]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.c
accel: Do not set CPUState::tcg_cflags in non-TCG accels
[mirror_qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "cpu-features.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #ifdef CONFIG_TCG
41 #include "hw/intc/armv7m_nvic.h"
42 #endif /* CONFIG_TCG */
43 #endif /* !CONFIG_USER_ONLY */
44 #include "sysemu/tcg.h"
45 #include "sysemu/qtest.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm_arm.h"
48 #include "disas/capstone.h"
49 #include "fpu/softfloat.h"
50 #include "cpregs.h"
51
52 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
53 {
54 ARMCPU *cpu = ARM_CPU(cs);
55 CPUARMState *env = &cpu->env;
56
57 if (is_a64(env)) {
58 env->pc = value;
59 env->thumb = false;
60 } else {
61 env->regs[15] = value & ~1;
62 env->thumb = value & 1;
63 }
64 }
65
66 static vaddr arm_cpu_get_pc(CPUState *cs)
67 {
68 ARMCPU *cpu = ARM_CPU(cs);
69 CPUARMState *env = &cpu->env;
70
71 if (is_a64(env)) {
72 return env->pc;
73 } else {
74 return env->regs[15];
75 }
76 }
77
78 #ifdef CONFIG_TCG
79 void arm_cpu_synchronize_from_tb(CPUState *cs,
80 const TranslationBlock *tb)
81 {
82 /* The program counter is always up to date with CF_PCREL. */
83 if (!(tb_cflags(tb) & CF_PCREL)) {
84 CPUARMState *env = cpu_env(cs);
85 /*
86 * It's OK to look at env for the current mode here, because it's
87 * never possible for an AArch64 TB to chain to an AArch32 TB.
88 */
89 if (is_a64(env)) {
90 env->pc = tb->pc;
91 } else {
92 env->regs[15] = tb->pc;
93 }
94 }
95 }
96
97 void arm_restore_state_to_opc(CPUState *cs,
98 const TranslationBlock *tb,
99 const uint64_t *data)
100 {
101 CPUARMState *env = cpu_env(cs);
102
103 if (is_a64(env)) {
104 if (tb_cflags(tb) & CF_PCREL) {
105 env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
106 } else {
107 env->pc = data[0];
108 }
109 env->condexec_bits = 0;
110 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
111 } else {
112 if (tb_cflags(tb) & CF_PCREL) {
113 env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
114 } else {
115 env->regs[15] = data[0];
116 }
117 env->condexec_bits = data[1];
118 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
119 }
120 }
121 #endif /* CONFIG_TCG */
122
123 static bool arm_cpu_has_work(CPUState *cs)
124 {
125 ARMCPU *cpu = ARM_CPU(cs);
126
127 return (cpu->power_state != PSCI_OFF)
128 && cs->interrupt_request &
129 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
130 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
131 | CPU_INTERRUPT_EXITTB);
132 }
133
134 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
135 void *opaque)
136 {
137 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
138
139 entry->hook = hook;
140 entry->opaque = opaque;
141
142 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
143 }
144
145 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
146 void *opaque)
147 {
148 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
149
150 entry->hook = hook;
151 entry->opaque = opaque;
152
153 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
154 }
155
156 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
157 {
158 /* Reset a single ARMCPRegInfo register */
159 ARMCPRegInfo *ri = value;
160 ARMCPU *cpu = opaque;
161
162 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
163 return;
164 }
165
166 if (ri->resetfn) {
167 ri->resetfn(&cpu->env, ri);
168 return;
169 }
170
171 /* A zero offset is never possible as it would be regs[0]
172 * so we use it to indicate that reset is being handled elsewhere.
173 * This is basically only used for fields in non-core coprocessors
174 * (like the pxa2xx ones).
175 */
176 if (!ri->fieldoffset) {
177 return;
178 }
179
180 if (cpreg_field_is_64bit(ri)) {
181 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
182 } else {
183 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
184 }
185 }
186
187 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
188 {
189 /* Purely an assertion check: we've already done reset once,
190 * so now check that running the reset for the cpreg doesn't
191 * change its value. This traps bugs where two different cpregs
192 * both try to reset the same state field but to different values.
