offline CPUs for hotplug, etc\n"
145 " cores= number of CPU cores on one socket\n"
146 " threads= number of threads on one CPU core\n"
147 " sockets= number of discrete sockets in the system\n",
148 QEMU_ARCH_ALL)
149 STEXI
150 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
151 @findex -smp
152 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
153 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
154 to 4.
155 For the PC target, the number of @var{cores} per socket, the number
156 of @var{threads} per cores and the total number of @var{sockets} can be
157 specified. Missing values will be computed. If any on the three values is
158 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
159 specifies the maximum number of hotpluggable CPUs.
160 ETEXI
161
162 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
163 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
164 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
165 "-numa dist,src=source,dst=destination,val=distance\n"
166 "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n",
167 QEMU_ARCH_ALL)
168 STEXI
169 @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
170 @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
171 @itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance}
172 @itemx -numa cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}]
173 @findex -numa
174 Define a NUMA node and assign RAM and VCPUs to it.
175 Set the NUMA distance from a source node to a destination node.
176
177 Legacy VCPU assignment uses @samp{cpus} option where
178 @var{firstcpu} and @var{lastcpu} are CPU indexes. Each
179 @samp{cpus} option represent a contiguous range of CPU indexes
180 (or a single VCPU if @var{lastcpu} is omitted). A non-contiguous
181 set of VCPUs can be represented by providing multiple @samp{cpus}
182 options. If @samp{cpus} is omitted on all nodes, VCPUs are automatically
183 split between them.
184
185 For example, the following option assigns VCPUs 0, 1, 2 and 5 to
186 a NUMA node:
187 @example
188 -numa node,cpus=0-2,cpus=5
189 @end example
190
191 @samp{cpu} option is a new alternative to @samp{cpus} option
192 which uses @samp{socket-id|core-id|thread-id} properties to assign
193 CPU objects to a @var{node} using topology layout properties of CPU.
194 The set of properties is machine specific, and depends on used
195 machine type/@samp{smp} options. It could be queried with
196 @samp{hotpluggable-cpus} monitor command.
197 @samp{node-id} property specifies @var{node} to which CPU object
198 will be assigned, it's required for @var{node} to be declared
199 with @samp{node} option before it's used with @samp{cpu} option.
200
201 For example:
202 @example
203 -M pc \
204 -smp 1,sockets=2,maxcpus=2 \
205 -numa node,nodeid=0 -numa node,nodeid=1 \
206 -numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1
207 @end example
208
209 @samp{mem} assigns a given RAM amount to a node. @samp{memdev}
210 assigns RAM from a given memory backend device to a node. If
211 @samp{mem} and @samp{memdev} are omitted in all nodes, RAM is
212 split equally between them.
213
214 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore,
215 if one node uses @samp{memdev}, all of them have to use it.
216
217 @var{source} and @var{destination} are NUMA node IDs.
218 @var{distance} is the NUMA distance from @var{source} to @var{destination}.
219 The distance from a node to itself is always 10. If any pair of nodes is
220 given a distance, then all pairs must be given distances. Although, when
221 distances are only given in one direction for each pair of nodes, then
222 the distances in the opposite directions are assumed to be the same. If,
223 however, an asymmetrical pair of distances is given for even one node
224 pair, then all node pairs must be provided distance values for both
225 directions, even when they are symmetrical. When a node is unreachable
226 from another node, set the pair's distance to 255.
227
228 Note that the -@option{numa} option doesn't allocate any of the
229 specified resources, it just assigns existing resources to NUMA
230 nodes. This means that one still has to use the @option{-m},
231 @option{-smp} options to allocate RAM and VCPUs respectively.
232
233 ETEXI
234
235 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
236 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
237 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
238 STEXI
239 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
240 @findex -add-fd
241
242 Add a file descriptor to an fd set. Valid options are:
243
244 @table @option
245 @item fd=@var{fd}
246 This option defines the file descriptor of which a duplicate is added to fd set.
247 The file descriptor cannot be stdin, stdout, or stderr.
248 @item set=@var{set}
249 This option defines the ID of the fd set to add the file descriptor to.
250 @item opaque=@var{opaque}
251 This option defines a free-form string that can be used to describe @var{fd}.
252 @end table
253
254 You can open an image using pre-opened file descriptors from an fd set:
255 @example
256 qemu-system-i386
257 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
258 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
259 -drive file=/dev/fdset/2,index=0,media=disk
260 @end example
261 ETEXI
262
263 DEF("set", HAS_ARG, QEMU_OPTION_set,
264 "-set group.id.arg=value\n"
265 " set <arg> parameter for item <id> of type <group>\n"
266 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
267 STEXI
268 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
269 @findex -set
270 Set parameter @var{arg} for item @var{id} of type @var{group}
271 ETEXI
272
273 DEF("global", HAS_ARG, QEMU_OPTION_global,
274 "-global driver.property=value\n"
275 "-global driver=driver,property=property,value=value\n"
276 " set a global default for a driver property\n",
277 QEMU_ARCH_ALL)
278 STEXI
279 @item -global @var{driver}.@var{prop}=@var{value}
280 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
281 @findex -global
282 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
283
284 @example
285 qemu-system-i386 -global ide-hd.physical_block_size=4096 disk-image.img
286 @end example
287
288 In particular, you can use this to set driver properties for devices which are
289 created automatically by the machine model. To create a device which is not
290 created automatically and set properties on it, use -@option{device}.
291
292 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
293 driver=@var{driver},property=@var{prop},value=@var{value}. The
294 longhand syntax works even when @var{driver} contains a dot.
295 ETEXI
296
297 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
298 "-boot [order=drives][,once=drives][,menu=on|off]\n"
299 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
300 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
301 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
302 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
303 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
304 QEMU_ARCH_ALL)
305 STEXI
306 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
307 @findex -boot
308 Specify boot order @var{drives} as a string of drive letters. Valid
309 drive letters depend on the target architecture. The x86 PC uses: a, b
310 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
311 from network adapter 1-4), hard disk boot is the default. To apply a
312 particular boot order only on the first startup, specify it via
313 @option{once}. Note that the @option{order} or @option{once} parameter
314 should not be used together with the @option{bootindex} property of
315 devices, since the firmware implementations normally do not support both
316 at the same time.
317
318 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
319 as firmware/BIOS supports them. The default is non-interactive boot.
320
321 A splash picture could be passed to bios, enabling user to show it as logo,
322 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
323 supports them. Currently Seabios for X86 system support it.
324 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
325 format(true color). The resolution should be supported by the SVGA mode, so
326 the recommended is 320x240, 640x480, 800x640.
327
328 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
329 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
330 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
331 system support it.
332
333 Do strict boot via @option{strict=on} as far as firmware/BIOS
334 supports it. This only effects when boot priority is changed by
335 bootindex options. The default is non-strict boot.
336
337 @example
338 # try to boot from network first, then from hard disk
339 qemu-system-i386 -boot order=nc
340 # boot from CD-ROM first, switch back to default order after reboot
341 qemu-system-i386 -boot once=d
342 # boot with a splash picture for 5 seconds.
343 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
344 @end example
345
346 Note: The legacy format '-boot @var{drives}' is still supported but its
347 use is discouraged as it may be removed from future versions.
348 ETEXI
349
350 DEF("m", HAS_ARG, QEMU_OPTION_m,
351 "-m [size=]megs[,slots=n,maxmem=size]\n"
352 " configure guest RAM\n"
353 " size: initial amount of guest memory\n"
354 " slots: number of hotplug slots (default: none)\n"
355 " maxmem: maximum amount of guest memory (default: none)\n"
356 "NOTE: Some architectures might enforce a specific granularity\n",
357 QEMU_ARCH_ALL)
358 STEXI
359 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
360 @findex -m
361 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
362 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
363 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
364 could be used to set amount of hotpluggable memory slots and maximum amount of
365 memory. Note that @var{maxmem} must be aligned to the page size.
366
367 For example, the following command-line sets the guest startup RAM size to
368 1GB, creates 3 slots to hotplug additional memory and sets the maximum
369 memory the guest can reach to 4GB:
370
371 @example
372 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
373 @end example
374
375 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
376 be enabled and the guest startup RAM will never increase.
377 ETEXI
378
379 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
380 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
381 STEXI
382 @item -mem-path @var{path}
383 @findex -mem-path
384 Allocate guest RAM from a temporarily created file in @var{path}.
385 ETEXI
386
387 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
388 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
389 QEMU_ARCH_ALL)
390 STEXI
391 @item -mem-prealloc
392 @findex -mem-prealloc
393 Preallocate memory when using -mem-path.
394 ETEXI
395
396 DEF("k", HAS_ARG, QEMU_OPTION_k,
397 "-k language use keyboard layout (for example 'fr' for French)\n",
398 QEMU_ARCH_ALL)
399 STEXI
400 @item -k @var{language}
401 @findex -k
402 Use keyboard layout @var{language} (for example @code{fr} for
403 French). This option is only needed where it is not easy to get raw PC
404 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
405 display). You don't normally need to use it on PC/Linux or PC/Windows
406 hosts.
407
408 The available layouts are:
409 @example
410 ar de-ch es fo fr-ca hu ja mk no pt-br sv
411 da en-gb et fr fr-ch is lt nl pl ru th
412 de en-us fi fr-be hr it lv nl-be pt sl tr
413 @end example
414
415 The default is @code{en-us}.
416 ETEXI
417
418
419 DEF("audio-help", 0, QEMU_OPTION_audio_help,
420 "-audio-help print list of audio drivers and their options\n",
421 QEMU_ARCH_ALL)
422 STEXI
423 @item -audio-help
424 @findex -audio-help
425 Will show the audio subsystem help: list of drivers, tunable
426 parameters.
427 ETEXI
428
429 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
430 "-soundhw c1,... enable audio support\n"
431 " and only specified sound cards (comma separated list)\n"
432 " use '-soundhw help' to get the list of supported cards\n"
433 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
434 STEXI
435 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
436 @findex -soundhw
437 Enable audio and selected sound hardware. Use 'help' to print all
438 available sound hardware.
439
440 @example
441 qemu-system-i386 -soundhw sb16,adlib disk.img
442 qemu-system-i386 -soundhw es1370 disk.img
443 qemu-system-i386 -soundhw ac97 disk.img
444 qemu-system-i386 -soundhw hda disk.img
445 qemu-system-i386 -soundhw all disk.img
446 qemu-system-i386 -soundhw help
447 @end example
448
449 Note that Linux's i810_audio OSS kernel (for AC97) module might
450 require manually specifying clocking.
451
452 @example
453 modprobe i810_audio clocking=48000
454 @end example
455 ETEXI
456
457 DEF("device", HAS_ARG, QEMU_OPTION_device,
458 "-device driver[,prop[=value][,...]]\n"
459 " add device (based on driver)\n"
460 " prop=value,... sets driver properties\n"
461 " use '-device help' to print all possible drivers\n"
462 " use '-device driver,help' to print all possible properties\n",
463 QEMU_ARCH_ALL)
464 STEXI
465 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
466 @findex -device
467 Add device @var{driver}. @var{prop}=@var{value} sets driver
468 properties. Valid properties depend on the driver. To get help on
469 possible drivers and properties, use @code{-device help} and
470 @code{-device @var{driver},help}.
471
472 Some drivers are:
473 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}][,sdrfile=@var{file}][,furareasize=@var{val}][,furdatafile=@var{file}]
474
475 Add an IPMI BMC. This is a simulation of a hardware management
476 interface processor that normally sits on a system. It provides
477 a watchdog and the ability to reset and power control the system.
478 You need to connect this to an IPMI interface to make it useful
479
480 The IPMI slave address to use for the BMC. The default is 0x20.
481 This address is the BMC's address on the I2C network of management
482 controllers. If you don't know what this means, it is safe to ignore
483 it.
484
485 @table @option
486 @item bmc=@var{id}
487 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
488 @item slave_addr=@var{val}
489 Define slave address to use for the BMC. The default is 0x20.
490 @item sdrfile=@var{file}
491 file containing raw Sensor Data Records (SDR) data. The default is none.
492 @item fruareasize=@var{val}
493 size of a Field Replaceable Unit (FRU) area. The default is 1024.
494 @item frudatafile=@var{file}
495 file containing raw Field Replaceable Unit (FRU) inventory data. The default is none.
496 @end table
497
498 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
499
500 Add a connection to an external IPMI BMC simulator. Instead of
501 locally emulating the BMC like the above item, instead connect
502 to an external entity that provides the IPMI services.
503
504 A connection is made to an external BMC simulator. If you do this, it
505 is strongly recommended that you use the "reconnect=" chardev option
506 to reconnect to the simulator if the connection is lost. Note that if
507 this is not used carefully, it can be a security issue, as the
508 interface has the ability to send resets, NMIs, and power off the VM.
509 It's best if QEMU makes a connection to an external simulator running
510 on a secure port on localhost, so neither the simulator nor QEMU is
511 exposed to any outside network.
512
513 See the "lanserv/README.vm" file in the OpenIPMI library for more
514 details on the external interface.
515
516 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
517
518 Add a KCS IPMI interafce on the ISA bus. This also adds a
519 corresponding ACPI and SMBIOS entries, if appropriate.
520
521 @table @option
522 @item bmc=@var{id}
523 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
524 @item ioport=@var{val}
525 Define the I/O address of the interface. The default is 0xca0 for KCS.
526 @item irq=@var{val}
527 Define the interrupt to use. The default is 5. To disable interrupts,
528 set this to 0.
529 @end table
530
531 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
532
533 Like the KCS interface, but defines a BT interface. The default port is
534 0xe4 and the default interrupt is 5.
535
536 ETEXI
537
538 DEF("name", HAS_ARG, QEMU_OPTION_name,
539 "-name string1[,process=string2][,debug-threads=on|off]\n"
540 " set the name of the guest\n"
541 " string1 sets the window title and string2 the process name (on Linux)\n"
542 " When debug-threads is enabled, individual threads are given a separate name (on Linux)\n"
543 " NOTE: The thread names are for debugging and not a stable API.\n",
544 QEMU_ARCH_ALL)
545 STEXI
546 @item -name @var{name}
547 @findex -name
548 Sets the @var{name} of the guest.
549 This name will be displayed in the SDL window caption.
550 The @var{name} will also be used for the VNC server.
551 Also optionally set the top visible process name in Linux.
552 Naming of individual threads can also be enabled on Linux to aid debugging.
553 ETEXI
554
555 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
556 "-uuid %08x-%04x-%04x-%04x-%012x\n"
557 " specify machine UUID\n", QEMU_ARCH_ALL)
558 STEXI
559 @item -uuid @var{uuid}
560 @findex -uuid
561 Set system UUID.
562 ETEXI
563
564 STEXI
565 @end table
566 ETEXI
567 DEFHEADING()
568
569 DEFHEADING(Block device options:)
570 STEXI
571 @table @option
572 ETEXI
573
574 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
575 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
576 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
577 STEXI
578 @item -fda @var{file}
579 @itemx -fdb @var{file}
580 @findex -fda
581 @findex -fdb
582 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
583 ETEXI
584
585 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
586 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
587 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
588 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
589 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
590 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
591 STEXI
592 @item -hda @var{file}
593 @itemx -hdb @var{file}
594 @itemx -hdc @var{file}
595 @itemx -hdd @var{file}
596 @findex -hda
597 @findex -hdb
598 @findex -hdc
599 @findex -hdd
600 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
601 ETEXI
602
603 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
604 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
605 QEMU_ARCH_ALL)
606 STEXI
607 @item -cdrom @var{file}
608 @findex -cdrom
609 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
610 @option{-cdrom} at the same time). You can use the host CD-ROM by
611 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
612 ETEXI
613
614 DEF("blockdev", HAS_ARG, QEMU_OPTION_blockdev,
615 "-blockdev [driver=]driver[,node-name=N][,discard=ignore|unmap]\n"
616 " [,cache.direct=on|off][,cache.no-flush=on|off]\n"
617 " [,read-only=on|off][,detect-zeroes=on|off|unmap]\n"
618 " [,driver specific parameters...]\n"
619 " configure a block backend\n", QEMU_ARCH_ALL)
620 STEXI
621 @item -blockdev @var{option}[,@var{option}[,@var{option}[,...]]]
622 @findex -blockdev
623
624 Define a new block driver node. Some of the options apply to all block drivers,
625 other options are only accepted for a specific block driver. See below for a
626 list of generic options and options for the most common block drivers.
627
628 Options that expect a reference to another node (e.g. @code{file}) can be
629 given in two ways. Either you specify the node name of an already existing node
630 (file=@var{node-name}), or you define a new node inline, adding options
631 for the referenced node after a dot (file.filename=@var{path},file.aio=native).
632
633 A block driver node created with @option{-blockdev} can be used for a guest
634 device by specifying its node name for the @code{drive} property in a
635 @option{-device} argument that defines a block device.
636
637 @table @option
638 @item Valid options for any block driver node:
639
640 @table @code
641 @item driver
642 Specifies the block driver to use for the given node.
643 @item node-name
644 This defines the name of the block driver node by which it will be referenced
645 later. The name must be unique, i.e. it must not match the name of a different
646 block driver node, or (if you use @option{-drive} as well) the ID of a drive.
647
648 If no node name is specified, it is automatically generated. The generated node
649 name is not intended to be predictable and changes between QEMU invocations.
650 For the top level, an explicit node name must be specified.
651 @item read-only
652 Open the node read-only. Guest write attempts will fail.
653 @item cache.direct
654 The host page cache can be avoided with @option{cache.direct=on}. This will
655 attempt to do disk IO directly to the guest's memory. QEMU may still perform an
656 internal copy of the data.
657 @item cache.no-flush
658 In case you don't care about data integrity over host failures, you can use
659 @option{cache.no-flush=on}. This option tells QEMU that it never needs to write
660 any data to the disk but can instead keep things in cache. If anything goes
661 wrong, like your host losing power, the disk storage getting disconnected
662 accidentally, etc. your image will most probably be rendered unusable.
663 @item discard=@var{discard}
664 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls
665 whether @code{discard} (also known as @code{trim} or @code{unmap}) requests are
666 ignored or passed to the filesystem. Some machine types may not support
667 discard requests.
668 @item detect-zeroes=@var{detect-zeroes}
669 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
670 conversion of plain zero writes by the OS to driver specific optimized
671 zero write commands. You may even choose "unmap" if @var{discard} is set
672 to "unmap" to allow a zero write to be converted to an @code{unmap} operation.
673 @end table
674
675 @item Driver-specific options for @code{file}
676
677 This is the protocol-level block driver for accessing regular files.
678
679 @table @code
680 @item filename
681 The path to the image file in the local filesystem
682 @item aio
683 Specifies the AIO backend (threads/native, default: threads)
684 @item locking
685 Specifies whether the image file is protected with Linux OFD / POSIX locks. The
686 default is to use the Linux Open File Descriptor API if available, otherwise no
687 lock is applied. (auto/on/off, default: auto)
688 @end table
689 Example:
690 @example
691 -blockdev driver=file,node-name=disk,filename=disk.img
692 @end example
693
694 @item Driver-specific options for @code{raw}
695
696 This is the image format block driver for raw images. It is usually
697 stacked on top of a protocol level block driver such as @code{file}.
