]> git.proxmox.com Git - mirror_qemu.git/blob - softmmu/physmem.c
Merge tag 'pull-include-2023-01-20' of https://repo.or.cz/qemu/armbru into staging
[mirror_qemu.git] / softmmu / physmem.c
1 /*
2 * RAM allocation and memory access
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32
33 #include "exec/exec-all.h"
34 #include "exec/target_page.h"
35 #include "hw/qdev-core.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/boards.h"
38 #include "hw/xen/xen.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "qemu/log.h"
47 #include "qemu/memalign.h"
48 #include "exec/memory.h"
49 #include "exec/ioport.h"
50 #include "sysemu/dma.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/hw_accel.h"
53 #include "sysemu/xen-mapcache.h"
54 #include "trace/trace-root.h"
55
56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
57 #include <linux/falloc.h>
58 #endif
59
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "exec/translate-all.h"
63 #include "sysemu/replay.h"
64
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67
68 #include "qemu/pmem.h"
69
70 #include "migration/vmstate.h"
71
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
76
77 #include "monitor/monitor.h"
78
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
82
83 //#define DEBUG_SUBPAGE
84
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
86 * are protected by the ramlist lock.
87 */
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
89
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
92
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
95
96 static MemoryRegion io_mem_unassigned;
97
98 typedef struct PhysPageEntry PhysPageEntry;
99
100 struct PhysPageEntry {
101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102 uint32_t skip : 6;
103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104 uint32_t ptr : 26;
105 };
106
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
108
109 /* Size of the L2 (and L3, etc) page tables. */
110 #define ADDR_SPACE_BITS 64
111
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
114
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
116
117 typedef PhysPageEntry Node[P_L2_SIZE];
118
119 typedef struct PhysPageMap {
120 struct rcu_head rcu;
121
122 unsigned sections_nb;
123 unsigned sections_nb_alloc;
124 unsigned nodes_nb;
125 unsigned nodes_nb_alloc;
126 Node *nodes;
127 MemoryRegionSection *sections;
128 } PhysPageMap;
129
130 struct AddressSpaceDispatch {
131 MemoryRegionSection *mru_section;
132 /* This is a multi-level map on the physical address space.
133 * The bottom level has pointers to MemoryRegionSections.
134 */
135 PhysPageEntry phys_map;
136 PhysPageMap map;
137 };
138
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141 MemoryRegion iomem;
142 FlatView *fv;
143 hwaddr base;
144 uint16_t sub_section[];
145 } subpage_t;
146
147 #define PHYS_SECTION_UNASSIGNED 0
148
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
153
154 /**
155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156 * @cpu: the CPU whose AddressSpace this is
157 * @as: the AddressSpace itself
158 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159 * @tcg_as_listener: listener for tracking changes to the AddressSpace
160 */
161 struct CPUAddressSpace {
162 CPUState *cpu;
163 AddressSpace *as;
164 struct AddressSpaceDispatch *memory_dispatch;
165 MemoryListener tcg_as_listener;
166 };
167
168 struct DirtyBitmapSnapshot {
169 ram_addr_t start;
170 ram_addr_t end;
171 unsigned long dirty[];
172 };
173
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
175 {
176 static unsigned alloc_hint = 16;
177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180 alloc_hint = map->nodes_nb_alloc;
181 }
182 }
183
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
185 {
186 unsigned i;
187 uint32_t ret;
188 PhysPageEntry e;
189 PhysPageEntry *p;
190
191 ret = map->nodes_nb++;
192 p = map->nodes[ret];
193 assert(ret != PHYS_MAP_NODE_NIL);
194 assert(ret != map->nodes_nb_alloc);
195
196 e.skip = leaf ? 0 : 1;
197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198 for (i = 0; i < P_L2_SIZE; ++i) {
199 memcpy(&p[i], &e, sizeof(e));
200 }
201 return ret;
202 }
203
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205 hwaddr *index, uint64_t *nb, uint16_t leaf,
206 int level)
207 {
208 PhysPageEntry *p;
209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
210
211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212 lp->ptr = phys_map_node_alloc(map, level == 0);
213 }
214 p = map->nodes[lp->ptr];
215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
216
217 while (*nb && lp < &p[P_L2_SIZE]) {
218 if ((*index & (step - 1)) == 0 && *nb >= step) {
219 lp->skip = 0;
220 lp->ptr = leaf;
221 *index += step;
222 *nb -= step;
223 } else {
224 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
225 }
226 ++lp;
227 }
228 }
229
230 static void phys_page_set(AddressSpaceDispatch *d,
231 hwaddr index, uint64_t nb,
232 uint16_t leaf)
233 {
234 /* Wildly overreserve - it doesn't matter much. */
235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
236
237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
238 }
239
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241 * and update our entry so we can skip it and go directly to the destination.
242 */
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
244 {
245 unsigned valid_ptr = P_L2_SIZE;
246 int valid = 0;
247 PhysPageEntry *p;
248 int i;
249
250 if (lp->ptr == PHYS_MAP_NODE_NIL) {
251 return;
252 }
253
254 p = nodes[lp->ptr];
255 for (i = 0; i < P_L2_SIZE; i++) {
256 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257 continue;
258 }
259
260 valid_ptr = i;
261 valid++;
262 if (p[i].skip) {
263 phys_page_compact(&p[i], nodes);
264 }
265 }
266
267 /* We can only compress if there's only one child. */
268 if (valid != 1) {
269 return;
270 }
271
272 assert(valid_ptr < P_L2_SIZE);
273
274 /* Don't compress if it won't fit in the # of bits we have. */
275 if (P_L2_LEVELS >= (1 << 6) &&
276 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277 return;
278 }
279
280 lp->ptr = p[valid_ptr].ptr;
281 if (!p[valid_ptr].skip) {
282 /* If our only child is a leaf, make this a leaf. */
283 /* By design, we should have made this node a leaf to begin with so we
284 * should never reach here.
285 * But since it's so simple to handle this, let's do it just in case we
286 * change this rule.
287 */
288 lp->skip = 0;
289 } else {
290 lp->skip += p[valid_ptr].skip;
291 }
292 }
293
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
295 {
296 if (d->phys_map.skip) {
297 phys_page_compact(&d->phys_map, d->map.nodes);
298 }
299 }
300
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302 hwaddr addr)
303 {
304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305 * the section must cover the entire address space.
306 */
307 return int128_gethi(section->size) ||
308 range_covers_byte(section->offset_within_address_space,
309 int128_getlo(section->size), addr);
310 }
311
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
313 {
314 PhysPageEntry lp = d->phys_map, *p;
315 Node *nodes = d->map.nodes;
316 MemoryRegionSection *sections = d->map.sections;
317 hwaddr index = addr >> TARGET_PAGE_BITS;
318 int i;
319
320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321 if (lp.ptr == PHYS_MAP_NODE_NIL) {
322 return &sections[PHYS_SECTION_UNASSIGNED];
323 }
324 p = nodes[lp.ptr];
325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
326 }
327
328 if (section_covers_addr(&sections[lp.ptr], addr)) {
329 return &sections[lp.ptr];
330 } else {
331 return &sections[PHYS_SECTION_UNASSIGNED];
332 }
333 }
334
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337 hwaddr addr,
338 bool resolve_subpage)
339 {
340 MemoryRegionSection *section = qatomic_read(&d->mru_section);
341 subpage_t *subpage;
342
343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344 !section_covers_addr(section, addr)) {
345 section = phys_page_find(d, addr);
346 qatomic_set(&d->mru_section, section);
347 }
348 if (resolve_subpage && section->mr->subpage) {
349 subpage = container_of(section->mr, subpage_t, iomem);
350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
351 }
352 return section;
353 }
354
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358 hwaddr *plen, bool resolve_subpage)
359 {
360 MemoryRegionSection *section;
361 MemoryRegion *mr;
362 Int128 diff;
363
364 section = address_space_lookup_region(d, addr, resolve_subpage);
365 /* Compute offset within MemoryRegionSection */
366 addr -= section->offset_within_address_space;
367
368 /* Compute offset within MemoryRegion */
369 *xlat = addr + section->offset_within_region;
370
371 mr = section->mr;
372
373 /* MMIO registers can be expected to perform full-width accesses based only
374 * on their address, without considering adjacent registers that could
375 * decode to completely different MemoryRegions. When such registers
376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377 * regions overlap wildly. For this reason we cannot clamp the accesses
378 * here.
379 *
380 * If the length is small (as is the case for address_space_ldl/stl),
381 * everything works fine. If the incoming length is large, however,
382 * the caller really has to do the clamping through memory_access_size.
383 */
384 if (memory_region_is_ram(mr)) {
385 diff = int128_sub(section->size, int128_make64(addr));
386 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
387 }
388 return section;
389 }
390
391 /**
392 * address_space_translate_iommu - translate an address through an IOMMU
393 * memory region and then through the target address space.
394 *
395 * @iommu_mr: the IOMMU memory region that we start the translation from
396 * @addr: the address to be translated through the MMU
397 * @xlat: the translated address offset within the destination memory region.
398 * It cannot be %NULL.
399 * @plen_out: valid read/write length of the translated address. It
400 * cannot be %NULL.
401 * @page_mask_out: page mask for the translated address. This
402 * should only be meaningful for IOMMU translated
403 * addresses, since there may be huge pages that this bit
404 * would tell. It can be %NULL if we don't care about it.
405 * @is_write: whether the translation operation is for write
406 * @is_mmio: whether this can be MMIO, set true if it can
407 * @target_as: the address space targeted by the IOMMU
408 * @attrs: transaction attributes
409 *
410 * This function is called from RCU critical section. It is the common
411 * part of flatview_do_translate and address_space_translate_cached.
412 */
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414 hwaddr *xlat,
415 hwaddr *plen_out,
416 hwaddr *page_mask_out,
417 bool is_write,
418 bool is_mmio,
419 AddressSpace **target_as,
420 MemTxAttrs attrs)
421 {
422 MemoryRegionSection *section;
423 hwaddr page_mask = (hwaddr)-1;
424
425 do {
426 hwaddr addr = *xlat;
427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428 int iommu_idx = 0;
429 IOMMUTLBEntry iotlb;
430
431 if (imrc->attrs_to_index) {
432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
433 }
434
435 iotlb = imrc->translate(iommu_mr, addr, is_write ?
436 IOMMU_WO : IOMMU_RO, iommu_idx);
437
438 if (!(iotlb.perm & (1 << is_write))) {
439 goto unassigned;
440 }
441
442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443 | (addr & iotlb.addr_mask));
444 page_mask &= iotlb.addr_mask;
445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446 *target_as = iotlb.target_as;
447
448 section = address_space_translate_internal(
449 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450 plen_out, is_mmio);
451
452 iommu_mr = memory_region_get_iommu(section->mr);
453 } while (unlikely(iommu_mr));
454
455 if (page_mask_out) {
456 *page_mask_out = page_mask;
457 }
458 return *section;
459
460 unassigned:
461 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462 }
463
464 /**
465 * flatview_do_translate - translate an address in FlatView
466 *
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
470 * cannot be @NULL.
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
479 * @target_as: the address space targeted by the IOMMU
480 * @attrs: memory transaction attributes
481 *
482 * This function is called from RCU critical section
483 */
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485 hwaddr addr,
486 hwaddr *xlat,
487 hwaddr *plen_out,
488 hwaddr *page_mask_out,
489 bool is_write,
490 bool is_mmio,
491 AddressSpace **target_as,
492 MemTxAttrs attrs)
493 {
494 MemoryRegionSection *section;
495 IOMMUMemoryRegion *iommu_mr;
496 hwaddr plen = (hwaddr)(-1);
497
498 if (!plen_out) {
499 plen_out = &plen;
500 }
501
502 section = address_space_translate_internal(
503 flatview_to_dispatch(fv), addr, xlat,
504 plen_out, is_mmio);
505
506 iommu_mr = memory_region_get_iommu(section->mr);
507 if (unlikely(iommu_mr)) {
508 return address_space_translate_iommu(iommu_mr, xlat,
509 plen_out, page_mask_out,
510 is_write, is_mmio,
511 target_as, attrs);
512 }
513 if (page_mask_out) {
514 /* Not behind an IOMMU, use default page size. */
515 *page_mask_out = ~TARGET_PAGE_MASK;
516 }
517
518 return *section;
519 }
520
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523 bool is_write, MemTxAttrs attrs)
524 {
525 MemoryRegionSection section;
526 hwaddr xlat, page_mask;
527
528 /*
529 * This can never be MMIO, and we don't really care about plen,
530 * but page mask.
531 */
532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533 NULL, &page_mask, is_write, false, &as,
534 attrs);
535
536 /* Illegal translation */
537 if (section.mr == &io_mem_unassigned) {
538 goto iotlb_fail;
539 }
540
541 /* Convert memory region offset into address space offset */
542 xlat += section.offset_within_address_space -
543 section.offset_within_region;
544
545 return (IOMMUTLBEntry) {
546 .target_as = as,
547 .iova = addr & ~page_mask,
548 .translated_addr = xlat & ~page_mask,
549 .addr_mask = page_mask,
550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551 .perm = IOMMU_RW,
552 };
553
554 iotlb_fail:
555 return (IOMMUTLBEntry) {0};
556 }
557
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560 hwaddr *plen, bool is_write,
561 MemTxAttrs attrs)
562 {
563 MemoryRegion *mr;
564 MemoryRegionSection section;
565 AddressSpace *as = NULL;
566
567 /* This can be MMIO, so setup MMIO bit. */
568 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569 is_write, true, &as, attrs);
570 mr = section.mr;
571
572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574 *plen = MIN(page, *plen);
575 }
576
577 return mr;
578 }
579
580 typedef struct TCGIOMMUNotifier {
581 IOMMUNotifier n;
582 MemoryRegion *mr;
583 CPUState *cpu;
584 int iommu_idx;
585 bool active;
586 } TCGIOMMUNotifier;
587
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
589 {
590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
591
592 if (!notifier->active) {
593 return;
594 }
595 tlb_flush(notifier->cpu);
596 notifier->active = false;
597 /* We leave the notifier struct on the list to avoid reallocating it later.