193 */
194 ARMCPRegInfo *ri = value;
195 ARMCPU *cpu = opaque;
196 uint64_t oldvalue, newvalue;
197
198 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
199 return;
200 }
201
202 oldvalue = read_raw_cp_reg(&cpu->env, ri);
203 cp_reg_reset(key, value, opaque);
204 newvalue = read_raw_cp_reg(&cpu->env, ri);
205 assert(oldvalue == newvalue);
206 }
207
208 static void arm_cpu_reset_hold(Object *obj)
209 {
210 CPUState *s = CPU(obj);
211 ARMCPU *cpu = ARM_CPU(s);
212 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
213 CPUARMState *env = &cpu->env;
214
215 if (acc->parent_phases.hold) {
216 acc->parent_phases.hold(obj);
217 }
218
219 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
220
221 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
222 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
223
224 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
225 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
226 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
227 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
228
229 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
230
231 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
232 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
233 }
234
235 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
236 /* 64 bit CPUs always start in 64 bit mode */
237 env->aarch64 = true;
238 #if defined(CONFIG_USER_ONLY)
239 env->pstate = PSTATE_MODE_EL0t;
240 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
241 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
242 /* Enable all PAC keys. */
243 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
244 SCTLR_EnDA | SCTLR_EnDB);
245 /* Trap on btype=3 for PACIxSP. */
246 env->cp15.sctlr_el[1] |= SCTLR_BT0;
247 /* Trap on implementation defined registers. */
248 if (cpu_isar_feature(aa64_tidcp1, cpu)) {
249 env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
250 }
251 /* and to the FP/Neon instructions */
252 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
253 CPACR_EL1, FPEN, 3);
254 /* and to the SVE instructions, with default vector length */
255 if (cpu_isar_feature(aa64_sve, cpu)) {
256 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
257 CPACR_EL1, ZEN, 3);
258 env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
259 }
260 /* and for SME instructions, with default vector length, and TPIDR2 */
261 if (cpu_isar_feature(aa64_sme, cpu)) {
262 env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
263 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
264 CPACR_EL1, SMEN, 3);
265 env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
266 if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
267 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
268 SMCR, FA64, 1);
269 }
270 }
271 /*
272 * Enable 48-bit address space (TODO: take reserved_va into account).
273 * Enable TBI0 but not TBI1.
274 * Note that this must match useronly_clean_ptr.
275 */
276 env->cp15.tcr_el[1] = 5 | (1ULL << 37);
277
278 /* Enable MTE */
279 if (cpu_isar_feature(aa64_mte, cpu)) {
280 /* Enable tag access, but leave TCF0 as No Effect (0). */
281 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
282 /*
283 * Exclude all tags, so that tag 0 is always used.
284 * This corresponds to Linux current->thread.gcr_incl = 0.
285 *
286 * Set RRND, so that helper_irg() will generate a seed later.
287 * Here in cpu_reset(), the crypto subsystem has not yet been
288 * initialized.
289 */
290 env->cp15.gcr_el1 = 0x1ffff;
291 }
292 /*
293 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
294 * This is not yet exposed from the Linux kernel in any way.
295 */
296 env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
297 /* Disable access to Debug Communication Channel (DCC). */
298 env->cp15.mdscr_el1 |= 1 << 12;
299 /* Enable FEAT_MOPS */
300 env->cp15.sctlr_el[1] |= SCTLR_MSCEN;
301 #else
302 /* Reset into the highest available EL */
303 if (arm_feature(env, ARM_FEATURE_EL3)) {
304 env->pstate = PSTATE_MODE_EL3h;
305 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
306 env->pstate = PSTATE_MODE_EL2h;
307 } else {
308 env->pstate = PSTATE_MODE_EL1h;
309 }
310
311 /* Sample rvbar at reset. */
312 env->cp15.rvbar = cpu->rvbar_prop;
313 env->pc = env->cp15.rvbar;
314 #endif
315 } else {
316 #if defined(CONFIG_USER_ONLY)
317 /* Userspace expects access to cp10 and cp11 for FP/Neon */
318 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
319 CPACR, CP10, 3);
320 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
321 CPACR, CP11, 3);
322 #endif
323 if (arm_feature(env, ARM_FEATURE_V8)) {
324 env->cp15.rvbar = cpu->rvbar_prop;
325 env->regs[15] = cpu->rvbar_prop;
326 }
327 }
328
329 #if defined(CONFIG_USER_ONLY)
330 env->uncached_cpsr = ARM_CPU_MODE_USR;
331 /* For user mode we must enable access to coprocessors */
332 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
333 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
334 env->cp15.c15_cpar = 3;
335 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
336 env->cp15.c15_cpar = 1;
337 }
338 #else
339
340 /*
341 * If the highest available EL is EL2, AArch32 will start in Hyp
342 * mode; otherwise it starts in SVC. Note that if we start in
343 * AArch64 then these values in the uncached_cpsr will be ignored.
