]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.c
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45 ARMCPU *cpu = ARM_CPU(cs);
46 CPUARMState *env = &cpu->env;
47
48 if (is_a64(env)) {
49 env->pc = value;
50 env->thumb = 0;
51 } else {
52 env->regs[15] = value & ~1;
53 env->thumb = value & 1;
54 }
55 }
56
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59 ARMCPU *cpu = ARM_CPU(cs);
60 CPUARMState *env = &cpu->env;
61
62 /*
63 * It's OK to look at env for the current mode here, because it's
64 * never possible for an AArch64 TB to chain to an AArch32 TB.
65 */
66 if (is_a64(env)) {
67 env->pc = tb->pc;
68 } else {
69 env->regs[15] = tb->pc;
70 }
71 }
72
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75 ARMCPU *cpu = ARM_CPU(cs);
76
77 return (cpu->power_state != PSCI_OFF)
78 && cs->interrupt_request &
79 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81 | CPU_INTERRUPT_EXITTB);
82 }
83
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85 void *opaque)
86 {
87 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88
89 entry->hook = hook;
90 entry->opaque = opaque;
91
92 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96 void *opaque)
97 {
98 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99
100 entry->hook = hook;
101 entry->opaque = opaque;
102
103 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108 /* Reset a single ARMCPRegInfo register */
109 ARMCPRegInfo *ri = value;
110 ARMCPU *cpu = opaque;
111
112 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113 return;
114 }
115
116 if (ri->resetfn) {
117 ri->resetfn(&cpu->env, ri);
118 return;
119 }
120
121 /* A zero offset is never possible as it would be regs[0]
122 * so we use it to indicate that reset is being handled elsewhere.
123 * This is basically only used for fields in non-core coprocessors
124 * (like the pxa2xx ones).
125 */
126 if (!ri->fieldoffset) {
127 return;
128 }
129
130 if (cpreg_field_is_64bit(ri)) {
131 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132 } else {
133 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134 }
135 }
136
137 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
138 {
139 /* Purely an assertion check: we've already done reset once,
140 * so now check that running the reset for the cpreg doesn't
141 * change its value. This traps bugs where two different cpregs
142 * both try to reset the same state field but to different values.
143 */
144 ARMCPRegInfo *ri = value;
145 ARMCPU *cpu = opaque;
146 uint64_t oldvalue, newvalue;
147
148 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149 return;
150 }
151
152 oldvalue = read_raw_cp_reg(&cpu->env, ri);
153 cp_reg_reset(key, value, opaque);
154 newvalue = read_raw_cp_reg(&cpu->env, ri);
155 assert(oldvalue == newvalue);
156 }
157
158 /* CPUClass::reset() */
159 static void arm_cpu_reset(CPUState *s)
160 {
161 ARMCPU *cpu = ARM_CPU(s);
162 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163 CPUARMState *env = &cpu->env;
164
165 acc->parent_reset(s);
166
167 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168
169 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171
172 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176
177 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178 s->halted = cpu->start_powered_off;
179
180 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182 }
183
184 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185 /* 64 bit CPUs always start in 64 bit mode */
186 env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188 env->pstate = PSTATE_MODE_EL0t;
189 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191 /* Enable all PAC keys. */
192 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193 SCTLR_EnDA | SCTLR_EnDB);
194 /* Enable all PAC instructions */
195 env->cp15.hcr_el2 |= HCR_API;
196 env->cp15.scr_el3 |= SCR_API;
197 /* and to the FP/Neon instructions */
198 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
199 /* and to the SVE instructions */
200 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
201 env->cp15.cptr_el[3] |= CPTR_EZ;
202 /* with maximum vector length */
203 env->vfp.zcr_el[1] = cpu_isar_feature(aa64_sve, cpu) ?
204 cpu->sve_max_vq - 1 : 0;
205 env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
206 env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
207 /*
208 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
209 * turning on both here will produce smaller code and otherwise
210 * make no difference to the user-level emulation.
211 */
212 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
213 #else
214 /* Reset into the highest available EL */
215 if (arm_feature(env, ARM_FEATURE_EL3)) {
216 env->pstate = PSTATE_MODE_EL3h;
217 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
218 env->pstate = PSTATE_MODE_EL2h;
219 } else {
220 env->pstate = PSTATE_MODE_EL1h;
221 }
222 env->pc = cpu->rvbar;
223 #endif
224 } else {
225 #if defined(CONFIG_USER_ONLY)
226 /* Userspace expects access to cp10 and cp11 for FP/Neon */
227 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
228 #endif
229 }
230
231 #if defined(CONFIG_USER_ONLY)
232 env->uncached_cpsr = ARM_CPU_MODE_USR;
233 /* For user mode we must enable access to coprocessors */
234 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
235 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
236 env->cp15.c15_cpar = 3;
237 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
238 env->cp15.c15_cpar = 1;
239 }
240 #else
241
242 /*
243 * If the highest available EL is EL2, AArch32 will start in Hyp
244 * mode; otherwise it starts in SVC. Note that if we start in
245 * AArch64 then these values in the uncached_cpsr will be ignored.
246 */
247 if (arm_feature(env, ARM_FEATURE_EL2) &&
248 !arm_feature(env, ARM_FEATURE_EL3)) {
249 env->uncached_cpsr = ARM_CPU_MODE_HYP;
250 } else {
251 env->uncached_cpsr = ARM_CPU_MODE_SVC;
252 }
253 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
254
255 if (arm_feature(env, ARM_FEATURE_M)) {
256 uint32_t initial_msp; /* Loaded from 0x0 */
257 uint32_t initial_pc; /* Loaded from 0x4 */
258 uint8_t *rom;
259 uint32_t vecbase;
260
261 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
262 env->v7m.secure = true;
263 } else {
264 /* This bit resets to 0 if security is supported, but 1 if
265 * it is not. The bit is not present in v7M, but we set it
266 * here so we can avoid having to make checks on it conditional
267 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
268 */
269 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
270 /*
271 * Set NSACR to indicate "NS access permitted to everything";
272 * this avoids having to have all the tests of it being
273 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
274 * v8.1M the guest-visible value of NSACR in a CPU without the
275 * Security Extension is 0xcff.
276 */
277 env->v7m.nsacr = 0xcff;
278 }
279
280 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
281 * that it resets to 1, so QEMU always does that rather than making
282 * it dependent on CPU model. In v8M it is RES1.
283 */
284 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
285 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
286 if (arm_feature(env, ARM_FEATURE_V8)) {
287 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
288 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
289 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
290 }
291 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
292 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
293 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
294 }
295
296 if (arm_feature(env, ARM_FEATURE_VFP)) {
297 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
298 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
299 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
300 }
301 /* Unlike A/R profile, M profile defines the reset LR value */
302 env->regs[14] = 0xffffffff;
303
304 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
305
306 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
307 vecbase = env->v7m.vecbase[env->v7m.secure];
308 rom = rom_ptr(vecbase, 8);
309 if (rom) {
310 /* Address zero is covered by ROM which hasn't yet been
311 * copied into physical memory.
312 */
313 initial_msp = ldl_p(rom);
314 initial_pc = ldl_p(rom + 4);
315 } else {
316 /* Address zero not covered by a ROM blob, or the ROM blob
317 * is in non-modifiable memory and this is a second reset after
318 * it got copied into memory. In the latter case, rom_ptr
319 * will return a NULL pointer and we should use ldl_phys instead.
320 */
321 initial_msp = ldl_phys(s->as, vecbase);
322 initial_pc = ldl_phys(s->as, vecbase + 4);
323 }
324
325 env->regs[13] = initial_msp & 0xFFFFFFFC;
326 env->regs[15] = initial_pc & ~1;
327 env->thumb = initial_pc & 1;
328 }
329
330 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
331 * executing as AArch32 then check if highvecs are enabled and
332 * adjust the PC accordingly.
333 */
334 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
335 env->regs[15] = 0xFFFF0000;
336 }
337
338 /* M profile requires that reset clears the exclusive monitor;
339 * A profile does not, but clearing it makes more sense than having it
340 * set with an exclusive access on address zero.
341 */
342 arm_clear_exclusive(env);
343
344 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
345 #endif
346
347 if (arm_feature(env, ARM_FEATURE_PMSA)) {
348 if (cpu->pmsav7_dregion > 0) {
349 if (arm_feature(env, ARM_FEATURE_V8)) {
350 memset(env->pmsav8.rbar[M_REG_NS], 0,
351 sizeof(*env->pmsav8.rbar[M_REG_NS])
352 * cpu->pmsav7_dregion);
353 memset(env->pmsav8.rlar[M_REG_NS], 0,
354 sizeof(*env->pmsav8.rlar[M_REG_NS])
355 * cpu->pmsav7_dregion);
356 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
357 memset(env->pmsav8.rbar[M_REG_S], 0,
358 sizeof(*env->pmsav8.rbar[M_REG_S])
359 * cpu->pmsav7_dregion);
360 memset(env->pmsav8.rlar[M_REG_S], 0,
361 sizeof(*env->pmsav8.rlar[M_REG_S])
362 * cpu->pmsav7_dregion);
363 }
364 } else if (arm_feature(env, ARM_FEATURE_V7)) {
365 memset(env->pmsav7.drbar, 0,
366 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
367 memset(env->pmsav7.drsr, 0,
368 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
369 memset(env->pmsav7.dracr, 0,
370 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
371 }
372 }
373 env->pmsav7.rnr[M_REG_NS] = 0;
374 env->pmsav7.rnr[M_REG_S] = 0;
375 env->pmsav8.mair0[M_REG_NS] = 0;
376 env->pmsav8.mair0[M_REG_S] = 0;
377 env->pmsav8.mair1[M_REG_NS] = 0;
378 env->pmsav8.mair1[M_REG_S] = 0;
379 }
380
381 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
382 if (cpu->sau_sregion > 0) {
383 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
384 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
385 }
386 env->sau.rnr = 0;
387 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
388 * the Cortex-M33 does.
389 */
390 env->sau.ctrl = 0;
391 }
392
393 set_flush_to_zero(1, &env->vfp.standard_fp_status);
394 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
395 set_default_nan_mode(1, &env->vfp.standard_fp_status);
396 set_float_detect_tininess(float_tininess_before_rounding,
397 &env->vfp.fp_status);
398 set_float_detect_tininess(float_tininess_before_rounding,
399 &env->vfp.standard_fp_status);
400 set_float_detect_tininess(float_tininess_before_rounding,
401 &env->vfp.fp_status_f16);
402 #ifndef CONFIG_USER_ONLY
403 if (kvm_enabled()) {
404 kvm_arm_reset_vcpu(cpu);
405 }
406 #endif
407
408 hw_breakpoint_update_all(cpu);
409 hw_watchpoint_update_all(cpu);
410 arm_rebuild_hflags(env);
411 }
412
413 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
414 {
415 CPUClass *cc = CPU_GET_CLASS(cs);
416 CPUARMState *env = cs->env_ptr;
417 uint32_t cur_el = arm_current_el(env);
418 bool secure = arm_is_secure(env);
419 uint32_t target_el;
420 uint32_t excp_idx;
421 bool ret = false;
422
423 if (interrupt_request & CPU_INTERRUPT_FIQ) {
424 excp_idx = EXCP_FIQ;
425 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
426 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
427 cs->exception_index = excp_idx;
428 env->exception.target_el = target_el;
429 cc->do_interrupt(cs);
430 ret = true;
431 }
432 }
433 if (interrupt_request & CPU_INTERRUPT_HARD) {
434 excp_idx = EXCP_IRQ;
435 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
436 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
437 cs->exception_index = excp_idx;
438 env->exception.target_el = target_el;
439 cc->do_interrupt(cs);
440 ret = true;
441 }
442 }
443 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
444 excp_idx = EXCP_VIRQ;
445 target_el = 1;
446 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
447 cs->exception_index = excp_idx;
448 env->exception.target_el = target_el;
449 cc->do_interrupt(cs);
450 ret = true;
451 }
452 }
453 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
454 excp_idx = EXCP_VFIQ;
455 target_el = 1;
456 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
457 cs->exception_index = excp_idx;
458 env->exception.target_el = target_el;
459 cc->do_interrupt(cs);
460 ret = true;
461 }
462 }
463
464 return ret;
465 }
466
467 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
468 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
469 {
470 CPUClass *cc = CPU_GET_CLASS(cs);
471 ARMCPU *cpu = ARM_CPU(cs);
472 CPUARMState *env = &cpu->env;
473 bool ret = false;
474
475 /* ARMv7-M interrupt masking works differently than -A or -R.