598 * Generally the number of IOMMUs a CPU deals with will be small.
599 * In any case we can't unregister the iommu notifier from a notify
600 * callback.
601 */
602 }
603
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605 IOMMUMemoryRegion *iommu_mr,
606 int iommu_idx)
607 {
608 /* Make sure this CPU has an IOMMU notifier registered for this
609 * IOMMU/IOMMU index combination, so that we can flush its TLB
610 * when the IOMMU tells us the mappings we've cached have changed.
611 */
612 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613 TCGIOMMUNotifier *notifier = NULL;
614 int i;
615
616 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619 break;
620 }
621 }
622 if (i == cpu->iommu_notifiers->len) {
623 /* Not found, add a new entry at the end of the array */
624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625 notifier = g_new0(TCGIOMMUNotifier, 1);
626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
627
628 notifier->mr = mr;
629 notifier->iommu_idx = iommu_idx;
630 notifier->cpu = cpu;
631 /* Rather than trying to register interest in the specific part
632 * of the iommu's address space that we've accessed and then
633 * expand it later as subsequent accesses touch more of it, we
634 * just register interest in the whole thing, on the assumption
635 * that iommu reconfiguration will be rare.
636 */
637 iommu_notifier_init(&notifier->n,
638 tcg_iommu_unmap_notify,
639 IOMMU_NOTIFIER_UNMAP,
640 0,
641 HWADDR_MAX,
642 iommu_idx);
643 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644 &error_fatal);
645 }
646
647 if (!notifier->active) {
648 notifier->active = true;
649 }
650 }
651
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
653 {
654 /* Destroy the CPU's notifier list */
655 int i;
656 TCGIOMMUNotifier *notifier;
657
658 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661 g_free(notifier);
662 }
663 g_array_free(cpu->iommu_notifiers, true);
664 }
665
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
667 {
668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
669 }
670
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
674 hwaddr *xlat, hwaddr *plen,
675 MemTxAttrs attrs, int *prot)
676 {
677 MemoryRegionSection *section;
678 IOMMUMemoryRegion *iommu_mr;
679 IOMMUMemoryRegionClass *imrc;
680 IOMMUTLBEntry iotlb;
681 int iommu_idx;
682 hwaddr addr = orig_addr;
683 AddressSpaceDispatch *d =
684 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
685
686 for (;;) {
687 section = address_space_translate_internal(d, addr, &addr, plen, false);
688
689 iommu_mr = memory_region_get_iommu(section->mr);
690 if (!iommu_mr) {
691 break;
692 }
693
694 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
695
696 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
697 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
698 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
699 * doesn't short-cut its translation table walk.
700 */
701 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
702 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
703 | (addr & iotlb.addr_mask));
704 /* Update the caller's prot bits to remove permissions the IOMMU
705 * is giving us a failure response for. If we get down to no
706 * permissions left at all we can give up now.
707 */
708 if (!(iotlb.perm & IOMMU_RO)) {
709 *prot &= ~(PAGE_READ | PAGE_EXEC);
710 }
711 if (!(iotlb.perm & IOMMU_WO)) {
712 *prot &= ~PAGE_WRITE;
713 }
714
715 if (!*prot) {
716 goto translate_fail;
717 }
718
719 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
720 }
721
722 assert(!memory_region_is_iommu(section->mr));
723 *xlat = addr;
724 return section;
725
726 translate_fail:
727 /*
728 * We should be given a page-aligned address -- certainly
729 * tlb_set_page_with_attrs() does so. The page offset of xlat
730 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
731 * The page portion of xlat will be logged by memory_region_access_valid()
732 * when this memory access is rejected, so use the original untranslated
733 * physical address.
734 */
735 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
736 *xlat = orig_addr;
737 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
738 }
739
740 void cpu_address_space_init(CPUState *cpu, int asidx,
741 const char *prefix, MemoryRegion *mr)
742 {
743 CPUAddressSpace *newas;
744 AddressSpace *as = g_new0(AddressSpace, 1);
745 char *as_name;
746
747 assert(mr);
748 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
749 address_space_init(as, mr, as_name);
750 g_free(as_name);
751
752 /* Target code should have set num_ases before calling us */
753 assert(asidx < cpu->num_ases);
754
755 if (asidx == 0) {
756 /* address space 0 gets the convenience alias */
757 cpu->as = as;
758 }
759
760 /* KVM cannot currently support multiple address spaces. */
761 assert(asidx == 0 || !kvm_enabled());
762
763 if (!cpu->cpu_ases) {
764 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
765 }
766
767 newas = &cpu->cpu_ases[asidx];
768 newas->cpu = cpu;
769 newas->as = as;
770 if (tcg_enabled()) {
771 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
772 newas->tcg_as_listener.commit = tcg_commit;
773 newas->tcg_as_listener.name = "tcg";
774 memory_listener_register(&newas->tcg_as_listener, as);
775 }
776 }
777
778 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
779 {
780 /* Return the AddressSpace corresponding to the specified index */
781 return cpu->cpu_ases[asidx].as;
782 }
783
784 /* Add a watchpoint. */
785 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
786 int flags, CPUWatchpoint **watchpoint)
787 {
788 CPUWatchpoint *wp;
789 vaddr in_page;
790
791 /* forbid ranges which are empty or run off the end of the address space */
792 if (len == 0 || (addr + len - 1) < addr) {
793 error_report("tried to set invalid watchpoint at %"
794 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
795 return -EINVAL;
796 }
797 wp = g_malloc(sizeof(*wp));
798
799 wp->vaddr = addr;
800 wp->len = len;
801 wp->flags = flags;
802
803 /* keep all GDB-injected watchpoints in front */
804 if (flags & BP_GDB) {
805 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
806 } else {
807 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
808 }
809
810 in_page = -(addr | TARGET_PAGE_MASK);
811 if (len <= in_page) {
812 tlb_flush_page(cpu, addr);
813 } else {
814 tlb_flush(cpu);
815 }
816
817 if (watchpoint)
818 *watchpoint = wp;
819 return 0;
820 }
821
822 /* Remove a specific watchpoint. */
823 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
824 int flags)
825 {
826 CPUWatchpoint *wp;
827
828 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
829 if (addr == wp->vaddr && len == wp->len
830 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
831 cpu_watchpoint_remove_by_ref(cpu, wp);
832 return 0;
833 }
834 }
835 return -ENOENT;
836 }
837
838 /* Remove a specific watchpoint by reference. */
839 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
840 {
841 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
842
843 tlb_flush_page(cpu, watchpoint->vaddr);
844
845 g_free(watchpoint);
846 }
847
848 /* Remove all matching watchpoints. */
849 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
850 {
851 CPUWatchpoint *wp, *next;
852
853 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
854 if (wp->flags & mask) {
855 cpu_watchpoint_remove_by_ref(cpu, wp);
856 }
857 }
858 }
859
860 #ifdef CONFIG_TCG
861 /* Return true if this watchpoint address matches the specified
862 * access (ie the address range covered by the watchpoint overlaps
863 * partially or completely with the address range covered by the
864 * access).
865 */
866 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
867 vaddr addr, vaddr len)
868 {
869 /* We know the lengths are non-zero, but a little caution is
870 * required to avoid errors in the case where the range ends
871 * exactly at the top of the address space and so addr + len
872 * wraps round to zero.
873 */
874 vaddr wpend = wp->vaddr + wp->len - 1;
875 vaddr addrend = addr + len - 1;
876
877 return !(addr > wpend || wp->vaddr > addrend);
878 }
879
880 /* Return flags for watchpoints that match addr + prot. */
881 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
882 {
883 CPUWatchpoint *wp;
884 int ret = 0;
885
886 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
887 if (watchpoint_address_matches(wp, addr, len)) {
888 ret |= wp->flags;
889 }
890 }
891 return ret;
892 }
893
894 /* Generate a debug exception if a watchpoint has been hit. */
895 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
896 MemTxAttrs attrs, int flags, uintptr_t ra)
897 {
898 CPUClass *cc = CPU_GET_CLASS(cpu);
899 CPUWatchpoint *wp;
900
901 assert(tcg_enabled());
902 if (cpu->watchpoint_hit) {
903 /*
904 * We re-entered the check after replacing the TB.
905 * Now raise the debug interrupt so that it will
906 * trigger after the current instruction.
907 */
908 qemu_mutex_lock_iothread();
909 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
910 qemu_mutex_unlock_iothread();
911 return;
912 }
913
914 if (cc->tcg_ops->adjust_watchpoint_address) {
915 /* this is currently used only by ARM BE32 */
916 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
917 }
918 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
919 if (watchpoint_address_matches(wp, addr, len)
920 && (wp->flags & flags)) {
921 if (replay_running_debug()) {
922 /*
923 * replay_breakpoint reads icount.
924 * Force recompile to succeed, because icount may
925 * be read only at the end of the block.
926 */
927 if (!cpu->can_do_io) {
928 /* Force execution of one insn next time. */
929 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
930 cpu_loop_exit_restore(cpu, ra);
931 }
932 /*
933 * Don't process the watchpoints when we are
934 * in a reverse debugging operation.
935 */
936 replay_breakpoint();
937 return;
938 }
939 if (flags == BP_MEM_READ) {
940 wp->flags |= BP_WATCHPOINT_HIT_READ;
941 } else {
942 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
943 }
944 wp->hitaddr = MAX(addr, wp->vaddr);
945 wp->hitattrs = attrs;
946
947 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
948 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
949 wp->flags &= ~BP_WATCHPOINT_HIT;
950 continue;
951 }
952 cpu->watchpoint_hit = wp;
953
954 mmap_lock();
955 /* This call also restores vCPU state */
956 tb_check_watchpoint(cpu, ra);
957 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
958 cpu->exception_index = EXCP_DEBUG;
959 mmap_unlock();
960 cpu_loop_exit(cpu);
961 } else {
962 /* Force execution of one insn next time. */
963 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
964 mmap_unlock();
965 cpu_loop_exit_noexc(cpu);
966 }
967 } else {
968 wp->flags &= ~BP_WATCHPOINT_HIT;
969 }
970 }
971 }
972
973 #endif /* CONFIG_TCG */
974
975 /* Called from RCU critical section */
976 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
977 {
978 RAMBlock *block;
979
980 block = qatomic_rcu_read(&ram_list.mru_block);
981 if (block && addr - block->offset < block->max_length) {
982 return block;
983 }
984 RAMBLOCK_FOREACH(block) {
985 if (addr - block->offset < block->max_length) {
986 goto found;
987 }
988 }
989
990 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
991 abort();
992
993 found:
994 /* It is safe to write mru_block outside the iothread lock. This
995 * is what happens:
996 *
997 * mru_block = xxx
998 * rcu_read_unlock()
999 * xxx removed from list
1000 * rcu_read_lock()
1001 * read mru_block
1002 * mru_block = NULL;
1003 * call_rcu(reclaim_ramblock, xxx);
1004 * rcu_read_unlock()
1005 *
1006 * qatomic_rcu_set is not needed here. The block was already published
1007 * when it was placed into the list. Here we're just making an extra
1008 * copy of the pointer.