344 */
345 if (arm_feature(env, ARM_FEATURE_EL2) &&
346 !arm_feature(env, ARM_FEATURE_EL3)) {
347 env->uncached_cpsr = ARM_CPU_MODE_HYP;
348 } else {
349 env->uncached_cpsr = ARM_CPU_MODE_SVC;
350 }
351 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
352
353 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
354 * executing as AArch32 then check if highvecs are enabled and
355 * adjust the PC accordingly.
356 */
357 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
358 env->regs[15] = 0xFFFF0000;
359 }
360
361 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
362 #endif
363
364 if (arm_feature(env, ARM_FEATURE_M)) {
365 #ifndef CONFIG_USER_ONLY
366 uint32_t initial_msp; /* Loaded from 0x0 */
367 uint32_t initial_pc; /* Loaded from 0x4 */
368 uint8_t *rom;
369 uint32_t vecbase;
370 #endif
371
372 if (cpu_isar_feature(aa32_lob, cpu)) {
373 /*
374 * LTPSIZE is constant 4 if MVE not implemented, and resets
375 * to an UNKNOWN value if MVE is implemented. We choose to
376 * always reset to 4.
377 */
378 env->v7m.ltpsize = 4;
379 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
380 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
381 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
382 }
383
384 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
385 env->v7m.secure = true;
386 } else {
387 /* This bit resets to 0 if security is supported, but 1 if
388 * it is not. The bit is not present in v7M, but we set it
389 * here so we can avoid having to make checks on it conditional
390 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
391 */
392 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
393 /*
394 * Set NSACR to indicate "NS access permitted to everything";
395 * this avoids having to have all the tests of it being
396 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
397 * v8.1M the guest-visible value of NSACR in a CPU without the
398 * Security Extension is 0xcff.
399 */
400 env->v7m.nsacr = 0xcff;
401 }
402
403 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
404 * that it resets to 1, so QEMU always does that rather than making
405 * it dependent on CPU model. In v8M it is RES1.
406 */
407 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
408 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
409 if (arm_feature(env, ARM_FEATURE_V8)) {
410 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
411 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
412 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
413 }
414 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
415 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
416 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
417 }
418
419 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
420 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
421 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
422 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
423 }
424
425 #ifndef CONFIG_USER_ONLY
426 /* Unlike A/R profile, M profile defines the reset LR value */
427 env->regs[14] = 0xffffffff;
428
429 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
430 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
431
432 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
433 vecbase = env->v7m.vecbase[env->v7m.secure];
434 rom = rom_ptr_for_as(s->as, vecbase, 8);
435 if (rom) {
436 /* Address zero is covered by ROM which hasn't yet been
437 * copied into physical memory.
438 */
439 initial_msp = ldl_p(rom);
440 initial_pc = ldl_p(rom + 4);
441 } else {
442 /* Address zero not covered by a ROM blob, or the ROM blob
443 * is in non-modifiable memory and this is a second reset after
444 * it got copied into memory. In the latter case, rom_ptr
445 * will return a NULL pointer and we should use ldl_phys instead.
446 */
447 initial_msp = ldl_phys(s->as, vecbase);
448 initial_pc = ldl_phys(s->as, vecbase + 4);
449 }
450
451 qemu_log_mask(CPU_LOG_INT,
452 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
453 initial_msp, initial_pc);
454
455 env->regs[13] = initial_msp & 0xFFFFFFFC;
456 env->regs[15] = initial_pc & ~1;
457 env->thumb = initial_pc & 1;
458 #else
459 /*
460 * For user mode we run non-secure and with access to the FPU.
461 * The FPU context is active (ie does not need further setup)
462 * and is owned by non-secure.
463 */
464 env->v7m.secure = false;
465 env->v7m.nsacr = 0xcff;
466 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
467 env->v7m.fpccr[M_REG_S] &=
468 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
469 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
470 #endif
471 }
472
473 /* M profile requires that reset clears the exclusive monitor;
474 * A profile does not, but clearing it makes more sense than having it
475 * set with an exclusive access on address zero.