698
699 @table @code
700 @item file
701 Reference to or definition of the data source block driver node
702 (e.g. a @code{file} driver node)
703 @end table
704 Example 1:
705 @example
706 -blockdev driver=file,node-name=disk_file,filename=disk.img
707 -blockdev driver=raw,node-name=disk,file=disk_file
708 @end example
709 Example 2:
710 @example
711 -blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img
712 @end example
713
714 @item Driver-specific options for @code{qcow2}
715
716 This is the image format block driver for qcow2 images. It is usually
717 stacked on top of a protocol level block driver such as @code{file}.
718
719 @table @code
720 @item file
721 Reference to or definition of the data source block driver node
722 (e.g. a @code{file} driver node)
723
724 @item backing
725 Reference to or definition of the backing file block device (default is taken
726 from the image file). It is allowed to pass @code{null} here in order to disable
727 the default backing file.
728
729 @item lazy-refcounts
730 Whether to enable the lazy refcounts feature (on/off; default is taken from the
731 image file)
732
733 @item cache-size
734 The maximum total size of the L2 table and refcount block caches in bytes
735 (default: the sum of l2-cache-size and refcount-cache-size)
736
737 @item l2-cache-size
738 The maximum size of the L2 table cache in bytes
739 (default: if cache-size is not specified - 32M on Linux platforms, and 8M on
740 non-Linux platforms; otherwise, as large as possible within the cache-size,
741 while permitting the requested or the minimal refcount cache size)
742
743 @item refcount-cache-size
744 The maximum size of the refcount block cache in bytes
745 (default: 4 times the cluster size; or if cache-size is specified, the part of
746 it which is not used for the L2 cache)
747
748 @item cache-clean-interval
749 Clean unused entries in the L2 and refcount caches. The interval is in seconds.
750 The default value is 600 on supporting platforms, and 0 on other platforms.
751 Setting it to 0 disables this feature.
752
753 @item pass-discard-request
754 Whether discard requests to the qcow2 device should be forwarded to the data
755 source (on/off; default: on if discard=unmap is specified, off otherwise)
756
757 @item pass-discard-snapshot
758 Whether discard requests for the data source should be issued when a snapshot
759 operation (e.g. deleting a snapshot) frees clusters in the qcow2 file (on/off;
760 default: on)
761
762 @item pass-discard-other
763 Whether discard requests for the data source should be issued on other
764 occasions where a cluster gets freed (on/off; default: off)
765
766 @item overlap-check
767 Which overlap checks to perform for writes to the image
768 (none/constant/cached/all; default: cached). For details or finer
769 granularity control refer to the QAPI documentation of @code{blockdev-add}.
770 @end table
771
772 Example 1:
773 @example
774 -blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2
775 -blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216
776 @end example
777 Example 2:
778 @example
779 -blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2
780 @end example
781
782 @item Driver-specific options for other drivers
783 Please refer to the QAPI documentation of the @code{blockdev-add} QMP command.
784
785 @end table
786
787 ETEXI
788
789 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
790 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
791 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
792 " [,snapshot=on|off][,rerror=ignore|stop|report]\n"
793 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
794 " [,readonly=on|off][,copy-on-read=on|off]\n"
795 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
796 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
797 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
798 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
799 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
800 " [[,iops_size=is]]\n"
801 " [[,group=g]]\n"
802 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
803 STEXI
804 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
805 @findex -drive
806
807 Define a new drive. This includes creating a block driver node (the backend) as
808 well as a guest device, and is mostly a shortcut for defining the corresponding
809 @option{-blockdev} and @option{-device} options.
810
811 @option{-drive} accepts all options that are accepted by @option{-blockdev}. In
812 addition, it knows the following options:
813
814 @table @option
815 @item file=@var{file}
816 This option defines which disk image (@pxref{disk_images}) to use with
817 this drive. If the filename contains comma, you must double it
818 (for instance, "file=my,,file" to use file "my,file").
819
820 Special files such as iSCSI devices can be specified using protocol
821 specific URLs. See the section for "Device URL Syntax" for more information.
822 @item if=@var{interface}
823 This option defines on which type on interface the drive is connected.
824 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio, none.
825 @item bus=@var{bus},unit=@var{unit}
826 These options define where is connected the drive by defining the bus number and
827 the unit id.
828 @item index=@var{index}
829 This option defines where is connected the drive by using an index in the list
830 of available connectors of a given interface type.
831 @item media=@var{media}
832 This option defines the type of the media: disk or cdrom.
833 @item snapshot=@var{snapshot}
834 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
835 (see @option{-snapshot}).
836 @item cache=@var{cache}
837 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough"
838 and controls how the host cache is used to access block data. This is a
839 shortcut that sets the @option{cache.direct} and @option{cache.no-flush}
840 options (as in @option{-blockdev}), and additionally @option{cache.writeback},
841 which provides a default for the @option{write-cache} option of block guest
842 devices (as in @option{-device}). The modes correspond to the following
843 settings:
844
845 @c Our texi2pod.pl script doesn't support @multitable, so fall back to using
846 @c plain ASCII art (well, UTF-8 art really). This looks okay both in the manpage
847 @c and the HTML output.
848 @example
849 @ │ cache.writeback cache.direct cache.no-flush
850 ─────────────┼─────────────────────────────────────────────────
851 writeback │ on off off
852 none │ on on off
853 writethrough │ off off off
854 directsync │ off on off
855 unsafe │ on off on
856 @end example
857
858 The default mode is @option{cache=writeback}.
859
860 @item aio=@var{aio}
861 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
862 @item format=@var{format}
863 Specify which disk @var{format} will be used rather than detecting
864 the format. Can be used to specify format=raw to avoid interpreting
865 an untrusted format header.
866 @item werror=@var{action},rerror=@var{action}
867 Specify which @var{action} to take on write and read errors. Valid actions are:
868 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
869 "report" (report the error to the guest), "enospc" (pause QEMU only if the
870 host disk is full; report the error to the guest otherwise).
871 The default setting is @option{werror=enospc} and @option{rerror=report}.
872 @item copy-on-read=@var{copy-on-read}
873 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
874 file sectors into the image file.
875 @item bps=@var{b},bps_rd=@var{r},bps_wr=@var{w}
876 Specify bandwidth throttling limits in bytes per second, either for all request
877 types or for reads or writes only. Small values can lead to timeouts or hangs
878 inside the guest. A safe minimum for disks is 2 MB/s.
879 @item bps_max=@var{bm},bps_rd_max=@var{rm},bps_wr_max=@var{wm}
880 Specify bursts in bytes per second, either for all request types or for reads
881 or writes only. Bursts allow the guest I/O to spike above the limit
882 temporarily.
883 @item iops=@var{i},iops_rd=@var{r},iops_wr=@var{w}
884 Specify request rate limits in requests per second, either for all request
885 types or for reads or writes only.
886 @item iops_max=@var{bm},iops_rd_max=@var{rm},iops_wr_max=@var{wm}
887 Specify bursts in requests per second, either for all request types or for reads
888 or writes only. Bursts allow the guest I/O to spike above the limit
889 temporarily.
890 @item iops_size=@var{is}
891 Let every @var{is} bytes of a request count as a new request for iops
892 throttling purposes. Use this option to prevent guests from circumventing iops
893 limits by sending fewer but larger requests.
894 @item group=@var{g}
895 Join a throttling quota group with given name @var{g}. All drives that are
896 members of the same group are accounted for together. Use this option to
897 prevent guests from circumventing throttling limits by using many small disks
898 instead of a single larger disk.
899 @end table
900
901 By default, the @option{cache.writeback=on} mode is used. It will report data
902 writes as completed as soon as the data is present in the host page cache.
903 This is safe as long as your guest OS makes sure to correctly flush disk caches
904 where needed. If your guest OS does not handle volatile disk write caches
905 correctly and your host crashes or loses power, then the guest may experience
906 data corruption.
907
908 For such guests, you should consider using @option{cache.writeback=off}. This
909 means that the host page cache will be used to read and write data, but write
910 notification will be sent to the guest only after QEMU has made sure to flush
911 each write to the disk. Be aware that this has a major impact on performance.
912
913 When using the @option{-snapshot} option, unsafe caching is always used.
914
915 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
916 useful when the backing file is over a slow network. By default copy-on-read
917 is off.
918
919 Instead of @option{-cdrom} you can use:
920 @example
921 qemu-system-i386 -drive file=file,index=2,media=cdrom
922 @end example
923
924 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
925 use:
926 @example
927 qemu-system-i386 -drive file=file,index=0,media=disk
928 qemu-system-i386 -drive file=file,index=1,media=disk
929 qemu-system-i386 -drive file=file,index=2,media=disk
930 qemu-system-i386 -drive file=file,index=3,media=disk
931 @end example
932
933 You can open an image using pre-opened file descriptors from an fd set:
934 @example
935 qemu-system-i386
936 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
937 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
938 -drive file=/dev/fdset/2,index=0,media=disk
939 @end example
940
941 You can connect a CDROM to the slave of ide0:
942 @example
943 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
944 @end example
945
946 If you don't specify the "file=" argument, you define an empty drive:
947 @example
948 qemu-system-i386 -drive if=ide,index=1,media=cdrom
949 @end example
950
951 Instead of @option{-fda}, @option{-fdb}, you can use:
952 @example
953 qemu-system-i386 -drive file=file,index=0,if=floppy
954 qemu-system-i386 -drive file=file,index=1,if=floppy
955 @end example
956
957 By default, @var{interface} is "ide" and @var{index} is automatically
958 incremented:
959 @example
960 qemu-system-i386 -drive file=a -drive file=b"
961 @end example
962 is interpreted like:
963 @example
964 qemu-system-i386 -hda a -hdb b
965 @end example
966 ETEXI
967
968 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
969 "-mtdblock file use 'file' as on-board Flash memory image\n",
970 QEMU_ARCH_ALL)
971 STEXI
972 @item -mtdblock @var{file}
973 @findex -mtdblock
974 Use @var{file} as on-board Flash memory image.
975 ETEXI
976
977 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
978 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
979 STEXI
980 @item -sd @var{file}
981 @findex -sd
982 Use @var{file} as SecureDigital card image.
983 ETEXI
984
985 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
986 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
987 STEXI
988 @item -pflash @var{file}
989 @findex -pflash
990 Use @var{file} as a parallel flash image.
991 ETEXI
992
993 DEF("snapshot", 0, QEMU_OPTION_snapshot,
994 "-snapshot write to temporary files instead of disk image files\n",
995 QEMU_ARCH_ALL)
996 STEXI
997 @item -snapshot
998 @findex -snapshot
999 Write to temporary files instead of disk image files. In this case,
1000 the raw disk image you use is not written back. You can however force
1001 the write back by pressing @key{C-a s} (@pxref{disk_images}).
1002 ETEXI
1003
1004 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
1005 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n"
1006 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd][,fmode=fmode][,dmode=dmode]\n"
1007 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
1008 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
1009 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
1010 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
1011 " [[,throttling.iops-size=is]]\n",
1012 QEMU_ARCH_ALL)
1013
1014 STEXI
1015
1016 @item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}][,fmode=@var{fmode}][,dmode=@var{dmode}]
1017 @findex -fsdev
1018 Define a new file system device. Valid options are:
1019 @table @option
1020 @item @var{fsdriver}
1021 This option specifies the fs driver backend to use.
1022 Currently "local", "handle" and "proxy" file system drivers are supported.
1023 @item id=@var{id}
1024 Specifies identifier for this device
1025 @item path=@var{path}
1026 Specifies the export path for the file system device. Files under
1027 this path will be available to the 9p client on the guest.
1028 @item security_model=@var{security_model}
1029 Specifies the security model to be used for this export path.
1030 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1031 In "passthrough" security model, files are stored using the same
1032 credentials as they are created on the guest. This requires QEMU
1033 to run as root. In "mapped-xattr" security model, some of the file
1034 attributes like uid, gid, mode bits and link target are stored as
1035 file attributes. For "mapped-file" these attributes are stored in the
1036 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1037 interact with other unix tools. "none" security model is same as
1038 passthrough except the sever won't report failures if it fails to
1039 set file attributes like ownership. Security model is mandatory
1040 only for local fsdriver. Other fsdrivers (like handle, proxy) don't take
1041 security model as a parameter.
1042 @item writeout=@var{writeout}
1043 This is an optional argument. The only supported value is "immediate".
1044 This means that host page cache will be used to read and write data but
1045 write notification will be sent to the guest only when the data has been
1046 reported as written by the storage subsystem.
1047 @item readonly
1048 Enables exporting 9p share as a readonly mount for guests. By default
1049 read-write access is given.
1050 @item socket=@var{socket}
1051 Enables proxy filesystem driver to use passed socket file for communicating
1052 with virtfs-proxy-helper
1053 @item sock_fd=@var{sock_fd}
1054 Enables proxy filesystem driver to use passed socket descriptor for
1055 communicating with virtfs-proxy-helper. Usually a helper like libvirt
1056 will create socketpair and pass one of the fds as sock_fd
1057 @item fmode=@var{fmode}
1058 Specifies the default mode for newly created files on the host. Works only
1059 with security models "mapped-xattr" and "mapped-file".
1060 @item dmode=@var{dmode}
1061 Specifies the default mode for newly created directories on the host. Works
1062 only with security models "mapped-xattr" and "mapped-file".
1063 @end table
1064
1065 -fsdev option is used along with -device driver "virtio-9p-pci".
1066 @item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag}
1067 Options for virtio-9p-pci driver are:
1068 @table @option
1069 @item fsdev=@var{id}
1070 Specifies the id value specified along with -fsdev option
1071 @item mount_tag=@var{mount_tag}
1072 Specifies the tag name to be used by the guest to mount this export point
1073 @end table
1074
1075 ETEXI
1076
1077 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
1078 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n"
1079 " [,id=id][,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd][,fmode=fmode][,dmode=dmode]\n",
1080 QEMU_ARCH_ALL)
1081
1082 STEXI
1083
1084 @item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}][,fmode=@var{fmode}][,dmode=@var{dmode}]
1085 @findex -virtfs
1086
1087 The general form of a Virtual File system pass-through options are:
1088 @table @option
1089 @item @var{fsdriver}
1090 This option specifies the fs driver backend to use.
1091 Currently "local", "handle" and "proxy" file system drivers are supported.
1092 @item id=@var{id}
1093 Specifies identifier for this device
1094 @item path=@var{path}
1095 Specifies the export path for the file system device. Files under
1096 this path will be available to the 9p client on the guest.
1097 @item security_model=@var{security_model}
1098 Specifies the security model to be used for this export path.
1099 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1100 In "passthrough" security model, files are stored using the same
1101 credentials as they are created on the guest. This requires QEMU
1102 to run as root. In "mapped-xattr" security model, some of the file
1103 attributes like uid, gid, mode bits and link target are stored as
1104 file attributes. For "mapped-file" these attributes are stored in the
1105 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1106 interact with other unix tools. "none" security model is same as
1107 passthrough except the sever won't report failures if it fails to
1108 set file attributes like ownership. Security model is mandatory only
1109 for local fsdriver. Other fsdrivers (like handle, proxy) don't take security
1110 model as a parameter.
1111 @item writeout=@var{writeout}
1112 This is an optional argument. The only supported value is "immediate".
1113 This means that host page cache will be used to read and write data but
1114 write notification will be sent to the guest only when the data has been
1115 reported as written by the storage subsystem.
1116 @item readonly
1117 Enables exporting 9p share as a readonly mount for guests. By default
1118 read-write access is given.
1119 @item socket=@var{socket}
1120 Enables proxy filesystem driver to use passed socket file for
1121 communicating with virtfs-proxy-helper. Usually a helper like libvirt
1122 will create socketpair and pass one of the fds as sock_fd
1123 @item sock_fd
1124 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
1125 descriptor for interfacing with virtfs-proxy-helper
1126 @item fmode=@var{fmode}
1127 Specifies the default mode for newly created files on the host. Works only
1128 with security models "mapped-xattr" and "mapped-file".
1129 @item dmode=@var{dmode}
1130 Specifies the default mode for newly created directories on the host. Works
1131 only with security models "mapped-xattr" and "mapped-file".
1132 @end table
1133 ETEXI
1134
1135 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
1136 "-virtfs_synth Create synthetic file system image\n",
1137 QEMU_ARCH_ALL)
1138 STEXI
1139 @item -virtfs_synth
1140 @findex -virtfs_synth
1141 Create synthetic file system image
1142 ETEXI
1143
1144 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
1145 "-iscsi [user=user][,password=password]\n"
1146 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
1147 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
1148 " [,timeout=timeout]\n"
1149 " iSCSI session parameters\n", QEMU_ARCH_ALL)
1150
1151 STEXI
1152 @item -iscsi
1153 @findex -iscsi
1154 Configure iSCSI session parameters.
1155 ETEXI
1156
1157 STEXI
1158 @end table
1159 ETEXI
1160 DEFHEADING()
1161
1162 DEFHEADING(USB options:)
1163 STEXI
1164 @table @option
1165 ETEXI
1166
1167 DEF("usb", 0, QEMU_OPTION_usb,
1168 "-usb enable the USB driver (if it is not used by default yet)\n",
1169 QEMU_ARCH_ALL)
1170 STEXI
1171 @item -usb
1172 @findex -usb
1173 Enable the USB driver (if it is not used by default yet).
1174 ETEXI
1175
1176 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
1177 "-usbdevice name add the host or guest USB device 'name'\n",
1178 QEMU_ARCH_ALL)
1179 STEXI
1180
1181 @item -usbdevice @var{devname}
1182 @findex -usbdevice
1183 Add the USB device @var{devname}. Note that this option is deprecated,
1184 please use @code{-device usb-...} instead. @xref{usb_devices}.
1185
1186 @table @option
1187
1188 @item mouse
1189 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1190
1191 @item tablet
1192 Pointer device that uses absolute coordinates (like a touchscreen). This
1193 means QEMU is able to report the mouse position without having to grab the
1194 mouse. Also overrides the PS/2 mouse emulation when activated.
1195
1196 @item braille
1197 Braille device. This will use BrlAPI to display the braille output on a real
1198 or fake device.
