]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-options.hx
Merge remote-tracking branch 'remotes/stsquad/tags/pull-testing-next-220219-1' into...
[mirror_qemu.git] / qemu-options.hx
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
8
9 DEFHEADING(Standard options:)
10 STEXI
11 @table @option
12 ETEXI
13
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
21
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
29
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, hax, hvf, whpx or tcg (default: tcg)\n"
35 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
36 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
37 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n"
38 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
39 " mem-merge=on|off controls memory merge support (default: on)\n"
40 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
41 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
42 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
43 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
44 " nvdimm=on|off controls NVDIMM support (default=off)\n"
45 " enforce-config-section=on|off enforce configuration section migration (default=off)\n"
46 " memory-encryption=@var{} memory encryption object to use (default=none)\n",
47 QEMU_ARCH_ALL)
48 STEXI
49 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
50 @findex -machine
51 Select the emulated machine by @var{name}. Use @code{-machine help} to list
52 available machines.
53
54 For architectures which aim to support live migration compatibility
55 across releases, each release will introduce a new versioned machine
56 type. For example, the 2.8.0 release introduced machine types
57 ``pc-i440fx-2.8'' and ``pc-q35-2.8'' for the x86_64/i686 architectures.
58
59 To allow live migration of guests from QEMU version 2.8.0, to QEMU
60 version 2.9.0, the 2.9.0 version must support the ``pc-i440fx-2.8''
61 and ``pc-q35-2.8'' machines too. To allow users live migrating VMs
62 to skip multiple intermediate releases when upgrading, new releases
63 of QEMU will support machine types from many previous versions.
64
65 Supported machine properties are:
66 @table @option
67 @item accel=@var{accels1}[:@var{accels2}[:...]]
68 This is used to enable an accelerator. Depending on the target architecture,
69 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
70 more than one accelerator specified, the next one is used if the previous one
71 fails to initialize.
72 @item kernel_irqchip=on|off
73 Controls in-kernel irqchip support for the chosen accelerator when available.
74 @item gfx_passthru=on|off
75 Enables IGD GFX passthrough support for the chosen machine when available.
76 @item vmport=on|off|auto
77 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
78 value based on accel. For accel=xen the default is off otherwise the default
79 is on.
80 @item kvm_shadow_mem=size
81 Defines the size of the KVM shadow MMU.
82 @item dump-guest-core=on|off
83 Include guest memory in a core dump. The default is on.
84 @item mem-merge=on|off
85 Enables or disables memory merge support. This feature, when supported by
86 the host, de-duplicates identical memory pages among VMs instances
87 (enabled by default).
88 @item aes-key-wrap=on|off
89 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
90 controls whether AES wrapping keys will be created to allow
91 execution of AES cryptographic functions. The default is on.
92 @item dea-key-wrap=on|off
93 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
94 controls whether DEA wrapping keys will be created to allow
95 execution of DEA cryptographic functions. The default is on.
96 @item nvdimm=on|off
97 Enables or disables NVDIMM support. The default is off.
98 @item enforce-config-section=on|off
99 If @option{enforce-config-section} is set to @var{on}, force migration
100 code to send configuration section even if the machine-type sets the
101 @option{migration.send-configuration} property to @var{off}.
102 NOTE: this parameter is deprecated. Please use @option{-global}
103 @option{migration.send-configuration}=@var{on|off} instead.
104 @item memory-encryption=@var{}
105 Memory encryption object to use. The default is none.
106 @end table
107 ETEXI
108
109 HXCOMM Deprecated by -machine
110 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
111
112 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
113 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
114 STEXI
115 @item -cpu @var{model}
116 @findex -cpu
117 Select CPU model (@code{-cpu help} for list and additional feature selection)
118 ETEXI
119
120 DEF("accel", HAS_ARG, QEMU_OPTION_accel,
121 "-accel [accel=]accelerator[,thread=single|multi]\n"
122 " select accelerator (kvm, xen, hax, hvf, whpx or tcg; use 'help' for a list)\n"
123 " thread=single|multi (enable multi-threaded TCG)\n", QEMU_ARCH_ALL)
124 STEXI
125 @item -accel @var{name}[,prop=@var{value}[,...]]
126 @findex -accel
127 This is used to enable an accelerator. Depending on the target architecture,
128 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
129 more than one accelerator specified, the next one is used if the previous one
130 fails to initialize.
131 @table @option
132 @item thread=single|multi
133 Controls number of TCG threads. When the TCG is multi-threaded there will be one
134 thread per vCPU therefor taking advantage of additional host cores. The default
135 is to enable multi-threading where both the back-end and front-ends support it and
136 no incompatible TCG features have been enabled (e.g. icount/replay).
137 @end table
138 ETEXI
139
140 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
141 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
142 " set the number of CPUs to 'n' [default=1]\n"
143 " maxcpus= maximum number of total cpus, including\n"
144 " offline CPUs for hotplug, etc\n"
145 " cores= number of CPU cores on one socket\n"
146 " threads= number of threads on one CPU core\n"
147 " sockets= number of discrete sockets in the system\n",
148 QEMU_ARCH_ALL)
149 STEXI
150 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
151 @findex -smp
152 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
153 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
154 to 4.
155 For the PC target, the number of @var{cores} per socket, the number
156 of @var{threads} per cores and the total number of @var{sockets} can be
157 specified. Missing values will be computed. If any on the three values is
158 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
159 specifies the maximum number of hotpluggable CPUs.
160 ETEXI
161
162 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
163 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
164 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
165 "-numa dist,src=source,dst=destination,val=distance\n"
166 "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n",
167 QEMU_ARCH_ALL)
168 STEXI
169 @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
170 @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
171 @itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance}
172 @itemx -numa cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}]
173 @findex -numa
174 Define a NUMA node and assign RAM and VCPUs to it.
175 Set the NUMA distance from a source node to a destination node.
176
177 Legacy VCPU assignment uses @samp{cpus} option where
178 @var{firstcpu} and @var{lastcpu} are CPU indexes. Each
179 @samp{cpus} option represent a contiguous range of CPU indexes
180 (or a single VCPU if @var{lastcpu} is omitted). A non-contiguous
181 set of VCPUs can be represented by providing multiple @samp{cpus}
182 options. If @samp{cpus} is omitted on all nodes, VCPUs are automatically
183 split between them.
184
185 For example, the following option assigns VCPUs 0, 1, 2 and 5 to
186 a NUMA node:
187 @example
188 -numa node,cpus=0-2,cpus=5
189 @end example
190
191 @samp{cpu} option is a new alternative to @samp{cpus} option
192 which uses @samp{socket-id|core-id|thread-id} properties to assign
193 CPU objects to a @var{node} using topology layout properties of CPU.
194 The set of properties is machine specific, and depends on used
195 machine type/@samp{smp} options. It could be queried with
196 @samp{hotpluggable-cpus} monitor command.
197 @samp{node-id} property specifies @var{node} to which CPU object
198 will be assigned, it's required for @var{node} to be declared
199 with @samp{node} option before it's used with @samp{cpu} option.
200
201 For example:
202 @example
203 -M pc \
204 -smp 1,sockets=2,maxcpus=2 \
205 -numa node,nodeid=0 -numa node,nodeid=1 \
206 -numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1
207 @end example
208
209 @samp{mem} assigns a given RAM amount to a node. @samp{memdev}
210 assigns RAM from a given memory backend device to a node. If
211 @samp{mem} and @samp{memdev} are omitted in all nodes, RAM is
212 split equally between them.
213
214 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore,
215 if one node uses @samp{memdev}, all of them have to use it.
216
217 @var{source} and @var{destination} are NUMA node IDs.
218 @var{distance} is the NUMA distance from @var{source} to @var{destination}.
219 The distance from a node to itself is always 10. If any pair of nodes is
220 given a distance, then all pairs must be given distances. Although, when
221 distances are only given in one direction for each pair of nodes, then
222 the distances in the opposite directions are assumed to be the same. If,
223 however, an asymmetrical pair of distances is given for even one node
224 pair, then all node pairs must be provided distance values for both
225 directions, even when they are symmetrical. When a node is unreachable
226 from another node, set the pair's distance to 255.
227
228 Note that the -@option{numa} option doesn't allocate any of the
229 specified resources, it just assigns existing resources to NUMA
230 nodes. This means that one still has to use the @option{-m},
231 @option{-smp} options to allocate RAM and VCPUs respectively.
232
233 ETEXI
234
235 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
236 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
237 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
238 STEXI
239 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
240 @findex -add-fd
241
242 Add a file descriptor to an fd set. Valid options are:
243
244 @table @option
245 @item fd=@var{fd}
246 This option defines the file descriptor of which a duplicate is added to fd set.
247 The file descriptor cannot be stdin, stdout, or stderr.
248 @item set=@var{set}
249 This option defines the ID of the fd set to add the file descriptor to.
250 @item opaque=@var{opaque}
251 This option defines a free-form string that can be used to describe @var{fd}.
252 @end table
253
254 You can open an image using pre-opened file descriptors from an fd set:
255 @example
256 qemu-system-i386
257 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
258 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
259 -drive file=/dev/fdset/2,index=0,media=disk
260 @end example
261 ETEXI
262
263 DEF("set", HAS_ARG, QEMU_OPTION_set,
264 "-set group.id.arg=value\n"
265 " set <arg> parameter for item <id> of type <group>\n"
266 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
267 STEXI
268 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
269 @findex -set
270 Set parameter @var{arg} for item @var{id} of type @var{group}
271 ETEXI
272
273 DEF("global", HAS_ARG, QEMU_OPTION_global,
274 "-global driver.property=value\n"
275 "-global driver=driver,property=property,value=value\n"
276 " set a global default for a driver property\n",
277 QEMU_ARCH_ALL)
278 STEXI
279 @item -global @var{driver}.@var{prop}=@var{value}
280 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
281 @findex -global
282 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
283
284 @example
285 qemu-system-i386 -global ide-hd.physical_block_size=4096 disk-image.img
286 @end example
287
288 In particular, you can use this to set driver properties for devices which are
289 created automatically by the machine model. To create a device which is not
290 created automatically and set properties on it, use -@option{device}.
291
292 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
293 driver=@var{driver},property=@var{prop},value=@var{value}. The
294 longhand syntax works even when @var{driver} contains a dot.
295 ETEXI
296
297 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
298 "-boot [order=drives][,once=drives][,menu=on|off]\n"
299 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
300 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
301 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
302 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
303 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
304 QEMU_ARCH_ALL)
305 STEXI
306 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
307 @findex -boot
308 Specify boot order @var{drives} as a string of drive letters. Valid
309 drive letters depend on the target architecture. The x86 PC uses: a, b
310 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
311 from network adapter 1-4), hard disk boot is the default. To apply a
312 particular boot order only on the first startup, specify it via
313 @option{once}. Note that the @option{order} or @option{once} parameter
314 should not be used together with the @option{bootindex} property of
315 devices, since the firmware implementations normally do not support both
316 at the same time.
317
318 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
319 as firmware/BIOS supports them. The default is non-interactive boot.
320
321 A splash picture could be passed to bios, enabling user to show it as logo,
322 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
323 supports them. Currently Seabios for X86 system support it.
324 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
325 format(true color). The resolution should be supported by the SVGA mode, so
326 the recommended is 320x240, 640x480, 800x640.
327
328 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
329 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
330 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
331 system support it.
332
333 Do strict boot via @option{strict=on} as far as firmware/BIOS
334 supports it. This only effects when boot priority is changed by
335 bootindex options. The default is non-strict boot.
336
337 @example
338 # try to boot from network first, then from hard disk
339 qemu-system-i386 -boot order=nc
340 # boot from CD-ROM first, switch back to default order after reboot
341 qemu-system-i386 -boot once=d
342 # boot with a splash picture for 5 seconds.
343 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
344 @end example
345
346 Note: The legacy format '-boot @var{drives}' is still supported but its
347 use is discouraged as it may be removed from future versions.
348 ETEXI
349
350 DEF("m", HAS_ARG, QEMU_OPTION_m,
351 "-m [size=]megs[,slots=n,maxmem=size]\n"
352 " configure guest RAM\n"
353 " size: initial amount of guest memory\n"
354 " slots: number of hotplug slots (default: none)\n"
355 " maxmem: maximum amount of guest memory (default: none)\n"
356 "NOTE: Some architectures might enforce a specific granularity\n",
357 QEMU_ARCH_ALL)
358 STEXI
359 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
360 @findex -m
361 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
362 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
363 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
364 could be used to set amount of hotpluggable memory slots and maximum amount of
365 memory. Note that @var{maxmem} must be aligned to the page size.
366
367 For example, the following command-line sets the guest startup RAM size to
368 1GB, creates 3 slots to hotplug additional memory and sets the maximum
369 memory the guest can reach to 4GB:
370
371 @example
372 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
373 @end example
374
375 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
376 be enabled and the guest startup RAM will never increase.
377 ETEXI
378
379 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
380 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
381 STEXI
382 @item -mem-path @var{path}
383 @findex -mem-path
384 Allocate guest RAM from a temporarily created file in @var{path}.
385 ETEXI
386
387 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
388 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
389 QEMU_ARCH_ALL)
390 STEXI
391 @item -mem-prealloc
392 @findex -mem-prealloc
393 Preallocate memory when using -mem-path.
394 ETEXI
395
396 DEF("k", HAS_ARG, QEMU_OPTION_k,
397 "-k language use keyboard layout (for example 'fr' for French)\n",
398 QEMU_ARCH_ALL)
399 STEXI
400 @item -k @var{language}
401 @findex -k
402 Use keyboard layout @var{language} (for example @code{fr} for
403 French). This option is only needed where it is not easy to get raw PC
404 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
405 display). You don't normally need to use it on PC/Linux or PC/Windows
406 hosts.
407
408 The available layouts are:
409 @example
410 ar de-ch es fo fr-ca hu ja mk no pt-br sv
411 da en-gb et fr fr-ch is lt nl pl ru th
412 de en-us fi fr-be hr it lv nl-be pt sl tr
413 @end example
414
415 The default is @code{en-us}.
416 ETEXI
417
418
419 DEF("audio-help", 0, QEMU_OPTION_audio_help,
420 "-audio-help print list of audio drivers and their options\n",
421 QEMU_ARCH_ALL)
422 STEXI
423 @item -audio-help
424 @findex -audio-help
425 Will show the audio subsystem help: list of drivers, tunable
426 parameters.
427 ETEXI
428
429 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
430 "-soundhw c1,... enable audio support\n"
431 " and only specified sound cards (comma separated list)\n"
432 " use '-soundhw help' to get the list of supported cards\n"
433 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
434 STEXI
435 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
436 @findex -soundhw
437 Enable audio and selected sound hardware. Use 'help' to print all
438 available sound hardware.
439
440 @example
441 qemu-system-i386 -soundhw sb16,adlib disk.img
442 qemu-system-i386 -soundhw es1370 disk.img
443 qemu-system-i386 -soundhw ac97 disk.img
444 qemu-system-i386 -soundhw hda disk.img
445 qemu-system-i386 -soundhw all disk.img
446 qemu-system-i386 -soundhw help
447 @end example
448
449 Note that Linux's i810_audio OSS kernel (for AC97) module might
450 require manually specifying clocking.
451
452 @example
453 modprobe i810_audio clocking=48000
454 @end example
455 ETEXI
456
457 DEF("device", HAS_ARG, QEMU_OPTION_device,
458 "-device driver[,prop[=value][,...]]\n"
459 " add device (based on driver)\n"
460 " prop=value,... sets driver properties\n"
461 " use '-device help' to print all possible drivers\n"
462 " use '-device driver,help' to print all possible properties\n",
463 QEMU_ARCH_ALL)
464 STEXI
465 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
466 @findex -device
467 Add device @var{driver}. @var{prop}=@var{value} sets driver
468 properties. Valid properties depend on the driver. To get help on
469 possible drivers and properties, use @code{-device help} and
470 @code{-device @var{driver},help}.
471
472 Some drivers are:
473 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}][,sdrfile=@var{file}][,furareasize=@var{val}][,furdatafile=@var{file}]
474
475 Add an IPMI BMC. This is a simulation of a hardware management
476 interface processor that normally sits on a system. It provides
477 a watchdog and the ability to reset and power control the system.
478 You need to connect this to an IPMI interface to make it useful
479
480 The IPMI slave address to use for the BMC. The default is 0x20.
481 This address is the BMC's address on the I2C network of management
482 controllers. If you don't know what this means, it is safe to ignore
483 it.
484
485 @table @option
486 @item bmc=@var{id}
487 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
488 @item slave_addr=@var{val}
489 Define slave address to use for the BMC. The default is 0x20.
490 @item sdrfile=@var{file}
491 file containing raw Sensor Data Records (SDR) data. The default is none.
492 @item fruareasize=@var{val}
493 size of a Field Replaceable Unit (FRU) area. The default is 1024.
494 @item frudatafile=@var{file}
495 file containing raw Field Replaceable Unit (FRU) inventory data. The default is none.
496 @end table
497
498 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
499
500 Add a connection to an external IPMI BMC simulator. Instead of
501 locally emulating the BMC like the above item, instead connect
502 to an external entity that provides the IPMI services.
503
504 A connection is made to an external BMC simulator. If you do this, it
505 is strongly recommended that you use the "reconnect=" chardev option
506 to reconnect to the simulator if the connection is lost. Note that if
507 this is not used carefully, it can be a security issue, as the
508 interface has the ability to send resets, NMIs, and power off the VM.
509 It's best if QEMU makes a connection to an external simulator running
510 on a secure port on localhost, so neither the simulator nor QEMU is
511 exposed to any outside network.
512
513 See the "lanserv/README.vm" file in the OpenIPMI library for more
514 details on the external interface.
515
516 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
517
518 Add a KCS IPMI interafce on the ISA bus. This also adds a
519 corresponding ACPI and SMBIOS entries, if appropriate.
520
521 @table @option
522 @item bmc=@var{id}
523 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
524 @item ioport=@var{val}
525 Define the I/O address of the interface. The default is 0xca0 for KCS.
526 @item irq=@var{val}
527 Define the interrupt to use. The default is 5. To disable interrupts,
528 set this to 0.
529 @end table
530
531 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
532
533 Like the KCS interface, but defines a BT interface. The default port is
534 0xe4 and the default interrupt is 5.
