]> git.proxmox.com Git - mirror_qemu.git/blob - qemu-options.hx
Merge remote-tracking branch 'remotes/kraxel/tags/pull-seabios-20170228-1' into staging
[mirror_qemu.git] / qemu-options.hx
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
8
9 DEFHEADING(Standard options)
10 STEXI
11 @table @option
12 ETEXI
13
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
21
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
29
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, tcg (default: tcg)\n"
35 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
36 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
37 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n"
38 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
39 " mem-merge=on|off controls memory merge support (default: on)\n"
40 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
41 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
42 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
43 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
44 " nvdimm=on|off controls NVDIMM support (default=off)\n"
45 " enforce-config-section=on|off enforce configuration section migration (default=off)\n",
46 QEMU_ARCH_ALL)
47 STEXI
48 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
49 @findex -machine
50 Select the emulated machine by @var{name}. Use @code{-machine help} to list
51 available machines. Supported machine properties are:
52 @table @option
53 @item accel=@var{accels1}[:@var{accels2}[:...]]
54 This is used to enable an accelerator. Depending on the target architecture,
55 kvm, xen, or tcg can be available. By default, tcg is used. If there is more
56 than one accelerator specified, the next one is used if the previous one fails
57 to initialize.
58 @item kernel_irqchip=on|off
59 Controls in-kernel irqchip support for the chosen accelerator when available.
60 @item gfx_passthru=on|off
61 Enables IGD GFX passthrough support for the chosen machine when available.
62 @item vmport=on|off|auto
63 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
64 value based on accel. For accel=xen the default is off otherwise the default
65 is on.
66 @item kvm_shadow_mem=size
67 Defines the size of the KVM shadow MMU.
68 @item dump-guest-core=on|off
69 Include guest memory in a core dump. The default is on.
70 @item mem-merge=on|off
71 Enables or disables memory merge support. This feature, when supported by
72 the host, de-duplicates identical memory pages among VMs instances
73 (enabled by default).
74 @item aes-key-wrap=on|off
75 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
76 controls whether AES wrapping keys will be created to allow
77 execution of AES cryptographic functions. The default is on.
78 @item dea-key-wrap=on|off
79 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
80 controls whether DEA wrapping keys will be created to allow
81 execution of DEA cryptographic functions. The default is on.
82 @item nvdimm=on|off
83 Enables or disables NVDIMM support. The default is off.
84 @end table
85 ETEXI
86
87 HXCOMM Deprecated by -machine
88 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
89
90 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
91 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
92 STEXI
93 @item -cpu @var{model}
94 @findex -cpu
95 Select CPU model (@code{-cpu help} for list and additional feature selection)
96 ETEXI
97
98 DEF("accel", HAS_ARG, QEMU_OPTION_accel,
99 "-accel [accel=]accelerator[,thread=single|multi]\n"
100 " select accelerator ('-accel help for list')\n"
101 " thread=single|multi (enable multi-threaded TCG)", QEMU_ARCH_ALL)
102 STEXI
103 @item -accel @var{name}[,prop=@var{value}[,...]]
104 @findex -accel
105 This is used to enable an accelerator. Depending on the target architecture,
106 kvm, xen, or tcg can be available. By default, tcg is used. If there is more
107 than one accelerator specified, the next one is used if the previous one fails
108 to initialize.
109 @table @option
110 @item thread=single|multi
111 Controls number of TCG threads. When the TCG is multi-threaded there will be one
112 thread per vCPU therefor taking advantage of additional host cores. The default
113 is to enable multi-threading where both the back-end and front-ends support it and
114 no incompatible TCG features have been enabled (e.g. icount/replay).
115 @end table
116 ETEXI
117
118 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
119 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
120 " set the number of CPUs to 'n' [default=1]\n"
121 " maxcpus= maximum number of total cpus, including\n"
122 " offline CPUs for hotplug, etc\n"
123 " cores= number of CPU cores on one socket\n"
124 " threads= number of threads on one CPU core\n"
125 " sockets= number of discrete sockets in the system\n",
126 QEMU_ARCH_ALL)
127 STEXI
128 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
129 @findex -smp
130 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
131 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
132 to 4.
133 For the PC target, the number of @var{cores} per socket, the number
134 of @var{threads} per cores and the total number of @var{sockets} can be
135 specified. Missing values will be computed. If any on the three values is
136 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
137 specifies the maximum number of hotpluggable CPUs.
138 ETEXI
139
140 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
141 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
142 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n", QEMU_ARCH_ALL)
143 STEXI
144 @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
145 @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
146 @findex -numa
147 Simulate a multi node NUMA system. If @samp{mem}, @samp{memdev}
148 and @samp{cpus} are omitted, resources are split equally. Also, note
149 that the -@option{numa} option doesn't allocate any of the specified
150 resources. That is, it just assigns existing resources to NUMA nodes. This
151 means that one still has to use the @option{-m}, @option{-smp} options
152 to allocate RAM and VCPUs respectively, and possibly @option{-object}
153 to specify the memory backend for the @samp{memdev} suboption.
154
155 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore, if one
156 node uses @samp{memdev}, all of them have to use it.
157 ETEXI
158
159 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
160 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
161 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
162 STEXI
163 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
164 @findex -add-fd
165
166 Add a file descriptor to an fd set. Valid options are:
167
168 @table @option
169 @item fd=@var{fd}
170 This option defines the file descriptor of which a duplicate is added to fd set.
171 The file descriptor cannot be stdin, stdout, or stderr.
172 @item set=@var{set}
173 This option defines the ID of the fd set to add the file descriptor to.
174 @item opaque=@var{opaque}
175 This option defines a free-form string that can be used to describe @var{fd}.
176 @end table
177
178 You can open an image using pre-opened file descriptors from an fd set:
179 @example
180 qemu-system-i386
181 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
182 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
183 -drive file=/dev/fdset/2,index=0,media=disk
184 @end example
185 ETEXI
186
187 DEF("set", HAS_ARG, QEMU_OPTION_set,
188 "-set group.id.arg=value\n"
189 " set <arg> parameter for item <id> of type <group>\n"
190 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
191 STEXI
192 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
193 @findex -set
194 Set parameter @var{arg} for item @var{id} of type @var{group}
195 ETEXI
196
197 DEF("global", HAS_ARG, QEMU_OPTION_global,
198 "-global driver.property=value\n"
199 "-global driver=driver,property=property,value=value\n"
200 " set a global default for a driver property\n",
201 QEMU_ARCH_ALL)
202 STEXI
203 @item -global @var{driver}.@var{prop}=@var{value}
204 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
205 @findex -global
206 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
207
208 @example
209 qemu-system-i386 -global ide-drive.physical_block_size=4096 -drive file=file,if=ide,index=0,media=disk
210 @end example
211
212 In particular, you can use this to set driver properties for devices which are
213 created automatically by the machine model. To create a device which is not
214 created automatically and set properties on it, use -@option{device}.
215
216 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
217 driver=@var{driver},property=@var{prop},value=@var{value}. The
218 longhand syntax works even when @var{driver} contains a dot.
219 ETEXI
220
221 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
222 "-boot [order=drives][,once=drives][,menu=on|off]\n"
223 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
224 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
225 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
226 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
227 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
228 QEMU_ARCH_ALL)
229 STEXI
230 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
231 @findex -boot
232 Specify boot order @var{drives} as a string of drive letters. Valid
233 drive letters depend on the target architecture. The x86 PC uses: a, b
234 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
235 from network adapter 1-4), hard disk boot is the default. To apply a
236 particular boot order only on the first startup, specify it via
237 @option{once}.
238
239 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
240 as firmware/BIOS supports them. The default is non-interactive boot.
241
242 A splash picture could be passed to bios, enabling user to show it as logo,
243 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
244 supports them. Currently Seabios for X86 system support it.
245 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
246 format(true color). The resolution should be supported by the SVGA mode, so
247 the recommended is 320x240, 640x480, 800x640.
248
249 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
250 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
251 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
252 system support it.
253
254 Do strict boot via @option{strict=on} as far as firmware/BIOS
255 supports it. This only effects when boot priority is changed by
256 bootindex options. The default is non-strict boot.
257
258 @example
259 # try to boot from network first, then from hard disk
260 qemu-system-i386 -boot order=nc
261 # boot from CD-ROM first, switch back to default order after reboot
262 qemu-system-i386 -boot once=d
263 # boot with a splash picture for 5 seconds.
264 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
265 @end example
266
267 Note: The legacy format '-boot @var{drives}' is still supported but its
268 use is discouraged as it may be removed from future versions.
269 ETEXI
270
271 DEF("m", HAS_ARG, QEMU_OPTION_m,
272 "-m [size=]megs[,slots=n,maxmem=size]\n"
273 " configure guest RAM\n"
274 " size: initial amount of guest memory\n"
275 " slots: number of hotplug slots (default: none)\n"
276 " maxmem: maximum amount of guest memory (default: none)\n"
277 "NOTE: Some architectures might enforce a specific granularity\n",
278 QEMU_ARCH_ALL)
279 STEXI
280 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
281 @findex -m
282 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
283 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
284 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
285 could be used to set amount of hotpluggable memory slots and maximum amount of
286 memory. Note that @var{maxmem} must be aligned to the page size.
287
288 For example, the following command-line sets the guest startup RAM size to
289 1GB, creates 3 slots to hotplug additional memory and sets the maximum
290 memory the guest can reach to 4GB:
291
292 @example
293 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
294 @end example
295
296 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
297 be enabled and the guest startup RAM will never increase.
298 ETEXI
299
300 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
301 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
302 STEXI
303 @item -mem-path @var{path}
304 @findex -mem-path
305 Allocate guest RAM from a temporarily created file in @var{path}.
306 ETEXI
307
308 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
309 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
310 QEMU_ARCH_ALL)
311 STEXI
312 @item -mem-prealloc
313 @findex -mem-prealloc
314 Preallocate memory when using -mem-path.
315 ETEXI
316
317 DEF("k", HAS_ARG, QEMU_OPTION_k,
318 "-k language use keyboard layout (for example 'fr' for French)\n",
319 QEMU_ARCH_ALL)
320 STEXI
321 @item -k @var{language}
322 @findex -k
323 Use keyboard layout @var{language} (for example @code{fr} for
324 French). This option is only needed where it is not easy to get raw PC
325 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
326 display). You don't normally need to use it on PC/Linux or PC/Windows
327 hosts.
328
329 The available layouts are:
330 @example
331 ar de-ch es fo fr-ca hu ja mk no pt-br sv
332 da en-gb et fr fr-ch is lt nl pl ru th
333 de en-us fi fr-be hr it lv nl-be pt sl tr
334 @end example
335
336 The default is @code{en-us}.
337 ETEXI
338
339
340 DEF("audio-help", 0, QEMU_OPTION_audio_help,
341 "-audio-help print list of audio drivers and their options\n",
342 QEMU_ARCH_ALL)
343 STEXI
344 @item -audio-help
345 @findex -audio-help
346 Will show the audio subsystem help: list of drivers, tunable
347 parameters.
348 ETEXI
349
350 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
351 "-soundhw c1,... enable audio support\n"
352 " and only specified sound cards (comma separated list)\n"
353 " use '-soundhw help' to get the list of supported cards\n"
354 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
355 STEXI
356 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
357 @findex -soundhw
358 Enable audio and selected sound hardware. Use 'help' to print all
359 available sound hardware.
360
361 @example
362 qemu-system-i386 -soundhw sb16,adlib disk.img
363 qemu-system-i386 -soundhw es1370 disk.img
364 qemu-system-i386 -soundhw ac97 disk.img
365 qemu-system-i386 -soundhw hda disk.img
366 qemu-system-i386 -soundhw all disk.img
367 qemu-system-i386 -soundhw help
368 @end example
369
370 Note that Linux's i810_audio OSS kernel (for AC97) module might
371 require manually specifying clocking.
372
373 @example
374 modprobe i810_audio clocking=48000
375 @end example
376 ETEXI
377
378 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
379 "-balloon none disable balloon device\n"
380 "-balloon virtio[,addr=str]\n"
381 " enable virtio balloon device (default)\n", QEMU_ARCH_ALL)
382 STEXI
383 @item -balloon none
384 @findex -balloon
385 Disable balloon device.
386 @item -balloon virtio[,addr=@var{addr}]
387 Enable virtio balloon device (default), optionally with PCI address
388 @var{addr}.
389 ETEXI
390
391 DEF("device", HAS_ARG, QEMU_OPTION_device,
392 "-device driver[,prop[=value][,...]]\n"
393 " add device (based on driver)\n"
394 " prop=value,... sets driver properties\n"
395 " use '-device help' to print all possible drivers\n"
396 " use '-device driver,help' to print all possible properties\n",
397 QEMU_ARCH_ALL)
398 STEXI
399 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
400 @findex -device
401 Add device @var{driver}. @var{prop}=@var{value} sets driver
402 properties. Valid properties depend on the driver. To get help on
403 possible drivers and properties, use @code{-device help} and
404 @code{-device @var{driver},help}.
405
406 Some drivers are:
407 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}]
408
409 Add an IPMI BMC. This is a simulation of a hardware management
410 interface processor that normally sits on a system. It provides
411 a watchdog and the ability to reset and power control the system.
412 You need to connect this to an IPMI interface to make it useful
413
414 The IPMI slave address to use for the BMC. The default is 0x20.
415 This address is the BMC's address on the I2C network of management
416 controllers. If you don't know what this means, it is safe to ignore
417 it.
418
419 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
420
421 Add a connection to an external IPMI BMC simulator. Instead of
422 locally emulating the BMC like the above item, instead connect
423 to an external entity that provides the IPMI services.
424
425 A connection is made to an external BMC simulator. If you do this, it
426 is strongly recommended that you use the "reconnect=" chardev option
427 to reconnect to the simulator if the connection is lost. Note that if
428 this is not used carefully, it can be a security issue, as the
429 interface has the ability to send resets, NMIs, and power off the VM.
430 It's best if QEMU makes a connection to an external simulator running
431 on a secure port on localhost, so neither the simulator nor QEMU is
432 exposed to any outside network.
433
434 See the "lanserv/README.vm" file in the OpenIPMI library for more
435 details on the external interface.
436
437 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
438
439 Add a KCS IPMI interafce on the ISA bus. This also adds a
440 corresponding ACPI and SMBIOS entries, if appropriate.
441
442 @table @option
443 @item bmc=@var{id}
444 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
445 @item ioport=@var{val}
446 Define the I/O address of the interface. The default is 0xca0 for KCS.
447 @item irq=@var{val}
448 Define the interrupt to use. The default is 5. To disable interrupts,
449 set this to 0.
450 @end table
451
452 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
453
454 Like the KCS interface, but defines a BT interface. The default port is
455 0xe4 and the default interrupt is 5.
456
457 ETEXI
458
459 DEF("name", HAS_ARG, QEMU_OPTION_name,
460 "-name string1[,process=string2][,debug-threads=on|off]\n"
461 " set the name of the guest\n"
462 " string1 sets the window title and string2 the process name (on Linux)\n"
463 " When debug-threads is enabled, individual threads are given a separate name (on Linux)\n"
464 " NOTE: The thread names are for debugging and not a stable API.\n",
465 QEMU_ARCH_ALL)
466 STEXI
467 @item -name @var{name}
468 @findex -name
469 Sets the @var{name} of the guest.
470 This name will be displayed in the SDL window caption.
471 The @var{name} will also be used for the VNC server.
472 Also optionally set the top visible process name in Linux.
473 Naming of individual threads can also be enabled on Linux to aid debugging.
474 ETEXI
475
476 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
477 "-uuid %08x-%04x-%04x-%04x-%012x\n"
478 " specify machine UUID\n", QEMU_ARCH_ALL)
479 STEXI
480 @item -uuid @var{uuid}
481 @findex -uuid
482 Set system UUID.
483 ETEXI
484
485 STEXI
486 @end table
487 ETEXI
488 DEFHEADING()
489
490 DEFHEADING(Block device options)
491 STEXI
492 @table @option
493 ETEXI
494
495 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
496 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
497 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
498 STEXI
499 @item -fda @var{file}
500 @itemx -fdb @var{file}
501 @findex -fda
502 @findex -fdb
503 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
504 ETEXI
505
506 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
507 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
508 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
509 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
510 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
511 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
512 STEXI
513 @item -hda @var{file}
514 @itemx -hdb @var{file}
515 @itemx -hdc @var{file}
516 @itemx -hdd @var{file}
517 @findex -hda
518 @findex -hdb
519 @findex -hdc
520 @findex -hdd
521 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
522 ETEXI
523
524 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
525 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
526 QEMU_ARCH_ALL)
527 STEXI
528 @item -cdrom @var{file}
529 @findex -cdrom
530 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
531 @option{-cdrom} at the same time). You can use the host CD-ROM by
532 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
533 ETEXI
534
535 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
536 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
537 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
538 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
539 " [,serial=s][,addr=A][,rerror=ignore|stop|report]\n"
540 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
541 " [,readonly=on|off][,copy-on-read=on|off]\n"
542 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
543 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
544 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
545 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
546 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
547 " [[,iops_size=is]]\n"
548 " [[,group=g]]\n"
549 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
550 STEXI
551 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
552 @findex -drive
553
554 Define a new drive. Valid options are:
555
556 @table @option
557 @item file=@var{file}
558 This option defines which disk image (@pxref{disk_images}) to use with
559 this drive. If the filename contains comma, you must double it
560 (for instance, "file=my,,file" to use file "my,file").