476 */
477 arm_clear_exclusive(env);
478
479 if (arm_feature(env, ARM_FEATURE_PMSA)) {
480 if (cpu->pmsav7_dregion > 0) {
481 if (arm_feature(env, ARM_FEATURE_V8)) {
482 memset(env->pmsav8.rbar[M_REG_NS], 0,
483 sizeof(*env->pmsav8.rbar[M_REG_NS])
484 * cpu->pmsav7_dregion);
485 memset(env->pmsav8.rlar[M_REG_NS], 0,
486 sizeof(*env->pmsav8.rlar[M_REG_NS])
487 * cpu->pmsav7_dregion);
488 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
489 memset(env->pmsav8.rbar[M_REG_S], 0,
490 sizeof(*env->pmsav8.rbar[M_REG_S])
491 * cpu->pmsav7_dregion);
492 memset(env->pmsav8.rlar[M_REG_S], 0,
493 sizeof(*env->pmsav8.rlar[M_REG_S])
494 * cpu->pmsav7_dregion);
495 }
496 } else if (arm_feature(env, ARM_FEATURE_V7)) {
497 memset(env->pmsav7.drbar, 0,
498 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
499 memset(env->pmsav7.drsr, 0,
500 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
501 memset(env->pmsav7.dracr, 0,
502 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
503 }
504 }
505
506 if (cpu->pmsav8r_hdregion > 0) {
507 memset(env->pmsav8.hprbar, 0,
508 sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
509 memset(env->pmsav8.hprlar, 0,
510 sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
511 }
512
513 env->pmsav7.rnr[M_REG_NS] = 0;
514 env->pmsav7.rnr[M_REG_S] = 0;
515 env->pmsav8.mair0[M_REG_NS] = 0;
516 env->pmsav8.mair0[M_REG_S] = 0;
517 env->pmsav8.mair1[M_REG_NS] = 0;
518 env->pmsav8.mair1[M_REG_S] = 0;
519 }
520
521 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
522 if (cpu->sau_sregion > 0) {
523 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
524 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
525 }
526 env->sau.rnr = 0;
527 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
528 * the Cortex-M33 does.
529 */
530 env->sau.ctrl = 0;
531 }
532
533 set_flush_to_zero(1, &env->vfp.standard_fp_status);
534 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
535 set_default_nan_mode(1, &env->vfp.standard_fp_status);
536 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
537 set_float_detect_tininess(float_tininess_before_rounding,
538 &env->vfp.fp_status);
539 set_float_detect_tininess(float_tininess_before_rounding,
540 &env->vfp.standard_fp_status);
541 set_float_detect_tininess(float_tininess_before_rounding,
542 &env->vfp.fp_status_f16);
543 set_float_detect_tininess(float_tininess_before_rounding,
544 &env->vfp.standard_fp_status_f16);
545 #ifndef CONFIG_USER_ONLY
546 if (kvm_enabled()) {
547 kvm_arm_reset_vcpu(cpu);
548 }
549 #endif
550
551 if (tcg_enabled()) {
552 hw_breakpoint_update_all(cpu);
553 hw_watchpoint_update_all(cpu);
554
555 arm_rebuild_hflags(env);
556 }
557 }
558
559 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
560 {
561 ARMCPU *cpu = ARM_CPU(cpustate);
562 CPUARMState *env = &cpu->env;
563 bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
564 bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
565
566 /*
567 * Check we have the EL we're aiming for. If that is the
568 * highest implemented EL, then cpu_reset has already done
569 * all the work.
570 */
571 switch (target_el) {
572 case 3:
573 assert(have_el3);
574 return;
575 case 2:
576 assert(have_el2);
577 if (!have_el3) {
578 return;
579 }
580 break;
581 case 1:
582 if (!have_el3 && !have_el2) {
583 return;
584 }
585 break;
586 default:
587 g_assert_not_reached();
588 }
589
590 if (have_el3) {
591 /*
592 * Set the EL3 state so code can run at EL2. This should match
593 * the requirements set by Linux in its booting spec.