535
536 ETEXI
537
538 DEF("name", HAS_ARG, QEMU_OPTION_name,
539 "-name string1[,process=string2][,debug-threads=on|off]\n"
540 " set the name of the guest\n"
541 " string1 sets the window title and string2 the process name\n"
542 " When debug-threads is enabled, individual threads are given a separate name\n"
543 " NOTE: The thread names are for debugging and not a stable API.\n",
544 QEMU_ARCH_ALL)
545 STEXI
546 @item -name @var{name}
547 @findex -name
548 Sets the @var{name} of the guest.
549 This name will be displayed in the SDL window caption.
550 The @var{name} will also be used for the VNC server.
551 Also optionally set the top visible process name in Linux.
552 Naming of individual threads can also be enabled on Linux to aid debugging.
553 ETEXI
554
555 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
556 "-uuid %08x-%04x-%04x-%04x-%012x\n"
557 " specify machine UUID\n", QEMU_ARCH_ALL)
558 STEXI
559 @item -uuid @var{uuid}
560 @findex -uuid
561 Set system UUID.
562 ETEXI
563
564 STEXI
565 @end table
566 ETEXI
567 DEFHEADING()
568
569 DEFHEADING(Block device options:)
570 STEXI
571 @table @option
572 ETEXI
573
574 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
575 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
576 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
577 STEXI
578 @item -fda @var{file}
579 @itemx -fdb @var{file}
580 @findex -fda
581 @findex -fdb
582 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
583 ETEXI
584
585 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
586 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
587 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
588 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
589 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
590 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
591 STEXI
592 @item -hda @var{file}
593 @itemx -hdb @var{file}
594 @itemx -hdc @var{file}
595 @itemx -hdd @var{file}
596 @findex -hda
597 @findex -hdb
598 @findex -hdc
599 @findex -hdd
600 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
601 ETEXI
602
603 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
604 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
605 QEMU_ARCH_ALL)
606 STEXI
607 @item -cdrom @var{file}
608 @findex -cdrom
609 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
610 @option{-cdrom} at the same time). You can use the host CD-ROM by
611 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
612 ETEXI
613
614 DEF("blockdev", HAS_ARG, QEMU_OPTION_blockdev,
615 "-blockdev [driver=]driver[,node-name=N][,discard=ignore|unmap]\n"
616 " [,cache.direct=on|off][,cache.no-flush=on|off]\n"
617 " [,read-only=on|off][,detect-zeroes=on|off|unmap]\n"
618 " [,driver specific parameters...]\n"
619 " configure a block backend\n", QEMU_ARCH_ALL)
620 STEXI
621 @item -blockdev @var{option}[,@var{option}[,@var{option}[,...]]]
622 @findex -blockdev
623
624 Define a new block driver node. Some of the options apply to all block drivers,
625 other options are only accepted for a specific block driver. See below for a
626 list of generic options and options for the most common block drivers.
627
628 Options that expect a reference to another node (e.g. @code{file}) can be
629 given in two ways. Either you specify the node name of an already existing node
630 (file=@var{node-name}), or you define a new node inline, adding options
631 for the referenced node after a dot (file.filename=@var{path},file.aio=native).
632
633 A block driver node created with @option{-blockdev} can be used for a guest
634 device by specifying its node name for the @code{drive} property in a
635 @option{-device} argument that defines a block device.
636
637 @table @option
638 @item Valid options for any block driver node:
639
640 @table @code
641 @item driver
642 Specifies the block driver to use for the given node.
643 @item node-name
644 This defines the name of the block driver node by which it will be referenced
645 later. The name must be unique, i.e. it must not match the name of a different
646 block driver node, or (if you use @option{-drive} as well) the ID of a drive.
647
648 If no node name is specified, it is automatically generated. The generated node
649 name is not intended to be predictable and changes between QEMU invocations.
650 For the top level, an explicit node name must be specified.
651 @item read-only
652 Open the node read-only. Guest write attempts will fail.
653 @item cache.direct
654 The host page cache can be avoided with @option{cache.direct=on}. This will
655 attempt to do disk IO directly to the guest's memory. QEMU may still perform an
656 internal copy of the data.
657 @item cache.no-flush
658 In case you don't care about data integrity over host failures, you can use
659 @option{cache.no-flush=on}. This option tells QEMU that it never needs to write
660 any data to the disk but can instead keep things in cache. If anything goes
661 wrong, like your host losing power, the disk storage getting disconnected
662 accidentally, etc. your image will most probably be rendered unusable.
663 @item discard=@var{discard}
664 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls
665 whether @code{discard} (also known as @code{trim} or @code{unmap}) requests are
666 ignored or passed to the filesystem. Some machine types may not support
667 discard requests.
668 @item detect-zeroes=@var{detect-zeroes}
669 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
670 conversion of plain zero writes by the OS to driver specific optimized
671 zero write commands. You may even choose "unmap" if @var{discard} is set
672 to "unmap" to allow a zero write to be converted to an @code{unmap} operation.
673 @end table
674
675 @item Driver-specific options for @code{file}
676
677 This is the protocol-level block driver for accessing regular files.
678
679 @table @code
680 @item filename
681 The path to the image file in the local filesystem
682 @item aio
683 Specifies the AIO backend (threads/native, default: threads)
684 @item locking
685 Specifies whether the image file is protected with Linux OFD / POSIX locks. The
686 default is to use the Linux Open File Descriptor API if available, otherwise no
687 lock is applied. (auto/on/off, default: auto)
688 @end table
689 Example:
690 @example
691 -blockdev driver=file,node-name=disk,filename=disk.img
692 @end example
693
694 @item Driver-specific options for @code{raw}
695
696 This is the image format block driver for raw images. It is usually
697 stacked on top of a protocol level block driver such as @code{file}.
698
699 @table @code
700 @item file
701 Reference to or definition of the data source block driver node
702 (e.g. a @code{file} driver node)
703 @end table
704 Example 1:
705 @example
706 -blockdev driver=file,node-name=disk_file,filename=disk.img
707 -blockdev driver=raw,node-name=disk,file=disk_file
708 @end example
709 Example 2:
710 @example
711 -blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img
712 @end example
713
714 @item Driver-specific options for @code{qcow2}
715
716 This is the image format block driver for qcow2 images. It is usually
717 stacked on top of a protocol level block driver such as @code{file}.
718
719 @table @code
720 @item file
721 Reference to or definition of the data source block driver node
722 (e.g. a @code{file} driver node)
723
724 @item backing
725 Reference to or definition of the backing file block device (default is taken
726 from the image file). It is allowed to pass @code{null} here in order to disable
727 the default backing file.
728
729 @item lazy-refcounts
730 Whether to enable the lazy refcounts feature (on/off; default is taken from the
731 image file)
732
733 @item cache-size
734 The maximum total size of the L2 table and refcount block caches in bytes
735 (default: the sum of l2-cache-size and refcount-cache-size)
736
737 @item l2-cache-size
738 The maximum size of the L2 table cache in bytes
739 (default: if cache-size is not specified - 32M on Linux platforms, and 8M on
740 non-Linux platforms; otherwise, as large as possible within the cache-size,
741 while permitting the requested or the minimal refcount cache size)
742
743 @item refcount-cache-size
744 The maximum size of the refcount block cache in bytes
745 (default: 4 times the cluster size; or if cache-size is specified, the part of
746 it which is not used for the L2 cache)
747
748 @item cache-clean-interval
749 Clean unused entries in the L2 and refcount caches. The interval is in seconds.
750 The default value is 600 on supporting platforms, and 0 on other platforms.
751 Setting it to 0 disables this feature.
752
753 @item pass-discard-request
754 Whether discard requests to the qcow2 device should be forwarded to the data
755 source (on/off; default: on if discard=unmap is specified, off otherwise)
756
757 @item pass-discard-snapshot
758 Whether discard requests for the data source should be issued when a snapshot
759 operation (e.g. deleting a snapshot) frees clusters in the qcow2 file (on/off;
760 default: on)
761
762 @item pass-discard-other
763 Whether discard requests for the data source should be issued on other
764 occasions where a cluster gets freed (on/off; default: off)
765
766 @item overlap-check
767 Which overlap checks to perform for writes to the image
768 (none/constant/cached/all; default: cached). For details or finer
769 granularity control refer to the QAPI documentation of @code{blockdev-add}.
770 @end table
771
772 Example 1:
773 @example
774 -blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2
775 -blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216
776 @end example
777 Example 2:
778 @example
779 -blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2
780 @end example
781
782 @item Driver-specific options for other drivers
783 Please refer to the QAPI documentation of the @code{blockdev-add} QMP command.
784
785 @end table
786
787 ETEXI
788
789 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
790 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
791 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
792 " [,snapshot=on|off][,rerror=ignore|stop|report]\n"
793 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
794 " [,readonly=on|off][,copy-on-read=on|off]\n"
795 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
796 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
797 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
798 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
799 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
800 " [[,iops_size=is]]\n"
801 " [[,group=g]]\n"
802 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
803 STEXI
804 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
805 @findex -drive
806
807 Define a new drive. This includes creating a block driver node (the backend) as
808 well as a guest device, and is mostly a shortcut for defining the corresponding
809 @option{-blockdev} and @option{-device} options.
810
811 @option{-drive} accepts all options that are accepted by @option{-blockdev}. In
812 addition, it knows the following options:
813
814 @table @option
815 @item file=@var{file}
816 This option defines which disk image (@pxref{disk_images}) to use with
817 this drive. If the filename contains comma, you must double it
818 (for instance, "file=my,,file" to use file "my,file").
819
820 Special files such as iSCSI devices can be specified using protocol
821 specific URLs. See the section for "Device URL Syntax" for more information.
822 @item if=@var{interface}
823 This option defines on which type on interface the drive is connected.
824 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio, none.
825 @item bus=@var{bus},unit=@var{unit}
826 These options define where is connected the drive by defining the bus number and
827 the unit id.
828 @item index=@var{index}
829 This option defines where is connected the drive by using an index in the list
830 of available connectors of a given interface type.
831 @item media=@var{media}
832 This option defines the type of the media: disk or cdrom.
833 @item snapshot=@var{snapshot}
834 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
835 (see @option{-snapshot}).
836 @item cache=@var{cache}
837 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough"
838 and controls how the host cache is used to access block data. This is a
839 shortcut that sets the @option{cache.direct} and @option{cache.no-flush}
840 options (as in @option{-blockdev}), and additionally @option{cache.writeback},
841 which provides a default for the @option{write-cache} option of block guest
842 devices (as in @option{-device}). The modes correspond to the following
843 settings:
844
845 @c Our texi2pod.pl script doesn't support @multitable, so fall back to using
846 @c plain ASCII art (well, UTF-8 art really). This looks okay both in the manpage
847 @c and the HTML output.
848 @example
849 @ │ cache.writeback cache.direct cache.no-flush
850 ─────────────┼─────────────────────────────────────────────────
851 writeback │ on off off
852 none │ on on off
853 writethrough │ off off off
854 directsync │ off on off
855 unsafe │ on off on
856 @end example
857
858 The default mode is @option{cache=writeback}.
859
860 @item aio=@var{aio}
861 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
862 @item format=@var{format}
863 Specify which disk @var{format} will be used rather than detecting
864 the format. Can be used to specify format=raw to avoid interpreting
865 an untrusted format header.
866 @item werror=@var{action},rerror=@var{action}
867 Specify which @var{action} to take on write and read errors. Valid actions are:
868 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
869 "report" (report the error to the guest), "enospc" (pause QEMU only if the
870 host disk is full; report the error to the guest otherwise).
871 The default setting is @option{werror=enospc} and @option{rerror=report}.
872 @item copy-on-read=@var{copy-on-read}
873 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
874 file sectors into the image file.
875 @item bps=@var{b},bps_rd=@var{r},bps_wr=@var{w}
876 Specify bandwidth throttling limits in bytes per second, either for all request
877 types or for reads or writes only. Small values can lead to timeouts or hangs
878 inside the guest. A safe minimum for disks is 2 MB/s.
879 @item bps_max=@var{bm},bps_rd_max=@var{rm},bps_wr_max=@var{wm}
880 Specify bursts in bytes per second, either for all request types or for reads
881 or writes only. Bursts allow the guest I/O to spike above the limit
882 temporarily.
883 @item iops=@var{i},iops_rd=@var{r},iops_wr=@var{w}
884 Specify request rate limits in requests per second, either for all request
885 types or for reads or writes only.
886 @item iops_max=@var{bm},iops_rd_max=@var{rm},iops_wr_max=@var{wm}
887 Specify bursts in requests per second, either for all request types or for reads
888 or writes only. Bursts allow the guest I/O to spike above the limit
889 temporarily.
890 @item iops_size=@var{is}
891 Let every @var{is} bytes of a request count as a new request for iops
892 throttling purposes. Use this option to prevent guests from circumventing iops
893 limits by sending fewer but larger requests.
894 @item group=@var{g}
895 Join a throttling quota group with given name @var{g}. All drives that are
896 members of the same group are accounted for together. Use this option to
897 prevent guests from circumventing throttling limits by using many small disks
898 instead of a single larger disk.
899 @end table
900
901 By default, the @option{cache.writeback=on} mode is used. It will report data
902 writes as completed as soon as the data is present in the host page cache.
903 This is safe as long as your guest OS makes sure to correctly flush disk caches
904 where needed. If your guest OS does not handle volatile disk write caches
905 correctly and your host crashes or loses power, then the guest may experience
906 data corruption.
907
908 For such guests, you should consider using @option{cache.writeback=off}. This
909 means that the host page cache will be used to read and write data, but write
910 notification will be sent to the guest only after QEMU has made sure to flush
911 each write to the disk. Be aware that this has a major impact on performance.
912
913 When using the @option{-snapshot} option, unsafe caching is always used.
914
915 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
916 useful when the backing file is over a slow network. By default copy-on-read
917 is off.
918
919 Instead of @option{-cdrom} you can use:
920 @example
921 qemu-system-i386 -drive file=file,index=2,media=cdrom
922 @end example
923
924 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
925 use:
926 @example
927 qemu-system-i386 -drive file=file,index=0,media=disk
928 qemu-system-i386 -drive file=file,index=1,media=disk
929 qemu-system-i386 -drive file=file,index=2,media=disk
930 qemu-system-i386 -drive file=file,index=3,media=disk
931 @end example
932
933 You can open an image using pre-opened file descriptors from an fd set:
934 @example
935 qemu-system-i386
936 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
937 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
938 -drive file=/dev/fdset/2,index=0,media=disk
939 @end example
940
941 You can connect a CDROM to the slave of ide0:
942 @example
943 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
944 @end example
945
946 If you don't specify the "file=" argument, you define an empty drive:
947 @example
948 qemu-system-i386 -drive if=ide,index=1,media=cdrom
949 @end example
950
951 Instead of @option{-fda}, @option{-fdb}, you can use:
952 @example
953 qemu-system-i386 -drive file=file,index=0,if=floppy
954 qemu-system-i386 -drive file=file,index=1,if=floppy
955 @end example
956
957 By default, @var{interface} is "ide" and @var{index} is automatically
958 incremented:
959 @example
960 qemu-system-i386 -drive file=a -drive file=b"
961 @end example
962 is interpreted like:
963 @example
964 qemu-system-i386 -hda a -hdb b
965 @end example
966 ETEXI
967
968 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
969 "-mtdblock file use 'file' as on-board Flash memory image\n",
970 QEMU_ARCH_ALL)
971 STEXI
972 @item -mtdblock @var{file}
973 @findex -mtdblock
974 Use @var{file} as on-board Flash memory image.
975 ETEXI
976
977 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
978 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
979 STEXI
980 @item -sd @var{file}
981 @findex -sd
982 Use @var{file} as SecureDigital card image.
983 ETEXI
984
985 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
986 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
987 STEXI
988 @item -pflash @var{file}
989 @findex -pflash
990 Use @var{file} as a parallel flash image.
991 ETEXI
992
993 DEF("snapshot", 0, QEMU_OPTION_snapshot,
994 "-snapshot write to temporary files instead of disk image files\n",
995 QEMU_ARCH_ALL)
996 STEXI
997 @item -snapshot
998 @findex -snapshot
999 Write to temporary files instead of disk image files. In this case,
1000 the raw disk image you use is not written back. You can however force
1001 the write back by pressing @key{C-a s} (@pxref{disk_images}).
1002 ETEXI
1003
1004 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
1005 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n"
1006 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd][,fmode=fmode][,dmode=dmode]\n"
1007 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
1008 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
1009 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
1010 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
1011 " [[,throttling.iops-size=is]]\n",
1012 QEMU_ARCH_ALL)
1013
1014 STEXI
1015
1016 @item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}][,fmode=@var{fmode}][,dmode=@var{dmode}]
1017 @findex -fsdev
1018 Define a new file system device. Valid options are:
1019 @table @option
1020 @item @var{fsdriver}
1021 This option specifies the fs driver backend to use.
1022 Currently "local" and "proxy" file system drivers are supported.
1023 @item id=@var{id}
1024 Specifies identifier for this device
1025 @item path=@var{path}
1026 Specifies the export path for the file system device. Files under
1027 this path will be available to the 9p client on the guest.
1028 @item security_model=@var{security_model}
1029 Specifies the security model to be used for this export path.
1030 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1031 In "passthrough" security model, files are stored using the same
1032 credentials as they are created on the guest. This requires QEMU
1033 to run as root. In "mapped-xattr" security model, some of the file
1034 attributes like uid, gid, mode bits and link target are stored as
1035 file attributes. For "mapped-file" these attributes are stored in the
1036 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1037 interact with other unix tools. "none" security model is same as
1038 passthrough except the sever won't report failures if it fails to
1039 set file attributes like ownership. Security model is mandatory
1040 only for local fsdriver. Other fsdrivers (like proxy) don't take
1041 security model as a parameter.
1042 @item writeout=@var{writeout}
1043 This is an optional argument. The only supported value is "immediate".
1044 This means that host page cache will be used to read and write data but
1045 write notification will be sent to the guest only when the data has been
1046 reported as written by the storage subsystem.
1047 @item readonly
1048 Enables exporting 9p share as a readonly mount for guests. By default
1049 read-write access is given.
1050 @item socket=@var{socket}
1051 Enables proxy filesystem driver to use passed socket file for communicating
1052 with virtfs-proxy-helper
1053 @item sock_fd=@var{sock_fd}
1054 Enables proxy filesystem driver to use passed socket descriptor for
1055 communicating with virtfs-proxy-helper. Usually a helper like libvirt
1056 will create socketpair and pass one of the fds as sock_fd
1057 @item fmode=@var{fmode}
1058 Specifies the default mode for newly created files on the host. Works only
1059 with security models "mapped-xattr" and "mapped-file".
1060 @item dmode=@var{dmode}
1061 Specifies the default mode for newly created directories on the host. Works
1062 only with security models "mapped-xattr" and "mapped-file".
1063 @end table
1064
1065 -fsdev option is used along with -device driver "virtio-9p-pci".
1066 @item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag}
1067 Options for virtio-9p-pci driver are:
1068 @table @option
1069 @item fsdev=@var{id}
1070 Specifies the id value specified along with -fsdev option
1071 @item mount_tag=@var{mount_tag}
1072 Specifies the tag name to be used by the guest to mount this export point
1073 @end table
1074
1075 ETEXI
1076
1077 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
1078 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n"
1079 " [,id=id][,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd][,fmode=fmode][,dmode=dmode]\n",
1080 QEMU_ARCH_ALL)
1081
1082 STEXI
1083
1084 @item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}][,fmode=@var{fmode}][,dmode=@var{dmode}]
1085 @findex -virtfs
1086
1087 The general form of a Virtual File system pass-through options are:
1088 @table @option
1089 @item @var{fsdriver}
1090 This option specifies the fs driver backend to use.
1091 Currently "local" and "proxy" file system drivers are supported.
1092 @item id=@var{id}
1093 Specifies identifier for this device
1094 @item path=@var{path}
1095 Specifies the export path for the file system device. Files under
1096 this path will be available to the 9p client on the guest.
