]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.c
Merge tag 'pull-target-arm-20220509' of https://git.linaro.org/people/pmaydell/qemu...
[mirror_qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "cpu.h"
31 #ifdef CONFIG_TCG
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #endif
41 #include "sysemu/tcg.h"
42 #include "sysemu/hw_accel.h"
43 #include "kvm_arm.h"
44 #include "disas/capstone.h"
45 #include "fpu/softfloat.h"
46 #include "cpregs.h"
47
48 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
49 {
50 ARMCPU *cpu = ARM_CPU(cs);
51 CPUARMState *env = &cpu->env;
52
53 if (is_a64(env)) {
54 env->pc = value;
55 env->thumb = false;
56 } else {
57 env->regs[15] = value & ~1;
58 env->thumb = value & 1;
59 }
60 }
61
62 #ifdef CONFIG_TCG
63 void arm_cpu_synchronize_from_tb(CPUState *cs,
64 const TranslationBlock *tb)
65 {
66 ARMCPU *cpu = ARM_CPU(cs);
67 CPUARMState *env = &cpu->env;
68
69 /*
70 * It's OK to look at env for the current mode here, because it's
71 * never possible for an AArch64 TB to chain to an AArch32 TB.
72 */
73 if (is_a64(env)) {
74 env->pc = tb->pc;
75 } else {
76 env->regs[15] = tb->pc;
77 }
78 }
79 #endif /* CONFIG_TCG */
80
81 static bool arm_cpu_has_work(CPUState *cs)
82 {
83 ARMCPU *cpu = ARM_CPU(cs);
84
85 return (cpu->power_state != PSCI_OFF)
86 && cs->interrupt_request &
87 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
88 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
89 | CPU_INTERRUPT_EXITTB);
90 }
91
92 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
93 void *opaque)
94 {
95 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
96
97 entry->hook = hook;
98 entry->opaque = opaque;
99
100 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
101 }
102
103 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
104 void *opaque)
105 {
106 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
107
108 entry->hook = hook;
109 entry->opaque = opaque;
110
111 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
112 }
113
114 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
115 {
116 /* Reset a single ARMCPRegInfo register */
117 ARMCPRegInfo *ri = value;
118 ARMCPU *cpu = opaque;
119
120 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
121 return;
122 }
123
124 if (ri->resetfn) {
125 ri->resetfn(&cpu->env, ri);
126 return;
127 }
128
129 /* A zero offset is never possible as it would be regs[0]
130 * so we use it to indicate that reset is being handled elsewhere.
131 * This is basically only used for fields in non-core coprocessors
132 * (like the pxa2xx ones).
133 */
134 if (!ri->fieldoffset) {
135 return;
136 }
137
138 if (cpreg_field_is_64bit(ri)) {
139 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
140 } else {
141 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
142 }
143 }
144
145 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
146 {
147 /* Purely an assertion check: we've already done reset once,
148 * so now check that running the reset for the cpreg doesn't
149 * change its value. This traps bugs where two different cpregs
150 * both try to reset the same state field but to different values.
151 */
152 ARMCPRegInfo *ri = value;
153 ARMCPU *cpu = opaque;
154 uint64_t oldvalue, newvalue;
155
156 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
157 return;
158 }
159
160 oldvalue = read_raw_cp_reg(&cpu->env, ri);
161 cp_reg_reset(key, value, opaque);
162 newvalue = read_raw_cp_reg(&cpu->env, ri);
163 assert(oldvalue == newvalue);
164 }
165
166 static void arm_cpu_reset(DeviceState *dev)
167 {
168 CPUState *s = CPU(dev);
169 ARMCPU *cpu = ARM_CPU(s);
170 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
171 CPUARMState *env = &cpu->env;
172
173 acc->parent_reset(dev);
174
175 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
176
177 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
178 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
179
180 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
181 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
182 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
183 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
184
185 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
186
187 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
188 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
189 }
190
191 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
192 /* 64 bit CPUs always start in 64 bit mode */
193 env->aarch64 = true;
194 #if defined(CONFIG_USER_ONLY)
195 env->pstate = PSTATE_MODE_EL0t;
196 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
197 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
198 /* Enable all PAC keys. */
199 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
200 SCTLR_EnDA | SCTLR_EnDB);
201 /* Trap on btype=3 for PACIxSP. */
202 env->cp15.sctlr_el[1] |= SCTLR_BT0;
203 /* and to the FP/Neon instructions */
204 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
205 /* and to the SVE instructions */
206 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
207 /* with reasonable vector length */
208 if (cpu_isar_feature(aa64_sve, cpu)) {
209 env->vfp.zcr_el[1] =
210 aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
211 }
212 /*
213 * Enable 48-bit address space (TODO: take reserved_va into account).
214 * Enable TBI0 but not TBI1.
215 * Note that this must match useronly_clean_ptr.
216 */
217 env->cp15.tcr_el[1].raw_tcr = 5 | (1ULL << 37);
218
219 /* Enable MTE */
220 if (cpu_isar_feature(aa64_mte, cpu)) {
221 /* Enable tag access, but leave TCF0 as No Effect (0). */
222 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
223 /*
224 * Exclude all tags, so that tag 0 is always used.
225 * This corresponds to Linux current->thread.gcr_incl = 0.
226 *
227 * Set RRND, so that helper_irg() will generate a seed later.
228 * Here in cpu_reset(), the crypto subsystem has not yet been
229 * initialized.
230 */
231 env->cp15.gcr_el1 = 0x1ffff;
232 }
233 /*
234 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
235 * This is not yet exposed from the Linux kernel in any way.
236 */
237 env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
238 #else
239 /* Reset into the highest available EL */
240 if (arm_feature(env, ARM_FEATURE_EL3)) {
241 env->pstate = PSTATE_MODE_EL3h;
242 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
243 env->pstate = PSTATE_MODE_EL2h;
244 } else {
245 env->pstate = PSTATE_MODE_EL1h;
246 }
247
248 /* Sample rvbar at reset. */
249 env->cp15.rvbar = cpu->rvbar_prop;
250 env->pc = env->cp15.rvbar;
251 #endif
252 } else {
253 #if defined(CONFIG_USER_ONLY)
254 /* Userspace expects access to cp10 and cp11 for FP/Neon */
255 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
256 #endif
257 }
258
259 #if defined(CONFIG_USER_ONLY)
260 env->uncached_cpsr = ARM_CPU_MODE_USR;
261 /* For user mode we must enable access to coprocessors */
262 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
263 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
264 env->cp15.c15_cpar = 3;
265 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
266 env->cp15.c15_cpar = 1;
267 }
268 #else
269
270 /*
271 * If the highest available EL is EL2, AArch32 will start in Hyp
272 * mode; otherwise it starts in SVC. Note that if we start in
273 * AArch64 then these values in the uncached_cpsr will be ignored.
274 */
275 if (arm_feature(env, ARM_FEATURE_EL2) &&
276 !arm_feature(env, ARM_FEATURE_EL3)) {
277 env->uncached_cpsr = ARM_CPU_MODE_HYP;
278 } else {
279 env->uncached_cpsr = ARM_CPU_MODE_SVC;
280 }
281 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
282
283 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
284 * executing as AArch32 then check if highvecs are enabled and
285 * adjust the PC accordingly.
286 */
287 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
288 env->regs[15] = 0xFFFF0000;
289 }
290
291 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
292 #endif
293
294 if (arm_feature(env, ARM_FEATURE_M)) {
295 #ifndef CONFIG_USER_ONLY
296 uint32_t initial_msp; /* Loaded from 0x0 */
297 uint32_t initial_pc; /* Loaded from 0x4 */
298 uint8_t *rom;
299 uint32_t vecbase;
300 #endif
301
302 if (cpu_isar_feature(aa32_lob, cpu)) {
303 /*
304 * LTPSIZE is constant 4 if MVE not implemented, and resets
305 * to an UNKNOWN value if MVE is implemented. We choose to
306 * always reset to 4.