476 * There is no FIQ/IRQ distinction. Instead of I and F bits
477 * masking FIQ and IRQ interrupts, an exception is taken only
478 * if it is higher priority than the current execution priority
479 * (which depends on state like BASEPRI, FAULTMASK and the
480 * currently active exception).
481 */
482 if (interrupt_request & CPU_INTERRUPT_HARD
483 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
484 cs->exception_index = EXCP_IRQ;
485 cc->do_interrupt(cs);
486 ret = true;
487 }
488 return ret;
489 }
490 #endif
491
492 void arm_cpu_update_virq(ARMCPU *cpu)
493 {
494 /*
495 * Update the interrupt level for VIRQ, which is the logical OR of
496 * the HCR_EL2.VI bit and the input line level from the GIC.
497 */
498 CPUARMState *env = &cpu->env;
499 CPUState *cs = CPU(cpu);
500
501 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
502 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
503
504 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
505 if (new_state) {
506 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
507 } else {
508 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
509 }
510 }
511 }
512
513 void arm_cpu_update_vfiq(ARMCPU *cpu)
514 {
515 /*
516 * Update the interrupt level for VFIQ, which is the logical OR of
517 * the HCR_EL2.VF bit and the input line level from the GIC.
518 */
519 CPUARMState *env = &cpu->env;
520 CPUState *cs = CPU(cpu);
521
522 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
523 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
524
525 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
526 if (new_state) {
527 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
528 } else {
529 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
530 }
531 }
532 }
533
534 #ifndef CONFIG_USER_ONLY
535 static void arm_cpu_set_irq(void *opaque, int irq, int level)
536 {
537 ARMCPU *cpu = opaque;
538 CPUARMState *env = &cpu->env;
539 CPUState *cs = CPU(cpu);
540 static const int mask[] = {
541 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
542 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
543 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
544 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
545 };
546
547 if (level) {
548 env->irq_line_state |= mask[irq];
549 } else {
550 env->irq_line_state &= ~mask[irq];
551 }
552
553 switch (irq) {
554 case ARM_CPU_VIRQ:
555 assert(arm_feature(env, ARM_FEATURE_EL2));
556 arm_cpu_update_virq(cpu);
557 break;
558 case ARM_CPU_VFIQ:
559 assert(arm_feature(env, ARM_FEATURE_EL2));
560 arm_cpu_update_vfiq(cpu);
561 break;
562 case ARM_CPU_IRQ:
563 case ARM_CPU_FIQ:
564 if (level) {
565 cpu_interrupt(cs, mask[irq]);
566 } else {
567 cpu_reset_interrupt(cs, mask[irq]);
568 }
569 break;
570 default:
571 g_assert_not_reached();
572 }
573 }
574
575 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
576 {
577 #ifdef CONFIG_KVM
578 ARMCPU *cpu = opaque;
579 CPUARMState *env = &cpu->env;
580 CPUState *cs = CPU(cpu);
581 uint32_t linestate_bit;
582 int irq_id;
583
584 switch (irq) {
585 case ARM_CPU_IRQ:
586 irq_id = KVM_ARM_IRQ_CPU_IRQ;
587 linestate_bit = CPU_INTERRUPT_HARD;
588 break;
589 case ARM_CPU_FIQ:
590 irq_id = KVM_ARM_IRQ_CPU_FIQ;
591 linestate_bit = CPU_INTERRUPT_FIQ;
592 break;
593 default:
594 g_assert_not_reached();
595 }
596
597 if (level) {
598 env->irq_line_state |= linestate_bit;
599 } else {
600 env->irq_line_state &= ~linestate_bit;
601 }
602 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
603 #endif
604 }
605
606 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
607 {
608 ARMCPU *cpu = ARM_CPU(cs);
609 CPUARMState *env = &cpu->env;
610
611 cpu_synchronize_state(cs);
612 return arm_cpu_data_is_big_endian(env);
613 }
614
615 #endif
616
617 static inline void set_feature(CPUARMState *env, int feature)
618 {
619 env->features |= 1ULL << feature;
620 }
621
622 static inline void unset_feature(CPUARMState *env, int feature)
623 {
624 env->features &= ~(1ULL << feature);
625 }
626
627 static int
628 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
629 {
630 return print_insn_arm(pc | 1, info);
631 }
632
633 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
634 {
635 ARMCPU *ac = ARM_CPU(cpu);
636 CPUARMState *env = &ac->env;
637 bool sctlr_b;
638
639 if (is_a64(env)) {
640 /* We might not be compiled with the A64 disassembler
641 * because it needs a C++ compiler. Leave print_insn
642 * unset in this case to use the caller default behaviour.
643 */
644 #if defined(CONFIG_ARM_A64_DIS)
645 info->print_insn = print_insn_arm_a64;
646 #endif
647 info->cap_arch = CS_ARCH_ARM64;
648 info->cap_insn_unit = 4;
649 info->cap_insn_split = 4;
650 } else {
651 int cap_mode;
652 if (env->thumb) {
653 info->print_insn = print_insn_thumb1;
654 info->cap_insn_unit = 2;
655 info->cap_insn_split = 4;
656 cap_mode = CS_MODE_THUMB;
657 } else {
658 info->print_insn = print_insn_arm;
659 info->cap_insn_unit = 4;
660 info->cap_insn_split = 4;
661 cap_mode = CS_MODE_ARM;
662 }
663 if (arm_feature(env, ARM_FEATURE_V8)) {
664 cap_mode |= CS_MODE_V8;
665 }
666 if (arm_feature(env, ARM_FEATURE_M)) {
667 cap_mode |= CS_MODE_MCLASS;
668 }
669 info->cap_arch = CS_ARCH_ARM;
670 info->cap_mode = cap_mode;
671 }
672
673 sctlr_b = arm_sctlr_b(env);
674 if (bswap_code(sctlr_b)) {
675 #ifdef TARGET_WORDS_BIGENDIAN
676 info->endian = BFD_ENDIAN_LITTLE;
677 #else
678 info->endian = BFD_ENDIAN_BIG;
679 #endif
680 }
681 info->flags &= ~INSN_ARM_BE32;
682 #ifndef CONFIG_USER_ONLY
683 if (sctlr_b) {
684 info->flags |= INSN_ARM_BE32;
685 }
686 #endif
687 }
688
689 #ifdef TARGET_AARCH64
690
691 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
692 {
693 ARMCPU *cpu = ARM_CPU(cs);
694 CPUARMState *env = &cpu->env;
695 uint32_t psr = pstate_read(env);
696 int i;
697 int el = arm_current_el(env);
698 const char *ns_status;
699
700 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
701 for (i = 0; i < 32; i++) {
702 if (i == 31) {
703 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
704 } else {
705 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
706 (i + 2) % 3 ? " " : "\n");
707 }
708 }
709
710 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
711 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
712 } else {
713 ns_status = "";
714 }
715 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
716 psr,
717 psr & PSTATE_N ? 'N' : '-',
718 psr & PSTATE_Z ? 'Z' : '-',
719 psr & PSTATE_C ? 'C' : '-',
720 psr & PSTATE_V ? 'V' : '-',
721 ns_status,
722 el,
723 psr & PSTATE_SP ? 'h' : 't');
724
725 if (cpu_isar_feature(aa64_bti, cpu)) {
726 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
727 }
728 if (!(flags & CPU_DUMP_FPU)) {
729 qemu_fprintf(f, "\n");
730 return;
731 }
732 if (fp_exception_el(env, el) != 0) {
733 qemu_fprintf(f, " FPU disabled\n");
734 return;
735 }
736 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
737 vfp_get_fpcr(env), vfp_get_fpsr(env));
738
739 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
740 int j, zcr_len = sve_zcr_len_for_el(env, el);
741
742 for (i = 0; i <= FFR_PRED_NUM; i++) {
743 bool eol;
744 if (i == FFR_PRED_NUM) {
745 qemu_fprintf(f, "FFR=");
746 /* It's last, so end the line. */
747 eol = true;
748 } else {
749 qemu_fprintf(f, "P%02d=", i);
750 switch (zcr_len) {
751 case 0:
752 eol = i % 8 == 7;
753 break;
754 case 1:
755 eol = i % 6 == 5;
756 break;
757 case 2:
758 case 3:
759 eol = i % 3 == 2;
760 break;
761 default:
762 /* More than one quadword per predicate. */
763 eol = true;
764 break;
765 }
766 }
767 for (j = zcr_len / 4; j >= 0; j--) {
768 int digits;
769 if (j * 4 + 4 <= zcr_len + 1) {
770 digits = 16;
771 } else {
772 digits = (zcr_len % 4 + 1) * 4;
773 }
774 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
775 env->vfp.pregs[i].p[j],
776 j ? ":" : eol ? "\n" : " ");
777 }
778 }
779
780 for (i = 0; i < 32; i++) {
781 if (zcr_len == 0) {
782 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
783 i, env->vfp.zregs[i].d[1],
784 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
785 } else if (zcr_len == 1) {
786 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
787 ":%016" PRIx64 ":%016" PRIx64 "\n",
788 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
789 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
790 } else {
791 for (j = zcr_len; j >= 0; j--) {
792 bool odd = (zcr_len - j) % 2 != 0;
793 if (j == zcr_len) {
794 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
795 } else if (!odd) {
796 if (j > 0) {
797 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
798 } else {
799 qemu_fprintf(f, " [%x]=", j);
800 }
801 }
802 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
803 env->vfp.zregs[i].d[j * 2 + 1],
804 env->vfp.zregs[i].d[j * 2],
805 odd || j == 0 ? "\n" : ":");
806 }
807 }
808 }
809 } else {
810 for (i = 0; i < 32; i++) {
811 uint64_t *q = aa64_vfp_qreg(env, i);
812 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
813 i, q[1], q[0], (i & 1 ? "\n" : " "));
814 }
815 }
816 }
817
818 #else
819
820 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
821 {
822 g_assert_not_reached();
823 }
824
825 #endif
826
827 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
828 {
829 ARMCPU *cpu = ARM_CPU(cs);
830 CPUARMState *env = &cpu->env;
831 int i;
832
833 if (is_a64(env)) {
834 aarch64_cpu_dump_state(cs, f, flags);
835 return;
836 }
837
838 for (i = 0; i < 16; i++) {
839 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
840 if ((i % 4) == 3) {
841 qemu_fprintf(f, "\n");
842 } else {
843 qemu_fprintf(f, " ");
844 }
845 }
846
847 if (arm_feature(env, ARM_FEATURE_M)) {
848 uint32_t xpsr = xpsr_read(env);
849 const char *mode;
850 const char *ns_status = "";
851
852 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
853 ns_status = env->v7m.secure ? "S " : "NS ";
854 }
855
856 if (xpsr & XPSR_EXCP) {
857 mode = "handler";
858 } else {
859 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
860 mode = "unpriv-thread";
861 } else {
862 mode = "priv-thread";
863 }
864 }
865
866 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
867 xpsr,
868 xpsr & XPSR_N ? 'N' : '-',
869 xpsr & XPSR_Z ? 'Z' : '-',
870 xpsr & XPSR_C ? 'C' : '-',
871 xpsr & XPSR_V ? 'V' : '-',
872 xpsr & XPSR_T ? 'T' : 'A',
873 ns_status,
874 mode);
875 } else {
876 uint32_t psr = cpsr_read(env);
877 const char *ns_status = "";
878
879 if (arm_feature(env, ARM_FEATURE_EL3) &&
880 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
881 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
882 }
883
884 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
885 psr,
886 psr & CPSR_N ? 'N' : '-',
887 psr & CPSR_Z ? 'Z' : '-',
888 psr & CPSR_C ? 'C' : '-',
889 psr & CPSR_V ? 'V' : '-',
890 psr & CPSR_T ? 'T' : 'A',
891 ns_status,
892 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
893 }
894
895 if (flags & CPU_DUMP_FPU) {
896 int numvfpregs = 0;
897 if (arm_feature(env, ARM_FEATURE_VFP)) {
898 numvfpregs += 16;
899 }
900 if (arm_feature(env, ARM_FEATURE_VFP3)) {
901 numvfpregs += 16;
902 }
903 for (i = 0; i < numvfpregs; i++) {
904 uint64_t v = *aa32_vfp_dreg(env, i);
905 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
906 i * 2, (uint32_t)v,
907 i * 2 + 1, (uint32_t)(v >> 32),
908 i, v);
909 }
910 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
911 }
912 }
913
914 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
915 {
916 uint32_t Aff1 = idx / clustersz;
917 uint32_t Aff0 = idx % clustersz;
918 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
919 }
920
921 static void cpreg_hashtable_data_destroy(gpointer data)
922 {
923 /*
924 * Destroy function for cpu->cp_regs hashtable data entries.