561
562 Special files such as iSCSI devices can be specified using protocol
563 specific URLs. See the section for "Device URL Syntax" for more information.
564 @item if=@var{interface}
565 This option defines on which type on interface the drive is connected.
566 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
567 @item bus=@var{bus},unit=@var{unit}
568 These options define where is connected the drive by defining the bus number and
569 the unit id.
570 @item index=@var{index}
571 This option defines where is connected the drive by using an index in the list
572 of available connectors of a given interface type.
573 @item media=@var{media}
574 This option defines the type of the media: disk or cdrom.
575 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
576 These options have the same definition as they have in @option{-hdachs}.
577 @item snapshot=@var{snapshot}
578 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
579 (see @option{-snapshot}).
580 @item cache=@var{cache}
581 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough" and controls how the host cache is used to access block data.
582 @item aio=@var{aio}
583 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
584 @item discard=@var{discard}
585 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls whether @dfn{discard} (also known as @dfn{trim} or @dfn{unmap}) requests are ignored or passed to the filesystem. Some machine types may not support discard requests.
586 @item format=@var{format}
587 Specify which disk @var{format} will be used rather than detecting
588 the format. Can be used to specify format=raw to avoid interpreting
589 an untrusted format header.
590 @item serial=@var{serial}
591 This option specifies the serial number to assign to the device.
592 @item addr=@var{addr}
593 Specify the controller's PCI address (if=virtio only).
594 @item werror=@var{action},rerror=@var{action}
595 Specify which @var{action} to take on write and read errors. Valid actions are:
596 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
597 "report" (report the error to the guest), "enospc" (pause QEMU only if the
598 host disk is full; report the error to the guest otherwise).
599 The default setting is @option{werror=enospc} and @option{rerror=report}.
600 @item readonly
601 Open drive @option{file} as read-only. Guest write attempts will fail.
602 @item copy-on-read=@var{copy-on-read}
603 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
604 file sectors into the image file.
605 @item detect-zeroes=@var{detect-zeroes}
606 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
607 conversion of plain zero writes by the OS to driver specific optimized
608 zero write commands. You may even choose "unmap" if @var{discard} is set
609 to "unmap" to allow a zero write to be converted to an UNMAP operation.
610 @end table
611
612 By default, the @option{cache=writeback} mode is used. It will report data
613 writes as completed as soon as the data is present in the host page cache.
614 This is safe as long as your guest OS makes sure to correctly flush disk caches
615 where needed. If your guest OS does not handle volatile disk write caches
616 correctly and your host crashes or loses power, then the guest may experience
617 data corruption.
618
619 For such guests, you should consider using @option{cache=writethrough}. This
620 means that the host page cache will be used to read and write data, but write
621 notification will be sent to the guest only after QEMU has made sure to flush
622 each write to the disk. Be aware that this has a major impact on performance.
623
624 The host page cache can be avoided entirely with @option{cache=none}. This will
625 attempt to do disk IO directly to the guest's memory. QEMU may still perform
626 an internal copy of the data. Note that this is considered a writeback mode and
627 the guest OS must handle the disk write cache correctly in order to avoid data
628 corruption on host crashes.
629
630 The host page cache can be avoided while only sending write notifications to
631 the guest when the data has been flushed to the disk using
632 @option{cache=directsync}.
633
634 In case you don't care about data integrity over host failures, use
635 @option{cache=unsafe}. This option tells QEMU that it never needs to write any
636 data to the disk but can instead keep things in cache. If anything goes wrong,
637 like your host losing power, the disk storage getting disconnected accidentally,
638 etc. your image will most probably be rendered unusable. When using
639 the @option{-snapshot} option, unsafe caching is always used.
640
641 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
642 useful when the backing file is over a slow network. By default copy-on-read
643 is off.
644
645 Instead of @option{-cdrom} you can use:
646 @example
647 qemu-system-i386 -drive file=file,index=2,media=cdrom
648 @end example
649
650 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
651 use:
652 @example
653 qemu-system-i386 -drive file=file,index=0,media=disk
654 qemu-system-i386 -drive file=file,index=1,media=disk
655 qemu-system-i386 -drive file=file,index=2,media=disk
656 qemu-system-i386 -drive file=file,index=3,media=disk
657 @end example
658
659 You can open an image using pre-opened file descriptors from an fd set:
660 @example
661 qemu-system-i386
662 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
663 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
664 -drive file=/dev/fdset/2,index=0,media=disk
665 @end example
666
667 You can connect a CDROM to the slave of ide0:
668 @example
669 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
670 @end example
671
672 If you don't specify the "file=" argument, you define an empty drive:
673 @example
674 qemu-system-i386 -drive if=ide,index=1,media=cdrom
675 @end example
676
677 Instead of @option{-fda}, @option{-fdb}, you can use:
678 @example
679 qemu-system-i386 -drive file=file,index=0,if=floppy
680 qemu-system-i386 -drive file=file,index=1,if=floppy
681 @end example
682
683 By default, @var{interface} is "ide" and @var{index} is automatically
684 incremented:
685 @example
686 qemu-system-i386 -drive file=a -drive file=b"
687 @end example
688 is interpreted like:
689 @example
690 qemu-system-i386 -hda a -hdb b
691 @end example
692 ETEXI
693
694 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
695 "-mtdblock file use 'file' as on-board Flash memory image\n",
696 QEMU_ARCH_ALL)
697 STEXI
698 @item -mtdblock @var{file}
699 @findex -mtdblock
700 Use @var{file} as on-board Flash memory image.
701 ETEXI
702
703 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
704 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
705 STEXI
706 @item -sd @var{file}
707 @findex -sd
708 Use @var{file} as SecureDigital card image.
709 ETEXI
710
711 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
712 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
713 STEXI
714 @item -pflash @var{file}
715 @findex -pflash
716 Use @var{file} as a parallel flash image.
717 ETEXI
718
719 DEF("snapshot", 0, QEMU_OPTION_snapshot,
720 "-snapshot write to temporary files instead of disk image files\n",
721 QEMU_ARCH_ALL)
722 STEXI
723 @item -snapshot
724 @findex -snapshot
725 Write to temporary files instead of disk image files. In this case,
726 the raw disk image you use is not written back. You can however force
727 the write back by pressing @key{C-a s} (@pxref{disk_images}).
728 ETEXI
729
730 DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
731 "-hdachs c,h,s[,t]\n" \
732 " force hard disk 0 physical geometry and the optional BIOS\n" \
733 " translation (t=none or lba) (usually QEMU can guess them)\n",
734 QEMU_ARCH_ALL)
735 STEXI
736 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
737 @findex -hdachs
738 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
739 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
740 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
741 all those parameters. This option is useful for old MS-DOS disk
742 images.
743 ETEXI
744
745 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
746 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n"
747 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n"
748 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
749 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
750 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
751 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
752 " [[,throttling.iops-size=is]]\n",
753 QEMU_ARCH_ALL)
754
755 STEXI
756
757 @item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
758 @findex -fsdev
759 Define a new file system device. Valid options are:
760 @table @option
761 @item @var{fsdriver}
762 This option specifies the fs driver backend to use.
763 Currently "local", "handle" and "proxy" file system drivers are supported.
764 @item id=@var{id}
765 Specifies identifier for this device
766 @item path=@var{path}
767 Specifies the export path for the file system device. Files under
768 this path will be available to the 9p client on the guest.
769 @item security_model=@var{security_model}
770 Specifies the security model to be used for this export path.
771 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
772 In "passthrough" security model, files are stored using the same
773 credentials as they are created on the guest. This requires QEMU
774 to run as root. In "mapped-xattr" security model, some of the file
775 attributes like uid, gid, mode bits and link target are stored as
776 file attributes. For "mapped-file" these attributes are stored in the
777 hidden .virtfs_metadata directory. Directories exported by this security model cannot
778 interact with other unix tools. "none" security model is same as
779 passthrough except the sever won't report failures if it fails to
780 set file attributes like ownership. Security model is mandatory
781 only for local fsdriver. Other fsdrivers (like handle, proxy) don't take
782 security model as a parameter.
783 @item writeout=@var{writeout}
784 This is an optional argument. The only supported value is "immediate".
785 This means that host page cache will be used to read and write data but
786 write notification will be sent to the guest only when the data has been
787 reported as written by the storage subsystem.
788 @item readonly
789 Enables exporting 9p share as a readonly mount for guests. By default
790 read-write access is given.
791 @item socket=@var{socket}
792 Enables proxy filesystem driver to use passed socket file for communicating
793 with virtfs-proxy-helper
794 @item sock_fd=@var{sock_fd}
795 Enables proxy filesystem driver to use passed socket descriptor for
796 communicating with virtfs-proxy-helper. Usually a helper like libvirt
797 will create socketpair and pass one of the fds as sock_fd
798 @end table
799
800 -fsdev option is used along with -device driver "virtio-9p-pci".
801 @item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag}
802 Options for virtio-9p-pci driver are:
803 @table @option
804 @item fsdev=@var{id}
805 Specifies the id value specified along with -fsdev option
806 @item mount_tag=@var{mount_tag}
807 Specifies the tag name to be used by the guest to mount this export point
808 @end table
809
810 ETEXI
811
812 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
813 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n"
814 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
815 QEMU_ARCH_ALL)
816
817 STEXI
818
819 @item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
820 @findex -virtfs
821
822 The general form of a Virtual File system pass-through options are:
823 @table @option
824 @item @var{fsdriver}
825 This option specifies the fs driver backend to use.
826 Currently "local", "handle" and "proxy" file system drivers are supported.
827 @item id=@var{id}
828 Specifies identifier for this device
829 @item path=@var{path}
830 Specifies the export path for the file system device. Files under
831 this path will be available to the 9p client on the guest.
832 @item security_model=@var{security_model}
833 Specifies the security model to be used for this export path.
834 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
835 In "passthrough" security model, files are stored using the same
836 credentials as they are created on the guest. This requires QEMU
837 to run as root. In "mapped-xattr" security model, some of the file
838 attributes like uid, gid, mode bits and link target are stored as
839 file attributes. For "mapped-file" these attributes are stored in the
840 hidden .virtfs_metadata directory. Directories exported by this security model cannot
841 interact with other unix tools. "none" security model is same as
842 passthrough except the sever won't report failures if it fails to
843 set file attributes like ownership. Security model is mandatory only
844 for local fsdriver. Other fsdrivers (like handle, proxy) don't take security
845 model as a parameter.
846 @item writeout=@var{writeout}
847 This is an optional argument. The only supported value is "immediate".
848 This means that host page cache will be used to read and write data but
849 write notification will be sent to the guest only when the data has been
850 reported as written by the storage subsystem.
851 @item readonly
852 Enables exporting 9p share as a readonly mount for guests. By default
853 read-write access is given.
854 @item socket=@var{socket}
855 Enables proxy filesystem driver to use passed socket file for
856 communicating with virtfs-proxy-helper. Usually a helper like libvirt
857 will create socketpair and pass one of the fds as sock_fd
858 @item sock_fd
859 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
860 descriptor for interfacing with virtfs-proxy-helper
861 @end table
862 ETEXI
863
864 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
865 "-virtfs_synth Create synthetic file system image\n",
866 QEMU_ARCH_ALL)
867 STEXI
868 @item -virtfs_synth
869 @findex -virtfs_synth
870 Create synthetic file system image
871 ETEXI
872
873 STEXI
874 @end table
875 ETEXI
876 DEFHEADING()
877
878 DEFHEADING(USB options)
879 STEXI
880 @table @option
881 ETEXI
882
883 DEF("usb", 0, QEMU_OPTION_usb,
884 "-usb enable the USB driver (will be the default soon)\n",
885 QEMU_ARCH_ALL)
886 STEXI
887 @item -usb
888 @findex -usb
889 Enable the USB driver (will be the default soon)
890 ETEXI
891
892 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
893 "-usbdevice name add the host or guest USB device 'name'\n",
894 QEMU_ARCH_ALL)
895 STEXI
896
897 @item -usbdevice @var{devname}
898 @findex -usbdevice
899 Add the USB device @var{devname}. @xref{usb_devices}.
900
901 @table @option
902
903 @item mouse
904 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
905
906 @item tablet
907 Pointer device that uses absolute coordinates (like a touchscreen). This
908 means QEMU is able to report the mouse position without having to grab the
909 mouse. Also overrides the PS/2 mouse emulation when activated.
910
911 @item disk:[format=@var{format}]:@var{file}
912 Mass storage device based on file. The optional @var{format} argument
913 will be used rather than detecting the format. Can be used to specify
914 @code{format=raw} to avoid interpreting an untrusted format header.
915
916 @item host:@var{bus}.@var{addr}
917 Pass through the host device identified by @var{bus}.@var{addr} (Linux only).
918
919 @item host:@var{vendor_id}:@var{product_id}
920 Pass through the host device identified by @var{vendor_id}:@var{product_id}
921 (Linux only).
922
923 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
924 Serial converter to host character device @var{dev}, see @code{-serial} for the
925 available devices.
926
927 @item braille
928 Braille device. This will use BrlAPI to display the braille output on a real
929 or fake device.
930
931 @item net:@var{options}
932 Network adapter that supports CDC ethernet and RNDIS protocols.
933
934 @end table
935 ETEXI
936
937 STEXI
938 @end table
939 ETEXI
940 DEFHEADING()
941
942 DEFHEADING(Display options)
943 STEXI
944 @table @option
945 ETEXI
946
947 DEF("display", HAS_ARG, QEMU_OPTION_display,
948 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
949 " [,window_close=on|off][,gl=on|off]\n"
950 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
951 "-display vnc=<display>[,<optargs>]\n"
952 "-display curses\n"
953 "-display none"
954 " select display type\n"
955 "The default display is equivalent to\n"
956 #if defined(CONFIG_GTK)
957 "\t\"-display gtk\"\n"
958 #elif defined(CONFIG_SDL)
959 "\t\"-display sdl\"\n"
960 #elif defined(CONFIG_COCOA)
961 "\t\"-display cocoa\"\n"
962 #elif defined(CONFIG_VNC)
963 "\t\"-vnc localhost:0,to=99,id=default\"\n"
964 #else
965 "\t\"-display none\"\n"
966 #endif
967 , QEMU_ARCH_ALL)
968 STEXI
969 @item -display @var{type}
970 @findex -display
971 Select type of display to use. This option is a replacement for the
972 old style -sdl/-curses/... options. Valid values for @var{type} are
973 @table @option
974 @item sdl
975 Display video output via SDL (usually in a separate graphics
976 window; see the SDL documentation for other possibilities).
977 @item curses
978 Display video output via curses. For graphics device models which
979 support a text mode, QEMU can display this output using a
980 curses/ncurses interface. Nothing is displayed when the graphics
981 device is in graphical mode or if the graphics device does not support
982 a text mode. Generally only the VGA device models support text mode.
983 @item none
984 Do not display video output. The guest will still see an emulated
985 graphics card, but its output will not be displayed to the QEMU
986 user. This option differs from the -nographic option in that it
987 only affects what is done with video output; -nographic also changes
988 the destination of the serial and parallel port data.
989 @item gtk
990 Display video output in a GTK window. This interface provides drop-down
991 menus and other UI elements to configure and control the VM during
992 runtime.
993 @item vnc
994 Start a VNC server on display <arg>
995 @end table
996 ETEXI
997
998 DEF("nographic", 0, QEMU_OPTION_nographic,
999 "-nographic disable graphical output and redirect serial I/Os to console\n",
1000 QEMU_ARCH_ALL)
1001 STEXI
1002 @item -nographic
1003 @findex -nographic
1004 Normally, if QEMU is compiled with graphical window support, it displays
1005 output such as guest graphics, guest console, and the QEMU monitor in a
1006 window. With this option, you can totally disable graphical output so
1007 that QEMU is a simple command line application. The emulated serial port
1008 is redirected on the console and muxed with the monitor (unless
1009 redirected elsewhere explicitly). Therefore, you can still use QEMU to
1010 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
1011 switching between the console and monitor.
1012 ETEXI
1013
1014 DEF("curses", 0, QEMU_OPTION_curses,
1015 "-curses shorthand for -display curses\n",
1016 QEMU_ARCH_ALL)
1017 STEXI
1018 @item -curses
1019 @findex -curses
1020 Normally, if QEMU is compiled with graphical window support, it displays
1021 output such as guest graphics, guest console, and the QEMU monitor in a
1022 window. With this option, QEMU can display the VGA output when in text
1023 mode using a curses/ncurses interface. Nothing is displayed in graphical
1024 mode.
1025 ETEXI
1026
1027 DEF("no-frame", 0, QEMU_OPTION_no_frame,
1028 "-no-frame open SDL window without a frame and window decorations\n",
1029 QEMU_ARCH_ALL)
1030 STEXI
1031 @item -no-frame
1032 @findex -no-frame
1033 Do not use decorations for SDL windows and start them using the whole
1034 available screen space. This makes the using QEMU in a dedicated desktop
1035 workspace more convenient.