1009 */
1010 ram_list.mru_block = block;
1011 return block;
1012 }
1013
1014 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1015 {
1016 CPUState *cpu;
1017 ram_addr_t start1;
1018 RAMBlock *block;
1019 ram_addr_t end;
1020
1021 assert(tcg_enabled());
1022 end = TARGET_PAGE_ALIGN(start + length);
1023 start &= TARGET_PAGE_MASK;
1024
1025 RCU_READ_LOCK_GUARD();
1026 block = qemu_get_ram_block(start);
1027 assert(block == qemu_get_ram_block(end - 1));
1028 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1029 CPU_FOREACH(cpu) {
1030 tlb_reset_dirty(cpu, start1, length);
1031 }
1032 }
1033
1034 /* Note: start and end must be within the same ram block. */
1035 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1036 ram_addr_t length,
1037 unsigned client)
1038 {
1039 DirtyMemoryBlocks *blocks;
1040 unsigned long end, page, start_page;
1041 bool dirty = false;
1042 RAMBlock *ramblock;
1043 uint64_t mr_offset, mr_size;
1044
1045 if (length == 0) {
1046 return false;
1047 }
1048
1049 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1050 start_page = start >> TARGET_PAGE_BITS;
1051 page = start_page;
1052
1053 WITH_RCU_READ_LOCK_GUARD() {
1054 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1055 ramblock = qemu_get_ram_block(start);
1056 /* Range sanity check on the ramblock */
1057 assert(start >= ramblock->offset &&
1058 start + length <= ramblock->offset + ramblock->used_length);
1059
1060 while (page < end) {
1061 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1062 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1063 unsigned long num = MIN(end - page,
1064 DIRTY_MEMORY_BLOCK_SIZE - offset);
1065
1066 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1067 offset, num);
1068 page += num;
1069 }
1070
1071 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1072 mr_size = (end - start_page) << TARGET_PAGE_BITS;
1073 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1074 }
1075
1076 if (dirty && tcg_enabled()) {
1077 tlb_reset_dirty_range_all(start, length);
1078 }
1079
1080 return dirty;
1081 }
1082
1083 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1084 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1085 {
1086 DirtyMemoryBlocks *blocks;
1087 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1088 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1089 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1090 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1091 DirtyBitmapSnapshot *snap;
1092 unsigned long page, end, dest;
1093
1094 snap = g_malloc0(sizeof(*snap) +
1095 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1096 snap->start = first;
1097 snap->end = last;
1098
1099 page = first >> TARGET_PAGE_BITS;
1100 end = last >> TARGET_PAGE_BITS;
1101 dest = 0;
1102
1103 WITH_RCU_READ_LOCK_GUARD() {
1104 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1105
1106 while (page < end) {
1107 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1108 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1109 unsigned long num = MIN(end - page,
1110 DIRTY_MEMORY_BLOCK_SIZE - offset);
1111
1112 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1113 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1114 offset >>= BITS_PER_LEVEL;
1115
1116 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1117 blocks->blocks[idx] + offset,
1118 num);
1119 page += num;
1120 dest += num >> BITS_PER_LEVEL;
1121 }
1122 }
1123
1124 if (tcg_enabled()) {
1125 tlb_reset_dirty_range_all(start, length);
1126 }
1127
1128 memory_region_clear_dirty_bitmap(mr, offset, length);
1129
1130 return snap;
1131 }
1132
1133 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1134 ram_addr_t start,
1135 ram_addr_t length)
1136 {
1137 unsigned long page, end;
1138
1139 assert(start >= snap->start);
1140 assert(start + length <= snap->end);
1141
1142 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1143 page = (start - snap->start) >> TARGET_PAGE_BITS;
1144
1145 while (page < end) {
1146 if (test_bit(page, snap->dirty)) {
1147 return true;
1148 }
1149 page++;
1150 }
1151 return false;
1152 }
1153
1154 /* Called from RCU critical section */
1155 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1156 MemoryRegionSection *section)
1157 {
1158 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1159 return section - d->map.sections;
1160 }
1161
1162 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1163 uint16_t section);
1164 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1165
1166 static uint16_t phys_section_add(PhysPageMap *map,
1167 MemoryRegionSection *section)
1168 {
1169 /* The physical section number is ORed with a page-aligned
1170 * pointer to produce the iotlb entries. Thus it should
1171 * never overflow into the page-aligned value.
1172 */
1173 assert(map->sections_nb < TARGET_PAGE_SIZE);
1174
1175 if (map->sections_nb == map->sections_nb_alloc) {
1176 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1177 map->sections = g_renew(MemoryRegionSection, map->sections,
1178 map->sections_nb_alloc);
1179 }
1180 map->sections[map->sections_nb] = *section;
1181 memory_region_ref(section->mr);
1182 return map->sections_nb++;
1183 }
1184
1185 static void phys_section_destroy(MemoryRegion *mr)
1186 {
1187 bool have_sub_page = mr->subpage;
1188
1189 memory_region_unref(mr);
1190
1191 if (have_sub_page) {
1192 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1193 object_unref(OBJECT(&subpage->iomem));
1194 g_free(subpage);
1195 }
1196 }
1197
1198 static void phys_sections_free(PhysPageMap *map)
1199 {
1200 while (map->sections_nb > 0) {
1201 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1202 phys_section_destroy(section->mr);
1203 }
1204 g_free(map->sections);
1205 g_free(map->nodes);
1206 }
1207
1208 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1209 {
1210 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1211 subpage_t *subpage;
1212 hwaddr base = section->offset_within_address_space
1213 & TARGET_PAGE_MASK;
1214 MemoryRegionSection *existing = phys_page_find(d, base);
1215 MemoryRegionSection subsection = {
1216 .offset_within_address_space = base,
1217 .size = int128_make64(TARGET_PAGE_SIZE),
1218 };
1219 hwaddr start, end;
1220
1221 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1222
1223 if (!(existing->mr->subpage)) {
1224 subpage = subpage_init(fv, base);
1225 subsection.fv = fv;
1226 subsection.mr = &subpage->iomem;
1227 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1228 phys_section_add(&d->map, &subsection));
1229 } else {
1230 subpage = container_of(existing->mr, subpage_t, iomem);
1231 }
1232 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1233 end = start + int128_get64(section->size) - 1;
1234 subpage_register(subpage, start, end,
1235 phys_section_add(&d->map, section));
1236 }
1237
1238
1239 static void register_multipage(FlatView *fv,
1240 MemoryRegionSection *section)
1241 {
1242 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1243 hwaddr start_addr = section->offset_within_address_space;
1244 uint16_t section_index = phys_section_add(&d->map, section);
1245 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1246 TARGET_PAGE_BITS));
1247
1248 assert(num_pages);
1249 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1250 }
1251
1252 /*
1253 * The range in *section* may look like this:
1254 *
1255 * |s|PPPPPPP|s|
1256 *
1257 * where s stands for subpage and P for page.
1258 */
1259 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1260 {
1261 MemoryRegionSection remain = *section;
1262 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1263
1264 /* register first subpage */
1265 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1266 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1267 - remain.offset_within_address_space;
1268
1269 MemoryRegionSection now = remain;
1270 now.size = int128_min(int128_make64(left), now.size);
1271 register_subpage(fv, &now);
1272 if (int128_eq(remain.size, now.size)) {
1273 return;
1274 }
1275 remain.size = int128_sub(remain.size, now.size);
1276 remain.offset_within_address_space += int128_get64(now.size);
1277 remain.offset_within_region += int128_get64(now.size);
1278 }
1279
1280 /* register whole pages */
1281 if (int128_ge(remain.size, page_size)) {
1282 MemoryRegionSection now = remain;
1283 now.size = int128_and(now.size, int128_neg(page_size));
1284 register_multipage(fv, &now);
1285 if (int128_eq(remain.size, now.size)) {
1286 return;
1287 }
1288 remain.size = int128_sub(remain.size, now.size);
1289 remain.offset_within_address_space += int128_get64(now.size);
1290 remain.offset_within_region += int128_get64(now.size);
1291 }
1292
1293 /* register last subpage */
1294 register_subpage(fv, &remain);
1295 }
1296
1297 void qemu_flush_coalesced_mmio_buffer(void)
1298 {
1299 if (kvm_enabled())
1300 kvm_flush_coalesced_mmio_buffer();
1301 }
1302
1303 void qemu_mutex_lock_ramlist(void)
1304 {
1305 qemu_mutex_lock(&ram_list.mutex);
1306 }
1307
1308 void qemu_mutex_unlock_ramlist(void)
1309 {
1310 qemu_mutex_unlock(&ram_list.mutex);
1311 }
1312
1313 GString *ram_block_format(void)
1314 {
1315 RAMBlock *block;
1316 char *psize;
1317 GString *buf = g_string_new("");
1318
1319 RCU_READ_LOCK_GUARD();
1320 g_string_append_printf(buf, "%24s %8s %18s %18s %18s\n",
1321 "Block Name", "PSize", "Offset", "Used", "Total");
1322 RAMBLOCK_FOREACH(block) {
1323 psize = size_to_str(block->page_size);
1324 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1325 " 0x%016" PRIx64 "\n", block->idstr, psize,
1326 (uint64_t)block->offset,
1327 (uint64_t)block->used_length,
1328 (uint64_t)block->max_length);
1329 g_free(psize);
1330 }
1331
1332 return buf;
1333 }
1334
1335 static int find_min_backend_pagesize(Object *obj, void *opaque)
1336 {
1337 long *hpsize_min = opaque;
1338
1339 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1340 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1341 long hpsize = host_memory_backend_pagesize(backend);
1342
1343 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1344 *hpsize_min = hpsize;
1345 }
1346 }
1347
1348 return 0;
1349 }
1350
1351 static int find_max_backend_pagesize(Object *obj, void *opaque)
1352 {
1353 long *hpsize_max = opaque;
1354
1355 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1356 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1357 long hpsize = host_memory_backend_pagesize(backend);
1358
1359 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1360 *hpsize_max = hpsize;
1361 }
1362 }
1363
1364 return 0;
1365 }
1366
1367 /*
1368 * TODO: We assume right now that all mapped host memory backends are
1369 * used as RAM, however some might be used for different purposes.
1370 */
1371 long qemu_minrampagesize(void)
1372 {
1373 long hpsize = LONG_MAX;
1374 Object *memdev_root = object_resolve_path("/objects", NULL);
1375
1376 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1377 return hpsize;
1378 }
1379
1380 long qemu_maxrampagesize(void)
1381 {
1382 long pagesize = 0;
1383 Object *memdev_root = object_resolve_path("/objects", NULL);
1384
1385 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1386 return pagesize;
1387 }
1388
1389 #ifdef CONFIG_POSIX
1390 static int64_t get_file_size(int fd)
1391 {
1392 int64_t size;
1393 #if defined(__linux__)
1394 struct stat st;
1395
1396 if (fstat(fd, &st) < 0) {
1397 return -errno;
1398 }
1399
1400 /* Special handling for devdax character devices */
1401 if (S_ISCHR(st.st_mode)) {
1402 g_autofree char *subsystem_path = NULL;
1403 g_autofree char *subsystem = NULL;
1404
1405 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1406 major(st.st_rdev), minor(st.st_rdev));
1407 subsystem = g_file_read_link(subsystem_path, NULL);
1408
1409 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1410 g_autofree char *size_path = NULL;
1411 g_autofree char *size_str = NULL;
1412
1413 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1414 major(st.st_rdev), minor(st.st_rdev));
1415
1416 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1417 return g_ascii_strtoll(size_str, NULL, 0);
1418 }
1419 }
1420 }
1421 #endif /* defined(__linux__) */
1422
1423 /* st.st_size may be zero for special files yet lseek(2) works */
1424 size = lseek(fd, 0, SEEK_END);
1425 if (size < 0) {
1426 return -errno;
1427 }
1428 return size;
1429 }
1430
1431 static int64_t get_file_align(int fd)
1432 {
1433 int64_t align = -1;
1434 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1435 struct stat st;
1436
1437 if (fstat(fd, &st) < 0) {
1438 return -errno;
1439 }
1440
1441 /* Special handling for devdax character devices */
1442 if (S_ISCHR(st.st_mode)) {
1443 g_autofree char *path = NULL;
1444 g_autofree char *rpath = NULL;
1445 struct daxctl_ctx *ctx;
1446 struct daxctl_region *region;
1447 int rc = 0;
1448
1449 path = g_strdup_printf("/sys/dev/char/%d:%d",
1450 major(st.st_rdev), minor(st.st_rdev));
1451 rpath = realpath(path, NULL);
1452 if (!rpath) {
1453 return -errno;
1454 }
1455
1456 rc = daxctl_new(&ctx);
1457 if (rc) {
1458 return -1;
1459 }
1460
1461 daxctl_region_foreach(ctx, region) {
1462 if (strstr(rpath, daxctl_region_get_path(region))) {
1463 align = daxctl_region_get_align(region);
1464 break;
1465 }
1466 }
1467 daxctl_unref(ctx);
1468 }
1469 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1470
1471 return align;
1472 }
1473
1474 static int file_ram_open(const char *path,
1475 const char *region_name,
1476 bool readonly,
1477 bool *created,
1478 Error **errp)
1479 {
1480 char *filename;
1481 char *sanitized_name;
1482 char *c;
1483 int fd = -1;
1484
1485 *created = false;
1486 for (;;) {
1487 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1488 if (fd >= 0) {
1489 /* @path names an existing file, use it */
1490 break;
1491 }
1492 if (errno == ENOENT) {
1493 /* @path names a file that doesn't exist, create it */
1494 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1495 if (fd >= 0) {
1496 *created = true;
1497 break;
1498 }
1499 } else if (errno == EISDIR) {
1500 /* @path names a directory, create a file there */
1501 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1502 sanitized_name = g_strdup(region_name);
1503 for (c = sanitized_name; *c != '\0'; c++) {
1504 if (*c == '/') {
1505 *c = '_';
1506 }
1507 }
1508
1509 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1510 sanitized_name);
1511 g_free(sanitized_name);
1512
1513 fd = mkstemp(filename);
1514 if (fd >= 0) {
1515 unlink(filename);
1516 g_free(filename);
1517 break;
1518 }
1519 g_free(filename);
1520 }
1521 if (errno != EEXIST && errno != EINTR) {
1522 error_setg_errno(errp, errno,
1523 "can't open backing store %s for guest RAM",
1524 path);
1525 return -1;
1526 }
1527 /*
1528 * Try again on EINTR and EEXIST. The latter happens when
1529 * something else creates the file between our two open().
1530 */
1531 }
1532
1533 return fd;
1534 }
1535
1536 static void *file_ram_alloc(RAMBlock *block,
1537 ram_addr_t memory,
1538 int fd,
1539 bool readonly,
1540 bool truncate,
1541 off_t offset,
1542 Error **errp)
1543 {
1544 uint32_t qemu_map_flags;
1545 void *area;
1546
1547 block->page_size = qemu_fd_getpagesize(fd);
1548 if (block->mr->align % block->page_size) {
1549 error_setg(errp, "alignment 0x%" PRIx64
1550 " must be multiples of page size 0x%zx",
1551 block->mr->align, block->page_size);
1552 return NULL;
1553 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1554 error_setg(errp, "alignment 0x%" PRIx64
1555 " must be a power of two", block->mr->align);
1556 return NULL;
1557 }
1558 block->mr->align = MAX(block->page_size, block->mr->align);
1559 #if defined(__s390x__)
1560 if (kvm_enabled()) {
1561 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1562 }
1563 #endif
1564
1565 if (memory < block->page_size) {
1566 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1567 "or larger than page size 0x%zx",
1568 memory, block->page_size);
1569 return NULL;
1570 }
1571
1572 memory = ROUND_UP(memory, block->page_size);
1573
1574 /*
1575 * ftruncate is not supported by hugetlbfs in older
1576 * hosts, so don't bother bailing out on errors.