925 * We must free the name string because it was g_strdup()ed in
926 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
927 * from r->name because we know we definitely allocated it.
928 */
929 ARMCPRegInfo *r = data;
930
931 g_free((void *)r->name);
932 g_free(r);
933 }
934
935 static void arm_cpu_initfn(Object *obj)
936 {
937 ARMCPU *cpu = ARM_CPU(obj);
938
939 cpu_set_cpustate_pointers(cpu);
940 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
941 g_free, cpreg_hashtable_data_destroy);
942
943 QLIST_INIT(&cpu->pre_el_change_hooks);
944 QLIST_INIT(&cpu->el_change_hooks);
945
946 #ifndef CONFIG_USER_ONLY
947 /* Our inbound IRQ and FIQ lines */
948 if (kvm_enabled()) {
949 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
950 * the same interface as non-KVM CPUs.
951 */
952 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
953 } else {
954 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
955 }
956
957 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
958 ARRAY_SIZE(cpu->gt_timer_outputs));
959
960 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
961 "gicv3-maintenance-interrupt", 1);
962 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
963 "pmu-interrupt", 1);
964 #endif
965
966 /* DTB consumers generally don't in fact care what the 'compatible'
967 * string is, so always provide some string and trust that a hypothetical
968 * picky DTB consumer will also provide a helpful error message.
969 */
970 cpu->dtb_compatible = "qemu,unknown";
971 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
972 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
973
974 if (tcg_enabled()) {
975 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
976 }
977 }
978
979 static Property arm_cpu_gt_cntfrq_property =
980 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
981 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
982
983 static Property arm_cpu_reset_cbar_property =
984 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
985
986 static Property arm_cpu_reset_hivecs_property =
987 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
988
989 static Property arm_cpu_rvbar_property =
990 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
991
992 static Property arm_cpu_has_el2_property =
993 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
994
995 static Property arm_cpu_has_el3_property =
996 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
997
998 static Property arm_cpu_cfgend_property =
999 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1000
1001 static Property arm_cpu_has_vfp_property =
1002 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1003
1004 static Property arm_cpu_has_neon_property =
1005 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1006
1007 static Property arm_cpu_has_dsp_property =
1008 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1009
1010 static Property arm_cpu_has_mpu_property =
1011 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1012
1013 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1014 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1015 * the right value for that particular CPU type, and we don't want
1016 * to override that with an incorrect constant value.
1017 */
1018 static Property arm_cpu_pmsav7_dregion_property =
1019 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1020 pmsav7_dregion,
1021 qdev_prop_uint32, uint32_t);
1022
1023 static bool arm_get_pmu(Object *obj, Error **errp)
1024 {
1025 ARMCPU *cpu = ARM_CPU(obj);
1026
1027 return cpu->has_pmu;
1028 }
1029
1030 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1031 {
1032 ARMCPU *cpu = ARM_CPU(obj);
1033
1034 if (value) {
1035 if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1036 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1037 return;
1038 }
1039 set_feature(&cpu->env, ARM_FEATURE_PMU);
1040 } else {
1041 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1042 }
1043 cpu->has_pmu = value;
1044 }
1045
1046 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1047 void *opaque, Error **errp)
1048 {
1049 ARMCPU *cpu = ARM_CPU(obj);
1050
1051 visit_type_uint32(v, name, &cpu->init_svtor, errp);
1052 }
1053
1054 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1055 void *opaque, Error **errp)
1056 {
1057 ARMCPU *cpu = ARM_CPU(obj);
1058
1059 visit_type_uint32(v, name, &cpu->init_svtor, errp);
1060 }
1061
1062 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1063 {
1064 /*
1065 * The exact approach to calculating guest ticks is:
1066 *
1067 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1068 * NANOSECONDS_PER_SECOND);
1069 *
1070 * We don't do that. Rather we intentionally use integer division
1071 * truncation below and in the caller for the conversion of host monotonic
1072 * time to guest ticks to provide the exact inverse for the semantics of
1073 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1074 * it loses precision when representing frequencies where
1075 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1076 * provide an exact inverse leads to scheduling timers with negative
1077 * periods, which in turn leads to sticky behaviour in the guest.
1078 *
1079 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1080 * cannot become zero.
1081 */
1082 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1083 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1084 }
1085
1086 void arm_cpu_post_init(Object *obj)
1087 {
1088 ARMCPU *cpu = ARM_CPU(obj);
1089
1090 /* M profile implies PMSA. We have to do this here rather than
1091 * in realize with the other feature-implication checks because
1092 * we look at the PMSA bit to see if we should add some properties.
1093 */
1094 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1095 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1096 }
1097 /* Similarly for the VFP feature bits */
1098 if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
1099 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1100 }
1101 if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
1102 set_feature(&cpu->env, ARM_FEATURE_VFP);
1103 }
1104
1105 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1106 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1107 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1108 }
1109
1110 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1111 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1112 }
1113
1114 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1115 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1116 }
1117
1118 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1119 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1120 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1121 */
1122 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1123
1124 #ifndef CONFIG_USER_ONLY
1125 object_property_add_link(obj, "secure-memory",
1126 TYPE_MEMORY_REGION,
1127 (Object **)&cpu->secure_memory,
1128 qdev_prop_allow_set_link_before_realize,
1129 OBJ_PROP_LINK_STRONG,
1130 &error_abort);
1131 #endif
1132 }
1133
1134 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1135 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1136 }
1137
1138 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1139 cpu->has_pmu = true;
1140 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1141 &error_abort);
1142 }
1143
1144 /*
1145 * Allow user to turn off VFP and Neon support, but only for TCG --
1146 * KVM does not currently allow us to lie to the guest about its
1147 * ID/feature registers, so the guest always sees what the host has.
1148 */
1149 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1150 cpu->has_vfp = true;
1151 if (!kvm_enabled()) {
1152 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1153 }
1154 }
1155
1156 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1157 cpu->has_neon = true;
1158 if (!kvm_enabled()) {
1159 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1160 }
1161 }
1162
1163 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1164 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1165 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1166 }
1167
1168 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1169 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1170 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1171 qdev_property_add_static(DEVICE(obj),
1172 &arm_cpu_pmsav7_dregion_property);
1173 }
1174 }
1175
1176 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1177 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1178 qdev_prop_allow_set_link_before_realize,
1179 OBJ_PROP_LINK_STRONG,
1180 &error_abort);
1181 /*
1182 * M profile: initial value of the Secure VTOR. We can't just use
1183 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1184 * the property to be set after realize.
1185 */
1186 object_property_add(obj, "init-svtor", "uint32",
1187 arm_get_init_svtor, arm_set_init_svtor,
1188 NULL, NULL, &error_abort);
1189 }
1190
1191 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1192
1193 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1194 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1195 }
1196 }
1197
1198 static void arm_cpu_finalizefn(Object *obj)
1199 {
1200 ARMCPU *cpu = ARM_CPU(obj);
1201 ARMELChangeHook *hook, *next;
1202
1203 g_hash_table_destroy(cpu->cp_regs);
1204
1205 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1206 QLIST_REMOVE(hook, node);
1207 g_free(hook);
1208 }
1209 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1210 QLIST_REMOVE(hook, node);
1211 g_free(hook);
1212 }
1213 #ifndef CONFIG_USER_ONLY
1214 if (cpu->pmu_timer) {
1215 timer_del(cpu->pmu_timer);
1216 timer_deinit(cpu->pmu_timer);
1217 timer_free(cpu->pmu_timer);
1218 }
1219 #endif
1220 }
1221
1222 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1223 {
1224 Error *local_err = NULL;
1225
1226 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1227 arm_cpu_sve_finalize(cpu, &local_err);
1228 if (local_err != NULL) {
1229 error_propagate(errp, local_err);
1230 return;
1231 }
1232 }
1233 }
1234
1235 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1236 {
1237 CPUState *cs = CPU(dev);
1238 ARMCPU *cpu = ARM_CPU(dev);
1239 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1240 CPUARMState *env = &cpu->env;
1241 int pagebits;
1242 Error *local_err = NULL;
1243 bool no_aa32 = false;
1244
1245 /* If we needed to query the host kernel for the CPU features
1246 * then it's possible that might have failed in the initfn, but
1247 * this is the first point where we can report it.
1248 */
1249 if (cpu->host_cpu_probe_failed) {
1250 if (!kvm_enabled()) {
1251 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1252 } else {
1253 error_setg(errp, "Failed to retrieve host CPU features");
1254 }
1255 return;
1256 }
1257
1258 #ifndef CONFIG_USER_ONLY
1259 /* The NVIC and M-profile CPU are two halves of a single piece of
1260 * hardware; trying to use one without the other is a command line
1261 * error and will result in segfaults if not caught here.
