]> git.proxmox.com Git - mirror_qemu.git/blob - system/physmem.c
target: Make qemu_target_page_mask() available for *-user
[mirror_qemu.git] / system / physmem.c
1 /*
2 * RAM allocation and memory access
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32
33 #include "exec/exec-all.h"
34 #include "exec/target_page.h"
35 #include "hw/qdev-core.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/boards.h"
38 #include "hw/xen/xen.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "qemu/log.h"
47 #include "qemu/memalign.h"
48 #include "exec/memory.h"
49 #include "exec/ioport.h"
50 #include "sysemu/dma.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/hw_accel.h"
53 #include "sysemu/xen-mapcache.h"
54 #include "trace/trace-root.h"
55
56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
57 #include <linux/falloc.h>
58 #endif
59
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "exec/translate-all.h"
63 #include "sysemu/replay.h"
64
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67
68 #include "qemu/pmem.h"
69
70 #include "migration/vmstate.h"
71
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
76
77 #include "monitor/monitor.h"
78
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
82
83 //#define DEBUG_SUBPAGE
84
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
86 * are protected by the ramlist lock.
87 */
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
89
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
92
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
95
96 static MemoryRegion io_mem_unassigned;
97
98 typedef struct PhysPageEntry PhysPageEntry;
99
100 struct PhysPageEntry {
101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102 uint32_t skip : 6;
103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104 uint32_t ptr : 26;
105 };
106
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
108
109 /* Size of the L2 (and L3, etc) page tables. */
110 #define ADDR_SPACE_BITS 64
111
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
114
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
116
117 typedef PhysPageEntry Node[P_L2_SIZE];
118
119 typedef struct PhysPageMap {
120 struct rcu_head rcu;
121
122 unsigned sections_nb;
123 unsigned sections_nb_alloc;
124 unsigned nodes_nb;
125 unsigned nodes_nb_alloc;
126 Node *nodes;
127 MemoryRegionSection *sections;
128 } PhysPageMap;
129
130 struct AddressSpaceDispatch {
131 MemoryRegionSection *mru_section;
132 /* This is a multi-level map on the physical address space.
133 * The bottom level has pointers to MemoryRegionSections.
134 */
135 PhysPageEntry phys_map;
136 PhysPageMap map;
137 };
138
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141 MemoryRegion iomem;
142 FlatView *fv;
143 hwaddr base;
144 uint16_t sub_section[];
145 } subpage_t;
146
147 #define PHYS_SECTION_UNASSIGNED 0
148
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
153
154 /**
155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156 * @cpu: the CPU whose AddressSpace this is
157 * @as: the AddressSpace itself
158 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159 * @tcg_as_listener: listener for tracking changes to the AddressSpace
160 */
161 struct CPUAddressSpace {
162 CPUState *cpu;
163 AddressSpace *as;
164 struct AddressSpaceDispatch *memory_dispatch;
165 MemoryListener tcg_as_listener;
166 };
167
168 struct DirtyBitmapSnapshot {
169 ram_addr_t start;
170 ram_addr_t end;
171 unsigned long dirty[];
172 };
173
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
175 {
176 static unsigned alloc_hint = 16;
177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180 alloc_hint = map->nodes_nb_alloc;
181 }
182 }
183
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
185 {
186 unsigned i;
187 uint32_t ret;
188 PhysPageEntry e;
189 PhysPageEntry *p;
190
191 ret = map->nodes_nb++;
192 p = map->nodes[ret];
193 assert(ret != PHYS_MAP_NODE_NIL);
194 assert(ret != map->nodes_nb_alloc);
195
196 e.skip = leaf ? 0 : 1;
197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198 for (i = 0; i < P_L2_SIZE; ++i) {
199 memcpy(&p[i], &e, sizeof(e));
200 }
201 return ret;
202 }
203
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205 hwaddr *index, uint64_t *nb, uint16_t leaf,
206 int level)
207 {
208 PhysPageEntry *p;
209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
210
211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212 lp->ptr = phys_map_node_alloc(map, level == 0);
213 }
214 p = map->nodes[lp->ptr];
215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
216
217 while (*nb && lp < &p[P_L2_SIZE]) {
218 if ((*index & (step - 1)) == 0 && *nb >= step) {
219 lp->skip = 0;
220 lp->ptr = leaf;
221 *index += step;
222 *nb -= step;
223 } else {
224 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
225 }
226 ++lp;
227 }
228 }
229
230 static void phys_page_set(AddressSpaceDispatch *d,
231 hwaddr index, uint64_t nb,
232 uint16_t leaf)
233 {
234 /* Wildly overreserve - it doesn't matter much. */
235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
236
237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
238 }
239
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241 * and update our entry so we can skip it and go directly to the destination.
242 */
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
244 {
245 unsigned valid_ptr = P_L2_SIZE;
246 int valid = 0;
247 PhysPageEntry *p;
248 int i;
249
250 if (lp->ptr == PHYS_MAP_NODE_NIL) {
251 return;
252 }
253
254 p = nodes[lp->ptr];
255 for (i = 0; i < P_L2_SIZE; i++) {
256 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257 continue;
258 }
259
260 valid_ptr = i;
261 valid++;
262 if (p[i].skip) {
263 phys_page_compact(&p[i], nodes);
264 }
265 }
266
267 /* We can only compress if there's only one child. */
268 if (valid != 1) {
269 return;
270 }
271
272 assert(valid_ptr < P_L2_SIZE);
273
274 /* Don't compress if it won't fit in the # of bits we have. */
275 if (P_L2_LEVELS >= (1 << 6) &&
276 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277 return;
278 }
279
280 lp->ptr = p[valid_ptr].ptr;
281 if (!p[valid_ptr].skip) {
282 /* If our only child is a leaf, make this a leaf. */
283 /* By design, we should have made this node a leaf to begin with so we
284 * should never reach here.
285 * But since it's so simple to handle this, let's do it just in case we
286 * change this rule.
287 */
288 lp->skip = 0;
289 } else {
290 lp->skip += p[valid_ptr].skip;
291 }
292 }
293
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
295 {
296 if (d->phys_map.skip) {
297 phys_page_compact(&d->phys_map, d->map.nodes);
298 }
299 }
300
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302 hwaddr addr)
303 {
304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305 * the section must cover the entire address space.
306 */
307 return int128_gethi(section->size) ||
308 range_covers_byte(section->offset_within_address_space,
309 int128_getlo(section->size), addr);
310 }
311
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
313 {
314 PhysPageEntry lp = d->phys_map, *p;
315 Node *nodes = d->map.nodes;
316 MemoryRegionSection *sections = d->map.sections;
317 hwaddr index = addr >> TARGET_PAGE_BITS;
318 int i;
319
320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321 if (lp.ptr == PHYS_MAP_NODE_NIL) {
322 return &sections[PHYS_SECTION_UNASSIGNED];
323 }
324 p = nodes[lp.ptr];
325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
326 }
327
328 if (section_covers_addr(&sections[lp.ptr], addr)) {
329 return &sections[lp.ptr];
330 } else {
331 return &sections[PHYS_SECTION_UNASSIGNED];
332 }
333 }
334
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337 hwaddr addr,
338 bool resolve_subpage)
339 {
340 MemoryRegionSection *section = qatomic_read(&d->mru_section);
341 subpage_t *subpage;
342
343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344 !section_covers_addr(section, addr)) {
345 section = phys_page_find(d, addr);
346 qatomic_set(&d->mru_section, section);
347 }
348 if (resolve_subpage && section->mr->subpage) {
349 subpage = container_of(section->mr, subpage_t, iomem);
350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
351 }
352 return section;
353 }
354
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358 hwaddr *plen, bool resolve_subpage)
359 {
360 MemoryRegionSection *section;
361 MemoryRegion *mr;
362 Int128 diff;
363
364 section = address_space_lookup_region(d, addr, resolve_subpage);
365 /* Compute offset within MemoryRegionSection */
366 addr -= section->offset_within_address_space;
367
368 /* Compute offset within MemoryRegion */
369 *xlat = addr + section->offset_within_region;
370
371 mr = section->mr;
372
373 /* MMIO registers can be expected to perform full-width accesses based only
374 * on their address, without considering adjacent registers that could
375 * decode to completely different MemoryRegions. When such registers
376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377 * regions overlap wildly. For this reason we cannot clamp the accesses
378 * here.
379 *
380 * If the length is small (as is the case for address_space_ldl/stl),
381 * everything works fine. If the incoming length is large, however,
382 * the caller really has to do the clamping through memory_access_size.
383 */
384 if (memory_region_is_ram(mr)) {
385 diff = int128_sub(section->size, int128_make64(addr));
386 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
387 }
388 return section;
389 }
390
391 /**
392 * address_space_translate_iommu - translate an address through an IOMMU
393 * memory region and then through the target address space.
394 *
395 * @iommu_mr: the IOMMU memory region that we start the translation from
396 * @addr: the address to be translated through the MMU
397 * @xlat: the translated address offset within the destination memory region.
398 * It cannot be %NULL.
399 * @plen_out: valid read/write length of the translated address. It
400 * cannot be %NULL.
401 * @page_mask_out: page mask for the translated address. This
402 * should only be meaningful for IOMMU translated
403 * addresses, since there may be huge pages that this bit
404 * would tell. It can be %NULL if we don't care about it.
405 * @is_write: whether the translation operation is for write
406 * @is_mmio: whether this can be MMIO, set true if it can
407 * @target_as: the address space targeted by the IOMMU
408 * @attrs: transaction attributes
409 *
410 * This function is called from RCU critical section. It is the common
411 * part of flatview_do_translate and address_space_translate_cached.
412 */
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414 hwaddr *xlat,
415 hwaddr *plen_out,
416 hwaddr *page_mask_out,
417 bool is_write,
418 bool is_mmio,
419 AddressSpace **target_as,
420 MemTxAttrs attrs)
421 {
422 MemoryRegionSection *section;
423 hwaddr page_mask = (hwaddr)-1;
424
425 do {
426 hwaddr addr = *xlat;
427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428 int iommu_idx = 0;
429 IOMMUTLBEntry iotlb;
430
431 if (imrc->attrs_to_index) {
432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
433 }
434
435 iotlb = imrc->translate(iommu_mr, addr, is_write ?
436 IOMMU_WO : IOMMU_RO, iommu_idx);
437
438 if (!(iotlb.perm & (1 << is_write))) {
439 goto unassigned;
440 }
441
442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443 | (addr & iotlb.addr_mask));
444 page_mask &= iotlb.addr_mask;
445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446 *target_as = iotlb.target_as;
447
448 section = address_space_translate_internal(
449 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450 plen_out, is_mmio);
451
452 iommu_mr = memory_region_get_iommu(section->mr);
453 } while (unlikely(iommu_mr));
454
455 if (page_mask_out) {
456 *page_mask_out = page_mask;
457 }
458 return *section;
459
460 unassigned:
461 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462 }
463
464 /**
465 * flatview_do_translate - translate an address in FlatView
466 *
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
470 * cannot be @NULL.
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
479 * @target_as: the address space targeted by the IOMMU
480 * @attrs: memory transaction attributes
481 *
482 * This function is called from RCU critical section
483 */
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485 hwaddr addr,
486 hwaddr *xlat,
487 hwaddr *plen_out,
488 hwaddr *page_mask_out,
489 bool is_write,
490 bool is_mmio,
491 AddressSpace **target_as,
492 MemTxAttrs attrs)
493 {
494 MemoryRegionSection *section;
495 IOMMUMemoryRegion *iommu_mr;
496 hwaddr plen = (hwaddr)(-1);
497
498 if (!plen_out) {
499 plen_out = &plen;
500 }
501
502 section = address_space_translate_internal(
503 flatview_to_dispatch(fv), addr, xlat,
504 plen_out, is_mmio);
505
506 iommu_mr = memory_region_get_iommu(section->mr);
507 if (unlikely(iommu_mr)) {
508 return address_space_translate_iommu(iommu_mr, xlat,
509 plen_out, page_mask_out,
510 is_write, is_mmio,
511 target_as, attrs);
512 }
513 if (page_mask_out) {
514 /* Not behind an IOMMU, use default page size. */
515 *page_mask_out = ~TARGET_PAGE_MASK;
516 }
517
518 return *section;
519 }
520
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523 bool is_write, MemTxAttrs attrs)
524 {
525 MemoryRegionSection section;
526 hwaddr xlat, page_mask;
527
528 /*
529 * This can never be MMIO, and we don't really care about plen,
530 * but page mask.
531 */
532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533 NULL, &page_mask, is_write, false, &as,
534 attrs);
535
536 /* Illegal translation */
537 if (section.mr == &io_mem_unassigned) {
538 goto iotlb_fail;
539 }
540
541 /* Convert memory region offset into address space offset */
542 xlat += section.offset_within_address_space -
543 section.offset_within_region;
544
545 return (IOMMUTLBEntry) {
546 .target_as = as,
547 .iova = addr & ~page_mask,
548 .translated_addr = xlat & ~page_mask,
549 .addr_mask = page_mask,
550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551 .perm = IOMMU_RW,
552 };
553
554 iotlb_fail:
555 return (IOMMUTLBEntry) {0};
556 }
557
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560 hwaddr *plen, bool is_write,
561 MemTxAttrs attrs)
562 {
563 MemoryRegion *mr;
564 MemoryRegionSection section;
565 AddressSpace *as = NULL;
566
567 /* This can be MMIO, so setup MMIO bit. */
568 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569 is_write, true, &as, attrs);
570 mr = section.mr;
571
572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574 *plen = MIN(page, *plen);
575 }
576
577 return mr;
578 }
579
580 typedef struct TCGIOMMUNotifier {
581 IOMMUNotifier n;
582 MemoryRegion *mr;
583 CPUState *cpu;
584 int iommu_idx;
585 bool active;
586 } TCGIOMMUNotifier;
587
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
589 {
590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
591
592 if (!notifier->active) {
593 return;
594 }
595 tlb_flush(notifier->cpu);
596 notifier->active = false;
597 /* We leave the notifier struct on the list to avoid reallocating it later.