1199
1200 @end table
1201 ETEXI
1202
1203 STEXI
1204 @end table
1205 ETEXI
1206 DEFHEADING()
1207
1208 DEFHEADING(Display options:)
1209 STEXI
1210 @table @option
1211 ETEXI
1212
1213 DEF("display", HAS_ARG, QEMU_OPTION_display,
1214 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
1215 " [,window_close=on|off][,gl=on|core|es|off]\n"
1216 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
1217 "-display vnc=<display>[,<optargs>]\n"
1218 "-display curses\n"
1219 "-display none\n"
1220 "-display egl-headless[,rendernode=<file>]"
1221 " select display type\n"
1222 "The default display is equivalent to\n"
1223 #if defined(CONFIG_GTK)
1224 "\t\"-display gtk\"\n"
1225 #elif defined(CONFIG_SDL)
1226 "\t\"-display sdl\"\n"
1227 #elif defined(CONFIG_COCOA)
1228 "\t\"-display cocoa\"\n"
1229 #elif defined(CONFIG_VNC)
1230 "\t\"-vnc localhost:0,to=99,id=default\"\n"
1231 #else
1232 "\t\"-display none\"\n"
1233 #endif
1234 , QEMU_ARCH_ALL)
1235 STEXI
1236 @item -display @var{type}
1237 @findex -display
1238 Select type of display to use. This option is a replacement for the
1239 old style -sdl/-curses/... options. Valid values for @var{type} are
1240 @table @option
1241 @item sdl
1242 Display video output via SDL (usually in a separate graphics
1243 window; see the SDL documentation for other possibilities).
1244 @item curses
1245 Display video output via curses. For graphics device models which
1246 support a text mode, QEMU can display this output using a
1247 curses/ncurses interface. Nothing is displayed when the graphics
1248 device is in graphical mode or if the graphics device does not support
1249 a text mode. Generally only the VGA device models support text mode.
1250 @item none
1251 Do not display video output. The guest will still see an emulated
1252 graphics card, but its output will not be displayed to the QEMU
1253 user. This option differs from the -nographic option in that it
1254 only affects what is done with video output; -nographic also changes
1255 the destination of the serial and parallel port data.
1256 @item gtk
1257 Display video output in a GTK window. This interface provides drop-down
1258 menus and other UI elements to configure and control the VM during
1259 runtime.
1260 @item vnc
1261 Start a VNC server on display <arg>
1262 @item egl-headless
1263 Offload all OpenGL operations to a local DRI device. For any graphical display,
1264 this display needs to be paired with either VNC or SPICE displays.
1265 @end table
1266 ETEXI
1267
1268 DEF("nographic", 0, QEMU_OPTION_nographic,
1269 "-nographic disable graphical output and redirect serial I/Os to console\n",
1270 QEMU_ARCH_ALL)
1271 STEXI
1272 @item -nographic
1273 @findex -nographic
1274 Normally, if QEMU is compiled with graphical window support, it displays
1275 output such as guest graphics, guest console, and the QEMU monitor in a
1276 window. With this option, you can totally disable graphical output so
1277 that QEMU is a simple command line application. The emulated serial port
1278 is redirected on the console and muxed with the monitor (unless
1279 redirected elsewhere explicitly). Therefore, you can still use QEMU to
1280 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
1281 switching between the console and monitor.
1282 ETEXI
1283
1284 DEF("curses", 0, QEMU_OPTION_curses,
1285 "-curses shorthand for -display curses\n",
1286 QEMU_ARCH_ALL)
1287 STEXI
1288 @item -curses
1289 @findex -curses
1290 Normally, if QEMU is compiled with graphical window support, it displays
1291 output such as guest graphics, guest console, and the QEMU monitor in a
1292 window. With this option, QEMU can display the VGA output when in text
1293 mode using a curses/ncurses interface. Nothing is displayed in graphical
1294 mode.
1295 ETEXI
1296
1297 DEF("no-frame", 0, QEMU_OPTION_no_frame,
1298 "-no-frame open SDL window without a frame and window decorations\n",
1299 QEMU_ARCH_ALL)
1300 STEXI
1301 @item -no-frame
1302 @findex -no-frame
1303 Do not use decorations for SDL windows and start them using the whole
1304 available screen space. This makes the using QEMU in a dedicated desktop
1305 workspace more convenient.
1306 ETEXI
1307
1308 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1309 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1310 QEMU_ARCH_ALL)
1311 STEXI
1312 @item -alt-grab
1313 @findex -alt-grab
1314 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1315 affects the special keys (for fullscreen, monitor-mode switching, etc).
1316 ETEXI
1317
1318 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1319 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1320 QEMU_ARCH_ALL)
1321 STEXI
1322 @item -ctrl-grab
1323 @findex -ctrl-grab
1324 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1325 affects the special keys (for fullscreen, monitor-mode switching, etc).
1326 ETEXI
1327
1328 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1329 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1330 STEXI
1331 @item -no-quit
1332 @findex -no-quit
1333 Disable SDL window close capability.
1334 ETEXI
1335
1336 DEF("sdl", 0, QEMU_OPTION_sdl,
1337 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1338 STEXI
1339 @item -sdl
1340 @findex -sdl
1341 Enable SDL.
1342 ETEXI
1343
1344 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1345 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1346 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1347 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1348 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1349 " [,tls-ciphers=<list>]\n"
1350 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1351 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1352 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1353 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1354 " [,jpeg-wan-compression=[auto|never|always]]\n"
1355 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1356 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1357 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1358 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1359 " [,gl=[on|off]][,rendernode=<file>]\n"
1360 " enable spice\n"
1361 " at least one of {port, tls-port} is mandatory\n",
1362 QEMU_ARCH_ALL)
1363 STEXI
1364 @item -spice @var{option}[,@var{option}[,...]]
1365 @findex -spice
1366 Enable the spice remote desktop protocol. Valid options are
1367
1368 @table @option
1369
1370 @item port=<nr>
1371 Set the TCP port spice is listening on for plaintext channels.
1372
1373 @item addr=<addr>
1374 Set the IP address spice is listening on. Default is any address.
1375
1376 @item ipv4
1377 @itemx ipv6
1378 @itemx unix
1379 Force using the specified IP version.
1380
1381 @item password=<secret>
1382 Set the password you need to authenticate.
1383
1384 @item sasl
1385 Require that the client use SASL to authenticate with the spice.
1386 The exact choice of authentication method used is controlled from the
1387 system / user's SASL configuration file for the 'qemu' service. This
1388 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1389 unprivileged user, an environment variable SASL_CONF_PATH can be used
1390 to make it search alternate locations for the service config.
1391 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1392 it is recommended that SASL always be combined with the 'tls' and
1393 'x509' settings to enable use of SSL and server certificates. This
1394 ensures a data encryption preventing compromise of authentication
1395 credentials.
1396
1397 @item disable-ticketing
1398 Allow client connects without authentication.
1399
1400 @item disable-copy-paste
1401 Disable copy paste between the client and the guest.
1402
1403 @item disable-agent-file-xfer
1404 Disable spice-vdagent based file-xfer between the client and the guest.
1405
1406 @item tls-port=<nr>
1407 Set the TCP port spice is listening on for encrypted channels.
1408
1409 @item x509-dir=<dir>
1410 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1411
1412 @item x509-key-file=<file>
1413 @itemx x509-key-password=<file>
1414 @itemx x509-cert-file=<file>
1415 @itemx x509-cacert-file=<file>
1416 @itemx x509-dh-key-file=<file>
1417 The x509 file names can also be configured individually.
1418
1419 @item tls-ciphers=<list>
1420 Specify which ciphers to use.
1421
1422 @item tls-channel=[main|display|cursor|inputs|record|playback]
1423 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1424 Force specific channel to be used with or without TLS encryption. The
1425 options can be specified multiple times to configure multiple
1426 channels. The special name "default" can be used to set the default
1427 mode. For channels which are not explicitly forced into one mode the
1428 spice client is allowed to pick tls/plaintext as he pleases.
1429
1430 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1431 Configure image compression (lossless).
1432 Default is auto_glz.
1433
1434 @item jpeg-wan-compression=[auto|never|always]
1435 @itemx zlib-glz-wan-compression=[auto|never|always]
1436 Configure wan image compression (lossy for slow links).
1437 Default is auto.
1438
1439 @item streaming-video=[off|all|filter]
1440 Configure video stream detection. Default is off.
1441
1442 @item agent-mouse=[on|off]
1443 Enable/disable passing mouse events via vdagent. Default is on.
1444
1445 @item playback-compression=[on|off]
1446 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1447
1448 @item seamless-migration=[on|off]
1449 Enable/disable spice seamless migration. Default is off.
1450
1451 @item gl=[on|off]
1452 Enable/disable OpenGL context. Default is off.
1453
1454 @item rendernode=<file>
1455 DRM render node for OpenGL rendering. If not specified, it will pick
1456 the first available. (Since 2.9)
1457
1458 @end table
1459 ETEXI
1460
1461 DEF("portrait", 0, QEMU_OPTION_portrait,
1462 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1463 QEMU_ARCH_ALL)
1464 STEXI
1465 @item -portrait
1466 @findex -portrait
1467 Rotate graphical output 90 deg left (only PXA LCD).
1468 ETEXI
1469
1470 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1471 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1472 QEMU_ARCH_ALL)
1473 STEXI
1474 @item -rotate @var{deg}
1475 @findex -rotate
1476 Rotate graphical output some deg left (only PXA LCD).
1477 ETEXI
1478
1479 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1480 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1481 " select video card type\n", QEMU_ARCH_ALL)
1482 STEXI
1483 @item -vga @var{type}
1484 @findex -vga
1485 Select type of VGA card to emulate. Valid values for @var{type} are
1486 @table @option
1487 @item cirrus
1488 Cirrus Logic GD5446 Video card. All Windows versions starting from
1489 Windows 95 should recognize and use this graphic card. For optimal
1490 performances, use 16 bit color depth in the guest and the host OS.
1491 (This card was the default before QEMU 2.2)
1492 @item std
1493 Standard VGA card with Bochs VBE extensions. If your guest OS
1494 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1495 to use high resolution modes (>= 1280x1024x16) then you should use
1496 this option. (This card is the default since QEMU 2.2)
1497 @item vmware
1498 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1499 recent XFree86/XOrg server or Windows guest with a driver for this
1500 card.
1501 @item qxl
1502 QXL paravirtual graphic card. It is VGA compatible (including VESA
1503 2.0 VBE support). Works best with qxl guest drivers installed though.
1504 Recommended choice when using the spice protocol.
1505 @item tcx
1506 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1507 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1508 fixed resolution of 1024x768.
1509 @item cg3
1510 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1511 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1512 resolutions aimed at people wishing to run older Solaris versions.
1513 @item virtio
1514 Virtio VGA card.
1515 @item none
1516 Disable VGA card.
1517 @end table
1518 ETEXI
1519
1520 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1521 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1522 STEXI
1523 @item -full-screen
1524 @findex -full-screen
1525 Start in full screen.
1526 ETEXI
1527
1528 DEF("g", 1, QEMU_OPTION_g ,
1529 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1530 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1531 STEXI
1532 @item -g @var{width}x@var{height}[x@var{depth}]
1533 @findex -g
1534 Set the initial graphical resolution and depth (PPC, SPARC only).
1535 ETEXI
1536
1537 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1538 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1539 STEXI
1540 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1541 @findex -vnc
1542 Normally, if QEMU is compiled with graphical window support, it displays
1543 output such as guest graphics, guest console, and the QEMU monitor in a
1544 window. With this option, you can have QEMU listen on VNC display
1545 @var{display} and redirect the VGA display over the VNC session. It is
1546 very useful to enable the usb tablet device when using this option
1547 (option @option{-device usb-tablet}). When using the VNC display, you
1548 must use the @option{-k} parameter to set the keyboard layout if you are
1549 not using en-us. Valid syntax for the @var{display} is
1550
1551 @table @option
1552
1553 @item to=@var{L}
1554
1555 With this option, QEMU will try next available VNC @var{display}s, until the
1556 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1557 available, e.g. port 5900+@var{display} is already used by another
1558 application. By default, to=0.
1559
1560 @item @var{host}:@var{d}
1561
1562 TCP connections will only be allowed from @var{host} on display @var{d}.
1563 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1564 be omitted in which case the server will accept connections from any host.
1565
1566 @item unix:@var{path}
1567
1568 Connections will be allowed over UNIX domain sockets where @var{path} is the
1569 location of a unix socket to listen for connections on.
1570
1571 @item none
1572
1573 VNC is initialized but not started. The monitor @code{change} command
1574 can be used to later start the VNC server.
1575
1576 @end table
1577
1578 Following the @var{display} value there may be one or more @var{option} flags
1579 separated by commas. Valid options are
1580
1581 @table @option
1582
1583 @item reverse
1584
1585 Connect to a listening VNC client via a ``reverse'' connection. The
1586 client is specified by the @var{display}. For reverse network
1587 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1588 is a TCP port number, not a display number.
1589
1590 @item websocket
1591
1592 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1593 If a bare @var{websocket} option is given, the Websocket port is
1594 5700+@var{display}. An alternative port can be specified with the
1595 syntax @code{websocket}=@var{port}.
1596
1597 If @var{host} is specified connections will only be allowed from this host.
1598 It is possible to control the websocket listen address independently, using
1599 the syntax @code{websocket}=@var{host}:@var{port}.
1600
1601 If no TLS credentials are provided, the websocket connection runs in
1602 unencrypted mode. If TLS credentials are provided, the websocket connection
1603 requires encrypted client connections.
1604
1605 @item password
1606
1607 Require that password based authentication is used for client connections.
1608
1609 The password must be set separately using the @code{set_password} command in
1610 the @ref{pcsys_monitor}. The syntax to change your password is:
1611 @code{set_password <protocol> <password>} where <protocol> could be either
1612 "vnc" or "spice".
1613
1614 If you would like to change <protocol> password expiration, you should use
1615 @code{expire_password <protocol> <expiration-time>} where expiration time could
1616 be one of the following options: now, never, +seconds or UNIX time of
1617 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1618 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1619 date and time).
1620
1621 You can also use keywords "now" or "never" for the expiration time to
1622 allow <protocol> password to expire immediately or never expire.
1623
1624 @item tls-creds=@var{ID}
1625
1626 Provides the ID of a set of TLS credentials to use to secure the
1627 VNC server. They will apply to both the normal VNC server socket
1628 and the websocket socket (if enabled). Setting TLS credentials
1629 will cause the VNC server socket to enable the VeNCrypt auth
1630 mechanism. The credentials should have been previously created
1631 using the @option{-object tls-creds} argument.
1632
1633 @item sasl
1634
1635 Require that the client use SASL to authenticate with the VNC server.
1636 The exact choice of authentication method used is controlled from the
1637 system / user's SASL configuration file for the 'qemu' service. This
1638 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1639 unprivileged user, an environment variable SASL_CONF_PATH can be used
1640 to make it search alternate locations for the service config.
1641 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1642 it is recommended that SASL always be combined with the 'tls' and
1643 'x509' settings to enable use of SSL and server certificates. This
1644 ensures a data encryption preventing compromise of authentication
1645 credentials. See the @ref{vnc_security} section for details on using
1646 SASL authentication.
1647
1648 @item acl
1649
1650 Turn on access control lists for checking of the x509 client certificate
1651 and SASL party. For x509 certs, the ACL check is made against the
1652 certificate's distinguished name. This is something that looks like
1653 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
1654 made against the username, which depending on the SASL plugin, may
1655 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
1656 When the @option{acl} flag is set, the initial access list will be
1657 empty, with a @code{deny} policy. Thus no one will be allowed to
1658 use the VNC server until the ACLs have been loaded. This can be
1659 achieved using the @code{acl} monitor command.
1660
1661 @item lossy
1662
1663 Enable lossy compression methods (gradient, JPEG, ...). If this
1664 option is set, VNC client may receive lossy framebuffer updates
1665 depending on its encoding settings. Enabling this option can save
1666 a lot of bandwidth at the expense of quality.
1667
1668 @item non-adaptive
1669
1670 Disable adaptive encodings. Adaptive encodings are enabled by default.
1671 An adaptive encoding will try to detect frequently updated screen regions,
1672 and send updates in these regions using a lossy encoding (like JPEG).
1673 This can be really helpful to save bandwidth when playing videos. Disabling
1674 adaptive encodings restores the original static behavior of encodings
1675 like Tight.
1676
1677 @item share=[allow-exclusive|force-shared|ignore]
1678
1679 Set display sharing policy. 'allow-exclusive' allows clients to ask
1680 for exclusive access. As suggested by the rfb spec this is
1681 implemented by dropping other connections. Connecting multiple
1682 clients in parallel requires all clients asking for a shared session
1683 (vncviewer: -shared switch). This is the default. 'force-shared'
1684 disables exclusive client access. Useful for shared desktop sessions,
1685 where you don't want someone forgetting specify -shared disconnect
1686 everybody else. 'ignore' completely ignores the shared flag and
1687 allows everybody connect unconditionally. Doesn't conform to the rfb
1688 spec but is traditional QEMU behavior.
1689
1690 @item key-delay-ms
1691
1692 Set keyboard delay, for key down and key up events, in milliseconds.
1693 Default is 10. Keyboards are low-bandwidth devices, so this slowdown
1694 can help the device and guest to keep up and not lose events in case
1695 events are arriving in bulk. Possible causes for the latter are flaky
1696 network connections, or scripts for automated testing.
1697
1698 @end table
1699 ETEXI
1700
1701 STEXI
1702 @end table
1703 ETEXI
1704 ARCHHEADING(, QEMU_ARCH_I386)
1705
1706 ARCHHEADING(i386 target only:, QEMU_ARCH_I386)
1707 STEXI
1708 @table @option
1709 ETEXI
1710
1711 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
1712 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
1713 QEMU_ARCH_I386)
1714 STEXI
1715 @item -win2k-hack
1716 @findex -win2k-hack
1717 Use it when installing Windows 2000 to avoid a disk full bug. After
1718 Windows 2000 is installed, you no longer need this option (this option
1719 slows down the IDE transfers).
1720 ETEXI
1721
1722 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
1723 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
1724 QEMU_ARCH_I386)
1725 STEXI
1726 @item -no-fd-bootchk
1727 @findex -no-fd-bootchk
1728 Disable boot signature checking for floppy disks in BIOS. May
1729 be needed to boot from old floppy disks.
1730 ETEXI
1731
1732 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
1733 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1734 STEXI
1735 @item -no-acpi
1736 @findex -no-acpi
1737 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1738 it if your guest OS complains about ACPI problems (PC target machine
1739 only).
1740 ETEXI
1741
1742 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
1743 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
1744 STEXI
1745 @item -no-hpet
1746 @findex -no-hpet
1747 Disable HPET support.
1748 ETEXI
1749
1750 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
1751 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
1752 " ACPI table description\n", QEMU_ARCH_I386)
1753 STEXI
1754 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
1755 @findex -acpitable
1756 Add ACPI table with specified header fields and context from specified files.
1757 For file=, take whole ACPI table from the specified files, including all
1758 ACPI headers (possible overridden by other options).
1759 For data=, only data
1760 portion of the table is used, all header information is specified in the
1761 command line.