1097 @item security_model=@var{security_model}
1098 Specifies the security model to be used for this export path.
1099 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1100 In "passthrough" security model, files are stored using the same
1101 credentials as they are created on the guest. This requires QEMU
1102 to run as root. In "mapped-xattr" security model, some of the file
1103 attributes like uid, gid, mode bits and link target are stored as
1104 file attributes. For "mapped-file" these attributes are stored in the
1105 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1106 interact with other unix tools. "none" security model is same as
1107 passthrough except the sever won't report failures if it fails to
1108 set file attributes like ownership. Security model is mandatory only
1109 for local fsdriver. Other fsdrivers (like proxy) don't take security
1110 model as a parameter.
1111 @item writeout=@var{writeout}
1112 This is an optional argument. The only supported value is "immediate".
1113 This means that host page cache will be used to read and write data but
1114 write notification will be sent to the guest only when the data has been
1115 reported as written by the storage subsystem.
1116 @item readonly
1117 Enables exporting 9p share as a readonly mount for guests. By default
1118 read-write access is given.
1119 @item socket=@var{socket}
1120 Enables proxy filesystem driver to use passed socket file for
1121 communicating with virtfs-proxy-helper. Usually a helper like libvirt
1122 will create socketpair and pass one of the fds as sock_fd
1123 @item sock_fd
1124 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
1125 descriptor for interfacing with virtfs-proxy-helper
1126 @item fmode=@var{fmode}
1127 Specifies the default mode for newly created files on the host. Works only
1128 with security models "mapped-xattr" and "mapped-file".
1129 @item dmode=@var{dmode}
1130 Specifies the default mode for newly created directories on the host. Works
1131 only with security models "mapped-xattr" and "mapped-file".
1132 @end table
1133 ETEXI
1134
1135 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
1136 "-virtfs_synth Create synthetic file system image\n",
1137 QEMU_ARCH_ALL)
1138 STEXI
1139 @item -virtfs_synth
1140 @findex -virtfs_synth
1141 Create synthetic file system image
1142 ETEXI
1143
1144 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
1145 "-iscsi [user=user][,password=password]\n"
1146 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
1147 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
1148 " [,timeout=timeout]\n"
1149 " iSCSI session parameters\n", QEMU_ARCH_ALL)
1150
1151 STEXI
1152 @item -iscsi
1153 @findex -iscsi
1154 Configure iSCSI session parameters.
1155 ETEXI
1156
1157 STEXI
1158 @end table
1159 ETEXI
1160 DEFHEADING()
1161
1162 DEFHEADING(USB options:)
1163 STEXI
1164 @table @option
1165 ETEXI
1166
1167 DEF("usb", 0, QEMU_OPTION_usb,
1168 "-usb enable the USB driver (if it is not used by default yet)\n",
1169 QEMU_ARCH_ALL)
1170 STEXI
1171 @item -usb
1172 @findex -usb
1173 Enable the USB driver (if it is not used by default yet).
1174 ETEXI
1175
1176 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
1177 "-usbdevice name add the host or guest USB device 'name'\n",
1178 QEMU_ARCH_ALL)
1179 STEXI
1180
1181 @item -usbdevice @var{devname}
1182 @findex -usbdevice
1183 Add the USB device @var{devname}. Note that this option is deprecated,
1184 please use @code{-device usb-...} instead. @xref{usb_devices}.
1185
1186 @table @option
1187
1188 @item mouse
1189 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1190
1191 @item tablet
1192 Pointer device that uses absolute coordinates (like a touchscreen). This
1193 means QEMU is able to report the mouse position without having to grab the
1194 mouse. Also overrides the PS/2 mouse emulation when activated.
1195
1196 @item braille
1197 Braille device. This will use BrlAPI to display the braille output on a real
1198 or fake device.
1199
1200 @end table
1201 ETEXI
1202
1203 STEXI
1204 @end table
1205 ETEXI
1206 DEFHEADING()
1207
1208 DEFHEADING(Display options:)
1209 STEXI
1210 @table @option
1211 ETEXI
1212
1213 DEF("display", HAS_ARG, QEMU_OPTION_display,
1214 "-display spice-app[,gl=on|off]\n"
1215 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
1216 " [,window_close=on|off][,gl=on|core|es|off]\n"
1217 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
1218 "-display vnc=<display>[,<optargs>]\n"
1219 "-display curses\n"
1220 "-display none\n"
1221 "-display egl-headless[,rendernode=<file>]"
1222 " select display type\n"
1223 "The default display is equivalent to\n"
1224 #if defined(CONFIG_GTK)
1225 "\t\"-display gtk\"\n"
1226 #elif defined(CONFIG_SDL)
1227 "\t\"-display sdl\"\n"
1228 #elif defined(CONFIG_COCOA)
1229 "\t\"-display cocoa\"\n"
1230 #elif defined(CONFIG_VNC)
1231 "\t\"-vnc localhost:0,to=99,id=default\"\n"
1232 #else
1233 "\t\"-display none\"\n"
1234 #endif
1235 , QEMU_ARCH_ALL)
1236 STEXI
1237 @item -display @var{type}
1238 @findex -display
1239 Select type of display to use. This option is a replacement for the
1240 old style -sdl/-curses/... options. Valid values for @var{type} are
1241 @table @option
1242 @item sdl
1243 Display video output via SDL (usually in a separate graphics
1244 window; see the SDL documentation for other possibilities).
1245 @item curses
1246 Display video output via curses. For graphics device models which
1247 support a text mode, QEMU can display this output using a
1248 curses/ncurses interface. Nothing is displayed when the graphics
1249 device is in graphical mode or if the graphics device does not support
1250 a text mode. Generally only the VGA device models support text mode.
1251 @item none
1252 Do not display video output. The guest will still see an emulated
1253 graphics card, but its output will not be displayed to the QEMU
1254 user. This option differs from the -nographic option in that it
1255 only affects what is done with video output; -nographic also changes
1256 the destination of the serial and parallel port data.
1257 @item gtk
1258 Display video output in a GTK window. This interface provides drop-down
1259 menus and other UI elements to configure and control the VM during
1260 runtime.
1261 @item vnc
1262 Start a VNC server on display <arg>
1263 @item egl-headless
1264 Offload all OpenGL operations to a local DRI device. For any graphical display,
1265 this display needs to be paired with either VNC or SPICE displays.
1266 @item spice-app
1267 Start QEMU as a Spice server and launch the default Spice client
1268 application. The Spice server will redirect the serial consoles and
1269 QEMU monitors. (Since 4.0)
1270 @end table
1271 ETEXI
1272
1273 DEF("nographic", 0, QEMU_OPTION_nographic,
1274 "-nographic disable graphical output and redirect serial I/Os to console\n",
1275 QEMU_ARCH_ALL)
1276 STEXI
1277 @item -nographic
1278 @findex -nographic
1279 Normally, if QEMU is compiled with graphical window support, it displays
1280 output such as guest graphics, guest console, and the QEMU monitor in a
1281 window. With this option, you can totally disable graphical output so
1282 that QEMU is a simple command line application. The emulated serial port
1283 is redirected on the console and muxed with the monitor (unless
1284 redirected elsewhere explicitly). Therefore, you can still use QEMU to
1285 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
1286 switching between the console and monitor.
1287 ETEXI
1288
1289 DEF("curses", 0, QEMU_OPTION_curses,
1290 "-curses shorthand for -display curses\n",
1291 QEMU_ARCH_ALL)
1292 STEXI
1293 @item -curses
1294 @findex -curses
1295 Normally, if QEMU is compiled with graphical window support, it displays
1296 output such as guest graphics, guest console, and the QEMU monitor in a
1297 window. With this option, QEMU can display the VGA output when in text
1298 mode using a curses/ncurses interface. Nothing is displayed in graphical
1299 mode.
1300 ETEXI
1301
1302 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1303 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1304 QEMU_ARCH_ALL)
1305 STEXI
1306 @item -alt-grab
1307 @findex -alt-grab
1308 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1309 affects the special keys (for fullscreen, monitor-mode switching, etc).
1310 ETEXI
1311
1312 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1313 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1314 QEMU_ARCH_ALL)
1315 STEXI
1316 @item -ctrl-grab
1317 @findex -ctrl-grab
1318 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1319 affects the special keys (for fullscreen, monitor-mode switching, etc).
1320 ETEXI
1321
1322 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1323 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1324 STEXI
1325 @item -no-quit
1326 @findex -no-quit
1327 Disable SDL window close capability.
1328 ETEXI
1329
1330 DEF("sdl", 0, QEMU_OPTION_sdl,
1331 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1332 STEXI
1333 @item -sdl
1334 @findex -sdl
1335 Enable SDL.
1336 ETEXI
1337
1338 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1339 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1340 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1341 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1342 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1343 " [,tls-ciphers=<list>]\n"
1344 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1345 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1346 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1347 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1348 " [,jpeg-wan-compression=[auto|never|always]]\n"
1349 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1350 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1351 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1352 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1353 " [,gl=[on|off]][,rendernode=<file>]\n"
1354 " enable spice\n"
1355 " at least one of {port, tls-port} is mandatory\n",
1356 QEMU_ARCH_ALL)
1357 STEXI
1358 @item -spice @var{option}[,@var{option}[,...]]
1359 @findex -spice
1360 Enable the spice remote desktop protocol. Valid options are
1361
1362 @table @option
1363
1364 @item port=<nr>
1365 Set the TCP port spice is listening on for plaintext channels.
1366
1367 @item addr=<addr>
1368 Set the IP address spice is listening on. Default is any address.
1369
1370 @item ipv4
1371 @itemx ipv6
1372 @itemx unix
1373 Force using the specified IP version.
1374
1375 @item password=<secret>
1376 Set the password you need to authenticate.
1377
1378 @item sasl
1379 Require that the client use SASL to authenticate with the spice.
1380 The exact choice of authentication method used is controlled from the
1381 system / user's SASL configuration file for the 'qemu' service. This
1382 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1383 unprivileged user, an environment variable SASL_CONF_PATH can be used
1384 to make it search alternate locations for the service config.
1385 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1386 it is recommended that SASL always be combined with the 'tls' and
1387 'x509' settings to enable use of SSL and server certificates. This
1388 ensures a data encryption preventing compromise of authentication
1389 credentials.
1390
1391 @item disable-ticketing
1392 Allow client connects without authentication.
1393
1394 @item disable-copy-paste
1395 Disable copy paste between the client and the guest.
1396
1397 @item disable-agent-file-xfer
1398 Disable spice-vdagent based file-xfer between the client and the guest.
1399
1400 @item tls-port=<nr>
1401 Set the TCP port spice is listening on for encrypted channels.
1402
1403 @item x509-dir=<dir>
1404 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1405
1406 @item x509-key-file=<file>
1407 @itemx x509-key-password=<file>
1408 @itemx x509-cert-file=<file>
1409 @itemx x509-cacert-file=<file>
1410 @itemx x509-dh-key-file=<file>
1411 The x509 file names can also be configured individually.
1412
1413 @item tls-ciphers=<list>
1414 Specify which ciphers to use.
1415
1416 @item tls-channel=[main|display|cursor|inputs|record|playback]
1417 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1418 Force specific channel to be used with or without TLS encryption. The
1419 options can be specified multiple times to configure multiple
1420 channels. The special name "default" can be used to set the default
1421 mode. For channels which are not explicitly forced into one mode the
1422 spice client is allowed to pick tls/plaintext as he pleases.
1423
1424 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1425 Configure image compression (lossless).
1426 Default is auto_glz.
1427
1428 @item jpeg-wan-compression=[auto|never|always]
1429 @itemx zlib-glz-wan-compression=[auto|never|always]
1430 Configure wan image compression (lossy for slow links).
1431 Default is auto.
1432
1433 @item streaming-video=[off|all|filter]
1434 Configure video stream detection. Default is off.
1435
1436 @item agent-mouse=[on|off]
1437 Enable/disable passing mouse events via vdagent. Default is on.
1438
1439 @item playback-compression=[on|off]
1440 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1441
1442 @item seamless-migration=[on|off]
1443 Enable/disable spice seamless migration. Default is off.
1444
1445 @item gl=[on|off]
1446 Enable/disable OpenGL context. Default is off.
1447
1448 @item rendernode=<file>
1449 DRM render node for OpenGL rendering. If not specified, it will pick
1450 the first available. (Since 2.9)
1451
1452 @end table
1453 ETEXI
1454
1455 DEF("portrait", 0, QEMU_OPTION_portrait,
1456 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1457 QEMU_ARCH_ALL)
1458 STEXI
1459 @item -portrait
1460 @findex -portrait
1461 Rotate graphical output 90 deg left (only PXA LCD).
1462 ETEXI
1463
1464 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1465 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1466 QEMU_ARCH_ALL)
1467 STEXI
1468 @item -rotate @var{deg}
1469 @findex -rotate
1470 Rotate graphical output some deg left (only PXA LCD).
1471 ETEXI
1472
1473 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1474 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1475 " select video card type\n", QEMU_ARCH_ALL)
1476 STEXI
1477 @item -vga @var{type}
1478 @findex -vga
1479 Select type of VGA card to emulate. Valid values for @var{type} are
1480 @table @option
1481 @item cirrus
1482 Cirrus Logic GD5446 Video card. All Windows versions starting from
1483 Windows 95 should recognize and use this graphic card. For optimal
1484 performances, use 16 bit color depth in the guest and the host OS.
1485 (This card was the default before QEMU 2.2)
1486 @item std
1487 Standard VGA card with Bochs VBE extensions. If your guest OS
1488 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1489 to use high resolution modes (>= 1280x1024x16) then you should use
1490 this option. (This card is the default since QEMU 2.2)
1491 @item vmware
1492 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1493 recent XFree86/XOrg server or Windows guest with a driver for this
1494 card.
1495 @item qxl
1496 QXL paravirtual graphic card. It is VGA compatible (including VESA
1497 2.0 VBE support). Works best with qxl guest drivers installed though.
1498 Recommended choice when using the spice protocol.
1499 @item tcx
1500 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1501 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1502 fixed resolution of 1024x768.
1503 @item cg3
1504 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1505 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1506 resolutions aimed at people wishing to run older Solaris versions.
1507 @item virtio
1508 Virtio VGA card.
1509 @item none
1510 Disable VGA card.
1511 @end table
1512 ETEXI
1513
1514 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1515 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1516 STEXI
1517 @item -full-screen
1518 @findex -full-screen
1519 Start in full screen.
1520 ETEXI
1521
1522 DEF("g", 1, QEMU_OPTION_g ,
1523 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1524 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1525 STEXI
1526 @item -g @var{width}x@var{height}[x@var{depth}]
1527 @findex -g
1528 Set the initial graphical resolution and depth (PPC, SPARC only).
1529 ETEXI
1530
1531 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1532 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1533 STEXI
1534 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1535 @findex -vnc
1536 Normally, if QEMU is compiled with graphical window support, it displays
1537 output such as guest graphics, guest console, and the QEMU monitor in a
1538 window. With this option, you can have QEMU listen on VNC display
1539 @var{display} and redirect the VGA display over the VNC session. It is
1540 very useful to enable the usb tablet device when using this option
1541 (option @option{-device usb-tablet}). When using the VNC display, you
1542 must use the @option{-k} parameter to set the keyboard layout if you are
1543 not using en-us. Valid syntax for the @var{display} is
1544
1545 @table @option
1546
1547 @item to=@var{L}
1548
1549 With this option, QEMU will try next available VNC @var{display}s, until the
1550 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1551 available, e.g. port 5900+@var{display} is already used by another
1552 application. By default, to=0.
1553
1554 @item @var{host}:@var{d}
1555
1556 TCP connections will only be allowed from @var{host} on display @var{d}.
1557 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1558 be omitted in which case the server will accept connections from any host.
1559
1560 @item unix:@var{path}
1561
1562 Connections will be allowed over UNIX domain sockets where @var{path} is the
1563 location of a unix socket to listen for connections on.
1564
1565 @item none
1566
1567 VNC is initialized but not started. The monitor @code{change} command
1568 can be used to later start the VNC server.
1569
1570 @end table
1571
1572 Following the @var{display} value there may be one or more @var{option} flags
1573 separated by commas. Valid options are
1574
1575 @table @option
1576
1577 @item reverse
1578
1579 Connect to a listening VNC client via a ``reverse'' connection. The
1580 client is specified by the @var{display}. For reverse network
1581 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1582 is a TCP port number, not a display number.
1583
1584 @item websocket
1585
1586 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1587 If a bare @var{websocket} option is given, the Websocket port is
1588 5700+@var{display}. An alternative port can be specified with the
1589 syntax @code{websocket}=@var{port}.
1590
1591 If @var{host} is specified connections will only be allowed from this host.
1592 It is possible to control the websocket listen address independently, using
1593 the syntax @code{websocket}=@var{host}:@var{port}.
1594
1595 If no TLS credentials are provided, the websocket connection runs in
1596 unencrypted mode. If TLS credentials are provided, the websocket connection
1597 requires encrypted client connections.
1598
1599 @item password
1600
1601 Require that password based authentication is used for client connections.
1602
1603 The password must be set separately using the @code{set_password} command in
1604 the @ref{pcsys_monitor}. The syntax to change your password is:
1605 @code{set_password <protocol> <password>} where <protocol> could be either
1606 "vnc" or "spice".
1607
1608 If you would like to change <protocol> password expiration, you should use
1609 @code{expire_password <protocol> <expiration-time>} where expiration time could
1610 be one of the following options: now, never, +seconds or UNIX time of
1611 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1612 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1613 date and time).
1614
1615 You can also use keywords "now" or "never" for the expiration time to
1616 allow <protocol> password to expire immediately or never expire.
1617
1618 @item tls-creds=@var{ID}
1619
1620 Provides the ID of a set of TLS credentials to use to secure the
1621 VNC server. They will apply to both the normal VNC server socket
1622 and the websocket socket (if enabled). Setting TLS credentials
1623 will cause the VNC server socket to enable the VeNCrypt auth
1624 mechanism. The credentials should have been previously created
1625 using the @option{-object tls-creds} argument.
1626
1627 @item sasl
1628
1629 Require that the client use SASL to authenticate with the VNC server.
1630 The exact choice of authentication method used is controlled from the
1631 system / user's SASL configuration file for the 'qemu' service. This
1632 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1633 unprivileged user, an environment variable SASL_CONF_PATH can be used
1634 to make it search alternate locations for the service config.
1635 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1636 it is recommended that SASL always be combined with the 'tls' and
1637 'x509' settings to enable use of SSL and server certificates. This
1638 ensures a data encryption preventing compromise of authentication
1639 credentials. See the @ref{vnc_security} section for details on using
1640 SASL authentication.
1641
1642 @item acl
1643
1644 Turn on access control lists for checking of the x509 client certificate
1645 and SASL party. For x509 certs, the ACL check is made against the
1646 certificate's distinguished name. This is something that looks like
1647 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
1648 made against the username, which depending on the SASL plugin, may
1649 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
1650 When the @option{acl} flag is set, the initial access list will be
1651 empty, with a @code{deny} policy. Thus no one will be allowed to
1652 use the VNC server until the ACLs have been loaded. This can be
1653 achieved using the @code{acl} monitor command.