598 * Generally the number of IOMMUs a CPU deals with will be small.
599 * In any case we can't unregister the iommu notifier from a notify
600 * callback.
601 */
602 }
603
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605 IOMMUMemoryRegion *iommu_mr,
606 int iommu_idx)
607 {
608 /* Make sure this CPU has an IOMMU notifier registered for this
609 * IOMMU/IOMMU index combination, so that we can flush its TLB
610 * when the IOMMU tells us the mappings we've cached have changed.
611 */
612 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613 TCGIOMMUNotifier *notifier = NULL;
614 int i;
615
616 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619 break;
620 }
621 }
622 if (i == cpu->iommu_notifiers->len) {
623 /* Not found, add a new entry at the end of the array */
624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625 notifier = g_new0(TCGIOMMUNotifier, 1);
626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
627
628 notifier->mr = mr;
629 notifier->iommu_idx = iommu_idx;
630 notifier->cpu = cpu;
631 /* Rather than trying to register interest in the specific part
632 * of the iommu's address space that we've accessed and then
633 * expand it later as subsequent accesses touch more of it, we
634 * just register interest in the whole thing, on the assumption
635 * that iommu reconfiguration will be rare.
636 */
637 iommu_notifier_init(&notifier->n,
638 tcg_iommu_unmap_notify,
639 IOMMU_NOTIFIER_UNMAP,
640 0,
641 HWADDR_MAX,
642 iommu_idx);
643 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644 &error_fatal);
645 }
646
647 if (!notifier->active) {
648 notifier->active = true;
649 }
650 }
651
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
653 {
654 /* Destroy the CPU's notifier list */
655 int i;
656 TCGIOMMUNotifier *notifier;
657
658 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661 g_free(notifier);
662 }
663 g_array_free(cpu->iommu_notifiers, true);
664 }
665
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
667 {
668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
669 }
670
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
674 hwaddr *xlat, hwaddr *plen,
675 MemTxAttrs attrs, int *prot)
676 {
677 MemoryRegionSection *section;
678 IOMMUMemoryRegion *iommu_mr;
679 IOMMUMemoryRegionClass *imrc;
680 IOMMUTLBEntry iotlb;
681 int iommu_idx;
682 hwaddr addr = orig_addr;
683 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
684
685 for (;;) {
686 section = address_space_translate_internal(d, addr, &addr, plen, false);
687
688 iommu_mr = memory_region_get_iommu(section->mr);
689 if (!iommu_mr) {
690 break;
691 }
692
693 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
694
695 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
696 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
697 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
698 * doesn't short-cut its translation table walk.
699 */
700 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
701 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
702 | (addr & iotlb.addr_mask));
703 /* Update the caller's prot bits to remove permissions the IOMMU
704 * is giving us a failure response for. If we get down to no
705 * permissions left at all we can give up now.
706 */
707 if (!(iotlb.perm & IOMMU_RO)) {
708 *prot &= ~(PAGE_READ | PAGE_EXEC);
709 }
710 if (!(iotlb.perm & IOMMU_WO)) {
711 *prot &= ~PAGE_WRITE;
712 }
713
714 if (!*prot) {
715 goto translate_fail;
716 }
717
718 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
719 }
720
721 assert(!memory_region_is_iommu(section->mr));
722 *xlat = addr;
723 return section;
724
725 translate_fail:
726 /*
727 * We should be given a page-aligned address -- certainly
728 * tlb_set_page_with_attrs() does so. The page offset of xlat
729 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
730 * The page portion of xlat will be logged by memory_region_access_valid()
731 * when this memory access is rejected, so use the original untranslated
732 * physical address.
733 */
734 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
735 *xlat = orig_addr;
736 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
737 }
738
739 void cpu_address_space_init(CPUState *cpu, int asidx,
740 const char *prefix, MemoryRegion *mr)
741 {
742 CPUAddressSpace *newas;
743 AddressSpace *as = g_new0(AddressSpace, 1);
744 char *as_name;
745
746 assert(mr);
747 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
748 address_space_init(as, mr, as_name);
749 g_free(as_name);
750
751 /* Target code should have set num_ases before calling us */
752 assert(asidx < cpu->num_ases);
753
754 if (asidx == 0) {
755 /* address space 0 gets the convenience alias */
756 cpu->as = as;
757 }
758
759 /* KVM cannot currently support multiple address spaces. */
760 assert(asidx == 0 || !kvm_enabled());
761
762 if (!cpu->cpu_ases) {
763 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
764 }
765
766 newas = &cpu->cpu_ases[asidx];
767 newas->cpu = cpu;
768 newas->as = as;
769 if (tcg_enabled()) {
770 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
771 newas->tcg_as_listener.commit = tcg_commit;
772 newas->tcg_as_listener.name = "tcg";
773 memory_listener_register(&newas->tcg_as_listener, as);
774 }
775 }
776
777 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
778 {
779 /* Return the AddressSpace corresponding to the specified index */
780 return cpu->cpu_ases[asidx].as;
781 }
782
783 /* Called from RCU critical section */
784 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
785 {
786 RAMBlock *block;
787
788 block = qatomic_rcu_read(&ram_list.mru_block);
789 if (block && addr - block->offset < block->max_length) {
790 return block;
791 }
792 RAMBLOCK_FOREACH(block) {
793 if (addr - block->offset < block->max_length) {
794 goto found;
795 }
796 }
797
798 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
799 abort();
800
801 found:
802 /* It is safe to write mru_block outside the BQL. This
803 * is what happens:
804 *
805 * mru_block = xxx
806 * rcu_read_unlock()
807 * xxx removed from list
808 * rcu_read_lock()
809 * read mru_block
810 * mru_block = NULL;
811 * call_rcu(reclaim_ramblock, xxx);
812 * rcu_read_unlock()
813 *
814 * qatomic_rcu_set is not needed here. The block was already published
815 * when it was placed into the list. Here we're just making an extra
816 * copy of the pointer.
817 */
818 ram_list.mru_block = block;
819 return block;
820 }
821
822 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
823 {
824 CPUState *cpu;
825 ram_addr_t start1;
826 RAMBlock *block;
827 ram_addr_t end;
828
829 assert(tcg_enabled());
830 end = TARGET_PAGE_ALIGN(start + length);
831 start &= TARGET_PAGE_MASK;
832
833 RCU_READ_LOCK_GUARD();
834 block = qemu_get_ram_block(start);
835 assert(block == qemu_get_ram_block(end - 1));
836 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
837 CPU_FOREACH(cpu) {
838 tlb_reset_dirty(cpu, start1, length);
839 }
840 }
841
842 /* Note: start and end must be within the same ram block. */
843 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
844 ram_addr_t length,
845 unsigned client)
846 {
847 DirtyMemoryBlocks *blocks;
848 unsigned long end, page, start_page;
849 bool dirty = false;
850 RAMBlock *ramblock;
851 uint64_t mr_offset, mr_size;
852
853 if (length == 0) {
854 return false;
855 }
856
857 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
858 start_page = start >> TARGET_PAGE_BITS;
859 page = start_page;
860
861 WITH_RCU_READ_LOCK_GUARD() {
862 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
863 ramblock = qemu_get_ram_block(start);
864 /* Range sanity check on the ramblock */
865 assert(start >= ramblock->offset &&
866 start + length <= ramblock->offset + ramblock->used_length);
867
868 while (page < end) {
869 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
870 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
871 unsigned long num = MIN(end - page,
872 DIRTY_MEMORY_BLOCK_SIZE - offset);
873
874 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
875 offset, num);
876 page += num;
877 }
878
879 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
880 mr_size = (end - start_page) << TARGET_PAGE_BITS;
881 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
882 }
883
884 if (dirty && tcg_enabled()) {
885 tlb_reset_dirty_range_all(start, length);
886 }
887
888 return dirty;
889 }
890
891 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
892 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
893 {
894 DirtyMemoryBlocks *blocks;
895 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
896 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
897 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
898 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
899 DirtyBitmapSnapshot *snap;
900 unsigned long page, end, dest;
901
902 snap = g_malloc0(sizeof(*snap) +
903 ((last - first) >> (TARGET_PAGE_BITS + 3)));
904 snap->start = first;
905 snap->end = last;
906
907 page = first >> TARGET_PAGE_BITS;
908 end = last >> TARGET_PAGE_BITS;
909 dest = 0;
910
911 WITH_RCU_READ_LOCK_GUARD() {
912 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
913
914 while (page < end) {
915 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
916 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
917 unsigned long num = MIN(end - page,
918 DIRTY_MEMORY_BLOCK_SIZE - ofs);
919
920 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
921 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
922 ofs >>= BITS_PER_LEVEL;
923
924 bitmap_copy_and_clear_atomic(snap->dirty + dest,
925 blocks->blocks[idx] + ofs,
926 num);
927 page += num;
928 dest += num >> BITS_PER_LEVEL;
929 }
930 }
931
932 if (tcg_enabled()) {
933 tlb_reset_dirty_range_all(start, length);
934 }
935
936 memory_region_clear_dirty_bitmap(mr, offset, length);
937
938 return snap;
939 }
940
941 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
942 ram_addr_t start,
943 ram_addr_t length)
944 {
945 unsigned long page, end;
946
947 assert(start >= snap->start);
948 assert(start + length <= snap->end);
949
950 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
951 page = (start - snap->start) >> TARGET_PAGE_BITS;
952
953 while (page < end) {
954 if (test_bit(page, snap->dirty)) {
955 return true;
956 }
957 page++;
958 }
959 return false;
960 }
961
962 /* Called from RCU critical section */
963 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
964 MemoryRegionSection *section)
965 {
966 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
967 return section - d->map.sections;
968 }
969
970 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
971 uint16_t section);
972 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
973
974 static uint16_t phys_section_add(PhysPageMap *map,
975 MemoryRegionSection *section)
976 {
977 /* The physical section number is ORed with a page-aligned
978 * pointer to produce the iotlb entries. Thus it should
979 * never overflow into the page-aligned value.
980 */
981 assert(map->sections_nb < TARGET_PAGE_SIZE);
982
983 if (map->sections_nb == map->sections_nb_alloc) {
984 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
985 map->sections = g_renew(MemoryRegionSection, map->sections,
986 map->sections_nb_alloc);
987 }
988 map->sections[map->sections_nb] = *section;
989 memory_region_ref(section->mr);
990 return map->sections_nb++;
991 }
992
993 static void phys_section_destroy(MemoryRegion *mr)
994 {
995 bool have_sub_page = mr->subpage;
996
997 memory_region_unref(mr);
998
999 if (have_sub_page) {
1000 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1001 object_unref(OBJECT(&subpage->iomem));
1002 g_free(subpage);
1003 }
1004 }
1005
1006 static void phys_sections_free(PhysPageMap *map)
1007 {
1008 while (map->sections_nb > 0) {
1009 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1010 phys_section_destroy(section->mr);
1011 }
1012 g_free(map->sections);
1013 g_free(map->nodes);
1014 }
1015
1016 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1017 {
1018 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1019 subpage_t *subpage;
1020 hwaddr base = section->offset_within_address_space
1021 & TARGET_PAGE_MASK;
1022 MemoryRegionSection *existing = phys_page_find(d, base);
1023 MemoryRegionSection subsection = {
1024 .offset_within_address_space = base,
1025 .size = int128_make64(TARGET_PAGE_SIZE),
1026 };
1027 hwaddr start, end;
1028
1029 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1030
1031 if (!(existing->mr->subpage)) {
1032 subpage = subpage_init(fv, base);
1033 subsection.fv = fv;
1034 subsection.mr = &subpage->iomem;
1035 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1036 phys_section_add(&d->map, &subsection));
1037 } else {
1038 subpage = container_of(existing->mr, subpage_t, iomem);
1039 }
1040 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1041 end = start + int128_get64(section->size) - 1;
1042 subpage_register(subpage, start, end,
1043 phys_section_add(&d->map, section));
1044 }
1045
1046
1047 static void register_multipage(FlatView *fv,
1048 MemoryRegionSection *section)
1049 {
1050 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1051 hwaddr start_addr = section->offset_within_address_space;
1052 uint16_t section_index = phys_section_add(&d->map, section);
1053 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1054 TARGET_PAGE_BITS));
1055
1056 assert(num_pages);
1057 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1058 }
1059
1060 /*
1061 * The range in *section* may look like this:
1062 *
1063 * |s|PPPPPPP|s|
1064 *
1065 * where s stands for subpage and P for page.