307 */
308 env->v7m.ltpsize = 4;
309 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
310 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
311 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
312 }
313
314 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
315 env->v7m.secure = true;
316 } else {
317 /* This bit resets to 0 if security is supported, but 1 if
318 * it is not. The bit is not present in v7M, but we set it
319 * here so we can avoid having to make checks on it conditional
320 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
321 */
322 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
323 /*
324 * Set NSACR to indicate "NS access permitted to everything";
325 * this avoids having to have all the tests of it being
326 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
327 * v8.1M the guest-visible value of NSACR in a CPU without the
328 * Security Extension is 0xcff.
329 */
330 env->v7m.nsacr = 0xcff;
331 }
332
333 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
334 * that it resets to 1, so QEMU always does that rather than making
335 * it dependent on CPU model. In v8M it is RES1.
336 */
337 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
338 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
339 if (arm_feature(env, ARM_FEATURE_V8)) {
340 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
341 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
342 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
343 }
344 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
345 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
346 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
347 }
348
349 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
350 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
351 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
352 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
353 }
354
355 #ifndef CONFIG_USER_ONLY
356 /* Unlike A/R profile, M profile defines the reset LR value */
357 env->regs[14] = 0xffffffff;
358
359 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
360 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
361
362 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
363 vecbase = env->v7m.vecbase[env->v7m.secure];
364 rom = rom_ptr_for_as(s->as, vecbase, 8);
365 if (rom) {
366 /* Address zero is covered by ROM which hasn't yet been
367 * copied into physical memory.
368 */
369 initial_msp = ldl_p(rom);
370 initial_pc = ldl_p(rom + 4);
371 } else {
372 /* Address zero not covered by a ROM blob, or the ROM blob
373 * is in non-modifiable memory and this is a second reset after
374 * it got copied into memory. In the latter case, rom_ptr
375 * will return a NULL pointer and we should use ldl_phys instead.
376 */
377 initial_msp = ldl_phys(s->as, vecbase);
378 initial_pc = ldl_phys(s->as, vecbase + 4);
379 }
380
381 qemu_log_mask(CPU_LOG_INT,
382 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
383 initial_msp, initial_pc);
384
385 env->regs[13] = initial_msp & 0xFFFFFFFC;
386 env->regs[15] = initial_pc & ~1;
387 env->thumb = initial_pc & 1;
388 #else
389 /*
390 * For user mode we run non-secure and with access to the FPU.
391 * The FPU context is active (ie does not need further setup)
392 * and is owned by non-secure.
393 */
394 env->v7m.secure = false;
395 env->v7m.nsacr = 0xcff;
396 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
397 env->v7m.fpccr[M_REG_S] &=
398 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
399 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
400 #endif
401 }
402
403 /* M profile requires that reset clears the exclusive monitor;
404 * A profile does not, but clearing it makes more sense than having it
405 * set with an exclusive access on address zero.
406 */
407 arm_clear_exclusive(env);
408
409 if (arm_feature(env, ARM_FEATURE_PMSA)) {
410 if (cpu->pmsav7_dregion > 0) {
411 if (arm_feature(env, ARM_FEATURE_V8)) {
412 memset(env->pmsav8.rbar[M_REG_NS], 0,
413 sizeof(*env->pmsav8.rbar[M_REG_NS])
414 * cpu->pmsav7_dregion);
415 memset(env->pmsav8.rlar[M_REG_NS], 0,
416 sizeof(*env->pmsav8.rlar[M_REG_NS])
417 * cpu->pmsav7_dregion);
418 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
419 memset(env->pmsav8.rbar[M_REG_S], 0,
420 sizeof(*env->pmsav8.rbar[M_REG_S])
421 * cpu->pmsav7_dregion);
422 memset(env->pmsav8.rlar[M_REG_S], 0,
423 sizeof(*env->pmsav8.rlar[M_REG_S])
424 * cpu->pmsav7_dregion);
425 }
426 } else if (arm_feature(env, ARM_FEATURE_V7)) {
427 memset(env->pmsav7.drbar, 0,
428 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
429 memset(env->pmsav7.drsr, 0,
430 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
431 memset(env->pmsav7.dracr, 0,
432 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
433 }
434 }
435 env->pmsav7.rnr[M_REG_NS] = 0;
436 env->pmsav7.rnr[M_REG_S] = 0;
437 env->pmsav8.mair0[M_REG_NS] = 0;
438 env->pmsav8.mair0[M_REG_S] = 0;
439 env->pmsav8.mair1[M_REG_NS] = 0;
440 env->pmsav8.mair1[M_REG_S] = 0;
441 }
442
443 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
444 if (cpu->sau_sregion > 0) {
445 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
446 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
447 }
448 env->sau.rnr = 0;
449 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
450 * the Cortex-M33 does.
451 */
452 env->sau.ctrl = 0;
453 }
454
455 set_flush_to_zero(1, &env->vfp.standard_fp_status);
456 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
457 set_default_nan_mode(1, &env->vfp.standard_fp_status);
458 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
459 set_float_detect_tininess(float_tininess_before_rounding,
460 &env->vfp.fp_status);
461 set_float_detect_tininess(float_tininess_before_rounding,
462 &env->vfp.standard_fp_status);
463 set_float_detect_tininess(float_tininess_before_rounding,
464 &env->vfp.fp_status_f16);
465 set_float_detect_tininess(float_tininess_before_rounding,
466 &env->vfp.standard_fp_status_f16);
467 #ifndef CONFIG_USER_ONLY
468 if (kvm_enabled()) {
469 kvm_arm_reset_vcpu(cpu);
470 }
471 #endif
472
473 hw_breakpoint_update_all(cpu);
474 hw_watchpoint_update_all(cpu);
475 arm_rebuild_hflags(env);
476 }
477
478 #ifndef CONFIG_USER_ONLY
479
480 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
481 unsigned int target_el,
482 unsigned int cur_el, bool secure,
483 uint64_t hcr_el2)
484 {
485 CPUARMState *env = cs->env_ptr;
486 bool pstate_unmasked;
487 bool unmasked = false;
488
489 /*
490 * Don't take exceptions if they target a lower EL.
491 * This check should catch any exceptions that would not be taken
492 * but left pending.
493 */
494 if (cur_el > target_el) {
495 return false;
496 }
497
498 switch (excp_idx) {
499 case EXCP_FIQ:
500 pstate_unmasked = !(env->daif & PSTATE_F);
501 break;
502
503 case EXCP_IRQ:
504 pstate_unmasked = !(env->daif & PSTATE_I);
505 break;
506
507 case EXCP_VFIQ:
508 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
509 /* VFIQs are only taken when hypervized. */
510 return false;
511 }
512 return !(env->daif & PSTATE_F);
513 case EXCP_VIRQ:
514 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
515 /* VIRQs are only taken when hypervized. */
516 return false;
517 }
518 return !(env->daif & PSTATE_I);
519 case EXCP_VSERR:
520 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
521 /* VIRQs are only taken when hypervized. */
522 return false;
523 }
524 return !(env->daif & PSTATE_A);
525 default:
526 g_assert_not_reached();
527 }
528
529 /*
530 * Use the target EL, current execution state and SCR/HCR settings to
531 * determine whether the corresponding CPSR bit is used to mask the
532 * interrupt.
533 */
534 if ((target_el > cur_el) && (target_el != 1)) {
535 /* Exceptions targeting a higher EL may not be maskable */
536 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
537 /*
538 * 64-bit masking rules are simple: exceptions to EL3
539 * can't be masked, and exceptions to EL2 can only be
540 * masked from Secure state. The HCR and SCR settings
541 * don't affect the masking logic, only the interrupt routing.
542 */
543 if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
544 unmasked = true;
545 }
546 } else {
547 /*
548 * The old 32-bit-only environment has a more complicated
549 * masking setup. HCR and SCR bits not only affect interrupt
550 * routing but also change the behaviour of masking.
551 */
552 bool hcr, scr;
553
554 switch (excp_idx) {
555 case EXCP_FIQ:
556 /*
557 * If FIQs are routed to EL3 or EL2 then there are cases where
558 * we override the CPSR.F in determining if the exception is
559 * masked or not. If neither of these are set then we fall back
560 * to the CPSR.F setting otherwise we further assess the state
561 * below.