1577 * If anything goes wrong with it under other filesystems,
1578 * mmap will fail.
1579 *
1580 * Do not truncate the non-empty backend file to avoid corrupting
1581 * the existing data in the file. Disabling shrinking is not
1582 * enough. For example, the current vNVDIMM implementation stores
1583 * the guest NVDIMM labels at the end of the backend file. If the
1584 * backend file is later extended, QEMU will not be able to find
1585 * those labels. Therefore, extending the non-empty backend file
1586 * is disabled as well.
1587 */
1588 if (truncate && ftruncate(fd, memory)) {
1589 perror("ftruncate");
1590 }
1591
1592 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1593 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1594 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1595 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1596 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1597 if (area == MAP_FAILED) {
1598 error_setg_errno(errp, errno,
1599 "unable to map backing store for guest RAM");
1600 return NULL;
1601 }
1602
1603 block->fd = fd;
1604 return area;
1605 }
1606 #endif
1607
1608 /* Allocate space within the ram_addr_t space that governs the
1609 * dirty bitmaps.
1610 * Called with the ramlist lock held.
1611 */
1612 static ram_addr_t find_ram_offset(ram_addr_t size)
1613 {
1614 RAMBlock *block, *next_block;
1615 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1616
1617 assert(size != 0); /* it would hand out same offset multiple times */
1618
1619 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1620 return 0;
1621 }
1622
1623 RAMBLOCK_FOREACH(block) {
1624 ram_addr_t candidate, next = RAM_ADDR_MAX;
1625
1626 /* Align blocks to start on a 'long' in the bitmap
1627 * which makes the bitmap sync'ing take the fast path.
1628 */
1629 candidate = block->offset + block->max_length;
1630 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1631
1632 /* Search for the closest following block
1633 * and find the gap.
1634 */
1635 RAMBLOCK_FOREACH(next_block) {
1636 if (next_block->offset >= candidate) {
1637 next = MIN(next, next_block->offset);
1638 }
1639 }
1640
1641 /* If it fits remember our place and remember the size
1642 * of gap, but keep going so that we might find a smaller
1643 * gap to fill so avoiding fragmentation.
1644 */
1645 if (next - candidate >= size && next - candidate < mingap) {
1646 offset = candidate;
1647 mingap = next - candidate;
1648 }
1649
1650 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1651 }
1652
1653 if (offset == RAM_ADDR_MAX) {
1654 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1655 (uint64_t)size);
1656 abort();
1657 }
1658
1659 trace_find_ram_offset(size, offset);
1660
1661 return offset;
1662 }
1663
1664 static unsigned long last_ram_page(void)
1665 {
1666 RAMBlock *block;
1667 ram_addr_t last = 0;
1668
1669 RCU_READ_LOCK_GUARD();
1670 RAMBLOCK_FOREACH(block) {
1671 last = MAX(last, block->offset + block->max_length);
1672 }
1673 return last >> TARGET_PAGE_BITS;
1674 }
1675
1676 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1677 {
1678 int ret;
1679
1680 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1681 if (!machine_dump_guest_core(current_machine)) {
1682 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1683 if (ret) {
1684 perror("qemu_madvise");
1685 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1686 "but dump_guest_core=off specified\n");
1687 }
1688 }
1689 }
1690
1691 const char *qemu_ram_get_idstr(RAMBlock *rb)
1692 {
1693 return rb->idstr;
1694 }
1695
1696 void *qemu_ram_get_host_addr(RAMBlock *rb)
1697 {
1698 return rb->host;
1699 }
1700
1701 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1702 {
1703 return rb->offset;
1704 }
1705
1706 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1707 {
1708 return rb->used_length;
1709 }
1710
1711 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1712 {
1713 return rb->max_length;
1714 }
1715
1716 bool qemu_ram_is_shared(RAMBlock *rb)
1717 {
1718 return rb->flags & RAM_SHARED;
1719 }
1720
1721 bool qemu_ram_is_noreserve(RAMBlock *rb)
1722 {
1723 return rb->flags & RAM_NORESERVE;
1724 }
1725
1726 /* Note: Only set at the start of postcopy */
1727 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1728 {
1729 return rb->flags & RAM_UF_ZEROPAGE;
1730 }
1731
1732 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1733 {
1734 rb->flags |= RAM_UF_ZEROPAGE;
1735 }
1736
1737 bool qemu_ram_is_migratable(RAMBlock *rb)
1738 {
1739 return rb->flags & RAM_MIGRATABLE;
1740 }
1741
1742 void qemu_ram_set_migratable(RAMBlock *rb)
1743 {
1744 rb->flags |= RAM_MIGRATABLE;
1745 }
1746
1747 void qemu_ram_unset_migratable(RAMBlock *rb)
1748 {
1749 rb->flags &= ~RAM_MIGRATABLE;
1750 }
1751
1752 int qemu_ram_get_fd(RAMBlock *rb)
1753 {
1754 return rb->fd;
1755 }
1756
1757 /* Called with iothread lock held. */
1758 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1759 {
1760 RAMBlock *block;
1761
1762 assert(new_block);
1763 assert(!new_block->idstr[0]);
1764
1765 if (dev) {
1766 char *id = qdev_get_dev_path(dev);
1767 if (id) {
1768 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1769 g_free(id);
1770 }
1771 }
1772 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1773
1774 RCU_READ_LOCK_GUARD();
1775 RAMBLOCK_FOREACH(block) {
1776 if (block != new_block &&
1777 !strcmp(block->idstr, new_block->idstr)) {
1778 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1779 new_block->idstr);
1780 abort();
1781 }
1782 }
1783 }
1784
1785 /* Called with iothread lock held. */
1786 void qemu_ram_unset_idstr(RAMBlock *block)
1787 {
1788 /* FIXME: arch_init.c assumes that this is not called throughout
1789 * migration. Ignore the problem since hot-unplug during migration
1790 * does not work anyway.
1791 */
1792 if (block) {
1793 memset(block->idstr, 0, sizeof(block->idstr));
1794 }
1795 }
1796
1797 size_t qemu_ram_pagesize(RAMBlock *rb)
1798 {
1799 return rb->page_size;
1800 }
1801
1802 /* Returns the largest size of page in use */
1803 size_t qemu_ram_pagesize_largest(void)
1804 {
1805 RAMBlock *block;
1806 size_t largest = 0;
1807
1808 RAMBLOCK_FOREACH(block) {
1809 largest = MAX(largest, qemu_ram_pagesize(block));
1810 }
1811
1812 return largest;
1813 }
1814
1815 static int memory_try_enable_merging(void *addr, size_t len)
1816 {
1817 if (!machine_mem_merge(current_machine)) {
1818 /* disabled by the user */
1819 return 0;
1820 }
1821
1822 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1823 }
1824
1825 /*
1826 * Resizing RAM while migrating can result in the migration being canceled.
1827 * Care has to be taken if the guest might have already detected the memory.
1828 *
1829 * As memory core doesn't know how is memory accessed, it is up to
1830 * resize callback to update device state and/or add assertions to detect
1831 * misuse, if necessary.
1832 */
1833 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1834 {
1835 const ram_addr_t oldsize = block->used_length;
1836 const ram_addr_t unaligned_size = newsize;
1837
1838 assert(block);
1839
1840 newsize = HOST_PAGE_ALIGN(newsize);
1841
1842 if (block->used_length == newsize) {
1843 /*
1844 * We don't have to resize the ram block (which only knows aligned
1845 * sizes), however, we have to notify if the unaligned size changed.
1846 */
1847 if (unaligned_size != memory_region_size(block->mr)) {
1848 memory_region_set_size(block->mr, unaligned_size);
1849 if (block->resized) {
1850 block->resized(block->idstr, unaligned_size, block->host);
1851 }
1852 }
1853 return 0;
1854 }
1855
1856 if (!(block->flags & RAM_RESIZEABLE)) {
1857 error_setg_errno(errp, EINVAL,
1858 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1859 " != 0x" RAM_ADDR_FMT, block->idstr,
1860 newsize, block->used_length);
1861 return -EINVAL;
1862 }
1863
1864 if (block->max_length < newsize) {
1865 error_setg_errno(errp, EINVAL,
1866 "Size too large: %s: 0x" RAM_ADDR_FMT
1867 " > 0x" RAM_ADDR_FMT, block->idstr,
1868 newsize, block->max_length);
1869 return -EINVAL;
1870 }
1871
1872 /* Notify before modifying the ram block and touching the bitmaps. */
1873 if (block->host) {
1874 ram_block_notify_resize(block->host, oldsize, newsize);
1875 }
1876
1877 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1878 block->used_length = newsize;
1879 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1880 DIRTY_CLIENTS_ALL);
1881 memory_region_set_size(block->mr, unaligned_size);
1882 if (block->resized) {
1883 block->resized(block->idstr, unaligned_size, block->host);
1884 }
1885 return 0;
1886 }
1887
1888 /*
1889 * Trigger sync on the given ram block for range [start, start + length]
1890 * with the backing store if one is available.
1891 * Otherwise no-op.
1892 * @Note: this is supposed to be a synchronous op.
1893 */
1894 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1895 {
1896 /* The requested range should fit in within the block range */
1897 g_assert((start + length) <= block->used_length);
1898
1899 #ifdef CONFIG_LIBPMEM
1900 /* The lack of support for pmem should not block the sync */
1901 if (ramblock_is_pmem(block)) {
1902 void *addr = ramblock_ptr(block, start);
1903 pmem_persist(addr, length);
1904 return;
1905 }
1906 #endif
1907 if (block->fd >= 0) {
1908 /**
1909 * Case there is no support for PMEM or the memory has not been
1910 * specified as persistent (or is not one) - use the msync.
1911 * Less optimal but still achieves the same goal
1912 */
1913 void *addr = ramblock_ptr(block, start);
1914 if (qemu_msync(addr, length, block->fd)) {
1915 warn_report("%s: failed to sync memory range: start: "
1916 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1917 __func__, start, length);
1918 }
1919 }
1920 }
1921
1922 /* Called with ram_list.mutex held */
1923 static void dirty_memory_extend(ram_addr_t old_ram_size,
1924 ram_addr_t new_ram_size)
1925 {
1926 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1927 DIRTY_MEMORY_BLOCK_SIZE);
1928 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1929 DIRTY_MEMORY_BLOCK_SIZE);
1930 int i;
1931
1932 /* Only need to extend if block count increased */
1933 if (new_num_blocks <= old_num_blocks) {
1934 return;
1935 }
1936
1937 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1938 DirtyMemoryBlocks *old_blocks;
1939 DirtyMemoryBlocks *new_blocks;
1940 int j;
1941
1942 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1943 new_blocks = g_malloc(sizeof(*new_blocks) +
1944 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1945
1946 if (old_num_blocks) {
1947 memcpy(new_blocks->blocks, old_blocks->blocks,
1948 old_num_blocks * sizeof(old_blocks->blocks[0]));
1949 }
1950
1951 for (j = old_num_blocks; j < new_num_blocks; j++) {
1952 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1953 }
1954
1955 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1956
1957 if (old_blocks) {
1958 g_free_rcu(old_blocks, rcu);
1959 }
1960 }
1961 }
1962
1963 static void ram_block_add(RAMBlock *new_block, Error **errp)
1964 {
1965 const bool noreserve = qemu_ram_is_noreserve(new_block);
1966 const bool shared = qemu_ram_is_shared(new_block);
1967 RAMBlock *block;
1968 RAMBlock *last_block = NULL;
1969 ram_addr_t old_ram_size, new_ram_size;
1970 Error *err = NULL;
1971
1972 old_ram_size = last_ram_page();
1973
1974 qemu_mutex_lock_ramlist();
1975 new_block->offset = find_ram_offset(new_block->max_length);
1976
1977 if (!new_block->host) {
1978 if (xen_enabled()) {
1979 xen_ram_alloc(new_block->offset, new_block->max_length,
1980 new_block->mr, &err);
1981 if (err) {
1982 error_propagate(errp, err);
1983 qemu_mutex_unlock_ramlist();
1984 return;
1985 }
1986 } else {
1987 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1988 &new_block->mr->align,
1989 shared, noreserve);
1990 if (!new_block->host) {
1991 error_setg_errno(errp, errno,
1992 "cannot set up guest memory '%s'",
1993 memory_region_name(new_block->mr));
1994 qemu_mutex_unlock_ramlist();
1995 return;
1996 }
1997 memory_try_enable_merging(new_block->host, new_block->max_length);
1998 }
1999 }
2000
2001 new_ram_size = MAX(old_ram_size,
2002 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2003 if (new_ram_size > old_ram_size) {
2004 dirty_memory_extend(old_ram_size, new_ram_size);
2005 }
2006 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2007 * QLIST (which has an RCU-friendly variant) does not have insertion at
2008 * tail, so save the last element in last_block.