1066 */
1067 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1068 {
1069 MemoryRegionSection remain = *section;
1070 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1071
1072 /* register first subpage */
1073 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1074 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1075 - remain.offset_within_address_space;
1076
1077 MemoryRegionSection now = remain;
1078 now.size = int128_min(int128_make64(left), now.size);
1079 register_subpage(fv, &now);
1080 if (int128_eq(remain.size, now.size)) {
1081 return;
1082 }
1083 remain.size = int128_sub(remain.size, now.size);
1084 remain.offset_within_address_space += int128_get64(now.size);
1085 remain.offset_within_region += int128_get64(now.size);
1086 }
1087
1088 /* register whole pages */
1089 if (int128_ge(remain.size, page_size)) {
1090 MemoryRegionSection now = remain;
1091 now.size = int128_and(now.size, int128_neg(page_size));
1092 register_multipage(fv, &now);
1093 if (int128_eq(remain.size, now.size)) {
1094 return;
1095 }
1096 remain.size = int128_sub(remain.size, now.size);
1097 remain.offset_within_address_space += int128_get64(now.size);
1098 remain.offset_within_region += int128_get64(now.size);
1099 }
1100
1101 /* register last subpage */
1102 register_subpage(fv, &remain);
1103 }
1104
1105 void qemu_flush_coalesced_mmio_buffer(void)
1106 {
1107 if (kvm_enabled())
1108 kvm_flush_coalesced_mmio_buffer();
1109 }
1110
1111 void qemu_mutex_lock_ramlist(void)
1112 {
1113 qemu_mutex_lock(&ram_list.mutex);
1114 }
1115
1116 void qemu_mutex_unlock_ramlist(void)
1117 {
1118 qemu_mutex_unlock(&ram_list.mutex);
1119 }
1120
1121 GString *ram_block_format(void)
1122 {
1123 RAMBlock *block;
1124 char *psize;
1125 GString *buf = g_string_new("");
1126
1127 RCU_READ_LOCK_GUARD();
1128 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n",
1129 "Block Name", "PSize", "Offset", "Used", "Total",
1130 "HVA", "RO");
1131
1132 RAMBLOCK_FOREACH(block) {
1133 psize = size_to_str(block->page_size);
1134 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1135 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1136 block->idstr, psize,
1137 (uint64_t)block->offset,
1138 (uint64_t)block->used_length,
1139 (uint64_t)block->max_length,
1140 (uint64_t)(uintptr_t)block->host,
1141 block->mr->readonly ? "ro" : "rw");
1142
1143 g_free(psize);
1144 }
1145
1146 return buf;
1147 }
1148
1149 static int find_min_backend_pagesize(Object *obj, void *opaque)
1150 {
1151 long *hpsize_min = opaque;
1152
1153 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1154 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1155 long hpsize = host_memory_backend_pagesize(backend);
1156
1157 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1158 *hpsize_min = hpsize;
1159 }
1160 }
1161
1162 return 0;
1163 }
1164
1165 static int find_max_backend_pagesize(Object *obj, void *opaque)
1166 {
1167 long *hpsize_max = opaque;
1168
1169 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1170 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1171 long hpsize = host_memory_backend_pagesize(backend);
1172
1173 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1174 *hpsize_max = hpsize;
1175 }
1176 }
1177
1178 return 0;
1179 }
1180
1181 /*
1182 * TODO: We assume right now that all mapped host memory backends are
1183 * used as RAM, however some might be used for different purposes.
1184 */
1185 long qemu_minrampagesize(void)
1186 {
1187 long hpsize = LONG_MAX;
1188 Object *memdev_root = object_resolve_path("/objects", NULL);
1189
1190 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1191 return hpsize;
1192 }
1193
1194 long qemu_maxrampagesize(void)
1195 {
1196 long pagesize = 0;
1197 Object *memdev_root = object_resolve_path("/objects", NULL);
1198
1199 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1200 return pagesize;
1201 }
1202
1203 #ifdef CONFIG_POSIX
1204 static int64_t get_file_size(int fd)
1205 {
1206 int64_t size;
1207 #if defined(__linux__)
1208 struct stat st;
1209
1210 if (fstat(fd, &st) < 0) {
1211 return -errno;
1212 }
1213
1214 /* Special handling for devdax character devices */
1215 if (S_ISCHR(st.st_mode)) {
1216 g_autofree char *subsystem_path = NULL;
1217 g_autofree char *subsystem = NULL;
1218
1219 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1220 major(st.st_rdev), minor(st.st_rdev));
1221 subsystem = g_file_read_link(subsystem_path, NULL);
1222
1223 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1224 g_autofree char *size_path = NULL;
1225 g_autofree char *size_str = NULL;
1226
1227 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1228 major(st.st_rdev), minor(st.st_rdev));
1229
1230 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1231 return g_ascii_strtoll(size_str, NULL, 0);
1232 }
1233 }
1234 }
1235 #endif /* defined(__linux__) */
1236
1237 /* st.st_size may be zero for special files yet lseek(2) works */
1238 size = lseek(fd, 0, SEEK_END);
1239 if (size < 0) {
1240 return -errno;
1241 }
1242 return size;
1243 }
1244
1245 static int64_t get_file_align(int fd)
1246 {
1247 int64_t align = -1;
1248 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1249 struct stat st;
1250
1251 if (fstat(fd, &st) < 0) {
1252 return -errno;
1253 }
1254
1255 /* Special handling for devdax character devices */
1256 if (S_ISCHR(st.st_mode)) {
1257 g_autofree char *path = NULL;
1258 g_autofree char *rpath = NULL;
1259 struct daxctl_ctx *ctx;
1260 struct daxctl_region *region;
1261 int rc = 0;
1262
1263 path = g_strdup_printf("/sys/dev/char/%d:%d",
1264 major(st.st_rdev), minor(st.st_rdev));
1265 rpath = realpath(path, NULL);
1266 if (!rpath) {
1267 return -errno;
1268 }
1269
1270 rc = daxctl_new(&ctx);
1271 if (rc) {
1272 return -1;
1273 }
1274
1275 daxctl_region_foreach(ctx, region) {
1276 if (strstr(rpath, daxctl_region_get_path(region))) {
1277 align = daxctl_region_get_align(region);
1278 break;
1279 }
1280 }
1281 daxctl_unref(ctx);
1282 }
1283 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1284
1285 return align;
1286 }
1287
1288 static int file_ram_open(const char *path,
1289 const char *region_name,
1290 bool readonly,
1291 bool *created)
1292 {
1293 char *filename;
1294 char *sanitized_name;
1295 char *c;
1296 int fd = -1;
1297
1298 *created = false;
1299 for (;;) {
1300 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1301 if (fd >= 0) {
1302 /*
1303 * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1304 * opened a directory and fail similarly to how we fail ENOENT
1305 * in readonly mode. Note that mkstemp() would imply O_RDWR.
1306 */
1307 if (readonly) {
1308 struct stat file_stat;
1309
1310 if (fstat(fd, &file_stat)) {
1311 close(fd);
1312 if (errno == EINTR) {
1313 continue;
1314 }
1315 return -errno;
1316 } else if (S_ISDIR(file_stat.st_mode)) {
1317 close(fd);
1318 return -EISDIR;
1319 }
1320 }
1321 /* @path names an existing file, use it */
1322 break;
1323 }
1324 if (errno == ENOENT) {
1325 if (readonly) {
1326 /* Refuse to create new, readonly files. */
1327 return -ENOENT;
1328 }
1329 /* @path names a file that doesn't exist, create it */
1330 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1331 if (fd >= 0) {
1332 *created = true;
1333 break;
1334 }
1335 } else if (errno == EISDIR) {
1336 /* @path names a directory, create a file there */
1337 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1338 sanitized_name = g_strdup(region_name);
1339 for (c = sanitized_name; *c != '\0'; c++) {
1340 if (*c == '/') {
1341 *c = '_';
1342 }
1343 }
1344
1345 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1346 sanitized_name);
1347 g_free(sanitized_name);
1348
1349 fd = mkstemp(filename);
1350 if (fd >= 0) {
1351 unlink(filename);
1352 g_free(filename);
1353 break;
1354 }
1355 g_free(filename);
1356 }
1357 if (errno != EEXIST && errno != EINTR) {
1358 return -errno;
1359 }
1360 /*
1361 * Try again on EINTR and EEXIST. The latter happens when
1362 * something else creates the file between our two open().
1363 */
1364 }
1365
1366 return fd;
1367 }
1368
1369 static void *file_ram_alloc(RAMBlock *block,
1370 ram_addr_t memory,
1371 int fd,
1372 bool truncate,
1373 off_t offset,
1374 Error **errp)
1375 {
1376 uint32_t qemu_map_flags;
1377 void *area;
1378
1379 block->page_size = qemu_fd_getpagesize(fd);
1380 if (block->mr->align % block->page_size) {
1381 error_setg(errp, "alignment 0x%" PRIx64
1382 " must be multiples of page size 0x%zx",
1383 block->mr->align, block->page_size);
1384 return NULL;
1385 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1386 error_setg(errp, "alignment 0x%" PRIx64
1387 " must be a power of two", block->mr->align);
1388 return NULL;
1389 } else if (offset % block->page_size) {
1390 error_setg(errp, "offset 0x%" PRIx64
1391 " must be multiples of page size 0x%zx",
1392 offset, block->page_size);
1393 return NULL;
1394 }
1395 block->mr->align = MAX(block->page_size, block->mr->align);
1396 #if defined(__s390x__)
1397 if (kvm_enabled()) {
1398 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1399 }
1400 #endif
1401
1402 if (memory < block->page_size) {
1403 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1404 "or larger than page size 0x%zx",
1405 memory, block->page_size);
1406 return NULL;
1407 }
1408
1409 memory = ROUND_UP(memory, block->page_size);
1410
1411 /*
1412 * ftruncate is not supported by hugetlbfs in older
1413 * hosts, so don't bother bailing out on errors.
1414 * If anything goes wrong with it under other filesystems,
1415 * mmap will fail.
1416 *
1417 * Do not truncate the non-empty backend file to avoid corrupting
1418 * the existing data in the file. Disabling shrinking is not
1419 * enough. For example, the current vNVDIMM implementation stores
1420 * the guest NVDIMM labels at the end of the backend file. If the
1421 * backend file is later extended, QEMU will not be able to find
1422 * those labels. Therefore, extending the non-empty backend file
1423 * is disabled as well.
1424 */
1425 if (truncate && ftruncate(fd, offset + memory)) {
1426 perror("ftruncate");
1427 }
1428
1429 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1430 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1431 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1432 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1433 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1434 if (area == MAP_FAILED) {
1435 error_setg_errno(errp, errno,
1436 "unable to map backing store for guest RAM");
1437 return NULL;
1438 }
1439
1440 block->fd = fd;
1441 block->fd_offset = offset;
1442 return area;
1443 }
1444 #endif
1445
1446 /* Allocate space within the ram_addr_t space that governs the
1447 * dirty bitmaps.
1448 * Called with the ramlist lock held.
1449 */
1450 static ram_addr_t find_ram_offset(ram_addr_t size)
1451 {
1452 RAMBlock *block, *next_block;
1453 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1454
1455 assert(size != 0); /* it would hand out same offset multiple times */
1456
1457 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1458 return 0;
1459 }
1460
1461 RAMBLOCK_FOREACH(block) {
1462 ram_addr_t candidate, next = RAM_ADDR_MAX;
1463
1464 /* Align blocks to start on a 'long' in the bitmap
1465 * which makes the bitmap sync'ing take the fast path.
1466 */
1467 candidate = block->offset + block->max_length;
1468 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1469
1470 /* Search for the closest following block
1471 * and find the gap.
1472 */
1473 RAMBLOCK_FOREACH(next_block) {
1474 if (next_block->offset >= candidate) {
1475 next = MIN(next, next_block->offset);
1476 }
1477 }
1478
1479 /* If it fits remember our place and remember the size
1480 * of gap, but keep going so that we might find a smaller
1481 * gap to fill so avoiding fragmentation.