562 */
563 hcr = hcr_el2 & HCR_FMO;
564 scr = (env->cp15.scr_el3 & SCR_FIQ);
565
566 /*
567 * When EL3 is 32-bit, the SCR.FW bit controls whether the
568 * CPSR.F bit masks FIQ interrupts when taken in non-secure
569 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
570 * when non-secure but only when FIQs are only routed to EL3.
571 */
572 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
573 break;
574 case EXCP_IRQ:
575 /*
576 * When EL3 execution state is 32-bit, if HCR.IMO is set then
577 * we may override the CPSR.I masking when in non-secure state.
578 * The SCR.IRQ setting has already been taken into consideration
579 * when setting the target EL, so it does not have a further
580 * affect here.
581 */
582 hcr = hcr_el2 & HCR_IMO;
583 scr = false;
584 break;
585 default:
586 g_assert_not_reached();
587 }
588
589 if ((scr || hcr) && !secure) {
590 unmasked = true;
591 }
592 }
593 }
594
595 /*
596 * The PSTATE bits only mask the interrupt if we have not overriden the
597 * ability above.
598 */
599 return unmasked || pstate_unmasked;
600 }
601
602 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
603 {
604 CPUClass *cc = CPU_GET_CLASS(cs);
605 CPUARMState *env = cs->env_ptr;
606 uint32_t cur_el = arm_current_el(env);
607 bool secure = arm_is_secure(env);
608 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
609 uint32_t target_el;
610 uint32_t excp_idx;
611
612 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
613
614 if (interrupt_request & CPU_INTERRUPT_FIQ) {
615 excp_idx = EXCP_FIQ;
616 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
617 if (arm_excp_unmasked(cs, excp_idx, target_el,
618 cur_el, secure, hcr_el2)) {
619 goto found;
620 }
621 }
622 if (interrupt_request & CPU_INTERRUPT_HARD) {
623 excp_idx = EXCP_IRQ;
624 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
625 if (arm_excp_unmasked(cs, excp_idx, target_el,
626 cur_el, secure, hcr_el2)) {
627 goto found;
628 }
629 }
630 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
631 excp_idx = EXCP_VIRQ;
632 target_el = 1;
633 if (arm_excp_unmasked(cs, excp_idx, target_el,
634 cur_el, secure, hcr_el2)) {
635 goto found;
636 }
637 }
638 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
639 excp_idx = EXCP_VFIQ;
640 target_el = 1;
641 if (arm_excp_unmasked(cs, excp_idx, target_el,
642 cur_el, secure, hcr_el2)) {
643 goto found;
644 }
645 }
646 if (interrupt_request & CPU_INTERRUPT_VSERR) {
647 excp_idx = EXCP_VSERR;
648 target_el = 1;
649 if (arm_excp_unmasked(cs, excp_idx, target_el,
650 cur_el, secure, hcr_el2)) {
651 /* Taking a virtual abort clears HCR_EL2.VSE */
652 env->cp15.hcr_el2 &= ~HCR_VSE;
653 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
654 goto found;
655 }
656 }
657 return false;
658
659 found:
660 cs->exception_index = excp_idx;
661 env->exception.target_el = target_el;
662 cc->tcg_ops->do_interrupt(cs);
663 return true;
664 }
665 #endif /* !CONFIG_USER_ONLY */
666
667 void arm_cpu_update_virq(ARMCPU *cpu)
668 {
669 /*
670 * Update the interrupt level for VIRQ, which is the logical OR of
671 * the HCR_EL2.VI bit and the input line level from the GIC.
672 */
673 CPUARMState *env = &cpu->env;
674 CPUState *cs = CPU(cpu);
675
676 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
677 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
678
679 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
680 if (new_state) {
681 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
682 } else {
683 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
684 }
685 }
686 }
687
688 void arm_cpu_update_vfiq(ARMCPU *cpu)
689 {
690 /*
691 * Update the interrupt level for VFIQ, which is the logical OR of
692 * the HCR_EL2.VF bit and the input line level from the GIC.
693 */
694 CPUARMState *env = &cpu->env;
695 CPUState *cs = CPU(cpu);
696
697 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
698 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
699
700 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
701 if (new_state) {
702 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
703 } else {
704 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
705 }
706 }
707 }
708
709 void arm_cpu_update_vserr(ARMCPU *cpu)
710 {
711 /*
712 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
713 */
714 CPUARMState *env = &cpu->env;
715 CPUState *cs = CPU(cpu);
716
717 bool new_state = env->cp15.hcr_el2 & HCR_VSE;
718
719 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
720 if (new_state) {
721 cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
722 } else {
723 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
724 }
725 }
726 }
727
728 #ifndef CONFIG_USER_ONLY
729 static void arm_cpu_set_irq(void *opaque, int irq, int level)
730 {
731 ARMCPU *cpu = opaque;
732 CPUARMState *env = &cpu->env;
733 CPUState *cs = CPU(cpu);
734 static const int mask[] = {
735 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
736 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
737 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
738 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
739 };
740
741 if (!arm_feature(env, ARM_FEATURE_EL2) &&
742 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
743 /*
744 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
745 * have EL2 support we don't care. (Unless the guest is doing something
746 * silly this will only be calls saying "level is still 0".)
747 */
748 return;
749 }
750
751 if (level) {
752 env->irq_line_state |= mask[irq];
753 } else {
754 env->irq_line_state &= ~mask[irq];
755 }
756
757 switch (irq) {
758 case ARM_CPU_VIRQ:
759 arm_cpu_update_virq(cpu);
760 break;
761 case ARM_CPU_VFIQ:
762 arm_cpu_update_vfiq(cpu);
763 break;
764 case ARM_CPU_IRQ:
765 case ARM_CPU_FIQ:
766 if (level) {
767 cpu_interrupt(cs, mask[irq]);
768 } else {
769 cpu_reset_interrupt(cs, mask[irq]);
770 }
771 break;
772 default:
773 g_assert_not_reached();
774 }
775 }
776
777 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
778 {
779 #ifdef CONFIG_KVM
780 ARMCPU *cpu = opaque;
781 CPUARMState *env = &cpu->env;
782 CPUState *cs = CPU(cpu);
783 uint32_t linestate_bit;
784 int irq_id;
785
786 switch (irq) {
787 case ARM_CPU_IRQ:
788 irq_id = KVM_ARM_IRQ_CPU_IRQ;
789 linestate_bit = CPU_INTERRUPT_HARD;
790 break;
791 case ARM_CPU_FIQ:
792 irq_id = KVM_ARM_IRQ_CPU_FIQ;
793 linestate_bit = CPU_INTERRUPT_FIQ;
794 break;
795 default:
796 g_assert_not_reached();
797 }
798
799 if (level) {
800 env->irq_line_state |= linestate_bit;
801 } else {
802 env->irq_line_state &= ~linestate_bit;
803 }
804 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
805 #endif
806 }
807
808 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
809 {
810 ARMCPU *cpu = ARM_CPU(cs);
811 CPUARMState *env = &cpu->env;
812
813 cpu_synchronize_state(cs);
814 return arm_cpu_data_is_big_endian(env);
815 }
816
817 #endif
818
819 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
820 {
821 ARMCPU *ac = ARM_CPU(cpu);
822 CPUARMState *env = &ac->env;
823 bool sctlr_b;
824
825 if (is_a64(env)) {
826 /* We might not be compiled with the A64 disassembler
827 * because it needs a C++ compiler. Leave print_insn
828 * unset in this case to use the caller default behaviour.