2009 */
2010 RAMBLOCK_FOREACH(block) {
2011 last_block = block;
2012 if (block->max_length < new_block->max_length) {
2013 break;
2014 }
2015 }
2016 if (block) {
2017 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2018 } else if (last_block) {
2019 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2020 } else { /* list is empty */
2021 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2022 }
2023 ram_list.mru_block = NULL;
2024
2025 /* Write list before version */
2026 smp_wmb();
2027 ram_list.version++;
2028 qemu_mutex_unlock_ramlist();
2029
2030 cpu_physical_memory_set_dirty_range(new_block->offset,
2031 new_block->used_length,
2032 DIRTY_CLIENTS_ALL);
2033
2034 if (new_block->host) {
2035 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2036 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2037 /*
2038 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2039 * Configure it unless the machine is a qtest server, in which case
2040 * KVM is not used and it may be forked (eg for fuzzing purposes).
2041 */
2042 if (!qtest_enabled()) {
2043 qemu_madvise(new_block->host, new_block->max_length,
2044 QEMU_MADV_DONTFORK);
2045 }
2046 ram_block_notify_add(new_block->host, new_block->used_length,
2047 new_block->max_length);
2048 }
2049 }
2050
2051 #ifdef CONFIG_POSIX
2052 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2053 uint32_t ram_flags, int fd, off_t offset,
2054 bool readonly, Error **errp)
2055 {
2056 RAMBlock *new_block;
2057 Error *local_err = NULL;
2058 int64_t file_size, file_align;
2059
2060 /* Just support these ram flags by now. */
2061 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
2062 RAM_PROTECTED)) == 0);
2063
2064 if (xen_enabled()) {
2065 error_setg(errp, "-mem-path not supported with Xen");
2066 return NULL;
2067 }
2068
2069 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2070 error_setg(errp,
2071 "host lacks kvm mmu notifiers, -mem-path unsupported");
2072 return NULL;
2073 }
2074
2075 size = HOST_PAGE_ALIGN(size);
2076 file_size = get_file_size(fd);
2077 if (file_size > 0 && file_size < size) {
2078 error_setg(errp, "backing store size 0x%" PRIx64
2079 " does not match 'size' option 0x" RAM_ADDR_FMT,
2080 file_size, size);
2081 return NULL;
2082 }
2083
2084 file_align = get_file_align(fd);
2085 if (file_align > 0 && file_align > mr->align) {
2086 error_setg(errp, "backing store align 0x%" PRIx64
2087 " is larger than 'align' option 0x%" PRIx64,
2088 file_align, mr->align);
2089 return NULL;
2090 }
2091
2092 new_block = g_malloc0(sizeof(*new_block));
2093 new_block->mr = mr;
2094 new_block->used_length = size;
2095 new_block->max_length = size;
2096 new_block->flags = ram_flags;
2097 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
2098 !file_size, offset, errp);
2099 if (!new_block->host) {
2100 g_free(new_block);
2101 return NULL;
2102 }
2103
2104 ram_block_add(new_block, &local_err);
2105 if (local_err) {
2106 g_free(new_block);
2107 error_propagate(errp, local_err);
2108 return NULL;
2109 }
2110 return new_block;
2111
2112 }
2113
2114
2115 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2116 uint32_t ram_flags, const char *mem_path,
2117 bool readonly, Error **errp)
2118 {
2119 int fd;
2120 bool created;
2121 RAMBlock *block;
2122
2123 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2124 errp);
2125 if (fd < 0) {
2126 return NULL;
2127 }
2128
2129 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
2130 if (!block) {
2131 if (created) {
2132 unlink(mem_path);
2133 }
2134 close(fd);
2135 return NULL;
2136 }
2137
2138 return block;
2139 }
2140 #endif
2141
2142 static
2143 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2144 void (*resized)(const char*,
2145 uint64_t length,
2146 void *host),
2147 void *host, uint32_t ram_flags,
2148 MemoryRegion *mr, Error **errp)
2149 {
2150 RAMBlock *new_block;
2151 Error *local_err = NULL;
2152
2153 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2154 RAM_NORESERVE)) == 0);
2155 assert(!host ^ (ram_flags & RAM_PREALLOC));
2156
2157 size = HOST_PAGE_ALIGN(size);
2158 max_size = HOST_PAGE_ALIGN(max_size);
2159 new_block = g_malloc0(sizeof(*new_block));
2160 new_block->mr = mr;
2161 new_block->resized = resized;
2162 new_block->used_length = size;
2163 new_block->max_length = max_size;
2164 assert(max_size >= size);
2165 new_block->fd = -1;
2166 new_block->page_size = qemu_real_host_page_size();
2167 new_block->host = host;
2168 new_block->flags = ram_flags;
2169 ram_block_add(new_block, &local_err);
2170 if (local_err) {
2171 g_free(new_block);
2172 error_propagate(errp, local_err);
2173 return NULL;
2174 }
2175 return new_block;
2176 }
2177
2178 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2179 MemoryRegion *mr, Error **errp)
2180 {
2181 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2182 errp);
2183 }
2184
2185 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2186 MemoryRegion *mr, Error **errp)
2187 {
2188 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2189 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2190 }
2191
2192 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2193 void (*resized)(const char*,
2194 uint64_t length,
2195 void *host),
2196 MemoryRegion *mr, Error **errp)
2197 {
2198 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2199 RAM_RESIZEABLE, mr, errp);
2200 }
2201
2202 static void reclaim_ramblock(RAMBlock *block)
2203 {
2204 if (block->flags & RAM_PREALLOC) {
2205 ;
2206 } else if (xen_enabled()) {
2207 xen_invalidate_map_cache_entry(block->host);
2208 #ifndef _WIN32
2209 } else if (block->fd >= 0) {
2210 qemu_ram_munmap(block->fd, block->host, block->max_length);
2211 close(block->fd);
2212 #endif
2213 } else {
2214 qemu_anon_ram_free(block->host, block->max_length);
2215 }
2216 g_free(block);
2217 }
2218
2219 void qemu_ram_free(RAMBlock *block)
2220 {
2221 if (!block) {
2222 return;
2223 }
2224
2225 if (block->host) {
2226 ram_block_notify_remove(block->host, block->used_length,
2227 block->max_length);
2228 }
2229
2230 qemu_mutex_lock_ramlist();
2231 QLIST_REMOVE_RCU(block, next);
2232 ram_list.mru_block = NULL;
2233 /* Write list before version */
2234 smp_wmb();
2235 ram_list.version++;
2236 call_rcu(block, reclaim_ramblock, rcu);
2237 qemu_mutex_unlock_ramlist();
2238 }
2239
2240 #ifndef _WIN32
2241 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2242 {
2243 RAMBlock *block;
2244 ram_addr_t offset;
2245 int flags;
2246 void *area, *vaddr;
2247
2248 RAMBLOCK_FOREACH(block) {
2249 offset = addr - block->offset;
2250 if (offset < block->max_length) {
2251 vaddr = ramblock_ptr(block, offset);
2252 if (block->flags & RAM_PREALLOC) {
2253 ;
2254 } else if (xen_enabled()) {
2255 abort();
2256 } else {
2257 flags = MAP_FIXED;
2258 flags |= block->flags & RAM_SHARED ?
2259 MAP_SHARED : MAP_PRIVATE;
2260 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2261 if (block->fd >= 0) {
2262 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2263 flags, block->fd, offset);
2264 } else {
2265 flags |= MAP_ANONYMOUS;
2266 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2267 flags, -1, 0);
2268 }
2269 if (area != vaddr) {
2270 error_report("Could not remap addr: "
2271 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2272 length, addr);
2273 exit(1);
2274 }
2275 memory_try_enable_merging(vaddr, length);
2276 qemu_ram_setup_dump(vaddr, length);
2277 }
2278 }
2279 }
2280 }
2281 #endif /* !_WIN32 */
2282
2283 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2284 * This should not be used for general purpose DMA. Use address_space_map
2285 * or address_space_rw instead. For local memory (e.g. video ram) that the
2286 * device owns, use memory_region_get_ram_ptr.
2287 *
2288 * Called within RCU critical section.
2289 */
2290 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2291 {
2292 RAMBlock *block = ram_block;
2293
2294 if (block == NULL) {
2295 block = qemu_get_ram_block(addr);
2296 addr -= block->offset;
2297 }
2298
2299 if (xen_enabled() && block->host == NULL) {
2300 /* We need to check if the requested address is in the RAM
2301 * because we don't want to map the entire memory in QEMU.
2302 * In that case just map until the end of the page.
2303 */
2304 if (block->offset == 0) {
2305 return xen_map_cache(addr, 0, 0, false);
2306 }
2307
2308 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2309 }
2310 return ramblock_ptr(block, addr);
2311 }
2312
2313 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2314 * but takes a size argument.
2315 *
2316 * Called within RCU critical section.
2317 */
2318 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2319 hwaddr *size, bool lock)
2320 {
2321 RAMBlock *block = ram_block;
2322 if (*size == 0) {
2323 return NULL;
2324 }
2325
2326 if (block == NULL) {
2327 block = qemu_get_ram_block(addr);
2328 addr -= block->offset;
2329 }
2330 *size = MIN(*size, block->max_length - addr);
2331
2332 if (xen_enabled() && block->host == NULL) {
2333 /* We need to check if the requested address is in the RAM
2334 * because we don't want to map the entire memory in QEMU.
2335 * In that case just map the requested area.
2336 */
2337 if (block->offset == 0) {
2338 return xen_map_cache(addr, *size, lock, lock);
2339 }
2340
2341 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2342 }
2343
2344 return ramblock_ptr(block, addr);
2345 }
2346
2347 /* Return the offset of a hostpointer within a ramblock */
2348 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2349 {
2350 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2351 assert((uintptr_t)host >= (uintptr_t)rb->host);
2352 assert(res < rb->max_length);
2353
2354 return res;
2355 }
2356
2357 /*
2358 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2359 * in that RAMBlock.
2360 *
2361 * ptr: Host pointer to look up
2362 * round_offset: If true round the result offset down to a page boundary
2363 * *ram_addr: set to result ram_addr
2364 * *offset: set to result offset within the RAMBlock
2365 *
2366 * Returns: RAMBlock (or NULL if not found)
2367 *
2368 * By the time this function returns, the returned pointer is not protected
2369 * by RCU anymore. If the caller is not within an RCU critical section and
2370 * does not hold the iothread lock, it must have other means of protecting the
2371 * pointer, such as a reference to the region that includes the incoming
2372 * ram_addr_t.