1654
1655 @item lossy
1656
1657 Enable lossy compression methods (gradient, JPEG, ...). If this
1658 option is set, VNC client may receive lossy framebuffer updates
1659 depending on its encoding settings. Enabling this option can save
1660 a lot of bandwidth at the expense of quality.
1661
1662 @item non-adaptive
1663
1664 Disable adaptive encodings. Adaptive encodings are enabled by default.
1665 An adaptive encoding will try to detect frequently updated screen regions,
1666 and send updates in these regions using a lossy encoding (like JPEG).
1667 This can be really helpful to save bandwidth when playing videos. Disabling
1668 adaptive encodings restores the original static behavior of encodings
1669 like Tight.
1670
1671 @item share=[allow-exclusive|force-shared|ignore]
1672
1673 Set display sharing policy. 'allow-exclusive' allows clients to ask
1674 for exclusive access. As suggested by the rfb spec this is
1675 implemented by dropping other connections. Connecting multiple
1676 clients in parallel requires all clients asking for a shared session
1677 (vncviewer: -shared switch). This is the default. 'force-shared'
1678 disables exclusive client access. Useful for shared desktop sessions,
1679 where you don't want someone forgetting specify -shared disconnect
1680 everybody else. 'ignore' completely ignores the shared flag and
1681 allows everybody connect unconditionally. Doesn't conform to the rfb
1682 spec but is traditional QEMU behavior.
1683
1684 @item key-delay-ms
1685
1686 Set keyboard delay, for key down and key up events, in milliseconds.
1687 Default is 10. Keyboards are low-bandwidth devices, so this slowdown
1688 can help the device and guest to keep up and not lose events in case
1689 events are arriving in bulk. Possible causes for the latter are flaky
1690 network connections, or scripts for automated testing.
1691
1692 @end table
1693 ETEXI
1694
1695 STEXI
1696 @end table
1697 ETEXI
1698 ARCHHEADING(, QEMU_ARCH_I386)
1699
1700 ARCHHEADING(i386 target only:, QEMU_ARCH_I386)
1701 STEXI
1702 @table @option
1703 ETEXI
1704
1705 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
1706 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
1707 QEMU_ARCH_I386)
1708 STEXI
1709 @item -win2k-hack
1710 @findex -win2k-hack
1711 Use it when installing Windows 2000 to avoid a disk full bug. After
1712 Windows 2000 is installed, you no longer need this option (this option
1713 slows down the IDE transfers).
1714 ETEXI
1715
1716 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
1717 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
1718 QEMU_ARCH_I386)
1719 STEXI
1720 @item -no-fd-bootchk
1721 @findex -no-fd-bootchk
1722 Disable boot signature checking for floppy disks in BIOS. May
1723 be needed to boot from old floppy disks.
1724 ETEXI
1725
1726 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
1727 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1728 STEXI
1729 @item -no-acpi
1730 @findex -no-acpi
1731 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1732 it if your guest OS complains about ACPI problems (PC target machine
1733 only).
1734 ETEXI
1735
1736 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
1737 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
1738 STEXI
1739 @item -no-hpet
1740 @findex -no-hpet
1741 Disable HPET support.
1742 ETEXI
1743
1744 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
1745 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
1746 " ACPI table description\n", QEMU_ARCH_I386)
1747 STEXI
1748 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
1749 @findex -acpitable
1750 Add ACPI table with specified header fields and context from specified files.
1751 For file=, take whole ACPI table from the specified files, including all
1752 ACPI headers (possible overridden by other options).
1753 For data=, only data
1754 portion of the table is used, all header information is specified in the
1755 command line.
1756 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
1757 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
1758 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
1759 spec.
1760 ETEXI
1761
1762 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
1763 "-smbios file=binary\n"
1764 " load SMBIOS entry from binary file\n"
1765 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
1766 " [,uefi=on|off]\n"
1767 " specify SMBIOS type 0 fields\n"
1768 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1769 " [,uuid=uuid][,sku=str][,family=str]\n"
1770 " specify SMBIOS type 1 fields\n"
1771 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1772 " [,asset=str][,location=str]\n"
1773 " specify SMBIOS type 2 fields\n"
1774 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
1775 " [,sku=str]\n"
1776 " specify SMBIOS type 3 fields\n"
1777 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
1778 " [,asset=str][,part=str]\n"
1779 " specify SMBIOS type 4 fields\n"
1780 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
1781 " [,asset=str][,part=str][,speed=%d]\n"
1782 " specify SMBIOS type 17 fields\n",
1783 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1784 STEXI
1785 @item -smbios file=@var{binary}
1786 @findex -smbios
1787 Load SMBIOS entry from binary file.
1788
1789 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
1790 Specify SMBIOS type 0 fields
1791
1792 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
1793 Specify SMBIOS type 1 fields
1794
1795 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}]
1796 Specify SMBIOS type 2 fields
1797
1798 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
1799 Specify SMBIOS type 3 fields
1800
1801 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
1802 Specify SMBIOS type 4 fields
1803
1804 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
1805 Specify SMBIOS type 17 fields
1806 ETEXI
1807
1808 STEXI
1809 @end table
1810 ETEXI
1811 DEFHEADING()
1812
1813 DEFHEADING(Network options:)
1814 STEXI
1815 @table @option
1816 ETEXI
1817
1818 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
1819 #ifdef CONFIG_SLIRP
1820 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
1821 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
1822 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
1823 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,domainname=domain]\n"
1824 " [,tftp=dir][,tftp-server-name=name][,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
1825 #ifndef _WIN32
1826 "[,smb=dir[,smbserver=addr]]\n"
1827 #endif
1828 " configure a user mode network backend with ID 'str',\n"
1829 " its DHCP server and optional services\n"
1830 #endif
1831 #ifdef _WIN32
1832 "-netdev tap,id=str,ifname=name\n"
1833 " configure a host TAP network backend with ID 'str'\n"
1834 #else
1835 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
1836 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
1837 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
1838 " [,poll-us=n]\n"
1839 " configure a host TAP network backend with ID 'str'\n"
1840 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1841 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
1842 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
1843 " to deconfigure it\n"
1844 " use '[down]script=no' to disable script execution\n"
1845 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
1846 " configure it\n"
1847 " use 'fd=h' to connect to an already opened TAP interface\n"
1848 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
1849 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
1850 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
1851 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
1852 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
1853 " use vhost=on to enable experimental in kernel accelerator\n"
1854 " (only has effect for virtio guests which use MSIX)\n"
1855 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
1856 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
1857 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
1858 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
1859 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
1860 " spent on busy polling for vhost net\n"
1861 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
1862 " configure a host TAP network backend with ID 'str' that is\n"
1863 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1864 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
1865 #endif
1866 #ifdef __linux__
1867 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
1868 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
1869 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
1870 " [,rxcookie=rxcookie][,offset=offset]\n"
1871 " configure a network backend with ID 'str' connected to\n"
1872 " an Ethernet over L2TPv3 pseudowire.\n"
1873 " Linux kernel 3.3+ as well as most routers can talk\n"
1874 " L2TPv3. This transport allows connecting a VM to a VM,\n"
1875 " VM to a router and even VM to Host. It is a nearly-universal\n"
1876 " standard (RFC3391). Note - this implementation uses static\n"
1877 " pre-configured tunnels (same as the Linux kernel).\n"
1878 " use 'src=' to specify source address\n"
1879 " use 'dst=' to specify destination address\n"
1880 " use 'udp=on' to specify udp encapsulation\n"
1881 " use 'srcport=' to specify source udp port\n"
1882 " use 'dstport=' to specify destination udp port\n"
1883 " use 'ipv6=on' to force v6\n"
1884 " L2TPv3 uses cookies to prevent misconfiguration as\n"
1885 " well as a weak security measure\n"
1886 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
1887 " use 'txcookie=0x012345678' to specify a txcookie\n"
1888 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
1889 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
1890 " use 'pincounter=on' to work around broken counter handling in peer\n"
1891 " use 'offset=X' to add an extra offset between header and data\n"
1892 #endif
1893 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
1894 " configure a network backend to connect to another network\n"
1895 " using a socket connection\n"
1896 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
1897 " configure a network backend to connect to a multicast maddr and port\n"
1898 " use 'localaddr=addr' to specify the host address to send packets from\n"
1899 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
1900 " configure a network backend to connect to another network\n"
1901 " using an UDP tunnel\n"
1902 #ifdef CONFIG_VDE
1903 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
1904 " configure a network backend to connect to port 'n' of a vde switch\n"
1905 " running on host and listening for incoming connections on 'socketpath'.\n"
1906 " Use group 'groupname' and mode 'octalmode' to change default\n"
1907 " ownership and permissions for communication port.\n"
1908 #endif
1909 #ifdef CONFIG_NETMAP
1910 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
1911 " attach to the existing netmap-enabled network interface 'name', or to a\n"
1912 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
1913 " netmap device, defaults to '/dev/netmap')\n"
1914 #endif
1915 #ifdef CONFIG_POSIX
1916 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
1917 " configure a vhost-user network, backed by a chardev 'dev'\n"
1918 #endif
1919 "-netdev hubport,id=str,hubid=n[,netdev=nd]\n"
1920 " configure a hub port on the hub with ID 'n'\n", QEMU_ARCH_ALL)
1921 DEF("nic", HAS_ARG, QEMU_OPTION_nic,
1922 "-nic [tap|bridge|"
1923 #ifdef CONFIG_SLIRP
1924 "user|"
1925 #endif
1926 #ifdef __linux__
1927 "l2tpv3|"
1928 #endif
1929 #ifdef CONFIG_VDE
1930 "vde|"
1931 #endif
1932 #ifdef CONFIG_NETMAP
1933 "netmap|"
1934 #endif
1935 #ifdef CONFIG_POSIX
1936 "vhost-user|"
1937 #endif
1938 "socket][,option][,...][mac=macaddr]\n"
1939 " initialize an on-board / default host NIC (using MAC address\n"
1940 " macaddr) and connect it to the given host network backend\n"
1941 "-nic none use it alone to have zero network devices (the default is to\n"
1942 " provided a 'user' network connection)\n",
1943 QEMU_ARCH_ALL)
1944 DEF("net", HAS_ARG, QEMU_OPTION_net,
1945 "-net nic[,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
1946 " configure or create an on-board (or machine default) NIC and\n"
1947 " connect it to hub 0 (please use -nic unless you need a hub)\n"
1948 "-net ["
1949 #ifdef CONFIG_SLIRP
1950 "user|"
1951 #endif
1952 "tap|"
1953 "bridge|"
1954 #ifdef CONFIG_VDE
1955 "vde|"
1956 #endif
1957 #ifdef CONFIG_NETMAP
1958 "netmap|"
1959 #endif
1960 "socket][,option][,option][,...]\n"
1961 " old way to initialize a host network interface\n"
1962 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
1963 STEXI
1964 @item -nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]
1965 @findex -nic
1966 This option is a shortcut for configuring both the on-board (default) guest
1967 NIC hardware and the host network backend in one go. The host backend options
1968 are the same as with the corresponding @option{-netdev} options below.
1969 The guest NIC model can be set with @option{model=@var{modelname}}.
1970 Use @option{model=help} to list the available device types.
1971 The hardware MAC address can be set with @option{mac=@var{macaddr}}.
1972
1973 The following two example do exactly the same, to show how @option{-nic} can
1974 be used to shorten the command line length (note that the e1000 is the default
1975 on i386, so the @option{model=e1000} parameter could even be omitted here, too):
1976 @example
1977 qemu-system-i386 -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
1978 qemu-system-i386 -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32
1979 @end example
1980
1981 @item -nic none
1982 Indicate that no network devices should be configured. It is used to override
1983 the default configuration (default NIC with ``user'' host network backend)
1984 which is activated if no other networking options are provided.
1985
1986 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
1987 @findex -netdev
1988 Configure user mode host network backend which requires no administrator
1989 privilege to run. Valid options are:
1990
1991 @table @option
1992 @item id=@var{id}
1993 Assign symbolic name for use in monitor commands.
1994
1995 @item ipv4=on|off and ipv6=on|off
1996 Specify that either IPv4 or IPv6 must be enabled. If neither is specified
1997 both protocols are enabled.
1998
1999 @item net=@var{addr}[/@var{mask}]
2000 Set IP network address the guest will see. Optionally specify the netmask,
2001 either in the form a.b.c.d or as number of valid top-most bits. Default is
2002 10.0.2.0/24.
2003
2004 @item host=@var{addr}
2005 Specify the guest-visible address of the host. Default is the 2nd IP in the
2006 guest network, i.e. x.x.x.2.
2007
2008 @item ipv6-net=@var{addr}[/@var{int}]
2009 Set IPv6 network address the guest will see (default is fec0::/64). The
2010 network prefix is given in the usual hexadecimal IPv6 address
2011 notation. The prefix size is optional, and is given as the number of
2012 valid top-most bits (default is 64).
2013
2014 @item ipv6-host=@var{addr}
2015 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
2016 the guest network, i.e. xxxx::2.
2017
2018 @item restrict=on|off
2019 If this option is enabled, the guest will be isolated, i.e. it will not be
2020 able to contact the host and no guest IP packets will be routed over the host
2021 to the outside. This option does not affect any explicitly set forwarding rules.
2022
2023 @item hostname=@var{name}
2024 Specifies the client hostname reported by the built-in DHCP server.
2025
2026 @item dhcpstart=@var{addr}
2027 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
2028 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
2029
2030 @item dns=@var{addr}
2031 Specify the guest-visible address of the virtual nameserver. The address must
2032 be different from the host address. Default is the 3rd IP in the guest network,
2033 i.e. x.x.x.3.
2034
2035 @item ipv6-dns=@var{addr}
2036 Specify the guest-visible address of the IPv6 virtual nameserver. The address
2037 must be different from the host address. Default is the 3rd IP in the guest
2038 network, i.e. xxxx::3.
2039
2040 @item dnssearch=@var{domain}
2041 Provides an entry for the domain-search list sent by the built-in
2042 DHCP server. More than one domain suffix can be transmitted by specifying
2043 this option multiple times. If supported, this will cause the guest to
2044 automatically try to append the given domain suffix(es) in case a domain name
2045 can not be resolved.
2046
2047 Example:
2048 @example
2049 qemu-system-i386 -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
2050 @end example
2051
2052 @item domainname=@var{domain}
2053 Specifies the client domain name reported by the built-in DHCP server.
2054
2055 @item tftp=@var{dir}
2056 When using the user mode network stack, activate a built-in TFTP
2057 server. The files in @var{dir} will be exposed as the root of a TFTP server.
2058 The TFTP client on the guest must be configured in binary mode (use the command
2059 @code{bin} of the Unix TFTP client).
2060
2061 @item tftp-server-name=@var{name}
2062 In BOOTP reply, broadcast @var{name} as the "TFTP server name" (RFC2132 option
2063 66). This can be used to advise the guest to load boot files or configurations
2064 from a different server than the host address.
2065
2066 @item bootfile=@var{file}
2067 When using the user mode network stack, broadcast @var{file} as the BOOTP
2068 filename. In conjunction with @option{tftp}, this can be used to network boot
2069 a guest from a local directory.
2070
2071 Example (using pxelinux):
2072 @example
2073 qemu-system-i386 -hda linux.img -boot n -device e1000,netdev=n1 \
2074 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
2075 @end example
2076
2077 @item smb=@var{dir}[,smbserver=@var{addr}]
2078 When using the user mode network stack, activate a built-in SMB
2079 server so that Windows OSes can access to the host files in @file{@var{dir}}
2080 transparently. The IP address of the SMB server can be set to @var{addr}. By
2081 default the 4th IP in the guest network is used, i.e. x.x.x.4.
2082
2083 In the guest Windows OS, the line:
2084 @example
2085 10.0.2.4 smbserver
2086 @end example
2087 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
2088 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
2089
2090 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
2091
2092 Note that a SAMBA server must be installed on the host OS.
2093
2094 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
2095 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
2096 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
2097 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
2098 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
2099 be bound to a specific host interface. If no connection type is set, TCP is
2100 used. This option can be given multiple times.
2101
2102 For example, to redirect host X11 connection from screen 1 to guest
2103 screen 0, use the following:
2104
2105 @example
2106 # on the host
2107 qemu-system-i386 -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
2108 # this host xterm should open in the guest X11 server
2109 xterm -display :1
2110 @end example
2111
2112 To redirect telnet connections from host port 5555 to telnet port on
2113 the guest, use the following:
2114
2115 @example
2116 # on the host
2117 qemu-system-i386 -nic user,hostfwd=tcp::5555-:23
2118 telnet localhost 5555
2119 @end example
2120
2121 Then when you use on the host @code{telnet localhost 5555}, you
2122 connect to the guest telnet server.
2123
2124 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
2125 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
2126 Forward guest TCP connections to the IP address @var{server} on port @var{port}
2127 to the character device @var{dev} or to a program executed by @var{cmd:command}
2128 which gets spawned for each connection. This option can be given multiple times.
2129
2130 You can either use a chardev directly and have that one used throughout QEMU's
2131 lifetime, like in the following example:
2132
2133 @example
2134 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
2135 # the guest accesses it
2136 qemu-system-i386 -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321
2137 @end example
2138
2139 Or you can execute a command on every TCP connection established by the guest,
2140 so that QEMU behaves similar to an inetd process for that virtual server:
2141
2142 @example
2143 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
2144 # and connect the TCP stream to its stdin/stdout
2145 qemu-system-i386 -nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
2146 @end example
2147
2148 @end table
2149
2150 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
2151 Configure a host TAP network backend with ID @var{id}.
2152
2153 Use the network script @var{file} to configure it and the network script
2154 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
2155 automatically provides one. The default network configure script is
2156 @file{/etc/qemu-ifup} and the default network deconfigure script is
2157 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
2158 to disable script execution.
2159
2160 If running QEMU as an unprivileged user, use the network helper
2161 @var{helper} to configure the TAP interface and attach it to the bridge.
2162 The default network helper executable is @file{/path/to/qemu-bridge-helper}
2163 and the default bridge device is @file{br0}.
2164
2165 @option{fd}=@var{h} can be used to specify the handle of an already
2166 opened host TAP interface.
2167
2168 Examples:
2169
2170 @example
2171 #launch a QEMU instance with the default network script
2172 qemu-system-i386 linux.img -nic tap
2173 @end example
2174
2175 @example
2176 #launch a QEMU instance with two NICs, each one connected
2177 #to a TAP device
2178 qemu-system-i386 linux.img \
2179 -netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 \
2180 -netdev tap,id=nd1,ifname=tap1 -device rtl8139,netdev=nd1
2181 @end example
2182
2183 @example
2184 #launch a QEMU instance with the default network helper to
2185 #connect a TAP device to bridge br0
2186 qemu-system-i386 linux.img -device virtio-net-pci,netdev=n1 \
2187 -netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper"
2188 @end example
2189
2190 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
2191 Connect a host TAP network interface to a host bridge device.
2192
2193 Use the network helper @var{helper} to configure the TAP interface and
2194 attach it to the bridge. The default network helper executable is
2195 @file{/path/to/qemu-bridge-helper} and the default bridge
2196 device is @file{br0}.