829 */
830 #if defined(CONFIG_ARM_A64_DIS)
831 info->print_insn = print_insn_arm_a64;
832 #endif
833 info->cap_arch = CS_ARCH_ARM64;
834 info->cap_insn_unit = 4;
835 info->cap_insn_split = 4;
836 } else {
837 int cap_mode;
838 if (env->thumb) {
839 info->cap_insn_unit = 2;
840 info->cap_insn_split = 4;
841 cap_mode = CS_MODE_THUMB;
842 } else {
843 info->cap_insn_unit = 4;
844 info->cap_insn_split = 4;
845 cap_mode = CS_MODE_ARM;
846 }
847 if (arm_feature(env, ARM_FEATURE_V8)) {
848 cap_mode |= CS_MODE_V8;
849 }
850 if (arm_feature(env, ARM_FEATURE_M)) {
851 cap_mode |= CS_MODE_MCLASS;
852 }
853 info->cap_arch = CS_ARCH_ARM;
854 info->cap_mode = cap_mode;
855 }
856
857 sctlr_b = arm_sctlr_b(env);
858 if (bswap_code(sctlr_b)) {
859 #if TARGET_BIG_ENDIAN
860 info->endian = BFD_ENDIAN_LITTLE;
861 #else
862 info->endian = BFD_ENDIAN_BIG;
863 #endif
864 }
865 info->flags &= ~INSN_ARM_BE32;
866 #ifndef CONFIG_USER_ONLY
867 if (sctlr_b) {
868 info->flags |= INSN_ARM_BE32;
869 }
870 #endif
871 }
872
873 #ifdef TARGET_AARCH64
874
875 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
876 {
877 ARMCPU *cpu = ARM_CPU(cs);
878 CPUARMState *env = &cpu->env;
879 uint32_t psr = pstate_read(env);
880 int i;
881 int el = arm_current_el(env);
882 const char *ns_status;
883
884 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
885 for (i = 0; i < 32; i++) {
886 if (i == 31) {
887 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
888 } else {
889 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
890 (i + 2) % 3 ? " " : "\n");
891 }
892 }
893
894 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
895 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
896 } else {
897 ns_status = "";
898 }
899 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
900 psr,
901 psr & PSTATE_N ? 'N' : '-',
902 psr & PSTATE_Z ? 'Z' : '-',
903 psr & PSTATE_C ? 'C' : '-',
904 psr & PSTATE_V ? 'V' : '-',
905 ns_status,
906 el,
907 psr & PSTATE_SP ? 'h' : 't');
908
909 if (cpu_isar_feature(aa64_bti, cpu)) {
910 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
911 }
912 if (!(flags & CPU_DUMP_FPU)) {
913 qemu_fprintf(f, "\n");
914 return;
915 }
916 if (fp_exception_el(env, el) != 0) {
917 qemu_fprintf(f, " FPU disabled\n");
918 return;
919 }
920 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
921 vfp_get_fpcr(env), vfp_get_fpsr(env));
922
923 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
924 int j, zcr_len = sve_zcr_len_for_el(env, el);
925
926 for (i = 0; i <= FFR_PRED_NUM; i++) {
927 bool eol;
928 if (i == FFR_PRED_NUM) {
929 qemu_fprintf(f, "FFR=");
930 /* It's last, so end the line. */
931 eol = true;
932 } else {
933 qemu_fprintf(f, "P%02d=", i);
934 switch (zcr_len) {
935 case 0:
936 eol = i % 8 == 7;
937 break;
938 case 1:
939 eol = i % 6 == 5;
940 break;
941 case 2:
942 case 3:
943 eol = i % 3 == 2;
944 break;
945 default:
946 /* More than one quadword per predicate. */
947 eol = true;
948 break;
949 }
950 }
951 for (j = zcr_len / 4; j >= 0; j--) {
952 int digits;
953 if (j * 4 + 4 <= zcr_len + 1) {
954 digits = 16;
955 } else {
956 digits = (zcr_len % 4 + 1) * 4;
957 }
958 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
959 env->vfp.pregs[i].p[j],
960 j ? ":" : eol ? "\n" : " ");
961 }
962 }
963
964 for (i = 0; i < 32; i++) {
965 if (zcr_len == 0) {
966 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
967 i, env->vfp.zregs[i].d[1],
968 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
969 } else if (zcr_len == 1) {
970 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
971 ":%016" PRIx64 ":%016" PRIx64 "\n",
972 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
973 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
974 } else {
975 for (j = zcr_len; j >= 0; j--) {
976 bool odd = (zcr_len - j) % 2 != 0;
977 if (j == zcr_len) {
978 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
979 } else if (!odd) {
980 if (j > 0) {
981 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
982 } else {
983 qemu_fprintf(f, " [%x]=", j);
984 }
985 }
986 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
987 env->vfp.zregs[i].d[j * 2 + 1],
988 env->vfp.zregs[i].d[j * 2],
989 odd || j == 0 ? "\n" : ":");
990 }
991 }
992 }
993 } else {
994 for (i = 0; i < 32; i++) {
995 uint64_t *q = aa64_vfp_qreg(env, i);
996 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
997 i, q[1], q[0], (i & 1 ? "\n" : " "));
998 }
999 }
1000 }
1001
1002 #else
1003
1004 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1005 {
1006 g_assert_not_reached();
1007 }
1008
1009 #endif
1010
1011 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1012 {
1013 ARMCPU *cpu = ARM_CPU(cs);
1014 CPUARMState *env = &cpu->env;
1015 int i;
1016
1017 if (is_a64(env)) {
1018 aarch64_cpu_dump_state(cs, f, flags);
1019 return;
1020 }
1021
1022 for (i = 0; i < 16; i++) {
1023 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1024 if ((i % 4) == 3) {
1025 qemu_fprintf(f, "\n");
1026 } else {
1027 qemu_fprintf(f, " ");
1028 }
1029 }
1030
1031 if (arm_feature(env, ARM_FEATURE_M)) {
1032 uint32_t xpsr = xpsr_read(env);
1033 const char *mode;
1034 const char *ns_status = "";
1035
1036 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1037 ns_status = env->v7m.secure ? "S " : "NS ";
1038 }
1039
1040 if (xpsr & XPSR_EXCP) {
1041 mode = "handler";
1042 } else {
1043 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1044 mode = "unpriv-thread";
1045 } else {
1046 mode = "priv-thread";
1047 }
1048 }
1049
1050 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1051 xpsr,
1052 xpsr & XPSR_N ? 'N' : '-',
1053 xpsr & XPSR_Z ? 'Z' : '-',
1054 xpsr & XPSR_C ? 'C' : '-',
1055 xpsr & XPSR_V ? 'V' : '-',
1056 xpsr & XPSR_T ? 'T' : 'A',
1057 ns_status,
1058 mode);
1059 } else {
1060 uint32_t psr = cpsr_read(env);
1061 const char *ns_status = "";
1062
1063 if (arm_feature(env, ARM_FEATURE_EL3) &&
1064 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1065 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1066 }
1067
1068 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1069 psr,
1070 psr & CPSR_N ? 'N' : '-',
1071 psr & CPSR_Z ? 'Z' : '-',
1072 psr & CPSR_C ? 'C' : '-',
1073 psr & CPSR_V ? 'V' : '-',
1074 psr & CPSR_T ? 'T' : 'A',
1075 ns_status,
1076 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1077 }
1078
1079 if (flags & CPU_DUMP_FPU) {
1080 int numvfpregs = 0;
1081 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1082 numvfpregs = 32;
1083 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1084 numvfpregs = 16;
1085 }
1086 for (i = 0; i < numvfpregs; i++) {
1087 uint64_t v = *aa32_vfp_dreg(env, i);
1088 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1089 i * 2, (uint32_t)v,
1090 i * 2 + 1, (uint32_t)(v >> 32),
1091 i, v);
1092 }
1093 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1094 if (cpu_isar_feature(aa32_mve, cpu)) {
1095 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1096 }
1097 }
1098 }
1099
1100 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1101 {
1102 uint32_t Aff1 = idx / clustersz;
1103 uint32_t Aff0 = idx % clustersz;
1104 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1105 }
1106
1107 static void arm_cpu_initfn(Object *obj)
1108 {
1109 ARMCPU *cpu = ARM_CPU(obj);
1110
1111 cpu_set_cpustate_pointers(cpu);
1112 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1113 NULL, g_free);
1114
1115 QLIST_INIT(&cpu->pre_el_change_hooks);
1116 QLIST_INIT(&cpu->el_change_hooks);
1117
1118 #ifdef CONFIG_USER_ONLY
1119 # ifdef TARGET_AARCH64
1120 /*
1121 * The linux kernel defaults to 512-bit vectors, when sve is supported.