1262 */
1263 if (arm_feature(env, ARM_FEATURE_M)) {
1264 if (!env->nvic) {
1265 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1266 return;
1267 }
1268 } else {
1269 if (env->nvic) {
1270 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1271 return;
1272 }
1273 }
1274
1275
1276 {
1277 uint64_t scale;
1278
1279 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1280 if (!cpu->gt_cntfrq_hz) {
1281 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1282 cpu->gt_cntfrq_hz);
1283 return;
1284 }
1285 scale = gt_cntfrq_period_ns(cpu);
1286 } else {
1287 scale = GTIMER_SCALE;
1288 }
1289
1290 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1291 arm_gt_ptimer_cb, cpu);
1292 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1293 arm_gt_vtimer_cb, cpu);
1294 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1295 arm_gt_htimer_cb, cpu);
1296 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1297 arm_gt_stimer_cb, cpu);
1298 }
1299 #endif
1300
1301 cpu_exec_realizefn(cs, &local_err);
1302 if (local_err != NULL) {
1303 error_propagate(errp, local_err);
1304 return;
1305 }
1306
1307 arm_cpu_finalize_features(cpu, &local_err);
1308 if (local_err != NULL) {
1309 error_propagate(errp, local_err);
1310 return;
1311 }
1312
1313 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1314 cpu->has_vfp != cpu->has_neon) {
1315 /*
1316 * This is an architectural requirement for AArch64; AArch32 is
1317 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1318 */
1319 error_setg(errp,
1320 "AArch64 CPUs must have both VFP and Neon or neither");
1321 return;
1322 }
1323
1324 if (!cpu->has_vfp) {
1325 uint64_t t;
1326 uint32_t u;
1327
1328 unset_feature(env, ARM_FEATURE_VFP);
1329 unset_feature(env, ARM_FEATURE_VFP3);
1330 unset_feature(env, ARM_FEATURE_VFP4);
1331
1332 t = cpu->isar.id_aa64isar1;
1333 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1334 cpu->isar.id_aa64isar1 = t;
1335
1336 t = cpu->isar.id_aa64pfr0;
1337 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1338 cpu->isar.id_aa64pfr0 = t;
1339
1340 u = cpu->isar.id_isar6;
1341 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1342 cpu->isar.id_isar6 = u;
1343
1344 u = cpu->isar.mvfr0;
1345 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1346 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1347 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1348 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1349 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1350 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1351 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1352 cpu->isar.mvfr0 = u;
1353
1354 u = cpu->isar.mvfr1;
1355 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1356 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1357 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1358 cpu->isar.mvfr1 = u;
1359
1360 u = cpu->isar.mvfr2;
1361 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1362 cpu->isar.mvfr2 = u;
1363 }
1364
1365 if (!cpu->has_neon) {
1366 uint64_t t;
1367 uint32_t u;
1368
1369 unset_feature(env, ARM_FEATURE_NEON);
1370
1371 t = cpu->isar.id_aa64isar0;
1372 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1373 cpu->isar.id_aa64isar0 = t;
1374
1375 t = cpu->isar.id_aa64isar1;
1376 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1377 cpu->isar.id_aa64isar1 = t;
1378
1379 t = cpu->isar.id_aa64pfr0;
1380 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1381 cpu->isar.id_aa64pfr0 = t;
1382
1383 u = cpu->isar.id_isar5;
1384 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1385 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1386 cpu->isar.id_isar5 = u;
1387
1388 u = cpu->isar.id_isar6;
1389 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1390 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1391 cpu->isar.id_isar6 = u;
1392
1393 u = cpu->isar.mvfr1;
1394 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1395 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1396 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1397 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1398 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1399 cpu->isar.mvfr1 = u;
1400
1401 u = cpu->isar.mvfr2;
1402 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1403 cpu->isar.mvfr2 = u;
1404 }
1405
1406 if (!cpu->has_neon && !cpu->has_vfp) {
1407 uint64_t t;
1408 uint32_t u;
1409
1410 t = cpu->isar.id_aa64isar0;
1411 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1412 cpu->isar.id_aa64isar0 = t;
1413
1414 t = cpu->isar.id_aa64isar1;
1415 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1416 cpu->isar.id_aa64isar1 = t;
1417
1418 u = cpu->isar.mvfr0;
1419 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1420 cpu->isar.mvfr0 = u;
1421 }
1422
1423 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1424 uint32_t u;
1425
1426 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1427
1428 u = cpu->isar.id_isar1;
1429 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1430 cpu->isar.id_isar1 = u;
1431
1432 u = cpu->isar.id_isar2;
1433 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1434 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1435 cpu->isar.id_isar2 = u;
1436
1437 u = cpu->isar.id_isar3;
1438 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1439 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1440 cpu->isar.id_isar3 = u;
1441 }
1442
1443 /* Some features automatically imply others: */
1444 if (arm_feature(env, ARM_FEATURE_V8)) {
1445 if (arm_feature(env, ARM_FEATURE_M)) {
1446 set_feature(env, ARM_FEATURE_V7);
1447 } else {
1448 set_feature(env, ARM_FEATURE_V7VE);
1449 }
1450 }
1451
1452 /*
1453 * There exist AArch64 cpus without AArch32 support. When KVM
1454 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1455 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1456 * As a general principle, we also do not make ID register
1457 * consistency checks anywhere unless using TCG, because only
1458 * for TCG would a consistency-check failure be a QEMU bug.
1459 */
1460 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1461 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1462 }
1463
1464 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1465 /* v7 Virtualization Extensions. In real hardware this implies
1466 * EL2 and also the presence of the Security Extensions.
1467 * For QEMU, for backwards-compatibility we implement some
1468 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1469 * include the various other features that V7VE implies.
1470 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1471 * Security Extensions is ARM_FEATURE_EL3.
1472 */
1473 assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(arm_div, cpu));
1474 set_feature(env, ARM_FEATURE_LPAE);
1475 set_feature(env, ARM_FEATURE_V7);
1476 }
1477 if (arm_feature(env, ARM_FEATURE_V7)) {
1478 set_feature(env, ARM_FEATURE_VAPA);
1479 set_feature(env, ARM_FEATURE_THUMB2);
1480 set_feature(env, ARM_FEATURE_MPIDR);
1481 if (!arm_feature(env, ARM_FEATURE_M)) {
1482 set_feature(env, ARM_FEATURE_V6K);
1483 } else {
1484 set_feature(env, ARM_FEATURE_V6);
1485 }
1486
1487 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1488 * non-EL3 configs. This is needed by some legacy boards.
1489 */
1490 set_feature(env, ARM_FEATURE_VBAR);
1491 }
1492 if (arm_feature(env, ARM_FEATURE_V6K)) {
1493 set_feature(env, ARM_FEATURE_V6);
1494 set_feature(env, ARM_FEATURE_MVFR);
1495 }
1496 if (arm_feature(env, ARM_FEATURE_V6)) {
1497 set_feature(env, ARM_FEATURE_V5);
1498 if (!arm_feature(env, ARM_FEATURE_M)) {
1499 assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(jazelle, cpu));
1500 set_feature(env, ARM_FEATURE_AUXCR);
1501 }
1502 }
1503 if (arm_feature(env, ARM_FEATURE_V5)) {
1504 set_feature(env, ARM_FEATURE_V4T);
1505 }
1506 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1507 set_feature(env, ARM_FEATURE_V7MP);
1508 set_feature(env, ARM_FEATURE_PXN);
1509 }
1510 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1511 set_feature(env, ARM_FEATURE_CBAR);
1512 }
1513 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1514 !arm_feature(env, ARM_FEATURE_M)) {
1515 set_feature(env, ARM_FEATURE_THUMB_DSP);
1516 }
1517
1518 /*
1519 * We rely on no XScale CPU having VFP so we can use the same bits in the
1520 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1521 */
1522 assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1523 arm_feature(env, ARM_FEATURE_XSCALE)));
1524
1525 if (arm_feature(env, ARM_FEATURE_V7) &&
1526 !arm_feature(env, ARM_FEATURE_M) &&
1527 !arm_feature(env, ARM_FEATURE_PMSA)) {
1528 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1529 * can use 4K pages.
1530 */
1531 pagebits = 12;
1532 } else {
1533 /* For CPUs which might have tiny 1K pages, or which have an
1534 * MPU and might have small region sizes, stick with 1K pages.
1535 */
1536 pagebits = 10;
1537 }
1538 if (!set_preferred_target_page_bits(pagebits)) {
1539 /* This can only ever happen for hotplugging a CPU, or if
1540 * the board code incorrectly creates a CPU which it has
1541 * promised via minimum_page_size that it will not.
1542 */
1543 error_setg(errp, "This CPU requires a smaller page size than the "
1544 "system is using");
1545 return;
1546 }
1547
1548 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1549 * We don't support setting cluster ID ([16..23]) (known as Aff2
1550 * in later ARM ARM versions), or any of the higher affinity level fields,
1551 * so these bits always RAZ.
1552 */
1553 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1554 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1555 ARM_DEFAULT_CPUS_PER_CLUSTER);
1556 }
1557
1558 if (cpu->reset_hivecs) {
1559 cpu->reset_sctlr |= (1 << 13);
1560 }
1561
1562 if (cpu->cfgend) {
1563 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1564 cpu->reset_sctlr |= SCTLR_EE;
1565 } else {
1566 cpu->reset_sctlr |= SCTLR_B;
1567 }
1568 }
1569
1570 if (!cpu->has_el3) {
1571 /* If the has_el3 CPU property is disabled then we need to disable the
1572 * feature.
1573 */
1574 unset_feature(env, ARM_FEATURE_EL3);
1575
1576 /* Disable the security extension feature bits in the processor feature
1577 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1578 */
1579 cpu->id_pfr1 &= ~0xf0;
1580 cpu->isar.id_aa64pfr0 &= ~0xf000;
1581 }
1582
1583 if (!cpu->has_el2) {
1584 unset_feature(env, ARM_FEATURE_EL2);
1585 }
1586
1587 if (!cpu->has_pmu) {
1588 unset_feature(env, ARM_FEATURE_PMU);
1589 }
1590 if (arm_feature(env, ARM_FEATURE_PMU)) {
1591 pmu_init(cpu);
1592
1593 if (!kvm_enabled()) {
1594 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1595 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1596 }
1597
1598 #ifndef CONFIG_USER_ONLY
1599 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1600 cpu);
1601 #endif
1602 } else {
1603 cpu->id_aa64dfr0 &= ~0xf00;
1604 cpu->id_dfr0 &= ~(0xf << 24);
1605 cpu->pmceid0 = 0;
1606 cpu->pmceid1 = 0;
1607 }
1608
1609 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1610 /* Disable the hypervisor feature bits in the processor feature
1611 * registers if we don't have EL2. These are id_pfr1[15:12] and
1612 * id_aa64pfr0_el1[11:8].
1613 */
1614 cpu->isar.id_aa64pfr0 &= ~0xf00;
1615 cpu->id_pfr1 &= ~0xf000;
1616 }
1617
1618 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1619 * to false or by setting pmsav7-dregion to 0.