1482 */
1483 if (next - candidate >= size && next - candidate < mingap) {
1484 offset = candidate;
1485 mingap = next - candidate;
1486 }
1487
1488 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1489 }
1490
1491 if (offset == RAM_ADDR_MAX) {
1492 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1493 (uint64_t)size);
1494 abort();
1495 }
1496
1497 trace_find_ram_offset(size, offset);
1498
1499 return offset;
1500 }
1501
1502 static unsigned long last_ram_page(void)
1503 {
1504 RAMBlock *block;
1505 ram_addr_t last = 0;
1506
1507 RCU_READ_LOCK_GUARD();
1508 RAMBLOCK_FOREACH(block) {
1509 last = MAX(last, block->offset + block->max_length);
1510 }
1511 return last >> TARGET_PAGE_BITS;
1512 }
1513
1514 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1515 {
1516 int ret;
1517
1518 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1519 if (!machine_dump_guest_core(current_machine)) {
1520 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1521 if (ret) {
1522 perror("qemu_madvise");
1523 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1524 "but dump_guest_core=off specified\n");
1525 }
1526 }
1527 }
1528
1529 const char *qemu_ram_get_idstr(RAMBlock *rb)
1530 {
1531 return rb->idstr;
1532 }
1533
1534 void *qemu_ram_get_host_addr(RAMBlock *rb)
1535 {
1536 return rb->host;
1537 }
1538
1539 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1540 {
1541 return rb->offset;
1542 }
1543
1544 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1545 {
1546 return rb->used_length;
1547 }
1548
1549 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1550 {
1551 return rb->max_length;
1552 }
1553
1554 bool qemu_ram_is_shared(RAMBlock *rb)
1555 {
1556 return rb->flags & RAM_SHARED;
1557 }
1558
1559 bool qemu_ram_is_noreserve(RAMBlock *rb)
1560 {
1561 return rb->flags & RAM_NORESERVE;
1562 }
1563
1564 /* Note: Only set at the start of postcopy */
1565 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1566 {
1567 return rb->flags & RAM_UF_ZEROPAGE;
1568 }
1569
1570 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1571 {
1572 rb->flags |= RAM_UF_ZEROPAGE;
1573 }
1574
1575 bool qemu_ram_is_migratable(RAMBlock *rb)
1576 {
1577 return rb->flags & RAM_MIGRATABLE;
1578 }
1579
1580 void qemu_ram_set_migratable(RAMBlock *rb)
1581 {
1582 rb->flags |= RAM_MIGRATABLE;
1583 }
1584
1585 void qemu_ram_unset_migratable(RAMBlock *rb)
1586 {
1587 rb->flags &= ~RAM_MIGRATABLE;
1588 }
1589
1590 bool qemu_ram_is_named_file(RAMBlock *rb)
1591 {
1592 return rb->flags & RAM_NAMED_FILE;
1593 }
1594
1595 int qemu_ram_get_fd(RAMBlock *rb)
1596 {
1597 return rb->fd;
1598 }
1599
1600 /* Called with the BQL held. */
1601 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1602 {
1603 RAMBlock *block;
1604
1605 assert(new_block);
1606 assert(!new_block->idstr[0]);
1607
1608 if (dev) {
1609 char *id = qdev_get_dev_path(dev);
1610 if (id) {
1611 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1612 g_free(id);
1613 }
1614 }
1615 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1616
1617 RCU_READ_LOCK_GUARD();
1618 RAMBLOCK_FOREACH(block) {
1619 if (block != new_block &&
1620 !strcmp(block->idstr, new_block->idstr)) {
1621 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1622 new_block->idstr);
1623 abort();
1624 }
1625 }
1626 }
1627
1628 /* Called with the BQL held. */
1629 void qemu_ram_unset_idstr(RAMBlock *block)
1630 {
1631 /* FIXME: arch_init.c assumes that this is not called throughout
1632 * migration. Ignore the problem since hot-unplug during migration
1633 * does not work anyway.
1634 */
1635 if (block) {
1636 memset(block->idstr, 0, sizeof(block->idstr));
1637 }
1638 }
1639
1640 size_t qemu_ram_pagesize(RAMBlock *rb)
1641 {
1642 return rb->page_size;
1643 }
1644
1645 /* Returns the largest size of page in use */
1646 size_t qemu_ram_pagesize_largest(void)
1647 {
1648 RAMBlock *block;
1649 size_t largest = 0;
1650
1651 RAMBLOCK_FOREACH(block) {
1652 largest = MAX(largest, qemu_ram_pagesize(block));
1653 }
1654
1655 return largest;
1656 }
1657
1658 static int memory_try_enable_merging(void *addr, size_t len)
1659 {
1660 if (!machine_mem_merge(current_machine)) {
1661 /* disabled by the user */
1662 return 0;
1663 }
1664
1665 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1666 }
1667
1668 /*
1669 * Resizing RAM while migrating can result in the migration being canceled.
1670 * Care has to be taken if the guest might have already detected the memory.
1671 *
1672 * As memory core doesn't know how is memory accessed, it is up to
1673 * resize callback to update device state and/or add assertions to detect
1674 * misuse, if necessary.
1675 */
1676 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1677 {
1678 const ram_addr_t oldsize = block->used_length;
1679 const ram_addr_t unaligned_size = newsize;
1680
1681 assert(block);
1682
1683 newsize = HOST_PAGE_ALIGN(newsize);
1684
1685 if (block->used_length == newsize) {
1686 /*
1687 * We don't have to resize the ram block (which only knows aligned
1688 * sizes), however, we have to notify if the unaligned size changed.
1689 */
1690 if (unaligned_size != memory_region_size(block->mr)) {
1691 memory_region_set_size(block->mr, unaligned_size);
1692 if (block->resized) {
1693 block->resized(block->idstr, unaligned_size, block->host);
1694 }
1695 }
1696 return 0;
1697 }
1698
1699 if (!(block->flags & RAM_RESIZEABLE)) {
1700 error_setg_errno(errp, EINVAL,
1701 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1702 " != 0x" RAM_ADDR_FMT, block->idstr,
1703 newsize, block->used_length);
1704 return -EINVAL;
1705 }
1706
1707 if (block->max_length < newsize) {
1708 error_setg_errno(errp, EINVAL,
1709 "Size too large: %s: 0x" RAM_ADDR_FMT
1710 " > 0x" RAM_ADDR_FMT, block->idstr,
1711 newsize, block->max_length);
1712 return -EINVAL;
1713 }
1714
1715 /* Notify before modifying the ram block and touching the bitmaps. */
1716 if (block->host) {
1717 ram_block_notify_resize(block->host, oldsize, newsize);
1718 }
1719
1720 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1721 block->used_length = newsize;
1722 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1723 DIRTY_CLIENTS_ALL);
1724 memory_region_set_size(block->mr, unaligned_size);
1725 if (block->resized) {
1726 block->resized(block->idstr, unaligned_size, block->host);
1727 }
1728 return 0;
1729 }
1730
1731 /*
1732 * Trigger sync on the given ram block for range [start, start + length]
1733 * with the backing store if one is available.
1734 * Otherwise no-op.
1735 * @Note: this is supposed to be a synchronous op.
1736 */
1737 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1738 {
1739 /* The requested range should fit in within the block range */
1740 g_assert((start + length) <= block->used_length);
1741
1742 #ifdef CONFIG_LIBPMEM
1743 /* The lack of support for pmem should not block the sync */
1744 if (ramblock_is_pmem(block)) {
1745 void *addr = ramblock_ptr(block, start);
1746 pmem_persist(addr, length);
1747 return;
1748 }
1749 #endif
1750 if (block->fd >= 0) {
1751 /**
1752 * Case there is no support for PMEM or the memory has not been
1753 * specified as persistent (or is not one) - use the msync.
1754 * Less optimal but still achieves the same goal
1755 */
1756 void *addr = ramblock_ptr(block, start);
1757 if (qemu_msync(addr, length, block->fd)) {
1758 warn_report("%s: failed to sync memory range: start: "
1759 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1760 __func__, start, length);
1761 }
1762 }
1763 }
1764
1765 /* Called with ram_list.mutex held */
1766 static void dirty_memory_extend(ram_addr_t old_ram_size,
1767 ram_addr_t new_ram_size)
1768 {
1769 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1770 DIRTY_MEMORY_BLOCK_SIZE);
1771 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1772 DIRTY_MEMORY_BLOCK_SIZE);
1773 int i;
1774
1775 /* Only need to extend if block count increased */
1776 if (new_num_blocks <= old_num_blocks) {
1777 return;
1778 }
1779
1780 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1781 DirtyMemoryBlocks *old_blocks;
1782 DirtyMemoryBlocks *new_blocks;
1783 int j;
1784
1785 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1786 new_blocks = g_malloc(sizeof(*new_blocks) +
1787 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1788
1789 if (old_num_blocks) {
1790 memcpy(new_blocks->blocks, old_blocks->blocks,
1791 old_num_blocks * sizeof(old_blocks->blocks[0]));
1792 }
1793
1794 for (j = old_num_blocks; j < new_num_blocks; j++) {
1795 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1796 }
1797
1798 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1799
1800 if (old_blocks) {
1801 g_free_rcu(old_blocks, rcu);
1802 }
1803 }
1804 }
1805
1806 static void ram_block_add(RAMBlock *new_block, Error **errp)
1807 {
1808 const bool noreserve = qemu_ram_is_noreserve(new_block);
1809 const bool shared = qemu_ram_is_shared(new_block);
1810 RAMBlock *block;
1811 RAMBlock *last_block = NULL;
1812 ram_addr_t old_ram_size, new_ram_size;
1813 Error *err = NULL;
1814
1815 old_ram_size = last_ram_page();
1816
1817 qemu_mutex_lock_ramlist();
1818 new_block->offset = find_ram_offset(new_block->max_length);
1819
1820 if (!new_block->host) {
1821 if (xen_enabled()) {
1822 xen_ram_alloc(new_block->offset, new_block->max_length,
1823 new_block->mr, &err);
1824 if (err) {
1825 error_propagate(errp, err);
1826 qemu_mutex_unlock_ramlist();
1827 return;
1828 }
1829 } else {
1830 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1831 &new_block->mr->align,
1832 shared, noreserve);
1833 if (!new_block->host) {
1834 error_setg_errno(errp, errno,
1835 "cannot set up guest memory '%s'",
1836 memory_region_name(new_block->mr));
1837 qemu_mutex_unlock_ramlist();
1838 return;
1839 }
1840 memory_try_enable_merging(new_block->host, new_block->max_length);
1841 }
1842 }
1843
1844 new_ram_size = MAX(old_ram_size,
1845 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1846 if (new_ram_size > old_ram_size) {
1847 dirty_memory_extend(old_ram_size, new_ram_size);
1848 }
1849 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1850 * QLIST (which has an RCU-friendly variant) does not have insertion at
1851 * tail, so save the last element in last_block.
1852 */
1853 RAMBLOCK_FOREACH(block) {
1854 last_block = block;
1855 if (block->max_length < new_block->max_length) {
1856 break;
1857 }
1858 }
1859 if (block) {
1860 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1861 } else if (last_block) {
1862 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1863 } else { /* list is empty */
1864 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1865 }
1866 ram_list.mru_block = NULL;
1867
1868 /* Write list before version */
1869 smp_wmb();
1870 ram_list.version++;
1871 qemu_mutex_unlock_ramlist();
1872
1873 cpu_physical_memory_set_dirty_range(new_block->offset,
1874 new_block->used_length,
1875 DIRTY_CLIENTS_ALL);
1876
1877 if (new_block->host) {
1878 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1879 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1880 /*
1881 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1882 * Configure it unless the machine is a qtest server, in which case
1883 * KVM is not used and it may be forked (eg for fuzzing purposes).
1884 */
1885 if (!qtest_enabled()) {
1886 qemu_madvise(new_block->host, new_block->max_length,
1887 QEMU_MADV_DONTFORK);
1888 }
1889 ram_block_notify_add(new_block->host, new_block->used_length,
1890 new_block->max_length);
1891 }
1892 }
1893
1894 #ifdef CONFIG_POSIX
1895 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1896 uint32_t ram_flags, int fd, off_t offset,
1897 Error **errp)
1898 {
1899 RAMBlock *new_block;
1900 Error *local_err = NULL;
1901 int64_t file_size, file_align;
1902
1903 /* Just support these ram flags by now. */
1904 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1905 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
1906 RAM_READONLY_FD)) == 0);
1907
1908 if (xen_enabled()) {
1909 error_setg(errp, "-mem-path not supported with Xen");
1910 return NULL;
1911 }
1912
1913 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1914 error_setg(errp,
1915 "host lacks kvm mmu notifiers, -mem-path unsupported");
1916 return NULL;
1917 }
1918
1919 size = HOST_PAGE_ALIGN(size);
1920 file_size = get_file_size(fd);
1921 if (file_size > offset && file_size < (offset + size)) {
1922 error_setg(errp, "backing store size 0x%" PRIx64
1923 " does not match 'size' option 0x" RAM_ADDR_FMT,
1924 file_size, size);
1925 return NULL;
1926 }
1927
1928 file_align = get_file_align(fd);
1929 if (file_align > 0 && file_align > mr->align) {
1930 error_setg(errp, "backing store align 0x%" PRIx64
1931 " is larger than 'align' option 0x%" PRIx64,
1932 file_align, mr->align);
1933 return NULL;
1934 }
1935
1936 new_block = g_malloc0(sizeof(*new_block));
1937 new_block->mr = mr;
1938 new_block->used_length = size;
1939 new_block->max_length = size;
1940 new_block->flags = ram_flags;
1941 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset,
1942 errp);
1943 if (!new_block->host) {
1944 g_free(new_block);
1945 return NULL;
1946 }
1947
1948 ram_block_add(new_block, &local_err);
1949 if (local_err) {
1950 g_free(new_block);
1951 error_propagate(errp, local_err);
1952 return NULL;
1953 }
1954 return new_block;
1955
1956 }
1957
1958
1959 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1960 uint32_t ram_flags, const char *mem_path,
1961 off_t offset, Error **errp)
1962 {
1963 int fd;
1964 bool created;
1965 RAMBlock *block;
1966
1967 fd = file_ram_open(mem_path, memory_region_name(mr),
1968 !!(ram_flags & RAM_READONLY_FD), &created);
1969 if (fd < 0) {
1970 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
1971 mem_path);
1972 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
1973 fd == -EACCES) {
1974 /*
1975 * If we can open the file R/O (note: will never create a new file)
1976 * and we are dealing with a private mapping, there are still ways
1977 * to consume such files and get RAM instead of ROM.
1978 */
1979 fd = file_ram_open(mem_path, memory_region_name(mr), true,
1980 &created);
1981 if (fd < 0) {
1982 return NULL;
1983 }
1984 assert(!created);
1985 close(fd);
1986 error_append_hint(errp, "Consider opening the backing store"
1987 " read-only but still creating writable RAM using"
1988 " '-object memory-backend-file,readonly=on,rom=off...'"