1036 ETEXI
1037
1038 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1039 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1040 QEMU_ARCH_ALL)
1041 STEXI
1042 @item -alt-grab
1043 @findex -alt-grab
1044 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1045 affects the special keys (for fullscreen, monitor-mode switching, etc).
1046 ETEXI
1047
1048 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1049 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1050 QEMU_ARCH_ALL)
1051 STEXI
1052 @item -ctrl-grab
1053 @findex -ctrl-grab
1054 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1055 affects the special keys (for fullscreen, monitor-mode switching, etc).
1056 ETEXI
1057
1058 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1059 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1060 STEXI
1061 @item -no-quit
1062 @findex -no-quit
1063 Disable SDL window close capability.
1064 ETEXI
1065
1066 DEF("sdl", 0, QEMU_OPTION_sdl,
1067 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1068 STEXI
1069 @item -sdl
1070 @findex -sdl
1071 Enable SDL.
1072 ETEXI
1073
1074 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1075 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1076 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1077 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1078 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1079 " [,tls-ciphers=<list>]\n"
1080 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1081 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1082 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1083 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1084 " [,jpeg-wan-compression=[auto|never|always]]\n"
1085 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1086 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1087 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1088 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1089 " [,gl=[on|off]][,rendernode=<file>]\n"
1090 " enable spice\n"
1091 " at least one of {port, tls-port} is mandatory\n",
1092 QEMU_ARCH_ALL)
1093 STEXI
1094 @item -spice @var{option}[,@var{option}[,...]]
1095 @findex -spice
1096 Enable the spice remote desktop protocol. Valid options are
1097
1098 @table @option
1099
1100 @item port=<nr>
1101 Set the TCP port spice is listening on for plaintext channels.
1102
1103 @item addr=<addr>
1104 Set the IP address spice is listening on. Default is any address.
1105
1106 @item ipv4
1107 @itemx ipv6
1108 @itemx unix
1109 Force using the specified IP version.
1110
1111 @item password=<secret>
1112 Set the password you need to authenticate.
1113
1114 @item sasl
1115 Require that the client use SASL to authenticate with the spice.
1116 The exact choice of authentication method used is controlled from the
1117 system / user's SASL configuration file for the 'qemu' service. This
1118 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1119 unprivileged user, an environment variable SASL_CONF_PATH can be used
1120 to make it search alternate locations for the service config.
1121 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1122 it is recommended that SASL always be combined with the 'tls' and
1123 'x509' settings to enable use of SSL and server certificates. This
1124 ensures a data encryption preventing compromise of authentication
1125 credentials.
1126
1127 @item disable-ticketing
1128 Allow client connects without authentication.
1129
1130 @item disable-copy-paste
1131 Disable copy paste between the client and the guest.
1132
1133 @item disable-agent-file-xfer
1134 Disable spice-vdagent based file-xfer between the client and the guest.
1135
1136 @item tls-port=<nr>
1137 Set the TCP port spice is listening on for encrypted channels.
1138
1139 @item x509-dir=<dir>
1140 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1141
1142 @item x509-key-file=<file>
1143 @itemx x509-key-password=<file>
1144 @itemx x509-cert-file=<file>
1145 @itemx x509-cacert-file=<file>
1146 @itemx x509-dh-key-file=<file>
1147 The x509 file names can also be configured individually.
1148
1149 @item tls-ciphers=<list>
1150 Specify which ciphers to use.
1151
1152 @item tls-channel=[main|display|cursor|inputs|record|playback]
1153 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1154 Force specific channel to be used with or without TLS encryption. The
1155 options can be specified multiple times to configure multiple
1156 channels. The special name "default" can be used to set the default
1157 mode. For channels which are not explicitly forced into one mode the
1158 spice client is allowed to pick tls/plaintext as he pleases.
1159
1160 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1161 Configure image compression (lossless).
1162 Default is auto_glz.
1163
1164 @item jpeg-wan-compression=[auto|never|always]
1165 @itemx zlib-glz-wan-compression=[auto|never|always]
1166 Configure wan image compression (lossy for slow links).
1167 Default is auto.
1168
1169 @item streaming-video=[off|all|filter]
1170 Configure video stream detection. Default is off.
1171
1172 @item agent-mouse=[on|off]
1173 Enable/disable passing mouse events via vdagent. Default is on.
1174
1175 @item playback-compression=[on|off]
1176 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1177
1178 @item seamless-migration=[on|off]
1179 Enable/disable spice seamless migration. Default is off.
1180
1181 @item gl=[on|off]
1182 Enable/disable OpenGL context. Default is off.
1183
1184 @item rendernode=<file>
1185 DRM render node for OpenGL rendering. If not specified, it will pick
1186 the first available. (Since 2.9)
1187
1188 @end table
1189 ETEXI
1190
1191 DEF("portrait", 0, QEMU_OPTION_portrait,
1192 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1193 QEMU_ARCH_ALL)
1194 STEXI
1195 @item -portrait
1196 @findex -portrait
1197 Rotate graphical output 90 deg left (only PXA LCD).
1198 ETEXI
1199
1200 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1201 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1202 QEMU_ARCH_ALL)
1203 STEXI
1204 @item -rotate @var{deg}
1205 @findex -rotate
1206 Rotate graphical output some deg left (only PXA LCD).
1207 ETEXI
1208
1209 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1210 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1211 " select video card type\n", QEMU_ARCH_ALL)
1212 STEXI
1213 @item -vga @var{type}
1214 @findex -vga
1215 Select type of VGA card to emulate. Valid values for @var{type} are
1216 @table @option
1217 @item cirrus
1218 Cirrus Logic GD5446 Video card. All Windows versions starting from
1219 Windows 95 should recognize and use this graphic card. For optimal
1220 performances, use 16 bit color depth in the guest and the host OS.
1221 (This card was the default before QEMU 2.2)
1222 @item std
1223 Standard VGA card with Bochs VBE extensions. If your guest OS
1224 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1225 to use high resolution modes (>= 1280x1024x16) then you should use
1226 this option. (This card is the default since QEMU 2.2)
1227 @item vmware
1228 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1229 recent XFree86/XOrg server or Windows guest with a driver for this
1230 card.
1231 @item qxl
1232 QXL paravirtual graphic card. It is VGA compatible (including VESA
1233 2.0 VBE support). Works best with qxl guest drivers installed though.
1234 Recommended choice when using the spice protocol.
1235 @item tcx
1236 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1237 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1238 fixed resolution of 1024x768.
1239 @item cg3
1240 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1241 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1242 resolutions aimed at people wishing to run older Solaris versions.
1243 @item virtio
1244 Virtio VGA card.
1245 @item none
1246 Disable VGA card.
1247 @end table
1248 ETEXI
1249
1250 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1251 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1252 STEXI
1253 @item -full-screen
1254 @findex -full-screen
1255 Start in full screen.
1256 ETEXI
1257
1258 DEF("g", 1, QEMU_OPTION_g ,
1259 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1260 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1261 STEXI
1262 @item -g @var{width}x@var{height}[x@var{depth}]
1263 @findex -g
1264 Set the initial graphical resolution and depth (PPC, SPARC only).
1265 ETEXI
1266
1267 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1268 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1269 STEXI
1270 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1271 @findex -vnc
1272 Normally, if QEMU is compiled with graphical window support, it displays
1273 output such as guest graphics, guest console, and the QEMU monitor in a
1274 window. With this option, you can have QEMU listen on VNC display
1275 @var{display} and redirect the VGA display over the VNC session. It is
1276 very useful to enable the usb tablet device when using this option
1277 (option @option{-usbdevice tablet}). When using the VNC display, you
1278 must use the @option{-k} parameter to set the keyboard layout if you are
1279 not using en-us. Valid syntax for the @var{display} is
1280
1281 @table @option
1282
1283 @item to=@var{L}
1284
1285 With this option, QEMU will try next available VNC @var{display}s, until the
1286 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1287 available, e.g. port 5900+@var{display} is already used by another
1288 application. By default, to=0.
1289
1290 @item @var{host}:@var{d}
1291
1292 TCP connections will only be allowed from @var{host} on display @var{d}.
1293 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1294 be omitted in which case the server will accept connections from any host.
1295
1296 @item unix:@var{path}
1297
1298 Connections will be allowed over UNIX domain sockets where @var{path} is the
1299 location of a unix socket to listen for connections on.
1300
1301 @item none
1302
1303 VNC is initialized but not started. The monitor @code{change} command
1304 can be used to later start the VNC server.
1305
1306 @end table
1307
1308 Following the @var{display} value there may be one or more @var{option} flags
1309 separated by commas. Valid options are
1310
1311 @table @option
1312
1313 @item reverse
1314
1315 Connect to a listening VNC client via a ``reverse'' connection. The
1316 client is specified by the @var{display}. For reverse network
1317 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1318 is a TCP port number, not a display number.
1319
1320 @item websocket
1321
1322 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1323 If a bare @var{websocket} option is given, the Websocket port is
1324 5700+@var{display}. An alternative port can be specified with the
1325 syntax @code{websocket}=@var{port}.
1326
1327 If @var{host} is specified connections will only be allowed from this host.
1328 It is possible to control the websocket listen address independently, using
1329 the syntax @code{websocket}=@var{host}:@var{port}.
1330
1331 If no TLS credentials are provided, the websocket connection runs in
1332 unencrypted mode. If TLS credentials are provided, the websocket connection
1333 requires encrypted client connections.
1334
1335 @item password
1336
1337 Require that password based authentication is used for client connections.
1338
1339 The password must be set separately using the @code{set_password} command in
1340 the @ref{pcsys_monitor}. The syntax to change your password is:
1341 @code{set_password <protocol> <password>} where <protocol> could be either
1342 "vnc" or "spice".
1343
1344 If you would like to change <protocol> password expiration, you should use
1345 @code{expire_password <protocol> <expiration-time>} where expiration time could
1346 be one of the following options: now, never, +seconds or UNIX time of
1347 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1348 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1349 date and time).
1350
1351 You can also use keywords "now" or "never" for the expiration time to
1352 allow <protocol> password to expire immediately or never expire.
1353
1354 @item tls-creds=@var{ID}
1355
1356 Provides the ID of a set of TLS credentials to use to secure the
1357 VNC server. They will apply to both the normal VNC server socket
1358 and the websocket socket (if enabled). Setting TLS credentials
1359 will cause the VNC server socket to enable the VeNCrypt auth
1360 mechanism. The credentials should have been previously created
1361 using the @option{-object tls-creds} argument.
1362
1363 The @option{tls-creds} parameter obsoletes the @option{tls},
1364 @option{x509}, and @option{x509verify} options, and as such
1365 it is not permitted to set both new and old type options at
1366 the same time.
1367
1368 @item tls
1369
1370 Require that client use TLS when communicating with the VNC server. This
1371 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
1372 attack. It is recommended that this option be combined with either the
1373 @option{x509} or @option{x509verify} options.
1374
1375 This option is now deprecated in favor of using the @option{tls-creds}
1376 argument.
1377
1378 @item x509=@var{/path/to/certificate/dir}
1379
1380 Valid if @option{tls} is specified. Require that x509 credentials are used
1381 for negotiating the TLS session. The server will send its x509 certificate
1382 to the client. It is recommended that a password be set on the VNC server
1383 to provide authentication of the client when this is used. The path following
1384 this option specifies where the x509 certificates are to be loaded from.
1385 See the @ref{vnc_security} section for details on generating certificates.
1386
1387 This option is now deprecated in favour of using the @option{tls-creds}
1388 argument.
1389
1390 @item x509verify=@var{/path/to/certificate/dir}
1391
1392 Valid if @option{tls} is specified. Require that x509 credentials are used
1393 for negotiating the TLS session. The server will send its x509 certificate
1394 to the client, and request that the client send its own x509 certificate.
1395 The server will validate the client's certificate against the CA certificate,
1396 and reject clients when validation fails. If the certificate authority is
1397 trusted, this is a sufficient authentication mechanism. You may still wish
1398 to set a password on the VNC server as a second authentication layer. The
1399 path following this option specifies where the x509 certificates are to
1400 be loaded from. See the @ref{vnc_security} section for details on generating
1401 certificates.
1402
1403 This option is now deprecated in favour of using the @option{tls-creds}
1404 argument.
1405
1406 @item sasl
1407
1408 Require that the client use SASL to authenticate with the VNC server.
1409 The exact choice of authentication method used is controlled from the
1410 system / user's SASL configuration file for the 'qemu' service. This
1411 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1412 unprivileged user, an environment variable SASL_CONF_PATH can be used
1413 to make it search alternate locations for the service config.
1414 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1415 it is recommended that SASL always be combined with the 'tls' and
1416 'x509' settings to enable use of SSL and server certificates. This
1417 ensures a data encryption preventing compromise of authentication
1418 credentials. See the @ref{vnc_security} section for details on using
1419 SASL authentication.
1420
1421 @item acl
1422
1423 Turn on access control lists for checking of the x509 client certificate
1424 and SASL party. For x509 certs, the ACL check is made against the
1425 certificate's distinguished name. This is something that looks like
1426 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
1427 made against the username, which depending on the SASL plugin, may
1428 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
1429 When the @option{acl} flag is set, the initial access list will be
1430 empty, with a @code{deny} policy. Thus no one will be allowed to
1431 use the VNC server until the ACLs have been loaded. This can be
1432 achieved using the @code{acl} monitor command.
1433
1434 @item lossy
1435
1436 Enable lossy compression methods (gradient, JPEG, ...). If this
1437 option is set, VNC client may receive lossy framebuffer updates
1438 depending on its encoding settings. Enabling this option can save
1439 a lot of bandwidth at the expense of quality.
1440
1441 @item non-adaptive
1442
1443 Disable adaptive encodings. Adaptive encodings are enabled by default.
1444 An adaptive encoding will try to detect frequently updated screen regions,
1445 and send updates in these regions using a lossy encoding (like JPEG).
1446 This can be really helpful to save bandwidth when playing videos. Disabling
1447 adaptive encodings restores the original static behavior of encodings
1448 like Tight.
1449
1450 @item share=[allow-exclusive|force-shared|ignore]
1451
1452 Set display sharing policy. 'allow-exclusive' allows clients to ask
1453 for exclusive access. As suggested by the rfb spec this is
1454 implemented by dropping other connections. Connecting multiple
1455 clients in parallel requires all clients asking for a shared session
1456 (vncviewer: -shared switch). This is the default. 'force-shared'
1457 disables exclusive client access. Useful for shared desktop sessions,
1458 where you don't want someone forgetting specify -shared disconnect
1459 everybody else. 'ignore' completely ignores the shared flag and
1460 allows everybody connect unconditionally. Doesn't conform to the rfb
1461 spec but is traditional QEMU behavior.
1462
1463 @item key-delay-ms
1464
1465 Set keyboard delay, for key down and key up events, in milliseconds.
1466 Default is 1. Keyboards are low-bandwidth devices, so this slowdown
1467 can help the device and guest to keep up and not lose events in case
1468 events are arriving in bulk. Possible causes for the latter are flaky
1469 network connections, or scripts for automated testing.
1470
1471 @end table
1472 ETEXI
1473
1474 STEXI
1475 @end table
1476 ETEXI
1477 ARCHHEADING(, QEMU_ARCH_I386)
1478
1479 ARCHHEADING(i386 target only, QEMU_ARCH_I386)
1480 STEXI
1481 @table @option
1482 ETEXI
1483
1484 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
1485 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
1486 QEMU_ARCH_I386)
1487 STEXI
1488 @item -win2k-hack
1489 @findex -win2k-hack
1490 Use it when installing Windows 2000 to avoid a disk full bug. After
1491 Windows 2000 is installed, you no longer need this option (this option
1492 slows down the IDE transfers).
1493 ETEXI
1494
1495 HXCOMM Deprecated by -rtc
1496 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "", QEMU_ARCH_I386)
1497
1498 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
1499 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
1500 QEMU_ARCH_I386)
1501 STEXI
1502 @item -no-fd-bootchk
1503 @findex -no-fd-bootchk
1504 Disable boot signature checking for floppy disks in BIOS. May
1505 be needed to boot from old floppy disks.
1506 ETEXI
1507
1508 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
1509 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1510 STEXI
1511 @item -no-acpi
1512 @findex -no-acpi
1513 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1514 it if your guest OS complains about ACPI problems (PC target machine
1515 only).
1516 ETEXI
1517
1518 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
1519 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
1520 STEXI
1521 @item -no-hpet
1522 @findex -no-hpet
1523 Disable HPET support.
1524 ETEXI
1525
1526 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
1527 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
1528 " ACPI table description\n", QEMU_ARCH_I386)
1529 STEXI
1530 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
1531 @findex -acpitable
1532 Add ACPI table with specified header fields and context from specified files.
1533 For file=, take whole ACPI table from the specified files, including all
1534 ACPI headers (possible overridden by other options).
1535 For data=, only data
1536 portion of the table is used, all header information is specified in the
1537 command line.
1538 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
1539 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
1540 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
1541 spec.