1620 */
1621 if (!cpu->has_mpu) {
1622 cpu->pmsav7_dregion = 0;
1623 }
1624 if (cpu->pmsav7_dregion == 0) {
1625 cpu->has_mpu = false;
1626 }
1627
1628 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1629 arm_feature(env, ARM_FEATURE_V7)) {
1630 uint32_t nr = cpu->pmsav7_dregion;
1631
1632 if (nr > 0xff) {
1633 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1634 return;
1635 }
1636
1637 if (nr) {
1638 if (arm_feature(env, ARM_FEATURE_V8)) {
1639 /* PMSAv8 */
1640 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1641 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1642 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1643 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1644 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1645 }
1646 } else {
1647 env->pmsav7.drbar = g_new0(uint32_t, nr);
1648 env->pmsav7.drsr = g_new0(uint32_t, nr);
1649 env->pmsav7.dracr = g_new0(uint32_t, nr);
1650 }
1651 }
1652 }
1653
1654 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1655 uint32_t nr = cpu->sau_sregion;
1656
1657 if (nr > 0xff) {
1658 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1659 return;
1660 }
1661
1662 if (nr) {
1663 env->sau.rbar = g_new0(uint32_t, nr);
1664 env->sau.rlar = g_new0(uint32_t, nr);
1665 }
1666 }
1667
1668 if (arm_feature(env, ARM_FEATURE_EL3)) {
1669 set_feature(env, ARM_FEATURE_VBAR);
1670 }
1671
1672 register_cp_regs_for_features(cpu);
1673 arm_cpu_register_gdb_regs_for_features(cpu);
1674
1675 init_cpreg_list(cpu);
1676
1677 #ifndef CONFIG_USER_ONLY
1678 MachineState *ms = MACHINE(qdev_get_machine());
1679 unsigned int smp_cpus = ms->smp.cpus;
1680
1681 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1682 cs->num_ases = 2;
1683
1684 if (!cpu->secure_memory) {
1685 cpu->secure_memory = cs->memory;
1686 }
1687 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1688 cpu->secure_memory);
1689 } else {
1690 cs->num_ases = 1;
1691 }
1692 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1693
1694 /* No core_count specified, default to smp_cpus. */
1695 if (cpu->core_count == -1) {
1696 cpu->core_count = smp_cpus;
1697 }
1698 #endif
1699
1700 qemu_init_vcpu(cs);
1701 cpu_reset(cs);
1702
1703 acc->parent_realize(dev, errp);
1704 }
1705
1706 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1707 {
1708 ObjectClass *oc;
1709 char *typename;
1710 char **cpuname;
1711 const char *cpunamestr;
1712
1713 cpuname = g_strsplit(cpu_model, ",", 1);
1714 cpunamestr = cpuname[0];
1715 #ifdef CONFIG_USER_ONLY
1716 /* For backwards compatibility usermode emulation allows "-cpu any",
1717 * which has the same semantics as "-cpu max".
1718 */
1719 if (!strcmp(cpunamestr, "any")) {
1720 cpunamestr = "max";
1721 }
1722 #endif
1723 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1724 oc = object_class_by_name(typename);
1725 g_strfreev(cpuname);
1726 g_free(typename);
1727 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1728 object_class_is_abstract(oc)) {
1729 return NULL;
1730 }
1731 return oc;
1732 }
1733
1734 /* CPU models. These are not needed for the AArch64 linux-user build. */
1735 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1736
1737 static void arm926_initfn(Object *obj)
1738 {
1739 ARMCPU *cpu = ARM_CPU(obj);
1740
1741 cpu->dtb_compatible = "arm,arm926";
1742 set_feature(&cpu->env, ARM_FEATURE_V5);
1743 set_feature(&cpu->env, ARM_FEATURE_VFP);
1744 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1745 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1746 cpu->midr = 0x41069265;
1747 cpu->reset_fpsid = 0x41011090;
1748 cpu->ctr = 0x1dd20d2;
1749 cpu->reset_sctlr = 0x00090078;
1750
1751 /*
1752 * ARMv5 does not have the ID_ISAR registers, but we can still
1753 * set the field to indicate Jazelle support within QEMU.
1754 */
1755 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1756 /*
1757 * Similarly, we need to set MVFR0 fields to enable double precision
1758 * and short vector support even though ARMv5 doesn't have this register.
1759 */
1760 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1761 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1762 }
1763
1764 static void arm946_initfn(Object *obj)
1765 {
1766 ARMCPU *cpu = ARM_CPU(obj);
1767
1768 cpu->dtb_compatible = "arm,arm946";
1769 set_feature(&cpu->env, ARM_FEATURE_V5);
1770 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1771 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1772 cpu->midr = 0x41059461;
1773 cpu->ctr = 0x0f004006;
1774 cpu->reset_sctlr = 0x00000078;
1775 }
1776
1777 static void arm1026_initfn(Object *obj)
1778 {
1779 ARMCPU *cpu = ARM_CPU(obj);
1780
1781 cpu->dtb_compatible = "arm,arm1026";
1782 set_feature(&cpu->env, ARM_FEATURE_V5);
1783 set_feature(&cpu->env, ARM_FEATURE_VFP);
1784 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1785 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1786 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1787 cpu->midr = 0x4106a262;
1788 cpu->reset_fpsid = 0x410110a0;
1789 cpu->ctr = 0x1dd20d2;
1790 cpu->reset_sctlr = 0x00090078;
1791 cpu->reset_auxcr = 1;
1792
1793 /*
1794 * ARMv5 does not have the ID_ISAR registers, but we can still
1795 * set the field to indicate Jazelle support within QEMU.
1796 */
1797 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1798 /*
1799 * Similarly, we need to set MVFR0 fields to enable double precision
1800 * and short vector support even though ARMv5 doesn't have this register.
1801 */
1802 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1803 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1804
1805 {
1806 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1807 ARMCPRegInfo ifar = {
1808 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1809 .access = PL1_RW,
1810 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1811 .resetvalue = 0
1812 };
1813 define_one_arm_cp_reg(cpu, &ifar);
1814 }
1815 }
1816
1817 static void arm1136_r2_initfn(Object *obj)
1818 {
1819 ARMCPU *cpu = ARM_CPU(obj);
1820 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1821 * older core than plain "arm1136". In particular this does not
1822 * have the v6K features.
1823 * These ID register values are correct for 1136 but may be wrong
1824 * for 1136_r2 (in particular r0p2 does not actually implement most
1825 * of the ID registers).
1826 */
1827
1828 cpu->dtb_compatible = "arm,arm1136";
1829 set_feature(&cpu->env, ARM_FEATURE_V6);
1830 set_feature(&cpu->env, ARM_FEATURE_VFP);
1831 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1832 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1833 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1834 cpu->midr = 0x4107b362;
1835 cpu->reset_fpsid = 0x410120b4;
1836 cpu->isar.mvfr0 = 0x11111111;
1837 cpu->isar.mvfr1 = 0x00000000;
1838 cpu->ctr = 0x1dd20d2;
1839 cpu->reset_sctlr = 0x00050078;
1840 cpu->id_pfr0 = 0x111;
1841 cpu->id_pfr1 = 0x1;
1842 cpu->id_dfr0 = 0x2;
1843 cpu->id_afr0 = 0x3;
1844 cpu->id_mmfr0 = 0x01130003;
1845 cpu->id_mmfr1 = 0x10030302;
1846 cpu->id_mmfr2 = 0x01222110;
1847 cpu->isar.id_isar0 = 0x00140011;
1848 cpu->isar.id_isar1 = 0x12002111;
1849 cpu->isar.id_isar2 = 0x11231111;
1850 cpu->isar.id_isar3 = 0x01102131;
1851 cpu->isar.id_isar4 = 0x141;
1852 cpu->reset_auxcr = 7;
1853 }
1854
1855 static void arm1136_initfn(Object *obj)
1856 {
1857 ARMCPU *cpu = ARM_CPU(obj);
1858
1859 cpu->dtb_compatible = "arm,arm1136";
1860 set_feature(&cpu->env, ARM_FEATURE_V6K);
1861 set_feature(&cpu->env, ARM_FEATURE_V6);
1862 set_feature(&cpu->env, ARM_FEATURE_VFP);
1863 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1864 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1865 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1866 cpu->midr = 0x4117b363;
1867 cpu->reset_fpsid = 0x410120b4;
1868 cpu->isar.mvfr0 = 0x11111111;
1869 cpu->isar.mvfr1 = 0x00000000;
1870 cpu->ctr = 0x1dd20d2;
1871 cpu->reset_sctlr = 0x00050078;
1872 cpu->id_pfr0 = 0x111;
1873 cpu->id_pfr1 = 0x1;
1874 cpu->id_dfr0 = 0x2;
1875 cpu->id_afr0 = 0x3;
1876 cpu->id_mmfr0 = 0x01130003;
1877 cpu->id_mmfr1 = 0x10030302;
1878 cpu->id_mmfr2 = 0x01222110;
1879 cpu->isar.id_isar0 = 0x00140011;
1880 cpu->isar.id_isar1 = 0x12002111;
1881 cpu->isar.id_isar2 = 0x11231111;
1882 cpu->isar.id_isar3 = 0x01102131;
1883 cpu->isar.id_isar4 = 0x141;
1884 cpu->reset_auxcr = 7;
1885 }
1886
1887 static void arm1176_initfn(Object *obj)
1888 {
1889 ARMCPU *cpu = ARM_CPU(obj);
1890
1891 cpu->dtb_compatible = "arm,arm1176";
1892 set_feature(&cpu->env, ARM_FEATURE_V6K);
1893 set_feature(&cpu->env, ARM_FEATURE_VFP);
1894 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1895 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1896 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1897 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1898 set_feature(&cpu->env, ARM_FEATURE_EL3);
1899 cpu->midr = 0x410fb767;
1900 cpu->reset_fpsid = 0x410120b5;
1901 cpu->isar.mvfr0 = 0x11111111;
1902 cpu->isar.mvfr1 = 0x00000000;
1903 cpu->ctr = 0x1dd20d2;
1904 cpu->reset_sctlr = 0x00050078;
1905 cpu->id_pfr0 = 0x111;
1906 cpu->id_pfr1 = 0x11;
1907 cpu->id_dfr0 = 0x33;
1908 cpu->id_afr0 = 0;
1909 cpu->id_mmfr0 = 0x01130003;
1910 cpu->id_mmfr1 = 0x10030302;
1911 cpu->id_mmfr2 = 0x01222100;
1912 cpu->isar.id_isar0 = 0x0140011;
1913 cpu->isar.id_isar1 = 0x12002111;
1914 cpu->isar.id_isar2 = 0x11231121;
1915 cpu->isar.id_isar3 = 0x01102131;
1916 cpu->isar.id_isar4 = 0x01141;
1917 cpu->reset_auxcr = 7;
1918 }
1919
1920 static void arm11mpcore_initfn(Object *obj)
1921 {
1922 ARMCPU *cpu = ARM_CPU(obj);
1923
1924 cpu->dtb_compatible = "arm,arm11mpcore";
1925 set_feature(&cpu->env, ARM_FEATURE_V6K);
1926 set_feature(&cpu->env, ARM_FEATURE_VFP);
1927 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1928 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1929 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1930 cpu->midr = 0x410fb022;
1931 cpu->reset_fpsid = 0x410120b4;
1932 cpu->isar.mvfr0 = 0x11111111;
1933 cpu->isar.mvfr1 = 0x00000000;
1934 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1935 cpu->id_pfr0 = 0x111;
1936 cpu->id_pfr1 = 0x1;
1937 cpu->id_dfr0 = 0;
1938 cpu->id_afr0 = 0x2;
1939 cpu->id_mmfr0 = 0x01100103;
1940 cpu->id_mmfr1 = 0x10020302;
1941 cpu->id_mmfr2 = 0x01222000;
1942 cpu->isar.id_isar0 = 0x00100011;