1989 " (see \"VM templating\" documentation)\n");
1990 }
1991 return NULL;
1992 }
1993
1994 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp);
1995 if (!block) {
1996 if (created) {
1997 unlink(mem_path);
1998 }
1999 close(fd);
2000 return NULL;
2001 }
2002
2003 return block;
2004 }
2005 #endif
2006
2007 static
2008 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2009 void (*resized)(const char*,
2010 uint64_t length,
2011 void *host),
2012 void *host, uint32_t ram_flags,
2013 MemoryRegion *mr, Error **errp)
2014 {
2015 RAMBlock *new_block;
2016 Error *local_err = NULL;
2017
2018 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2019 RAM_NORESERVE)) == 0);
2020 assert(!host ^ (ram_flags & RAM_PREALLOC));
2021
2022 size = HOST_PAGE_ALIGN(size);
2023 max_size = HOST_PAGE_ALIGN(max_size);
2024 new_block = g_malloc0(sizeof(*new_block));
2025 new_block->mr = mr;
2026 new_block->resized = resized;
2027 new_block->used_length = size;
2028 new_block->max_length = max_size;
2029 assert(max_size >= size);
2030 new_block->fd = -1;
2031 new_block->page_size = qemu_real_host_page_size();
2032 new_block->host = host;
2033 new_block->flags = ram_flags;
2034 ram_block_add(new_block, &local_err);
2035 if (local_err) {
2036 g_free(new_block);
2037 error_propagate(errp, local_err);
2038 return NULL;
2039 }
2040 return new_block;
2041 }
2042
2043 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2044 MemoryRegion *mr, Error **errp)
2045 {
2046 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2047 errp);
2048 }
2049
2050 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2051 MemoryRegion *mr, Error **errp)
2052 {
2053 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2054 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2055 }
2056
2057 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2058 void (*resized)(const char*,
2059 uint64_t length,
2060 void *host),
2061 MemoryRegion *mr, Error **errp)
2062 {
2063 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2064 RAM_RESIZEABLE, mr, errp);
2065 }
2066
2067 static void reclaim_ramblock(RAMBlock *block)
2068 {
2069 if (block->flags & RAM_PREALLOC) {
2070 ;
2071 } else if (xen_enabled()) {
2072 xen_invalidate_map_cache_entry(block->host);
2073 #ifndef _WIN32
2074 } else if (block->fd >= 0) {
2075 qemu_ram_munmap(block->fd, block->host, block->max_length);
2076 close(block->fd);
2077 #endif
2078 } else {
2079 qemu_anon_ram_free(block->host, block->max_length);
2080 }
2081 g_free(block);
2082 }
2083
2084 void qemu_ram_free(RAMBlock *block)
2085 {
2086 if (!block) {
2087 return;
2088 }
2089
2090 if (block->host) {
2091 ram_block_notify_remove(block->host, block->used_length,
2092 block->max_length);
2093 }
2094
2095 qemu_mutex_lock_ramlist();
2096 QLIST_REMOVE_RCU(block, next);
2097 ram_list.mru_block = NULL;
2098 /* Write list before version */
2099 smp_wmb();
2100 ram_list.version++;
2101 call_rcu(block, reclaim_ramblock, rcu);
2102 qemu_mutex_unlock_ramlist();
2103 }
2104
2105 #ifndef _WIN32
2106 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2107 {
2108 RAMBlock *block;
2109 ram_addr_t offset;
2110 int flags;
2111 void *area, *vaddr;
2112 int prot;
2113
2114 RAMBLOCK_FOREACH(block) {
2115 offset = addr - block->offset;
2116 if (offset < block->max_length) {
2117 vaddr = ramblock_ptr(block, offset);
2118 if (block->flags & RAM_PREALLOC) {
2119 ;
2120 } else if (xen_enabled()) {
2121 abort();
2122 } else {
2123 flags = MAP_FIXED;
2124 flags |= block->flags & RAM_SHARED ?
2125 MAP_SHARED : MAP_PRIVATE;
2126 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2127 prot = PROT_READ;
2128 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2129 if (block->fd >= 0) {
2130 area = mmap(vaddr, length, prot, flags, block->fd,
2131 offset + block->fd_offset);
2132 } else {
2133 flags |= MAP_ANONYMOUS;
2134 area = mmap(vaddr, length, prot, flags, -1, 0);
2135 }
2136 if (area != vaddr) {
2137 error_report("Could not remap addr: "
2138 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2139 length, addr);
2140 exit(1);
2141 }
2142 memory_try_enable_merging(vaddr, length);
2143 qemu_ram_setup_dump(vaddr, length);
2144 }
2145 }
2146 }
2147 }
2148 #endif /* !_WIN32 */
2149
2150 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2151 * This should not be used for general purpose DMA. Use address_space_map
2152 * or address_space_rw instead. For local memory (e.g. video ram) that the
2153 * device owns, use memory_region_get_ram_ptr.
2154 *
2155 * Called within RCU critical section.
2156 */
2157 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2158 {
2159 RAMBlock *block = ram_block;
2160
2161 if (block == NULL) {
2162 block = qemu_get_ram_block(addr);
2163 addr -= block->offset;
2164 }
2165
2166 if (xen_enabled() && block->host == NULL) {
2167 /* We need to check if the requested address is in the RAM
2168 * because we don't want to map the entire memory in QEMU.
2169 * In that case just map until the end of the page.
2170 */
2171 if (block->offset == 0) {
2172 return xen_map_cache(addr, 0, 0, false);
2173 }
2174
2175 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2176 }
2177 return ramblock_ptr(block, addr);
2178 }
2179
2180 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2181 * but takes a size argument.
2182 *
2183 * Called within RCU critical section.
2184 */
2185 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2186 hwaddr *size, bool lock)
2187 {
2188 RAMBlock *block = ram_block;
2189 if (*size == 0) {
2190 return NULL;
2191 }
2192
2193 if (block == NULL) {
2194 block = qemu_get_ram_block(addr);
2195 addr -= block->offset;
2196 }
2197 *size = MIN(*size, block->max_length - addr);
2198
2199 if (xen_enabled() && block->host == NULL) {
2200 /* We need to check if the requested address is in the RAM
2201 * because we don't want to map the entire memory in QEMU.
2202 * In that case just map the requested area.
2203 */
2204 if (block->offset == 0) {
2205 return xen_map_cache(addr, *size, lock, lock);
2206 }
2207
2208 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2209 }
2210
2211 return ramblock_ptr(block, addr);
2212 }
2213
2214 /* Return the offset of a hostpointer within a ramblock */
2215 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2216 {
2217 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2218 assert((uintptr_t)host >= (uintptr_t)rb->host);
2219 assert(res < rb->max_length);
2220
2221 return res;
2222 }
2223
2224 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2225 ram_addr_t *offset)
2226 {
2227 RAMBlock *block;
2228 uint8_t *host = ptr;
2229
2230 if (xen_enabled()) {
2231 ram_addr_t ram_addr;
2232 RCU_READ_LOCK_GUARD();
2233 ram_addr = xen_ram_addr_from_mapcache(ptr);
2234 block = qemu_get_ram_block(ram_addr);
2235 if (block) {
2236 *offset = ram_addr - block->offset;
2237 }
2238 return block;
2239 }
2240
2241 RCU_READ_LOCK_GUARD();
2242 block = qatomic_rcu_read(&ram_list.mru_block);
2243 if (block && block->host && host - block->host < block->max_length) {
2244 goto found;
2245 }
2246
2247 RAMBLOCK_FOREACH(block) {
2248 /* This case append when the block is not mapped. */
2249 if (block->host == NULL) {
2250 continue;
2251 }
2252 if (host - block->host < block->max_length) {
2253 goto found;
2254 }
2255 }
2256
2257 return NULL;
2258
2259 found:
2260 *offset = (host - block->host);
2261 if (round_offset) {
2262 *offset &= TARGET_PAGE_MASK;
2263 }
2264 return block;
2265 }
2266
2267 /*
2268 * Finds the named RAMBlock
2269 *
2270 * name: The name of RAMBlock to find
2271 *
2272 * Returns: RAMBlock (or NULL if not found)
2273 */
2274 RAMBlock *qemu_ram_block_by_name(const char *name)
2275 {
2276 RAMBlock *block;
2277
2278 RAMBLOCK_FOREACH(block) {
2279 if (!strcmp(name, block->idstr)) {
2280 return block;
2281 }
2282 }
2283
2284 return NULL;
2285 }
2286
2287 /*
2288 * Some of the system routines need to translate from a host pointer
2289 * (typically a TLB entry) back to a ram offset.
2290 */
2291 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2292 {
2293 RAMBlock *block;
2294 ram_addr_t offset;
2295
2296 block = qemu_ram_block_from_host(ptr, false, &offset);
2297 if (!block) {
2298 return RAM_ADDR_INVALID;
2299 }
2300
2301 return block->offset + offset;
2302 }
2303
2304 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2305 {
2306 ram_addr_t ram_addr;
2307
2308 ram_addr = qemu_ram_addr_from_host(ptr);
2309 if (ram_addr == RAM_ADDR_INVALID) {
2310 error_report("Bad ram pointer %p", ptr);
2311 abort();
2312 }
2313 return ram_addr;
2314 }
2315
2316 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2317 MemTxAttrs attrs, void *buf, hwaddr len);
2318 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2319 const void *buf, hwaddr len);
2320 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2321 bool is_write, MemTxAttrs attrs);
2322
2323 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2324 unsigned len, MemTxAttrs attrs)
2325 {
2326 subpage_t *subpage = opaque;
2327 uint8_t buf[8];
2328 MemTxResult res;
2329
2330 #if defined(DEBUG_SUBPAGE)
2331 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2332 subpage, len, addr);
2333 #endif
2334 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2335 if (res) {
2336 return res;
2337 }
2338 *data = ldn_p(buf, len);
2339 return MEMTX_OK;
2340 }
2341
2342 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2343 uint64_t value, unsigned len, MemTxAttrs attrs)
2344 {
2345 subpage_t *subpage = opaque;
2346 uint8_t buf[8];
2347
2348 #if defined(DEBUG_SUBPAGE)
2349 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2350 " value %"PRIx64"\n",
2351 __func__, subpage, len, addr, value);
2352 #endif
2353 stn_p(buf, len, value);
2354 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2355 }
2356
2357 static bool subpage_accepts(void *opaque, hwaddr addr,
2358 unsigned len, bool is_write,
2359 MemTxAttrs attrs)
2360 {
2361 subpage_t *subpage = opaque;
2362 #if defined(DEBUG_SUBPAGE)
2363 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2364 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2365 #endif
2366
2367 return flatview_access_valid(subpage->fv, addr + subpage->base,
2368 len, is_write, attrs);
2369 }
2370
2371 static const MemoryRegionOps subpage_ops = {
2372 .read_with_attrs = subpage_read,
2373 .write_with_attrs = subpage_write,
2374 .impl.min_access_size = 1,
2375 .impl.max_access_size = 8,
2376 .valid.min_access_size = 1,
2377 .valid.max_access_size = 8,
2378 .valid.accepts = subpage_accepts,
2379 .endianness = DEVICE_NATIVE_ENDIAN,
2380 };
2381
2382 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2383 uint16_t section)
2384 {
2385 int idx, eidx;
2386
2387 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2388 return -1;
2389 idx = SUBPAGE_IDX(start);
2390 eidx = SUBPAGE_IDX(end);
2391 #if defined(DEBUG_SUBPAGE)
2392 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2393 __func__, mmio, start, end, idx, eidx, section);
2394 #endif
2395 for (; idx <= eidx; idx++) {
2396 mmio->sub_section[idx] = section;
2397 }
2398
2399 return 0;
2400 }
2401
2402 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2403 {
2404 subpage_t *mmio;
2405
2406 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2407 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2408 mmio->fv = fv;
2409 mmio->base = base;
2410 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2411 NULL, TARGET_PAGE_SIZE);
2412 mmio->iomem.subpage = true;
2413 #if defined(DEBUG_SUBPAGE)
2414 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2415 mmio, base, TARGET_PAGE_SIZE);
2416 #endif
2417
2418 return mmio;
2419 }
2420
2421 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2422 {
2423 assert(fv);
2424 MemoryRegionSection section = {
2425 .fv = fv,
2426 .mr = mr,
2427 .offset_within_address_space = 0,
2428 .offset_within_region = 0,
2429 .size = int128_2_64(),
2430 };
2431
2432 return phys_section_add(map, &section);
2433 }
2434
2435 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2436 hwaddr index, MemTxAttrs attrs)
2437 {
2438 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2439 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2440 AddressSpaceDispatch *d = cpuas->memory_dispatch;
2441 int section_index = index & ~TARGET_PAGE_MASK;
2442 MemoryRegionSection *ret;
2443
2444 assert(section_index < d->map.sections_nb);
2445 ret = d->map.sections + section_index;
2446 assert(ret->mr);
2447 assert(ret->mr->ops);
2448
2449 return ret;
2450 }
2451
2452 static void io_mem_init(void)
2453 {
2454 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2455 NULL, UINT64_MAX);
2456 }
2457
2458 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2459 {
2460 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2461 uint16_t n;
2462
2463 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2464 assert(n == PHYS_SECTION_UNASSIGNED);
2465
2466 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2467
2468 return d;
2469 }
2470
2471 void address_space_dispatch_free(AddressSpaceDispatch *d)
2472 {
2473 phys_sections_free(&d->map);
2474 g_free(d);
2475 }
2476
2477 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2478 {
2479 }
2480
2481 static void tcg_log_global_after_sync(MemoryListener *listener)
2482 {
2483 CPUAddressSpace *cpuas;
2484
2485 /* Wait for the CPU to end the current TB. This avoids the following
2486 * incorrect race:
2487 *
2488 * vCPU migration
2489 * ---------------------- -------------------------
2490 * TLB check -> slow path
2491 * notdirty_mem_write
2492 * write to RAM
2493 * mark dirty
2494 * clear dirty flag
2495 * TLB check -> fast path
2496 * read memory
2497 * write to RAM
2498 *
2499 * by pushing the migration thread's memory read after the vCPU thread has
2500 * written the memory.