1542 ETEXI
1543
1544 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
1545 "-smbios file=binary\n"
1546 " load SMBIOS entry from binary file\n"
1547 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
1548 " [,uefi=on|off]\n"
1549 " specify SMBIOS type 0 fields\n"
1550 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1551 " [,uuid=uuid][,sku=str][,family=str]\n"
1552 " specify SMBIOS type 1 fields\n"
1553 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1554 " [,asset=str][,location=str]\n"
1555 " specify SMBIOS type 2 fields\n"
1556 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
1557 " [,sku=str]\n"
1558 " specify SMBIOS type 3 fields\n"
1559 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
1560 " [,asset=str][,part=str]\n"
1561 " specify SMBIOS type 4 fields\n"
1562 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
1563 " [,asset=str][,part=str][,speed=%d]\n"
1564 " specify SMBIOS type 17 fields\n",
1565 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1566 STEXI
1567 @item -smbios file=@var{binary}
1568 @findex -smbios
1569 Load SMBIOS entry from binary file.
1570
1571 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
1572 Specify SMBIOS type 0 fields
1573
1574 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
1575 Specify SMBIOS type 1 fields
1576
1577 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}]
1578 Specify SMBIOS type 2 fields
1579
1580 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
1581 Specify SMBIOS type 3 fields
1582
1583 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
1584 Specify SMBIOS type 4 fields
1585
1586 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
1587 Specify SMBIOS type 17 fields
1588 ETEXI
1589
1590 STEXI
1591 @end table
1592 ETEXI
1593 DEFHEADING()
1594
1595 DEFHEADING(Network options)
1596 STEXI
1597 @table @option
1598 ETEXI
1599
1600 HXCOMM Legacy slirp options (now moved to -net user):
1601 #ifdef CONFIG_SLIRP
1602 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "", QEMU_ARCH_ALL)
1603 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "", QEMU_ARCH_ALL)
1604 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "", QEMU_ARCH_ALL)
1605 #ifndef _WIN32
1606 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "", QEMU_ARCH_ALL)
1607 #endif
1608 #endif
1609
1610 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
1611 #ifdef CONFIG_SLIRP
1612 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
1613 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
1614 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
1615 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,tftp=dir]\n"
1616 " [,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
1617 #ifndef _WIN32
1618 "[,smb=dir[,smbserver=addr]]\n"
1619 #endif
1620 " configure a user mode network backend with ID 'str',\n"
1621 " its DHCP server and optional services\n"
1622 #endif
1623 #ifdef _WIN32
1624 "-netdev tap,id=str,ifname=name\n"
1625 " configure a host TAP network backend with ID 'str'\n"
1626 #else
1627 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
1628 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
1629 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
1630 " [,poll-us=n]\n"
1631 " configure a host TAP network backend with ID 'str'\n"
1632 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1633 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
1634 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
1635 " to deconfigure it\n"
1636 " use '[down]script=no' to disable script execution\n"
1637 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
1638 " configure it\n"
1639 " use 'fd=h' to connect to an already opened TAP interface\n"
1640 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
1641 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
1642 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
1643 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
1644 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
1645 " use vhost=on to enable experimental in kernel accelerator\n"
1646 " (only has effect for virtio guests which use MSIX)\n"
1647 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
1648 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
1649 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
1650 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
1651 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
1652 " spent on busy polling for vhost net\n"
1653 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
1654 " configure a host TAP network backend with ID 'str' that is\n"
1655 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1656 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
1657 #endif
1658 #ifdef __linux__
1659 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
1660 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
1661 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
1662 " [,rxcookie=rxcookie][,offset=offset]\n"
1663 " configure a network backend with ID 'str' connected to\n"
1664 " an Ethernet over L2TPv3 pseudowire.\n"
1665 " Linux kernel 3.3+ as well as most routers can talk\n"
1666 " L2TPv3. This transport allows connecting a VM to a VM,\n"
1667 " VM to a router and even VM to Host. It is a nearly-universal\n"
1668 " standard (RFC3391). Note - this implementation uses static\n"
1669 " pre-configured tunnels (same as the Linux kernel).\n"
1670 " use 'src=' to specify source address\n"
1671 " use 'dst=' to specify destination address\n"
1672 " use 'udp=on' to specify udp encapsulation\n"
1673 " use 'srcport=' to specify source udp port\n"
1674 " use 'dstport=' to specify destination udp port\n"
1675 " use 'ipv6=on' to force v6\n"
1676 " L2TPv3 uses cookies to prevent misconfiguration as\n"
1677 " well as a weak security measure\n"
1678 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
1679 " use 'txcookie=0x012345678' to specify a txcookie\n"
1680 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
1681 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
1682 " use 'pincounter=on' to work around broken counter handling in peer\n"
1683 " use 'offset=X' to add an extra offset between header and data\n"
1684 #endif
1685 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
1686 " configure a network backend to connect to another network\n"
1687 " using a socket connection\n"
1688 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
1689 " configure a network backend to connect to a multicast maddr and port\n"
1690 " use 'localaddr=addr' to specify the host address to send packets from\n"
1691 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
1692 " configure a network backend to connect to another network\n"
1693 " using an UDP tunnel\n"
1694 #ifdef CONFIG_VDE
1695 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
1696 " configure a network backend to connect to port 'n' of a vde switch\n"
1697 " running on host and listening for incoming connections on 'socketpath'.\n"
1698 " Use group 'groupname' and mode 'octalmode' to change default\n"
1699 " ownership and permissions for communication port.\n"
1700 #endif
1701 #ifdef CONFIG_NETMAP
1702 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
1703 " attach to the existing netmap-enabled network interface 'name', or to a\n"
1704 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
1705 " netmap device, defaults to '/dev/netmap')\n"
1706 #endif
1707 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
1708 " configure a vhost-user network, backed by a chardev 'dev'\n"
1709 "-netdev hubport,id=str,hubid=n\n"
1710 " configure a hub port on QEMU VLAN 'n'\n", QEMU_ARCH_ALL)
1711 DEF("net", HAS_ARG, QEMU_OPTION_net,
1712 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
1713 " old way to create a new NIC and connect it to VLAN 'n'\n"
1714 " (use the '-device devtype,netdev=str' option if possible instead)\n"
1715 "-net dump[,vlan=n][,file=f][,len=n]\n"
1716 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
1717 "-net none use it alone to have zero network devices. If no -net option\n"
1718 " is provided, the default is '-net nic -net user'\n"
1719 "-net ["
1720 #ifdef CONFIG_SLIRP
1721 "user|"
1722 #endif
1723 "tap|"
1724 "bridge|"
1725 #ifdef CONFIG_VDE
1726 "vde|"
1727 #endif
1728 #ifdef CONFIG_NETMAP
1729 "netmap|"
1730 #endif
1731 "socket][,vlan=n][,option][,option][,...]\n"
1732 " old way to initialize a host network interface\n"
1733 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
1734 STEXI
1735 @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
1736 @findex -net
1737 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
1738 = 0 is the default). The NIC is an e1000 by default on the PC
1739 target. Optionally, the MAC address can be changed to @var{mac}, the
1740 device address set to @var{addr} (PCI cards only),
1741 and a @var{name} can be assigned for use in monitor commands.
1742 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
1743 that the card should have; this option currently only affects virtio cards; set
1744 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
1745 NIC is created. QEMU can emulate several different models of network card.
1746 Valid values for @var{type} are
1747 @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
1748 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
1749 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
1750 Not all devices are supported on all targets. Use @code{-net nic,model=help}
1751 for a list of available devices for your target.
1752
1753 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
1754 @findex -netdev
1755 @item -net user[,@var{option}][,@var{option}][,...]
1756 Use the user mode network stack which requires no administrator
1757 privilege to run. Valid options are:
1758
1759 @table @option
1760 @item vlan=@var{n}
1761 Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
1762
1763 @item id=@var{id}
1764 @itemx name=@var{name}
1765 Assign symbolic name for use in monitor commands.
1766
1767 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must
1768 be enabled. If neither is specified both protocols are enabled.
1769
1770 @item net=@var{addr}[/@var{mask}]
1771 Set IP network address the guest will see. Optionally specify the netmask,
1772 either in the form a.b.c.d or as number of valid top-most bits. Default is
1773 10.0.2.0/24.
1774
1775 @item host=@var{addr}
1776 Specify the guest-visible address of the host. Default is the 2nd IP in the
1777 guest network, i.e. x.x.x.2.
1778
1779 @item ipv6-net=@var{addr}[/@var{int}]
1780 Set IPv6 network address the guest will see (default is fec0::/64). The
1781 network prefix is given in the usual hexadecimal IPv6 address
1782 notation. The prefix size is optional, and is given as the number of
1783 valid top-most bits (default is 64).
1784
1785 @item ipv6-host=@var{addr}
1786 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
1787 the guest network, i.e. xxxx::2.
1788
1789 @item restrict=on|off
1790 If this option is enabled, the guest will be isolated, i.e. it will not be
1791 able to contact the host and no guest IP packets will be routed over the host
1792 to the outside. This option does not affect any explicitly set forwarding rules.
1793
1794 @item hostname=@var{name}
1795 Specifies the client hostname reported by the built-in DHCP server.
1796
1797 @item dhcpstart=@var{addr}
1798 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
1799 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
1800
1801 @item dns=@var{addr}
1802 Specify the guest-visible address of the virtual nameserver. The address must
1803 be different from the host address. Default is the 3rd IP in the guest network,
1804 i.e. x.x.x.3.
1805
1806 @item ipv6-dns=@var{addr}
1807 Specify the guest-visible address of the IPv6 virtual nameserver. The address
1808 must be different from the host address. Default is the 3rd IP in the guest
1809 network, i.e. xxxx::3.
1810
1811 @item dnssearch=@var{domain}
1812 Provides an entry for the domain-search list sent by the built-in
1813 DHCP server. More than one domain suffix can be transmitted by specifying
1814 this option multiple times. If supported, this will cause the guest to
1815 automatically try to append the given domain suffix(es) in case a domain name
1816 can not be resolved.
1817
1818 Example:
1819 @example
1820 qemu -net user,dnssearch=mgmt.example.org,dnssearch=example.org [...]
1821 @end example
1822
1823 @item tftp=@var{dir}
1824 When using the user mode network stack, activate a built-in TFTP
1825 server. The files in @var{dir} will be exposed as the root of a TFTP server.
1826 The TFTP client on the guest must be configured in binary mode (use the command
1827 @code{bin} of the Unix TFTP client).
1828
1829 @item bootfile=@var{file}
1830 When using the user mode network stack, broadcast @var{file} as the BOOTP
1831 filename. In conjunction with @option{tftp}, this can be used to network boot
1832 a guest from a local directory.
1833
1834 Example (using pxelinux):
1835 @example
1836 qemu-system-i386 -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
1837 @end example
1838
1839 @item smb=@var{dir}[,smbserver=@var{addr}]
1840 When using the user mode network stack, activate a built-in SMB
1841 server so that Windows OSes can access to the host files in @file{@var{dir}}
1842 transparently. The IP address of the SMB server can be set to @var{addr}. By
1843 default the 4th IP in the guest network is used, i.e. x.x.x.4.
1844
1845 In the guest Windows OS, the line:
1846 @example
1847 10.0.2.4 smbserver
1848 @end example
1849 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
1850 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
1851
1852 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
1853
1854 Note that a SAMBA server must be installed on the host OS.
1855 QEMU was tested successfully with smbd versions from Red Hat 9,
1856 Fedora Core 3 and OpenSUSE 11.x.
1857
1858 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
1859 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
1860 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
1861 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
1862 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
1863 be bound to a specific host interface. If no connection type is set, TCP is
1864 used. This option can be given multiple times.
1865
1866 For example, to redirect host X11 connection from screen 1 to guest
1867 screen 0, use the following:
1868
1869 @example
1870 # on the host
1871 qemu-system-i386 -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
1872 # this host xterm should open in the guest X11 server
1873 xterm -display :1
1874 @end example
1875
1876 To redirect telnet connections from host port 5555 to telnet port on
1877 the guest, use the following:
1878
1879 @example
1880 # on the host
1881 qemu-system-i386 -net user,hostfwd=tcp::5555-:23 [...]
1882 telnet localhost 5555
1883 @end example
1884
1885 Then when you use on the host @code{telnet localhost 5555}, you
1886 connect to the guest telnet server.
1887
1888 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
1889 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
1890 Forward guest TCP connections to the IP address @var{server} on port @var{port}
1891 to the character device @var{dev} or to a program executed by @var{cmd:command}
1892 which gets spawned for each connection. This option can be given multiple times.
1893
1894 You can either use a chardev directly and have that one used throughout QEMU's
1895 lifetime, like in the following example:
1896
1897 @example
1898 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
1899 # the guest accesses it
1900 qemu -net user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321 [...]
1901 @end example
1902
1903 Or you can execute a command on every TCP connection established by the guest,
1904 so that QEMU behaves similar to an inetd process for that virtual server:
1905
1906 @example
1907 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
1908 # and connect the TCP stream to its stdin/stdout
1909 qemu -net 'user,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
1910 @end example
1911
1912 @end table
1913
1914 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
1915 processed and applied to -net user. Mixing them with the new configuration
1916 syntax gives undefined results. Their use for new applications is discouraged
1917 as they will be removed from future versions.
1918
1919 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
1920 @itemx -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
1921 Connect the host TAP network interface @var{name} to VLAN @var{n}.
1922
1923 Use the network script @var{file} to configure it and the network script
1924 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
1925 automatically provides one. The default network configure script is
1926 @file{/etc/qemu-ifup} and the default network deconfigure script is
1927 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
1928 to disable script execution.
1929
1930 If running QEMU as an unprivileged user, use the network helper
1931 @var{helper} to configure the TAP interface and attach it to the bridge.
1932 The default network helper executable is @file{/path/to/qemu-bridge-helper}
1933 and the default bridge device is @file{br0}.
1934
1935 @option{fd}=@var{h} can be used to specify the handle of an already
1936 opened host TAP interface.
1937
1938 Examples:
1939
1940 @example
1941 #launch a QEMU instance with the default network script
1942 qemu-system-i386 linux.img -net nic -net tap
1943 @end example
1944
1945 @example
1946 #launch a QEMU instance with two NICs, each one connected
1947 #to a TAP device
1948 qemu-system-i386 linux.img \
1949 -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
1950 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
1951 @end example
1952
1953 @example
1954 #launch a QEMU instance with the default network helper to
1955 #connect a TAP device to bridge br0
1956 qemu-system-i386 linux.img \
1957 -net nic -net tap,"helper=/path/to/qemu-bridge-helper"
1958 @end example
1959
1960 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
1961 @itemx -net bridge[,vlan=@var{n}][,name=@var{name}][,br=@var{bridge}][,helper=@var{helper}]
1962 Connect a host TAP network interface to a host bridge device.
1963
1964 Use the network helper @var{helper} to configure the TAP interface and
1965 attach it to the bridge. The default network helper executable is
1966 @file{/path/to/qemu-bridge-helper} and the default bridge
1967 device is @file{br0}.
1968
1969 Examples:
1970
1971 @example
1972 #launch a QEMU instance with the default network helper to
1973 #connect a TAP device to bridge br0
1974 qemu-system-i386 linux.img -net bridge -net nic,model=virtio
1975 @end example
1976
1977 @example
1978 #launch a QEMU instance with the default network helper to
1979 #connect a TAP device to bridge qemubr0
1980 qemu-system-i386 linux.img -net bridge,br=qemubr0 -net nic,model=virtio
1981 @end example
1982
1983 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1984 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}] [,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1985
1986 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
1987 machine using a TCP socket connection. If @option{listen} is
1988 specified, QEMU waits for incoming connections on @var{port}
1989 (@var{host} is optional). @option{connect} is used to connect to
1990 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
1991 specifies an already opened TCP socket.
1992
1993 Example:
1994 @example
1995 # launch a first QEMU instance
1996 qemu-system-i386 linux.img \
1997 -net nic,macaddr=52:54:00:12:34:56 \
1998 -net socket,listen=:1234
1999 # connect the VLAN 0 of this instance to the VLAN 0
2000 # of the first instance
2001 qemu-system-i386 linux.img \
2002 -net nic,macaddr=52:54:00:12:34:57 \
2003 -net socket,connect=127.0.0.1:1234
2004 @end example
2005
2006 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2007 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2008
2009 Create a VLAN @var{n} shared with another QEMU virtual
2010 machines using a UDP multicast socket, effectively making a bus for
2011 every QEMU with same multicast address @var{maddr} and @var{port}.
2012 NOTES:
2013 @enumerate
2014 @item
2015 Several QEMU can be running on different hosts and share same bus (assuming
2016 correct multicast setup for these hosts).
2017 @item
2018 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
2019 @url{http://user-mode-linux.sf.net}.
2020 @item
2021 Use @option{fd=h} to specify an already opened UDP multicast socket.
2022 @end enumerate
2023
2024 Example:
2025 @example
2026 # launch one QEMU instance
2027 qemu-system-i386 linux.img \
2028 -net nic,macaddr=52:54:00:12:34:56 \
2029 -net socket,mcast=230.0.0.1:1234
2030 # launch another QEMU instance on same "bus"
2031 qemu-system-i386 linux.img \
2032 -net nic,macaddr=52:54:00:12:34:57 \
2033 -net socket,mcast=230.0.0.1:1234
2034 # launch yet another QEMU instance on same "bus"
2035 qemu-system-i386 linux.img \
2036 -net nic,macaddr=52:54:00:12:34:58 \
2037 -net socket,mcast=230.0.0.1:1234
2038 @end example
2039
2040 Example (User Mode Linux compat.):
2041 @example
2042 # launch QEMU instance (note mcast address selected
2043 # is UML's default)
2044 qemu-system-i386 linux.img \
2045 -net nic,macaddr=52:54:00:12:34:56 \
2046 -net socket,mcast=239.192.168.1:1102
2047 # launch UML
2048 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2049 @end example
2050
2051 Example (send packets from host's 1.2.3.4):
2052 @example
2053 qemu-system-i386 linux.img \
2054 -net nic,macaddr=52:54:00:12:34:56 \
2055 -net socket,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2056 @end example
2057
2058 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2059 @itemx -net l2tpv3[,vlan=@var{n}][,name=@var{name}],src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2060 Connect VLAN @var{n} to L2TPv3 pseudowire. L2TPv3 (RFC3391) is a popular
2061 protocol to transport Ethernet (and other Layer 2) data frames between
2062 two systems. It is present in routers, firewalls and the Linux kernel
2063 (from version 3.3 onwards).