1762 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
1763 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
1764 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
1765 spec.
1766 ETEXI
1767
1768 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
1769 "-smbios file=binary\n"
1770 " load SMBIOS entry from binary file\n"
1771 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
1772 " [,uefi=on|off]\n"
1773 " specify SMBIOS type 0 fields\n"
1774 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1775 " [,uuid=uuid][,sku=str][,family=str]\n"
1776 " specify SMBIOS type 1 fields\n"
1777 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1778 " [,asset=str][,location=str]\n"
1779 " specify SMBIOS type 2 fields\n"
1780 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
1781 " [,sku=str]\n"
1782 " specify SMBIOS type 3 fields\n"
1783 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
1784 " [,asset=str][,part=str]\n"
1785 " specify SMBIOS type 4 fields\n"
1786 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
1787 " [,asset=str][,part=str][,speed=%d]\n"
1788 " specify SMBIOS type 17 fields\n",
1789 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1790 STEXI
1791 @item -smbios file=@var{binary}
1792 @findex -smbios
1793 Load SMBIOS entry from binary file.
1794
1795 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
1796 Specify SMBIOS type 0 fields
1797
1798 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
1799 Specify SMBIOS type 1 fields
1800
1801 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}]
1802 Specify SMBIOS type 2 fields
1803
1804 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
1805 Specify SMBIOS type 3 fields
1806
1807 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
1808 Specify SMBIOS type 4 fields
1809
1810 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
1811 Specify SMBIOS type 17 fields
1812 ETEXI
1813
1814 STEXI
1815 @end table
1816 ETEXI
1817 DEFHEADING()
1818
1819 DEFHEADING(Network options:)
1820 STEXI
1821 @table @option
1822 ETEXI
1823
1824 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
1825 #ifdef CONFIG_SLIRP
1826 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
1827 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
1828 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
1829 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,domainname=domain]\n"
1830 " [,tftp=dir][,tftp-server-name=name][,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
1831 #ifndef _WIN32
1832 "[,smb=dir[,smbserver=addr]]\n"
1833 #endif
1834 " configure a user mode network backend with ID 'str',\n"
1835 " its DHCP server and optional services\n"
1836 #endif
1837 #ifdef _WIN32
1838 "-netdev tap,id=str,ifname=name\n"
1839 " configure a host TAP network backend with ID 'str'\n"
1840 #else
1841 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
1842 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
1843 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
1844 " [,poll-us=n]\n"
1845 " configure a host TAP network backend with ID 'str'\n"
1846 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1847 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
1848 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
1849 " to deconfigure it\n"
1850 " use '[down]script=no' to disable script execution\n"
1851 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
1852 " configure it\n"
1853 " use 'fd=h' to connect to an already opened TAP interface\n"
1854 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
1855 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
1856 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
1857 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
1858 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
1859 " use vhost=on to enable experimental in kernel accelerator\n"
1860 " (only has effect for virtio guests which use MSIX)\n"
1861 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
1862 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
1863 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
1864 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
1865 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
1866 " spent on busy polling for vhost net\n"
1867 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
1868 " configure a host TAP network backend with ID 'str' that is\n"
1869 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1870 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
1871 #endif
1872 #ifdef __linux__
1873 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
1874 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
1875 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
1876 " [,rxcookie=rxcookie][,offset=offset]\n"
1877 " configure a network backend with ID 'str' connected to\n"
1878 " an Ethernet over L2TPv3 pseudowire.\n"
1879 " Linux kernel 3.3+ as well as most routers can talk\n"
1880 " L2TPv3. This transport allows connecting a VM to a VM,\n"
1881 " VM to a router and even VM to Host. It is a nearly-universal\n"
1882 " standard (RFC3391). Note - this implementation uses static\n"
1883 " pre-configured tunnels (same as the Linux kernel).\n"
1884 " use 'src=' to specify source address\n"
1885 " use 'dst=' to specify destination address\n"
1886 " use 'udp=on' to specify udp encapsulation\n"
1887 " use 'srcport=' to specify source udp port\n"
1888 " use 'dstport=' to specify destination udp port\n"
1889 " use 'ipv6=on' to force v6\n"
1890 " L2TPv3 uses cookies to prevent misconfiguration as\n"
1891 " well as a weak security measure\n"
1892 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
1893 " use 'txcookie=0x012345678' to specify a txcookie\n"
1894 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
1895 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
1896 " use 'pincounter=on' to work around broken counter handling in peer\n"
1897 " use 'offset=X' to add an extra offset between header and data\n"
1898 #endif
1899 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
1900 " configure a network backend to connect to another network\n"
1901 " using a socket connection\n"
1902 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
1903 " configure a network backend to connect to a multicast maddr and port\n"
1904 " use 'localaddr=addr' to specify the host address to send packets from\n"
1905 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
1906 " configure a network backend to connect to another network\n"
1907 " using an UDP tunnel\n"
1908 #ifdef CONFIG_VDE
1909 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
1910 " configure a network backend to connect to port 'n' of a vde switch\n"
1911 " running on host and listening for incoming connections on 'socketpath'.\n"
1912 " Use group 'groupname' and mode 'octalmode' to change default\n"
1913 " ownership and permissions for communication port.\n"
1914 #endif
1915 #ifdef CONFIG_NETMAP
1916 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
1917 " attach to the existing netmap-enabled network interface 'name', or to a\n"
1918 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
1919 " netmap device, defaults to '/dev/netmap')\n"
1920 #endif
1921 #ifdef CONFIG_POSIX
1922 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
1923 " configure a vhost-user network, backed by a chardev 'dev'\n"
1924 #endif
1925 "-netdev hubport,id=str,hubid=n[,netdev=nd]\n"
1926 " configure a hub port on the hub with ID 'n'\n", QEMU_ARCH_ALL)
1927 DEF("nic", HAS_ARG, QEMU_OPTION_nic,
1928 "-nic [tap|bridge|"
1929 #ifdef CONFIG_SLIRP
1930 "user|"
1931 #endif
1932 #ifdef __linux__
1933 "l2tpv3|"
1934 #endif
1935 #ifdef CONFIG_VDE
1936 "vde|"
1937 #endif
1938 #ifdef CONFIG_NETMAP
1939 "netmap|"
1940 #endif
1941 #ifdef CONFIG_POSIX
1942 "vhost-user|"
1943 #endif
1944 "socket][,option][,...][mac=macaddr]\n"
1945 " initialize an on-board / default host NIC (using MAC address\n"
1946 " macaddr) and connect it to the given host network backend\n"
1947 "-nic none use it alone to have zero network devices (the default is to\n"
1948 " provided a 'user' network connection)\n",
1949 QEMU_ARCH_ALL)
1950 DEF("net", HAS_ARG, QEMU_OPTION_net,
1951 "-net nic[,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
1952 " configure or create an on-board (or machine default) NIC and\n"
1953 " connect it to hub 0 (please use -nic unless you need a hub)\n"
1954 "-net ["
1955 #ifdef CONFIG_SLIRP
1956 "user|"
1957 #endif
1958 "tap|"
1959 "bridge|"
1960 #ifdef CONFIG_VDE
1961 "vde|"
1962 #endif
1963 #ifdef CONFIG_NETMAP
1964 "netmap|"
1965 #endif
1966 "socket][,option][,option][,...]\n"
1967 " old way to initialize a host network interface\n"
1968 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
1969 STEXI
1970 @item -nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]
1971 @findex -nic
1972 This option is a shortcut for configuring both the on-board (default) guest
1973 NIC hardware and the host network backend in one go. The host backend options
1974 are the same as with the corresponding @option{-netdev} options below.
1975 The guest NIC model can be set with @option{model=@var{modelname}}.
1976 Use @option{model=help} to list the available device types.
1977 The hardware MAC address can be set with @option{mac=@var{macaddr}}.
1978
1979 The following two example do exactly the same, to show how @option{-nic} can
1980 be used to shorten the command line length (note that the e1000 is the default
1981 on i386, so the @option{model=e1000} parameter could even be omitted here, too):
1982 @example
1983 qemu-system-i386 -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
1984 qemu-system-i386 -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32
1985 @end example
1986
1987 @item -nic none
1988 Indicate that no network devices should be configured. It is used to override
1989 the default configuration (default NIC with ``user'' host network backend)
1990 which is activated if no other networking options are provided.
1991
1992 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
1993 @findex -netdev
1994 Configure user mode host network backend which requires no administrator
1995 privilege to run. Valid options are:
1996
1997 @table @option
1998 @item id=@var{id}
1999 Assign symbolic name for use in monitor commands.
2000
2001 @item ipv4=on|off and ipv6=on|off
2002 Specify that either IPv4 or IPv6 must be enabled. If neither is specified
2003 both protocols are enabled.
2004
2005 @item net=@var{addr}[/@var{mask}]
2006 Set IP network address the guest will see. Optionally specify the netmask,
2007 either in the form a.b.c.d or as number of valid top-most bits. Default is
2008 10.0.2.0/24.
2009
2010 @item host=@var{addr}
2011 Specify the guest-visible address of the host. Default is the 2nd IP in the
2012 guest network, i.e. x.x.x.2.
2013
2014 @item ipv6-net=@var{addr}[/@var{int}]
2015 Set IPv6 network address the guest will see (default is fec0::/64). The
2016 network prefix is given in the usual hexadecimal IPv6 address
2017 notation. The prefix size is optional, and is given as the number of
2018 valid top-most bits (default is 64).
2019
2020 @item ipv6-host=@var{addr}
2021 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
2022 the guest network, i.e. xxxx::2.
2023
2024 @item restrict=on|off
2025 If this option is enabled, the guest will be isolated, i.e. it will not be
2026 able to contact the host and no guest IP packets will be routed over the host
2027 to the outside. This option does not affect any explicitly set forwarding rules.
2028
2029 @item hostname=@var{name}
2030 Specifies the client hostname reported by the built-in DHCP server.
2031
2032 @item dhcpstart=@var{addr}
2033 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
2034 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
2035
2036 @item dns=@var{addr}
2037 Specify the guest-visible address of the virtual nameserver. The address must
2038 be different from the host address. Default is the 3rd IP in the guest network,
2039 i.e. x.x.x.3.
2040
2041 @item ipv6-dns=@var{addr}
2042 Specify the guest-visible address of the IPv6 virtual nameserver. The address
2043 must be different from the host address. Default is the 3rd IP in the guest
2044 network, i.e. xxxx::3.
2045
2046 @item dnssearch=@var{domain}
2047 Provides an entry for the domain-search list sent by the built-in
2048 DHCP server. More than one domain suffix can be transmitted by specifying
2049 this option multiple times. If supported, this will cause the guest to
2050 automatically try to append the given domain suffix(es) in case a domain name
2051 can not be resolved.
2052
2053 Example:
2054 @example
2055 qemu-system-i386 -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
2056 @end example
2057
2058 @item domainname=@var{domain}
2059 Specifies the client domain name reported by the built-in DHCP server.
2060
2061 @item tftp=@var{dir}
2062 When using the user mode network stack, activate a built-in TFTP
2063 server. The files in @var{dir} will be exposed as the root of a TFTP server.
2064 The TFTP client on the guest must be configured in binary mode (use the command
2065 @code{bin} of the Unix TFTP client).
2066
2067 @item tftp-server-name=@var{name}
2068 In BOOTP reply, broadcast @var{name} as the "TFTP server name" (RFC2132 option
2069 66). This can be used to advise the guest to load boot files or configurations
2070 from a different server than the host address.
2071
2072 @item bootfile=@var{file}
2073 When using the user mode network stack, broadcast @var{file} as the BOOTP
2074 filename. In conjunction with @option{tftp}, this can be used to network boot
2075 a guest from a local directory.
2076
2077 Example (using pxelinux):
2078 @example
2079 qemu-system-i386 -hda linux.img -boot n -device e1000,netdev=n1 \
2080 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
2081 @end example
2082
2083 @item smb=@var{dir}[,smbserver=@var{addr}]
2084 When using the user mode network stack, activate a built-in SMB
2085 server so that Windows OSes can access to the host files in @file{@var{dir}}
2086 transparently. The IP address of the SMB server can be set to @var{addr}. By
2087 default the 4th IP in the guest network is used, i.e. x.x.x.4.
2088
2089 In the guest Windows OS, the line:
2090 @example
2091 10.0.2.4 smbserver
2092 @end example
2093 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
2094 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
2095
2096 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
2097
2098 Note that a SAMBA server must be installed on the host OS.
2099
2100 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
2101 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
2102 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
2103 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
2104 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
2105 be bound to a specific host interface. If no connection type is set, TCP is
2106 used. This option can be given multiple times.
2107
2108 For example, to redirect host X11 connection from screen 1 to guest
2109 screen 0, use the following:
2110
2111 @example
2112 # on the host
2113 qemu-system-i386 -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
2114 # this host xterm should open in the guest X11 server
2115 xterm -display :1
2116 @end example
2117
2118 To redirect telnet connections from host port 5555 to telnet port on
2119 the guest, use the following:
2120
2121 @example
2122 # on the host
2123 qemu-system-i386 -nic user,hostfwd=tcp::5555-:23
2124 telnet localhost 5555
2125 @end example
2126
2127 Then when you use on the host @code{telnet localhost 5555}, you
2128 connect to the guest telnet server.
2129
2130 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
2131 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
2132 Forward guest TCP connections to the IP address @var{server} on port @var{port}
2133 to the character device @var{dev} or to a program executed by @var{cmd:command}
2134 which gets spawned for each connection. This option can be given multiple times.
2135
2136 You can either use a chardev directly and have that one used throughout QEMU's
2137 lifetime, like in the following example:
2138
2139 @example
2140 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
2141 # the guest accesses it
2142 qemu-system-i386 -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321
2143 @end example
2144
2145 Or you can execute a command on every TCP connection established by the guest,
2146 so that QEMU behaves similar to an inetd process for that virtual server:
2147
2148 @example
2149 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
2150 # and connect the TCP stream to its stdin/stdout
2151 qemu-system-i386 -nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
2152 @end example
2153
2154 @end table
2155
2156 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
2157 Configure a host TAP network backend with ID @var{id}.
2158
2159 Use the network script @var{file} to configure it and the network script
2160 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
2161 automatically provides one. The default network configure script is
2162 @file{/etc/qemu-ifup} and the default network deconfigure script is
2163 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
2164 to disable script execution.
2165
2166 If running QEMU as an unprivileged user, use the network helper
2167 @var{helper} to configure the TAP interface and attach it to the bridge.
2168 The default network helper executable is @file{/path/to/qemu-bridge-helper}
2169 and the default bridge device is @file{br0}.
2170
2171 @option{fd}=@var{h} can be used to specify the handle of an already
2172 opened host TAP interface.
2173
2174 Examples:
2175
2176 @example
2177 #launch a QEMU instance with the default network script
2178 qemu-system-i386 linux.img -nic tap
2179 @end example
2180
2181 @example
2182 #launch a QEMU instance with two NICs, each one connected
2183 #to a TAP device
2184 qemu-system-i386 linux.img \
2185 -netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 \
2186 -netdev tap,id=nd1,ifname=tap1 -device rtl8139,netdev=nd1
2187 @end example
2188
2189 @example
2190 #launch a QEMU instance with the default network helper to
2191 #connect a TAP device to bridge br0
2192 qemu-system-i386 linux.img -device virtio-net-pci,netdev=n1 \
2193 -netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper"
2194 @end example
2195
2196 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
2197 Connect a host TAP network interface to a host bridge device.
2198
2199 Use the network helper @var{helper} to configure the TAP interface and
2200 attach it to the bridge. The default network helper executable is
2201 @file{/path/to/qemu-bridge-helper} and the default bridge
2202 device is @file{br0}.
2203
2204 Examples:
2205
2206 @example
2207 #launch a QEMU instance with the default network helper to
2208 #connect a TAP device to bridge br0
2209 qemu-system-i386 linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1
2210 @end example
2211
2212 @example
2213 #launch a QEMU instance with the default network helper to
2214 #connect a TAP device to bridge qemubr0
2215 qemu-system-i386 linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1
2216 @end example
2217
2218 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2219
2220 This host network backend can be used to connect the guest's network to
2221 another QEMU virtual machine using a TCP socket connection. If @option{listen}
2222 is specified, QEMU waits for incoming connections on @var{port}
2223 (@var{host} is optional). @option{connect} is used to connect to
2224 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
2225 specifies an already opened TCP socket.
2226
2227 Example:
2228 @example
2229 # launch a first QEMU instance
2230 qemu-system-i386 linux.img \
2231 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2232 -netdev socket,id=n1,listen=:1234
2233 # connect the network of this instance to the network of the first instance
2234 qemu-system-i386 linux.img \
2235 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2236 -netdev socket,id=n2,connect=127.0.0.1:1234
2237 @end example
2238
2239 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2240
2241 Configure a socket host network backend to share the guest's network traffic
2242 with another QEMU virtual machines using a UDP multicast socket, effectively
2243 making a bus for every QEMU with same multicast address @var{maddr} and @var{port}.
2244 NOTES:
2245 @enumerate
2246 @item
2247 Several QEMU can be running on different hosts and share same bus (assuming
2248 correct multicast setup for these hosts).
2249 @item
2250 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
2251 @url{http://user-mode-linux.sf.net}.
2252 @item
2253 Use @option{fd=h} to specify an already opened UDP multicast socket.
2254 @end enumerate
2255
2256 Example:
2257 @example
2258 # launch one QEMU instance
2259 qemu-system-i386 linux.img \
2260 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2261 -netdev socket,id=n1,mcast=230.0.0.1:1234
2262 # launch another QEMU instance on same "bus"
2263 qemu-system-i386 linux.img \
2264 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2265 -netdev socket,id=n2,mcast=230.0.0.1:1234
2266 # launch yet another QEMU instance on same "bus"
2267 qemu-system-i386 linux.img \
2268 -device e1000,netdev=n3,mac=52:54:00:12:34:58 \
2269 -netdev socket,id=n3,mcast=230.0.0.1:1234
2270 @end example
2271
2272 Example (User Mode Linux compat.):
2273 @example
2274 # launch QEMU instance (note mcast address selected is UML's default)
2275 qemu-system-i386 linux.img \
2276 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2277 -netdev socket,id=n1,mcast=239.192.168.1:1102
2278 # launch UML
2279 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2280 @end example
2281
2282 Example (send packets from host's 1.2.3.4):
2283 @example
2284 qemu-system-i386 linux.img \
2285 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2286 -netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2287 @end example
2288
2289 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2290 Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3391) is a
2291 popular protocol to transport Ethernet (and other Layer 2) data frames between
2292 two systems. It is present in routers, firewalls and the Linux kernel
2293 (from version 3.3 onwards).