1943 cpu->isar.id_isar1 = 0x12002111;
1944 cpu->isar.id_isar2 = 0x11221011;
1945 cpu->isar.id_isar3 = 0x01102131;
1946 cpu->isar.id_isar4 = 0x141;
1947 cpu->reset_auxcr = 1;
1948 }
1949
1950 static void cortex_m0_initfn(Object *obj)
1951 {
1952 ARMCPU *cpu = ARM_CPU(obj);
1953 set_feature(&cpu->env, ARM_FEATURE_V6);
1954 set_feature(&cpu->env, ARM_FEATURE_M);
1955
1956 cpu->midr = 0x410cc200;
1957 }
1958
1959 static void cortex_m3_initfn(Object *obj)
1960 {
1961 ARMCPU *cpu = ARM_CPU(obj);
1962 set_feature(&cpu->env, ARM_FEATURE_V7);
1963 set_feature(&cpu->env, ARM_FEATURE_M);
1964 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1965 cpu->midr = 0x410fc231;
1966 cpu->pmsav7_dregion = 8;
1967 cpu->id_pfr0 = 0x00000030;
1968 cpu->id_pfr1 = 0x00000200;
1969 cpu->id_dfr0 = 0x00100000;
1970 cpu->id_afr0 = 0x00000000;
1971 cpu->id_mmfr0 = 0x00000030;
1972 cpu->id_mmfr1 = 0x00000000;
1973 cpu->id_mmfr2 = 0x00000000;
1974 cpu->id_mmfr3 = 0x00000000;
1975 cpu->isar.id_isar0 = 0x01141110;
1976 cpu->isar.id_isar1 = 0x02111000;
1977 cpu->isar.id_isar2 = 0x21112231;
1978 cpu->isar.id_isar3 = 0x01111110;
1979 cpu->isar.id_isar4 = 0x01310102;
1980 cpu->isar.id_isar5 = 0x00000000;
1981 cpu->isar.id_isar6 = 0x00000000;
1982 }
1983
1984 static void cortex_m4_initfn(Object *obj)
1985 {
1986 ARMCPU *cpu = ARM_CPU(obj);
1987
1988 set_feature(&cpu->env, ARM_FEATURE_V7);
1989 set_feature(&cpu->env, ARM_FEATURE_M);
1990 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1991 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1992 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1993 cpu->midr = 0x410fc240; /* r0p0 */
1994 cpu->pmsav7_dregion = 8;
1995 cpu->isar.mvfr0 = 0x10110021;
1996 cpu->isar.mvfr1 = 0x11000011;
1997 cpu->isar.mvfr2 = 0x00000000;
1998 cpu->id_pfr0 = 0x00000030;
1999 cpu->id_pfr1 = 0x00000200;
2000 cpu->id_dfr0 = 0x00100000;
2001 cpu->id_afr0 = 0x00000000;
2002 cpu->id_mmfr0 = 0x00000030;
2003 cpu->id_mmfr1 = 0x00000000;
2004 cpu->id_mmfr2 = 0x00000000;
2005 cpu->id_mmfr3 = 0x00000000;
2006 cpu->isar.id_isar0 = 0x01141110;
2007 cpu->isar.id_isar1 = 0x02111000;
2008 cpu->isar.id_isar2 = 0x21112231;
2009 cpu->isar.id_isar3 = 0x01111110;
2010 cpu->isar.id_isar4 = 0x01310102;
2011 cpu->isar.id_isar5 = 0x00000000;
2012 cpu->isar.id_isar6 = 0x00000000;
2013 }
2014
2015 static void cortex_m7_initfn(Object *obj)
2016 {
2017 ARMCPU *cpu = ARM_CPU(obj);
2018
2019 set_feature(&cpu->env, ARM_FEATURE_V7);
2020 set_feature(&cpu->env, ARM_FEATURE_M);
2021 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2022 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2023 set_feature(&cpu->env, ARM_FEATURE_VFP4);
2024 cpu->midr = 0x411fc272; /* r1p2 */
2025 cpu->pmsav7_dregion = 8;
2026 cpu->isar.mvfr0 = 0x10110221;
2027 cpu->isar.mvfr1 = 0x12000011;
2028 cpu->isar.mvfr2 = 0x00000040;
2029 cpu->id_pfr0 = 0x00000030;
2030 cpu->id_pfr1 = 0x00000200;
2031 cpu->id_dfr0 = 0x00100000;
2032 cpu->id_afr0 = 0x00000000;
2033 cpu->id_mmfr0 = 0x00100030;
2034 cpu->id_mmfr1 = 0x00000000;
2035 cpu->id_mmfr2 = 0x01000000;
2036 cpu->id_mmfr3 = 0x00000000;
2037 cpu->isar.id_isar0 = 0x01101110;
2038 cpu->isar.id_isar1 = 0x02112000;
2039 cpu->isar.id_isar2 = 0x20232231;
2040 cpu->isar.id_isar3 = 0x01111131;
2041 cpu->isar.id_isar4 = 0x01310132;
2042 cpu->isar.id_isar5 = 0x00000000;
2043 cpu->isar.id_isar6 = 0x00000000;
2044 }
2045
2046 static void cortex_m33_initfn(Object *obj)
2047 {
2048 ARMCPU *cpu = ARM_CPU(obj);
2049
2050 set_feature(&cpu->env, ARM_FEATURE_V8);
2051 set_feature(&cpu->env, ARM_FEATURE_M);
2052 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2053 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
2054 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2055 set_feature(&cpu->env, ARM_FEATURE_VFP4);
2056 cpu->midr = 0x410fd213; /* r0p3 */
2057 cpu->pmsav7_dregion = 16;
2058 cpu->sau_sregion = 8;
2059 cpu->isar.mvfr0 = 0x10110021;
2060 cpu->isar.mvfr1 = 0x11000011;
2061 cpu->isar.mvfr2 = 0x00000040;
2062 cpu->id_pfr0 = 0x00000030;
2063 cpu->id_pfr1 = 0x00000210;
2064 cpu->id_dfr0 = 0x00200000;
2065 cpu->id_afr0 = 0x00000000;
2066 cpu->id_mmfr0 = 0x00101F40;
2067 cpu->id_mmfr1 = 0x00000000;
2068 cpu->id_mmfr2 = 0x01000000;
2069 cpu->id_mmfr3 = 0x00000000;
2070 cpu->isar.id_isar0 = 0x01101110;
2071 cpu->isar.id_isar1 = 0x02212000;
2072 cpu->isar.id_isar2 = 0x20232232;
2073 cpu->isar.id_isar3 = 0x01111131;
2074 cpu->isar.id_isar4 = 0x01310132;
2075 cpu->isar.id_isar5 = 0x00000000;
2076 cpu->isar.id_isar6 = 0x00000000;
2077 cpu->clidr = 0x00000000;
2078 cpu->ctr = 0x8000c000;
2079 }
2080
2081 static void arm_v7m_class_init(ObjectClass *oc, void *data)
2082 {
2083 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2084 CPUClass *cc = CPU_CLASS(oc);
2085
2086 acc->info = data;
2087 #ifndef CONFIG_USER_ONLY
2088 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2089 #endif
2090
2091 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2092 }
2093
2094 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2095 /* Dummy the TCM region regs for the moment */
2096 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2097 .access = PL1_RW, .type = ARM_CP_CONST },
2098 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2099 .access = PL1_RW, .type = ARM_CP_CONST },
2100 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2101 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2102 REGINFO_SENTINEL
2103 };
2104
2105 static void cortex_r5_initfn(Object *obj)
2106 {
2107 ARMCPU *cpu = ARM_CPU(obj);
2108
2109 set_feature(&cpu->env, ARM_FEATURE_V7);
2110 set_feature(&cpu->env, ARM_FEATURE_V7MP);
2111 set_feature(&cpu->env, ARM_FEATURE_PMSA);
2112 set_feature(&cpu->env, ARM_FEATURE_PMU);
2113 cpu->midr = 0x411fc153; /* r1p3 */
2114 cpu->id_pfr0 = 0x0131;
2115 cpu->id_pfr1 = 0x001;
2116 cpu->id_dfr0 = 0x010400;
2117 cpu->id_afr0 = 0x0;
2118 cpu->id_mmfr0 = 0x0210030;
2119 cpu->id_mmfr1 = 0x00000000;
2120 cpu->id_mmfr2 = 0x01200000;
2121 cpu->id_mmfr3 = 0x0211;
2122 cpu->isar.id_isar0 = 0x02101111;
2123 cpu->isar.id_isar1 = 0x13112111;
2124 cpu->isar.id_isar2 = 0x21232141;
2125 cpu->isar.id_isar3 = 0x01112131;
2126 cpu->isar.id_isar4 = 0x0010142;
2127 cpu->isar.id_isar5 = 0x0;
2128 cpu->isar.id_isar6 = 0x0;
2129 cpu->mp_is_up = true;
2130 cpu->pmsav7_dregion = 16;
2131 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2132 }
2133
2134 static void cortex_r5f_initfn(Object *obj)
2135 {
2136 ARMCPU *cpu = ARM_CPU(obj);
2137
2138 cortex_r5_initfn(obj);
2139 set_feature(&cpu->env, ARM_FEATURE_VFP3);
2140 cpu->isar.mvfr0 = 0x10110221;
2141 cpu->isar.mvfr1 = 0x00000011;
2142 }
2143
2144 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2145 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2146 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2147 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2148 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2149 REGINFO_SENTINEL
2150 };
2151
2152 static void cortex_a8_initfn(Object *obj)
2153 {
2154 ARMCPU *cpu = ARM_CPU(obj);
2155
2156 cpu->dtb_compatible = "arm,cortex-a8";
2157 set_feature(&cpu->env, ARM_FEATURE_V7);
2158 set_feature(&cpu->env, ARM_FEATURE_VFP3);
2159 set_feature(&cpu->env, ARM_FEATURE_NEON);
2160 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2161 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2162 set_feature(&cpu->env, ARM_FEATURE_EL3);
2163 cpu->midr = 0x410fc080;
2164 cpu->reset_fpsid = 0x410330c0;
2165 cpu->isar.mvfr0 = 0x11110222;
2166 cpu->isar.mvfr1 = 0x00011111;
2167 cpu->ctr = 0x82048004;
2168 cpu->reset_sctlr = 0x00c50078;
2169 cpu->id_pfr0 = 0x1031;
2170 cpu->id_pfr1 = 0x11;
2171 cpu->id_dfr0 = 0x400;
2172 cpu->id_afr0 = 0;
2173 cpu->id_mmfr0 = 0x31100003;
2174 cpu->id_mmfr1 = 0x20000000;
2175 cpu->id_mmfr2 = 0x01202000;
2176 cpu->id_mmfr3 = 0x11;
2177 cpu->isar.id_isar0 = 0x00101111;
2178 cpu->isar.id_isar1 = 0x12112111;
2179 cpu->isar.id_isar2 = 0x21232031;
2180 cpu->isar.id_isar3 = 0x11112131;
2181 cpu->isar.id_isar4 = 0x00111142;
2182 cpu->dbgdidr = 0x15141000;
2183 cpu->clidr = (1 << 27) | (2 << 24) | 3;
2184 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2185 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2186 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2187 cpu->reset_auxcr = 2;
2188 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2189 }
2190
2191 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2192 /* power_control should be set to maximum latency. Again,
2193 * default to 0 and set by private hook
2194 */
2195 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2196 .access = PL1_RW, .resetvalue = 0,
2197 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2198 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2199 .access = PL1_RW, .resetvalue = 0,
2200 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2201 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2202 .access = PL1_RW, .resetvalue = 0,
2203 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2204 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2205 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2206 /* TLB lockdown control */
2207 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2208 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2209 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2210 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2211 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2212 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2213 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2214 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2215 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2216 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2217 REGINFO_SENTINEL
2218 };
2219
2220 static void cortex_a9_initfn(Object *obj)
2221 {
2222 ARMCPU *cpu = ARM_CPU(obj);
2223
2224 cpu->dtb_compatible = "arm,cortex-a9";
2225 set_feature(&cpu->env, ARM_FEATURE_V7);
2226 set_feature(&cpu->env, ARM_FEATURE_VFP3);
2227 set_feature(&cpu->env, ARM_FEATURE_NEON);
2228 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2229 set_feature(&cpu->env, ARM_FEATURE_EL3);
2230 /* Note that A9 supports the MP extensions even for
2231 * A9UP and single-core A9MP (which are both different
2232 * and valid configurations; we don't model A9UP).