2064
2065 This transport allows a VM to communicate to another VM, router or firewall directly.
2066
2067 @item src=@var{srcaddr}
2068 source address (mandatory)
2069 @item dst=@var{dstaddr}
2070 destination address (mandatory)
2071 @item udp
2072 select udp encapsulation (default is ip).
2073 @item srcport=@var{srcport}
2074 source udp port.
2075 @item dstport=@var{dstport}
2076 destination udp port.
2077 @item ipv6
2078 force v6, otherwise defaults to v4.
2079 @item rxcookie=@var{rxcookie}
2080 @itemx txcookie=@var{txcookie}
2081 Cookies are a weak form of security in the l2tpv3 specification.
2082 Their function is mostly to prevent misconfiguration. By default they are 32
2083 bit.
2084 @item cookie64
2085 Set cookie size to 64 bit instead of the default 32
2086 @item counter=off
2087 Force a 'cut-down' L2TPv3 with no counter as in
2088 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2089 @item pincounter=on
2090 Work around broken counter handling in peer. This may also help on
2091 networks which have packet reorder.
2092 @item offset=@var{offset}
2093 Add an extra offset between header and data
2094
2095 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2096 on the remote Linux host 1.2.3.4:
2097 @example
2098 # Setup tunnel on linux host using raw ip as encapsulation
2099 # on 1.2.3.4
2100 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2101 encap udp udp_sport 16384 udp_dport 16384
2102 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2103 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2104 ifconfig vmtunnel0 mtu 1500
2105 ifconfig vmtunnel0 up
2106 brctl addif br-lan vmtunnel0
2107
2108
2109 # on 4.3.2.1
2110 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2111
2112 qemu-system-i386 linux.img -net nic -net l2tpv3,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2113
2114
2115 @end example
2116
2117 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2118 @itemx -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}] [,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2119 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
2120 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2121 and MODE @var{octalmode} to change default ownership and permissions for
2122 communication port. This option is only available if QEMU has been compiled
2123 with vde support enabled.
2124
2125 Example:
2126 @example
2127 # launch vde switch
2128 vde_switch -F -sock /tmp/myswitch
2129 # launch QEMU instance
2130 qemu-system-i386 linux.img -net nic -net vde,sock=/tmp/myswitch
2131 @end example
2132
2133 @item -netdev hubport,id=@var{id},hubid=@var{hubid}
2134
2135 Create a hub port on QEMU "vlan" @var{hubid}.
2136
2137 The hubport netdev lets you connect a NIC to a QEMU "vlan" instead of a single
2138 netdev. @code{-net} and @code{-device} with parameter @option{vlan} create the
2139 required hub automatically.
2140
2141 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2142
2143 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2144 be a unix domain socket backed one. The vhost-user uses a specifically defined
2145 protocol to pass vhost ioctl replacement messages to an application on the other
2146 end of the socket. On non-MSIX guests, the feature can be forced with
2147 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2148 be created for multiqueue vhost-user.
2149
2150 Example:
2151 @example
2152 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2153 -numa node,memdev=mem \
2154 -chardev socket,id=chr0,path=/path/to/socket \
2155 -netdev type=vhost-user,id=net0,chardev=chr0 \
2156 -device virtio-net-pci,netdev=net0
2157 @end example
2158
2159 @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
2160 Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
2161 At most @var{len} bytes (64k by default) per packet are stored. The file format is
2162 libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
2163 Note: For devices created with '-netdev', use '-object filter-dump,...' instead.
2164
2165 @item -net none
2166 Indicate that no network devices should be configured. It is used to
2167 override the default configuration (@option{-net nic -net user}) which
2168 is activated if no @option{-net} options are provided.
2169 ETEXI
2170
2171 STEXI
2172 @end table
2173 ETEXI
2174 DEFHEADING()
2175
2176 DEFHEADING(Character device options)
2177 STEXI
2178
2179 The general form of a character device option is:
2180 @table @option
2181 ETEXI
2182
2183 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2184 "-chardev help\n"
2185 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2186 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2187 " [,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off]\n"
2188 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n"
2189 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,reconnect=seconds]\n"
2190 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2191 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2192 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2193 " [,logfile=PATH][,logappend=on|off]\n"
2194 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2195 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2196 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2197 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2198 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2199 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2200 #ifdef _WIN32
2201 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2202 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2203 #else
2204 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2205 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2206 #endif
2207 #ifdef CONFIG_BRLAPI
2208 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2209 #endif
2210 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2211 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2212 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2213 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2214 #endif
2215 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2216 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2217 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2218 #endif
2219 #if defined(CONFIG_SPICE)
2220 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2221 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2222 #endif
2223 , QEMU_ARCH_ALL
2224 )
2225
2226 STEXI
2227 @item -chardev @var{backend} ,id=@var{id} [,mux=on|off] [,@var{options}]
2228 @findex -chardev
2229 Backend is one of:
2230 @option{null},
2231 @option{socket},
2232 @option{udp},
2233 @option{msmouse},
2234 @option{vc},
2235 @option{ringbuf},
2236 @option{file},
2237 @option{pipe},
2238 @option{console},
2239 @option{serial},
2240 @option{pty},
2241 @option{stdio},
2242 @option{braille},
2243 @option{tty},
2244 @option{parallel},
2245 @option{parport},
2246 @option{spicevmc}.
2247 @option{spiceport}.
2248 The specific backend will determine the applicable options.
2249
2250 Use "-chardev help" to print all available chardev backend types.
2251
2252 All devices must have an id, which can be any string up to 127 characters long.
2253 It is used to uniquely identify this device in other command line directives.
2254
2255 A character device may be used in multiplexing mode by multiple front-ends.
2256 Specify @option{mux=on} to enable this mode.
2257 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2258 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2259 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2260 create a multiplexer with your specified ID, and you can then configure multiple
2261 front ends to use that chardev ID for their input/output. Up to four different
2262 front ends can be connected to a single multiplexed chardev. (Without
2263 multiplexing enabled, a chardev can only be used by a single front end.)
2264 For instance you could use this to allow a single stdio chardev to be used by
2265 two serial ports and the QEMU monitor:
2266
2267 @example
2268 -chardev stdio,mux=on,id=char0 \
2269 -mon chardev=char0,mode=readline \
2270 -serial chardev:char0 \
2271 -serial chardev:char0
2272 @end example
2273
2274 You can have more than one multiplexer in a system configuration; for instance
2275 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2276 multiplexed between the QEMU monitor and a parallel port:
2277
2278 @example
2279 -chardev stdio,mux=on,id=char0 \
2280 -mon chardev=char0,mode=readline \
2281 -parallel chardev:char0 \
2282 -chardev tcp,...,mux=on,id=char1 \
2283 -serial chardev:char1 \
2284 -serial chardev:char1
2285 @end example
2286
2287 When you're using a multiplexed character device, some escape sequences are
2288 interpreted in the input. @xref{mux_keys, Keys in the character backend
2289 multiplexer}.
2290
2291 Note that some other command line options may implicitly create multiplexed
2292 character backends; for instance @option{-serial mon:stdio} creates a
2293 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2294 and @option{-nographic} also multiplexes the console and the monitor to
2295 stdio.
2296
2297 There is currently no support for multiplexing in the other direction
2298 (where a single QEMU front end takes input and output from multiple chardevs).
2299
2300 Every backend supports the @option{logfile} option, which supplies the path
2301 to a file to record all data transmitted via the backend. The @option{logappend}
2302 option controls whether the log file will be truncated or appended to when
2303 opened.
2304
2305 Further options to each backend are described below.
2306
2307 @item -chardev null ,id=@var{id}
2308 A void device. This device will not emit any data, and will drop any data it
2309 receives. The null backend does not take any options.
2310
2311 @item -chardev socket ,id=@var{id} [@var{TCP options} or @var{unix options}] [,server] [,nowait] [,telnet] [,reconnect=@var{seconds}] [,tls-creds=@var{id}]
2312
2313 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2314 unix socket will be created if @option{path} is specified. Behaviour is
2315 undefined if TCP options are specified for a unix socket.
2316
2317 @option{server} specifies that the socket shall be a listening socket.
2318
2319 @option{nowait} specifies that QEMU should not block waiting for a client to
2320 connect to a listening socket.
2321
2322 @option{telnet} specifies that traffic on the socket should interpret telnet
2323 escape sequences.
2324
2325 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2326 the remote end goes away. qemu will delay this many seconds and then attempt
2327 to reconnect. Zero disables reconnecting, and is the default.
2328
2329 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2330 and specifies the id of the TLS credentials to use for the handshake. The
2331 credentials must be previously created with the @option{-object tls-creds}
2332 argument.
2333
2334 TCP and unix socket options are given below:
2335
2336 @table @option
2337
2338 @item TCP options: port=@var{port} [,host=@var{host}] [,to=@var{to}] [,ipv4] [,ipv6] [,nodelay]
2339
2340 @option{host} for a listening socket specifies the local address to be bound.
2341 For a connecting socket species the remote host to connect to. @option{host} is
2342 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2343
2344 @option{port} for a listening socket specifies the local port to be bound. For a
2345 connecting socket specifies the port on the remote host to connect to.
2346 @option{port} can be given as either a port number or a service name.
2347 @option{port} is required.
2348
2349 @option{to} is only relevant to listening sockets. If it is specified, and
2350 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2351 to and including @option{to} until it succeeds. @option{to} must be specified
2352 as a port number.
2353
2354 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2355 If neither is specified the socket may use either protocol.
2356
2357 @option{nodelay} disables the Nagle algorithm.
2358
2359 @item unix options: path=@var{path}
2360
2361 @option{path} specifies the local path of the unix socket. @option{path} is
2362 required.
2363
2364 @end table
2365
2366 @item -chardev udp ,id=@var{id} [,host=@var{host}] ,port=@var{port} [,localaddr=@var{localaddr}] [,localport=@var{localport}] [,ipv4] [,ipv6]
2367
2368 Sends all traffic from the guest to a remote host over UDP.
2369
2370 @option{host} specifies the remote host to connect to. If not specified it
2371 defaults to @code{localhost}.
2372
2373 @option{port} specifies the port on the remote host to connect to. @option{port}
2374 is required.
2375
2376 @option{localaddr} specifies the local address to bind to. If not specified it
2377 defaults to @code{0.0.0.0}.
2378
2379 @option{localport} specifies the local port to bind to. If not specified any
2380 available local port will be used.
2381
2382 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2383 If neither is specified the device may use either protocol.
2384
2385 @item -chardev msmouse ,id=@var{id}
2386
2387 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2388 take any options.
2389
2390 @item -chardev vc ,id=@var{id} [[,width=@var{width}] [,height=@var{height}]] [[,cols=@var{cols}] [,rows=@var{rows}]]
2391
2392 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2393 size.
2394
2395 @option{width} and @option{height} specify the width and height respectively of
2396 the console, in pixels.
2397
2398 @option{cols} and @option{rows} specify that the console be sized to fit a text
2399 console with the given dimensions.
2400
2401 @item -chardev ringbuf ,id=@var{id} [,size=@var{size}]
2402
2403 Create a ring buffer with fixed size @option{size}.
2404 @var{size} must be a power of two and defaults to @code{64K}.
2405
2406 @item -chardev file ,id=@var{id} ,path=@var{path}
2407
2408 Log all traffic received from the guest to a file.
2409
2410 @option{path} specifies the path of the file to be opened. This file will be
2411 created if it does not already exist, and overwritten if it does. @option{path}
2412 is required.
2413
2414 @item -chardev pipe ,id=@var{id} ,path=@var{path}
2415
2416 Create a two-way connection to the guest. The behaviour differs slightly between
2417 Windows hosts and other hosts:
2418
2419 On Windows, a single duplex pipe will be created at
2420 @file{\\.pipe\@option{path}}.
2421
2422 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2423 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2424 received by the guest. Data written by the guest can be read from
2425 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2426 be present.
2427
2428 @option{path} forms part of the pipe path as described above. @option{path} is
2429 required.
2430
2431 @item -chardev console ,id=@var{id}
2432
2433 Send traffic from the guest to QEMU's standard output. @option{console} does not
2434 take any options.
2435
2436 @option{console} is only available on Windows hosts.
2437
2438 @item -chardev serial ,id=@var{id} ,path=@option{path}
2439
2440 Send traffic from the guest to a serial device on the host.
2441
2442 On Unix hosts serial will actually accept any tty device,
2443 not only serial lines.
2444
2445 @option{path} specifies the name of the serial device to open.
2446
2447 @item -chardev pty ,id=@var{id}
2448
2449 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2450 not take any options.
2451
2452 @option{pty} is not available on Windows hosts.
2453
2454 @item -chardev stdio ,id=@var{id} [,signal=on|off]
2455 Connect to standard input and standard output of the QEMU process.
2456
2457 @option{signal} controls if signals are enabled on the terminal, that includes
2458 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
2459 default, use @option{signal=off} to disable it.
2460
2461 @item -chardev braille ,id=@var{id}
2462
2463 Connect to a local BrlAPI server. @option{braille} does not take any options.
2464
2465 @item -chardev tty ,id=@var{id} ,path=@var{path}
2466
2467 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
2468 DragonFlyBSD hosts. It is an alias for @option{serial}.
2469
2470 @option{path} specifies the path to the tty. @option{path} is required.
2471
2472 @item -chardev parallel ,id=@var{id} ,path=@var{path}
2473 @itemx -chardev parport ,id=@var{id} ,path=@var{path}
2474
2475 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
2476
2477 Connect to a local parallel port.
2478
2479 @option{path} specifies the path to the parallel port device. @option{path} is
2480 required.
2481
2482 @item -chardev spicevmc ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2483
2484 @option{spicevmc} is only available when spice support is built in.
2485
2486 @option{debug} debug level for spicevmc
2487
2488 @option{name} name of spice channel to connect to
2489
2490 Connect to a spice virtual machine channel, such as vdiport.
2491
2492 @item -chardev spiceport ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2493
2494 @option{spiceport} is only available when spice support is built in.
2495
2496 @option{debug} debug level for spicevmc
2497
2498 @option{name} name of spice port to connect to
2499
2500 Connect to a spice port, allowing a Spice client to handle the traffic
2501 identified by a name (preferably a fqdn).
2502 ETEXI
2503
2504 STEXI
2505 @end table
2506 ETEXI
2507 DEFHEADING()
2508
2509 DEFHEADING(Device URL Syntax)
2510 STEXI
2511
2512 In addition to using normal file images for the emulated storage devices,
2513 QEMU can also use networked resources such as iSCSI devices. These are
2514 specified using a special URL syntax.
2515
2516 @table @option
2517 @item iSCSI
2518 iSCSI support allows QEMU to access iSCSI resources directly and use as
2519 images for the guest storage. Both disk and cdrom images are supported.
2520
2521 Syntax for specifying iSCSI LUNs is
2522 ``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
2523
2524 By default qemu will use the iSCSI initiator-name
2525 'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
2526 line or a configuration file.
2527
2528 Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
2529 stalled requests and force a reestablishment of the session. The timeout
2530 is specified in seconds. The default is 0 which means no timeout. Libiscsi
2531 1.15.0 or greater is required for this feature.
2532
2533 Example (without authentication):
2534 @example
2535 qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
2536 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
2537 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2538 @end example
2539
2540 Example (CHAP username/password via URL):
2541 @example
2542 qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
2543 @end example
2544
2545 Example (CHAP username/password via environment variables):
2546 @example
2547 LIBISCSI_CHAP_USERNAME="user" \
2548 LIBISCSI_CHAP_PASSWORD="password" \
2549 qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2550 @end example
2551
2552 iSCSI support is an optional feature of QEMU and only available when
2553 compiled and linked against libiscsi.
2554 ETEXI
2555 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
2556 "-iscsi [user=user][,password=password]\n"
2557 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
2558 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
2559 " [,timeout=timeout]\n"
2560 " iSCSI session parameters\n", QEMU_ARCH_ALL)
2561 STEXI
2562
2563 iSCSI parameters such as username and password can also be specified via
2564 a configuration file. See qemu-doc for more information and examples.
2565
2566 @item NBD
2567 QEMU supports NBD (Network Block Devices) both using TCP protocol as well
2568 as Unix Domain Sockets.