2373 */
2374 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2375 ram_addr_t *offset)
2376 {
2377 RAMBlock *block;
2378 uint8_t *host = ptr;
2379
2380 if (xen_enabled()) {
2381 ram_addr_t ram_addr;
2382 RCU_READ_LOCK_GUARD();
2383 ram_addr = xen_ram_addr_from_mapcache(ptr);
2384 block = qemu_get_ram_block(ram_addr);
2385 if (block) {
2386 *offset = ram_addr - block->offset;
2387 }
2388 return block;
2389 }
2390
2391 RCU_READ_LOCK_GUARD();
2392 block = qatomic_rcu_read(&ram_list.mru_block);
2393 if (block && block->host && host - block->host < block->max_length) {
2394 goto found;
2395 }
2396
2397 RAMBLOCK_FOREACH(block) {
2398 /* This case append when the block is not mapped. */
2399 if (block->host == NULL) {
2400 continue;
2401 }
2402 if (host - block->host < block->max_length) {
2403 goto found;
2404 }
2405 }
2406
2407 return NULL;
2408
2409 found:
2410 *offset = (host - block->host);
2411 if (round_offset) {
2412 *offset &= TARGET_PAGE_MASK;
2413 }
2414 return block;
2415 }
2416
2417 /*
2418 * Finds the named RAMBlock
2419 *
2420 * name: The name of RAMBlock to find
2421 *
2422 * Returns: RAMBlock (or NULL if not found)
2423 */
2424 RAMBlock *qemu_ram_block_by_name(const char *name)
2425 {
2426 RAMBlock *block;
2427
2428 RAMBLOCK_FOREACH(block) {
2429 if (!strcmp(name, block->idstr)) {
2430 return block;
2431 }
2432 }
2433
2434 return NULL;
2435 }
2436
2437 /* Some of the softmmu routines need to translate from a host pointer
2438 (typically a TLB entry) back to a ram offset. */
2439 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2440 {
2441 RAMBlock *block;
2442 ram_addr_t offset;
2443
2444 block = qemu_ram_block_from_host(ptr, false, &offset);
2445 if (!block) {
2446 return RAM_ADDR_INVALID;
2447 }
2448
2449 return block->offset + offset;
2450 }
2451
2452 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2453 {
2454 ram_addr_t ram_addr;
2455
2456 ram_addr = qemu_ram_addr_from_host(ptr);
2457 if (ram_addr == RAM_ADDR_INVALID) {
2458 error_report("Bad ram pointer %p", ptr);
2459 abort();
2460 }
2461 return ram_addr;
2462 }
2463
2464 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2465 MemTxAttrs attrs, void *buf, hwaddr len);
2466 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2467 const void *buf, hwaddr len);
2468 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2469 bool is_write, MemTxAttrs attrs);
2470
2471 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2472 unsigned len, MemTxAttrs attrs)
2473 {
2474 subpage_t *subpage = opaque;
2475 uint8_t buf[8];
2476 MemTxResult res;
2477
2478 #if defined(DEBUG_SUBPAGE)
2479 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2480 subpage, len, addr);
2481 #endif
2482 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2483 if (res) {
2484 return res;
2485 }
2486 *data = ldn_p(buf, len);
2487 return MEMTX_OK;
2488 }
2489
2490 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2491 uint64_t value, unsigned len, MemTxAttrs attrs)
2492 {
2493 subpage_t *subpage = opaque;
2494 uint8_t buf[8];
2495
2496 #if defined(DEBUG_SUBPAGE)
2497 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2498 " value %"PRIx64"\n",
2499 __func__, subpage, len, addr, value);
2500 #endif
2501 stn_p(buf, len, value);
2502 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2503 }
2504
2505 static bool subpage_accepts(void *opaque, hwaddr addr,
2506 unsigned len, bool is_write,
2507 MemTxAttrs attrs)
2508 {
2509 subpage_t *subpage = opaque;
2510 #if defined(DEBUG_SUBPAGE)
2511 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2512 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2513 #endif
2514
2515 return flatview_access_valid(subpage->fv, addr + subpage->base,
2516 len, is_write, attrs);
2517 }
2518
2519 static const MemoryRegionOps subpage_ops = {
2520 .read_with_attrs = subpage_read,
2521 .write_with_attrs = subpage_write,
2522 .impl.min_access_size = 1,
2523 .impl.max_access_size = 8,
2524 .valid.min_access_size = 1,
2525 .valid.max_access_size = 8,
2526 .valid.accepts = subpage_accepts,
2527 .endianness = DEVICE_NATIVE_ENDIAN,
2528 };
2529
2530 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2531 uint16_t section)
2532 {
2533 int idx, eidx;
2534
2535 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2536 return -1;
2537 idx = SUBPAGE_IDX(start);
2538 eidx = SUBPAGE_IDX(end);
2539 #if defined(DEBUG_SUBPAGE)
2540 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2541 __func__, mmio, start, end, idx, eidx, section);
2542 #endif
2543 for (; idx <= eidx; idx++) {
2544 mmio->sub_section[idx] = section;
2545 }
2546
2547 return 0;
2548 }
2549
2550 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2551 {
2552 subpage_t *mmio;
2553
2554 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2555 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2556 mmio->fv = fv;
2557 mmio->base = base;
2558 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2559 NULL, TARGET_PAGE_SIZE);
2560 mmio->iomem.subpage = true;
2561 #if defined(DEBUG_SUBPAGE)
2562 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2563 mmio, base, TARGET_PAGE_SIZE);
2564 #endif
2565
2566 return mmio;
2567 }
2568
2569 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2570 {
2571 assert(fv);
2572 MemoryRegionSection section = {
2573 .fv = fv,
2574 .mr = mr,
2575 .offset_within_address_space = 0,
2576 .offset_within_region = 0,
2577 .size = int128_2_64(),
2578 };
2579
2580 return phys_section_add(map, &section);
2581 }
2582
2583 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2584 hwaddr index, MemTxAttrs attrs)
2585 {
2586 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2587 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2588 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2589 MemoryRegionSection *sections = d->map.sections;
2590
2591 return &sections[index & ~TARGET_PAGE_MASK];
2592 }
2593
2594 static void io_mem_init(void)
2595 {
2596 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2597 NULL, UINT64_MAX);
2598 }
2599
2600 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2601 {
2602 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2603 uint16_t n;
2604
2605 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2606 assert(n == PHYS_SECTION_UNASSIGNED);
2607
2608 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2609
2610 return d;
2611 }
2612
2613 void address_space_dispatch_free(AddressSpaceDispatch *d)
2614 {
2615 phys_sections_free(&d->map);
2616 g_free(d);
2617 }
2618
2619 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2620 {
2621 }
2622
2623 static void tcg_log_global_after_sync(MemoryListener *listener)
2624 {
2625 CPUAddressSpace *cpuas;
2626
2627 /* Wait for the CPU to end the current TB. This avoids the following
2628 * incorrect race:
2629 *
2630 * vCPU migration
2631 * ---------------------- -------------------------
2632 * TLB check -> slow path
2633 * notdirty_mem_write
2634 * write to RAM
2635 * mark dirty
2636 * clear dirty flag
2637 * TLB check -> fast path
2638 * read memory
2639 * write to RAM
2640 *
2641 * by pushing the migration thread's memory read after the vCPU thread has
2642 * written the memory.
2643 */
2644 if (replay_mode == REPLAY_MODE_NONE) {
2645 /*
2646 * VGA can make calls to this function while updating the screen.
2647 * In record/replay mode this causes a deadlock, because
2648 * run_on_cpu waits for rr mutex. Therefore no races are possible
2649 * in this case and no need for making run_on_cpu when
2650 * record/replay is enabled.
2651 */
2652 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2653 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2654 }
2655 }
2656
2657 static void tcg_commit(MemoryListener *listener)
2658 {
2659 CPUAddressSpace *cpuas;
2660 AddressSpaceDispatch *d;
2661
2662 assert(tcg_enabled());
2663 /* since each CPU stores ram addresses in its TLB cache, we must
2664 reset the modified entries */
2665 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2666 cpu_reloading_memory_map();
2667 /* The CPU and TLB are protected by the iothread lock.
2668 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2669 * may have split the RCU critical section.
2670 */
2671 d = address_space_to_dispatch(cpuas->as);
2672 qatomic_rcu_set(&cpuas->memory_dispatch, d);
2673 tlb_flush(cpuas->cpu);
2674 }
2675
2676 static void memory_map_init(void)
2677 {
2678 system_memory = g_malloc(sizeof(*system_memory));
2679
2680 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2681 address_space_init(&address_space_memory, system_memory, "memory");
2682
2683 system_io = g_malloc(sizeof(*system_io));
2684 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2685 65536);
2686 address_space_init(&address_space_io, system_io, "I/O");
2687 }
2688
2689 MemoryRegion *get_system_memory(void)
2690 {
2691 return system_memory;
2692 }
2693
2694 MemoryRegion *get_system_io(void)
2695 {
2696 return system_io;
2697 }
2698
2699 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2700 hwaddr length)
2701 {
2702 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2703 addr += memory_region_get_ram_addr(mr);
2704
2705 /* No early return if dirty_log_mask is or becomes 0, because
2706 * cpu_physical_memory_set_dirty_range will still call
2707 * xen_modified_memory.
2708 */
2709 if (dirty_log_mask) {
2710 dirty_log_mask =
2711 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2712 }
2713 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2714 assert(tcg_enabled());
2715 tb_invalidate_phys_range(addr, addr + length);
2716 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2717 }
2718 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2719 }
2720
2721 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2722 {
2723 /*
2724 * In principle this function would work on other memory region types too,
2725 * but the ROM device use case is the only one where this operation is
2726 * necessary. Other memory regions should use the
2727 * address_space_read/write() APIs.
2728 */
2729 assert(memory_region_is_romd(mr));
2730
2731 invalidate_and_set_dirty(mr, addr, size);
2732 }
2733
2734 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2735 {
2736 unsigned access_size_max = mr->ops->valid.max_access_size;
2737
2738 /* Regions are assumed to support 1-4 byte accesses unless
2739 otherwise specified. */
2740 if (access_size_max == 0) {
2741 access_size_max = 4;
2742 }
2743
2744 /* Bound the maximum access by the alignment of the address. */
2745 if (!mr->ops->impl.unaligned) {
2746 unsigned align_size_max = addr & -addr;
2747 if (align_size_max != 0 && align_size_max < access_size_max) {
2748 access_size_max = align_size_max;
2749 }
2750 }
2751
2752 /* Don't attempt accesses larger than the maximum. */
2753 if (l > access_size_max) {
2754 l = access_size_max;
2755 }
2756 l = pow2floor(l);
2757
2758 return l;
2759 }
2760
2761 bool prepare_mmio_access(MemoryRegion *mr)
2762 {
2763 bool release_lock = false;
2764
2765 if (!qemu_mutex_iothread_locked()) {
2766 qemu_mutex_lock_iothread();
2767 release_lock = true;
2768 }
2769 if (mr->flush_coalesced_mmio) {
2770 qemu_flush_coalesced_mmio_buffer();
2771 }
2772
2773 return release_lock;
2774 }
2775
2776 /**
2777 * flatview_access_allowed
2778 * @mr: #MemoryRegion to be accessed
2779 * @attrs: memory transaction attributes
2780 * @addr: address within that memory region
2781 * @len: the number of bytes to access
2782 *
2783 * Check if a memory transaction is allowed.
2784 *
2785 * Returns: true if transaction is allowed, false if denied.
2786 */
2787 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2788 hwaddr addr, hwaddr len)
2789 {
2790 if (likely(!attrs.memory)) {
2791 return true;
2792 }
2793 if (memory_region_is_ram(mr)) {
2794 return true;
2795 }
2796 qemu_log_mask(LOG_GUEST_ERROR,
2797 "Invalid access to non-RAM device at "
2798 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2799 "region '%s'\n", addr, len, memory_region_name(mr));
2800 return false;
2801 }
2802
2803 /* Called within RCU critical section. */
2804 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2805 MemTxAttrs attrs,
2806 const void *ptr,
2807 hwaddr len, hwaddr addr1,
2808 hwaddr l, MemoryRegion *mr)
2809 {
2810 uint8_t *ram_ptr;
2811 uint64_t val;
2812 MemTxResult result = MEMTX_OK;
2813 bool release_lock = false;
2814 const uint8_t *buf = ptr;
2815
2816 for (;;) {
2817 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2818 result |= MEMTX_ACCESS_ERROR;
2819 /* Keep going. */
2820 } else if (!memory_access_is_direct(mr, true)) {
2821 release_lock |= prepare_mmio_access(mr);
2822 l = memory_access_size(mr, l, addr1);
2823 /* XXX: could force current_cpu to NULL to avoid
2824 potential bugs */
2825 val = ldn_he_p(buf, l);
2826 result |= memory_region_dispatch_write(mr, addr1, val,
2827 size_memop(l), attrs);
2828 } else {
2829 /* RAM case */
2830 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2831 memcpy(ram_ptr, buf, l);
2832 invalidate_and_set_dirty(mr, addr1, l);
2833 }
2834
2835 if (release_lock) {
2836 qemu_mutex_unlock_iothread();
2837 release_lock = false;
2838 }
2839
2840 len -= l;
2841 buf += l;
2842 addr += l;
2843
2844 if (!len) {
2845 break;
2846 }
2847
2848 l = len;
2849 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2850 }
2851
2852 return result;
2853 }
2854
2855 /* Called from RCU critical section. */
2856 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2857 const void *buf, hwaddr len)
2858 {
2859 hwaddr l;
2860 hwaddr addr1;
2861 MemoryRegion *mr;
2862
2863 l = len;
2864 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2865 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2866 return MEMTX_ACCESS_ERROR;
2867 }
2868 return flatview_write_continue(fv, addr, attrs, buf, len,
2869 addr1, l, mr);
2870 }
2871
2872 /* Called within RCU critical section. */
2873 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2874 MemTxAttrs attrs, void *ptr,
2875 hwaddr len, hwaddr addr1, hwaddr l,
2876 MemoryRegion *mr)
2877 {
2878 uint8_t *ram_ptr;
2879 uint64_t val;
2880 MemTxResult result = MEMTX_OK;
2881 bool release_lock = false;
2882 uint8_t *buf = ptr;
2883
2884 fuzz_dma_read_cb(addr, len, mr);
2885 for (;;) {
2886 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2887 result |= MEMTX_ACCESS_ERROR;
2888 /* Keep going. */
2889 } else if (!memory_access_is_direct(mr, false)) {
2890 /* I/O case */
2891 release_lock |= prepare_mmio_access(mr);
2892 l = memory_access_size(mr, l, addr1);
2893 result |= memory_region_dispatch_read(mr, addr1, &val,
2894 size_memop(l), attrs);
2895 stn_he_p(buf, l, val);
2896 } else {
2897 /* RAM case */
2898 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2899 memcpy(buf, ram_ptr, l);
2900 }
2901
2902 if (release_lock) {
2903 qemu_mutex_unlock_iothread();
2904 release_lock = false;
2905 }
2906
2907 len -= l;
2908 buf += l;
2909 addr += l;
2910
2911 if (!len) {
2912 break;
2913 }
2914
2915 l = len;
2916 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2917 }
2918
2919 return result;
2920 }
2921
2922 /* Called from RCU critical section. */
2923 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2924 MemTxAttrs attrs, void *buf, hwaddr len)
2925 {
2926 hwaddr l;
2927 hwaddr addr1;
2928 MemoryRegion *mr;
2929
2930 l = len;
2931 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2932 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2933 return MEMTX_ACCESS_ERROR;
2934 }
2935 return flatview_read_continue(fv, addr, attrs, buf, len,
2936 addr1, l, mr);
2937 }
2938
2939 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2940 MemTxAttrs attrs, void *buf, hwaddr len)
2941 {
2942 MemTxResult result = MEMTX_OK;
2943 FlatView *fv;
2944
2945 if (len > 0) {
2946 RCU_READ_LOCK_GUARD();
2947 fv = address_space_to_flatview(as);
2948 result = flatview_read(fv, addr, attrs, buf, len);
2949 }
2950
2951 return result;
2952 }
2953
2954 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2955 MemTxAttrs attrs,
2956 const void *buf, hwaddr len)
2957 {
2958 MemTxResult result = MEMTX_OK;
2959 FlatView *fv;
2960
2961 if (len > 0) {
2962 RCU_READ_LOCK_GUARD();
2963 fv = address_space_to_flatview(as);
2964 result = flatview_write(fv, addr, attrs, buf, len);
2965 }
2966
2967 return result;
2968 }
2969
2970 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2971 void *buf, hwaddr len, bool is_write)
2972 {
2973 if (is_write) {
2974 return address_space_write(as, addr, attrs, buf, len);
2975 } else {
2976 return address_space_read_full(as, addr, attrs, buf, len);
2977 }
2978 }
2979
2980 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2981 uint8_t c, hwaddr len, MemTxAttrs attrs)
2982 {
2983 #define FILLBUF_SIZE 512
2984 uint8_t fillbuf[FILLBUF_SIZE];
2985 int l;
2986 MemTxResult error = MEMTX_OK;
2987
2988 memset(fillbuf, c, FILLBUF_SIZE);
2989 while (len > 0) {
2990 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2991 error |= address_space_write(as, addr, attrs, fillbuf, l);
2992 len -= l;
2993 addr += l;
2994 }
2995
2996 return error;
2997 }
2998
2999 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3000 hwaddr len, bool is_write)
3001 {
3002 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3003 buf, len, is_write);
3004 }
3005
3006 enum write_rom_type {
3007 WRITE_DATA,
3008 FLUSH_CACHE,
3009 };
3010
3011 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3012 hwaddr addr,
3013 MemTxAttrs attrs,
3014 const void *ptr,
3015 hwaddr len,
3016 enum write_rom_type type)
3017 {
3018 hwaddr l;
3019 uint8_t *ram_ptr;
3020 hwaddr addr1;
3021 MemoryRegion *mr;
3022 const uint8_t *buf = ptr;
3023
3024 RCU_READ_LOCK_GUARD();
3025 while (len > 0) {
3026 l = len;
3027 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3028
3029 if (!(memory_region_is_ram(mr) ||
3030 memory_region_is_romd(mr))) {
3031 l = memory_access_size(mr, l, addr1);
3032 } else {
3033 /* ROM/RAM case */
3034 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3035 switch (type) {
3036 case WRITE_DATA:
3037 memcpy(ram_ptr, buf, l);
3038 invalidate_and_set_dirty(mr, addr1, l);
3039 break;
3040 case FLUSH_CACHE:
3041 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3042 break;
3043 }
3044 }
3045 len -= l;
3046 buf += l;
3047 addr += l;
3048 }
3049 return MEMTX_OK;
3050 }
3051
3052 /* used for ROM loading : can write in RAM and ROM */
3053 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3054 MemTxAttrs attrs,
3055 const void *buf, hwaddr len)
3056 {
3057 return address_space_write_rom_internal(as, addr, attrs,
3058 buf, len, WRITE_DATA);
3059 }
3060
3061 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3062 {
3063 /*
3064 * This function should do the same thing as an icache flush that was
3065 * triggered from within the guest. For TCG we are always cache coherent,
3066 * so there is no need to flush anything. For KVM / Xen we need to flush
3067 * the host's instruction cache at least.