2294
2295 This transport allows a VM to communicate to another VM, router or firewall directly.
2296
2297 @table @option
2298 @item src=@var{srcaddr}
2299 source address (mandatory)
2300 @item dst=@var{dstaddr}
2301 destination address (mandatory)
2302 @item udp
2303 select udp encapsulation (default is ip).
2304 @item srcport=@var{srcport}
2305 source udp port.
2306 @item dstport=@var{dstport}
2307 destination udp port.
2308 @item ipv6
2309 force v6, otherwise defaults to v4.
2310 @item rxcookie=@var{rxcookie}
2311 @itemx txcookie=@var{txcookie}
2312 Cookies are a weak form of security in the l2tpv3 specification.
2313 Their function is mostly to prevent misconfiguration. By default they are 32
2314 bit.
2315 @item cookie64
2316 Set cookie size to 64 bit instead of the default 32
2317 @item counter=off
2318 Force a 'cut-down' L2TPv3 with no counter as in
2319 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2320 @item pincounter=on
2321 Work around broken counter handling in peer. This may also help on
2322 networks which have packet reorder.
2323 @item offset=@var{offset}
2324 Add an extra offset between header and data
2325 @end table
2326
2327 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2328 on the remote Linux host 1.2.3.4:
2329 @example
2330 # Setup tunnel on linux host using raw ip as encapsulation
2331 # on 1.2.3.4
2332 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2333 encap udp udp_sport 16384 udp_dport 16384
2334 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2335 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2336 ifconfig vmtunnel0 mtu 1500
2337 ifconfig vmtunnel0 up
2338 brctl addif br-lan vmtunnel0
2339
2340
2341 # on 4.3.2.1
2342 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2343
2344 qemu-system-i386 linux.img -device e1000,netdev=n1 \
2345 -netdev l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2346
2347 @end example
2348
2349 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2350 Configure VDE backend to connect to PORT @var{n} of a vde switch running on host and
2351 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2352 and MODE @var{octalmode} to change default ownership and permissions for
2353 communication port. This option is only available if QEMU has been compiled
2354 with vde support enabled.
2355
2356 Example:
2357 @example
2358 # launch vde switch
2359 vde_switch -F -sock /tmp/myswitch
2360 # launch QEMU instance
2361 qemu-system-i386 linux.img -nic vde,sock=/tmp/myswitch
2362 @end example
2363
2364 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2365
2366 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2367 be a unix domain socket backed one. The vhost-user uses a specifically defined
2368 protocol to pass vhost ioctl replacement messages to an application on the other
2369 end of the socket. On non-MSIX guests, the feature can be forced with
2370 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2371 be created for multiqueue vhost-user.
2372
2373 Example:
2374 @example
2375 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2376 -numa node,memdev=mem \
2377 -chardev socket,id=chr0,path=/path/to/socket \
2378 -netdev type=vhost-user,id=net0,chardev=chr0 \
2379 -device virtio-net-pci,netdev=net0
2380 @end example
2381
2382 @item -netdev hubport,id=@var{id},hubid=@var{hubid}[,netdev=@var{nd}]
2383
2384 Create a hub port on the emulated hub with ID @var{hubid}.
2385
2386 The hubport netdev lets you connect a NIC to a QEMU emulated hub instead of a
2387 single netdev. Alternatively, you can also connect the hubport to another
2388 netdev with ID @var{nd} by using the @option{netdev=@var{nd}} option.
2389
2390 @item -net nic[,netdev=@var{nd}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
2391 @findex -net
2392 Legacy option to configure or create an on-board (or machine default) Network
2393 Interface Card(NIC) and connect it either to the emulated hub with ID 0 (i.e.
2394 the default hub), or to the netdev @var{nd}.
2395 The NIC is an e1000 by default on the PC target. Optionally, the MAC address
2396 can be changed to @var{mac}, the device address set to @var{addr} (PCI cards
2397 only), and a @var{name} can be assigned for use in monitor commands.
2398 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
2399 that the card should have; this option currently only affects virtio cards; set
2400 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
2401 NIC is created. QEMU can emulate several different models of network card.
2402 Use @code{-net nic,model=help} for a list of available devices for your target.
2403
2404 @item -net user|tap|bridge|socket|l2tpv3|vde[,...][,name=@var{name}]
2405 Configure a host network backend (with the options corresponding to the same
2406 @option{-netdev} option) and connect it to the emulated hub 0 (the default
2407 hub). Use @var{name} to specify the name of the hub port.
2408 ETEXI
2409
2410 STEXI
2411 @end table
2412 ETEXI
2413 DEFHEADING()
2414
2415 DEFHEADING(Character device options:)
2416
2417 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2418 "-chardev help\n"
2419 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2420 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2421 " [,server][,nowait][,telnet][,websocket][,reconnect=seconds][,mux=on|off]\n"
2422 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n"
2423 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,websocket][,reconnect=seconds]\n"
2424 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2425 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2426 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2427 " [,logfile=PATH][,logappend=on|off]\n"
2428 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2429 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2430 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2431 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2432 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2433 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2434 #ifdef _WIN32
2435 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2436 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2437 #else
2438 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2439 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2440 #endif
2441 #ifdef CONFIG_BRLAPI
2442 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2443 #endif
2444 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2445 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2446 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2447 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2448 #endif
2449 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2450 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2451 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2452 #endif
2453 #if defined(CONFIG_SPICE)
2454 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2455 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2456 #endif
2457 , QEMU_ARCH_ALL
2458 )
2459
2460 STEXI
2461
2462 The general form of a character device option is:
2463 @table @option
2464 @item -chardev @var{backend},id=@var{id}[,mux=on|off][,@var{options}]
2465 @findex -chardev
2466 Backend is one of:
2467 @option{null},
2468 @option{socket},
2469 @option{udp},
2470 @option{msmouse},
2471 @option{vc},
2472 @option{ringbuf},
2473 @option{file},
2474 @option{pipe},
2475 @option{console},
2476 @option{serial},
2477 @option{pty},
2478 @option{stdio},
2479 @option{braille},
2480 @option{tty},
2481 @option{parallel},
2482 @option{parport},
2483 @option{spicevmc},
2484 @option{spiceport}.
2485 The specific backend will determine the applicable options.
2486
2487 Use @code{-chardev help} to print all available chardev backend types.
2488
2489 All devices must have an id, which can be any string up to 127 characters long.
2490 It is used to uniquely identify this device in other command line directives.
2491
2492 A character device may be used in multiplexing mode by multiple front-ends.
2493 Specify @option{mux=on} to enable this mode.
2494 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2495 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2496 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2497 create a multiplexer with your specified ID, and you can then configure multiple
2498 front ends to use that chardev ID for their input/output. Up to four different
2499 front ends can be connected to a single multiplexed chardev. (Without
2500 multiplexing enabled, a chardev can only be used by a single front end.)
2501 For instance you could use this to allow a single stdio chardev to be used by
2502 two serial ports and the QEMU monitor:
2503
2504 @example
2505 -chardev stdio,mux=on,id=char0 \
2506 -mon chardev=char0,mode=readline \
2507 -serial chardev:char0 \
2508 -serial chardev:char0
2509 @end example
2510
2511 You can have more than one multiplexer in a system configuration; for instance
2512 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2513 multiplexed between the QEMU monitor and a parallel port:
2514
2515 @example
2516 -chardev stdio,mux=on,id=char0 \
2517 -mon chardev=char0,mode=readline \
2518 -parallel chardev:char0 \
2519 -chardev tcp,...,mux=on,id=char1 \
2520 -serial chardev:char1 \
2521 -serial chardev:char1
2522 @end example
2523
2524 When you're using a multiplexed character device, some escape sequences are
2525 interpreted in the input. @xref{mux_keys, Keys in the character backend
2526 multiplexer}.
2527
2528 Note that some other command line options may implicitly create multiplexed
2529 character backends; for instance @option{-serial mon:stdio} creates a
2530 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2531 and @option{-nographic} also multiplexes the console and the monitor to
2532 stdio.
2533
2534 There is currently no support for multiplexing in the other direction
2535 (where a single QEMU front end takes input and output from multiple chardevs).
2536
2537 Every backend supports the @option{logfile} option, which supplies the path
2538 to a file to record all data transmitted via the backend. The @option{logappend}
2539 option controls whether the log file will be truncated or appended to when
2540 opened.
2541
2542 @end table
2543
2544 The available backends are:
2545
2546 @table @option
2547 @item -chardev null,id=@var{id}
2548 A void device. This device will not emit any data, and will drop any data it
2549 receives. The null backend does not take any options.
2550
2551 @item -chardev socket,id=@var{id}[,@var{TCP options} or @var{unix options}][,server][,nowait][,telnet][,websocket][,reconnect=@var{seconds}][,tls-creds=@var{id}]
2552
2553 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2554 unix socket will be created if @option{path} is specified. Behaviour is
2555 undefined if TCP options are specified for a unix socket.
2556
2557 @option{server} specifies that the socket shall be a listening socket.
2558
2559 @option{nowait} specifies that QEMU should not block waiting for a client to
2560 connect to a listening socket.
2561
2562 @option{telnet} specifies that traffic on the socket should interpret telnet
2563 escape sequences.
2564
2565 @option{websocket} specifies that the socket uses WebSocket protocol for
2566 communication.
2567
2568 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2569 the remote end goes away. qemu will delay this many seconds and then attempt
2570 to reconnect. Zero disables reconnecting, and is the default.
2571
2572 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2573 and specifies the id of the TLS credentials to use for the handshake. The
2574 credentials must be previously created with the @option{-object tls-creds}
2575 argument.
2576
2577 TCP and unix socket options are given below:
2578
2579 @table @option
2580
2581 @item TCP options: port=@var{port}[,host=@var{host}][,to=@var{to}][,ipv4][,ipv6][,nodelay]
2582
2583 @option{host} for a listening socket specifies the local address to be bound.
2584 For a connecting socket species the remote host to connect to. @option{host} is
2585 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2586
2587 @option{port} for a listening socket specifies the local port to be bound. For a
2588 connecting socket specifies the port on the remote host to connect to.
2589 @option{port} can be given as either a port number or a service name.
2590 @option{port} is required.
2591
2592 @option{to} is only relevant to listening sockets. If it is specified, and
2593 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2594 to and including @option{to} until it succeeds. @option{to} must be specified
2595 as a port number.
2596
2597 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2598 If neither is specified the socket may use either protocol.
2599
2600 @option{nodelay} disables the Nagle algorithm.
2601
2602 @item unix options: path=@var{path}
2603
2604 @option{path} specifies the local path of the unix socket. @option{path} is
2605 required.
2606
2607 @end table
2608
2609 @item -chardev udp,id=@var{id}[,host=@var{host}],port=@var{port}[,localaddr=@var{localaddr}][,localport=@var{localport}][,ipv4][,ipv6]
2610
2611 Sends all traffic from the guest to a remote host over UDP.
2612
2613 @option{host} specifies the remote host to connect to. If not specified it
2614 defaults to @code{localhost}.
2615
2616 @option{port} specifies the port on the remote host to connect to. @option{port}
2617 is required.
2618
2619 @option{localaddr} specifies the local address to bind to. If not specified it
2620 defaults to @code{0.0.0.0}.
2621
2622 @option{localport} specifies the local port to bind to. If not specified any
2623 available local port will be used.
2624
2625 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2626 If neither is specified the device may use either protocol.
2627
2628 @item -chardev msmouse,id=@var{id}
2629
2630 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2631 take any options.
2632
2633 @item -chardev vc,id=@var{id}[[,width=@var{width}][,height=@var{height}]][[,cols=@var{cols}][,rows=@var{rows}]]
2634
2635 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2636 size.
2637
2638 @option{width} and @option{height} specify the width and height respectively of
2639 the console, in pixels.
2640
2641 @option{cols} and @option{rows} specify that the console be sized to fit a text
2642 console with the given dimensions.
2643
2644 @item -chardev ringbuf,id=@var{id}[,size=@var{size}]
2645
2646 Create a ring buffer with fixed size @option{size}.
2647 @var{size} must be a power of two and defaults to @code{64K}.
2648
2649 @item -chardev file,id=@var{id},path=@var{path}
2650
2651 Log all traffic received from the guest to a file.
2652
2653 @option{path} specifies the path of the file to be opened. This file will be
2654 created if it does not already exist, and overwritten if it does. @option{path}
2655 is required.
2656
2657 @item -chardev pipe,id=@var{id},path=@var{path}
2658
2659 Create a two-way connection to the guest. The behaviour differs slightly between
2660 Windows hosts and other hosts:
2661
2662 On Windows, a single duplex pipe will be created at
2663 @file{\\.pipe\@option{path}}.
2664
2665 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2666 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2667 received by the guest. Data written by the guest can be read from
2668 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2669 be present.
2670
2671 @option{path} forms part of the pipe path as described above. @option{path} is
2672 required.
2673
2674 @item -chardev console,id=@var{id}
2675
2676 Send traffic from the guest to QEMU's standard output. @option{console} does not
2677 take any options.
2678
2679 @option{console} is only available on Windows hosts.
2680
2681 @item -chardev serial,id=@var{id},path=@option{path}
2682
2683 Send traffic from the guest to a serial device on the host.
2684
2685 On Unix hosts serial will actually accept any tty device,
2686 not only serial lines.
2687
2688 @option{path} specifies the name of the serial device to open.
2689
2690 @item -chardev pty,id=@var{id}
2691
2692 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2693 not take any options.
2694
2695 @option{pty} is not available on Windows hosts.
2696
2697 @item -chardev stdio,id=@var{id}[,signal=on|off]
2698 Connect to standard input and standard output of the QEMU process.
2699
2700 @option{signal} controls if signals are enabled on the terminal, that includes
2701 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
2702 default, use @option{signal=off} to disable it.
2703
2704 @item -chardev braille,id=@var{id}
2705
2706 Connect to a local BrlAPI server. @option{braille} does not take any options.
2707
2708 @item -chardev tty,id=@var{id},path=@var{path}
2709
2710 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
2711 DragonFlyBSD hosts. It is an alias for @option{serial}.
2712
2713 @option{path} specifies the path to the tty. @option{path} is required.
2714
2715 @item -chardev parallel,id=@var{id},path=@var{path}
2716 @itemx -chardev parport,id=@var{id},path=@var{path}
2717
2718 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
2719
2720 Connect to a local parallel port.
2721
2722 @option{path} specifies the path to the parallel port device. @option{path} is
2723 required.
2724
2725 @item -chardev spicevmc,id=@var{id},debug=@var{debug},name=@var{name}
2726
2727 @option{spicevmc} is only available when spice support is built in.
2728
2729 @option{debug} debug level for spicevmc
2730
2731 @option{name} name of spice channel to connect to
2732
2733 Connect to a spice virtual machine channel, such as vdiport.
2734
2735 @item -chardev spiceport,id=@var{id},debug=@var{debug},name=@var{name}
2736
2737 @option{spiceport} is only available when spice support is built in.
2738
2739 @option{debug} debug level for spicevmc
2740
2741 @option{name} name of spice port to connect to
2742
2743 Connect to a spice port, allowing a Spice client to handle the traffic
2744 identified by a name (preferably a fqdn).
2745 ETEXI
2746
2747 STEXI
2748 @end table
2749 ETEXI
2750 DEFHEADING()
2751
2752 DEFHEADING(Bluetooth(R) options:)
2753 STEXI
2754 @table @option
2755 ETEXI
2756
2757 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
2758 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
2759 "-bt hci,host[:id]\n" \
2760 " use host's HCI with the given name\n" \
2761 "-bt hci[,vlan=n]\n" \
2762 " emulate a standard HCI in virtual scatternet 'n'\n" \
2763 "-bt vhci[,vlan=n]\n" \
2764 " add host computer to virtual scatternet 'n' using VHCI\n" \
2765 "-bt device:dev[,vlan=n]\n" \
2766 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
2767 QEMU_ARCH_ALL)
2768 STEXI
2769 @item -bt hci[...]
2770 @findex -bt
2771 Defines the function of the corresponding Bluetooth HCI. -bt options
2772 are matched with the HCIs present in the chosen machine type. For
2773 example when emulating a machine with only one HCI built into it, only
2774 the first @code{-bt hci[...]} option is valid and defines the HCI's
2775 logic. The Transport Layer is decided by the machine type. Currently
2776 the machines @code{n800} and @code{n810} have one HCI and all other
2777 machines have none.
2778
2779 Note: This option and the whole bluetooth subsystem is considered as deprecated.
2780 If you still use it, please send a mail to @email{qemu-devel@@nongnu.org} where
2781 you describe your usecase.
2782
2783 @anchor{bt-hcis}
2784 The following three types are recognized:
2785
2786 @table @option
2787 @item -bt hci,null
2788 (default) The corresponding Bluetooth HCI assumes no internal logic
2789 and will not respond to any HCI commands or emit events.
2790
2791 @item -bt hci,host[:@var{id}]
2792 (@code{bluez} only) The corresponding HCI passes commands / events
2793 to / from the physical HCI identified by the name @var{id} (default:
2794 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
2795 capable systems like Linux.
2796
2797 @item -bt hci[,vlan=@var{n}]
2798 Add a virtual, standard HCI that will participate in the Bluetooth
2799 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
2800 VLANs, devices inside a bluetooth network @var{n} can only communicate
2801 with other devices in the same network (scatternet).
2802 @end table
2803
2804 @item -bt vhci[,vlan=@var{n}]
2805 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
2806 to the host bluetooth stack instead of to the emulated target. This
2807 allows the host and target machines to participate in a common scatternet
2808 and communicate. Requires the Linux @code{vhci} driver installed. Can
2809 be used as following:
2810
2811 @example
2812 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
2813 @end example
2814
2815 @item -bt device:@var{dev}[,vlan=@var{n}]
2816 Emulate a bluetooth device @var{dev} and place it in network @var{n}
2817 (default @code{0}). QEMU can only emulate one type of bluetooth devices
2818 currently:
2819
2820 @table @option
2821 @item keyboard
2822 Virtual wireless keyboard implementing the HIDP bluetooth profile.
2823 @end table
2824 ETEXI
2825
2826 STEXI
2827 @end table
2828 ETEXI
2829 DEFHEADING()
2830
2831 #ifdef CONFIG_TPM
2832 DEFHEADING(TPM device options:)
2833
2834 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
2835 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
2836 " use path to provide path to a character device; default is /dev/tpm0\n"
2837 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
2838 " not provided it will be searched for in /sys/class/misc/tpm?/device\n"
2839 "-tpmdev emulator,id=id,chardev=dev\n"
2840 " configure the TPM device using chardev backend\n",
2841 QEMU_ARCH_ALL)
2842 STEXI
2843
2844 The general form of a TPM device option is:
2845 @table @option
2846
2847 @item -tpmdev @var{backend},id=@var{id}[,@var{options}]
2848 @findex -tpmdev
2849
2850 The specific backend type will determine the applicable options.
2851 The @code{-tpmdev} option creates the TPM backend and requires a
2852 @code{-device} option that specifies the TPM frontend interface model.