2501 */
2502 if (replay_mode == REPLAY_MODE_NONE) {
2503 /*
2504 * VGA can make calls to this function while updating the screen.
2505 * In record/replay mode this causes a deadlock, because
2506 * run_on_cpu waits for rr mutex. Therefore no races are possible
2507 * in this case and no need for making run_on_cpu when
2508 * record/replay is enabled.
2509 */
2510 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2511 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2512 }
2513 }
2514
2515 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2516 {
2517 CPUAddressSpace *cpuas = data.host_ptr;
2518
2519 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2520 tlb_flush(cpu);
2521 }
2522
2523 static void tcg_commit(MemoryListener *listener)
2524 {
2525 CPUAddressSpace *cpuas;
2526 CPUState *cpu;
2527
2528 assert(tcg_enabled());
2529 /* since each CPU stores ram addresses in its TLB cache, we must
2530 reset the modified entries */
2531 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2532 cpu = cpuas->cpu;
2533
2534 /*
2535 * Defer changes to as->memory_dispatch until the cpu is quiescent.
2536 * Otherwise we race between (1) other cpu threads and (2) ongoing
2537 * i/o for the current cpu thread, with data cached by mmu_lookup().
2538 *
2539 * In addition, queueing the work function will kick the cpu back to
2540 * the main loop, which will end the RCU critical section and reclaim
2541 * the memory data structures.
2542 *
2543 * That said, the listener is also called during realize, before
2544 * all of the tcg machinery for run-on is initialized: thus halt_cond.
2545 */
2546 if (cpu->halt_cond) {
2547 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2548 } else {
2549 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2550 }
2551 }
2552
2553 static void memory_map_init(void)
2554 {
2555 system_memory = g_malloc(sizeof(*system_memory));
2556
2557 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2558 address_space_init(&address_space_memory, system_memory, "memory");
2559
2560 system_io = g_malloc(sizeof(*system_io));
2561 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2562 65536);
2563 address_space_init(&address_space_io, system_io, "I/O");
2564 }
2565
2566 MemoryRegion *get_system_memory(void)
2567 {
2568 return system_memory;
2569 }
2570
2571 MemoryRegion *get_system_io(void)
2572 {
2573 return system_io;
2574 }
2575
2576 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2577 hwaddr length)
2578 {
2579 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2580 addr += memory_region_get_ram_addr(mr);
2581
2582 /* No early return if dirty_log_mask is or becomes 0, because
2583 * cpu_physical_memory_set_dirty_range will still call
2584 * xen_modified_memory.
2585 */
2586 if (dirty_log_mask) {
2587 dirty_log_mask =
2588 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2589 }
2590 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2591 assert(tcg_enabled());
2592 tb_invalidate_phys_range(addr, addr + length - 1);
2593 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2594 }
2595 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2596 }
2597
2598 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2599 {
2600 /*
2601 * In principle this function would work on other memory region types too,
2602 * but the ROM device use case is the only one where this operation is
2603 * necessary. Other memory regions should use the
2604 * address_space_read/write() APIs.
2605 */
2606 assert(memory_region_is_romd(mr));
2607
2608 invalidate_and_set_dirty(mr, addr, size);
2609 }
2610
2611 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2612 {
2613 unsigned access_size_max = mr->ops->valid.max_access_size;
2614
2615 /* Regions are assumed to support 1-4 byte accesses unless
2616 otherwise specified. */
2617 if (access_size_max == 0) {
2618 access_size_max = 4;
2619 }
2620
2621 /* Bound the maximum access by the alignment of the address. */
2622 if (!mr->ops->impl.unaligned) {
2623 unsigned align_size_max = addr & -addr;
2624 if (align_size_max != 0 && align_size_max < access_size_max) {
2625 access_size_max = align_size_max;
2626 }
2627 }
2628
2629 /* Don't attempt accesses larger than the maximum. */
2630 if (l > access_size_max) {
2631 l = access_size_max;
2632 }
2633 l = pow2floor(l);
2634
2635 return l;
2636 }
2637
2638 bool prepare_mmio_access(MemoryRegion *mr)
2639 {
2640 bool release_lock = false;
2641
2642 if (!bql_locked()) {
2643 bql_lock();
2644 release_lock = true;
2645 }
2646 if (mr->flush_coalesced_mmio) {
2647 qemu_flush_coalesced_mmio_buffer();
2648 }
2649
2650 return release_lock;
2651 }
2652
2653 /**
2654 * flatview_access_allowed
2655 * @mr: #MemoryRegion to be accessed
2656 * @attrs: memory transaction attributes
2657 * @addr: address within that memory region
2658 * @len: the number of bytes to access
2659 *
2660 * Check if a memory transaction is allowed.
2661 *
2662 * Returns: true if transaction is allowed, false if denied.
2663 */
2664 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2665 hwaddr addr, hwaddr len)
2666 {
2667 if (likely(!attrs.memory)) {
2668 return true;
2669 }
2670 if (memory_region_is_ram(mr)) {
2671 return true;
2672 }
2673 qemu_log_mask(LOG_GUEST_ERROR,
2674 "Invalid access to non-RAM device at "
2675 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2676 "region '%s'\n", addr, len, memory_region_name(mr));
2677 return false;
2678 }
2679
2680 /* Called within RCU critical section. */
2681 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2682 MemTxAttrs attrs,
2683 const void *ptr,
2684 hwaddr len, hwaddr addr1,
2685 hwaddr l, MemoryRegion *mr)
2686 {
2687 uint8_t *ram_ptr;
2688 uint64_t val;
2689 MemTxResult result = MEMTX_OK;
2690 bool release_lock = false;
2691 const uint8_t *buf = ptr;
2692
2693 for (;;) {
2694 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2695 result |= MEMTX_ACCESS_ERROR;
2696 /* Keep going. */
2697 } else if (!memory_access_is_direct(mr, true)) {
2698 release_lock |= prepare_mmio_access(mr);
2699 l = memory_access_size(mr, l, addr1);
2700 /* XXX: could force current_cpu to NULL to avoid
2701 potential bugs */
2702
2703 /*
2704 * Assure Coverity (and ourselves) that we are not going to OVERRUN
2705 * the buffer by following ldn_he_p().
2706 */
2707 #ifdef QEMU_STATIC_ANALYSIS
2708 assert((l == 1 && len >= 1) ||
2709 (l == 2 && len >= 2) ||
2710 (l == 4 && len >= 4) ||
2711 (l == 8 && len >= 8));
2712 #endif
2713 val = ldn_he_p(buf, l);
2714 result |= memory_region_dispatch_write(mr, addr1, val,
2715 size_memop(l), attrs);
2716 } else {
2717 /* RAM case */
2718 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2719 memmove(ram_ptr, buf, l);
2720 invalidate_and_set_dirty(mr, addr1, l);
2721 }
2722
2723 if (release_lock) {
2724 bql_unlock();
2725 release_lock = false;
2726 }
2727
2728 len -= l;
2729 buf += l;
2730 addr += l;
2731
2732 if (!len) {
2733 break;
2734 }
2735
2736 l = len;
2737 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2738 }
2739
2740 return result;
2741 }
2742
2743 /* Called from RCU critical section. */
2744 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2745 const void *buf, hwaddr len)
2746 {
2747 hwaddr l;
2748 hwaddr addr1;
2749 MemoryRegion *mr;
2750
2751 l = len;
2752 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2753 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2754 return MEMTX_ACCESS_ERROR;
2755 }
2756 return flatview_write_continue(fv, addr, attrs, buf, len,
2757 addr1, l, mr);
2758 }
2759
2760 /* Called within RCU critical section. */
2761 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2762 MemTxAttrs attrs, void *ptr,
2763 hwaddr len, hwaddr addr1, hwaddr l,
2764 MemoryRegion *mr)
2765 {
2766 uint8_t *ram_ptr;
2767 uint64_t val;
2768 MemTxResult result = MEMTX_OK;
2769 bool release_lock = false;
2770 uint8_t *buf = ptr;
2771
2772 fuzz_dma_read_cb(addr, len, mr);
2773 for (;;) {
2774 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2775 result |= MEMTX_ACCESS_ERROR;
2776 /* Keep going. */
2777 } else if (!memory_access_is_direct(mr, false)) {
2778 /* I/O case */
2779 release_lock |= prepare_mmio_access(mr);
2780 l = memory_access_size(mr, l, addr1);
2781 result |= memory_region_dispatch_read(mr, addr1, &val,
2782 size_memop(l), attrs);
2783
2784 /*
2785 * Assure Coverity (and ourselves) that we are not going to OVERRUN
2786 * the buffer by following stn_he_p().
2787 */
2788 #ifdef QEMU_STATIC_ANALYSIS
2789 assert((l == 1 && len >= 1) ||
2790 (l == 2 && len >= 2) ||
2791 (l == 4 && len >= 4) ||
2792 (l == 8 && len >= 8));
2793 #endif
2794 stn_he_p(buf, l, val);
2795 } else {
2796 /* RAM case */
2797 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2798 memcpy(buf, ram_ptr, l);
2799 }
2800
2801 if (release_lock) {
2802 bql_unlock();
2803 release_lock = false;
2804 }
2805
2806 len -= l;
2807 buf += l;
2808 addr += l;
2809
2810 if (!len) {
2811 break;
2812 }
2813
2814 l = len;
2815 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2816 }
2817
2818 return result;
2819 }
2820
2821 /* Called from RCU critical section. */
2822 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2823 MemTxAttrs attrs, void *buf, hwaddr len)
2824 {
2825 hwaddr l;
2826 hwaddr addr1;
2827 MemoryRegion *mr;
2828
2829 l = len;
2830 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2831 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2832 return MEMTX_ACCESS_ERROR;
2833 }
2834 return flatview_read_continue(fv, addr, attrs, buf, len,
2835 addr1, l, mr);
2836 }
2837
2838 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2839 MemTxAttrs attrs, void *buf, hwaddr len)
2840 {
2841 MemTxResult result = MEMTX_OK;
2842 FlatView *fv;
2843
2844 if (len > 0) {
2845 RCU_READ_LOCK_GUARD();
2846 fv = address_space_to_flatview(as);
2847 result = flatview_read(fv, addr, attrs, buf, len);
2848 }
2849
2850 return result;
2851 }
2852
2853 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2854 MemTxAttrs attrs,
2855 const void *buf, hwaddr len)
2856 {
2857 MemTxResult result = MEMTX_OK;
2858 FlatView *fv;
2859
2860 if (len > 0) {
2861 RCU_READ_LOCK_GUARD();
2862 fv = address_space_to_flatview(as);
2863 result = flatview_write(fv, addr, attrs, buf, len);
2864 }
2865
2866 return result;
2867 }
2868
2869 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2870 void *buf, hwaddr len, bool is_write)
2871 {
2872 if (is_write) {
2873 return address_space_write(as, addr, attrs, buf, len);
2874 } else {
2875 return address_space_read_full(as, addr, attrs, buf, len);
2876 }
2877 }
2878
2879 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2880 uint8_t c, hwaddr len, MemTxAttrs attrs)
2881 {
2882 #define FILLBUF_SIZE 512
2883 uint8_t fillbuf[FILLBUF_SIZE];
2884 int l;
2885 MemTxResult error = MEMTX_OK;
2886
2887 memset(fillbuf, c, FILLBUF_SIZE);
2888 while (len > 0) {
2889 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2890 error |= address_space_write(as, addr, attrs, fillbuf, l);
2891 len -= l;
2892 addr += l;
2893 }
2894
2895 return error;
2896 }
2897
2898 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2899 hwaddr len, bool is_write)
2900 {
2901 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2902 buf, len, is_write);
2903 }
2904
2905 enum write_rom_type {
2906 WRITE_DATA,
2907 FLUSH_CACHE,
2908 };
2909
2910 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2911 hwaddr addr,
2912 MemTxAttrs attrs,
2913 const void *ptr,
2914 hwaddr len,
2915 enum write_rom_type type)
2916 {
2917 hwaddr l;
2918 uint8_t *ram_ptr;
2919 hwaddr addr1;
2920 MemoryRegion *mr;
2921 const uint8_t *buf = ptr;
2922
2923 RCU_READ_LOCK_GUARD();
2924 while (len > 0) {
2925 l = len;
2926 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2927
2928 if (!(memory_region_is_ram(mr) ||
2929 memory_region_is_romd(mr))) {
2930 l = memory_access_size(mr, l, addr1);
2931 } else {
2932 /* ROM/RAM case */
2933 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2934 switch (type) {
2935 case WRITE_DATA:
2936 memcpy(ram_ptr, buf, l);
2937 invalidate_and_set_dirty(mr, addr1, l);
2938 break;
2939 case FLUSH_CACHE:
2940 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2941 break;
2942 }
2943 }
2944 len -= l;
2945 buf += l;
2946 addr += l;
2947 }
2948 return MEMTX_OK;
2949 }
2950
2951 /* used for ROM loading : can write in RAM and ROM */
2952 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2953 MemTxAttrs attrs,
2954 const void *buf, hwaddr len)
2955 {
2956 return address_space_write_rom_internal(as, addr, attrs,
2957 buf, len, WRITE_DATA);
2958 }
2959
2960 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2961 {
2962 /*
2963 * This function should do the same thing as an icache flush that was
2964 * triggered from within the guest. For TCG we are always cache coherent,
2965 * so there is no need to flush anything. For KVM / Xen we need to flush
2966 * the host's instruction cache at least.