1122 * See documentation for /proc/sys/abi/sve_default_vector_length, and
1123 * our corresponding sve-default-vector-length cpu property.
1124 */
1125 cpu->sve_default_vq = 4;
1126 # endif
1127 #else
1128 /* Our inbound IRQ and FIQ lines */
1129 if (kvm_enabled()) {
1130 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1131 * the same interface as non-KVM CPUs.
1132 */
1133 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1134 } else {
1135 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1136 }
1137
1138 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1139 ARRAY_SIZE(cpu->gt_timer_outputs));
1140
1141 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1142 "gicv3-maintenance-interrupt", 1);
1143 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1144 "pmu-interrupt", 1);
1145 #endif
1146
1147 /* DTB consumers generally don't in fact care what the 'compatible'
1148 * string is, so always provide some string and trust that a hypothetical
1149 * picky DTB consumer will also provide a helpful error message.
1150 */
1151 cpu->dtb_compatible = "qemu,unknown";
1152 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1153 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1154
1155 if (tcg_enabled() || hvf_enabled()) {
1156 /* TCG and HVF implement PSCI 1.1 */
1157 cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1158 }
1159 }
1160
1161 static Property arm_cpu_gt_cntfrq_property =
1162 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1163 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1164
1165 static Property arm_cpu_reset_cbar_property =
1166 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1167
1168 static Property arm_cpu_reset_hivecs_property =
1169 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1170
1171 #ifndef CONFIG_USER_ONLY
1172 static Property arm_cpu_has_el2_property =
1173 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1174
1175 static Property arm_cpu_has_el3_property =
1176 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1177 #endif
1178
1179 static Property arm_cpu_cfgend_property =
1180 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1181
1182 static Property arm_cpu_has_vfp_property =
1183 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1184
1185 static Property arm_cpu_has_neon_property =
1186 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1187
1188 static Property arm_cpu_has_dsp_property =
1189 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1190
1191 static Property arm_cpu_has_mpu_property =
1192 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1193
1194 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1195 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1196 * the right value for that particular CPU type, and we don't want
1197 * to override that with an incorrect constant value.
1198 */
1199 static Property arm_cpu_pmsav7_dregion_property =
1200 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1201 pmsav7_dregion,
1202 qdev_prop_uint32, uint32_t);
1203
1204 static bool arm_get_pmu(Object *obj, Error **errp)
1205 {
1206 ARMCPU *cpu = ARM_CPU(obj);
1207
1208 return cpu->has_pmu;
1209 }
1210
1211 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1212 {
1213 ARMCPU *cpu = ARM_CPU(obj);
1214
1215 if (value) {
1216 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1217 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1218 return;
1219 }
1220 set_feature(&cpu->env, ARM_FEATURE_PMU);
1221 } else {
1222 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1223 }
1224 cpu->has_pmu = value;
1225 }
1226
1227 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1228 {
1229 /*
1230 * The exact approach to calculating guest ticks is:
1231 *
1232 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1233 * NANOSECONDS_PER_SECOND);
1234 *
1235 * We don't do that. Rather we intentionally use integer division
1236 * truncation below and in the caller for the conversion of host monotonic
1237 * time to guest ticks to provide the exact inverse for the semantics of
1238 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1239 * it loses precision when representing frequencies where
1240 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1241 * provide an exact inverse leads to scheduling timers with negative
1242 * periods, which in turn leads to sticky behaviour in the guest.
1243 *
1244 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1245 * cannot become zero.
1246 */
1247 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1248 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1249 }
1250
1251 void arm_cpu_post_init(Object *obj)
1252 {
1253 ARMCPU *cpu = ARM_CPU(obj);
1254
1255 /* M profile implies PMSA. We have to do this here rather than
1256 * in realize with the other feature-implication checks because
1257 * we look at the PMSA bit to see if we should add some properties.
1258 */
1259 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1260 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1261 }
1262
1263 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1264 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1265 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1266 }
1267
1268 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1269 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1270 }
1271
1272 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1273 object_property_add_uint64_ptr(obj, "rvbar",
1274 &cpu->rvbar_prop,
1275 OBJ_PROP_FLAG_READWRITE);
1276 }
1277
1278 #ifndef CONFIG_USER_ONLY
1279 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1280 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1281 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1282 */
1283 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1284
1285 object_property_add_link(obj, "secure-memory",
1286 TYPE_MEMORY_REGION,
1287 (Object **)&cpu->secure_memory,
1288 qdev_prop_allow_set_link_before_realize,
1289 OBJ_PROP_LINK_STRONG);
1290 }
1291
1292 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1293 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1294 }
1295 #endif
1296
1297 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1298 cpu->has_pmu = true;
1299 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1300 }
1301
1302 /*
1303 * Allow user to turn off VFP and Neon support, but only for TCG --
1304 * KVM does not currently allow us to lie to the guest about its
1305 * ID/feature registers, so the guest always sees what the host has.
1306 */
1307 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1308 ? cpu_isar_feature(aa64_fp_simd, cpu)
1309 : cpu_isar_feature(aa32_vfp, cpu)) {
1310 cpu->has_vfp = true;
1311 if (!kvm_enabled()) {
1312 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1313 }
1314 }
1315
1316 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1317 cpu->has_neon = true;
1318 if (!kvm_enabled()) {
1319 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1320 }
1321 }
1322
1323 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1324 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1325 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1326 }
1327
1328 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1329 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1330 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1331 qdev_property_add_static(DEVICE(obj),
1332 &arm_cpu_pmsav7_dregion_property);
1333 }
1334 }
1335
1336 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1337 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1338 qdev_prop_allow_set_link_before_realize,
1339 OBJ_PROP_LINK_STRONG);
1340 /*
1341 * M profile: initial value of the Secure VTOR. We can't just use
1342 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1343 * the property to be set after realize.
1344 */
1345 object_property_add_uint32_ptr(obj, "init-svtor",
1346 &cpu->init_svtor,
1347 OBJ_PROP_FLAG_READWRITE);
1348 }
1349 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1350 /*
1351 * Initial value of the NS VTOR (for cores without the Security
1352 * extension, this is the only VTOR)
1353 */
1354 object_property_add_uint32_ptr(obj, "init-nsvtor",
1355 &cpu->init_nsvtor,
1356 OBJ_PROP_FLAG_READWRITE);
1357 }
1358
1359 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1360 object_property_add_uint32_ptr(obj, "psci-conduit",
1361 &cpu->psci_conduit,
1362 OBJ_PROP_FLAG_READWRITE);
1363
1364 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1365
1366 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1367 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1368 }
1369
1370 if (kvm_enabled()) {
1371 kvm_arm_add_vcpu_properties(obj);
1372 }
1373
1374 #ifndef CONFIG_USER_ONLY
1375 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1376 cpu_isar_feature(aa64_mte, cpu)) {
1377 object_property_add_link(obj, "tag-memory",
1378 TYPE_MEMORY_REGION,
1379 (Object **)&cpu->tag_memory,
1380 qdev_prop_allow_set_link_before_realize,
1381 OBJ_PROP_LINK_STRONG);
1382
1383 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1384 object_property_add_link(obj, "secure-tag-memory",
1385 TYPE_MEMORY_REGION,
1386 (Object **)&cpu->secure_tag_memory,
1387 qdev_prop_allow_set_link_before_realize,
1388 OBJ_PROP_LINK_STRONG);
1389 }
1390 }
1391 #endif
1392 }
1393
1394 static void arm_cpu_finalizefn(Object *obj)
1395 {
1396 ARMCPU *cpu = ARM_CPU(obj);
1397 ARMELChangeHook *hook, *next;
1398
1399 g_hash_table_destroy(cpu->cp_regs);
1400
1401 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1402 QLIST_REMOVE(hook, node);
1403 g_free(hook);
1404 }
1405 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1406 QLIST_REMOVE(hook, node);
1407 g_free(hook);
1408 }
1409 #ifndef CONFIG_USER_ONLY
1410 if (cpu->pmu_timer) {
1411 timer_free(cpu->pmu_timer);
1412 }
1413 #endif
1414 }
1415
1416 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1417 {
1418 Error *local_err = NULL;
1419
1420 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1421 arm_cpu_sve_finalize(cpu, &local_err);
1422 if (local_err != NULL) {
1423 error_propagate(errp, local_err);
1424 return;
1425 }
1426
1427 arm_cpu_pauth_finalize(cpu, &local_err);
1428 if (local_err != NULL) {
1429 error_propagate(errp, local_err);
1430 return;
1431 }
1432
1433 arm_cpu_lpa2_finalize(cpu, &local_err);
1434 if (local_err != NULL) {
1435 error_propagate(errp, local_err);
1436 return;
1437 }
1438 }
1439
1440 if (kvm_enabled()) {
1441 kvm_arm_steal_time_finalize(cpu, &local_err);
1442 if (local_err != NULL) {
1443 error_propagate(errp, local_err);
1444 return;
1445 }
1446 }
1447 }
1448
1449 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1450 {
1451 CPUState *cs = CPU(dev);
1452 ARMCPU *cpu = ARM_CPU(dev);
1453 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1454 CPUARMState *env = &cpu->env;
1455 int pagebits;
1456 Error *local_err = NULL;
1457 bool no_aa32 = false;
1458
1459 /* If we needed to query the host kernel for the CPU features
1460 * then it's possible that might have failed in the initfn, but
1461 * this is the first point where we can report it.