2853
2854 Use @code{-tpmdev help} to print all available TPM backend types.
2855
2856 @end table
2857
2858 The available backends are:
2859
2860 @table @option
2861
2862 @item -tpmdev passthrough,id=@var{id},path=@var{path},cancel-path=@var{cancel-path}
2863
2864 (Linux-host only) Enable access to the host's TPM using the passthrough
2865 driver.
2866
2867 @option{path} specifies the path to the host's TPM device, i.e., on
2868 a Linux host this would be @code{/dev/tpm0}.
2869 @option{path} is optional and by default @code{/dev/tpm0} is used.
2870
2871 @option{cancel-path} specifies the path to the host TPM device's sysfs
2872 entry allowing for cancellation of an ongoing TPM command.
2873 @option{cancel-path} is optional and by default QEMU will search for the
2874 sysfs entry to use.
2875
2876 Some notes about using the host's TPM with the passthrough driver:
2877
2878 The TPM device accessed by the passthrough driver must not be
2879 used by any other application on the host.
2880
2881 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
2882 the VM's firmware (BIOS/UEFI) will not be able to initialize the
2883 TPM again and may therefore not show a TPM-specific menu that would
2884 otherwise allow the user to configure the TPM, e.g., allow the user to
2885 enable/disable or activate/deactivate the TPM.
2886 Further, if TPM ownership is released from within a VM then the host's TPM
2887 will get disabled and deactivated. To enable and activate the
2888 TPM again afterwards, the host has to be rebooted and the user is
2889 required to enter the firmware's menu to enable and activate the TPM.
2890 If the TPM is left disabled and/or deactivated most TPM commands will fail.
2891
2892 To create a passthrough TPM use the following two options:
2893 @example
2894 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
2895 @end example
2896 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
2897 @code{tpmdev=tpm0} in the device option.
2898
2899 @item -tpmdev emulator,id=@var{id},chardev=@var{dev}
2900
2901 (Linux-host only) Enable access to a TPM emulator using Unix domain socket based
2902 chardev backend.
2903
2904 @option{chardev} specifies the unique ID of a character device backend that provides connection to the software TPM server.
2905
2906 To create a TPM emulator backend device with chardev socket backend:
2907 @example
2908
2909 -chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device tpm-tis,tpmdev=tpm0
2910
2911 @end example
2912
2913 ETEXI
2914
2915 STEXI
2916 @end table
2917 ETEXI
2918 DEFHEADING()
2919
2920 #endif
2921
2922 DEFHEADING(Linux/Multiboot boot specific:)
2923 STEXI
2924
2925 When using these options, you can use a given Linux or Multiboot
2926 kernel without installing it in the disk image. It can be useful
2927 for easier testing of various kernels.
2928
2929 @table @option
2930 ETEXI
2931
2932 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
2933 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
2934 STEXI
2935 @item -kernel @var{bzImage}
2936 @findex -kernel
2937 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
2938 or in multiboot format.
2939 ETEXI
2940
2941 DEF("append", HAS_ARG, QEMU_OPTION_append, \
2942 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
2943 STEXI
2944 @item -append @var{cmdline}
2945 @findex -append
2946 Use @var{cmdline} as kernel command line
2947 ETEXI
2948
2949 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
2950 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
2951 STEXI
2952 @item -initrd @var{file}
2953 @findex -initrd
2954 Use @var{file} as initial ram disk.
2955
2956 @item -initrd "@var{file1} arg=foo,@var{file2}"
2957
2958 This syntax is only available with multiboot.
2959
2960 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
2961 first module.
2962 ETEXI
2963
2964 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
2965 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
2966 STEXI
2967 @item -dtb @var{file}
2968 @findex -dtb
2969 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
2970 on boot.
2971 ETEXI
2972
2973 STEXI
2974 @end table
2975 ETEXI
2976 DEFHEADING()
2977
2978 DEFHEADING(Debug/Expert options:)
2979 STEXI
2980 @table @option
2981 ETEXI
2982
2983 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
2984 "-fw_cfg [name=]<name>,file=<file>\n"
2985 " add named fw_cfg entry with contents from file\n"
2986 "-fw_cfg [name=]<name>,string=<str>\n"
2987 " add named fw_cfg entry with contents from string\n",
2988 QEMU_ARCH_ALL)
2989 STEXI
2990
2991 @item -fw_cfg [name=]@var{name},file=@var{file}
2992 @findex -fw_cfg
2993 Add named fw_cfg entry with contents from file @var{file}.
2994
2995 @item -fw_cfg [name=]@var{name},string=@var{str}
2996 Add named fw_cfg entry with contents from string @var{str}.
2997
2998 The terminating NUL character of the contents of @var{str} will not be
2999 included as part of the fw_cfg item data. To insert contents with
3000 embedded NUL characters, you have to use the @var{file} parameter.
3001
3002 The fw_cfg entries are passed by QEMU through to the guest.
3003
3004 Example:
3005 @example
3006 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
3007 @end example
3008 creates an fw_cfg entry named opt/com.mycompany/blob with contents
3009 from ./my_blob.bin.
3010
3011 ETEXI
3012
3013 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
3014 "-serial dev redirect the serial port to char device 'dev'\n",
3015 QEMU_ARCH_ALL)
3016 STEXI
3017 @item -serial @var{dev}
3018 @findex -serial
3019 Redirect the virtual serial port to host character device
3020 @var{dev}. The default device is @code{vc} in graphical mode and
3021 @code{stdio} in non graphical mode.
3022
3023 This option can be used several times to simulate up to 4 serial
3024 ports.
3025
3026 Use @code{-serial none} to disable all serial ports.
3027
3028 Available character devices are:
3029 @table @option
3030 @item vc[:@var{W}x@var{H}]
3031 Virtual console. Optionally, a width and height can be given in pixel with
3032 @example
3033 vc:800x600
3034 @end example
3035 It is also possible to specify width or height in characters:
3036 @example
3037 vc:80Cx24C
3038 @end example
3039 @item pty
3040 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
3041 @item none
3042 No device is allocated.
3043 @item null
3044 void device
3045 @item chardev:@var{id}
3046 Use a named character device defined with the @code{-chardev} option.
3047 @item /dev/XXX
3048 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
3049 parameters are set according to the emulated ones.
3050 @item /dev/parport@var{N}
3051 [Linux only, parallel port only] Use host parallel port
3052 @var{N}. Currently SPP and EPP parallel port features can be used.
3053 @item file:@var{filename}
3054 Write output to @var{filename}. No character can be read.
3055 @item stdio
3056 [Unix only] standard input/output
3057 @item pipe:@var{filename}
3058 name pipe @var{filename}
3059 @item COM@var{n}
3060 [Windows only] Use host serial port @var{n}
3061 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
3062 This implements UDP Net Console.
3063 When @var{remote_host} or @var{src_ip} are not specified
3064 they default to @code{0.0.0.0}.
3065 When not using a specified @var{src_port} a random port is automatically chosen.
3066
3067 If you just want a simple readonly console you can use @code{netcat} or
3068 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
3069 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
3070 will appear in the netconsole session.
3071
3072 If you plan to send characters back via netconsole or you want to stop
3073 and start QEMU a lot of times, you should have QEMU use the same
3074 source port each time by using something like @code{-serial
3075 udp::4555@@:4556} to QEMU. Another approach is to use a patched
3076 version of netcat which can listen to a TCP port and send and receive
3077 characters via udp. If you have a patched version of netcat which
3078 activates telnet remote echo and single char transfer, then you can
3079 use the following options to set up a netcat redirector to allow
3080 telnet on port 5555 to access the QEMU port.
3081 @table @code
3082 @item QEMU Options:
3083 -serial udp::4555@@:4556
3084 @item netcat options:
3085 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3086 @item telnet options:
3087 localhost 5555
3088 @end table
3089
3090 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3091 The TCP Net Console has two modes of operation. It can send the serial
3092 I/O to a location or wait for a connection from a location. By default
3093 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3094 the @var{server} option QEMU will wait for a client socket application
3095 to connect to the port before continuing, unless the @code{nowait}
3096 option was specified. The @code{nodelay} option disables the Nagle buffering
3097 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3098 set, if the connection goes down it will attempt to reconnect at the
3099 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3100 one TCP connection at a time is accepted. You can use @code{telnet} to
3101 connect to the corresponding character device.
3102 @table @code
3103 @item Example to send tcp console to 192.168.0.2 port 4444
3104 -serial tcp:192.168.0.2:4444
3105 @item Example to listen and wait on port 4444 for connection
3106 -serial tcp::4444,server
3107 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3108 -serial tcp:192.168.0.100:4444,server,nowait
3109 @end table
3110
3111 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3112 The telnet protocol is used instead of raw tcp sockets. The options
3113 work the same as if you had specified @code{-serial tcp}. The
3114 difference is that the port acts like a telnet server or client using
3115 telnet option negotiation. This will also allow you to send the
3116 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3117 sequence. Typically in unix telnet you do it with Control-] and then
3118 type "send break" followed by pressing the enter key.
3119
3120 @item websocket:@var{host}:@var{port},server[,nowait][,nodelay]
3121 The WebSocket protocol is used instead of raw tcp socket. The port acts as
3122 a WebSocket server. Client mode is not supported.
3123
3124 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3125 A unix domain socket is used instead of a tcp socket. The option works the
3126 same as if you had specified @code{-serial tcp} except the unix domain socket
3127 @var{path} is used for connections.
3128
3129 @item mon:@var{dev_string}
3130 This is a special option to allow the monitor to be multiplexed onto
3131 another serial port. The monitor is accessed with key sequence of
3132 @key{Control-a} and then pressing @key{c}.
3133 @var{dev_string} should be any one of the serial devices specified
3134 above. An example to multiplex the monitor onto a telnet server
3135 listening on port 4444 would be:
3136 @table @code
3137 @item -serial mon:telnet::4444,server,nowait
3138 @end table
3139 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3140 QEMU any more but will be passed to the guest instead.
3141
3142 @item braille
3143 Braille device. This will use BrlAPI to display the braille output on a real
3144 or fake device.
3145
3146 @item msmouse
3147 Three button serial mouse. Configure the guest to use Microsoft protocol.
3148 @end table
3149 ETEXI
3150
3151 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3152 "-parallel dev redirect the parallel port to char device 'dev'\n",
3153 QEMU_ARCH_ALL)
3154 STEXI
3155 @item -parallel @var{dev}
3156 @findex -parallel
3157 Redirect the virtual parallel port to host device @var{dev} (same
3158 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3159 be used to use hardware devices connected on the corresponding host
3160 parallel port.
3161
3162 This option can be used several times to simulate up to 3 parallel
3163 ports.
3164
3165 Use @code{-parallel none} to disable all parallel ports.
3166 ETEXI
3167
3168 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3169 "-monitor dev redirect the monitor to char device 'dev'\n",
3170 QEMU_ARCH_ALL)
3171 STEXI
3172 @item -monitor @var{dev}
3173 @findex -monitor
3174 Redirect the monitor to host device @var{dev} (same devices as the
3175 serial port).
3176 The default device is @code{vc} in graphical mode and @code{stdio} in
3177 non graphical mode.
3178 Use @code{-monitor none} to disable the default monitor.
3179 ETEXI
3180 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3181 "-qmp dev like -monitor but opens in 'control' mode\n",
3182 QEMU_ARCH_ALL)
3183 STEXI
3184 @item -qmp @var{dev}
3185 @findex -qmp
3186 Like -monitor but opens in 'control' mode.
3187 ETEXI
3188 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3189 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3190 QEMU_ARCH_ALL)
3191 STEXI
3192 @item -qmp-pretty @var{dev}
3193 @findex -qmp-pretty
3194 Like -qmp but uses pretty JSON formatting.
3195 ETEXI
3196
3197 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3198 "-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]\n", QEMU_ARCH_ALL)
3199 STEXI
3200 @item -mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]
3201 @findex -mon
3202 Setup monitor on chardev @var{name}. @code{pretty} turns on JSON pretty printing
3203 easing human reading and debugging.
3204 ETEXI
3205
3206 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3207 "-debugcon dev redirect the debug console to char device 'dev'\n",
3208 QEMU_ARCH_ALL)
3209 STEXI
3210 @item -debugcon @var{dev}
3211 @findex -debugcon
3212 Redirect the debug console to host device @var{dev} (same devices as the
3213 serial port). The debug console is an I/O port which is typically port
3214 0xe9; writing to that I/O port sends output to this device.
3215 The default device is @code{vc} in graphical mode and @code{stdio} in
3216 non graphical mode.
3217 ETEXI
3218
3219 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3220 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3221 STEXI
3222 @item -pidfile @var{file}
3223 @findex -pidfile
3224 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3225 from a script.
3226 ETEXI
3227
3228 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3229 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3230 STEXI
3231 @item -singlestep
3232 @findex -singlestep
3233 Run the emulation in single step mode.
3234 ETEXI
3235
3236 DEF("preconfig", 0, QEMU_OPTION_preconfig, \
3237 "--preconfig pause QEMU before machine is initialized (experimental)\n",
3238 QEMU_ARCH_ALL)
3239 STEXI
3240 @item --preconfig
3241 @findex --preconfig
3242 Pause QEMU for interactive configuration before the machine is created,
3243 which allows querying and configuring properties that will affect
3244 machine initialization. Use QMP command 'x-exit-preconfig' to exit
3245 the preconfig state and move to the next state (i.e. run guest if -S
3246 isn't used or pause the second time if -S is used). This option is
3247 experimental.
3248 ETEXI
3249
3250 DEF("S", 0, QEMU_OPTION_S, \
3251 "-S freeze CPU at startup (use 'c' to start execution)\n",
3252 QEMU_ARCH_ALL)
3253 STEXI
3254 @item -S
3255 @findex -S
3256 Do not start CPU at startup (you must type 'c' in the monitor).
3257 ETEXI
3258
3259 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3260 "-realtime [mlock=on|off]\n"
3261 " run qemu with realtime features\n"
3262 " mlock=on|off controls mlock support (default: on)\n",
3263 QEMU_ARCH_ALL)
3264 STEXI
3265 @item -realtime mlock=on|off
3266 @findex -realtime
3267 Run qemu with realtime features.
3268 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3269 (enabled by default).
3270 ETEXI
3271
3272 DEF("overcommit", HAS_ARG, QEMU_OPTION_overcommit,
3273 "-overcommit [mem-lock=on|off][cpu-pm=on|off]\n"
3274 " run qemu with overcommit hints\n"
3275 " mem-lock=on|off controls memory lock support (default: off)\n"
3276 " cpu-pm=on|off controls cpu power management (default: off)\n",
3277 QEMU_ARCH_ALL)
3278 STEXI
3279 @item -overcommit mem-lock=on|off
3280 @item -overcommit cpu-pm=on|off
3281 @findex -overcommit
3282 Run qemu with hints about host resource overcommit. The default is
3283 to assume that host overcommits all resources.
3284
3285 Locking qemu and guest memory can be enabled via @option{mem-lock=on} (disabled
3286 by default). This works when host memory is not overcommitted and reduces the
3287 worst-case latency for guest. This is equivalent to @option{realtime}.
3288
3289 Guest ability to manage power state of host cpus (increasing latency for other
3290 processes on the same host cpu, but decreasing latency for guest) can be
3291 enabled via @option{cpu-pm=on} (disabled by default). This works best when
3292 host CPU is not overcommitted. When used, host estimates of CPU cycle and power
3293 utilization will be incorrect, not taking into account guest idle time.
3294 ETEXI
3295
3296 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3297 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3298 STEXI
3299 @item -gdb @var{dev}
3300 @findex -gdb
3301 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3302 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3303 stdio are reasonable use case. The latter is allowing to start QEMU from
3304 within gdb and establish the connection via a pipe:
3305 @example
3306 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3307 @end example
3308 ETEXI
3309
3310 DEF("s", 0, QEMU_OPTION_s, \
3311 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3312 QEMU_ARCH_ALL)
3313 STEXI
3314 @item -s
3315 @findex -s
3316 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3317 (@pxref{gdb_usage}).
3318 ETEXI
3319
3320 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3321 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3322 QEMU_ARCH_ALL)
3323 STEXI
3324 @item -d @var{item1}[,...]
3325 @findex -d
3326 Enable logging of specified items. Use '-d help' for a list of log items.
3327 ETEXI
3328
3329 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3330 "-D logfile output log to logfile (default stderr)\n",
3331 QEMU_ARCH_ALL)
3332 STEXI
3333 @item -D @var{logfile}
3334 @findex -D
3335 Output log in @var{logfile} instead of to stderr
3336 ETEXI
3337
3338 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3339 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3340 QEMU_ARCH_ALL)
3341 STEXI
3342 @item -dfilter @var{range1}[,...]
3343 @findex -dfilter
3344 Filter debug output to that relevant to a range of target addresses. The filter
3345 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3346 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3347 addresses and sizes required. For example:
3348 @example
3349 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3350 @end example
3351 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3352 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3353 block starting at 0xffffffc00005f000.
3354 ETEXI
3355
3356 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3357 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3358 QEMU_ARCH_ALL)
3359 STEXI
3360 @item -L @var{path}
3361 @findex -L
3362 Set the directory for the BIOS, VGA BIOS and keymaps.
3363
3364 To list all the data directories, use @code{-L help}.
3365 ETEXI
3366
3367 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3368 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3369 STEXI
3370 @item -bios @var{file}
3371 @findex -bios
3372 Set the filename for the BIOS.
3373 ETEXI
3374
3375 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3376 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3377 STEXI
3378 @item -enable-kvm
3379 @findex -enable-kvm
3380 Enable KVM full virtualization support. This option is only available
3381 if KVM support is enabled when compiling.
3382 ETEXI
3383
3384 DEF("enable-hax", 0, QEMU_OPTION_enable_hax, \
3385 "-enable-hax enable HAX virtualization support\n", QEMU_ARCH_I386)
3386 STEXI
3387 @item -enable-hax
3388 @findex -enable-hax
3389 Enable HAX (Hardware-based Acceleration eXecution) support. This option
3390 is only available if HAX support is enabled when compiling. HAX is only
3391 applicable to MAC and Windows platform, and thus does not conflict with
3392 KVM. This option is deprecated, use @option{-accel hax} instead.
3393 ETEXI
3394
3395 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3396 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3397 DEF("xen-create", 0, QEMU_OPTION_xen_create,
3398 "-xen-create create domain using xen hypercalls, bypassing xend\n"
3399 " warning: should not be used when xend is in use\n",
3400 QEMU_ARCH_ALL)
3401 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3402 "-xen-attach attach to existing xen domain\n"
3403 " xend will use this when starting QEMU\n",
3404 QEMU_ARCH_ALL)
3405 DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict,
3406 "-xen-domid-restrict restrict set of available xen operations\n"
3407 " to specified domain id. (Does not affect\n"
3408 " xenpv machine type).\n",
3409 QEMU_ARCH_ALL)
3410 STEXI
3411 @item -xen-domid @var{id}
3412 @findex -xen-domid
3413 Specify xen guest domain @var{id} (XEN only).
3414 @item -xen-create
3415 @findex -xen-create
3416 Create domain using xen hypercalls, bypassing xend.
3417 Warning: should not be used when xend is in use (XEN only).
3418 @item -xen-attach
3419 @findex -xen-attach
3420 Attach to existing xen domain.
3421 xend will use this when starting QEMU (XEN only).