2569
2570 Syntax for specifying a NBD device using TCP
2571 ``nbd:<server-ip>:<port>[:exportname=<export>]''
2572
2573 Syntax for specifying a NBD device using Unix Domain Sockets
2574 ``nbd:unix:<domain-socket>[:exportname=<export>]''
2575
2576
2577 Example for TCP
2578 @example
2579 qemu-system-i386 --drive file=nbd:192.0.2.1:30000
2580 @end example
2581
2582 Example for Unix Domain Sockets
2583 @example
2584 qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
2585 @end example
2586
2587 @item SSH
2588 QEMU supports SSH (Secure Shell) access to remote disks.
2589
2590 Examples:
2591 @example
2592 qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
2593 qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
2594 @end example
2595
2596 Currently authentication must be done using ssh-agent. Other
2597 authentication methods may be supported in future.
2598
2599 @item Sheepdog
2600 Sheepdog is a distributed storage system for QEMU.
2601 QEMU supports using either local sheepdog devices or remote networked
2602 devices.
2603
2604 Syntax for specifying a sheepdog device
2605 @example
2606 sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
2607 @end example
2608
2609 Example
2610 @example
2611 qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
2612 @end example
2613
2614 See also @url{https://sheepdog.github.io/sheepdog/}.
2615
2616 @item GlusterFS
2617 GlusterFS is a user space distributed file system.
2618 QEMU supports the use of GlusterFS volumes for hosting VM disk images using
2619 TCP, Unix Domain Sockets and RDMA transport protocols.
2620
2621 Syntax for specifying a VM disk image on GlusterFS volume is
2622 @example
2623
2624 URI:
2625 gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
2626
2627 JSON:
2628 'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
2629 @ "server":[@{"type":"tcp","host":"...","port":"..."@},
2630 @ @{"type":"unix","socket":"..."@}]@}@}'
2631 @end example
2632
2633
2634 Example
2635 @example
2636 URI:
2637 qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
2638 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log
2639
2640 JSON:
2641 qemu-system-x86_64 'json:@{"driver":"qcow2",
2642 @ "file":@{"driver":"gluster",
2643 @ "volume":"testvol","path":"a.img",
2644 @ "debug":9,"logfile":"/var/log/qemu-gluster.log",
2645 @ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
2646 @ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
2647 qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
2648 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
2649 @ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
2650 @ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
2651 @end example
2652
2653 See also @url{http://www.gluster.org}.
2654
2655 @item HTTP/HTTPS/FTP/FTPS
2656 QEMU supports read-only access to files accessed over http(s) and ftp(s).
2657
2658 Syntax using a single filename:
2659 @example
2660 <protocol>://[<username>[:<password>]@@]<host>/<path>
2661 @end example
2662
2663 where:
2664 @table @option
2665 @item protocol
2666 'http', 'https', 'ftp', or 'ftps'.
2667
2668 @item username
2669 Optional username for authentication to the remote server.
2670
2671 @item password
2672 Optional password for authentication to the remote server.
2673
2674 @item host
2675 Address of the remote server.
2676
2677 @item path
2678 Path on the remote server, including any query string.
2679 @end table
2680
2681 The following options are also supported:
2682 @table @option
2683 @item url
2684 The full URL when passing options to the driver explicitly.
2685
2686 @item readahead
2687 The amount of data to read ahead with each range request to the remote server.
2688 This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
2689 does not have a suffix, it will be assumed to be in bytes. The value must be a
2690 multiple of 512 bytes. It defaults to 256k.
2691
2692 @item sslverify
2693 Whether to verify the remote server's certificate when connecting over SSL. It
2694 can have the value 'on' or 'off'. It defaults to 'on'.
2695
2696 @item cookie
2697 Send this cookie (it can also be a list of cookies separated by ';') with
2698 each outgoing request. Only supported when using protocols such as HTTP
2699 which support cookies, otherwise ignored.
2700
2701 @item timeout
2702 Set the timeout in seconds of the CURL connection. This timeout is the time
2703 that CURL waits for a response from the remote server to get the size of the
2704 image to be downloaded. If not set, the default timeout of 5 seconds is used.
2705 @end table
2706
2707 Note that when passing options to qemu explicitly, @option{driver} is the value
2708 of <protocol>.
2709
2710 Example: boot from a remote Fedora 20 live ISO image
2711 @example
2712 qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2713
2714 qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2715 @end example
2716
2717 Example: boot from a remote Fedora 20 cloud image using a local overlay for
2718 writes, copy-on-read, and a readahead of 64k
2719 @example
2720 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
2721
2722 qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
2723 @end example
2724
2725 Example: boot from an image stored on a VMware vSphere server with a self-signed
2726 certificate using a local overlay for writes, a readahead of 64k and a timeout
2727 of 10 seconds.
2728 @example
2729 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
2730
2731 qemu-system-x86_64 -drive file=/tmp/test.qcow2
2732 @end example
2733 ETEXI
2734
2735 STEXI
2736 @end table
2737 ETEXI
2738
2739 DEFHEADING(Bluetooth(R) options)
2740 STEXI
2741 @table @option
2742 ETEXI
2743
2744 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
2745 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
2746 "-bt hci,host[:id]\n" \
2747 " use host's HCI with the given name\n" \
2748 "-bt hci[,vlan=n]\n" \
2749 " emulate a standard HCI in virtual scatternet 'n'\n" \
2750 "-bt vhci[,vlan=n]\n" \
2751 " add host computer to virtual scatternet 'n' using VHCI\n" \
2752 "-bt device:dev[,vlan=n]\n" \
2753 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
2754 QEMU_ARCH_ALL)
2755 STEXI
2756 @item -bt hci[...]
2757 @findex -bt
2758 Defines the function of the corresponding Bluetooth HCI. -bt options
2759 are matched with the HCIs present in the chosen machine type. For
2760 example when emulating a machine with only one HCI built into it, only
2761 the first @code{-bt hci[...]} option is valid and defines the HCI's
2762 logic. The Transport Layer is decided by the machine type. Currently
2763 the machines @code{n800} and @code{n810} have one HCI and all other
2764 machines have none.
2765
2766 @anchor{bt-hcis}
2767 The following three types are recognized:
2768
2769 @table @option
2770 @item -bt hci,null
2771 (default) The corresponding Bluetooth HCI assumes no internal logic
2772 and will not respond to any HCI commands or emit events.
2773
2774 @item -bt hci,host[:@var{id}]
2775 (@code{bluez} only) The corresponding HCI passes commands / events
2776 to / from the physical HCI identified by the name @var{id} (default:
2777 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
2778 capable systems like Linux.
2779
2780 @item -bt hci[,vlan=@var{n}]
2781 Add a virtual, standard HCI that will participate in the Bluetooth
2782 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
2783 VLANs, devices inside a bluetooth network @var{n} can only communicate
2784 with other devices in the same network (scatternet).
2785 @end table
2786
2787 @item -bt vhci[,vlan=@var{n}]
2788 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
2789 to the host bluetooth stack instead of to the emulated target. This
2790 allows the host and target machines to participate in a common scatternet
2791 and communicate. Requires the Linux @code{vhci} driver installed. Can
2792 be used as following:
2793
2794 @example
2795 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
2796 @end example
2797
2798 @item -bt device:@var{dev}[,vlan=@var{n}]
2799 Emulate a bluetooth device @var{dev} and place it in network @var{n}
2800 (default @code{0}). QEMU can only emulate one type of bluetooth devices
2801 currently:
2802
2803 @table @option
2804 @item keyboard
2805 Virtual wireless keyboard implementing the HIDP bluetooth profile.
2806 @end table
2807 ETEXI
2808
2809 STEXI
2810 @end table
2811 ETEXI
2812 DEFHEADING()
2813
2814 #ifdef CONFIG_TPM
2815 DEFHEADING(TPM device options)
2816
2817 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
2818 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
2819 " use path to provide path to a character device; default is /dev/tpm0\n"
2820 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
2821 " not provided it will be searched for in /sys/class/misc/tpm?/device\n",
2822 QEMU_ARCH_ALL)
2823 STEXI
2824
2825 The general form of a TPM device option is:
2826 @table @option
2827
2828 @item -tpmdev @var{backend} ,id=@var{id} [,@var{options}]
2829 @findex -tpmdev
2830 Backend type must be:
2831 @option{passthrough}.
2832
2833 The specific backend type will determine the applicable options.
2834 The @code{-tpmdev} option creates the TPM backend and requires a
2835 @code{-device} option that specifies the TPM frontend interface model.
2836
2837 Options to each backend are described below.
2838
2839 Use 'help' to print all available TPM backend types.
2840 @example
2841 qemu -tpmdev help
2842 @end example
2843
2844 @item -tpmdev passthrough, id=@var{id}, path=@var{path}, cancel-path=@var{cancel-path}
2845
2846 (Linux-host only) Enable access to the host's TPM using the passthrough
2847 driver.
2848
2849 @option{path} specifies the path to the host's TPM device, i.e., on
2850 a Linux host this would be @code{/dev/tpm0}.
2851 @option{path} is optional and by default @code{/dev/tpm0} is used.
2852
2853 @option{cancel-path} specifies the path to the host TPM device's sysfs
2854 entry allowing for cancellation of an ongoing TPM command.
2855 @option{cancel-path} is optional and by default QEMU will search for the
2856 sysfs entry to use.
2857
2858 Some notes about using the host's TPM with the passthrough driver:
2859
2860 The TPM device accessed by the passthrough driver must not be
2861 used by any other application on the host.
2862
2863 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
2864 the VM's firmware (BIOS/UEFI) will not be able to initialize the
2865 TPM again and may therefore not show a TPM-specific menu that would
2866 otherwise allow the user to configure the TPM, e.g., allow the user to
2867 enable/disable or activate/deactivate the TPM.
2868 Further, if TPM ownership is released from within a VM then the host's TPM
2869 will get disabled and deactivated. To enable and activate the
2870 TPM again afterwards, the host has to be rebooted and the user is
2871 required to enter the firmware's menu to enable and activate the TPM.
2872 If the TPM is left disabled and/or deactivated most TPM commands will fail.
2873
2874 To create a passthrough TPM use the following two options:
2875 @example
2876 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
2877 @end example
2878 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
2879 @code{tpmdev=tpm0} in the device option.
2880
2881 @end table
2882
2883 ETEXI
2884
2885 DEFHEADING()
2886
2887 #endif
2888
2889 DEFHEADING(Linux/Multiboot boot specific)
2890 STEXI
2891
2892 When using these options, you can use a given Linux or Multiboot
2893 kernel without installing it in the disk image. It can be useful
2894 for easier testing of various kernels.
2895
2896 @table @option
2897 ETEXI
2898
2899 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
2900 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
2901 STEXI
2902 @item -kernel @var{bzImage}
2903 @findex -kernel
2904 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
2905 or in multiboot format.
2906 ETEXI
2907
2908 DEF("append", HAS_ARG, QEMU_OPTION_append, \
2909 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
2910 STEXI
2911 @item -append @var{cmdline}
2912 @findex -append
2913 Use @var{cmdline} as kernel command line
2914 ETEXI
2915
2916 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
2917 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
2918 STEXI
2919 @item -initrd @var{file}
2920 @findex -initrd
2921 Use @var{file} as initial ram disk.
2922
2923 @item -initrd "@var{file1} arg=foo,@var{file2}"
2924
2925 This syntax is only available with multiboot.
2926
2927 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
2928 first module.
2929 ETEXI
2930
2931 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
2932 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
2933 STEXI
2934 @item -dtb @var{file}
2935 @findex -dtb
2936 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
2937 on boot.
2938 ETEXI
2939
2940 STEXI
2941 @end table
2942 ETEXI
2943 DEFHEADING()
2944
2945 DEFHEADING(Debug/Expert options)
2946 STEXI
2947 @table @option
2948 ETEXI
2949
2950 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
2951 "-fw_cfg [name=]<name>,file=<file>\n"
2952 " add named fw_cfg entry with contents from file\n"
2953 "-fw_cfg [name=]<name>,string=<str>\n"
2954 " add named fw_cfg entry with contents from string\n",
2955 QEMU_ARCH_ALL)
2956 STEXI
2957
2958 @item -fw_cfg [name=]@var{name},file=@var{file}
2959 @findex -fw_cfg
2960 Add named fw_cfg entry with contents from file @var{file}.
2961
2962 @item -fw_cfg [name=]@var{name},string=@var{str}
2963 Add named fw_cfg entry with contents from string @var{str}.
2964
2965 The terminating NUL character of the contents of @var{str} will not be
2966 included as part of the fw_cfg item data. To insert contents with
2967 embedded NUL characters, you have to use the @var{file} parameter.
2968
2969 The fw_cfg entries are passed by QEMU through to the guest.
2970
2971 Example:
2972 @example
2973 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
2974 @end example
2975 creates an fw_cfg entry named opt/com.mycompany/blob with contents
2976 from ./my_blob.bin.
2977
2978 ETEXI
2979
2980 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
2981 "-serial dev redirect the serial port to char device 'dev'\n",
2982 QEMU_ARCH_ALL)
2983 STEXI
2984 @item -serial @var{dev}
2985 @findex -serial
2986 Redirect the virtual serial port to host character device
2987 @var{dev}. The default device is @code{vc} in graphical mode and
2988 @code{stdio} in non graphical mode.
2989
2990 This option can be used several times to simulate up to 4 serial
2991 ports.
2992
2993 Use @code{-serial none} to disable all serial ports.
2994
2995 Available character devices are:
2996 @table @option
2997 @item vc[:@var{W}x@var{H}]
2998 Virtual console. Optionally, a width and height can be given in pixel with
2999 @example
3000 vc:800x600
3001 @end example
3002 It is also possible to specify width or height in characters:
3003 @example
3004 vc:80Cx24C
3005 @end example
3006 @item pty
3007 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
3008 @item none
3009 No device is allocated.
3010 @item null
3011 void device
3012 @item chardev:@var{id}
3013 Use a named character device defined with the @code{-chardev} option.
3014 @item /dev/XXX
3015 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
3016 parameters are set according to the emulated ones.
3017 @item /dev/parport@var{N}
3018 [Linux only, parallel port only] Use host parallel port
3019 @var{N}. Currently SPP and EPP parallel port features can be used.
3020 @item file:@var{filename}
3021 Write output to @var{filename}. No character can be read.
3022 @item stdio
3023 [Unix only] standard input/output
3024 @item pipe:@var{filename}
3025 name pipe @var{filename}
3026 @item COM@var{n}
3027 [Windows only] Use host serial port @var{n}
3028 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
3029 This implements UDP Net Console.
3030 When @var{remote_host} or @var{src_ip} are not specified
3031 they default to @code{0.0.0.0}.
3032 When not using a specified @var{src_port} a random port is automatically chosen.
3033
3034 If you just want a simple readonly console you can use @code{netcat} or
3035 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
3036 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
3037 will appear in the netconsole session.
3038
3039 If you plan to send characters back via netconsole or you want to stop
3040 and start QEMU a lot of times, you should have QEMU use the same
3041 source port each time by using something like @code{-serial
3042 udp::4555@@:4556} to QEMU. Another approach is to use a patched
3043 version of netcat which can listen to a TCP port and send and receive
3044 characters via udp. If you have a patched version of netcat which
3045 activates telnet remote echo and single char transfer, then you can
3046 use the following options to set up a netcat redirector to allow
3047 telnet on port 5555 to access the QEMU port.
3048 @table @code
3049 @item QEMU Options:
3050 -serial udp::4555@@:4556
3051 @item netcat options:
3052 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3053 @item telnet options:
3054 localhost 5555
3055 @end table
3056
3057 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3058 The TCP Net Console has two modes of operation. It can send the serial
3059 I/O to a location or wait for a connection from a location. By default
3060 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3061 the @var{server} option QEMU will wait for a client socket application
3062 to connect to the port before continuing, unless the @code{nowait}
3063 option was specified. The @code{nodelay} option disables the Nagle buffering
3064 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3065 set, if the connection goes down it will attempt to reconnect at the
3066 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3067 one TCP connection at a time is accepted. You can use @code{telnet} to
3068 connect to the corresponding character device.
3069 @table @code
3070 @item Example to send tcp console to 192.168.0.2 port 4444
3071 -serial tcp:192.168.0.2:4444
3072 @item Example to listen and wait on port 4444 for connection
3073 -serial tcp::4444,server
3074 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3075 -serial tcp:192.168.0.100:4444,server,nowait
3076 @end table
3077
3078 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3079 The telnet protocol is used instead of raw tcp sockets. The options
3080 work the same as if you had specified @code{-serial tcp}. The
3081 difference is that the port acts like a telnet server or client using
3082 telnet option negotiation. This will also allow you to send the
3083 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3084 sequence. Typically in unix telnet you do it with Control-] and then
3085 type "send break" followed by pressing the enter key.
3086
3087 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3088 A unix domain socket is used instead of a tcp socket. The option works the
3089 same as if you had specified @code{-serial tcp} except the unix domain socket
3090 @var{path} is used for connections.
3091
3092 @item mon:@var{dev_string}
3093 This is a special option to allow the monitor to be multiplexed onto
3094 another serial port. The monitor is accessed with key sequence of
3095 @key{Control-a} and then pressing @key{c}.
3096 @var{dev_string} should be any one of the serial devices specified
3097 above. An example to multiplex the monitor onto a telnet server
3098 listening on port 4444 would be:
3099 @table @code
3100 @item -serial mon:telnet::4444,server,nowait
3101 @end table
3102 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3103 QEMU any more but will be passed to the guest instead.