2233 */
2234 set_feature(&cpu->env, ARM_FEATURE_V7MP);
2235 set_feature(&cpu->env, ARM_FEATURE_CBAR);
2236 cpu->midr = 0x410fc090;
2237 cpu->reset_fpsid = 0x41033090;
2238 cpu->isar.mvfr0 = 0x11110222;
2239 cpu->isar.mvfr1 = 0x01111111;
2240 cpu->ctr = 0x80038003;
2241 cpu->reset_sctlr = 0x00c50078;
2242 cpu->id_pfr0 = 0x1031;
2243 cpu->id_pfr1 = 0x11;
2244 cpu->id_dfr0 = 0x000;
2245 cpu->id_afr0 = 0;
2246 cpu->id_mmfr0 = 0x00100103;
2247 cpu->id_mmfr1 = 0x20000000;
2248 cpu->id_mmfr2 = 0x01230000;
2249 cpu->id_mmfr3 = 0x00002111;
2250 cpu->isar.id_isar0 = 0x00101111;
2251 cpu->isar.id_isar1 = 0x13112111;
2252 cpu->isar.id_isar2 = 0x21232041;
2253 cpu->isar.id_isar3 = 0x11112131;
2254 cpu->isar.id_isar4 = 0x00111142;
2255 cpu->dbgdidr = 0x35141000;
2256 cpu->clidr = (1 << 27) | (1 << 24) | 3;
2257 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2258 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2259 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2260 }
2261
2262 #ifndef CONFIG_USER_ONLY
2263 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2264 {
2265 MachineState *ms = MACHINE(qdev_get_machine());
2266
2267 /* Linux wants the number of processors from here.
2268 * Might as well set the interrupt-controller bit too.
2269 */
2270 return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2271 }
2272 #endif
2273
2274 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2275 #ifndef CONFIG_USER_ONLY
2276 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2277 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2278 .writefn = arm_cp_write_ignore, },
2279 #endif
2280 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2281 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2282 REGINFO_SENTINEL
2283 };
2284
2285 static void cortex_a7_initfn(Object *obj)
2286 {
2287 ARMCPU *cpu = ARM_CPU(obj);
2288
2289 cpu->dtb_compatible = "arm,cortex-a7";
2290 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2291 set_feature(&cpu->env, ARM_FEATURE_VFP4);
2292 set_feature(&cpu->env, ARM_FEATURE_NEON);
2293 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2294 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2295 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2296 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2297 set_feature(&cpu->env, ARM_FEATURE_EL2);
2298 set_feature(&cpu->env, ARM_FEATURE_EL3);
2299 set_feature(&cpu->env, ARM_FEATURE_PMU);
2300 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2301 cpu->midr = 0x410fc075;
2302 cpu->reset_fpsid = 0x41023075;
2303 cpu->isar.mvfr0 = 0x10110222;
2304 cpu->isar.mvfr1 = 0x11111111;
2305 cpu->ctr = 0x84448003;
2306 cpu->reset_sctlr = 0x00c50078;
2307 cpu->id_pfr0 = 0x00001131;
2308 cpu->id_pfr1 = 0x00011011;
2309 cpu->id_dfr0 = 0x02010555;
2310 cpu->id_afr0 = 0x00000000;
2311 cpu->id_mmfr0 = 0x10101105;
2312 cpu->id_mmfr1 = 0x40000000;
2313 cpu->id_mmfr2 = 0x01240000;
2314 cpu->id_mmfr3 = 0x02102211;
2315 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2316 * table 4-41 gives 0x02101110, which includes the arm div insns.
2317 */
2318 cpu->isar.id_isar0 = 0x02101110;
2319 cpu->isar.id_isar1 = 0x13112111;
2320 cpu->isar.id_isar2 = 0x21232041;
2321 cpu->isar.id_isar3 = 0x11112131;
2322 cpu->isar.id_isar4 = 0x10011142;
2323 cpu->dbgdidr = 0x3515f005;
2324 cpu->clidr = 0x0a200023;
2325 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2326 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2327 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2328 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2329 }
2330
2331 static void cortex_a15_initfn(Object *obj)
2332 {
2333 ARMCPU *cpu = ARM_CPU(obj);
2334
2335 cpu->dtb_compatible = "arm,cortex-a15";
2336 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2337 set_feature(&cpu->env, ARM_FEATURE_VFP4);
2338 set_feature(&cpu->env, ARM_FEATURE_NEON);
2339 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2340 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2341 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2342 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2343 set_feature(&cpu->env, ARM_FEATURE_EL2);
2344 set_feature(&cpu->env, ARM_FEATURE_EL3);
2345 set_feature(&cpu->env, ARM_FEATURE_PMU);
2346 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2347 cpu->midr = 0x412fc0f1;
2348 cpu->reset_fpsid = 0x410430f0;
2349 cpu->isar.mvfr0 = 0x10110222;
2350 cpu->isar.mvfr1 = 0x11111111;
2351 cpu->ctr = 0x8444c004;
2352 cpu->reset_sctlr = 0x00c50078;
2353 cpu->id_pfr0 = 0x00001131;
2354 cpu->id_pfr1 = 0x00011011;
2355 cpu->id_dfr0 = 0x02010555;
2356 cpu->id_afr0 = 0x00000000;
2357 cpu->id_mmfr0 = 0x10201105;
2358 cpu->id_mmfr1 = 0x20000000;
2359 cpu->id_mmfr2 = 0x01240000;
2360 cpu->id_mmfr3 = 0x02102211;
2361 cpu->isar.id_isar0 = 0x02101110;
2362 cpu->isar.id_isar1 = 0x13112111;
2363 cpu->isar.id_isar2 = 0x21232041;
2364 cpu->isar.id_isar3 = 0x11112131;
2365 cpu->isar.id_isar4 = 0x10011142;
2366 cpu->dbgdidr = 0x3515f021;
2367 cpu->clidr = 0x0a200023;
2368 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2369 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2370 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2371 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2372 }
2373
2374 static void ti925t_initfn(Object *obj)
2375 {
2376 ARMCPU *cpu = ARM_CPU(obj);
2377 set_feature(&cpu->env, ARM_FEATURE_V4T);
2378 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2379 cpu->midr = ARM_CPUID_TI925T;
2380 cpu->ctr = 0x5109149;
2381 cpu->reset_sctlr = 0x00000070;
2382 }
2383
2384 static void sa1100_initfn(Object *obj)
2385 {
2386 ARMCPU *cpu = ARM_CPU(obj);
2387
2388 cpu->dtb_compatible = "intel,sa1100";
2389 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2390 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2391 cpu->midr = 0x4401A11B;
2392 cpu->reset_sctlr = 0x00000070;
2393 }
2394
2395 static void sa1110_initfn(Object *obj)
2396 {
2397 ARMCPU *cpu = ARM_CPU(obj);
2398 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2399 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2400 cpu->midr = 0x6901B119;
2401 cpu->reset_sctlr = 0x00000070;
2402 }
2403
2404 static void pxa250_initfn(Object *obj)
2405 {
2406 ARMCPU *cpu = ARM_CPU(obj);
2407
2408 cpu->dtb_compatible = "marvell,xscale";
2409 set_feature(&cpu->env, ARM_FEATURE_V5);
2410 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2411 cpu->midr = 0x69052100;
2412 cpu->ctr = 0xd172172;
2413 cpu->reset_sctlr = 0x00000078;
2414 }
2415
2416 static void pxa255_initfn(Object *obj)
2417 {
2418 ARMCPU *cpu = ARM_CPU(obj);
2419
2420 cpu->dtb_compatible = "marvell,xscale";
2421 set_feature(&cpu->env, ARM_FEATURE_V5);
2422 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2423 cpu->midr = 0x69052d00;
2424 cpu->ctr = 0xd172172;
2425 cpu->reset_sctlr = 0x00000078;
2426 }
2427
2428 static void pxa260_initfn(Object *obj)
2429 {
2430 ARMCPU *cpu = ARM_CPU(obj);
2431
2432 cpu->dtb_compatible = "marvell,xscale";
2433 set_feature(&cpu->env, ARM_FEATURE_V5);
2434 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2435 cpu->midr = 0x69052903;
2436 cpu->ctr = 0xd172172;
2437 cpu->reset_sctlr = 0x00000078;
2438 }
2439
2440 static void pxa261_initfn(Object *obj)
2441 {
2442 ARMCPU *cpu = ARM_CPU(obj);
2443
2444 cpu->dtb_compatible = "marvell,xscale";
2445 set_feature(&cpu->env, ARM_FEATURE_V5);
2446 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2447 cpu->midr = 0x69052d05;
2448 cpu->ctr = 0xd172172;
2449 cpu->reset_sctlr = 0x00000078;
2450 }
2451
2452 static void pxa262_initfn(Object *obj)
2453 {
2454 ARMCPU *cpu = ARM_CPU(obj);
2455
2456 cpu->dtb_compatible = "marvell,xscale";
2457 set_feature(&cpu->env, ARM_FEATURE_V5);
2458 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2459 cpu->midr = 0x69052d06;
2460 cpu->ctr = 0xd172172;
2461 cpu->reset_sctlr = 0x00000078;
2462 }
2463
2464 static void pxa270a0_initfn(Object *obj)
2465 {
2466 ARMCPU *cpu = ARM_CPU(obj);
2467
2468 cpu->dtb_compatible = "marvell,xscale";
2469 set_feature(&cpu->env, ARM_FEATURE_V5);
2470 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2471 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2472 cpu->midr = 0x69054110;
2473 cpu->ctr = 0xd172172;
2474 cpu->reset_sctlr = 0x00000078;
2475 }
2476
2477 static void pxa270a1_initfn(Object *obj)
2478 {
2479 ARMCPU *cpu = ARM_CPU(obj);
2480
2481 cpu->dtb_compatible = "marvell,xscale";
2482 set_feature(&cpu->env, ARM_FEATURE_V5);
2483 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2484 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2485 cpu->midr = 0x69054111;
2486 cpu->ctr = 0xd172172;
2487 cpu->reset_sctlr = 0x00000078;
2488 }
2489
2490 static void pxa270b0_initfn(Object *obj)
2491 {
2492 ARMCPU *cpu = ARM_CPU(obj);
2493
2494 cpu->dtb_compatible = "marvell,xscale";
2495 set_feature(&cpu->env, ARM_FEATURE_V5);
2496 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2497 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2498 cpu->midr = 0x69054112;
2499 cpu->ctr = 0xd172172;
2500 cpu->reset_sctlr = 0x00000078;
2501 }
2502
2503 static void pxa270b1_initfn(Object *obj)
2504 {
2505 ARMCPU *cpu = ARM_CPU(obj);
2506
2507 cpu->dtb_compatible = "marvell,xscale";
2508 set_feature(&cpu->env, ARM_FEATURE_V5);
2509 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2510 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2511 cpu->midr = 0x69054113;
2512 cpu->ctr = 0xd172172;
2513 cpu->reset_sctlr = 0x00000078;
2514 }
2515
2516 static void pxa270c0_initfn(Object *obj)
2517 {
2518 ARMCPU *cpu = ARM_CPU(obj);
2519
2520 cpu->dtb_compatible = "marvell,xscale";
2521 set_feature(&cpu->env, ARM_FEATURE_V5);
2522 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2523 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2524 cpu->midr = 0x69054114;
2525 cpu->ctr = 0xd172172;
2526 cpu->reset_sctlr = 0x00000078;
2527 }
2528
2529 static void pxa270c5_initfn(Object *obj)
2530 {
2531 ARMCPU *cpu = ARM_CPU(obj);
2532
2533 cpu->dtb_compatible = "marvell,xscale";
2534 set_feature(&cpu->env, ARM_FEATURE_V5);
2535 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2536 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2537 cpu->midr = 0x69054117;
2538 cpu->ctr = 0xd172172;
2539 cpu->reset_sctlr = 0x00000078;
2540 }
2541
2542 #ifndef TARGET_AARCH64
2543 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2544 * otherwise, a CPU with as many features enabled as our emulation supports.