2967 */
2968 if (tcg_enabled()) {
2969 return;
2970 }
2971
2972 address_space_write_rom_internal(&address_space_memory,
2973 start, MEMTXATTRS_UNSPECIFIED,
2974 NULL, len, FLUSH_CACHE);
2975 }
2976
2977 typedef struct {
2978 MemoryRegion *mr;
2979 void *buffer;
2980 hwaddr addr;
2981 hwaddr len;
2982 bool in_use;
2983 } BounceBuffer;
2984
2985 static BounceBuffer bounce;
2986
2987 typedef struct MapClient {
2988 QEMUBH *bh;
2989 QLIST_ENTRY(MapClient) link;
2990 } MapClient;
2991
2992 QemuMutex map_client_list_lock;
2993 static QLIST_HEAD(, MapClient) map_client_list
2994 = QLIST_HEAD_INITIALIZER(map_client_list);
2995
2996 static void cpu_unregister_map_client_do(MapClient *client)
2997 {
2998 QLIST_REMOVE(client, link);
2999 g_free(client);
3000 }
3001
3002 static void cpu_notify_map_clients_locked(void)
3003 {
3004 MapClient *client;
3005
3006 while (!QLIST_EMPTY(&map_client_list)) {
3007 client = QLIST_FIRST(&map_client_list);
3008 qemu_bh_schedule(client->bh);
3009 cpu_unregister_map_client_do(client);
3010 }
3011 }
3012
3013 void cpu_register_map_client(QEMUBH *bh)
3014 {
3015 MapClient *client = g_malloc(sizeof(*client));
3016
3017 qemu_mutex_lock(&map_client_list_lock);
3018 client->bh = bh;
3019 QLIST_INSERT_HEAD(&map_client_list, client, link);
3020 /* Write map_client_list before reading in_use. */
3021 smp_mb();
3022 if (!qatomic_read(&bounce.in_use)) {
3023 cpu_notify_map_clients_locked();
3024 }
3025 qemu_mutex_unlock(&map_client_list_lock);
3026 }
3027
3028 void cpu_exec_init_all(void)
3029 {
3030 qemu_mutex_init(&ram_list.mutex);
3031 /* The data structures we set up here depend on knowing the page size,
3032 * so no more changes can be made after this point.
3033 * In an ideal world, nothing we did before we had finished the
3034 * machine setup would care about the target page size, and we could
3035 * do this much later, rather than requiring board models to state
3036 * up front what their requirements are.
3037 */
3038 finalize_target_page_bits();
3039 io_mem_init();
3040 memory_map_init();
3041 qemu_mutex_init(&map_client_list_lock);
3042 }
3043
3044 void cpu_unregister_map_client(QEMUBH *bh)
3045 {
3046 MapClient *client;
3047
3048 qemu_mutex_lock(&map_client_list_lock);
3049 QLIST_FOREACH(client, &map_client_list, link) {
3050 if (client->bh == bh) {
3051 cpu_unregister_map_client_do(client);
3052 break;
3053 }
3054 }
3055 qemu_mutex_unlock(&map_client_list_lock);
3056 }
3057
3058 static void cpu_notify_map_clients(void)
3059 {
3060 qemu_mutex_lock(&map_client_list_lock);
3061 cpu_notify_map_clients_locked();
3062 qemu_mutex_unlock(&map_client_list_lock);
3063 }
3064
3065 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3066 bool is_write, MemTxAttrs attrs)
3067 {
3068 MemoryRegion *mr;
3069 hwaddr l, xlat;
3070
3071 while (len > 0) {
3072 l = len;
3073 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3074 if (!memory_access_is_direct(mr, is_write)) {
3075 l = memory_access_size(mr, l, addr);
3076 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3077 return false;
3078 }
3079 }
3080
3081 len -= l;
3082 addr += l;
3083 }
3084 return true;
3085 }
3086
3087 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3088 hwaddr len, bool is_write,
3089 MemTxAttrs attrs)
3090 {
3091 FlatView *fv;
3092
3093 RCU_READ_LOCK_GUARD();
3094 fv = address_space_to_flatview(as);
3095 return flatview_access_valid(fv, addr, len, is_write, attrs);
3096 }
3097
3098 static hwaddr
3099 flatview_extend_translation(FlatView *fv, hwaddr addr,
3100 hwaddr target_len,
3101 MemoryRegion *mr, hwaddr base, hwaddr len,
3102 bool is_write, MemTxAttrs attrs)
3103 {
3104 hwaddr done = 0;
3105 hwaddr xlat;
3106 MemoryRegion *this_mr;
3107
3108 for (;;) {
3109 target_len -= len;
3110 addr += len;
3111 done += len;
3112 if (target_len == 0) {
3113 return done;
3114 }
3115
3116 len = target_len;
3117 this_mr = flatview_translate(fv, addr, &xlat,
3118 &len, is_write, attrs);
3119 if (this_mr != mr || xlat != base + done) {
3120 return done;
3121 }
3122 }
3123 }
3124
3125 /* Map a physical memory region into a host virtual address.
3126 * May map a subset of the requested range, given by and returned in *plen.
3127 * May return NULL if resources needed to perform the mapping are exhausted.
3128 * Use only for reads OR writes - not for read-modify-write operations.
3129 * Use cpu_register_map_client() to know when retrying the map operation is
3130 * likely to succeed.
3131 */
3132 void *address_space_map(AddressSpace *as,
3133 hwaddr addr,
3134 hwaddr *plen,
3135 bool is_write,
3136 MemTxAttrs attrs)
3137 {
3138 hwaddr len = *plen;
3139 hwaddr l, xlat;
3140 MemoryRegion *mr;
3141 FlatView *fv;
3142
3143 if (len == 0) {
3144 return NULL;
3145 }
3146
3147 l = len;
3148 RCU_READ_LOCK_GUARD();
3149 fv = address_space_to_flatview(as);
3150 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3151
3152 if (!memory_access_is_direct(mr, is_write)) {
3153 if (qatomic_xchg(&bounce.in_use, true)) {
3154 *plen = 0;
3155 return NULL;
3156 }
3157 /* Avoid unbounded allocations */
3158 l = MIN(l, TARGET_PAGE_SIZE);
3159 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3160 bounce.addr = addr;
3161 bounce.len = l;
3162
3163 memory_region_ref(mr);
3164 bounce.mr = mr;
3165 if (!is_write) {
3166 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3167 bounce.buffer, l);
3168 }
3169
3170 *plen = l;
3171 return bounce.buffer;
3172 }
3173
3174
3175 memory_region_ref(mr);
3176 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3177 l, is_write, attrs);
3178 fuzz_dma_read_cb(addr, *plen, mr);
3179 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3180 }
3181
3182 /* Unmaps a memory region previously mapped by address_space_map().
3183 * Will also mark the memory as dirty if is_write is true. access_len gives
3184 * the amount of memory that was actually read or written by the caller.
3185 */
3186 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3187 bool is_write, hwaddr access_len)
3188 {
3189 if (buffer != bounce.buffer) {
3190 MemoryRegion *mr;
3191 ram_addr_t addr1;
3192
3193 mr = memory_region_from_host(buffer, &addr1);
3194 assert(mr != NULL);
3195 if (is_write) {
3196 invalidate_and_set_dirty(mr, addr1, access_len);
3197 }
3198 if (xen_enabled()) {
3199 xen_invalidate_map_cache_entry(buffer);
3200 }
3201 memory_region_unref(mr);
3202 return;
3203 }
3204 if (is_write) {
3205 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3206 bounce.buffer, access_len);
3207 }
3208 qemu_vfree(bounce.buffer);
3209 bounce.buffer = NULL;
3210 memory_region_unref(bounce.mr);
3211 /* Clear in_use before reading map_client_list. */
3212 qatomic_set_mb(&bounce.in_use, false);
3213 cpu_notify_map_clients();
3214 }
3215
3216 void *cpu_physical_memory_map(hwaddr addr,
3217 hwaddr *plen,
3218 bool is_write)
3219 {
3220 return address_space_map(&address_space_memory, addr, plen, is_write,
3221 MEMTXATTRS_UNSPECIFIED);
3222 }
3223
3224 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3225 bool is_write, hwaddr access_len)
3226 {
3227 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3228 }
3229
3230 #define ARG1_DECL AddressSpace *as
3231 #define ARG1 as
3232 #define SUFFIX
3233 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3234 #define RCU_READ_LOCK(...) rcu_read_lock()
3235 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3236 #include "memory_ldst.c.inc"
3237
3238 int64_t address_space_cache_init(MemoryRegionCache *cache,
3239 AddressSpace *as,
3240 hwaddr addr,
3241 hwaddr len,
3242 bool is_write)
3243 {
3244 AddressSpaceDispatch *d;
3245 hwaddr l;
3246 MemoryRegion *mr;
3247 Int128 diff;
3248
3249 assert(len > 0);
3250
3251 l = len;
3252 cache->fv = address_space_get_flatview(as);
3253 d = flatview_to_dispatch(cache->fv);
3254 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3255
3256 /*
3257 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3258 * Take that into account to compute how many bytes are there between
3259 * cache->xlat and the end of the section.
3260 */
3261 diff = int128_sub(cache->mrs.size,
3262 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3263 l = int128_get64(int128_min(diff, int128_make64(l)));
3264
3265 mr = cache->mrs.mr;
3266 memory_region_ref(mr);
3267 if (memory_access_is_direct(mr, is_write)) {
3268 /* We don't care about the memory attributes here as we're only
3269 * doing this if we found actual RAM, which behaves the same
3270 * regardless of attributes; so UNSPECIFIED is fine.
3271 */
3272 l = flatview_extend_translation(cache->fv, addr, len, mr,
3273 cache->xlat, l, is_write,
3274 MEMTXATTRS_UNSPECIFIED);
3275 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3276 } else {
3277 cache->ptr = NULL;
3278 }
3279
3280 cache->len = l;
3281 cache->is_write = is_write;
3282 return l;
3283 }
3284
3285 void address_space_cache_invalidate(MemoryRegionCache *cache,
3286 hwaddr addr,
3287 hwaddr access_len)
3288 {
3289 assert(cache->is_write);
3290 if (likely(cache->ptr)) {
3291 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3292 }
3293 }
3294
3295 void address_space_cache_destroy(MemoryRegionCache *cache)
3296 {
3297 if (!cache->mrs.mr) {
3298 return;
3299 }
3300
3301 if (xen_enabled()) {
3302 xen_invalidate_map_cache_entry(cache->ptr);
3303 }
3304 memory_region_unref(cache->mrs.mr);
3305 flatview_unref(cache->fv);
3306 cache->mrs.mr = NULL;
3307 cache->fv = NULL;
3308 }
3309
3310 /* Called from RCU critical section. This function has the same
3311 * semantics as address_space_translate, but it only works on a
3312 * predefined range of a MemoryRegion that was mapped with
3313 * address_space_cache_init.
3314 */
3315 static inline MemoryRegion *address_space_translate_cached(
3316 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3317 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3318 {
3319 MemoryRegionSection section;
3320 MemoryRegion *mr;
3321 IOMMUMemoryRegion *iommu_mr;
3322 AddressSpace *target_as;
3323
3324 assert(!cache->ptr);
3325 *xlat = addr + cache->xlat;
3326
3327 mr = cache->mrs.mr;
3328 iommu_mr = memory_region_get_iommu(mr);
3329 if (!iommu_mr) {
3330 /* MMIO region. */
3331 return mr;
3332 }
3333
3334 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3335 NULL, is_write, true,
3336 &target_as, attrs);
3337 return section.mr;
3338 }
3339
3340 /* Called from RCU critical section. address_space_read_cached uses this
3341 * out of line function when the target is an MMIO or IOMMU region.
3342 */
3343 MemTxResult
3344 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3345 void *buf, hwaddr len)
3346 {
3347 hwaddr addr1, l;
3348 MemoryRegion *mr;
3349
3350 l = len;
3351 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3352 MEMTXATTRS_UNSPECIFIED);
3353 return flatview_read_continue(cache->fv,
3354 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3355 addr1, l, mr);
3356 }
3357
3358 /* Called from RCU critical section. address_space_write_cached uses this
3359 * out of line function when the target is an MMIO or IOMMU region.