2197
2198 Examples:
2199
2200 @example
2201 #launch a QEMU instance with the default network helper to
2202 #connect a TAP device to bridge br0
2203 qemu-system-i386 linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1
2204 @end example
2205
2206 @example
2207 #launch a QEMU instance with the default network helper to
2208 #connect a TAP device to bridge qemubr0
2209 qemu-system-i386 linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1
2210 @end example
2211
2212 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2213
2214 This host network backend can be used to connect the guest's network to
2215 another QEMU virtual machine using a TCP socket connection. If @option{listen}
2216 is specified, QEMU waits for incoming connections on @var{port}
2217 (@var{host} is optional). @option{connect} is used to connect to
2218 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
2219 specifies an already opened TCP socket.
2220
2221 Example:
2222 @example
2223 # launch a first QEMU instance
2224 qemu-system-i386 linux.img \
2225 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2226 -netdev socket,id=n1,listen=:1234
2227 # connect the network of this instance to the network of the first instance
2228 qemu-system-i386 linux.img \
2229 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2230 -netdev socket,id=n2,connect=127.0.0.1:1234
2231 @end example
2232
2233 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2234
2235 Configure a socket host network backend to share the guest's network traffic
2236 with another QEMU virtual machines using a UDP multicast socket, effectively
2237 making a bus for every QEMU with same multicast address @var{maddr} and @var{port}.
2238 NOTES:
2239 @enumerate
2240 @item
2241 Several QEMU can be running on different hosts and share same bus (assuming
2242 correct multicast setup for these hosts).
2243 @item
2244 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
2245 @url{http://user-mode-linux.sf.net}.
2246 @item
2247 Use @option{fd=h} to specify an already opened UDP multicast socket.
2248 @end enumerate
2249
2250 Example:
2251 @example
2252 # launch one QEMU instance
2253 qemu-system-i386 linux.img \
2254 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2255 -netdev socket,id=n1,mcast=230.0.0.1:1234
2256 # launch another QEMU instance on same "bus"
2257 qemu-system-i386 linux.img \
2258 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2259 -netdev socket,id=n2,mcast=230.0.0.1:1234
2260 # launch yet another QEMU instance on same "bus"
2261 qemu-system-i386 linux.img \
2262 -device e1000,netdev=n3,mac=52:54:00:12:34:58 \
2263 -netdev socket,id=n3,mcast=230.0.0.1:1234
2264 @end example
2265
2266 Example (User Mode Linux compat.):
2267 @example
2268 # launch QEMU instance (note mcast address selected is UML's default)
2269 qemu-system-i386 linux.img \
2270 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2271 -netdev socket,id=n1,mcast=239.192.168.1:1102
2272 # launch UML
2273 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2274 @end example
2275
2276 Example (send packets from host's 1.2.3.4):
2277 @example
2278 qemu-system-i386 linux.img \
2279 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2280 -netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2281 @end example
2282
2283 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2284 Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3391) is a
2285 popular protocol to transport Ethernet (and other Layer 2) data frames between
2286 two systems. It is present in routers, firewalls and the Linux kernel
2287 (from version 3.3 onwards).
2288
2289 This transport allows a VM to communicate to another VM, router or firewall directly.
2290
2291 @table @option
2292 @item src=@var{srcaddr}
2293 source address (mandatory)
2294 @item dst=@var{dstaddr}
2295 destination address (mandatory)
2296 @item udp
2297 select udp encapsulation (default is ip).
2298 @item srcport=@var{srcport}
2299 source udp port.
2300 @item dstport=@var{dstport}
2301 destination udp port.
2302 @item ipv6
2303 force v6, otherwise defaults to v4.
2304 @item rxcookie=@var{rxcookie}
2305 @itemx txcookie=@var{txcookie}
2306 Cookies are a weak form of security in the l2tpv3 specification.
2307 Their function is mostly to prevent misconfiguration. By default they are 32
2308 bit.
2309 @item cookie64
2310 Set cookie size to 64 bit instead of the default 32
2311 @item counter=off
2312 Force a 'cut-down' L2TPv3 with no counter as in
2313 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2314 @item pincounter=on
2315 Work around broken counter handling in peer. This may also help on
2316 networks which have packet reorder.
2317 @item offset=@var{offset}
2318 Add an extra offset between header and data
2319 @end table
2320
2321 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2322 on the remote Linux host 1.2.3.4:
2323 @example
2324 # Setup tunnel on linux host using raw ip as encapsulation
2325 # on 1.2.3.4
2326 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2327 encap udp udp_sport 16384 udp_dport 16384
2328 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2329 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2330 ifconfig vmtunnel0 mtu 1500
2331 ifconfig vmtunnel0 up
2332 brctl addif br-lan vmtunnel0
2333
2334
2335 # on 4.3.2.1
2336 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2337
2338 qemu-system-i386 linux.img -device e1000,netdev=n1 \
2339 -netdev l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2340
2341 @end example
2342
2343 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2344 Configure VDE backend to connect to PORT @var{n} of a vde switch running on host and
2345 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2346 and MODE @var{octalmode} to change default ownership and permissions for
2347 communication port. This option is only available if QEMU has been compiled
2348 with vde support enabled.
2349
2350 Example:
2351 @example
2352 # launch vde switch
2353 vde_switch -F -sock /tmp/myswitch
2354 # launch QEMU instance
2355 qemu-system-i386 linux.img -nic vde,sock=/tmp/myswitch
2356 @end example
2357
2358 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2359
2360 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2361 be a unix domain socket backed one. The vhost-user uses a specifically defined
2362 protocol to pass vhost ioctl replacement messages to an application on the other
2363 end of the socket. On non-MSIX guests, the feature can be forced with
2364 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2365 be created for multiqueue vhost-user.
2366
2367 Example:
2368 @example
2369 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2370 -numa node,memdev=mem \
2371 -chardev socket,id=chr0,path=/path/to/socket \
2372 -netdev type=vhost-user,id=net0,chardev=chr0 \
2373 -device virtio-net-pci,netdev=net0
2374 @end example
2375
2376 @item -netdev hubport,id=@var{id},hubid=@var{hubid}[,netdev=@var{nd}]
2377
2378 Create a hub port on the emulated hub with ID @var{hubid}.
2379
2380 The hubport netdev lets you connect a NIC to a QEMU emulated hub instead of a
2381 single netdev. Alternatively, you can also connect the hubport to another
2382 netdev with ID @var{nd} by using the @option{netdev=@var{nd}} option.
2383
2384 @item -net nic[,netdev=@var{nd}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
2385 @findex -net
2386 Legacy option to configure or create an on-board (or machine default) Network
2387 Interface Card(NIC) and connect it either to the emulated hub with ID 0 (i.e.
2388 the default hub), or to the netdev @var{nd}.
2389 The NIC is an e1000 by default on the PC target. Optionally, the MAC address
2390 can be changed to @var{mac}, the device address set to @var{addr} (PCI cards
2391 only), and a @var{name} can be assigned for use in monitor commands.
2392 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
2393 that the card should have; this option currently only affects virtio cards; set
2394 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
2395 NIC is created. QEMU can emulate several different models of network card.
2396 Use @code{-net nic,model=help} for a list of available devices for your target.
2397
2398 @item -net user|tap|bridge|socket|l2tpv3|vde[,...][,name=@var{name}]
2399 Configure a host network backend (with the options corresponding to the same
2400 @option{-netdev} option) and connect it to the emulated hub 0 (the default
2401 hub). Use @var{name} to specify the name of the hub port.
2402 ETEXI
2403
2404 STEXI
2405 @end table
2406 ETEXI
2407 DEFHEADING()
2408
2409 DEFHEADING(Character device options:)
2410
2411 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2412 "-chardev help\n"
2413 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2414 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2415 " [,server][,nowait][,telnet][,websocket][,reconnect=seconds][,mux=on|off]\n"
2416 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n"
2417 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,websocket][,reconnect=seconds]\n"
2418 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2419 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2420 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2421 " [,logfile=PATH][,logappend=on|off]\n"
2422 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2423 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2424 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2425 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2426 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2427 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2428 #ifdef _WIN32
2429 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2430 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2431 #else
2432 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2433 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2434 #endif
2435 #ifdef CONFIG_BRLAPI
2436 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2437 #endif
2438 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2439 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2440 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2441 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2442 #endif
2443 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2444 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2445 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2446 #endif
2447 #if defined(CONFIG_SPICE)
2448 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2449 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2450 #endif
2451 , QEMU_ARCH_ALL
2452 )
2453
2454 STEXI
2455
2456 The general form of a character device option is:
2457 @table @option
2458 @item -chardev @var{backend},id=@var{id}[,mux=on|off][,@var{options}]
2459 @findex -chardev
2460 Backend is one of:
2461 @option{null},
2462 @option{socket},
2463 @option{udp},
2464 @option{msmouse},
2465 @option{vc},
2466 @option{ringbuf},
2467 @option{file},
2468 @option{pipe},
2469 @option{console},
2470 @option{serial},
2471 @option{pty},
2472 @option{stdio},
2473 @option{braille},
2474 @option{tty},
2475 @option{parallel},
2476 @option{parport},
2477 @option{spicevmc},
2478 @option{spiceport}.
2479 The specific backend will determine the applicable options.
2480
2481 Use @code{-chardev help} to print all available chardev backend types.
2482
2483 All devices must have an id, which can be any string up to 127 characters long.
2484 It is used to uniquely identify this device in other command line directives.
2485
2486 A character device may be used in multiplexing mode by multiple front-ends.
2487 Specify @option{mux=on} to enable this mode.
2488 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2489 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2490 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2491 create a multiplexer with your specified ID, and you can then configure multiple
2492 front ends to use that chardev ID for their input/output. Up to four different
2493 front ends can be connected to a single multiplexed chardev. (Without
2494 multiplexing enabled, a chardev can only be used by a single front end.)
2495 For instance you could use this to allow a single stdio chardev to be used by
2496 two serial ports and the QEMU monitor:
2497
2498 @example
2499 -chardev stdio,mux=on,id=char0 \
2500 -mon chardev=char0,mode=readline \
2501 -serial chardev:char0 \
2502 -serial chardev:char0
2503 @end example
2504
2505 You can have more than one multiplexer in a system configuration; for instance
2506 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2507 multiplexed between the QEMU monitor and a parallel port:
2508
2509 @example
2510 -chardev stdio,mux=on,id=char0 \
2511 -mon chardev=char0,mode=readline \
2512 -parallel chardev:char0 \
2513 -chardev tcp,...,mux=on,id=char1 \
2514 -serial chardev:char1 \
2515 -serial chardev:char1
2516 @end example
2517
2518 When you're using a multiplexed character device, some escape sequences are
2519 interpreted in the input. @xref{mux_keys, Keys in the character backend
2520 multiplexer}.
2521
2522 Note that some other command line options may implicitly create multiplexed
2523 character backends; for instance @option{-serial mon:stdio} creates a
2524 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2525 and @option{-nographic} also multiplexes the console and the monitor to
2526 stdio.
2527
2528 There is currently no support for multiplexing in the other direction
2529 (where a single QEMU front end takes input and output from multiple chardevs).
2530
2531 Every backend supports the @option{logfile} option, which supplies the path
2532 to a file to record all data transmitted via the backend. The @option{logappend}
2533 option controls whether the log file will be truncated or appended to when
2534 opened.
2535
2536 @end table
2537
2538 The available backends are:
2539
2540 @table @option
2541 @item -chardev null,id=@var{id}
2542 A void device. This device will not emit any data, and will drop any data it
2543 receives. The null backend does not take any options.
2544
2545 @item -chardev socket,id=@var{id}[,@var{TCP options} or @var{unix options}][,server][,nowait][,telnet][,websocket][,reconnect=@var{seconds}][,tls-creds=@var{id}]
2546
2547 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2548 unix socket will be created if @option{path} is specified. Behaviour is
2549 undefined if TCP options are specified for a unix socket.
2550
2551 @option{server} specifies that the socket shall be a listening socket.
2552
2553 @option{nowait} specifies that QEMU should not block waiting for a client to
2554 connect to a listening socket.
2555
2556 @option{telnet} specifies that traffic on the socket should interpret telnet
2557 escape sequences.
2558
2559 @option{websocket} specifies that the socket uses WebSocket protocol for
2560 communication.
2561
2562 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2563 the remote end goes away. qemu will delay this many seconds and then attempt
2564 to reconnect. Zero disables reconnecting, and is the default.
2565
2566 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2567 and specifies the id of the TLS credentials to use for the handshake. The
2568 credentials must be previously created with the @option{-object tls-creds}
2569 argument.
2570
2571 TCP and unix socket options are given below:
2572
2573 @table @option
2574
2575 @item TCP options: port=@var{port}[,host=@var{host}][,to=@var{to}][,ipv4][,ipv6][,nodelay]
2576
2577 @option{host} for a listening socket specifies the local address to be bound.
2578 For a connecting socket species the remote host to connect to. @option{host} is
2579 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2580
2581 @option{port} for a listening socket specifies the local port to be bound. For a
2582 connecting socket specifies the port on the remote host to connect to.
2583 @option{port} can be given as either a port number or a service name.
2584 @option{port} is required.
2585
2586 @option{to} is only relevant to listening sockets. If it is specified, and
2587 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2588 to and including @option{to} until it succeeds. @option{to} must be specified
2589 as a port number.
2590
2591 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2592 If neither is specified the socket may use either protocol.
2593
2594 @option{nodelay} disables the Nagle algorithm.
2595
2596 @item unix options: path=@var{path}
2597
2598 @option{path} specifies the local path of the unix socket. @option{path} is
2599 required.
2600
2601 @end table
2602
2603 @item -chardev udp,id=@var{id}[,host=@var{host}],port=@var{port}[,localaddr=@var{localaddr}][,localport=@var{localport}][,ipv4][,ipv6]
2604
2605 Sends all traffic from the guest to a remote host over UDP.
2606
2607 @option{host} specifies the remote host to connect to. If not specified it
2608 defaults to @code{localhost}.
2609
2610 @option{port} specifies the port on the remote host to connect to. @option{port}
2611 is required.
2612
2613 @option{localaddr} specifies the local address to bind to. If not specified it
2614 defaults to @code{0.0.0.0}.
2615
2616 @option{localport} specifies the local port to bind to. If not specified any
2617 available local port will be used.
2618
2619 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2620 If neither is specified the device may use either protocol.
2621
2622 @item -chardev msmouse,id=@var{id}
2623
2624 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2625 take any options.
2626
2627 @item -chardev vc,id=@var{id}[[,width=@var{width}][,height=@var{height}]][[,cols=@var{cols}][,rows=@var{rows}]]
2628
2629 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2630 size.
2631
2632 @option{width} and @option{height} specify the width and height respectively of
2633 the console, in pixels.
2634
2635 @option{cols} and @option{rows} specify that the console be sized to fit a text
2636 console with the given dimensions.
2637
2638 @item -chardev ringbuf,id=@var{id}[,size=@var{size}]
2639
2640 Create a ring buffer with fixed size @option{size}.
2641 @var{size} must be a power of two and defaults to @code{64K}.
2642
2643 @item -chardev file,id=@var{id},path=@var{path}
2644
2645 Log all traffic received from the guest to a file.
2646
2647 @option{path} specifies the path of the file to be opened. This file will be
2648 created if it does not already exist, and overwritten if it does. @option{path}
2649 is required.
2650
2651 @item -chardev pipe,id=@var{id},path=@var{path}
2652
2653 Create a two-way connection to the guest. The behaviour differs slightly between
2654 Windows hosts and other hosts:
2655
2656 On Windows, a single duplex pipe will be created at
2657 @file{\\.pipe\@option{path}}.
2658
2659 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2660 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2661 received by the guest. Data written by the guest can be read from
2662 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2663 be present.
2664
2665 @option{path} forms part of the pipe path as described above. @option{path} is
2666 required.
2667
2668 @item -chardev console,id=@var{id}
2669
2670 Send traffic from the guest to QEMU's standard output. @option{console} does not
2671 take any options.
2672
2673 @option{console} is only available on Windows hosts.
2674
2675 @item -chardev serial,id=@var{id},path=@option{path}
2676
2677 Send traffic from the guest to a serial device on the host.
2678
2679 On Unix hosts serial will actually accept any tty device,
2680 not only serial lines.
2681
2682 @option{path} specifies the name of the serial device to open.
2683
2684 @item -chardev pty,id=@var{id}
2685
2686 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2687 not take any options.
2688
2689 @option{pty} is not available on Windows hosts.
2690
2691 @item -chardev stdio,id=@var{id}[,signal=on|off]
2692 Connect to standard input and standard output of the QEMU process.
2693
2694 @option{signal} controls if signals are enabled on the terminal, that includes
2695 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
2696 default, use @option{signal=off} to disable it.
2697
2698 @item -chardev braille,id=@var{id}
2699
2700 Connect to a local BrlAPI server. @option{braille} does not take any options.
2701
2702 @item -chardev tty,id=@var{id},path=@var{path}
2703
2704 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
2705 DragonFlyBSD hosts. It is an alias for @option{serial}.
2706
2707 @option{path} specifies the path to the tty. @option{path} is required.
2708
2709 @item -chardev parallel,id=@var{id},path=@var{path}
2710 @itemx -chardev parport,id=@var{id},path=@var{path}
2711
2712 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
2713
2714 Connect to a local parallel port.
2715
2716 @option{path} specifies the path to the parallel port device. @option{path} is
2717 required.
2718
2719 @item -chardev spicevmc,id=@var{id},debug=@var{debug},name=@var{name}
2720
2721 @option{spicevmc} is only available when spice support is built in.
2722
2723 @option{debug} debug level for spicevmc
2724
2725 @option{name} name of spice channel to connect to
2726
2727 Connect to a spice virtual machine channel, such as vdiport.
2728
2729 @item -chardev spiceport,id=@var{id},debug=@var{debug},name=@var{name}
2730
2731 @option{spiceport} is only available when spice support is built in.
2732
2733 @option{debug} debug level for spicevmc
2734
2735 @option{name} name of spice port to connect to
2736
2737 Connect to a spice port, allowing a Spice client to handle the traffic
2738 identified by a name (preferably a fqdn).
2739 ETEXI
2740
2741 STEXI
2742 @end table
2743 ETEXI
2744 DEFHEADING()
2745
2746 DEFHEADING(Bluetooth(R) options:)
2747 STEXI
2748 @table @option
2749 ETEXI
2750
2751 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
2752 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
2753 "-bt hci,host[:id]\n" \
2754 " use host's HCI with the given name\n" \
2755 "-bt hci[,vlan=n]\n" \
2756 " emulate a standard HCI in virtual scatternet 'n'\n" \
2757 "-bt vhci[,vlan=n]\n" \
2758 " add host computer to virtual scatternet 'n' using VHCI\n" \
2759 "-bt device:dev[,vlan=n]\n" \
2760 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
2761 QEMU_ARCH_ALL)
2762 STEXI
2763 @item -bt hci[...]
2764 @findex -bt
2765 Defines the function of the corresponding Bluetooth HCI. -bt options
2766 are matched with the HCIs present in the chosen machine type. For
2767 example when emulating a machine with only one HCI built into it, only
2768 the first @code{-bt hci[...]} option is valid and defines the HCI's
2769 logic. The Transport Layer is decided by the machine type. Currently
2770 the machines @code{n800} and @code{n810} have one HCI and all other
2771 machines have none.