1462 */
1463 if (cpu->host_cpu_probe_failed) {
1464 if (!kvm_enabled() && !hvf_enabled()) {
1465 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1466 } else {
1467 error_setg(errp, "Failed to retrieve host CPU features");
1468 }
1469 return;
1470 }
1471
1472 #ifndef CONFIG_USER_ONLY
1473 /* The NVIC and M-profile CPU are two halves of a single piece of
1474 * hardware; trying to use one without the other is a command line
1475 * error and will result in segfaults if not caught here.
1476 */
1477 if (arm_feature(env, ARM_FEATURE_M)) {
1478 if (!env->nvic) {
1479 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1480 return;
1481 }
1482 } else {
1483 if (env->nvic) {
1484 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1485 return;
1486 }
1487 }
1488
1489 if (kvm_enabled()) {
1490 /*
1491 * Catch all the cases which might cause us to create more than one
1492 * address space for the CPU (otherwise we will assert() later in
1493 * cpu_address_space_init()).
1494 */
1495 if (arm_feature(env, ARM_FEATURE_M)) {
1496 error_setg(errp,
1497 "Cannot enable KVM when using an M-profile guest CPU");
1498 return;
1499 }
1500 if (cpu->has_el3) {
1501 error_setg(errp,
1502 "Cannot enable KVM when guest CPU has EL3 enabled");
1503 return;
1504 }
1505 if (cpu->tag_memory) {
1506 error_setg(errp,
1507 "Cannot enable KVM when guest CPUs has MTE enabled");
1508 return;
1509 }
1510 }
1511
1512 {
1513 uint64_t scale;
1514
1515 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1516 if (!cpu->gt_cntfrq_hz) {
1517 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1518 cpu->gt_cntfrq_hz);
1519 return;
1520 }
1521 scale = gt_cntfrq_period_ns(cpu);
1522 } else {
1523 scale = GTIMER_SCALE;
1524 }
1525
1526 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1527 arm_gt_ptimer_cb, cpu);
1528 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1529 arm_gt_vtimer_cb, cpu);
1530 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1531 arm_gt_htimer_cb, cpu);
1532 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1533 arm_gt_stimer_cb, cpu);
1534 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1535 arm_gt_hvtimer_cb, cpu);
1536 }
1537 #endif
1538
1539 cpu_exec_realizefn(cs, &local_err);
1540 if (local_err != NULL) {
1541 error_propagate(errp, local_err);
1542 return;
1543 }
1544
1545 arm_cpu_finalize_features(cpu, &local_err);
1546 if (local_err != NULL) {
1547 error_propagate(errp, local_err);
1548 return;
1549 }
1550
1551 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1552 cpu->has_vfp != cpu->has_neon) {
1553 /*
1554 * This is an architectural requirement for AArch64; AArch32 is
1555 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1556 */
1557 error_setg(errp,
1558 "AArch64 CPUs must have both VFP and Neon or neither");
1559 return;
1560 }
1561
1562 if (!cpu->has_vfp) {
1563 uint64_t t;
1564 uint32_t u;
1565
1566 t = cpu->isar.id_aa64isar1;
1567 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1568 cpu->isar.id_aa64isar1 = t;
1569
1570 t = cpu->isar.id_aa64pfr0;
1571 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1572 cpu->isar.id_aa64pfr0 = t;
1573
1574 u = cpu->isar.id_isar6;
1575 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1576 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1577 cpu->isar.id_isar6 = u;
1578
1579 u = cpu->isar.mvfr0;
1580 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1581 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1582 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1583 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1584 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1585 if (!arm_feature(env, ARM_FEATURE_M)) {
1586 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1587 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1588 }
1589 cpu->isar.mvfr0 = u;
1590
1591 u = cpu->isar.mvfr1;
1592 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1593 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1594 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1595 if (arm_feature(env, ARM_FEATURE_M)) {
1596 u = FIELD_DP32(u, MVFR1, FP16, 0);
1597 }
1598 cpu->isar.mvfr1 = u;
1599
1600 u = cpu->isar.mvfr2;
1601 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1602 cpu->isar.mvfr2 = u;
1603 }
1604
1605 if (!cpu->has_neon) {
1606 uint64_t t;
1607 uint32_t u;
1608
1609 unset_feature(env, ARM_FEATURE_NEON);
1610
1611 t = cpu->isar.id_aa64isar0;
1612 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1613 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1614 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1615 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1616 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1617 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1618 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1619 cpu->isar.id_aa64isar0 = t;
1620
1621 t = cpu->isar.id_aa64isar1;
1622 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1623 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1624 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1625 cpu->isar.id_aa64isar1 = t;
1626
1627 t = cpu->isar.id_aa64pfr0;
1628 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1629 cpu->isar.id_aa64pfr0 = t;
1630
1631 u = cpu->isar.id_isar5;
1632 u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1633 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1634 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1635 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1636 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1637 cpu->isar.id_isar5 = u;
1638
1639 u = cpu->isar.id_isar6;
1640 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1641 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1642 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1643 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1644 cpu->isar.id_isar6 = u;
1645
1646 if (!arm_feature(env, ARM_FEATURE_M)) {
1647 u = cpu->isar.mvfr1;
1648 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1649 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1650 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1651 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1652 cpu->isar.mvfr1 = u;
1653
1654 u = cpu->isar.mvfr2;
1655 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1656 cpu->isar.mvfr2 = u;
1657 }
1658 }
1659
1660 if (!cpu->has_neon && !cpu->has_vfp) {
1661 uint64_t t;
1662 uint32_t u;
1663
1664 t = cpu->isar.id_aa64isar0;
1665 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1666 cpu->isar.id_aa64isar0 = t;
1667
1668 t = cpu->isar.id_aa64isar1;
1669 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1670 cpu->isar.id_aa64isar1 = t;
1671
1672 u = cpu->isar.mvfr0;
1673 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1674 cpu->isar.mvfr0 = u;
1675
1676 /* Despite the name, this field covers both VFP and Neon */
1677 u = cpu->isar.mvfr1;
1678 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1679 cpu->isar.mvfr1 = u;
1680 }
1681
1682 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1683 uint32_t u;
1684
1685 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1686
1687 u = cpu->isar.id_isar1;
1688 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1689 cpu->isar.id_isar1 = u;
1690
1691 u = cpu->isar.id_isar2;
1692 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1693 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1694 cpu->isar.id_isar2 = u;
1695
1696 u = cpu->isar.id_isar3;
1697 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1698 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1699 cpu->isar.id_isar3 = u;
1700 }
1701
1702 /* Some features automatically imply others: */
1703 if (arm_feature(env, ARM_FEATURE_V8)) {
1704 if (arm_feature(env, ARM_FEATURE_M)) {
1705 set_feature(env, ARM_FEATURE_V7);
1706 } else {
1707 set_feature(env, ARM_FEATURE_V7VE);
1708 }
1709 }
1710
1711 /*
1712 * There exist AArch64 cpus without AArch32 support. When KVM
1713 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1714 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1715 * As a general principle, we also do not make ID register
1716 * consistency checks anywhere unless using TCG, because only
1717 * for TCG would a consistency-check failure be a QEMU bug.