594 */
595 if (env->aarch64) {
596 env->cp15.scr_el3 |= SCR_RW;
597 if (cpu_isar_feature(aa64_pauth, cpu)) {
598 env->cp15.scr_el3 |= SCR_API | SCR_APK;
599 }
600 if (cpu_isar_feature(aa64_mte, cpu)) {
601 env->cp15.scr_el3 |= SCR_ATA;
602 }
603 if (cpu_isar_feature(aa64_sve, cpu)) {
604 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
605 env->vfp.zcr_el[3] = 0xf;
606 }
607 if (cpu_isar_feature(aa64_sme, cpu)) {
608 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
609 env->cp15.scr_el3 |= SCR_ENTP2;
610 env->vfp.smcr_el[3] = 0xf;
611 }
612 if (cpu_isar_feature(aa64_hcx, cpu)) {
613 env->cp15.scr_el3 |= SCR_HXEN;
614 }
615 if (cpu_isar_feature(aa64_fgt, cpu)) {
616 env->cp15.scr_el3 |= SCR_FGTEN;
617 }
618 }
619
620 if (target_el == 2) {
621 /* If the guest is at EL2 then Linux expects the HVC insn to work */
622 env->cp15.scr_el3 |= SCR_HCE;
623 }
624
625 /* Put CPU into non-secure state */
626 env->cp15.scr_el3 |= SCR_NS;
627 /* Set NSACR.{CP11,CP10} so NS can access the FPU */
628 env->cp15.nsacr |= 3 << 10;
629 }
630
631 if (have_el2 && target_el < 2) {
632 /* Set EL2 state so code can run at EL1. */
633 if (env->aarch64) {
634 env->cp15.hcr_el2 |= HCR_RW;
635 }
636 }
637
638 /* Set the CPU to the desired state */
639 if (env->aarch64) {
640 env->pstate = aarch64_pstate_mode(target_el, true);
641 } else {
642 static const uint32_t mode_for_el[] = {
643 0,
644 ARM_CPU_MODE_SVC,
645 ARM_CPU_MODE_HYP,
646 ARM_CPU_MODE_SVC,
647 };
648
649 cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
650 }
651 }
652
653
654 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
655
656 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
657 unsigned int target_el,
658 unsigned int cur_el, bool secure,
659 uint64_t hcr_el2)
660 {
661 CPUARMState *env = cpu_env(cs);
662 bool pstate_unmasked;
663 bool unmasked = false;
664
665 /*
666 * Don't take exceptions if they target a lower EL.
667 * This check should catch any exceptions that would not be taken
668 * but left pending.
669 */
670 if (cur_el > target_el) {
671 return false;
672 }
673
674 switch (excp_idx) {
675 case EXCP_FIQ:
676 pstate_unmasked = !(env->daif & PSTATE_F);
677 break;
678
679 case EXCP_IRQ:
680 pstate_unmasked = !(env->daif & PSTATE_I);
681 break;
682
683 case EXCP_VFIQ:
684 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
685 /* VFIQs are only taken when hypervized. */
686 return false;
687 }
688 return !(env->daif & PSTATE_F);
689 case EXCP_VIRQ:
690 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
691 /* VIRQs are only taken when hypervized. */
692 return false;
693 }
694 return !(env->daif & PSTATE_I);
695 case EXCP_VSERR:
696 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
697 /* VIRQs are only taken when hypervized. */
698 return false;
699 }
700 return !(env->daif & PSTATE_A);
701 default:
702 g_assert_not_reached();
703 }
704
705 /*
706 * Use the target EL, current execution state and SCR/HCR settings to
707 * determine whether the corresponding CPSR bit is used to mask the
708 * interrupt.
709 */
710 if ((target_el > cur_el) && (target_el != 1)) {
711 /* Exceptions targeting a higher EL may not be maskable */
712 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
713 switch (target_el) {
714 case 2:
715 /*
716 * According to ARM DDI 0487H.a, an interrupt can be masked
717 * when HCR_E2H and HCR_TGE are both set regardless of the
718 * current Security state. Note that we need to revisit this
719 * part again once we need to support NMI.
720 */
721 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
722 unmasked = true;
723 }
724 break;
725 case 3:
726 /* Interrupt cannot be masked when the target EL is 3 */
727 unmasked = true;
728 break;
729 default:
730 g_assert_not_reached();
731 }
732 } else {
733 /*
734 * The old 32-bit-only environment has a more complicated
735 * masking setup. HCR and SCR bits not only affect interrupt
736 * routing but also change the behaviour of masking.
737 */
738 bool hcr, scr;
739
740 switch (excp_idx) {
741 case EXCP_FIQ:
742 /*
743 * If FIQs are routed to EL3 or EL2 then there are cases where
744 * we override the CPSR.F in determining if the exception is
745 * masked or not. If neither of these are set then we fall back
746 * to the CPSR.F setting otherwise we further assess the state
747 * below.