2772
2773 Note: This option and the whole bluetooth subsystem is considered as deprecated.
2774 If you still use it, please send a mail to @email{qemu-devel@@nongnu.org} where
2775 you describe your usecase.
2776
2777 @anchor{bt-hcis}
2778 The following three types are recognized:
2779
2780 @table @option
2781 @item -bt hci,null
2782 (default) The corresponding Bluetooth HCI assumes no internal logic
2783 and will not respond to any HCI commands or emit events.
2784
2785 @item -bt hci,host[:@var{id}]
2786 (@code{bluez} only) The corresponding HCI passes commands / events
2787 to / from the physical HCI identified by the name @var{id} (default:
2788 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
2789 capable systems like Linux.
2790
2791 @item -bt hci[,vlan=@var{n}]
2792 Add a virtual, standard HCI that will participate in the Bluetooth
2793 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
2794 VLANs, devices inside a bluetooth network @var{n} can only communicate
2795 with other devices in the same network (scatternet).
2796 @end table
2797
2798 @item -bt vhci[,vlan=@var{n}]
2799 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
2800 to the host bluetooth stack instead of to the emulated target. This
2801 allows the host and target machines to participate in a common scatternet
2802 and communicate. Requires the Linux @code{vhci} driver installed. Can
2803 be used as following:
2804
2805 @example
2806 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
2807 @end example
2808
2809 @item -bt device:@var{dev}[,vlan=@var{n}]
2810 Emulate a bluetooth device @var{dev} and place it in network @var{n}
2811 (default @code{0}). QEMU can only emulate one type of bluetooth devices
2812 currently:
2813
2814 @table @option
2815 @item keyboard
2816 Virtual wireless keyboard implementing the HIDP bluetooth profile.
2817 @end table
2818 ETEXI
2819
2820 STEXI
2821 @end table
2822 ETEXI
2823 DEFHEADING()
2824
2825 #ifdef CONFIG_TPM
2826 DEFHEADING(TPM device options:)
2827
2828 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
2829 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
2830 " use path to provide path to a character device; default is /dev/tpm0\n"
2831 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
2832 " not provided it will be searched for in /sys/class/misc/tpm?/device\n"
2833 "-tpmdev emulator,id=id,chardev=dev\n"
2834 " configure the TPM device using chardev backend\n",
2835 QEMU_ARCH_ALL)
2836 STEXI
2837
2838 The general form of a TPM device option is:
2839 @table @option
2840
2841 @item -tpmdev @var{backend},id=@var{id}[,@var{options}]
2842 @findex -tpmdev
2843
2844 The specific backend type will determine the applicable options.
2845 The @code{-tpmdev} option creates the TPM backend and requires a
2846 @code{-device} option that specifies the TPM frontend interface model.
2847
2848 Use @code{-tpmdev help} to print all available TPM backend types.
2849
2850 @end table
2851
2852 The available backends are:
2853
2854 @table @option
2855
2856 @item -tpmdev passthrough,id=@var{id},path=@var{path},cancel-path=@var{cancel-path}
2857
2858 (Linux-host only) Enable access to the host's TPM using the passthrough
2859 driver.
2860
2861 @option{path} specifies the path to the host's TPM device, i.e., on
2862 a Linux host this would be @code{/dev/tpm0}.
2863 @option{path} is optional and by default @code{/dev/tpm0} is used.
2864
2865 @option{cancel-path} specifies the path to the host TPM device's sysfs
2866 entry allowing for cancellation of an ongoing TPM command.
2867 @option{cancel-path} is optional and by default QEMU will search for the
2868 sysfs entry to use.
2869
2870 Some notes about using the host's TPM with the passthrough driver:
2871
2872 The TPM device accessed by the passthrough driver must not be
2873 used by any other application on the host.
2874
2875 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
2876 the VM's firmware (BIOS/UEFI) will not be able to initialize the
2877 TPM again and may therefore not show a TPM-specific menu that would
2878 otherwise allow the user to configure the TPM, e.g., allow the user to
2879 enable/disable or activate/deactivate the TPM.
2880 Further, if TPM ownership is released from within a VM then the host's TPM
2881 will get disabled and deactivated. To enable and activate the
2882 TPM again afterwards, the host has to be rebooted and the user is
2883 required to enter the firmware's menu to enable and activate the TPM.
2884 If the TPM is left disabled and/or deactivated most TPM commands will fail.
2885
2886 To create a passthrough TPM use the following two options:
2887 @example
2888 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
2889 @end example
2890 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
2891 @code{tpmdev=tpm0} in the device option.
2892
2893 @item -tpmdev emulator,id=@var{id},chardev=@var{dev}
2894
2895 (Linux-host only) Enable access to a TPM emulator using Unix domain socket based
2896 chardev backend.
2897
2898 @option{chardev} specifies the unique ID of a character device backend that provides connection to the software TPM server.
2899
2900 To create a TPM emulator backend device with chardev socket backend:
2901 @example
2902
2903 -chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device tpm-tis,tpmdev=tpm0
2904
2905 @end example
2906
2907 ETEXI
2908
2909 STEXI
2910 @end table
2911 ETEXI
2912 DEFHEADING()
2913
2914 #endif
2915
2916 DEFHEADING(Linux/Multiboot boot specific:)
2917 STEXI
2918
2919 When using these options, you can use a given Linux or Multiboot
2920 kernel without installing it in the disk image. It can be useful
2921 for easier testing of various kernels.
2922
2923 @table @option
2924 ETEXI
2925
2926 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
2927 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
2928 STEXI
2929 @item -kernel @var{bzImage}
2930 @findex -kernel
2931 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
2932 or in multiboot format.
2933 ETEXI
2934
2935 DEF("append", HAS_ARG, QEMU_OPTION_append, \
2936 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
2937 STEXI
2938 @item -append @var{cmdline}
2939 @findex -append
2940 Use @var{cmdline} as kernel command line
2941 ETEXI
2942
2943 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
2944 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
2945 STEXI
2946 @item -initrd @var{file}
2947 @findex -initrd
2948 Use @var{file} as initial ram disk.
2949
2950 @item -initrd "@var{file1} arg=foo,@var{file2}"
2951
2952 This syntax is only available with multiboot.
2953
2954 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
2955 first module.
2956 ETEXI
2957
2958 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
2959 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
2960 STEXI
2961 @item -dtb @var{file}
2962 @findex -dtb
2963 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
2964 on boot.
2965 ETEXI
2966
2967 STEXI
2968 @end table
2969 ETEXI
2970 DEFHEADING()
2971
2972 DEFHEADING(Debug/Expert options:)
2973 STEXI
2974 @table @option
2975 ETEXI
2976
2977 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
2978 "-fw_cfg [name=]<name>,file=<file>\n"
2979 " add named fw_cfg entry with contents from file\n"
2980 "-fw_cfg [name=]<name>,string=<str>\n"
2981 " add named fw_cfg entry with contents from string\n",
2982 QEMU_ARCH_ALL)
2983 STEXI
2984
2985 @item -fw_cfg [name=]@var{name},file=@var{file}
2986 @findex -fw_cfg
2987 Add named fw_cfg entry with contents from file @var{file}.
2988
2989 @item -fw_cfg [name=]@var{name},string=@var{str}
2990 Add named fw_cfg entry with contents from string @var{str}.
2991
2992 The terminating NUL character of the contents of @var{str} will not be
2993 included as part of the fw_cfg item data. To insert contents with
2994 embedded NUL characters, you have to use the @var{file} parameter.
2995
2996 The fw_cfg entries are passed by QEMU through to the guest.
2997
2998 Example:
2999 @example
3000 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
3001 @end example
3002 creates an fw_cfg entry named opt/com.mycompany/blob with contents
3003 from ./my_blob.bin.
3004
3005 ETEXI
3006
3007 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
3008 "-serial dev redirect the serial port to char device 'dev'\n",
3009 QEMU_ARCH_ALL)
3010 STEXI
3011 @item -serial @var{dev}
3012 @findex -serial
3013 Redirect the virtual serial port to host character device
3014 @var{dev}. The default device is @code{vc} in graphical mode and
3015 @code{stdio} in non graphical mode.
3016
3017 This option can be used several times to simulate up to 4 serial
3018 ports.
3019
3020 Use @code{-serial none} to disable all serial ports.
3021
3022 Available character devices are:
3023 @table @option
3024 @item vc[:@var{W}x@var{H}]
3025 Virtual console. Optionally, a width and height can be given in pixel with
3026 @example
3027 vc:800x600
3028 @end example
3029 It is also possible to specify width or height in characters:
3030 @example
3031 vc:80Cx24C
3032 @end example
3033 @item pty
3034 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
3035 @item none
3036 No device is allocated.
3037 @item null
3038 void device
3039 @item chardev:@var{id}
3040 Use a named character device defined with the @code{-chardev} option.
3041 @item /dev/XXX
3042 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
3043 parameters are set according to the emulated ones.
3044 @item /dev/parport@var{N}
3045 [Linux only, parallel port only] Use host parallel port
3046 @var{N}. Currently SPP and EPP parallel port features can be used.
3047 @item file:@var{filename}
3048 Write output to @var{filename}. No character can be read.
3049 @item stdio
3050 [Unix only] standard input/output
3051 @item pipe:@var{filename}
3052 name pipe @var{filename}
3053 @item COM@var{n}
3054 [Windows only] Use host serial port @var{n}
3055 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
3056 This implements UDP Net Console.
3057 When @var{remote_host} or @var{src_ip} are not specified
3058 they default to @code{0.0.0.0}.
3059 When not using a specified @var{src_port} a random port is automatically chosen.
3060
3061 If you just want a simple readonly console you can use @code{netcat} or
3062 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
3063 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
3064 will appear in the netconsole session.
3065
3066 If you plan to send characters back via netconsole or you want to stop
3067 and start QEMU a lot of times, you should have QEMU use the same
3068 source port each time by using something like @code{-serial
3069 udp::4555@@:4556} to QEMU. Another approach is to use a patched
3070 version of netcat which can listen to a TCP port and send and receive
3071 characters via udp. If you have a patched version of netcat which
3072 activates telnet remote echo and single char transfer, then you can
3073 use the following options to set up a netcat redirector to allow
3074 telnet on port 5555 to access the QEMU port.
3075 @table @code
3076 @item QEMU Options:
3077 -serial udp::4555@@:4556
3078 @item netcat options:
3079 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3080 @item telnet options:
3081 localhost 5555
3082 @end table
3083
3084 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3085 The TCP Net Console has two modes of operation. It can send the serial
3086 I/O to a location or wait for a connection from a location. By default
3087 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3088 the @var{server} option QEMU will wait for a client socket application
3089 to connect to the port before continuing, unless the @code{nowait}
3090 option was specified. The @code{nodelay} option disables the Nagle buffering
3091 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3092 set, if the connection goes down it will attempt to reconnect at the
3093 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3094 one TCP connection at a time is accepted. You can use @code{telnet} to
3095 connect to the corresponding character device.
3096 @table @code
3097 @item Example to send tcp console to 192.168.0.2 port 4444
3098 -serial tcp:192.168.0.2:4444
3099 @item Example to listen and wait on port 4444 for connection
3100 -serial tcp::4444,server
3101 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3102 -serial tcp:192.168.0.100:4444,server,nowait
3103 @end table
3104
3105 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3106 The telnet protocol is used instead of raw tcp sockets. The options
3107 work the same as if you had specified @code{-serial tcp}. The
3108 difference is that the port acts like a telnet server or client using
3109 telnet option negotiation. This will also allow you to send the
3110 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3111 sequence. Typically in unix telnet you do it with Control-] and then
3112 type "send break" followed by pressing the enter key.
3113
3114 @item websocket:@var{host}:@var{port},server[,nowait][,nodelay]
3115 The WebSocket protocol is used instead of raw tcp socket. The port acts as
3116 a WebSocket server. Client mode is not supported.
3117
3118 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3119 A unix domain socket is used instead of a tcp socket. The option works the
3120 same as if you had specified @code{-serial tcp} except the unix domain socket
3121 @var{path} is used for connections.
3122
3123 @item mon:@var{dev_string}
3124 This is a special option to allow the monitor to be multiplexed onto
3125 another serial port. The monitor is accessed with key sequence of
3126 @key{Control-a} and then pressing @key{c}.
3127 @var{dev_string} should be any one of the serial devices specified
3128 above. An example to multiplex the monitor onto a telnet server
3129 listening on port 4444 would be:
3130 @table @code
3131 @item -serial mon:telnet::4444,server,nowait
3132 @end table
3133 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3134 QEMU any more but will be passed to the guest instead.
3135
3136 @item braille
3137 Braille device. This will use BrlAPI to display the braille output on a real
3138 or fake device.
3139
3140 @item msmouse
3141 Three button serial mouse. Configure the guest to use Microsoft protocol.
3142 @end table
3143 ETEXI
3144
3145 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3146 "-parallel dev redirect the parallel port to char device 'dev'\n",
3147 QEMU_ARCH_ALL)
3148 STEXI
3149 @item -parallel @var{dev}
3150 @findex -parallel
3151 Redirect the virtual parallel port to host device @var{dev} (same
3152 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3153 be used to use hardware devices connected on the corresponding host
3154 parallel port.
3155
3156 This option can be used several times to simulate up to 3 parallel
3157 ports.
3158
3159 Use @code{-parallel none} to disable all parallel ports.
3160 ETEXI
3161
3162 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3163 "-monitor dev redirect the monitor to char device 'dev'\n",
3164 QEMU_ARCH_ALL)
3165 STEXI
3166 @item -monitor @var{dev}
3167 @findex -monitor
3168 Redirect the monitor to host device @var{dev} (same devices as the
3169 serial port).
3170 The default device is @code{vc} in graphical mode and @code{stdio} in
3171 non graphical mode.
3172 Use @code{-monitor none} to disable the default monitor.
3173 ETEXI
3174 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3175 "-qmp dev like -monitor but opens in 'control' mode\n",
3176 QEMU_ARCH_ALL)
3177 STEXI
3178 @item -qmp @var{dev}
3179 @findex -qmp
3180 Like -monitor but opens in 'control' mode.
3181 ETEXI
3182 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3183 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3184 QEMU_ARCH_ALL)
3185 STEXI
3186 @item -qmp-pretty @var{dev}
3187 @findex -qmp-pretty
3188 Like -qmp but uses pretty JSON formatting.
3189 ETEXI
3190
3191 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3192 "-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]\n", QEMU_ARCH_ALL)
3193 STEXI
3194 @item -mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]
3195 @findex -mon
3196 Setup monitor on chardev @var{name}. @code{pretty} turns on JSON pretty printing
3197 easing human reading and debugging.
3198 ETEXI
3199
3200 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3201 "-debugcon dev redirect the debug console to char device 'dev'\n",
3202 QEMU_ARCH_ALL)
3203 STEXI
3204 @item -debugcon @var{dev}
3205 @findex -debugcon
3206 Redirect the debug console to host device @var{dev} (same devices as the
3207 serial port). The debug console is an I/O port which is typically port
3208 0xe9; writing to that I/O port sends output to this device.
3209 The default device is @code{vc} in graphical mode and @code{stdio} in
3210 non graphical mode.
3211 ETEXI
3212
3213 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3214 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3215 STEXI
3216 @item -pidfile @var{file}
3217 @findex -pidfile
3218 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3219 from a script.
3220 ETEXI
3221
3222 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3223 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3224 STEXI
3225 @item -singlestep
3226 @findex -singlestep
3227 Run the emulation in single step mode.
3228 ETEXI
3229
3230 DEF("preconfig", 0, QEMU_OPTION_preconfig, \
3231 "--preconfig pause QEMU before machine is initialized (experimental)\n",
3232 QEMU_ARCH_ALL)
3233 STEXI
3234 @item --preconfig
3235 @findex --preconfig
3236 Pause QEMU for interactive configuration before the machine is created,
3237 which allows querying and configuring properties that will affect
3238 machine initialization. Use QMP command 'x-exit-preconfig' to exit
3239 the preconfig state and move to the next state (i.e. run guest if -S
3240 isn't used or pause the second time if -S is used). This option is
3241 experimental.
3242 ETEXI
3243
3244 DEF("S", 0, QEMU_OPTION_S, \
3245 "-S freeze CPU at startup (use 'c' to start execution)\n",
3246 QEMU_ARCH_ALL)
3247 STEXI
3248 @item -S
3249 @findex -S
3250 Do not start CPU at startup (you must type 'c' in the monitor).
3251 ETEXI
3252
3253 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3254 "-realtime [mlock=on|off]\n"
3255 " run qemu with realtime features\n"
3256 " mlock=on|off controls mlock support (default: on)\n",
3257 QEMU_ARCH_ALL)
3258 STEXI
3259 @item -realtime mlock=on|off
3260 @findex -realtime
3261 Run qemu with realtime features.
3262 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3263 (enabled by default).
3264 ETEXI
3265
3266 DEF("overcommit", HAS_ARG, QEMU_OPTION_overcommit,
3267 "-overcommit [mem-lock=on|off][cpu-pm=on|off]\n"
3268 " run qemu with overcommit hints\n"
3269 " mem-lock=on|off controls memory lock support (default: off)\n"
3270 " cpu-pm=on|off controls cpu power management (default: off)\n",
3271 QEMU_ARCH_ALL)
3272 STEXI
3273 @item -overcommit mem-lock=on|off
3274 @item -overcommit cpu-pm=on|off
3275 @findex -overcommit
3276 Run qemu with hints about host resource overcommit. The default is
3277 to assume that host overcommits all resources.
3278
3279 Locking qemu and guest memory can be enabled via @option{mem-lock=on} (disabled
3280 by default). This works when host memory is not overcommitted and reduces the
3281 worst-case latency for guest. This is equivalent to @option{realtime}.
3282
3283 Guest ability to manage power state of host cpus (increasing latency for other
3284 processes on the same host cpu, but decreasing latency for guest) can be
3285 enabled via @option{cpu-pm=on} (disabled by default). This works best when
3286 host CPU is not overcommitted. When used, host estimates of CPU cycle and power
3287 utilization will be incorrect, not taking into account guest idle time.
3288 ETEXI
3289
3290 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3291 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3292 STEXI
3293 @item -gdb @var{dev}
3294 @findex -gdb
3295 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3296 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3297 stdio are reasonable use case. The latter is allowing to start QEMU from
3298 within gdb and establish the connection via a pipe:
3299 @example
3300 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3301 @end example
3302 ETEXI
3303
3304 DEF("s", 0, QEMU_OPTION_s, \
3305 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3306 QEMU_ARCH_ALL)
3307 STEXI
3308 @item -s
3309 @findex -s
3310 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3311 (@pxref{gdb_usage}).
3312 ETEXI
3313
3314 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3315 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3316 QEMU_ARCH_ALL)
3317 STEXI
3318 @item -d @var{item1}[,...]
3319 @findex -d
3320 Enable logging of specified items. Use '-d help' for a list of log items.
3321 ETEXI
3322
3323 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3324 "-D logfile output log to logfile (default stderr)\n",
3325 QEMU_ARCH_ALL)
3326 STEXI
3327 @item -D @var{logfile}
3328 @findex -D
3329 Output log in @var{logfile} instead of to stderr
3330 ETEXI
3331
3332 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3333 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3334 QEMU_ARCH_ALL)
3335 STEXI
3336 @item -dfilter @var{range1}[,...]