3422 @findex -xen-domid-restrict
3423 Restrict set of available xen operations to specified domain id (XEN only).
3424 ETEXI
3425
3426 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3427 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3428 STEXI
3429 @item -no-reboot
3430 @findex -no-reboot
3431 Exit instead of rebooting.
3432 ETEXI
3433
3434 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3435 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3436 STEXI
3437 @item -no-shutdown
3438 @findex -no-shutdown
3439 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3440 This allows for instance switching to monitor to commit changes to the
3441 disk image.
3442 ETEXI
3443
3444 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3445 "-loadvm [tag|id]\n" \
3446 " start right away with a saved state (loadvm in monitor)\n",
3447 QEMU_ARCH_ALL)
3448 STEXI
3449 @item -loadvm @var{file}
3450 @findex -loadvm
3451 Start right away with a saved state (@code{loadvm} in monitor)
3452 ETEXI
3453
3454 #ifndef _WIN32
3455 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3456 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3457 #endif
3458 STEXI
3459 @item -daemonize
3460 @findex -daemonize
3461 Daemonize the QEMU process after initialization. QEMU will not detach from
3462 standard IO until it is ready to receive connections on any of its devices.
3463 This option is a useful way for external programs to launch QEMU without having
3464 to cope with initialization race conditions.
3465 ETEXI
3466
3467 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3468 "-option-rom rom load a file, rom, into the option ROM space\n",
3469 QEMU_ARCH_ALL)
3470 STEXI
3471 @item -option-rom @var{file}
3472 @findex -option-rom
3473 Load the contents of @var{file} as an option ROM.
3474 This option is useful to load things like EtherBoot.
3475 ETEXI
3476
3477 HXCOMM Silently ignored for compatibility
3478 DEF("clock", HAS_ARG, QEMU_OPTION_clock, "", QEMU_ARCH_ALL)
3479
3480 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3481 "-rtc [base=utc|localtime|<datetime>][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3482 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3483 QEMU_ARCH_ALL)
3484
3485 STEXI
3486
3487 @item -rtc [base=utc|localtime|@var{datetime}][,clock=host|rt|vm][,driftfix=none|slew]
3488 @findex -rtc
3489 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3490 UTC or local time, respectively. @code{localtime} is required for correct date in
3491 MS-DOS or Windows. To start at a specific point in time, provide @var{datetime} in the
3492 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3493
3494 By default the RTC is driven by the host system time. This allows using of the
3495 RTC as accurate reference clock inside the guest, specifically if the host
3496 time is smoothly following an accurate external reference clock, e.g. via NTP.
3497 If you want to isolate the guest time from the host, you can set @option{clock}
3498 to @code{rt} instead, which provides a host monotonic clock if host support it.
3499 To even prevent the RTC from progressing during suspension, you can set @option{clock}
3500 to @code{vm} (virtual clock). @samp{clock=vm} is recommended especially in
3501 icount mode in order to preserve determinism; however, note that in icount mode
3502 the speed of the virtual clock is variable and can in general differ from the
3503 host clock.
3504
3505 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3506 specifically with Windows' ACPI HAL. This option will try to figure out how
3507 many timer interrupts were not processed by the Windows guest and will
3508 re-inject them.
3509 ETEXI
3510
3511 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3512 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3513 " enable virtual instruction counter with 2^N clock ticks per\n" \
3514 " instruction, enable aligning the host and virtual clocks\n" \
3515 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3516 STEXI
3517 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}]
3518 @findex -icount
3519 Enable virtual instruction counter. The virtual cpu will execute one
3520 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3521 then the virtual cpu speed will be automatically adjusted to keep virtual
3522 time within a few seconds of real time.
3523
3524 When the virtual cpu is sleeping, the virtual time will advance at default
3525 speed unless @option{sleep=on|off} is specified.
3526 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3527 instantly whenever the virtual cpu goes to sleep mode and will not advance
3528 if no timer is enabled. This behavior give deterministic execution times from
3529 the guest point of view.
3530
3531 Note that while this option can give deterministic behavior, it does not
3532 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3533 order cores with complex cache hierarchies. The number of instructions
3534 executed often has little or no correlation with actual performance.
3535
3536 @option{align=on} will activate the delay algorithm which will try
3537 to synchronise the host clock and the virtual clock. The goal is to
3538 have a guest running at the real frequency imposed by the shift option.
3539 Whenever the guest clock is behind the host clock and if
3540 @option{align=on} is specified then we print a message to the user
3541 to inform about the delay.
3542 Currently this option does not work when @option{shift} is @code{auto}.
3543 Note: The sync algorithm will work for those shift values for which
3544 the guest clock runs ahead of the host clock. Typically this happens
3545 when the shift value is high (how high depends on the host machine).
3546
3547 When @option{rr} option is specified deterministic record/replay is enabled.
3548 Replay log is written into @var{filename} file in record mode and
3549 read from this file in replay mode.
3550
3551 Option rrsnapshot is used to create new vm snapshot named @var{snapshot}
3552 at the start of execution recording. In replay mode this option is used
3553 to load the initial VM state.
3554 ETEXI
3555
3556 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3557 "-watchdog model\n" \
3558 " enable virtual hardware watchdog [default=none]\n",
3559 QEMU_ARCH_ALL)
3560 STEXI
3561 @item -watchdog @var{model}
3562 @findex -watchdog
3563 Create a virtual hardware watchdog device. Once enabled (by a guest
3564 action), the watchdog must be periodically polled by an agent inside
3565 the guest or else the guest will be restarted. Choose a model for
3566 which your guest has drivers.
3567
3568 The @var{model} is the model of hardware watchdog to emulate. Use
3569 @code{-watchdog help} to list available hardware models. Only one
3570 watchdog can be enabled for a guest.
3571
3572 The following models may be available:
3573 @table @option
3574 @item ib700
3575 iBASE 700 is a very simple ISA watchdog with a single timer.
3576 @item i6300esb
3577 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3578 dual-timer watchdog.
3579 @item diag288
3580 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3581 (currently KVM only).
3582 @end table
3583 ETEXI
3584
3585 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3586 "-watchdog-action reset|shutdown|poweroff|inject-nmi|pause|debug|none\n" \
3587 " action when watchdog fires [default=reset]\n",
3588 QEMU_ARCH_ALL)
3589 STEXI
3590 @item -watchdog-action @var{action}
3591 @findex -watchdog-action
3592
3593 The @var{action} controls what QEMU will do when the watchdog timer
3594 expires.
3595 The default is
3596 @code{reset} (forcefully reset the guest).
3597 Other possible actions are:
3598 @code{shutdown} (attempt to gracefully shutdown the guest),
3599 @code{poweroff} (forcefully poweroff the guest),
3600 @code{inject-nmi} (inject a NMI into the guest),
3601 @code{pause} (pause the guest),
3602 @code{debug} (print a debug message and continue), or
3603 @code{none} (do nothing).
3604
3605 Note that the @code{shutdown} action requires that the guest responds
3606 to ACPI signals, which it may not be able to do in the sort of
3607 situations where the watchdog would have expired, and thus
3608 @code{-watchdog-action shutdown} is not recommended for production use.
3609
3610 Examples:
3611
3612 @table @code
3613 @item -watchdog i6300esb -watchdog-action pause
3614 @itemx -watchdog ib700
3615 @end table
3616 ETEXI
3617
3618 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3619 "-echr chr set terminal escape character instead of ctrl-a\n",
3620 QEMU_ARCH_ALL)
3621 STEXI
3622
3623 @item -echr @var{numeric_ascii_value}
3624 @findex -echr
3625 Change the escape character used for switching to the monitor when using
3626 monitor and serial sharing. The default is @code{0x01} when using the
3627 @code{-nographic} option. @code{0x01} is equal to pressing
3628 @code{Control-a}. You can select a different character from the ascii
3629 control keys where 1 through 26 map to Control-a through Control-z. For
3630 instance you could use the either of the following to change the escape
3631 character to Control-t.
3632 @table @code
3633 @item -echr 0x14
3634 @itemx -echr 20
3635 @end table
3636 ETEXI
3637
3638 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
3639 "-virtioconsole c\n" \
3640 " set virtio console\n", QEMU_ARCH_ALL)
3641 STEXI
3642 @item -virtioconsole @var{c}
3643 @findex -virtioconsole
3644 Set virtio console.
3645 This option is deprecated, please use @option{-device virtconsole} instead.
3646 ETEXI
3647
3648 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3649 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3650 STEXI
3651 @item -show-cursor
3652 @findex -show-cursor
3653 Show cursor.
3654 ETEXI
3655
3656 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3657 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3658 STEXI
3659 @item -tb-size @var{n}
3660 @findex -tb-size
3661 Set TB size.
3662 ETEXI
3663
3664 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3665 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3666 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3667 "-incoming unix:socketpath\n" \
3668 " prepare for incoming migration, listen on\n" \
3669 " specified protocol and socket address\n" \
3670 "-incoming fd:fd\n" \
3671 "-incoming exec:cmdline\n" \
3672 " accept incoming migration on given file descriptor\n" \
3673 " or from given external command\n" \
3674 "-incoming defer\n" \
3675 " wait for the URI to be specified via migrate_incoming\n",
3676 QEMU_ARCH_ALL)
3677 STEXI
3678 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3679 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3680 @findex -incoming
3681 Prepare for incoming migration, listen on a given tcp port.
3682
3683 @item -incoming unix:@var{socketpath}
3684 Prepare for incoming migration, listen on a given unix socket.
3685
3686 @item -incoming fd:@var{fd}
3687 Accept incoming migration from a given filedescriptor.
3688
3689 @item -incoming exec:@var{cmdline}
3690 Accept incoming migration as an output from specified external command.
3691
3692 @item -incoming defer
3693 Wait for the URI to be specified via migrate_incoming. The monitor can
3694 be used to change settings (such as migration parameters) prior to issuing
3695 the migrate_incoming to allow the migration to begin.
3696 ETEXI
3697
3698 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
3699 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
3700 STEXI
3701 @item -only-migratable
3702 @findex -only-migratable
3703 Only allow migratable devices. Devices will not be allowed to enter an
3704 unmigratable state.
3705 ETEXI
3706
3707 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3708 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3709 STEXI
3710 @item -nodefaults
3711 @findex -nodefaults
3712 Don't create default devices. Normally, QEMU sets the default devices like serial
3713 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3714 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3715 default devices.
3716 ETEXI
3717
3718 #ifndef _WIN32
3719 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3720 "-chroot dir chroot to dir just before starting the VM\n",
3721 QEMU_ARCH_ALL)
3722 #endif
3723 STEXI
3724 @item -chroot @var{dir}
3725 @findex -chroot
3726 Immediately before starting guest execution, chroot to the specified
3727 directory. Especially useful in combination with -runas.
3728 ETEXI
3729
3730 #ifndef _WIN32
3731 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
3732 "-runas user change to user id user just before starting the VM\n" \
3733 " user can be numeric uid:gid instead\n",
3734 QEMU_ARCH_ALL)
3735 #endif
3736 STEXI
3737 @item -runas @var{user}
3738 @findex -runas
3739 Immediately before starting guest execution, drop root privileges, switching
3740 to the specified user.
3741 ETEXI
3742
3743 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
3744 "-prom-env variable=value\n"
3745 " set OpenBIOS nvram variables\n",
3746 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
3747 STEXI
3748 @item -prom-env @var{variable}=@var{value}
3749 @findex -prom-env
3750 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
3751 ETEXI
3752 DEF("semihosting", 0, QEMU_OPTION_semihosting,
3753 "-semihosting semihosting mode\n",
3754 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3755 QEMU_ARCH_MIPS)
3756 STEXI
3757 @item -semihosting
3758 @findex -semihosting
3759 Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).
3760 ETEXI
3761 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
3762 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \
3763 " semihosting configuration\n",
3764 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3765 QEMU_ARCH_MIPS)
3766 STEXI
3767 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]
3768 @findex -semihosting-config
3769 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).
3770 @table @option
3771 @item target=@code{native|gdb|auto}
3772 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
3773 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
3774 during debug sessions and @code{native} otherwise.
3775 @item arg=@var{str1},arg=@var{str2},...
3776 Allows the user to pass input arguments, and can be used multiple times to build
3777 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
3778 command line is still supported for backward compatibility. If both the
3779 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
3780 specified, the former is passed to semihosting as it always takes precedence.
3781 @end table
3782 ETEXI
3783 DEF("old-param", 0, QEMU_OPTION_old_param,
3784 "-old-param old param mode\n", QEMU_ARCH_ARM)
3785 STEXI
3786 @item -old-param
3787 @findex -old-param (ARM)
3788 Old param mode (ARM only).
3789 ETEXI
3790
3791 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
3792 "-sandbox on[,obsolete=allow|deny][,elevateprivileges=allow|deny|children]\n" \
3793 " [,spawn=allow|deny][,resourcecontrol=allow|deny]\n" \
3794 " Enable seccomp mode 2 system call filter (default 'off').\n" \
3795 " use 'obsolete' to allow obsolete system calls that are provided\n" \
3796 " by the kernel, but typically no longer used by modern\n" \
3797 " C library implementations.\n" \
3798 " use 'elevateprivileges' to allow or deny QEMU process to elevate\n" \
3799 " its privileges by blacklisting all set*uid|gid system calls.\n" \
3800 " The value 'children' will deny set*uid|gid system calls for\n" \
3801 " main QEMU process but will allow forks and execves to run unprivileged\n" \
3802 " use 'spawn' to avoid QEMU to spawn new threads or processes by\n" \
3803 " blacklisting *fork and execve\n" \
3804 " use 'resourcecontrol' to disable process affinity and schedular priority\n",
3805 QEMU_ARCH_ALL)
3806 STEXI
3807 @item -sandbox @var{arg}[,obsolete=@var{string}][,elevateprivileges=@var{string}][,spawn=@var{string}][,resourcecontrol=@var{string}]
3808 @findex -sandbox
3809 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
3810 disable it. The default is 'off'.
3811 @table @option
3812 @item obsolete=@var{string}
3813 Enable Obsolete system calls
3814 @item elevateprivileges=@var{string}
3815 Disable set*uid|gid system calls
3816 @item spawn=@var{string}
3817 Disable *fork and execve
3818 @item resourcecontrol=@var{string}
3819 Disable process affinity and schedular priority
3820 @end table
3821 ETEXI
3822
3823 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
3824 "-readconfig <file>\n", QEMU_ARCH_ALL)
3825 STEXI
3826 @item -readconfig @var{file}
3827 @findex -readconfig
3828 Read device configuration from @var{file}. This approach is useful when you want to spawn
3829 QEMU process with many command line options but you don't want to exceed the command line
3830 character limit.
3831 ETEXI
3832 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
3833 "-writeconfig <file>\n"
3834 " read/write config file\n", QEMU_ARCH_ALL)
3835 STEXI
3836 @item -writeconfig @var{file}
3837 @findex -writeconfig
3838 Write device configuration to @var{file}. The @var{file} can be either filename to save
3839 command line and device configuration into file or dash @code{-}) character to print the
3840 output to stdout. This can be later used as input file for @code{-readconfig} option.
3841 ETEXI
3842
3843 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
3844 "-no-user-config\n"
3845 " do not load default user-provided config files at startup\n",
3846 QEMU_ARCH_ALL)
3847 STEXI
3848 @item -no-user-config
3849 @findex -no-user-config
3850 The @code{-no-user-config} option makes QEMU not load any of the user-provided
3851 config files on @var{sysconfdir}.
3852 ETEXI
3853
3854 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
3855 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
3856 " specify tracing options\n",
3857 QEMU_ARCH_ALL)
3858 STEXI
3859 HXCOMM This line is not accurate, as some sub-options are backend-specific but
3860 HXCOMM HX does not support conditional compilation of text.
3861 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
3862 @findex -trace
3863 @include qemu-option-trace.texi
3864 ETEXI
3865
3866 HXCOMM Internal use
3867 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
3868 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
3869
3870 #ifdef __linux__
3871 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
3872 "-enable-fips enable FIPS 140-2 compliance\n",
3873 QEMU_ARCH_ALL)
3874 #endif
3875 STEXI
3876 @item -enable-fips
3877 @findex -enable-fips
3878 Enable FIPS 140-2 compliance mode.
3879 ETEXI
3880
3881 HXCOMM Deprecated by -machine accel=tcg property
3882 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
3883
3884 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
3885 "-msg timestamp[=on|off]\n"
3886 " change the format of messages\n"
3887 " on|off controls leading timestamps (default:on)\n",
3888 QEMU_ARCH_ALL)
3889 STEXI
3890 @item -msg timestamp[=on|off]
3891 @findex -msg
3892 prepend a timestamp to each log message.(default:on)
3893 ETEXI
3894
3895 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
3896 "-dump-vmstate <file>\n"
3897 " Output vmstate information in JSON format to file.\n"
3898 " Use the scripts/vmstate-static-checker.py file to\n"
3899 " check for possible regressions in migration code\n"
3900 " by comparing two such vmstate dumps.\n",
3901 QEMU_ARCH_ALL)
3902 STEXI
3903 @item -dump-vmstate @var{file}
3904 @findex -dump-vmstate
3905 Dump json-encoded vmstate information for current machine type to file
3906 in @var{file}
3907 ETEXI
3908
3909 DEF("enable-sync-profile", 0, QEMU_OPTION_enable_sync_profile,
3910 "-enable-sync-profile\n"
3911 " enable synchronization profiling\n",
3912 QEMU_ARCH_ALL)
3913 STEXI
3914 @item -enable-sync-profile
3915 @findex -enable-sync-profile
3916 Enable synchronization profiling.
3917 ETEXI
3918
3919 STEXI
3920 @end table
3921 ETEXI
3922 DEFHEADING()
3923
3924 DEFHEADING(Generic object creation:)
3925 STEXI
3926 @table @option
3927 ETEXI
3928
3929 DEF("object", HAS_ARG, QEMU_OPTION_object,
3930 "-object TYPENAME[,PROP1=VALUE1,...]\n"
3931 " create a new object of type TYPENAME setting properties\n"
3932 " in the order they are specified. Note that the 'id'\n"
3933 " property must be set. These objects are placed in the\n"
3934 " '/objects' path.\n",
3935 QEMU_ARCH_ALL)
3936 STEXI
3937 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
3938 @findex -object
3939 Create a new object of type @var{typename} setting properties
3940 in the order they are specified. Note that the 'id'
3941 property must be set. These objects are placed in the
3942 '/objects' path.