748 */
749 hcr = hcr_el2 & HCR_FMO;
750 scr = (env->cp15.scr_el3 & SCR_FIQ);
751
752 /*
753 * When EL3 is 32-bit, the SCR.FW bit controls whether the
754 * CPSR.F bit masks FIQ interrupts when taken in non-secure
755 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
756 * when non-secure but only when FIQs are only routed to EL3.
757 */
758 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
759 break;
760 case EXCP_IRQ:
761 /*
762 * When EL3 execution state is 32-bit, if HCR.IMO is set then
763 * we may override the CPSR.I masking when in non-secure state.
764 * The SCR.IRQ setting has already been taken into consideration
765 * when setting the target EL, so it does not have a further
766 * affect here.
767 */
768 hcr = hcr_el2 & HCR_IMO;
769 scr = false;
770 break;
771 default:
772 g_assert_not_reached();
773 }
774
775 if ((scr || hcr) && !secure) {
776 unmasked = true;
777 }
778 }
779 }
780
781 /*
782 * The PSTATE bits only mask the interrupt if we have not overridden the
783 * ability above.
784 */
785 return unmasked || pstate_unmasked;
786 }
787
788 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
789 {
790 CPUClass *cc = CPU_GET_CLASS(cs);
791 CPUARMState *env = cpu_env(cs);
792 uint32_t cur_el = arm_current_el(env);
793 bool secure = arm_is_secure(env);
794 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
795 uint32_t target_el;
796 uint32_t excp_idx;
797
798 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
799
800 if (interrupt_request & CPU_INTERRUPT_FIQ) {
801 excp_idx = EXCP_FIQ;
802 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
803 if (arm_excp_unmasked(cs, excp_idx, target_el,
804 cur_el, secure, hcr_el2)) {
805 goto found;
806 }
807 }
808 if (interrupt_request & CPU_INTERRUPT_HARD) {
809 excp_idx = EXCP_IRQ;
810 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
811 if (arm_excp_unmasked(cs, excp_idx, target_el,
812 cur_el, secure, hcr_el2)) {
813 goto found;
814 }
815 }
816 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
817 excp_idx = EXCP_VIRQ;
818 target_el = 1;
819 if (arm_excp_unmasked(cs, excp_idx, target_el,
820 cur_el, secure, hcr_el2)) {
821 goto found;
822 }
823 }
824 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
825 excp_idx = EXCP_VFIQ;
826 target_el = 1;
827 if (arm_excp_unmasked(cs, excp_idx, target_el,
828 cur_el, secure, hcr_el2)) {
829 goto found;
830 }
831 }
832 if (interrupt_request & CPU_INTERRUPT_VSERR) {
833 excp_idx = EXCP_VSERR;
834 target_el = 1;
835 if (arm_excp_unmasked(cs, excp_idx, target_el,
836 cur_el, secure, hcr_el2)) {
837 /* Taking a virtual abort clears HCR_EL2.VSE */
838 env->cp15.hcr_el2 &= ~HCR_VSE;
839 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
840 goto found;
841 }
842 }
843 return false;
844
845 found:
846 cs->exception_index = excp_idx;
847 env->exception.target_el = target_el;
848 cc->tcg_ops->do_interrupt(cs);
849 return true;
850 }
851
852 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
853
854 void arm_cpu_update_virq(ARMCPU *cpu)
855 {
856 /*
857 * Update the interrupt level for VIRQ, which is the logical OR of
858 * the HCR_EL2.VI bit and the input line level from the GIC.
859 */
860 CPUARMState *env = &cpu->env;
861 CPUState *cs = CPU(cpu);
862
863 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
864 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
865
866 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
867 if (new_state) {
868 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
869 } else {
870 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
871 }
872 }
873 }
874
875 void arm_cpu_update_vfiq(ARMCPU *cpu)
876 {
877 /*
878 * Update the interrupt level for VFIQ, which is the logical OR of
879 * the HCR_EL2.VF bit and the input line level from the GIC.
880 */
881 CPUARMState *env = &cpu->env;
882 CPUState *cs = CPU(cpu);
883
884 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
885 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
886
887 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
888 if (new_state) {
889 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
890 } else {
891 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
892 }
893 }
894 }
895
896 void arm_cpu_update_vserr(ARMCPU *cpu)
897 {
898 /*
899 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
900 */
901 CPUARMState *env = &cpu->env;
902 CPUState *cs = CPU(cpu);
903
904 bool new_state = env->cp15.hcr_el2 & HCR_VSE;
905
906 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
907 if (new_state) {
908 cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
909 } else {
910 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
911 }
912 }
913 }
914
915 #ifndef CONFIG_USER_ONLY
916 static void arm_cpu_set_irq(void *opaque, int irq, int level)
917 {
918 ARMCPU *cpu = opaque;
919 CPUARMState *env = &cpu->env;
920 CPUState *cs = CPU(cpu);
921 static const int mask[] = {
922 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
923 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
924 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
925 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
926 };
927
928 if (!arm_feature(env, ARM_FEATURE_EL2) &&
929 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
930 /*
931 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
932 * have EL2 support we don't care. (Unless the guest is doing something
933 * silly this will only be calls saying "level is still 0".)