1718 */
1719 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1720 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1721 }
1722
1723 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1724 /* v7 Virtualization Extensions. In real hardware this implies
1725 * EL2 and also the presence of the Security Extensions.
1726 * For QEMU, for backwards-compatibility we implement some
1727 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1728 * include the various other features that V7VE implies.
1729 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1730 * Security Extensions is ARM_FEATURE_EL3.
1731 */
1732 assert(!tcg_enabled() || no_aa32 ||
1733 cpu_isar_feature(aa32_arm_div, cpu));
1734 set_feature(env, ARM_FEATURE_LPAE);
1735 set_feature(env, ARM_FEATURE_V7);
1736 }
1737 if (arm_feature(env, ARM_FEATURE_V7)) {
1738 set_feature(env, ARM_FEATURE_VAPA);
1739 set_feature(env, ARM_FEATURE_THUMB2);
1740 set_feature(env, ARM_FEATURE_MPIDR);
1741 if (!arm_feature(env, ARM_FEATURE_M)) {
1742 set_feature(env, ARM_FEATURE_V6K);
1743 } else {
1744 set_feature(env, ARM_FEATURE_V6);
1745 }
1746
1747 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1748 * non-EL3 configs. This is needed by some legacy boards.
1749 */
1750 set_feature(env, ARM_FEATURE_VBAR);
1751 }
1752 if (arm_feature(env, ARM_FEATURE_V6K)) {
1753 set_feature(env, ARM_FEATURE_V6);
1754 set_feature(env, ARM_FEATURE_MVFR);
1755 }
1756 if (arm_feature(env, ARM_FEATURE_V6)) {
1757 set_feature(env, ARM_FEATURE_V5);
1758 if (!arm_feature(env, ARM_FEATURE_M)) {
1759 assert(!tcg_enabled() || no_aa32 ||
1760 cpu_isar_feature(aa32_jazelle, cpu));
1761 set_feature(env, ARM_FEATURE_AUXCR);
1762 }
1763 }
1764 if (arm_feature(env, ARM_FEATURE_V5)) {
1765 set_feature(env, ARM_FEATURE_V4T);
1766 }
1767 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1768 set_feature(env, ARM_FEATURE_V7MP);
1769 }
1770 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1771 set_feature(env, ARM_FEATURE_CBAR);
1772 }
1773 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1774 !arm_feature(env, ARM_FEATURE_M)) {
1775 set_feature(env, ARM_FEATURE_THUMB_DSP);
1776 }
1777
1778 /*
1779 * We rely on no XScale CPU having VFP so we can use the same bits in the
1780 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1781 */
1782 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1783 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1784 !arm_feature(env, ARM_FEATURE_XSCALE));
1785
1786 if (arm_feature(env, ARM_FEATURE_V7) &&
1787 !arm_feature(env, ARM_FEATURE_M) &&
1788 !arm_feature(env, ARM_FEATURE_PMSA)) {
1789 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1790 * can use 4K pages.
1791 */
1792 pagebits = 12;
1793 } else {
1794 /* For CPUs which might have tiny 1K pages, or which have an
1795 * MPU and might have small region sizes, stick with 1K pages.
1796 */
1797 pagebits = 10;
1798 }
1799 if (!set_preferred_target_page_bits(pagebits)) {
1800 /* This can only ever happen for hotplugging a CPU, or if
1801 * the board code incorrectly creates a CPU which it has
1802 * promised via minimum_page_size that it will not.
1803 */
1804 error_setg(errp, "This CPU requires a smaller page size than the "
1805 "system is using");
1806 return;
1807 }
1808
1809 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1810 * We don't support setting cluster ID ([16..23]) (known as Aff2
1811 * in later ARM ARM versions), or any of the higher affinity level fields,
1812 * so these bits always RAZ.
1813 */
1814 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1815 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1816 ARM_DEFAULT_CPUS_PER_CLUSTER);
1817 }
1818
1819 if (cpu->reset_hivecs) {
1820 cpu->reset_sctlr |= (1 << 13);
1821 }
1822
1823 if (cpu->cfgend) {
1824 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1825 cpu->reset_sctlr |= SCTLR_EE;
1826 } else {
1827 cpu->reset_sctlr |= SCTLR_B;
1828 }
1829 }
1830
1831 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1832 /* If the has_el3 CPU property is disabled then we need to disable the
1833 * feature.
1834 */
1835 unset_feature(env, ARM_FEATURE_EL3);
1836
1837 /*
1838 * Disable the security extension feature bits in the processor
1839 * feature registers as well.
1840 */
1841 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1842 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1843 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1844 ID_AA64PFR0, EL3, 0);
1845 }
1846
1847 if (!cpu->has_el2) {
1848 unset_feature(env, ARM_FEATURE_EL2);
1849 }
1850
1851 if (!cpu->has_pmu) {
1852 unset_feature(env, ARM_FEATURE_PMU);
1853 }
1854 if (arm_feature(env, ARM_FEATURE_PMU)) {
1855 pmu_init(cpu);
1856
1857 if (!kvm_enabled()) {
1858 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1859 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1860 }
1861
1862 #ifndef CONFIG_USER_ONLY
1863 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1864 cpu);
1865 #endif
1866 } else {
1867 cpu->isar.id_aa64dfr0 =
1868 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1869 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1870 cpu->pmceid0 = 0;
1871 cpu->pmceid1 = 0;
1872 }
1873
1874 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1875 /*
1876 * Disable the hypervisor feature bits in the processor feature
1877 * registers if we don't have EL2.
1878 */
1879 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1880 ID_AA64PFR0, EL2, 0);
1881 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1882 ID_PFR1, VIRTUALIZATION, 0);
1883 }
1884
1885 #ifndef CONFIG_USER_ONLY
1886 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1887 /*
1888 * Disable the MTE feature bits if we do not have tag-memory
1889 * provided by the machine.
1890 */
1891 cpu->isar.id_aa64pfr1 =
1892 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1893 }
1894 #endif
1895
1896 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1897 * to false or by setting pmsav7-dregion to 0.
1898 */
1899 if (!cpu->has_mpu) {
1900 cpu->pmsav7_dregion = 0;
1901 }
1902 if (cpu->pmsav7_dregion == 0) {
1903 cpu->has_mpu = false;
1904 }
1905
1906 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1907 arm_feature(env, ARM_FEATURE_V7)) {
1908 uint32_t nr = cpu->pmsav7_dregion;
1909
1910 if (nr > 0xff) {
1911 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1912 return;
1913 }
1914
1915 if (nr) {
1916 if (arm_feature(env, ARM_FEATURE_V8)) {
1917 /* PMSAv8 */
1918 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1919 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1920 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1921 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1922 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1923 }
1924 } else {
1925 env->pmsav7.drbar = g_new0(uint32_t, nr);
1926 env->pmsav7.drsr = g_new0(uint32_t, nr);
1927 env->pmsav7.dracr = g_new0(uint32_t, nr);
1928 }
1929 }
1930 }
1931
1932 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1933 uint32_t nr = cpu->sau_sregion;
1934
1935 if (nr > 0xff) {
1936 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1937 return;
1938 }
1939
1940 if (nr) {
1941 env->sau.rbar = g_new0(uint32_t, nr);
1942 env->sau.rlar = g_new0(uint32_t, nr);
1943 }
1944 }
1945
1946 if (arm_feature(env, ARM_FEATURE_EL3)) {
1947 set_feature(env, ARM_FEATURE_VBAR);
1948 }
1949
1950 register_cp_regs_for_features(cpu);
1951 arm_cpu_register_gdb_regs_for_features(cpu);
1952
1953 init_cpreg_list(cpu);
1954
1955 #ifndef CONFIG_USER_ONLY
1956 MachineState *ms = MACHINE(qdev_get_machine());
1957 unsigned int smp_cpus = ms->smp.cpus;
1958 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1959
1960 /*
1961 * We must set cs->num_ases to the final value before
1962 * the first call to cpu_address_space_init.