3104
3105 @item braille
3106 Braille device. This will use BrlAPI to display the braille output on a real
3107 or fake device.
3108
3109 @item msmouse
3110 Three button serial mouse. Configure the guest to use Microsoft protocol.
3111 @end table
3112 ETEXI
3113
3114 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3115 "-parallel dev redirect the parallel port to char device 'dev'\n",
3116 QEMU_ARCH_ALL)
3117 STEXI
3118 @item -parallel @var{dev}
3119 @findex -parallel
3120 Redirect the virtual parallel port to host device @var{dev} (same
3121 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3122 be used to use hardware devices connected on the corresponding host
3123 parallel port.
3124
3125 This option can be used several times to simulate up to 3 parallel
3126 ports.
3127
3128 Use @code{-parallel none} to disable all parallel ports.
3129 ETEXI
3130
3131 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3132 "-monitor dev redirect the monitor to char device 'dev'\n",
3133 QEMU_ARCH_ALL)
3134 STEXI
3135 @item -monitor @var{dev}
3136 @findex -monitor
3137 Redirect the monitor to host device @var{dev} (same devices as the
3138 serial port).
3139 The default device is @code{vc} in graphical mode and @code{stdio} in
3140 non graphical mode.
3141 Use @code{-monitor none} to disable the default monitor.
3142 ETEXI
3143 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3144 "-qmp dev like -monitor but opens in 'control' mode\n",
3145 QEMU_ARCH_ALL)
3146 STEXI
3147 @item -qmp @var{dev}
3148 @findex -qmp
3149 Like -monitor but opens in 'control' mode.
3150 ETEXI
3151 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3152 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3153 QEMU_ARCH_ALL)
3154 STEXI
3155 @item -qmp-pretty @var{dev}
3156 @findex -qmp-pretty
3157 Like -qmp but uses pretty JSON formatting.
3158 ETEXI
3159
3160 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3161 "-mon [chardev=]name[,mode=readline|control]\n", QEMU_ARCH_ALL)
3162 STEXI
3163 @item -mon [chardev=]name[,mode=readline|control]
3164 @findex -mon
3165 Setup monitor on chardev @var{name}.
3166 ETEXI
3167
3168 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3169 "-debugcon dev redirect the debug console to char device 'dev'\n",
3170 QEMU_ARCH_ALL)
3171 STEXI
3172 @item -debugcon @var{dev}
3173 @findex -debugcon
3174 Redirect the debug console to host device @var{dev} (same devices as the
3175 serial port). The debug console is an I/O port which is typically port
3176 0xe9; writing to that I/O port sends output to this device.
3177 The default device is @code{vc} in graphical mode and @code{stdio} in
3178 non graphical mode.
3179 ETEXI
3180
3181 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3182 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3183 STEXI
3184 @item -pidfile @var{file}
3185 @findex -pidfile
3186 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3187 from a script.
3188 ETEXI
3189
3190 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3191 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3192 STEXI
3193 @item -singlestep
3194 @findex -singlestep
3195 Run the emulation in single step mode.
3196 ETEXI
3197
3198 DEF("S", 0, QEMU_OPTION_S, \
3199 "-S freeze CPU at startup (use 'c' to start execution)\n",
3200 QEMU_ARCH_ALL)
3201 STEXI
3202 @item -S
3203 @findex -S
3204 Do not start CPU at startup (you must type 'c' in the monitor).
3205 ETEXI
3206
3207 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3208 "-realtime [mlock=on|off]\n"
3209 " run qemu with realtime features\n"
3210 " mlock=on|off controls mlock support (default: on)\n",
3211 QEMU_ARCH_ALL)
3212 STEXI
3213 @item -realtime mlock=on|off
3214 @findex -realtime
3215 Run qemu with realtime features.
3216 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3217 (enabled by default).
3218 ETEXI
3219
3220 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3221 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3222 STEXI
3223 @item -gdb @var{dev}
3224 @findex -gdb
3225 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3226 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3227 stdio are reasonable use case. The latter is allowing to start QEMU from
3228 within gdb and establish the connection via a pipe:
3229 @example
3230 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3231 @end example
3232 ETEXI
3233
3234 DEF("s", 0, QEMU_OPTION_s, \
3235 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3236 QEMU_ARCH_ALL)
3237 STEXI
3238 @item -s
3239 @findex -s
3240 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3241 (@pxref{gdb_usage}).
3242 ETEXI
3243
3244 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3245 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3246 QEMU_ARCH_ALL)
3247 STEXI
3248 @item -d @var{item1}[,...]
3249 @findex -d
3250 Enable logging of specified items. Use '-d help' for a list of log items.
3251 ETEXI
3252
3253 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3254 "-D logfile output log to logfile (default stderr)\n",
3255 QEMU_ARCH_ALL)
3256 STEXI
3257 @item -D @var{logfile}
3258 @findex -D
3259 Output log in @var{logfile} instead of to stderr
3260 ETEXI
3261
3262 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3263 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3264 QEMU_ARCH_ALL)
3265 STEXI
3266 @item -dfilter @var{range1}[,...]
3267 @findex -dfilter
3268 Filter debug output to that relevant to a range of target addresses. The filter
3269 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3270 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3271 addresses and sizes required. For example:
3272 @example
3273 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3274 @end example
3275 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3276 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3277 block starting at 0xffffffc00005f000.
3278 ETEXI
3279
3280 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3281 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3282 QEMU_ARCH_ALL)
3283 STEXI
3284 @item -L @var{path}
3285 @findex -L
3286 Set the directory for the BIOS, VGA BIOS and keymaps.
3287
3288 To list all the data directories, use @code{-L help}.
3289 ETEXI
3290
3291 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3292 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3293 STEXI
3294 @item -bios @var{file}
3295 @findex -bios
3296 Set the filename for the BIOS.
3297 ETEXI
3298
3299 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3300 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3301 STEXI
3302 @item -enable-kvm
3303 @findex -enable-kvm
3304 Enable KVM full virtualization support. This option is only available
3305 if KVM support is enabled when compiling.
3306 ETEXI
3307
3308 DEF("enable-hax", 0, QEMU_OPTION_enable_hax, \
3309 "-enable-hax enable HAX virtualization support\n", QEMU_ARCH_I386)
3310 STEXI
3311 @item -enable-hax
3312 @findex -enable-hax
3313 Enable HAX (Hardware-based Acceleration eXecution) support. This option
3314 is only available if HAX support is enabled when compiling. HAX is only
3315 applicable to MAC and Windows platform, and thus does not conflict with
3316 KVM.
3317 ETEXI
3318
3319 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3320 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3321 DEF("xen-create", 0, QEMU_OPTION_xen_create,
3322 "-xen-create create domain using xen hypercalls, bypassing xend\n"
3323 " warning: should not be used when xend is in use\n",
3324 QEMU_ARCH_ALL)
3325 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3326 "-xen-attach attach to existing xen domain\n"
3327 " xend will use this when starting QEMU\n",
3328 QEMU_ARCH_ALL)
3329 STEXI
3330 @item -xen-domid @var{id}
3331 @findex -xen-domid
3332 Specify xen guest domain @var{id} (XEN only).
3333 @item -xen-create
3334 @findex -xen-create
3335 Create domain using xen hypercalls, bypassing xend.
3336 Warning: should not be used when xend is in use (XEN only).
3337 @item -xen-attach
3338 @findex -xen-attach
3339 Attach to existing xen domain.
3340 xend will use this when starting QEMU (XEN only).
3341 ETEXI
3342
3343 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3344 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3345 STEXI
3346 @item -no-reboot
3347 @findex -no-reboot
3348 Exit instead of rebooting.
3349 ETEXI
3350
3351 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3352 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3353 STEXI
3354 @item -no-shutdown
3355 @findex -no-shutdown
3356 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3357 This allows for instance switching to monitor to commit changes to the
3358 disk image.
3359 ETEXI
3360
3361 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3362 "-loadvm [tag|id]\n" \
3363 " start right away with a saved state (loadvm in monitor)\n",
3364 QEMU_ARCH_ALL)
3365 STEXI
3366 @item -loadvm @var{file}
3367 @findex -loadvm
3368 Start right away with a saved state (@code{loadvm} in monitor)
3369 ETEXI
3370
3371 #ifndef _WIN32
3372 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3373 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3374 #endif
3375 STEXI
3376 @item -daemonize
3377 @findex -daemonize
3378 Daemonize the QEMU process after initialization. QEMU will not detach from
3379 standard IO until it is ready to receive connections on any of its devices.
3380 This option is a useful way for external programs to launch QEMU without having
3381 to cope with initialization race conditions.
3382 ETEXI
3383
3384 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3385 "-option-rom rom load a file, rom, into the option ROM space\n",
3386 QEMU_ARCH_ALL)
3387 STEXI
3388 @item -option-rom @var{file}
3389 @findex -option-rom
3390 Load the contents of @var{file} as an option ROM.
3391 This option is useful to load things like EtherBoot.
3392 ETEXI
3393
3394 HXCOMM Silently ignored for compatibility
3395 DEF("clock", HAS_ARG, QEMU_OPTION_clock, "", QEMU_ARCH_ALL)
3396
3397 HXCOMM Options deprecated by -rtc
3398 DEF("localtime", 0, QEMU_OPTION_localtime, "", QEMU_ARCH_ALL)
3399 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "", QEMU_ARCH_ALL)
3400
3401 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3402 "-rtc [base=utc|localtime|date][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3403 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3404 QEMU_ARCH_ALL)
3405
3406 STEXI
3407
3408 @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
3409 @findex -rtc
3410 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3411 UTC or local time, respectively. @code{localtime} is required for correct date in
3412 MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
3413 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3414
3415 By default the RTC is driven by the host system time. This allows using of the
3416 RTC as accurate reference clock inside the guest, specifically if the host
3417 time is smoothly following an accurate external reference clock, e.g. via NTP.
3418 If you want to isolate the guest time from the host, you can set @option{clock}
3419 to @code{rt} instead. To even prevent it from progressing during suspension,
3420 you can set it to @code{vm}.
3421
3422 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3423 specifically with Windows' ACPI HAL. This option will try to figure out how
3424 many timer interrupts were not processed by the Windows guest and will
3425 re-inject them.
3426 ETEXI
3427
3428 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3429 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3430 " enable virtual instruction counter with 2^N clock ticks per\n" \
3431 " instruction, enable aligning the host and virtual clocks\n" \
3432 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3433 STEXI
3434 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}]
3435 @findex -icount
3436 Enable virtual instruction counter. The virtual cpu will execute one
3437 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3438 then the virtual cpu speed will be automatically adjusted to keep virtual
3439 time within a few seconds of real time.
3440
3441 When the virtual cpu is sleeping, the virtual time will advance at default
3442 speed unless @option{sleep=on|off} is specified.
3443 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3444 instantly whenever the virtual cpu goes to sleep mode and will not advance
3445 if no timer is enabled. This behavior give deterministic execution times from
3446 the guest point of view.
3447
3448 Note that while this option can give deterministic behavior, it does not
3449 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3450 order cores with complex cache hierarchies. The number of instructions
3451 executed often has little or no correlation with actual performance.
3452
3453 @option{align=on} will activate the delay algorithm which will try
3454 to synchronise the host clock and the virtual clock. The goal is to
3455 have a guest running at the real frequency imposed by the shift option.
3456 Whenever the guest clock is behind the host clock and if
3457 @option{align=on} is specified then we print a message to the user
3458 to inform about the delay.
3459 Currently this option does not work when @option{shift} is @code{auto}.
3460 Note: The sync algorithm will work for those shift values for which
3461 the guest clock runs ahead of the host clock. Typically this happens
3462 when the shift value is high (how high depends on the host machine).
3463
3464 When @option{rr} option is specified deterministic record/replay is enabled.
3465 Replay log is written into @var{filename} file in record mode and
3466 read from this file in replay mode.
3467
3468 Option rrsnapshot is used to create new vm snapshot named @var{snapshot}
3469 at the start of execution recording. In replay mode this option is used
3470 to load the initial VM state.
3471 ETEXI
3472
3473 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3474 "-watchdog model\n" \
3475 " enable virtual hardware watchdog [default=none]\n",
3476 QEMU_ARCH_ALL)
3477 STEXI
3478 @item -watchdog @var{model}
3479 @findex -watchdog
3480 Create a virtual hardware watchdog device. Once enabled (by a guest
3481 action), the watchdog must be periodically polled by an agent inside
3482 the guest or else the guest will be restarted. Choose a model for
3483 which your guest has drivers.
3484
3485 The @var{model} is the model of hardware watchdog to emulate. Use
3486 @code{-watchdog help} to list available hardware models. Only one
3487 watchdog can be enabled for a guest.
3488
3489 The following models may be available:
3490 @table @option
3491 @item ib700
3492 iBASE 700 is a very simple ISA watchdog with a single timer.
3493 @item i6300esb
3494 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3495 dual-timer watchdog.
3496 @item diag288
3497 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3498 (currently KVM only).
3499 @end table
3500 ETEXI
3501
3502 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3503 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
3504 " action when watchdog fires [default=reset]\n",
3505 QEMU_ARCH_ALL)
3506 STEXI
3507 @item -watchdog-action @var{action}
3508 @findex -watchdog-action
3509
3510 The @var{action} controls what QEMU will do when the watchdog timer
3511 expires.
3512 The default is
3513 @code{reset} (forcefully reset the guest).
3514 Other possible actions are:
3515 @code{shutdown} (attempt to gracefully shutdown the guest),
3516 @code{poweroff} (forcefully poweroff the guest),
3517 @code{pause} (pause the guest),
3518 @code{debug} (print a debug message and continue), or
3519 @code{none} (do nothing).
3520
3521 Note that the @code{shutdown} action requires that the guest responds
3522 to ACPI signals, which it may not be able to do in the sort of
3523 situations where the watchdog would have expired, and thus
3524 @code{-watchdog-action shutdown} is not recommended for production use.
3525
3526 Examples:
3527
3528 @table @code
3529 @item -watchdog i6300esb -watchdog-action pause
3530 @itemx -watchdog ib700
3531 @end table
3532 ETEXI
3533
3534 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3535 "-echr chr set terminal escape character instead of ctrl-a\n",
3536 QEMU_ARCH_ALL)
3537 STEXI
3538
3539 @item -echr @var{numeric_ascii_value}
3540 @findex -echr
3541 Change the escape character used for switching to the monitor when using
3542 monitor and serial sharing. The default is @code{0x01} when using the
3543 @code{-nographic} option. @code{0x01} is equal to pressing
3544 @code{Control-a}. You can select a different character from the ascii
3545 control keys where 1 through 26 map to Control-a through Control-z. For
3546 instance you could use the either of the following to change the escape
3547 character to Control-t.
3548 @table @code
3549 @item -echr 0x14
3550 @itemx -echr 20
3551 @end table
3552 ETEXI
3553
3554 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
3555 "-virtioconsole c\n" \
3556 " set virtio console\n", QEMU_ARCH_ALL)
3557 STEXI
3558 @item -virtioconsole @var{c}
3559 @findex -virtioconsole
3560 Set virtio console.
3561
3562 This option is maintained for backward compatibility.
3563
3564 Please use @code{-device virtconsole} for the new way of invocation.
3565 ETEXI
3566
3567 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3568 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3569 STEXI
3570 @item -show-cursor
3571 @findex -show-cursor
3572 Show cursor.
3573 ETEXI
3574
3575 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3576 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3577 STEXI
3578 @item -tb-size @var{n}
3579 @findex -tb-size
3580 Set TB size.
3581 ETEXI
3582
3583 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3584 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3585 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3586 "-incoming unix:socketpath\n" \
3587 " prepare for incoming migration, listen on\n" \
3588 " specified protocol and socket address\n" \
3589 "-incoming fd:fd\n" \
3590 "-incoming exec:cmdline\n" \
3591 " accept incoming migration on given file descriptor\n" \
3592 " or from given external command\n" \
3593 "-incoming defer\n" \
3594 " wait for the URI to be specified via migrate_incoming\n",
3595 QEMU_ARCH_ALL)
3596 STEXI
3597 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3598 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3599 @findex -incoming
3600 Prepare for incoming migration, listen on a given tcp port.
3601
3602 @item -incoming unix:@var{socketpath}
3603 Prepare for incoming migration, listen on a given unix socket.
3604
3605 @item -incoming fd:@var{fd}
3606 Accept incoming migration from a given filedescriptor.
3607
3608 @item -incoming exec:@var{cmdline}
3609 Accept incoming migration as an output from specified external command.
3610
3611 @item -incoming defer
3612 Wait for the URI to be specified via migrate_incoming. The monitor can
3613 be used to change settings (such as migration parameters) prior to issuing
3614 the migrate_incoming to allow the migration to begin.
3615 ETEXI
3616
3617 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
3618 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
3619 STEXI
3620 @item -only-migratable
3621 @findex -only-migratable
3622 Only allow migratable devices. Devices will not be allowed to enter an
3623 unmigratable state.
3624 ETEXI
3625
3626 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3627 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3628 STEXI
3629 @item -nodefaults
3630 @findex -nodefaults
3631 Don't create default devices. Normally, QEMU sets the default devices like serial
3632 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3633 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3634 default devices.