934 */
935 return;
936 }
937
938 if (level) {
939 env->irq_line_state |= mask[irq];
940 } else {
941 env->irq_line_state &= ~mask[irq];
942 }
943
944 switch (irq) {
945 case ARM_CPU_VIRQ:
946 arm_cpu_update_virq(cpu);
947 break;
948 case ARM_CPU_VFIQ:
949 arm_cpu_update_vfiq(cpu);
950 break;
951 case ARM_CPU_IRQ:
952 case ARM_CPU_FIQ:
953 if (level) {
954 cpu_interrupt(cs, mask[irq]);
955 } else {
956 cpu_reset_interrupt(cs, mask[irq]);
957 }
958 break;
959 default:
960 g_assert_not_reached();
961 }
962 }
963
964 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
965 {
966 #ifdef CONFIG_KVM
967 ARMCPU *cpu = opaque;
968 CPUARMState *env = &cpu->env;
969 CPUState *cs = CPU(cpu);
970 uint32_t linestate_bit;
971 int irq_id;
972
973 switch (irq) {
974 case ARM_CPU_IRQ:
975 irq_id = KVM_ARM_IRQ_CPU_IRQ;
976 linestate_bit = CPU_INTERRUPT_HARD;
977 break;
978 case ARM_CPU_FIQ:
979 irq_id = KVM_ARM_IRQ_CPU_FIQ;
980 linestate_bit = CPU_INTERRUPT_FIQ;
981 break;
982 default:
983 g_assert_not_reached();
984 }
985
986 if (level) {
987 env->irq_line_state |= linestate_bit;
988 } else {
989 env->irq_line_state &= ~linestate_bit;
990 }
991 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
992 #endif
993 }
994
995 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
996 {
997 ARMCPU *cpu = ARM_CPU(cs);
998 CPUARMState *env = &cpu->env;
999
1000 cpu_synchronize_state(cs);
1001 return arm_cpu_data_is_big_endian(env);
1002 }
1003
1004 #endif
1005
1006 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1007 {
1008 ARMCPU *ac = ARM_CPU(cpu);
1009 CPUARMState *env = &ac->env;
1010 bool sctlr_b;
1011
1012 if (is_a64(env)) {
1013 info->cap_arch = CS_ARCH_ARM64;
1014 info->cap_insn_unit = 4;
1015 info->cap_insn_split = 4;
1016 } else {
1017 int cap_mode;
1018 if (env->thumb) {
1019 info->cap_insn_unit = 2;
1020 info->cap_insn_split = 4;
1021 cap_mode = CS_MODE_THUMB;
1022 } else {
1023 info->cap_insn_unit = 4;
1024 info->cap_insn_split = 4;
1025 cap_mode = CS_MODE_ARM;
1026 }
1027 if (arm_feature(env, ARM_FEATURE_V8)) {
1028 cap_mode |= CS_MODE_V8;
1029 }
1030 if (arm_feature(env, ARM_FEATURE_M)) {
1031 cap_mode |= CS_MODE_MCLASS;
1032 }
1033 info->cap_arch = CS_ARCH_ARM;
1034 info->cap_mode = cap_mode;
1035 }
1036
1037 sctlr_b = arm_sctlr_b(env);
1038 if (bswap_code(sctlr_b)) {
1039 #if TARGET_BIG_ENDIAN
1040 info->endian = BFD_ENDIAN_LITTLE;
1041 #else
1042 info->endian = BFD_ENDIAN_BIG;
1043 #endif
1044 }
1045 info->flags &= ~INSN_ARM_BE32;
1046 #ifndef CONFIG_USER_ONLY
1047 if (sctlr_b) {
1048 info->flags |= INSN_ARM_BE32;
1049 }
1050 #endif
1051 }
1052
1053 #ifdef TARGET_AARCH64
1054
1055 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1056 {
1057 ARMCPU *cpu = ARM_CPU(cs);
1058 CPUARMState *env = &cpu->env;
1059 uint32_t psr = pstate_read(env);
1060 int i, j;
1061 int el = arm_current_el(env);
1062 uint64_t hcr = arm_hcr_el2_eff(env);
1063 const char *ns_status;
1064 bool sve;
1065
1066 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1067 for (i = 0; i < 32; i++) {
1068 if (i == 31) {
1069 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1070 } else {
1071 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1072 (i + 2) % 3 ? " " : "\n");
1073 }
1074 }