3360 */
3361 MemTxResult
3362 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3363 const void *buf, hwaddr len)
3364 {
3365 hwaddr addr1, l;
3366 MemoryRegion *mr;
3367
3368 l = len;
3369 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3370 MEMTXATTRS_UNSPECIFIED);
3371 return flatview_write_continue(cache->fv,
3372 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3373 addr1, l, mr);
3374 }
3375
3376 #define ARG1_DECL MemoryRegionCache *cache
3377 #define ARG1 cache
3378 #define SUFFIX _cached_slow
3379 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3380 #define RCU_READ_LOCK() ((void)0)
3381 #define RCU_READ_UNLOCK() ((void)0)
3382 #include "memory_ldst.c.inc"
3383
3384 /* virtual memory access for debug (includes writing to ROM) */
3385 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3386 void *ptr, size_t len, bool is_write)
3387 {
3388 hwaddr phys_addr;
3389 vaddr l, page;
3390 uint8_t *buf = ptr;
3391
3392 cpu_synchronize_state(cpu);
3393 while (len > 0) {
3394 int asidx;
3395 MemTxAttrs attrs;
3396 MemTxResult res;
3397
3398 page = addr & TARGET_PAGE_MASK;
3399 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3400 asidx = cpu_asidx_from_attrs(cpu, attrs);
3401 /* if no physical page mapped, return an error */
3402 if (phys_addr == -1)
3403 return -1;
3404 l = (page + TARGET_PAGE_SIZE) - addr;
3405 if (l > len)
3406 l = len;
3407 phys_addr += (addr & ~TARGET_PAGE_MASK);
3408 if (is_write) {
3409 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3410 attrs, buf, l);
3411 } else {
3412 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3413 attrs, buf, l);
3414 }
3415 if (res != MEMTX_OK) {
3416 return -1;
3417 }
3418 len -= l;
3419 buf += l;
3420 addr += l;
3421 }
3422 return 0;
3423 }
3424
3425 /*
3426 * Allows code that needs to deal with migration bitmaps etc to still be built
3427 * target independent.
3428 */
3429 size_t qemu_target_page_size(void)
3430 {
3431 return TARGET_PAGE_SIZE;
3432 }
3433
3434 int qemu_target_page_bits(void)
3435 {
3436 return TARGET_PAGE_BITS;
3437 }
3438
3439 int qemu_target_page_bits_min(void)
3440 {
3441 return TARGET_PAGE_BITS_MIN;
3442 }
3443
3444 /* Convert target pages to MiB (2**20). */
3445 size_t qemu_target_pages_to_MiB(size_t pages)
3446 {
3447 int page_bits = TARGET_PAGE_BITS;
3448
3449 /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */
3450 g_assert(page_bits < 20);
3451
3452 return pages >> (20 - page_bits);
3453 }
3454
3455 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3456 {
3457 MemoryRegion*mr;
3458 hwaddr l = 1;
3459
3460 RCU_READ_LOCK_GUARD();
3461 mr = address_space_translate(&address_space_memory,
3462 phys_addr, &phys_addr, &l, false,
3463 MEMTXATTRS_UNSPECIFIED);
3464
3465 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3466 }
3467
3468 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3469 {
3470 RAMBlock *block;
3471 int ret = 0;
3472
3473 RCU_READ_LOCK_GUARD();
3474 RAMBLOCK_FOREACH(block) {
3475 ret = func(block, opaque);
3476 if (ret) {
3477 break;
3478 }
3479 }
3480 return ret;
3481 }
3482
3483 /*
3484 * Unmap pages of memory from start to start+length such that
3485 * they a) read as 0, b) Trigger whatever fault mechanism
3486 * the OS provides for postcopy.
3487 * The pages must be unmapped by the end of the function.
3488 * Returns: 0 on success, none-0 on failure
3489 *
3490 */
3491 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3492 {
3493 int ret = -1;
3494
3495 uint8_t *host_startaddr = rb->host + start;
3496
3497 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3498 error_report("ram_block_discard_range: Unaligned start address: %p",
3499 host_startaddr);
3500 goto err;
3501 }
3502
3503 if ((start + length) <= rb->max_length) {
3504 bool need_madvise, need_fallocate;
3505 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3506 error_report("ram_block_discard_range: Unaligned length: %zx",
3507 length);
3508 goto err;
3509 }
3510
3511 errno = ENOTSUP; /* If we are missing MADVISE etc */
3512
3513 /* The logic here is messy;
3514 * madvise DONTNEED fails for hugepages
3515 * fallocate works on hugepages and shmem
3516 * shared anonymous memory requires madvise REMOVE
3517 */
3518 need_madvise = (rb->page_size == qemu_host_page_size);
3519 need_fallocate = rb->fd != -1;
3520 if (need_fallocate) {
3521 /* For a file, this causes the area of the file to be zero'd
3522 * if read, and for hugetlbfs also causes it to be unmapped
3523 * so a userfault will trigger.
3524 */
3525 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3526 /*
3527 * fallocate() will fail with readonly files. Let's print a
3528 * proper error message.
3529 */
3530 if (rb->flags & RAM_READONLY_FD) {
3531 error_report("ram_block_discard_range: Discarding RAM"
3532 " with readonly files is not supported");
3533 goto err;
3534
3535 }
3536 /*
3537 * We'll discard data from the actual file, even though we only
3538 * have a MAP_PRIVATE mapping, possibly messing with other
3539 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3540 * change that behavior whithout violating the promised
3541 * semantics of ram_block_discard_range().
3542 *
3543 * Only warn, because it works as long as nobody else uses that
3544 * file.
3545 */
3546 if (!qemu_ram_is_shared(rb)) {
3547 warn_report_once("ram_block_discard_range: Discarding RAM"
3548 " in private file mappings is possibly"
3549 " dangerous, because it will modify the"
3550 " underlying file and will affect other"
3551 " users of the file");
3552 }
3553
3554 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3555 start, length);
3556 if (ret) {
3557 ret = -errno;
3558 error_report("ram_block_discard_range: Failed to fallocate "
3559 "%s:%" PRIx64 " +%zx (%d)",
3560 rb->idstr, start, length, ret);
3561 goto err;
3562 }
3563 #else
3564 ret = -ENOSYS;
3565 error_report("ram_block_discard_range: fallocate not available/file"
3566 "%s:%" PRIx64 " +%zx (%d)",
3567 rb->idstr, start, length, ret);
3568 goto err;
3569 #endif
3570 }
3571 if (need_madvise) {
3572 /* For normal RAM this causes it to be unmapped,
3573 * for shared memory it causes the local mapping to disappear
3574 * and to fall back on the file contents (which we just
3575 * fallocate'd away).
3576 */
3577 #if defined(CONFIG_MADVISE)
3578 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3579 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3580 } else {
3581 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3582 }
3583 if (ret) {
3584 ret = -errno;
3585 error_report("ram_block_discard_range: Failed to discard range "
3586 "%s:%" PRIx64 " +%zx (%d)",
3587 rb->idstr, start, length, ret);
3588 goto err;
3589 }
3590 #else
3591 ret = -ENOSYS;
3592 error_report("ram_block_discard_range: MADVISE not available"
3593 "%s:%" PRIx64 " +%zx (%d)",
3594 rb->idstr, start, length, ret);
3595 goto err;
3596 #endif
3597 }
3598 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3599 need_madvise, need_fallocate, ret);
3600 } else {
3601 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3602 "/%zx/" RAM_ADDR_FMT")",
3603 rb->idstr, start, length, rb->max_length);
3604 }
3605
3606 err:
3607 return ret;
3608 }
3609
3610 bool ramblock_is_pmem(RAMBlock *rb)
3611 {
3612 return rb->flags & RAM_PMEM;
3613 }
3614
3615 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3616 {
3617 if (start == end - 1) {
3618 qemu_printf("\t%3d ", start);
3619 } else {
3620 qemu_printf("\t%3d..%-3d ", start, end - 1);
3621 }
3622 qemu_printf(" skip=%d ", skip);
3623 if (ptr == PHYS_MAP_NODE_NIL) {
3624 qemu_printf(" ptr=NIL");
3625 } else if (!skip) {
3626 qemu_printf(" ptr=#%d", ptr);
3627 } else {
3628 qemu_printf(" ptr=[%d]", ptr);
3629 }
3630 qemu_printf("\n");
3631 }
3632
3633 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3634 int128_sub((size), int128_one())) : 0)
3635
3636 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3637 {
3638 int i;
3639
3640 qemu_printf(" Dispatch\n");
3641 qemu_printf(" Physical sections\n");
3642
3643 for (i = 0; i < d->map.sections_nb; ++i) {
3644 MemoryRegionSection *s = d->map.sections + i;
3645 const char *names[] = { " [unassigned]", " [not dirty]",
3646 " [ROM]", " [watch]" };
3647
3648 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3649 " %s%s%s%s%s",
3650 i,
3651 s->offset_within_address_space,
3652 s->offset_within_address_space + MR_SIZE(s->size),
3653 s->mr->name ? s->mr->name : "(noname)",
3654 i < ARRAY_SIZE(names) ? names[i] : "",
3655 s->mr == root ? " [ROOT]" : "",
3656 s == d->mru_section ? " [MRU]" : "",
3657 s->mr->is_iommu ? " [iommu]" : "");
3658
3659 if (s->mr->alias) {
3660 qemu_printf(" alias=%s", s->mr->alias->name ?
3661 s->mr->alias->name : "noname");
3662 }
3663 qemu_printf("\n");
3664 }
3665
3666 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3667 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3668 for (i = 0; i < d->map.nodes_nb; ++i) {
3669 int j, jprev;
3670 PhysPageEntry prev;
3671 Node *n = d->map.nodes + i;
3672
3673 qemu_printf(" [%d]\n", i);
3674
3675 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3676 PhysPageEntry *pe = *n + j;
3677
3678 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3679 continue;
3680 }
3681
3682 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3683
3684 jprev = j;
3685 prev = *pe;
3686 }
3687
3688 if (jprev != ARRAY_SIZE(*n)) {
3689 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3690 }
3691 }
3692 }
3693
3694 /* Require any discards to work. */
3695 static unsigned int ram_block_discard_required_cnt;
3696 /* Require only coordinated discards to work. */
3697 static unsigned int ram_block_coordinated_discard_required_cnt;
3698 /* Disable any discards. */
3699 static unsigned int ram_block_discard_disabled_cnt;
3700 /* Disable only uncoordinated discards. */
3701 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3702 static QemuMutex ram_block_discard_disable_mutex;
3703
3704 static void ram_block_discard_disable_mutex_lock(void)
3705 {
3706 static gsize initialized;
3707
3708 if (g_once_init_enter(&initialized)) {
3709 qemu_mutex_init(&ram_block_discard_disable_mutex);
3710 g_once_init_leave(&initialized, 1);
3711 }
3712 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3713 }
3714
3715 static void ram_block_discard_disable_mutex_unlock(void)
3716 {
3717 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3718 }
3719
3720 int ram_block_discard_disable(bool state)
3721 {
3722 int ret = 0;
3723
3724 ram_block_discard_disable_mutex_lock();
3725 if (!state) {
3726 ram_block_discard_disabled_cnt--;
3727 } else if (ram_block_discard_required_cnt ||
3728 ram_block_coordinated_discard_required_cnt) {
3729 ret = -EBUSY;
3730 } else {
3731 ram_block_discard_disabled_cnt++;
3732 }
3733 ram_block_discard_disable_mutex_unlock();
3734 return ret;
3735 }
3736
3737 int ram_block_uncoordinated_discard_disable(bool state)
3738 {
3739 int ret = 0;
3740
3741 ram_block_discard_disable_mutex_lock();
3742 if (!state) {
3743 ram_block_uncoordinated_discard_disabled_cnt--;
3744 } else if (ram_block_discard_required_cnt) {
3745 ret = -EBUSY;
3746 } else {
3747 ram_block_uncoordinated_discard_disabled_cnt++;
3748 }
3749 ram_block_discard_disable_mutex_unlock();
3750 return ret;
3751 }
3752
3753 int ram_block_discard_require(bool state)
3754 {
3755 int ret = 0;
3756
3757 ram_block_discard_disable_mutex_lock();
3758 if (!state) {
3759 ram_block_discard_required_cnt--;
3760 } else if (ram_block_discard_disabled_cnt ||
3761 ram_block_uncoordinated_discard_disabled_cnt) {
3762 ret = -EBUSY;
3763 } else {
3764 ram_block_discard_required_cnt++;
3765 }
3766 ram_block_discard_disable_mutex_unlock();
3767 return ret;
3768 }
3769
3770 int ram_block_coordinated_discard_require(bool state)
3771 {
3772 int ret = 0;
3773
3774 ram_block_discard_disable_mutex_lock();
3775 if (!state) {
3776 ram_block_coordinated_discard_required_cnt--;
3777 } else if (ram_block_discard_disabled_cnt) {
3778 ret = -EBUSY;
3779 } else {
3780 ram_block_coordinated_discard_required_cnt++;
3781 }
3782 ram_block_discard_disable_mutex_unlock();
3783 return ret;
3784 }
3785
3786 bool ram_block_discard_is_disabled(void)
3787 {
3788 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3789 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3790 }
3791
3792 bool ram_block_discard_is_required(void)
3793 {
3794 return qatomic_read(&ram_block_discard_required_cnt) ||
3795 qatomic_read(&ram_block_coordinated_discard_required_cnt);
3796 }