1963 */
1964 if (cpu->tag_memory != NULL) {
1965 cs->num_ases = 3 + has_secure;
1966 } else {
1967 cs->num_ases = 1 + has_secure;
1968 }
1969
1970 if (has_secure) {
1971 if (!cpu->secure_memory) {
1972 cpu->secure_memory = cs->memory;
1973 }
1974 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1975 cpu->secure_memory);
1976 }
1977
1978 if (cpu->tag_memory != NULL) {
1979 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1980 cpu->tag_memory);
1981 if (has_secure) {
1982 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1983 cpu->secure_tag_memory);
1984 }
1985 }
1986
1987 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1988
1989 /* No core_count specified, default to smp_cpus. */
1990 if (cpu->core_count == -1) {
1991 cpu->core_count = smp_cpus;
1992 }
1993 #endif
1994
1995 if (tcg_enabled()) {
1996 int dcz_blocklen = 4 << cpu->dcz_blocksize;
1997
1998 /*
1999 * We only support DCZ blocklen that fits on one page.
2000 *
2001 * Architectually this is always true. However TARGET_PAGE_SIZE
2002 * is variable and, for compatibility with -machine virt-2.7,
2003 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2004 * But even then, while the largest architectural DCZ blocklen
2005 * is 2KiB, no cpu actually uses such a large blocklen.
2006 */
2007 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2008
2009 /*
2010 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2011 * both nibbles of each byte storing tag data may be written at once.
2012 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2013 */
2014 if (cpu_isar_feature(aa64_mte, cpu)) {
2015 assert(dcz_blocklen >= 2 * TAG_GRANULE);
2016 }
2017 }
2018
2019 qemu_init_vcpu(cs);
2020 cpu_reset(cs);
2021
2022 acc->parent_realize(dev, errp);
2023 }
2024
2025 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2026 {
2027 ObjectClass *oc;
2028 char *typename;
2029 char **cpuname;
2030 const char *cpunamestr;
2031
2032 cpuname = g_strsplit(cpu_model, ",", 1);
2033 cpunamestr = cpuname[0];
2034 #ifdef CONFIG_USER_ONLY
2035 /* For backwards compatibility usermode emulation allows "-cpu any",
2036 * which has the same semantics as "-cpu max".
2037 */
2038 if (!strcmp(cpunamestr, "any")) {
2039 cpunamestr = "max";
2040 }
2041 #endif
2042 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2043 oc = object_class_by_name(typename);
2044 g_strfreev(cpuname);
2045 g_free(typename);
2046 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2047 object_class_is_abstract(oc)) {
2048 return NULL;
2049 }
2050 return oc;
2051 }
2052
2053 static Property arm_cpu_properties[] = {
2054 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2055 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2056 mp_affinity, ARM64_AFFINITY_INVALID),
2057 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2058 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2059 DEFINE_PROP_END_OF_LIST()
2060 };
2061
2062 static gchar *arm_gdb_arch_name(CPUState *cs)
2063 {
2064 ARMCPU *cpu = ARM_CPU(cs);
2065 CPUARMState *env = &cpu->env;
2066
2067 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2068 return g_strdup("iwmmxt");
2069 }
2070 return g_strdup("arm");
2071 }
2072
2073 #ifndef CONFIG_USER_ONLY
2074 #include "hw/core/sysemu-cpu-ops.h"
2075
2076 static const struct SysemuCPUOps arm_sysemu_ops = {
2077 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2078 .asidx_from_attrs = arm_asidx_from_attrs,
2079 .write_elf32_note = arm_cpu_write_elf32_note,
2080 .write_elf64_note = arm_cpu_write_elf64_note,
2081 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2082 .legacy_vmsd = &vmstate_arm_cpu,
2083 };
2084 #endif
2085
2086 #ifdef CONFIG_TCG
2087 static const struct TCGCPUOps arm_tcg_ops = {
2088 .initialize = arm_translate_init,
2089 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2090 .debug_excp_handler = arm_debug_excp_handler,
2091
2092 #ifdef CONFIG_USER_ONLY
2093 .record_sigsegv = arm_cpu_record_sigsegv,
2094 .record_sigbus = arm_cpu_record_sigbus,
2095 #else
2096 .tlb_fill = arm_cpu_tlb_fill,
2097 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2098 .do_interrupt = arm_cpu_do_interrupt,
2099 .do_transaction_failed = arm_cpu_do_transaction_failed,
2100 .do_unaligned_access = arm_cpu_do_unaligned_access,
2101 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2102 .debug_check_watchpoint = arm_debug_check_watchpoint,
2103 .debug_check_breakpoint = arm_debug_check_breakpoint,
2104 #endif /* !CONFIG_USER_ONLY */
2105 };
2106 #endif /* CONFIG_TCG */
2107
2108 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2109 {
2110 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2111 CPUClass *cc = CPU_CLASS(acc);
2112 DeviceClass *dc = DEVICE_CLASS(oc);
2113
2114 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2115 &acc->parent_realize);
2116
2117 device_class_set_props(dc, arm_cpu_properties);
2118 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2119
2120 cc->class_by_name = arm_cpu_class_by_name;
2121 cc->has_work = arm_cpu_has_work;
2122 cc->dump_state = arm_cpu_dump_state;
2123 cc->set_pc = arm_cpu_set_pc;
2124 cc->gdb_read_register = arm_cpu_gdb_read_register;
2125 cc->gdb_write_register = arm_cpu_gdb_write_register;
2126 #ifndef CONFIG_USER_ONLY
2127 cc->sysemu_ops = &arm_sysemu_ops;
2128 #endif
2129 cc->gdb_num_core_regs = 26;
2130 cc->gdb_core_xml_file = "arm-core.xml";
2131 cc->gdb_arch_name = arm_gdb_arch_name;
2132 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2133 cc->gdb_stop_before_watchpoint = true;
2134 cc->disas_set_info = arm_disas_set_info;
2135
2136 #ifdef CONFIG_TCG
2137 cc->tcg_ops = &arm_tcg_ops;
2138 #endif /* CONFIG_TCG */
2139 }
2140
2141 static void arm_cpu_instance_init(Object *obj)
2142 {
2143 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2144
2145 acc->info->initfn(obj);
2146 arm_cpu_post_init(obj);
2147 }
2148
2149 static void cpu_register_class_init(ObjectClass *oc, void *data)
2150 {
2151 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2152
2153 acc->info = data;
2154 }
2155
2156 void arm_cpu_register(const ARMCPUInfo *info)
2157 {
2158 TypeInfo type_info = {
2159 .parent = TYPE_ARM_CPU,
2160 .instance_size = sizeof(ARMCPU),
2161 .instance_align = __alignof__(ARMCPU),
2162 .instance_init = arm_cpu_instance_init,
2163 .class_size = sizeof(ARMCPUClass),
2164 .class_init = info->class_init ?: cpu_register_class_init,
2165 .class_data = (void *)info,
2166 };
2167
2168 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2169 type_register(&type_info);
2170 g_free((void *)type_info.name);
2171 }
2172
2173 static const TypeInfo arm_cpu_type_info = {
2174 .name = TYPE_ARM_CPU,
2175 .parent = TYPE_CPU,
2176 .instance_size = sizeof(ARMCPU),
2177 .instance_align = __alignof__(ARMCPU),
2178 .instance_init = arm_cpu_initfn,
2179 .instance_finalize = arm_cpu_finalizefn,
2180 .abstract = true,
2181 .class_size = sizeof(ARMCPUClass),
2182 .class_init = arm_cpu_class_init,
2183 };
2184
2185 static void arm_cpu_register_types(void)
2186 {
2187 type_register_static(&arm_cpu_type_info);
2188 }
2189
2190 type_init(arm_cpu_register_types)