3068 */
3069 if (tcg_enabled()) {
3070 return;
3071 }
3072
3073 address_space_write_rom_internal(&address_space_memory,
3074 start, MEMTXATTRS_UNSPECIFIED,
3075 NULL, len, FLUSH_CACHE);
3076 }
3077
3078 typedef struct {
3079 MemoryRegion *mr;
3080 void *buffer;
3081 hwaddr addr;
3082 hwaddr len;
3083 bool in_use;
3084 } BounceBuffer;
3085
3086 static BounceBuffer bounce;
3087
3088 typedef struct MapClient {
3089 QEMUBH *bh;
3090 QLIST_ENTRY(MapClient) link;
3091 } MapClient;
3092
3093 QemuMutex map_client_list_lock;
3094 static QLIST_HEAD(, MapClient) map_client_list
3095 = QLIST_HEAD_INITIALIZER(map_client_list);
3096
3097 static void cpu_unregister_map_client_do(MapClient *client)
3098 {
3099 QLIST_REMOVE(client, link);
3100 g_free(client);
3101 }
3102
3103 static void cpu_notify_map_clients_locked(void)
3104 {
3105 MapClient *client;
3106
3107 while (!QLIST_EMPTY(&map_client_list)) {
3108 client = QLIST_FIRST(&map_client_list);
3109 qemu_bh_schedule(client->bh);
3110 cpu_unregister_map_client_do(client);
3111 }
3112 }
3113
3114 void cpu_register_map_client(QEMUBH *bh)
3115 {
3116 MapClient *client = g_malloc(sizeof(*client));
3117
3118 qemu_mutex_lock(&map_client_list_lock);
3119 client->bh = bh;
3120 QLIST_INSERT_HEAD(&map_client_list, client, link);
3121 if (!qatomic_read(&bounce.in_use)) {
3122 cpu_notify_map_clients_locked();
3123 }
3124 qemu_mutex_unlock(&map_client_list_lock);
3125 }
3126
3127 void cpu_exec_init_all(void)
3128 {
3129 qemu_mutex_init(&ram_list.mutex);
3130 /* The data structures we set up here depend on knowing the page size,
3131 * so no more changes can be made after this point.
3132 * In an ideal world, nothing we did before we had finished the
3133 * machine setup would care about the target page size, and we could
3134 * do this much later, rather than requiring board models to state
3135 * up front what their requirements are.
3136 */
3137 finalize_target_page_bits();
3138 io_mem_init();
3139 memory_map_init();
3140 qemu_mutex_init(&map_client_list_lock);
3141 }
3142
3143 void cpu_unregister_map_client(QEMUBH *bh)
3144 {
3145 MapClient *client;
3146
3147 qemu_mutex_lock(&map_client_list_lock);
3148 QLIST_FOREACH(client, &map_client_list, link) {
3149 if (client->bh == bh) {
3150 cpu_unregister_map_client_do(client);
3151 break;
3152 }
3153 }
3154 qemu_mutex_unlock(&map_client_list_lock);
3155 }
3156
3157 static void cpu_notify_map_clients(void)
3158 {
3159 qemu_mutex_lock(&map_client_list_lock);
3160 cpu_notify_map_clients_locked();
3161 qemu_mutex_unlock(&map_client_list_lock);
3162 }
3163
3164 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3165 bool is_write, MemTxAttrs attrs)
3166 {
3167 MemoryRegion *mr;
3168 hwaddr l, xlat;
3169
3170 while (len > 0) {
3171 l = len;
3172 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3173 if (!memory_access_is_direct(mr, is_write)) {
3174 l = memory_access_size(mr, l, addr);
3175 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3176 return false;
3177 }
3178 }
3179
3180 len -= l;
3181 addr += l;
3182 }
3183 return true;
3184 }
3185
3186 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3187 hwaddr len, bool is_write,
3188 MemTxAttrs attrs)
3189 {
3190 FlatView *fv;
3191
3192 RCU_READ_LOCK_GUARD();
3193 fv = address_space_to_flatview(as);
3194 return flatview_access_valid(fv, addr, len, is_write, attrs);
3195 }
3196
3197 static hwaddr
3198 flatview_extend_translation(FlatView *fv, hwaddr addr,
3199 hwaddr target_len,
3200 MemoryRegion *mr, hwaddr base, hwaddr len,
3201 bool is_write, MemTxAttrs attrs)
3202 {
3203 hwaddr done = 0;
3204 hwaddr xlat;
3205 MemoryRegion *this_mr;
3206
3207 for (;;) {
3208 target_len -= len;
3209 addr += len;
3210 done += len;
3211 if (target_len == 0) {
3212 return done;
3213 }
3214
3215 len = target_len;
3216 this_mr = flatview_translate(fv, addr, &xlat,
3217 &len, is_write, attrs);
3218 if (this_mr != mr || xlat != base + done) {
3219 return done;
3220 }
3221 }
3222 }
3223
3224 /* Map a physical memory region into a host virtual address.
3225 * May map a subset of the requested range, given by and returned in *plen.
3226 * May return NULL if resources needed to perform the mapping are exhausted.
3227 * Use only for reads OR writes - not for read-modify-write operations.
3228 * Use cpu_register_map_client() to know when retrying the map operation is
3229 * likely to succeed.
3230 */
3231 void *address_space_map(AddressSpace *as,
3232 hwaddr addr,
3233 hwaddr *plen,
3234 bool is_write,
3235 MemTxAttrs attrs)
3236 {
3237 hwaddr len = *plen;
3238 hwaddr l, xlat;
3239 MemoryRegion *mr;
3240 FlatView *fv;
3241
3242 if (len == 0) {
3243 return NULL;
3244 }
3245
3246 l = len;
3247 RCU_READ_LOCK_GUARD();
3248 fv = address_space_to_flatview(as);
3249 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3250
3251 if (!memory_access_is_direct(mr, is_write)) {
3252 if (qatomic_xchg(&bounce.in_use, true)) {
3253 *plen = 0;
3254 return NULL;
3255 }
3256 /* Avoid unbounded allocations */
3257 l = MIN(l, TARGET_PAGE_SIZE);
3258 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3259 bounce.addr = addr;
3260 bounce.len = l;
3261
3262 memory_region_ref(mr);
3263 bounce.mr = mr;
3264 if (!is_write) {
3265 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3266 bounce.buffer, l);
3267 }
3268
3269 *plen = l;
3270 return bounce.buffer;
3271 }
3272
3273
3274 memory_region_ref(mr);
3275 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3276 l, is_write, attrs);
3277 fuzz_dma_read_cb(addr, *plen, mr);
3278 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3279 }
3280
3281 /* Unmaps a memory region previously mapped by address_space_map().
3282 * Will also mark the memory as dirty if is_write is true. access_len gives
3283 * the amount of memory that was actually read or written by the caller.
3284 */
3285 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3286 bool is_write, hwaddr access_len)
3287 {
3288 if (buffer != bounce.buffer) {
3289 MemoryRegion *mr;
3290 ram_addr_t addr1;
3291
3292 mr = memory_region_from_host(buffer, &addr1);
3293 assert(mr != NULL);
3294 if (is_write) {
3295 invalidate_and_set_dirty(mr, addr1, access_len);
3296 }
3297 if (xen_enabled()) {
3298 xen_invalidate_map_cache_entry(buffer);
3299 }
3300 memory_region_unref(mr);
3301 return;
3302 }
3303 if (is_write) {
3304 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3305 bounce.buffer, access_len);
3306 }
3307 qemu_vfree(bounce.buffer);
3308 bounce.buffer = NULL;
3309 memory_region_unref(bounce.mr);
3310 qatomic_mb_set(&bounce.in_use, false);
3311 cpu_notify_map_clients();
3312 }
3313
3314 void *cpu_physical_memory_map(hwaddr addr,
3315 hwaddr *plen,
3316 bool is_write)
3317 {
3318 return address_space_map(&address_space_memory, addr, plen, is_write,
3319 MEMTXATTRS_UNSPECIFIED);
3320 }
3321
3322 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3323 bool is_write, hwaddr access_len)
3324 {
3325 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3326 }
3327
3328 #define ARG1_DECL AddressSpace *as
3329 #define ARG1 as
3330 #define SUFFIX
3331 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3332 #define RCU_READ_LOCK(...) rcu_read_lock()
3333 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3334 #include "memory_ldst.c.inc"
3335
3336 int64_t address_space_cache_init(MemoryRegionCache *cache,
3337 AddressSpace *as,
3338 hwaddr addr,
3339 hwaddr len,
3340 bool is_write)
3341 {
3342 AddressSpaceDispatch *d;
3343 hwaddr l;
3344 MemoryRegion *mr;
3345 Int128 diff;
3346
3347 assert(len > 0);
3348
3349 l = len;
3350 cache->fv = address_space_get_flatview(as);
3351 d = flatview_to_dispatch(cache->fv);
3352 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3353
3354 /*
3355 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3356 * Take that into account to compute how many bytes are there between
3357 * cache->xlat and the end of the section.
3358 */
3359 diff = int128_sub(cache->mrs.size,
3360 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3361 l = int128_get64(int128_min(diff, int128_make64(l)));
3362
3363 mr = cache->mrs.mr;
3364 memory_region_ref(mr);
3365 if (memory_access_is_direct(mr, is_write)) {
3366 /* We don't care about the memory attributes here as we're only
3367 * doing this if we found actual RAM, which behaves the same
3368 * regardless of attributes; so UNSPECIFIED is fine.
3369 */
3370 l = flatview_extend_translation(cache->fv, addr, len, mr,
3371 cache->xlat, l, is_write,
3372 MEMTXATTRS_UNSPECIFIED);
3373 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3374 } else {
3375 cache->ptr = NULL;
3376 }
3377
3378 cache->len = l;
3379 cache->is_write = is_write;
3380 return l;
3381 }
3382
3383 void address_space_cache_invalidate(MemoryRegionCache *cache,
3384 hwaddr addr,
3385 hwaddr access_len)
3386 {
3387 assert(cache->is_write);
3388 if (likely(cache->ptr)) {
3389 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3390 }
3391 }
3392
3393 void address_space_cache_destroy(MemoryRegionCache *cache)
3394 {
3395 if (!cache->mrs.mr) {
3396 return;
3397 }
3398
3399 if (xen_enabled()) {
3400 xen_invalidate_map_cache_entry(cache->ptr);
3401 }
3402 memory_region_unref(cache->mrs.mr);
3403 flatview_unref(cache->fv);
3404 cache->mrs.mr = NULL;
3405 cache->fv = NULL;
3406 }
3407
3408 /* Called from RCU critical section. This function has the same
3409 * semantics as address_space_translate, but it only works on a
3410 * predefined range of a MemoryRegion that was mapped with
3411 * address_space_cache_init.