3337 @findex -dfilter
3338 Filter debug output to that relevant to a range of target addresses. The filter
3339 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3340 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3341 addresses and sizes required. For example:
3342 @example
3343 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3344 @end example
3345 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3346 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3347 block starting at 0xffffffc00005f000.
3348 ETEXI
3349
3350 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3351 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3352 QEMU_ARCH_ALL)
3353 STEXI
3354 @item -L @var{path}
3355 @findex -L
3356 Set the directory for the BIOS, VGA BIOS and keymaps.
3357
3358 To list all the data directories, use @code{-L help}.
3359 ETEXI
3360
3361 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3362 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3363 STEXI
3364 @item -bios @var{file}
3365 @findex -bios
3366 Set the filename for the BIOS.
3367 ETEXI
3368
3369 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3370 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3371 STEXI
3372 @item -enable-kvm
3373 @findex -enable-kvm
3374 Enable KVM full virtualization support. This option is only available
3375 if KVM support is enabled when compiling.
3376 ETEXI
3377
3378 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3379 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3380 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3381 "-xen-attach attach to existing xen domain\n"
3382 " libxl will use this when starting QEMU\n",
3383 QEMU_ARCH_ALL)
3384 DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict,
3385 "-xen-domid-restrict restrict set of available xen operations\n"
3386 " to specified domain id. (Does not affect\n"
3387 " xenpv machine type).\n",
3388 QEMU_ARCH_ALL)
3389 STEXI
3390 @item -xen-domid @var{id}
3391 @findex -xen-domid
3392 Specify xen guest domain @var{id} (XEN only).
3393 @item -xen-attach
3394 @findex -xen-attach
3395 Attach to existing xen domain.
3396 libxl will use this when starting QEMU (XEN only).
3397 @findex -xen-domid-restrict
3398 Restrict set of available xen operations to specified domain id (XEN only).
3399 ETEXI
3400
3401 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3402 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3403 STEXI
3404 @item -no-reboot
3405 @findex -no-reboot
3406 Exit instead of rebooting.
3407 ETEXI
3408
3409 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3410 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3411 STEXI
3412 @item -no-shutdown
3413 @findex -no-shutdown
3414 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3415 This allows for instance switching to monitor to commit changes to the
3416 disk image.
3417 ETEXI
3418
3419 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3420 "-loadvm [tag|id]\n" \
3421 " start right away with a saved state (loadvm in monitor)\n",
3422 QEMU_ARCH_ALL)
3423 STEXI
3424 @item -loadvm @var{file}
3425 @findex -loadvm
3426 Start right away with a saved state (@code{loadvm} in monitor)
3427 ETEXI
3428
3429 #ifndef _WIN32
3430 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3431 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3432 #endif
3433 STEXI
3434 @item -daemonize
3435 @findex -daemonize
3436 Daemonize the QEMU process after initialization. QEMU will not detach from
3437 standard IO until it is ready to receive connections on any of its devices.
3438 This option is a useful way for external programs to launch QEMU without having
3439 to cope with initialization race conditions.
3440 ETEXI
3441
3442 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3443 "-option-rom rom load a file, rom, into the option ROM space\n",
3444 QEMU_ARCH_ALL)
3445 STEXI
3446 @item -option-rom @var{file}
3447 @findex -option-rom
3448 Load the contents of @var{file} as an option ROM.
3449 This option is useful to load things like EtherBoot.
3450 ETEXI
3451
3452 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3453 "-rtc [base=utc|localtime|<datetime>][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3454 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3455 QEMU_ARCH_ALL)
3456
3457 STEXI
3458
3459 @item -rtc [base=utc|localtime|@var{datetime}][,clock=host|rt|vm][,driftfix=none|slew]
3460 @findex -rtc
3461 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3462 UTC or local time, respectively. @code{localtime} is required for correct date in
3463 MS-DOS or Windows. To start at a specific point in time, provide @var{datetime} in the
3464 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3465
3466 By default the RTC is driven by the host system time. This allows using of the
3467 RTC as accurate reference clock inside the guest, specifically if the host
3468 time is smoothly following an accurate external reference clock, e.g. via NTP.
3469 If you want to isolate the guest time from the host, you can set @option{clock}
3470 to @code{rt} instead, which provides a host monotonic clock if host support it.
3471 To even prevent the RTC from progressing during suspension, you can set @option{clock}
3472 to @code{vm} (virtual clock). @samp{clock=vm} is recommended especially in
3473 icount mode in order to preserve determinism; however, note that in icount mode
3474 the speed of the virtual clock is variable and can in general differ from the
3475 host clock.
3476
3477 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3478 specifically with Windows' ACPI HAL. This option will try to figure out how
3479 many timer interrupts were not processed by the Windows guest and will
3480 re-inject them.
3481 ETEXI
3482
3483 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3484 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3485 " enable virtual instruction counter with 2^N clock ticks per\n" \
3486 " instruction, enable aligning the host and virtual clocks\n" \
3487 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3488 STEXI
3489 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}]
3490 @findex -icount
3491 Enable virtual instruction counter. The virtual cpu will execute one
3492 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3493 then the virtual cpu speed will be automatically adjusted to keep virtual
3494 time within a few seconds of real time.
3495
3496 When the virtual cpu is sleeping, the virtual time will advance at default
3497 speed unless @option{sleep=on|off} is specified.
3498 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3499 instantly whenever the virtual cpu goes to sleep mode and will not advance
3500 if no timer is enabled. This behavior give deterministic execution times from
3501 the guest point of view.
3502
3503 Note that while this option can give deterministic behavior, it does not
3504 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3505 order cores with complex cache hierarchies. The number of instructions
3506 executed often has little or no correlation with actual performance.
3507
3508 @option{align=on} will activate the delay algorithm which will try
3509 to synchronise the host clock and the virtual clock. The goal is to
3510 have a guest running at the real frequency imposed by the shift option.
3511 Whenever the guest clock is behind the host clock and if
3512 @option{align=on} is specified then we print a message to the user
3513 to inform about the delay.
3514 Currently this option does not work when @option{shift} is @code{auto}.
3515 Note: The sync algorithm will work for those shift values for which
3516 the guest clock runs ahead of the host clock. Typically this happens
3517 when the shift value is high (how high depends on the host machine).
3518
3519 When @option{rr} option is specified deterministic record/replay is enabled.
3520 Replay log is written into @var{filename} file in record mode and
3521 read from this file in replay mode.
3522
3523 Option rrsnapshot is used to create new vm snapshot named @var{snapshot}
3524 at the start of execution recording. In replay mode this option is used
3525 to load the initial VM state.
3526 ETEXI
3527
3528 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3529 "-watchdog model\n" \
3530 " enable virtual hardware watchdog [default=none]\n",
3531 QEMU_ARCH_ALL)
3532 STEXI
3533 @item -watchdog @var{model}
3534 @findex -watchdog
3535 Create a virtual hardware watchdog device. Once enabled (by a guest
3536 action), the watchdog must be periodically polled by an agent inside
3537 the guest or else the guest will be restarted. Choose a model for
3538 which your guest has drivers.
3539
3540 The @var{model} is the model of hardware watchdog to emulate. Use
3541 @code{-watchdog help} to list available hardware models. Only one
3542 watchdog can be enabled for a guest.
3543
3544 The following models may be available:
3545 @table @option
3546 @item ib700
3547 iBASE 700 is a very simple ISA watchdog with a single timer.
3548 @item i6300esb
3549 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3550 dual-timer watchdog.
3551 @item diag288
3552 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3553 (currently KVM only).
3554 @end table
3555 ETEXI
3556
3557 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3558 "-watchdog-action reset|shutdown|poweroff|inject-nmi|pause|debug|none\n" \
3559 " action when watchdog fires [default=reset]\n",
3560 QEMU_ARCH_ALL)
3561 STEXI
3562 @item -watchdog-action @var{action}
3563 @findex -watchdog-action
3564
3565 The @var{action} controls what QEMU will do when the watchdog timer
3566 expires.
3567 The default is
3568 @code{reset} (forcefully reset the guest).
3569 Other possible actions are:
3570 @code{shutdown} (attempt to gracefully shutdown the guest),
3571 @code{poweroff} (forcefully poweroff the guest),
3572 @code{inject-nmi} (inject a NMI into the guest),
3573 @code{pause} (pause the guest),
3574 @code{debug} (print a debug message and continue), or
3575 @code{none} (do nothing).
3576
3577 Note that the @code{shutdown} action requires that the guest responds
3578 to ACPI signals, which it may not be able to do in the sort of
3579 situations where the watchdog would have expired, and thus
3580 @code{-watchdog-action shutdown} is not recommended for production use.
3581
3582 Examples:
3583
3584 @table @code
3585 @item -watchdog i6300esb -watchdog-action pause
3586 @itemx -watchdog ib700
3587 @end table
3588 ETEXI
3589
3590 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3591 "-echr chr set terminal escape character instead of ctrl-a\n",
3592 QEMU_ARCH_ALL)
3593 STEXI
3594
3595 @item -echr @var{numeric_ascii_value}
3596 @findex -echr
3597 Change the escape character used for switching to the monitor when using
3598 monitor and serial sharing. The default is @code{0x01} when using the
3599 @code{-nographic} option. @code{0x01} is equal to pressing
3600 @code{Control-a}. You can select a different character from the ascii
3601 control keys where 1 through 26 map to Control-a through Control-z. For
3602 instance you could use the either of the following to change the escape
3603 character to Control-t.
3604 @table @code
3605 @item -echr 0x14
3606 @itemx -echr 20
3607 @end table
3608 ETEXI
3609
3610 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3611 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3612 STEXI
3613 @item -show-cursor
3614 @findex -show-cursor
3615 Show cursor.
3616 ETEXI
3617
3618 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3619 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3620 STEXI
3621 @item -tb-size @var{n}
3622 @findex -tb-size
3623 Set TB size.
3624 ETEXI
3625
3626 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3627 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3628 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3629 "-incoming unix:socketpath\n" \
3630 " prepare for incoming migration, listen on\n" \
3631 " specified protocol and socket address\n" \
3632 "-incoming fd:fd\n" \
3633 "-incoming exec:cmdline\n" \
3634 " accept incoming migration on given file descriptor\n" \
3635 " or from given external command\n" \
3636 "-incoming defer\n" \
3637 " wait for the URI to be specified via migrate_incoming\n",
3638 QEMU_ARCH_ALL)
3639 STEXI
3640 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3641 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3642 @findex -incoming
3643 Prepare for incoming migration, listen on a given tcp port.
3644
3645 @item -incoming unix:@var{socketpath}
3646 Prepare for incoming migration, listen on a given unix socket.
3647
3648 @item -incoming fd:@var{fd}
3649 Accept incoming migration from a given filedescriptor.
3650
3651 @item -incoming exec:@var{cmdline}
3652 Accept incoming migration as an output from specified external command.
3653
3654 @item -incoming defer
3655 Wait for the URI to be specified via migrate_incoming. The monitor can
3656 be used to change settings (such as migration parameters) prior to issuing
3657 the migrate_incoming to allow the migration to begin.
3658 ETEXI
3659
3660 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
3661 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
3662 STEXI
3663 @item -only-migratable
3664 @findex -only-migratable
3665 Only allow migratable devices. Devices will not be allowed to enter an
3666 unmigratable state.
3667 ETEXI
3668
3669 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3670 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3671 STEXI
3672 @item -nodefaults
3673 @findex -nodefaults
3674 Don't create default devices. Normally, QEMU sets the default devices like serial
3675 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3676 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3677 default devices.
3678 ETEXI
3679
3680 #ifndef _WIN32
3681 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3682 "-chroot dir chroot to dir just before starting the VM\n",
3683 QEMU_ARCH_ALL)
3684 #endif
3685 STEXI
3686 @item -chroot @var{dir}
3687 @findex -chroot
3688 Immediately before starting guest execution, chroot to the specified
3689 directory. Especially useful in combination with -runas.
3690 ETEXI
3691
3692 #ifndef _WIN32
3693 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
3694 "-runas user change to user id user just before starting the VM\n" \
3695 " user can be numeric uid:gid instead\n",
3696 QEMU_ARCH_ALL)
3697 #endif
3698 STEXI
3699 @item -runas @var{user}
3700 @findex -runas
3701 Immediately before starting guest execution, drop root privileges, switching
3702 to the specified user.
3703 ETEXI
3704
3705 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
3706 "-prom-env variable=value\n"
3707 " set OpenBIOS nvram variables\n",
3708 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
3709 STEXI
3710 @item -prom-env @var{variable}=@var{value}
3711 @findex -prom-env
3712 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
3713 ETEXI
3714 DEF("semihosting", 0, QEMU_OPTION_semihosting,
3715 "-semihosting semihosting mode\n",
3716 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3717 QEMU_ARCH_MIPS)
3718 STEXI
3719 @item -semihosting
3720 @findex -semihosting
3721 Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).
3722 ETEXI
3723 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
3724 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \
3725 " semihosting configuration\n",
3726 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3727 QEMU_ARCH_MIPS)
3728 STEXI
3729 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]
3730 @findex -semihosting-config
3731 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).
3732 @table @option
3733 @item target=@code{native|gdb|auto}
3734 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
3735 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
3736 during debug sessions and @code{native} otherwise.
3737 @item arg=@var{str1},arg=@var{str2},...
3738 Allows the user to pass input arguments, and can be used multiple times to build
3739 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
3740 command line is still supported for backward compatibility. If both the
3741 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
3742 specified, the former is passed to semihosting as it always takes precedence.
3743 @end table
3744 ETEXI
3745 DEF("old-param", 0, QEMU_OPTION_old_param,
3746 "-old-param old param mode\n", QEMU_ARCH_ARM)
3747 STEXI
3748 @item -old-param
3749 @findex -old-param (ARM)
3750 Old param mode (ARM only).
3751 ETEXI
3752
3753 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
3754 "-sandbox on[,obsolete=allow|deny][,elevateprivileges=allow|deny|children]\n" \
3755 " [,spawn=allow|deny][,resourcecontrol=allow|deny]\n" \
3756 " Enable seccomp mode 2 system call filter (default 'off').\n" \
3757 " use 'obsolete' to allow obsolete system calls that are provided\n" \
3758 " by the kernel, but typically no longer used by modern\n" \
3759 " C library implementations.\n" \
3760 " use 'elevateprivileges' to allow or deny QEMU process to elevate\n" \
3761 " its privileges by blacklisting all set*uid|gid system calls.\n" \
3762 " The value 'children' will deny set*uid|gid system calls for\n" \
3763 " main QEMU process but will allow forks and execves to run unprivileged\n" \
3764 " use 'spawn' to avoid QEMU to spawn new threads or processes by\n" \
3765 " blacklisting *fork and execve\n" \
3766 " use 'resourcecontrol' to disable process affinity and schedular priority\n",
3767 QEMU_ARCH_ALL)
3768 STEXI
3769 @item -sandbox @var{arg}[,obsolete=@var{string}][,elevateprivileges=@var{string}][,spawn=@var{string}][,resourcecontrol=@var{string}]
3770 @findex -sandbox
3771 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
3772 disable it. The default is 'off'.
3773 @table @option
3774 @item obsolete=@var{string}
3775 Enable Obsolete system calls
3776 @item elevateprivileges=@var{string}
3777 Disable set*uid|gid system calls
3778 @item spawn=@var{string}
3779 Disable *fork and execve
3780 @item resourcecontrol=@var{string}
3781 Disable process affinity and schedular priority
3782 @end table
3783 ETEXI
3784
3785 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
3786 "-readconfig <file>\n", QEMU_ARCH_ALL)
3787 STEXI
3788 @item -readconfig @var{file}
3789 @findex -readconfig
3790 Read device configuration from @var{file}. This approach is useful when you want to spawn
3791 QEMU process with many command line options but you don't want to exceed the command line
3792 character limit.
3793 ETEXI
3794 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
3795 "-writeconfig <file>\n"
3796 " read/write config file\n", QEMU_ARCH_ALL)
3797 STEXI
3798 @item -writeconfig @var{file}
3799 @findex -writeconfig
3800 Write device configuration to @var{file}. The @var{file} can be either filename to save
3801 command line and device configuration into file or dash @code{-}) character to print the
3802 output to stdout. This can be later used as input file for @code{-readconfig} option.
3803 ETEXI
3804
3805 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
3806 "-no-user-config\n"
3807 " do not load default user-provided config files at startup\n",
3808 QEMU_ARCH_ALL)
3809 STEXI
3810 @item -no-user-config
3811 @findex -no-user-config
3812 The @code{-no-user-config} option makes QEMU not load any of the user-provided
3813 config files on @var{sysconfdir}.
3814 ETEXI
3815
3816 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
3817 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
3818 " specify tracing options\n",
3819 QEMU_ARCH_ALL)
3820 STEXI
3821 HXCOMM This line is not accurate, as some sub-options are backend-specific but
3822 HXCOMM HX does not support conditional compilation of text.
3823 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
3824 @findex -trace
3825 @include qemu-option-trace.texi
3826 ETEXI
3827
3828 HXCOMM Internal use
3829 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
3830 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
3831
3832 #ifdef __linux__
3833 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
3834 "-enable-fips enable FIPS 140-2 compliance\n",
3835 QEMU_ARCH_ALL)
3836 #endif
3837 STEXI
3838 @item -enable-fips
3839 @findex -enable-fips
3840 Enable FIPS 140-2 compliance mode.
3841 ETEXI
3842
3843 HXCOMM Deprecated by -machine accel=tcg property
3844 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
3845
3846 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
3847 "-msg timestamp[=on|off]\n"
3848 " change the format of messages\n"
3849 " on|off controls leading timestamps (default:on)\n",
3850 QEMU_ARCH_ALL)
3851 STEXI
3852 @item -msg timestamp[=on|off]
3853 @findex -msg
3854 prepend a timestamp to each log message.(default:on)
3855 ETEXI
3856
3857 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
3858 "-dump-vmstate <file>\n"
3859 " Output vmstate information in JSON format to file.\n"
3860 " Use the scripts/vmstate-static-checker.py file to\n"
3861 " check for possible regressions in migration code\n"
3862 " by comparing two such vmstate dumps.\n",
3863 QEMU_ARCH_ALL)
3864 STEXI
3865 @item -dump-vmstate @var{file}
3866 @findex -dump-vmstate
3867 Dump json-encoded vmstate information for current machine type to file
3868 in @var{file}
3869 ETEXI
3870
3871 DEF("enable-sync-profile", 0, QEMU_OPTION_enable_sync_profile,
3872 "-enable-sync-profile\n"
3873 " enable synchronization profiling\n",
3874 QEMU_ARCH_ALL)
3875 STEXI
3876 @item -enable-sync-profile
3877 @findex -enable-sync-profile
3878 Enable synchronization profiling.
3879 ETEXI
3880
3881 STEXI
3882 @end table
3883 ETEXI
3884 DEFHEADING()
3885
3886 DEFHEADING(Generic object creation:)
3887 STEXI
3888 @table @option
3889 ETEXI
3890
3891 DEF("object", HAS_ARG, QEMU_OPTION_object,
3892 "-object TYPENAME[,PROP1=VALUE1,...]\n"
3893 " create a new object of type TYPENAME setting properties\n"
3894 " in the order they are specified. Note that the 'id'\n"
3895 " property must be set. These objects are placed in the\n"
3896 " '/objects' path.\n",
3897 QEMU_ARCH_ALL)
3898 STEXI
3899 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
3900 @findex -object
3901 Create a new object of type @var{typename} setting properties
3902 in the order they are specified. Note that the 'id'
3903 property must be set. These objects are placed in the
3904 '/objects' path.