3635 ETEXI
3636
3637 #ifndef _WIN32
3638 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3639 "-chroot dir chroot to dir just before starting the VM\n",
3640 QEMU_ARCH_ALL)
3641 #endif
3642 STEXI
3643 @item -chroot @var{dir}
3644 @findex -chroot
3645 Immediately before starting guest execution, chroot to the specified
3646 directory. Especially useful in combination with -runas.
3647 ETEXI
3648
3649 #ifndef _WIN32
3650 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
3651 "-runas user change to user id user just before starting the VM\n",
3652 QEMU_ARCH_ALL)
3653 #endif
3654 STEXI
3655 @item -runas @var{user}
3656 @findex -runas
3657 Immediately before starting guest execution, drop root privileges, switching
3658 to the specified user.
3659 ETEXI
3660
3661 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
3662 "-prom-env variable=value\n"
3663 " set OpenBIOS nvram variables\n",
3664 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
3665 STEXI
3666 @item -prom-env @var{variable}=@var{value}
3667 @findex -prom-env
3668 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
3669 ETEXI
3670 DEF("semihosting", 0, QEMU_OPTION_semihosting,
3671 "-semihosting semihosting mode\n",
3672 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3673 QEMU_ARCH_MIPS)
3674 STEXI
3675 @item -semihosting
3676 @findex -semihosting
3677 Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).
3678 ETEXI
3679 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
3680 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \
3681 " semihosting configuration\n",
3682 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3683 QEMU_ARCH_MIPS)
3684 STEXI
3685 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]
3686 @findex -semihosting-config
3687 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).
3688 @table @option
3689 @item target=@code{native|gdb|auto}
3690 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
3691 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
3692 during debug sessions and @code{native} otherwise.
3693 @item arg=@var{str1},arg=@var{str2},...
3694 Allows the user to pass input arguments, and can be used multiple times to build
3695 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
3696 command line is still supported for backward compatibility. If both the
3697 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
3698 specified, the former is passed to semihosting as it always takes precedence.
3699 @end table
3700 ETEXI
3701 DEF("old-param", 0, QEMU_OPTION_old_param,
3702 "-old-param old param mode\n", QEMU_ARCH_ARM)
3703 STEXI
3704 @item -old-param
3705 @findex -old-param (ARM)
3706 Old param mode (ARM only).
3707 ETEXI
3708
3709 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
3710 "-sandbox <arg> Enable seccomp mode 2 system call filter (default 'off').\n",
3711 QEMU_ARCH_ALL)
3712 STEXI
3713 @item -sandbox @var{arg}
3714 @findex -sandbox
3715 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
3716 disable it. The default is 'off'.
3717 ETEXI
3718
3719 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
3720 "-readconfig <file>\n", QEMU_ARCH_ALL)
3721 STEXI
3722 @item -readconfig @var{file}
3723 @findex -readconfig
3724 Read device configuration from @var{file}. This approach is useful when you want to spawn
3725 QEMU process with many command line options but you don't want to exceed the command line
3726 character limit.
3727 ETEXI
3728 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
3729 "-writeconfig <file>\n"
3730 " read/write config file\n", QEMU_ARCH_ALL)
3731 STEXI
3732 @item -writeconfig @var{file}
3733 @findex -writeconfig
3734 Write device configuration to @var{file}. The @var{file} can be either filename to save
3735 command line and device configuration into file or dash @code{-}) character to print the
3736 output to stdout. This can be later used as input file for @code{-readconfig} option.
3737 ETEXI
3738 DEF("nodefconfig", 0, QEMU_OPTION_nodefconfig,
3739 "-nodefconfig\n"
3740 " do not load default config files at startup\n",
3741 QEMU_ARCH_ALL)
3742 STEXI
3743 @item -nodefconfig
3744 @findex -nodefconfig
3745 Normally QEMU loads configuration files from @var{sysconfdir} and @var{datadir} at startup.
3746 The @code{-nodefconfig} option will prevent QEMU from loading any of those config files.
3747 ETEXI
3748 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
3749 "-no-user-config\n"
3750 " do not load user-provided config files at startup\n",
3751 QEMU_ARCH_ALL)
3752 STEXI
3753 @item -no-user-config
3754 @findex -no-user-config
3755 The @code{-no-user-config} option makes QEMU not load any of the user-provided
3756 config files on @var{sysconfdir}, but won't make it skip the QEMU-provided config
3757 files from @var{datadir}.
3758 ETEXI
3759 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
3760 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
3761 " specify tracing options\n",
3762 QEMU_ARCH_ALL)
3763 STEXI
3764 HXCOMM This line is not accurate, as some sub-options are backend-specific but
3765 HXCOMM HX does not support conditional compilation of text.
3766 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
3767 @findex -trace
3768 @include qemu-option-trace.texi
3769 ETEXI
3770
3771 HXCOMM Internal use
3772 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
3773 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
3774
3775 #ifdef __linux__
3776 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
3777 "-enable-fips enable FIPS 140-2 compliance\n",
3778 QEMU_ARCH_ALL)
3779 #endif
3780 STEXI
3781 @item -enable-fips
3782 @findex -enable-fips
3783 Enable FIPS 140-2 compliance mode.
3784 ETEXI
3785
3786 HXCOMM Deprecated by -machine accel=tcg property
3787 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
3788
3789 HXCOMM Deprecated by kvm-pit driver properties
3790 DEF("no-kvm-pit-reinjection", 0, QEMU_OPTION_no_kvm_pit_reinjection,
3791 "", QEMU_ARCH_I386)
3792
3793 HXCOMM Deprecated (ignored)
3794 DEF("no-kvm-pit", 0, QEMU_OPTION_no_kvm_pit, "", QEMU_ARCH_I386)
3795
3796 HXCOMM Deprecated by -machine kernel_irqchip=on|off property
3797 DEF("no-kvm-irqchip", 0, QEMU_OPTION_no_kvm_irqchip, "", QEMU_ARCH_I386)
3798
3799 HXCOMM Deprecated (ignored)
3800 DEF("tdf", 0, QEMU_OPTION_tdf,"", QEMU_ARCH_ALL)
3801
3802 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
3803 "-msg timestamp[=on|off]\n"
3804 " change the format of messages\n"
3805 " on|off controls leading timestamps (default:on)\n",
3806 QEMU_ARCH_ALL)
3807 STEXI
3808 @item -msg timestamp[=on|off]
3809 @findex -msg
3810 prepend a timestamp to each log message.(default:on)
3811 ETEXI
3812
3813 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
3814 "-dump-vmstate <file>\n"
3815 " Output vmstate information in JSON format to file.\n"
3816 " Use the scripts/vmstate-static-checker.py file to\n"
3817 " check for possible regressions in migration code\n"
3818 " by comparing two such vmstate dumps.\n",
3819 QEMU_ARCH_ALL)
3820 STEXI
3821 @item -dump-vmstate @var{file}
3822 @findex -dump-vmstate
3823 Dump json-encoded vmstate information for current machine type to file
3824 in @var{file}
3825 ETEXI
3826
3827 STEXI
3828 @end table
3829 ETEXI
3830 DEFHEADING()
3831 DEFHEADING(Generic object creation)
3832 STEXI
3833 @table @option
3834 ETEXI
3835
3836 DEF("object", HAS_ARG, QEMU_OPTION_object,
3837 "-object TYPENAME[,PROP1=VALUE1,...]\n"
3838 " create a new object of type TYPENAME setting properties\n"
3839 " in the order they are specified. Note that the 'id'\n"
3840 " property must be set. These objects are placed in the\n"
3841 " '/objects' path.\n",
3842 QEMU_ARCH_ALL)
3843 STEXI
3844 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
3845 @findex -object
3846 Create a new object of type @var{typename} setting properties
3847 in the order they are specified. Note that the 'id'
3848 property must be set. These objects are placed in the
3849 '/objects' path.
3850
3851 @table @option
3852
3853 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off}
3854
3855 Creates a memory file backend object, which can be used to back
3856 the guest RAM with huge pages. The @option{id} parameter is a
3857 unique ID that will be used to reference this memory region
3858 when configuring the @option{-numa} argument. The @option{size}
3859 option provides the size of the memory region, and accepts
3860 common suffixes, eg @option{500M}. The @option{mem-path} provides
3861 the path to either a shared memory or huge page filesystem mount.
3862 The @option{share} boolean option determines whether the memory
3863 region is marked as private to QEMU, or shared. The latter allows
3864 a co-operating external process to access the QEMU memory region.
3865
3866 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
3867
3868 Creates a random number generator backend which obtains entropy from
3869 a device on the host. The @option{id} parameter is a unique ID that
3870 will be used to reference this entropy backend from the @option{virtio-rng}
3871 device. The @option{filename} parameter specifies which file to obtain
3872 entropy from and if omitted defaults to @option{/dev/random}.
3873
3874 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
3875
3876 Creates a random number generator backend which obtains entropy from
3877 an external daemon running on the host. The @option{id} parameter is
3878 a unique ID that will be used to reference this entropy backend from
3879 the @option{virtio-rng} device. The @option{chardev} parameter is
3880 the unique ID of a character device backend that provides the connection
3881 to the RNG daemon.
3882
3883 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
3884
3885 Creates a TLS anonymous credentials object, which can be used to provide
3886 TLS support on network backends. The @option{id} parameter is a unique
3887 ID which network backends will use to access the credentials. The
3888 @option{endpoint} is either @option{server} or @option{client} depending
3889 on whether the QEMU network backend that uses the credentials will be
3890 acting as a client or as a server. If @option{verify-peer} is enabled
3891 (the default) then once the handshake is completed, the peer credentials
3892 will be verified, though this is a no-op for anonymous credentials.
3893
3894 The @var{dir} parameter tells QEMU where to find the credential
3895 files. For server endpoints, this directory may contain a file
3896 @var{dh-params.pem} providing diffie-hellman parameters to use
3897 for the TLS server. If the file is missing, QEMU will generate
3898 a set of DH parameters at startup. This is a computationally
3899 expensive operation that consumes random pool entropy, so it is
3900 recommended that a persistent set of parameters be generated
3901 upfront and saved.
3902
3903 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off},passwordid=@var{id}
3904
3905 Creates a TLS anonymous credentials object, which can be used to provide
3906 TLS support on network backends. The @option{id} parameter is a unique
3907 ID which network backends will use to access the credentials. The
3908 @option{endpoint} is either @option{server} or @option{client} depending
3909 on whether the QEMU network backend that uses the credentials will be
3910 acting as a client or as a server. If @option{verify-peer} is enabled
3911 (the default) then once the handshake is completed, the peer credentials
3912 will be verified. With x509 certificates, this implies that the clients
3913 must be provided with valid client certificates too.
3914
3915 The @var{dir} parameter tells QEMU where to find the credential
3916 files. For server endpoints, this directory may contain a file
3917 @var{dh-params.pem} providing diffie-hellman parameters to use
3918 for the TLS server. If the file is missing, QEMU will generate
3919 a set of DH parameters at startup. This is a computationally
3920 expensive operation that consumes random pool entropy, so it is
3921 recommended that a persistent set of parameters be generated
3922 upfront and saved.
3923
3924 For x509 certificate credentials the directory will contain further files
3925 providing the x509 certificates. The certificates must be stored
3926 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
3927 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
3928 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
3929
3930 For the @var{server-key.pem} and @var{client-key.pem} files which
3931 contain sensitive private keys, it is possible to use an encrypted
3932 version by providing the @var{passwordid} parameter. This provides
3933 the ID of a previously created @code{secret} object containing the
3934 password for decryption.
3935
3936 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
3937
3938 Interval @var{t} can't be 0, this filter batches the packet delivery: all
3939 packets arriving in a given interval on netdev @var{netdevid} are delayed
3940 until the end of the interval. Interval is in microseconds.
3941 @option{status} is optional that indicate whether the netfilter is
3942 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
3943
3944 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
3945
3946 @option{all}: the filter is attached both to the receive and the transmit
3947 queue of the netdev (default).
3948
3949 @option{rx}: the filter is attached to the receive queue of the netdev,
3950 where it will receive packets sent to the netdev.
3951
3952 @option{tx}: the filter is attached to the transmit queue of the netdev,
3953 where it will receive packets sent by the netdev.
3954
3955 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
3956
3957 filter-mirror on netdev @var{netdevid},mirror net packet to chardev
3958 @var{chardevid}
3959
3960 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},
3961 outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
3962
3963 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
3964 @var{chardevid},and redirect indev's packet to filter.
3965 Create a filter-redirector we need to differ outdev id from indev id, id can not
3966 be the same. we can just use indev or outdev, but at least one of indev or outdev
3967 need to be specified.
3968
3969 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},rewriter-mode=@var{mode}[,queue=@var{all|rx|tx}]
3970
3971 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
3972 secondary from primary to keep secondary tcp connection,and rewrite
3973 tcp packet to primary from secondary make tcp packet can be handled by
3974 client.
3975
3976 usage:
3977 colo secondary:
3978 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
3979 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
3980 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
3981
3982 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
3983
3984 Dump the network traffic on netdev @var{dev} to the file specified by
3985 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
3986 The file format is libpcap, so it can be analyzed with tools such as tcpdump
3987 or Wireshark.
3988
3989 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},
3990 outdev=@var{chardevid}
3991
3992 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
3993 secondary packet. If the packets are same, we will output primary
3994 packet to outdev@var{chardevid}, else we will notify colo-frame
3995 do checkpoint and send primary packet to outdev@var{chardevid}.
3996
3997 we must use it with the help of filter-mirror and filter-redirector.
3998
3999 @example
4000
4001 primary:
4002 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4003 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4004 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4005 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4006 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4007 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4008 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4009 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4010 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4011 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4012 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4013 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0
4014
4015 secondary:
4016 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4017 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4018 -chardev socket,id=red0,host=3.3.3.3,port=9003
4019 -chardev socket,id=red1,host=3.3.3.3,port=9004
4020 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4021 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4022
4023 @end example
4024
4025 If you want to know the detail of above command line, you can read
4026 the colo-compare git log.
4027
4028 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
4029
4030 Creates a cryptodev backend which executes crypto opreation from
4031 the QEMU cipher APIS. The @var{id} parameter is
4032 a unique ID that will be used to reference this cryptodev backend from
4033 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
4034 which specify the queue number of cryptodev backend, the default of
4035 @var{queues} is 1.
4036
4037 @example
4038
4039 # qemu-system-x86_64 \
4040 [...] \
4041 -object cryptodev-backend-builtin,id=cryptodev0 \
4042 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4043 [...]
4044 @end example
4045
4046 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4047 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4048
4049 Defines a secret to store a password, encryption key, or some other sensitive
4050 data. The sensitive data can either be passed directly via the @var{data}
4051 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
4052 parameter is insecure unless the sensitive data is encrypted.
4053
4054 The sensitive data can be provided in raw format (the default), or base64.
4055 When encoded as JSON, the raw format only supports valid UTF-8 characters,
4056 so base64 is recommended for sending binary data. QEMU will convert from
4057 which ever format is provided to the format it needs internally. eg, an
4058 RBD password can be provided in raw format, even though it will be base64
4059 encoded when passed onto the RBD sever.
4060
4061 For added protection, it is possible to encrypt the data associated with
4062 a secret using the AES-256-CBC cipher. Use of encryption is indicated
4063 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
4064 parameter provides the ID of a previously defined secret that contains
4065 the AES-256 decryption key. This key should be 32-bytes long and be
4066 base64 encoded. The @var{iv} parameter provides the random initialization
4067 vector used for encryption of this particular secret and should be a
4068 base64 encrypted string of the 16-byte IV.
4069
4070 The simplest (insecure) usage is to provide the secret inline
4071
4072 @example
4073
4074 # $QEMU -object secret,id=sec0,data=letmein,format=raw
4075
4076 @end example
4077
4078 The simplest secure usage is to provide the secret via a file
4079
4080 # echo -n "letmein" > mypasswd.txt
4081 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
4082
4083 For greater security, AES-256-CBC should be used. To illustrate usage,
4084 consider the openssl command line tool which can encrypt the data. Note
4085 that when encrypting, the plaintext must be padded to the cipher block
4086 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4087
4088 First a master key needs to be created in base64 encoding:
4089
4090 @example
4091 # openssl rand -base64 32 > key.b64
4092 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4093 @end example
4094
4095 Each secret to be encrypted needs to have a random initialization vector
4096 generated. These do not need to be kept secret
4097
4098 @example
4099 # openssl rand -base64 16 > iv.b64
4100 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4101 @end example
4102
4103 The secret to be defined can now be encrypted, in this case we're
4104 telling openssl to base64 encode the result, but it could be left
4105 as raw bytes if desired.
4106
4107 @example
4108 # SECRET=$(echo -n "letmein" |
4109 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4110 @end example
4111
4112 When launching QEMU, create a master secret pointing to @code{key.b64}
4113 and specify that to be used to decrypt the user password. Pass the
4114 contents of @code{iv.b64} to the second secret
4115
4116 @example
4117 # $QEMU \
4118 -object secret,id=secmaster0,format=base64,file=key.b64 \
4119 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4120 data=$SECRET,iv=$(<iv.b64)
4121 @end example
4122
4123 @end table
4124
4125 ETEXI
4126
4127
4128 HXCOMM This is the last statement. Insert new options before this line!
4129 STEXI
4130 @end table
4131 ETEXI