3943
3944 @table @option
3945
3946 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off},discard-data=@var{on|off},merge=@var{on|off},dump=@var{on|off},prealloc=@var{on|off},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},align=@var{align}
3947
3948 Creates a memory file backend object, which can be used to back
3949 the guest RAM with huge pages.
3950
3951 The @option{id} parameter is a unique ID that will be used to reference this
3952 memory region when configuring the @option{-numa} argument.
3953
3954 The @option{size} option provides the size of the memory region, and accepts
3955 common suffixes, eg @option{500M}.
3956
3957 The @option{mem-path} provides the path to either a shared memory or huge page
3958 filesystem mount.
3959
3960 The @option{share} boolean option determines whether the memory
3961 region is marked as private to QEMU, or shared. The latter allows
3962 a co-operating external process to access the QEMU memory region.
3963
3964 The @option{share} is also required for pvrdma devices due to
3965 limitations in the RDMA API provided by Linux.
3966
3967 Setting share=on might affect the ability to configure NUMA
3968 bindings for the memory backend under some circumstances, see
3969 Documentation/vm/numa_memory_policy.txt on the Linux kernel
3970 source tree for additional details.
3971
3972 Setting the @option{discard-data} boolean option to @var{on}
3973 indicates that file contents can be destroyed when QEMU exits,
3974 to avoid unnecessarily flushing data to the backing file. Note
3975 that @option{discard-data} is only an optimization, and QEMU
3976 might not discard file contents if it aborts unexpectedly or is
3977 terminated using SIGKILL.
3978
3979 The @option{merge} boolean option enables memory merge, also known as
3980 MADV_MERGEABLE, so that Kernel Samepage Merging will consider the pages for
3981 memory deduplication.
3982
3983 Setting the @option{dump} boolean option to @var{off} excludes the memory from
3984 core dumps. This feature is also known as MADV_DONTDUMP.
3985
3986 The @option{prealloc} boolean option enables memory preallocation.
3987
3988 The @option{host-nodes} option binds the memory range to a list of NUMA host
3989 nodes.
3990
3991 The @option{policy} option sets the NUMA policy to one of the following values:
3992
3993 @table @option
3994 @item @var{default}
3995 default host policy
3996
3997 @item @var{preferred}
3998 prefer the given host node list for allocation
3999
4000 @item @var{bind}
4001 restrict memory allocation to the given host node list
4002
4003 @item @var{interleave}
4004 interleave memory allocations across the given host node list
4005 @end table
4006
4007 The @option{align} option specifies the base address alignment when
4008 QEMU mmap(2) @option{mem-path}, and accepts common suffixes, eg
4009 @option{2M}. Some backend store specified by @option{mem-path}
4010 requires an alignment different than the default one used by QEMU, eg
4011 the device DAX /dev/dax0.0 requires 2M alignment rather than 4K. In
4012 such cases, users can specify the required alignment via this option.
4013
4014 The @option{pmem} option specifies whether the backing file specified
4015 by @option{mem-path} is in host persistent memory that can be accessed
4016 using the SNIA NVM programming model (e.g. Intel NVDIMM).
4017 If @option{pmem} is set to 'on', QEMU will take necessary operations to
4018 guarantee the persistence of its own writes to @option{mem-path}
4019 (e.g. in vNVDIMM label emulation and live migration).
4020
4021 @item -object memory-backend-ram,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave}
4022
4023 Creates a memory backend object, which can be used to back the guest RAM.
4024 Memory backend objects offer more control than the @option{-m} option that is
4025 traditionally used to define guest RAM. Please refer to
4026 @option{memory-backend-file} for a description of the options.
4027
4028 @item -object memory-backend-memfd,id=@var{id},merge=@var{on|off},dump=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},seal=@var{on|off},hugetlb=@var{on|off},hugetlbsize=@var{size}
4029
4030 Creates an anonymous memory file backend object, which allows QEMU to
4031 share the memory with an external process (e.g. when using
4032 vhost-user). The memory is allocated with memfd and optional
4033 sealing. (Linux only)
4034
4035 The @option{seal} option creates a sealed-file, that will block
4036 further resizing the memory ('on' by default).
4037
4038 The @option{hugetlb} option specify the file to be created resides in
4039 the hugetlbfs filesystem (since Linux 4.14). Used in conjunction with
4040 the @option{hugetlb} option, the @option{hugetlbsize} option specify
4041 the hugetlb page size on systems that support multiple hugetlb page
4042 sizes (it must be a power of 2 value supported by the system).
4043
4044 In some versions of Linux, the @option{hugetlb} option is incompatible
4045 with the @option{seal} option (requires at least Linux 4.16).
4046
4047 Please refer to @option{memory-backend-file} for a description of the
4048 other options.
4049
4050 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
4051
4052 Creates a random number generator backend which obtains entropy from
4053 a device on the host. The @option{id} parameter is a unique ID that
4054 will be used to reference this entropy backend from the @option{virtio-rng}
4055 device. The @option{filename} parameter specifies which file to obtain
4056 entropy from and if omitted defaults to @option{/dev/random}.
4057
4058 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
4059
4060 Creates a random number generator backend which obtains entropy from
4061 an external daemon running on the host. The @option{id} parameter is
4062 a unique ID that will be used to reference this entropy backend from
4063 the @option{virtio-rng} device. The @option{chardev} parameter is
4064 the unique ID of a character device backend that provides the connection
4065 to the RNG daemon.
4066
4067 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
4068
4069 Creates a TLS anonymous credentials object, which can be used to provide
4070 TLS support on network backends. The @option{id} parameter is a unique
4071 ID which network backends will use to access the credentials. The
4072 @option{endpoint} is either @option{server} or @option{client} depending
4073 on whether the QEMU network backend that uses the credentials will be
4074 acting as a client or as a server. If @option{verify-peer} is enabled
4075 (the default) then once the handshake is completed, the peer credentials
4076 will be verified, though this is a no-op for anonymous credentials.
4077
4078 The @var{dir} parameter tells QEMU where to find the credential
4079 files. For server endpoints, this directory may contain a file
4080 @var{dh-params.pem} providing diffie-hellman parameters to use
4081 for the TLS server. If the file is missing, QEMU will generate
4082 a set of DH parameters at startup. This is a computationally
4083 expensive operation that consumes random pool entropy, so it is
4084 recommended that a persistent set of parameters be generated
4085 upfront and saved.
4086
4087 @item -object tls-creds-psk,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/keys/dir}[,username=@var{username}]
4088
4089 Creates a TLS Pre-Shared Keys (PSK) credentials object, which can be used to provide
4090 TLS support on network backends. The @option{id} parameter is a unique
4091 ID which network backends will use to access the credentials. The
4092 @option{endpoint} is either @option{server} or @option{client} depending
4093 on whether the QEMU network backend that uses the credentials will be
4094 acting as a client or as a server. For clients only, @option{username}
4095 is the username which will be sent to the server. If omitted
4096 it defaults to ``qemu''.
4097
4098 The @var{dir} parameter tells QEMU where to find the keys file.
4099 It is called ``@var{dir}/keys.psk'' and contains ``username:key''
4100 pairs. This file can most easily be created using the GnuTLS
4101 @code{psktool} program.
4102
4103 For server endpoints, @var{dir} may also contain a file
4104 @var{dh-params.pem} providing diffie-hellman parameters to use
4105 for the TLS server. If the file is missing, QEMU will generate
4106 a set of DH parameters at startup. This is a computationally
4107 expensive operation that consumes random pool entropy, so it is
4108 recommended that a persistent set of parameters be generated
4109 up front and saved.
4110
4111 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},priority=@var{priority},verify-peer=@var{on|off},passwordid=@var{id}
4112
4113 Creates a TLS anonymous credentials object, which can be used to provide
4114 TLS support on network backends. The @option{id} parameter is a unique
4115 ID which network backends will use to access the credentials. The
4116 @option{endpoint} is either @option{server} or @option{client} depending
4117 on whether the QEMU network backend that uses the credentials will be
4118 acting as a client or as a server. If @option{verify-peer} is enabled
4119 (the default) then once the handshake is completed, the peer credentials
4120 will be verified. With x509 certificates, this implies that the clients
4121 must be provided with valid client certificates too.
4122
4123 The @var{dir} parameter tells QEMU where to find the credential
4124 files. For server endpoints, this directory may contain a file
4125 @var{dh-params.pem} providing diffie-hellman parameters to use
4126 for the TLS server. If the file is missing, QEMU will generate
4127 a set of DH parameters at startup. This is a computationally
4128 expensive operation that consumes random pool entropy, so it is
4129 recommended that a persistent set of parameters be generated
4130 upfront and saved.
4131
4132 For x509 certificate credentials the directory will contain further files
4133 providing the x509 certificates. The certificates must be stored
4134 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
4135 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
4136 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
4137
4138 For the @var{server-key.pem} and @var{client-key.pem} files which
4139 contain sensitive private keys, it is possible to use an encrypted
4140 version by providing the @var{passwordid} parameter. This provides
4141 the ID of a previously created @code{secret} object containing the
4142 password for decryption.
4143
4144 The @var{priority} parameter allows to override the global default
4145 priority used by gnutls. This can be useful if the system administrator
4146 needs to use a weaker set of crypto priorities for QEMU without
4147 potentially forcing the weakness onto all applications. Or conversely
4148 if one wants wants a stronger default for QEMU than for all other
4149 applications, they can do this through this parameter. Its format is
4150 a gnutls priority string as described at
4151 @url{https://gnutls.org/manual/html_node/Priority-Strings.html}.
4152
4153 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
4154
4155 Interval @var{t} can't be 0, this filter batches the packet delivery: all
4156 packets arriving in a given interval on netdev @var{netdevid} are delayed
4157 until the end of the interval. Interval is in microseconds.
4158 @option{status} is optional that indicate whether the netfilter is
4159 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
4160
4161 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
4162
4163 @option{all}: the filter is attached both to the receive and the transmit
4164 queue of the netdev (default).
4165
4166 @option{rx}: the filter is attached to the receive queue of the netdev,
4167 where it will receive packets sent to the netdev.
4168
4169 @option{tx}: the filter is attached to the transmit queue of the netdev,
4170 where it will receive packets sent by the netdev.
4171
4172 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4173
4174 filter-mirror on netdev @var{netdevid},mirror net packet to chardev@var{chardevid}, if it has the vnet_hdr_support flag, filter-mirror will mirror packet with vnet_hdr_len.
4175
4176 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4177
4178 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
4179 @var{chardevid},and redirect indev's packet to filter.if it has the vnet_hdr_support flag,
4180 filter-redirector will redirect packet with vnet_hdr_len.
4181 Create a filter-redirector we need to differ outdev id from indev id, id can not
4182 be the same. we can just use indev or outdev, but at least one of indev or outdev
4183 need to be specified.
4184
4185 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},queue=@var{all|rx|tx},[vnet_hdr_support]
4186
4187 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
4188 secondary from primary to keep secondary tcp connection,and rewrite
4189 tcp packet to primary from secondary make tcp packet can be handled by
4190 client.if it has the vnet_hdr_support flag, we can parse packet with vnet header.
4191
4192 usage:
4193 colo secondary:
4194 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4195 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4196 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
4197
4198 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
4199
4200 Dump the network traffic on netdev @var{dev} to the file specified by
4201 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
4202 The file format is libpcap, so it can be analyzed with tools such as tcpdump
4203 or Wireshark.
4204
4205 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},outdev=@var{chardevid}[,vnet_hdr_support]
4206
4207 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
4208 secondary packet. If the packets are same, we will output primary
4209 packet to outdev@var{chardevid}, else we will notify colo-frame
4210 do checkpoint and send primary packet to outdev@var{chardevid}.
4211 if it has the vnet_hdr_support flag, colo compare will send/recv packet with vnet_hdr_len.
4212
4213 we must use it with the help of filter-mirror and filter-redirector.
4214
4215 @example
4216
4217 primary:
4218 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4219 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4220 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4221 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4222 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4223 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4224 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4225 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4226 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4227 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4228 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4229 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0
4230
4231 secondary:
4232 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4233 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4234 -chardev socket,id=red0,host=3.3.3.3,port=9003
4235 -chardev socket,id=red1,host=3.3.3.3,port=9004
4236 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4237 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4238
4239 @end example
4240
4241 If you want to know the detail of above command line, you can read
4242 the colo-compare git log.
4243
4244 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
4245
4246 Creates a cryptodev backend which executes crypto opreation from
4247 the QEMU cipher APIS. The @var{id} parameter is
4248 a unique ID that will be used to reference this cryptodev backend from
4249 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
4250 which specify the queue number of cryptodev backend, the default of
4251 @var{queues} is 1.
4252
4253 @example
4254
4255 # qemu-system-x86_64 \
4256 [...] \
4257 -object cryptodev-backend-builtin,id=cryptodev0 \
4258 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4259 [...]
4260 @end example
4261
4262 @item -object cryptodev-vhost-user,id=@var{id},chardev=@var{chardevid}[,queues=@var{queues}]
4263
4264 Creates a vhost-user cryptodev backend, backed by a chardev @var{chardevid}.
4265 The @var{id} parameter is a unique ID that will be used to reference this
4266 cryptodev backend from the @option{virtio-crypto} device.
4267 The chardev should be a unix domain socket backed one. The vhost-user uses
4268 a specifically defined protocol to pass vhost ioctl replacement messages
4269 to an application on the other end of the socket.
4270 The @var{queues} parameter is optional, which specify the queue number
4271 of cryptodev backend for multiqueue vhost-user, the default of @var{queues} is 1.
4272
4273 @example
4274
4275 # qemu-system-x86_64 \
4276 [...] \
4277 -chardev socket,id=chardev0,path=/path/to/socket \
4278 -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \
4279 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4280 [...]
4281 @end example
4282
4283 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4284 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4285
4286 Defines a secret to store a password, encryption key, or some other sensitive
4287 data. The sensitive data can either be passed directly via the @var{data}
4288 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
4289 parameter is insecure unless the sensitive data is encrypted.
4290
4291 The sensitive data can be provided in raw format (the default), or base64.
4292 When encoded as JSON, the raw format only supports valid UTF-8 characters,
4293 so base64 is recommended for sending binary data. QEMU will convert from
4294 which ever format is provided to the format it needs internally. eg, an
4295 RBD password can be provided in raw format, even though it will be base64
4296 encoded when passed onto the RBD sever.
4297
4298 For added protection, it is possible to encrypt the data associated with
4299 a secret using the AES-256-CBC cipher. Use of encryption is indicated
4300 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
4301 parameter provides the ID of a previously defined secret that contains
4302 the AES-256 decryption key. This key should be 32-bytes long and be
4303 base64 encoded. The @var{iv} parameter provides the random initialization
4304 vector used for encryption of this particular secret and should be a
4305 base64 encrypted string of the 16-byte IV.
4306
4307 The simplest (insecure) usage is to provide the secret inline
4308
4309 @example
4310
4311 # $QEMU -object secret,id=sec0,data=letmein,format=raw
4312
4313 @end example
4314
4315 The simplest secure usage is to provide the secret via a file
4316
4317 # printf "letmein" > mypasswd.txt
4318 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
4319
4320 For greater security, AES-256-CBC should be used. To illustrate usage,
4321 consider the openssl command line tool which can encrypt the data. Note
4322 that when encrypting, the plaintext must be padded to the cipher block
4323 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4324
4325 First a master key needs to be created in base64 encoding:
4326
4327 @example
4328 # openssl rand -base64 32 > key.b64
4329 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4330 @end example
4331
4332 Each secret to be encrypted needs to have a random initialization vector
4333 generated. These do not need to be kept secret
4334
4335 @example
4336 # openssl rand -base64 16 > iv.b64
4337 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4338 @end example
4339
4340 The secret to be defined can now be encrypted, in this case we're
4341 telling openssl to base64 encode the result, but it could be left
4342 as raw bytes if desired.
4343
4344 @example
4345 # SECRET=$(printf "letmein" |
4346 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4347 @end example
4348
4349 When launching QEMU, create a master secret pointing to @code{key.b64}
4350 and specify that to be used to decrypt the user password. Pass the
4351 contents of @code{iv.b64} to the second secret
4352
4353 @example
4354 # $QEMU \
4355 -object secret,id=secmaster0,format=base64,file=key.b64 \
4356 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4357 data=$SECRET,iv=$(<iv.b64)
4358 @end example
4359
4360 @item -object sev-guest,id=@var{id},cbitpos=@var{cbitpos},reduced-phys-bits=@var{val},[sev-device=@var{string},policy=@var{policy},handle=@var{handle},dh-cert-file=@var{file},session-file=@var{file}]
4361
4362 Create a Secure Encrypted Virtualization (SEV) guest object, which can be used
4363 to provide the guest memory encryption support on AMD processors.
4364
4365 When memory encryption is enabled, one of the physical address bit (aka the
4366 C-bit) is utilized to mark if a memory page is protected. The @option{cbitpos}
4367 is used to provide the C-bit position. The C-bit position is Host family dependent
4368 hence user must provide this value. On EPYC, the value should be 47.
4369
4370 When memory encryption is enabled, we loose certain bits in physical address space.
4371 The @option{reduced-phys-bits} is used to provide the number of bits we loose in
4372 physical address space. Similar to C-bit, the value is Host family dependent.
4373 On EPYC, the value should be 5.
4374
4375 The @option{sev-device} provides the device file to use for communicating with
4376 the SEV firmware running inside AMD Secure Processor. The default device is
4377 '/dev/sev'. If hardware supports memory encryption then /dev/sev devices are
4378 created by CCP driver.
4379
4380 The @option{policy} provides the guest policy to be enforced by the SEV firmware
4381 and restrict what configuration and operational commands can be performed on this
4382 guest by the hypervisor. The policy should be provided by the guest owner and is
4383 bound to the guest and cannot be changed throughout the lifetime of the guest.
4384 The default is 0.
4385
4386 If guest @option{policy} allows sharing the key with another SEV guest then
4387 @option{handle} can be use to provide handle of the guest from which to share
4388 the key.
4389
4390 The @option{dh-cert-file} and @option{session-file} provides the guest owner's
4391 Public Diffie-Hillman key defined in SEV spec. The PDH and session parameters
4392 are used for establishing a cryptographic session with the guest owner to
4393 negotiate keys used for attestation. The file must be encoded in base64.
4394
4395 e.g to launch a SEV guest
4396 @example
4397 # $QEMU \
4398 ......
4399 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \
4400 -machine ...,memory-encryption=sev0
4401 .....
4402
4403 @end example
4404 @end table
4405
4406 ETEXI
4407
4408
4409 HXCOMM This is the last statement. Insert new options before this line!
4410 STEXI
4411 @end table
4412 ETEXI