3412 */
3413 static inline MemoryRegion *address_space_translate_cached(
3414 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3415 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3416 {
3417 MemoryRegionSection section;
3418 MemoryRegion *mr;
3419 IOMMUMemoryRegion *iommu_mr;
3420 AddressSpace *target_as;
3421
3422 assert(!cache->ptr);
3423 *xlat = addr + cache->xlat;
3424
3425 mr = cache->mrs.mr;
3426 iommu_mr = memory_region_get_iommu(mr);
3427 if (!iommu_mr) {
3428 /* MMIO region. */
3429 return mr;
3430 }
3431
3432 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3433 NULL, is_write, true,
3434 &target_as, attrs);
3435 return section.mr;
3436 }
3437
3438 /* Called from RCU critical section. address_space_read_cached uses this
3439 * out of line function when the target is an MMIO or IOMMU region.
3440 */
3441 MemTxResult
3442 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3443 void *buf, hwaddr len)
3444 {
3445 hwaddr addr1, l;
3446 MemoryRegion *mr;
3447
3448 l = len;
3449 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3450 MEMTXATTRS_UNSPECIFIED);
3451 return flatview_read_continue(cache->fv,
3452 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3453 addr1, l, mr);
3454 }
3455
3456 /* Called from RCU critical section. address_space_write_cached uses this
3457 * out of line function when the target is an MMIO or IOMMU region.
3458 */
3459 MemTxResult
3460 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3461 const void *buf, hwaddr len)
3462 {
3463 hwaddr addr1, l;
3464 MemoryRegion *mr;
3465
3466 l = len;
3467 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3468 MEMTXATTRS_UNSPECIFIED);
3469 return flatview_write_continue(cache->fv,
3470 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3471 addr1, l, mr);
3472 }
3473
3474 #define ARG1_DECL MemoryRegionCache *cache
3475 #define ARG1 cache
3476 #define SUFFIX _cached_slow
3477 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3478 #define RCU_READ_LOCK() ((void)0)
3479 #define RCU_READ_UNLOCK() ((void)0)
3480 #include "memory_ldst.c.inc"
3481
3482 /* virtual memory access for debug (includes writing to ROM) */
3483 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3484 void *ptr, size_t len, bool is_write)
3485 {
3486 hwaddr phys_addr;
3487 vaddr l, page;
3488 uint8_t *buf = ptr;
3489
3490 cpu_synchronize_state(cpu);
3491 while (len > 0) {
3492 int asidx;
3493 MemTxAttrs attrs;
3494 MemTxResult res;
3495
3496 page = addr & TARGET_PAGE_MASK;
3497 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3498 asidx = cpu_asidx_from_attrs(cpu, attrs);
3499 /* if no physical page mapped, return an error */
3500 if (phys_addr == -1)
3501 return -1;
3502 l = (page + TARGET_PAGE_SIZE) - addr;
3503 if (l > len)
3504 l = len;
3505 phys_addr += (addr & ~TARGET_PAGE_MASK);
3506 if (is_write) {
3507 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3508 attrs, buf, l);
3509 } else {
3510 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3511 attrs, buf, l);
3512 }
3513 if (res != MEMTX_OK) {
3514 return -1;
3515 }
3516 len -= l;
3517 buf += l;
3518 addr += l;
3519 }
3520 return 0;
3521 }
3522
3523 /*
3524 * Allows code that needs to deal with migration bitmaps etc to still be built
3525 * target independent.
3526 */
3527 size_t qemu_target_page_size(void)
3528 {
3529 return TARGET_PAGE_SIZE;
3530 }
3531
3532 int qemu_target_page_bits(void)
3533 {
3534 return TARGET_PAGE_BITS;
3535 }
3536
3537 int qemu_target_page_bits_min(void)
3538 {
3539 return TARGET_PAGE_BITS_MIN;
3540 }
3541
3542 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3543 {
3544 MemoryRegion*mr;
3545 hwaddr l = 1;
3546
3547 RCU_READ_LOCK_GUARD();
3548 mr = address_space_translate(&address_space_memory,
3549 phys_addr, &phys_addr, &l, false,
3550 MEMTXATTRS_UNSPECIFIED);
3551
3552 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3553 }
3554
3555 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3556 {
3557 RAMBlock *block;
3558 int ret = 0;
3559
3560 RCU_READ_LOCK_GUARD();
3561 RAMBLOCK_FOREACH(block) {
3562 ret = func(block, opaque);
3563 if (ret) {
3564 break;
3565 }
3566 }
3567 return ret;
3568 }
3569
3570 /*
3571 * Unmap pages of memory from start to start+length such that
3572 * they a) read as 0, b) Trigger whatever fault mechanism
3573 * the OS provides for postcopy.
3574 * The pages must be unmapped by the end of the function.
3575 * Returns: 0 on success, none-0 on failure
3576 *
3577 */
3578 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3579 {
3580 int ret = -1;
3581
3582 uint8_t *host_startaddr = rb->host + start;
3583
3584 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3585 error_report("ram_block_discard_range: Unaligned start address: %p",
3586 host_startaddr);
3587 goto err;
3588 }
3589
3590 if ((start + length) <= rb->max_length) {
3591 bool need_madvise, need_fallocate;
3592 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3593 error_report("ram_block_discard_range: Unaligned length: %zx",
3594 length);
3595 goto err;
3596 }
3597
3598 errno = ENOTSUP; /* If we are missing MADVISE etc */
3599
3600 /* The logic here is messy;
3601 * madvise DONTNEED fails for hugepages
3602 * fallocate works on hugepages and shmem
3603 * shared anonymous memory requires madvise REMOVE
3604 */
3605 need_madvise = (rb->page_size == qemu_host_page_size);
3606 need_fallocate = rb->fd != -1;
3607 if (need_fallocate) {
3608 /* For a file, this causes the area of the file to be zero'd
3609 * if read, and for hugetlbfs also causes it to be unmapped
3610 * so a userfault will trigger.
3611 */
3612 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3613 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3614 start, length);
3615 if (ret) {
3616 ret = -errno;
3617 error_report("ram_block_discard_range: Failed to fallocate "
3618 "%s:%" PRIx64 " +%zx (%d)",
3619 rb->idstr, start, length, ret);
3620 goto err;
3621 }
3622 #else
3623 ret = -ENOSYS;
3624 error_report("ram_block_discard_range: fallocate not available/file"
3625 "%s:%" PRIx64 " +%zx (%d)",
3626 rb->idstr, start, length, ret);
3627 goto err;
3628 #endif
3629 }
3630 if (need_madvise) {
3631 /* For normal RAM this causes it to be unmapped,
3632 * for shared memory it causes the local mapping to disappear
3633 * and to fall back on the file contents (which we just
3634 * fallocate'd away).
3635 */
3636 #if defined(CONFIG_MADVISE)
3637 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3638 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3639 } else {
3640 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3641 }
3642 if (ret) {
3643 ret = -errno;
3644 error_report("ram_block_discard_range: Failed to discard range "
3645 "%s:%" PRIx64 " +%zx (%d)",
3646 rb->idstr, start, length, ret);
3647 goto err;
3648 }
3649 #else
3650 ret = -ENOSYS;
3651 error_report("ram_block_discard_range: MADVISE not available"
3652 "%s:%" PRIx64 " +%zx (%d)",
3653 rb->idstr, start, length, ret);
3654 goto err;
3655 #endif
3656 }
3657 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3658 need_madvise, need_fallocate, ret);
3659 } else {
3660 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3661 "/%zx/" RAM_ADDR_FMT")",
3662 rb->idstr, start, length, rb->max_length);
3663 }
3664
3665 err:
3666 return ret;
3667 }
3668
3669 bool ramblock_is_pmem(RAMBlock *rb)
3670 {
3671 return rb->flags & RAM_PMEM;
3672 }
3673
3674 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3675 {
3676 if (start == end - 1) {
3677 qemu_printf("\t%3d ", start);
3678 } else {
3679 qemu_printf("\t%3d..%-3d ", start, end - 1);
3680 }
3681 qemu_printf(" skip=%d ", skip);
3682 if (ptr == PHYS_MAP_NODE_NIL) {
3683 qemu_printf(" ptr=NIL");
3684 } else if (!skip) {
3685 qemu_printf(" ptr=#%d", ptr);
3686 } else {
3687 qemu_printf(" ptr=[%d]", ptr);
3688 }
3689 qemu_printf("\n");
3690 }
3691
3692 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3693 int128_sub((size), int128_one())) : 0)
3694
3695 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3696 {
3697 int i;
3698
3699 qemu_printf(" Dispatch\n");
3700 qemu_printf(" Physical sections\n");
3701
3702 for (i = 0; i < d->map.sections_nb; ++i) {
3703 MemoryRegionSection *s = d->map.sections + i;
3704 const char *names[] = { " [unassigned]", " [not dirty]",
3705 " [ROM]", " [watch]" };
3706
3707 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3708 " %s%s%s%s%s",
3709 i,
3710 s->offset_within_address_space,
3711 s->offset_within_address_space + MR_SIZE(s->size),
3712 s->mr->name ? s->mr->name : "(noname)",
3713 i < ARRAY_SIZE(names) ? names[i] : "",
3714 s->mr == root ? " [ROOT]" : "",
3715 s == d->mru_section ? " [MRU]" : "",
3716 s->mr->is_iommu ? " [iommu]" : "");
3717
3718 if (s->mr->alias) {
3719 qemu_printf(" alias=%s", s->mr->alias->name ?
3720 s->mr->alias->name : "noname");
3721 }
3722 qemu_printf("\n");
3723 }
3724
3725 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3726 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3727 for (i = 0; i < d->map.nodes_nb; ++i) {
3728 int j, jprev;
3729 PhysPageEntry prev;
3730 Node *n = d->map.nodes + i;
3731
3732 qemu_printf(" [%d]\n", i);
3733
3734 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3735 PhysPageEntry *pe = *n + j;
3736
3737 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3738 continue;
3739 }
3740
3741 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3742
3743 jprev = j;
3744 prev = *pe;
3745 }
3746
3747 if (jprev != ARRAY_SIZE(*n)) {
3748 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3749 }
3750 }
3751 }
3752
3753 /* Require any discards to work. */
3754 static unsigned int ram_block_discard_required_cnt;
3755 /* Require only coordinated discards to work. */
3756 static unsigned int ram_block_coordinated_discard_required_cnt;
3757 /* Disable any discards. */
3758 static unsigned int ram_block_discard_disabled_cnt;
3759 /* Disable only uncoordinated discards. */
3760 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3761 static QemuMutex ram_block_discard_disable_mutex;
3762
3763 static void ram_block_discard_disable_mutex_lock(void)
3764 {
3765 static gsize initialized;
3766
3767 if (g_once_init_enter(&initialized)) {
3768 qemu_mutex_init(&ram_block_discard_disable_mutex);
3769 g_once_init_leave(&initialized, 1);
3770 }
3771 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3772 }
3773
3774 static void ram_block_discard_disable_mutex_unlock(void)
3775 {
3776 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3777 }
3778
3779 int ram_block_discard_disable(bool state)
3780 {
3781 int ret = 0;
3782
3783 ram_block_discard_disable_mutex_lock();
3784 if (!state) {
3785 ram_block_discard_disabled_cnt--;
3786 } else if (ram_block_discard_required_cnt ||
3787 ram_block_coordinated_discard_required_cnt) {
3788 ret = -EBUSY;
3789 } else {
3790 ram_block_discard_disabled_cnt++;
3791 }
3792 ram_block_discard_disable_mutex_unlock();
3793 return ret;
3794 }
3795
3796 int ram_block_uncoordinated_discard_disable(bool state)
3797 {
3798 int ret = 0;
3799
3800 ram_block_discard_disable_mutex_lock();
3801 if (!state) {
3802 ram_block_uncoordinated_discard_disabled_cnt--;
3803 } else if (ram_block_discard_required_cnt) {
3804 ret = -EBUSY;
3805 } else {
3806 ram_block_uncoordinated_discard_disabled_cnt++;
3807 }
3808 ram_block_discard_disable_mutex_unlock();
3809 return ret;
3810 }
3811
3812 int ram_block_discard_require(bool state)
3813 {
3814 int ret = 0;
3815
3816 ram_block_discard_disable_mutex_lock();
3817 if (!state) {
3818 ram_block_discard_required_cnt--;
3819 } else if (ram_block_discard_disabled_cnt ||
3820 ram_block_uncoordinated_discard_disabled_cnt) {
3821 ret = -EBUSY;
3822 } else {
3823 ram_block_discard_required_cnt++;
3824 }
3825 ram_block_discard_disable_mutex_unlock();
3826 return ret;
3827 }
3828
3829 int ram_block_coordinated_discard_require(bool state)
3830 {
3831 int ret = 0;
3832
3833 ram_block_discard_disable_mutex_lock();
3834 if (!state) {
3835 ram_block_coordinated_discard_required_cnt--;
3836 } else if (ram_block_discard_disabled_cnt) {
3837 ret = -EBUSY;
3838 } else {
3839 ram_block_coordinated_discard_required_cnt++;
3840 }
3841 ram_block_discard_disable_mutex_unlock();
3842 return ret;
3843 }
3844
3845 bool ram_block_discard_is_disabled(void)
3846 {
3847 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3848 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3849 }
3850
3851 bool ram_block_discard_is_required(void)
3852 {
3853 return qatomic_read(&ram_block_discard_required_cnt) ||
3854 qatomic_read(&ram_block_coordinated_discard_required_cnt);
3855 }