2545 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2546 * this only needs to handle 32 bits.
2547 */
2548 static void arm_max_initfn(Object *obj)
2549 {
2550 ARMCPU *cpu = ARM_CPU(obj);
2551
2552 if (kvm_enabled()) {
2553 kvm_arm_set_cpu_features_from_host(cpu);
2554 } else {
2555 cortex_a15_initfn(obj);
2556
2557 /* old-style VFP short-vector support */
2558 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2559
2560 #ifdef CONFIG_USER_ONLY
2561 /* We don't set these in system emulation mode for the moment,
2562 * since we don't correctly set (all of) the ID registers to
2563 * advertise them.
2564 */
2565 set_feature(&cpu->env, ARM_FEATURE_V8);
2566 {
2567 uint32_t t;
2568
2569 t = cpu->isar.id_isar5;
2570 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2571 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2572 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2573 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2574 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2575 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2576 cpu->isar.id_isar5 = t;
2577
2578 t = cpu->isar.id_isar6;
2579 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2580 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2581 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2582 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2583 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2584 cpu->isar.id_isar6 = t;
2585
2586 t = cpu->isar.mvfr1;
2587 t = FIELD_DP32(t, MVFR1, FPHP, 2); /* v8.0 FP support */
2588 cpu->isar.mvfr1 = t;
2589
2590 t = cpu->isar.mvfr2;
2591 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2592 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2593 cpu->isar.mvfr2 = t;
2594
2595 t = cpu->id_mmfr4;
2596 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2597 cpu->id_mmfr4 = t;
2598 }
2599 #endif
2600 }
2601 }
2602 #endif
2603
2604 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2605
2606 struct ARMCPUInfo {
2607 const char *name;
2608 void (*initfn)(Object *obj);
2609 void (*class_init)(ObjectClass *oc, void *data);
2610 };
2611
2612 static const ARMCPUInfo arm_cpus[] = {
2613 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2614 { .name = "arm926", .initfn = arm926_initfn },
2615 { .name = "arm946", .initfn = arm946_initfn },
2616 { .name = "arm1026", .initfn = arm1026_initfn },
2617 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2618 * older core than plain "arm1136". In particular this does not
2619 * have the v6K features.
2620 */
2621 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
2622 { .name = "arm1136", .initfn = arm1136_initfn },
2623 { .name = "arm1176", .initfn = arm1176_initfn },
2624 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2625 { .name = "cortex-m0", .initfn = cortex_m0_initfn,
2626 .class_init = arm_v7m_class_init },
2627 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
2628 .class_init = arm_v7m_class_init },
2629 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
2630 .class_init = arm_v7m_class_init },
2631 { .name = "cortex-m7", .initfn = cortex_m7_initfn,
2632 .class_init = arm_v7m_class_init },
2633 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
2634 .class_init = arm_v7m_class_init },
2635 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
2636 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
2637 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2638 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2639 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2640 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2641 { .name = "ti925t", .initfn = ti925t_initfn },
2642 { .name = "sa1100", .initfn = sa1100_initfn },
2643 { .name = "sa1110", .initfn = sa1110_initfn },
2644 { .name = "pxa250", .initfn = pxa250_initfn },
2645 { .name = "pxa255", .initfn = pxa255_initfn },
2646 { .name = "pxa260", .initfn = pxa260_initfn },
2647 { .name = "pxa261", .initfn = pxa261_initfn },
2648 { .name = "pxa262", .initfn = pxa262_initfn },
2649 /* "pxa270" is an alias for "pxa270-a0" */
2650 { .name = "pxa270", .initfn = pxa270a0_initfn },
2651 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
2652 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
2653 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
2654 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
2655 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
2656 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
2657 #ifndef TARGET_AARCH64
2658 { .name = "max", .initfn = arm_max_initfn },
2659 #endif
2660 #ifdef CONFIG_USER_ONLY
2661 { .name = "any", .initfn = arm_max_initfn },
2662 #endif
2663 #endif
2664 { .name = NULL }
2665 };
2666
2667 static Property arm_cpu_properties[] = {
2668 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2669 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2670 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2671 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2672 mp_affinity, ARM64_AFFINITY_INVALID),
2673 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2674 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2675 DEFINE_PROP_END_OF_LIST()
2676 };
2677
2678 static gchar *arm_gdb_arch_name(CPUState *cs)
2679 {
2680 ARMCPU *cpu = ARM_CPU(cs);
2681 CPUARMState *env = &cpu->env;
2682
2683 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2684 return g_strdup("iwmmxt");
2685 }
2686 return g_strdup("arm");
2687 }
2688
2689 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2690 {
2691 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2692 CPUClass *cc = CPU_CLASS(acc);
2693 DeviceClass *dc = DEVICE_CLASS(oc);
2694
2695 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2696 &acc->parent_realize);
2697
2698 device_class_set_props(dc, arm_cpu_properties);
2699 cpu_class_set_parent_reset(cc, arm_cpu_reset, &acc->parent_reset);
2700
2701 cc->class_by_name = arm_cpu_class_by_name;
2702 cc->has_work = arm_cpu_has_work;
2703 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2704 cc->dump_state = arm_cpu_dump_state;
2705 cc->set_pc = arm_cpu_set_pc;
2706 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2707 cc->gdb_read_register = arm_cpu_gdb_read_register;
2708 cc->gdb_write_register = arm_cpu_gdb_write_register;
2709 #ifndef CONFIG_USER_ONLY
2710 cc->do_interrupt = arm_cpu_do_interrupt;
2711 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2712 cc->asidx_from_attrs = arm_asidx_from_attrs;
2713 cc->vmsd = &vmstate_arm_cpu;
2714 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2715 cc->write_elf64_note = arm_cpu_write_elf64_note;
2716 cc->write_elf32_note = arm_cpu_write_elf32_note;
2717 #endif
2718 cc->gdb_num_core_regs = 26;
2719 cc->gdb_core_xml_file = "arm-core.xml";
2720 cc->gdb_arch_name = arm_gdb_arch_name;
2721 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2722 cc->gdb_stop_before_watchpoint = true;
2723 cc->disas_set_info = arm_disas_set_info;
2724 #ifdef CONFIG_TCG
2725 cc->tcg_initialize = arm_translate_init;
2726 cc->tlb_fill = arm_cpu_tlb_fill;
2727 cc->debug_excp_handler = arm_debug_excp_handler;
2728 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2729 #if !defined(CONFIG_USER_ONLY)
2730 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2731 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2732 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2733 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2734 #endif
2735 }
2736
2737 #ifdef CONFIG_KVM
2738 static void arm_host_initfn(Object *obj)
2739 {
2740 ARMCPU *cpu = ARM_CPU(obj);
2741
2742 kvm_arm_set_cpu_features_from_host(cpu);
2743 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2744 aarch64_add_sve_properties(obj);
2745 }
2746 arm_cpu_post_init(obj);
2747 }
2748
2749 static const TypeInfo host_arm_cpu_type_info = {
2750 .name = TYPE_ARM_HOST_CPU,
2751 #ifdef TARGET_AARCH64
2752 .parent = TYPE_AARCH64_CPU,
2753 #else
2754 .parent = TYPE_ARM_CPU,
2755 #endif
2756 .instance_init = arm_host_initfn,
2757 };
2758
2759 #endif
2760
2761 static void arm_cpu_instance_init(Object *obj)
2762 {
2763 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2764
2765 acc->info->initfn(obj);
2766 arm_cpu_post_init(obj);
2767 }
2768
2769 static void cpu_register_class_init(ObjectClass *oc, void *data)
2770 {
2771 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2772
2773 acc->info = data;
2774 }
2775
2776 static void cpu_register(const ARMCPUInfo *info)
2777 {
2778 TypeInfo type_info = {
2779 .parent = TYPE_ARM_CPU,
2780 .instance_size = sizeof(ARMCPU),
2781 .instance_init = arm_cpu_instance_init,
2782 .class_size = sizeof(ARMCPUClass),
2783 .class_init = info->class_init ?: cpu_register_class_init,
2784 .class_data = (void *)info,
2785 };
2786
2787 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2788 type_register(&type_info);
2789 g_free((void *)type_info.name);
2790 }
2791
2792 static const TypeInfo arm_cpu_type_info = {
2793 .name = TYPE_ARM_CPU,
2794 .parent = TYPE_CPU,
2795 .instance_size = sizeof(ARMCPU),
2796 .instance_init = arm_cpu_initfn,
2797 .instance_finalize = arm_cpu_finalizefn,
2798 .abstract = true,
2799 .class_size = sizeof(ARMCPUClass),
2800 .class_init = arm_cpu_class_init,
2801 };
2802
2803 static const TypeInfo idau_interface_type_info = {
2804 .name = TYPE_IDAU_INTERFACE,
2805 .parent = TYPE_INTERFACE,
2806 .class_size = sizeof(IDAUInterfaceClass),
2807 };
2808
2809 static void arm_cpu_register_types(void)
2810 {
2811 const ARMCPUInfo *info = arm_cpus;
2812
2813 type_register_static(&arm_cpu_type_info);
2814 type_register_static(&idau_interface_type_info);
2815
2816 while (info->name) {
2817 cpu_register(info);
2818 info++;
2819 }
2820
2821 #ifdef CONFIG_KVM
2822 type_register_static(&host_arm_cpu_type_info);
2823 #endif
2824 }
2825
2826 type_init(arm_cpu_register_types)