3905
3906 @table @option
3907
3908 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off},discard-data=@var{on|off},merge=@var{on|off},dump=@var{on|off},prealloc=@var{on|off},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},align=@var{align}
3909
3910 Creates a memory file backend object, which can be used to back
3911 the guest RAM with huge pages.
3912
3913 The @option{id} parameter is a unique ID that will be used to reference this
3914 memory region when configuring the @option{-numa} argument.
3915
3916 The @option{size} option provides the size of the memory region, and accepts
3917 common suffixes, eg @option{500M}.
3918
3919 The @option{mem-path} provides the path to either a shared memory or huge page
3920 filesystem mount.
3921
3922 The @option{share} boolean option determines whether the memory
3923 region is marked as private to QEMU, or shared. The latter allows
3924 a co-operating external process to access the QEMU memory region.
3925
3926 The @option{share} is also required for pvrdma devices due to
3927 limitations in the RDMA API provided by Linux.
3928
3929 Setting share=on might affect the ability to configure NUMA
3930 bindings for the memory backend under some circumstances, see
3931 Documentation/vm/numa_memory_policy.txt on the Linux kernel
3932 source tree for additional details.
3933
3934 Setting the @option{discard-data} boolean option to @var{on}
3935 indicates that file contents can be destroyed when QEMU exits,
3936 to avoid unnecessarily flushing data to the backing file. Note
3937 that @option{discard-data} is only an optimization, and QEMU
3938 might not discard file contents if it aborts unexpectedly or is
3939 terminated using SIGKILL.
3940
3941 The @option{merge} boolean option enables memory merge, also known as
3942 MADV_MERGEABLE, so that Kernel Samepage Merging will consider the pages for
3943 memory deduplication.
3944
3945 Setting the @option{dump} boolean option to @var{off} excludes the memory from
3946 core dumps. This feature is also known as MADV_DONTDUMP.
3947
3948 The @option{prealloc} boolean option enables memory preallocation.
3949
3950 The @option{host-nodes} option binds the memory range to a list of NUMA host
3951 nodes.
3952
3953 The @option{policy} option sets the NUMA policy to one of the following values:
3954
3955 @table @option
3956 @item @var{default}
3957 default host policy
3958
3959 @item @var{preferred}
3960 prefer the given host node list for allocation
3961
3962 @item @var{bind}
3963 restrict memory allocation to the given host node list
3964
3965 @item @var{interleave}
3966 interleave memory allocations across the given host node list
3967 @end table
3968
3969 The @option{align} option specifies the base address alignment when
3970 QEMU mmap(2) @option{mem-path}, and accepts common suffixes, eg
3971 @option{2M}. Some backend store specified by @option{mem-path}
3972 requires an alignment different than the default one used by QEMU, eg
3973 the device DAX /dev/dax0.0 requires 2M alignment rather than 4K. In
3974 such cases, users can specify the required alignment via this option.
3975
3976 The @option{pmem} option specifies whether the backing file specified
3977 by @option{mem-path} is in host persistent memory that can be accessed
3978 using the SNIA NVM programming model (e.g. Intel NVDIMM).
3979 If @option{pmem} is set to 'on', QEMU will take necessary operations to
3980 guarantee the persistence of its own writes to @option{mem-path}
3981 (e.g. in vNVDIMM label emulation and live migration).
3982
3983 @item -object memory-backend-ram,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave}
3984
3985 Creates a memory backend object, which can be used to back the guest RAM.
3986 Memory backend objects offer more control than the @option{-m} option that is
3987 traditionally used to define guest RAM. Please refer to
3988 @option{memory-backend-file} for a description of the options.
3989
3990 @item -object memory-backend-memfd,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},seal=@var{on|off},hugetlb=@var{on|off},hugetlbsize=@var{size}
3991
3992 Creates an anonymous memory file backend object, which allows QEMU to
3993 share the memory with an external process (e.g. when using
3994 vhost-user). The memory is allocated with memfd and optional
3995 sealing. (Linux only)
3996
3997 The @option{seal} option creates a sealed-file, that will block
3998 further resizing the memory ('on' by default).
3999
4000 The @option{hugetlb} option specify the file to be created resides in
4001 the hugetlbfs filesystem (since Linux 4.14). Used in conjunction with
4002 the @option{hugetlb} option, the @option{hugetlbsize} option specify
4003 the hugetlb page size on systems that support multiple hugetlb page
4004 sizes (it must be a power of 2 value supported by the system).
4005
4006 In some versions of Linux, the @option{hugetlb} option is incompatible
4007 with the @option{seal} option (requires at least Linux 4.16).
4008
4009 Please refer to @option{memory-backend-file} for a description of the
4010 other options.
4011
4012 The @option{share} boolean option is @var{on} by default with memfd.
4013
4014 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
4015
4016 Creates a random number generator backend which obtains entropy from
4017 a device on the host. The @option{id} parameter is a unique ID that
4018 will be used to reference this entropy backend from the @option{virtio-rng}
4019 device. The @option{filename} parameter specifies which file to obtain
4020 entropy from and if omitted defaults to @option{/dev/random}.
4021
4022 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
4023
4024 Creates a random number generator backend which obtains entropy from
4025 an external daemon running on the host. The @option{id} parameter is
4026 a unique ID that will be used to reference this entropy backend from
4027 the @option{virtio-rng} device. The @option{chardev} parameter is
4028 the unique ID of a character device backend that provides the connection
4029 to the RNG daemon.
4030
4031 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
4032
4033 Creates a TLS anonymous credentials object, which can be used to provide
4034 TLS support on network backends. The @option{id} parameter is a unique
4035 ID which network backends will use to access the credentials. The
4036 @option{endpoint} is either @option{server} or @option{client} depending
4037 on whether the QEMU network backend that uses the credentials will be
4038 acting as a client or as a server. If @option{verify-peer} is enabled
4039 (the default) then once the handshake is completed, the peer credentials
4040 will be verified, though this is a no-op for anonymous credentials.
4041
4042 The @var{dir} parameter tells QEMU where to find the credential
4043 files. For server endpoints, this directory may contain a file
4044 @var{dh-params.pem} providing diffie-hellman parameters to use
4045 for the TLS server. If the file is missing, QEMU will generate
4046 a set of DH parameters at startup. This is a computationally
4047 expensive operation that consumes random pool entropy, so it is
4048 recommended that a persistent set of parameters be generated
4049 upfront and saved.
4050
4051 @item -object tls-creds-psk,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/keys/dir}[,username=@var{username}]
4052
4053 Creates a TLS Pre-Shared Keys (PSK) credentials object, which can be used to provide
4054 TLS support on network backends. The @option{id} parameter is a unique
4055 ID which network backends will use to access the credentials. The
4056 @option{endpoint} is either @option{server} or @option{client} depending
4057 on whether the QEMU network backend that uses the credentials will be
4058 acting as a client or as a server. For clients only, @option{username}
4059 is the username which will be sent to the server. If omitted
4060 it defaults to ``qemu''.
4061
4062 The @var{dir} parameter tells QEMU where to find the keys file.
4063 It is called ``@var{dir}/keys.psk'' and contains ``username:key''
4064 pairs. This file can most easily be created using the GnuTLS
4065 @code{psktool} program.
4066
4067 For server endpoints, @var{dir} may also contain a file
4068 @var{dh-params.pem} providing diffie-hellman parameters to use
4069 for the TLS server. If the file is missing, QEMU will generate
4070 a set of DH parameters at startup. This is a computationally
4071 expensive operation that consumes random pool entropy, so it is
4072 recommended that a persistent set of parameters be generated
4073 up front and saved.
4074
4075 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},priority=@var{priority},verify-peer=@var{on|off},passwordid=@var{id}
4076
4077 Creates a TLS anonymous credentials object, which can be used to provide
4078 TLS support on network backends. The @option{id} parameter is a unique
4079 ID which network backends will use to access the credentials. The
4080 @option{endpoint} is either @option{server} or @option{client} depending
4081 on whether the QEMU network backend that uses the credentials will be
4082 acting as a client or as a server. If @option{verify-peer} is enabled
4083 (the default) then once the handshake is completed, the peer credentials
4084 will be verified. With x509 certificates, this implies that the clients
4085 must be provided with valid client certificates too.
4086
4087 The @var{dir} parameter tells QEMU where to find the credential
4088 files. For server endpoints, this directory may contain a file
4089 @var{dh-params.pem} providing diffie-hellman parameters to use
4090 for the TLS server. If the file is missing, QEMU will generate
4091 a set of DH parameters at startup. This is a computationally
4092 expensive operation that consumes random pool entropy, so it is
4093 recommended that a persistent set of parameters be generated
4094 upfront and saved.
4095
4096 For x509 certificate credentials the directory will contain further files
4097 providing the x509 certificates. The certificates must be stored
4098 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
4099 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
4100 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
4101
4102 For the @var{server-key.pem} and @var{client-key.pem} files which
4103 contain sensitive private keys, it is possible to use an encrypted
4104 version by providing the @var{passwordid} parameter. This provides
4105 the ID of a previously created @code{secret} object containing the
4106 password for decryption.
4107
4108 The @var{priority} parameter allows to override the global default
4109 priority used by gnutls. This can be useful if the system administrator
4110 needs to use a weaker set of crypto priorities for QEMU without
4111 potentially forcing the weakness onto all applications. Or conversely
4112 if one wants wants a stronger default for QEMU than for all other
4113 applications, they can do this through this parameter. Its format is
4114 a gnutls priority string as described at
4115 @url{https://gnutls.org/manual/html_node/Priority-Strings.html}.
4116
4117 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
4118
4119 Interval @var{t} can't be 0, this filter batches the packet delivery: all
4120 packets arriving in a given interval on netdev @var{netdevid} are delayed
4121 until the end of the interval. Interval is in microseconds.
4122 @option{status} is optional that indicate whether the netfilter is
4123 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
4124
4125 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
4126
4127 @option{all}: the filter is attached both to the receive and the transmit
4128 queue of the netdev (default).
4129
4130 @option{rx}: the filter is attached to the receive queue of the netdev,
4131 where it will receive packets sent to the netdev.
4132
4133 @option{tx}: the filter is attached to the transmit queue of the netdev,
4134 where it will receive packets sent by the netdev.
4135
4136 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4137
4138 filter-mirror on netdev @var{netdevid},mirror net packet to chardev@var{chardevid}, if it has the vnet_hdr_support flag, filter-mirror will mirror packet with vnet_hdr_len.
4139
4140 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4141
4142 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
4143 @var{chardevid},and redirect indev's packet to filter.if it has the vnet_hdr_support flag,
4144 filter-redirector will redirect packet with vnet_hdr_len.
4145 Create a filter-redirector we need to differ outdev id from indev id, id can not
4146 be the same. we can just use indev or outdev, but at least one of indev or outdev
4147 need to be specified.
4148
4149 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},queue=@var{all|rx|tx},[vnet_hdr_support]
4150
4151 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
4152 secondary from primary to keep secondary tcp connection,and rewrite
4153 tcp packet to primary from secondary make tcp packet can be handled by
4154 client.if it has the vnet_hdr_support flag, we can parse packet with vnet header.
4155
4156 usage:
4157 colo secondary:
4158 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4159 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4160 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
4161
4162 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
4163
4164 Dump the network traffic on netdev @var{dev} to the file specified by
4165 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
4166 The file format is libpcap, so it can be analyzed with tools such as tcpdump
4167 or Wireshark.
4168
4169 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},outdev=@var{chardevid}[,vnet_hdr_support]
4170
4171 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
4172 secondary packet. If the packets are same, we will output primary
4173 packet to outdev@var{chardevid}, else we will notify colo-frame
4174 do checkpoint and send primary packet to outdev@var{chardevid}.
4175 if it has the vnet_hdr_support flag, colo compare will send/recv packet with vnet_hdr_len.
4176
4177 we must use it with the help of filter-mirror and filter-redirector.
4178
4179 @example
4180
4181 primary:
4182 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4183 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4184 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4185 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4186 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4187 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4188 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4189 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4190 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4191 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4192 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4193 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0
4194
4195 secondary:
4196 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4197 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4198 -chardev socket,id=red0,host=3.3.3.3,port=9003
4199 -chardev socket,id=red1,host=3.3.3.3,port=9004
4200 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4201 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4202
4203 @end example
4204
4205 If you want to know the detail of above command line, you can read
4206 the colo-compare git log.
4207
4208 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
4209
4210 Creates a cryptodev backend which executes crypto opreation from
4211 the QEMU cipher APIS. The @var{id} parameter is
4212 a unique ID that will be used to reference this cryptodev backend from
4213 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
4214 which specify the queue number of cryptodev backend, the default of
4215 @var{queues} is 1.
4216
4217 @example
4218
4219 # qemu-system-x86_64 \
4220 [...] \
4221 -object cryptodev-backend-builtin,id=cryptodev0 \
4222 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4223 [...]
4224 @end example
4225
4226 @item -object cryptodev-vhost-user,id=@var{id},chardev=@var{chardevid}[,queues=@var{queues}]
4227
4228 Creates a vhost-user cryptodev backend, backed by a chardev @var{chardevid}.
4229 The @var{id} parameter is a unique ID that will be used to reference this
4230 cryptodev backend from the @option{virtio-crypto} device.
4231 The chardev should be a unix domain socket backed one. The vhost-user uses
4232 a specifically defined protocol to pass vhost ioctl replacement messages
4233 to an application on the other end of the socket.
4234 The @var{queues} parameter is optional, which specify the queue number
4235 of cryptodev backend for multiqueue vhost-user, the default of @var{queues} is 1.
4236
4237 @example
4238
4239 # qemu-system-x86_64 \
4240 [...] \
4241 -chardev socket,id=chardev0,path=/path/to/socket \
4242 -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \
4243 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4244 [...]
4245 @end example
4246
4247 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4248 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4249
4250 Defines a secret to store a password, encryption key, or some other sensitive
4251 data. The sensitive data can either be passed directly via the @var{data}
4252 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
4253 parameter is insecure unless the sensitive data is encrypted.
4254
4255 The sensitive data can be provided in raw format (the default), or base64.
4256 When encoded as JSON, the raw format only supports valid UTF-8 characters,
4257 so base64 is recommended for sending binary data. QEMU will convert from
4258 which ever format is provided to the format it needs internally. eg, an
4259 RBD password can be provided in raw format, even though it will be base64
4260 encoded when passed onto the RBD sever.
4261
4262 For added protection, it is possible to encrypt the data associated with
4263 a secret using the AES-256-CBC cipher. Use of encryption is indicated
4264 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
4265 parameter provides the ID of a previously defined secret that contains
4266 the AES-256 decryption key. This key should be 32-bytes long and be
4267 base64 encoded. The @var{iv} parameter provides the random initialization
4268 vector used for encryption of this particular secret and should be a
4269 base64 encrypted string of the 16-byte IV.
4270
4271 The simplest (insecure) usage is to provide the secret inline
4272
4273 @example
4274
4275 # $QEMU -object secret,id=sec0,data=letmein,format=raw
4276
4277 @end example
4278
4279 The simplest secure usage is to provide the secret via a file
4280
4281 # printf "letmein" > mypasswd.txt
4282 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
4283
4284 For greater security, AES-256-CBC should be used. To illustrate usage,
4285 consider the openssl command line tool which can encrypt the data. Note
4286 that when encrypting, the plaintext must be padded to the cipher block
4287 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4288
4289 First a master key needs to be created in base64 encoding:
4290
4291 @example
4292 # openssl rand -base64 32 > key.b64
4293 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4294 @end example
4295
4296 Each secret to be encrypted needs to have a random initialization vector
4297 generated. These do not need to be kept secret
4298
4299 @example
4300 # openssl rand -base64 16 > iv.b64
4301 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4302 @end example
4303
4304 The secret to be defined can now be encrypted, in this case we're
4305 telling openssl to base64 encode the result, but it could be left
4306 as raw bytes if desired.
4307
4308 @example
4309 # SECRET=$(printf "letmein" |
4310 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4311 @end example
4312
4313 When launching QEMU, create a master secret pointing to @code{key.b64}
4314 and specify that to be used to decrypt the user password. Pass the
4315 contents of @code{iv.b64} to the second secret
4316
4317 @example
4318 # $QEMU \
4319 -object secret,id=secmaster0,format=base64,file=key.b64 \
4320 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4321 data=$SECRET,iv=$(<iv.b64)
4322 @end example
4323
4324 @item -object sev-guest,id=@var{id},cbitpos=@var{cbitpos},reduced-phys-bits=@var{val},[sev-device=@var{string},policy=@var{policy},handle=@var{handle},dh-cert-file=@var{file},session-file=@var{file}]
4325
4326 Create a Secure Encrypted Virtualization (SEV) guest object, which can be used
4327 to provide the guest memory encryption support on AMD processors.
4328
4329 When memory encryption is enabled, one of the physical address bit (aka the
4330 C-bit) is utilized to mark if a memory page is protected. The @option{cbitpos}
4331 is used to provide the C-bit position. The C-bit position is Host family dependent
4332 hence user must provide this value. On EPYC, the value should be 47.
4333
4334 When memory encryption is enabled, we loose certain bits in physical address space.
4335 The @option{reduced-phys-bits} is used to provide the number of bits we loose in
4336 physical address space. Similar to C-bit, the value is Host family dependent.
4337 On EPYC, the value should be 5.
4338
4339 The @option{sev-device} provides the device file to use for communicating with
4340 the SEV firmware running inside AMD Secure Processor. The default device is
4341 '/dev/sev'. If hardware supports memory encryption then /dev/sev devices are
4342 created by CCP driver.
4343
4344 The @option{policy} provides the guest policy to be enforced by the SEV firmware
4345 and restrict what configuration and operational commands can be performed on this
4346 guest by the hypervisor. The policy should be provided by the guest owner and is
4347 bound to the guest and cannot be changed throughout the lifetime of the guest.
4348 The default is 0.
4349
4350 If guest @option{policy} allows sharing the key with another SEV guest then
4351 @option{handle} can be use to provide handle of the guest from which to share
4352 the key.
4353
4354 The @option{dh-cert-file} and @option{session-file} provides the guest owner's
4355 Public Diffie-Hillman key defined in SEV spec. The PDH and session parameters
4356 are used for establishing a cryptographic session with the guest owner to
4357 negotiate keys used for attestation. The file must be encoded in base64.
4358
4359 e.g to launch a SEV guest
4360 @example
4361 # $QEMU \
4362 ......
4363 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \
4364 -machine ...,memory-encryption=sev0
4365 .....
4366
4367 @end example
4368 @end table
4369
4370 ETEXI
4371
4372
4373 HXCOMM This is the last statement. Insert new options before this line!
4374 STEXI
4375 @end table
4376 ETEXI