1075
1076 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1077 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1078 } else {
1079 ns_status = "";
1080 }
1081 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1082 psr,
1083 psr & PSTATE_N ? 'N' : '-',
1084 psr & PSTATE_Z ? 'Z' : '-',
1085 psr & PSTATE_C ? 'C' : '-',
1086 psr & PSTATE_V ? 'V' : '-',
1087 ns_status,
1088 el,
1089 psr & PSTATE_SP ? 'h' : 't');
1090
1091 if (cpu_isar_feature(aa64_sme, cpu)) {
1092 qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c",
1093 env->svcr,
1094 (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1095 (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1096 }
1097 if (cpu_isar_feature(aa64_bti, cpu)) {
1098 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1099 }
1100 qemu_fprintf(f, "%s%s%s",
1101 (hcr & HCR_NV) ? " NV" : "",
1102 (hcr & HCR_NV1) ? " NV1" : "",
1103 (hcr & HCR_NV2) ? " NV2" : "");
1104 if (!(flags & CPU_DUMP_FPU)) {
1105 qemu_fprintf(f, "\n");
1106 return;
1107 }
1108 if (fp_exception_el(env, el) != 0) {
1109 qemu_fprintf(f, " FPU disabled\n");
1110 return;
1111 }
1112 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
1113 vfp_get_fpcr(env), vfp_get_fpsr(env));
1114
1115 if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1116 sve = sme_exception_el(env, el) == 0;
1117 } else if (cpu_isar_feature(aa64_sve, cpu)) {
1118 sve = sve_exception_el(env, el) == 0;
1119 } else {
1120 sve = false;
1121 }
1122
1123 if (sve) {
1124 int zcr_len = sve_vqm1_for_el(env, el);
1125
1126 for (i = 0; i <= FFR_PRED_NUM; i++) {
1127 bool eol;
1128 if (i == FFR_PRED_NUM) {
1129 qemu_fprintf(f, "FFR=");
1130 /* It's last, so end the line. */
1131 eol = true;
1132 } else {
1133 qemu_fprintf(f, "P%02d=", i);
1134 switch (zcr_len) {
1135 case 0:
1136 eol = i % 8 == 7;
1137 break;
1138 case 1:
1139 eol = i % 6 == 5;
1140 break;
1141 case 2:
1142 case 3:
1143 eol = i % 3 == 2;
1144 break;
1145 default:
1146 /* More than one quadword per predicate. */
1147 eol = true;
1148 break;
1149 }
1150 }
1151 for (j = zcr_len / 4; j >= 0; j--) {
1152 int digits;
1153 if (j * 4 + 4 <= zcr_len + 1) {
1154 digits = 16;
1155 } else {
1156 digits = (zcr_len % 4 + 1) * 4;
1157 }
1158 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1159 env->vfp.pregs[i].p[j],
1160 j ? ":" : eol ? "\n" : " ");
1161 }
1162 }
1163
1164 if (zcr_len == 0) {
1165 /*
1166 * With vl=16, there are only 37 columns per register,
1167 * so output two registers per line.
1168 */
1169 for (i = 0; i < 32; i++) {
1170 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1171 i, env->vfp.zregs[i].d[1],
1172 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1173 }
1174 } else {
1175 for (i = 0; i < 32; i++) {
1176 qemu_fprintf(f, "Z%02d=", i);
1177 for (j = zcr_len; j >= 0; j--) {
1178 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1179 env->vfp.zregs[i].d[j * 2 + 1],
1180 env->vfp.zregs[i].d[j * 2 + 0],
1181 j ? ":" : "\n");
1182 }
1183 }
1184 }
1185 } else {
1186 for (i = 0; i < 32; i++) {
1187 uint64_t *q = aa64_vfp_qreg(env, i);
1188 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1189 i, q[1], q[0], (i & 1 ? "\n" : " "));
1190 }
1191 }
1192
1193 if (cpu_isar_feature(aa64_sme, cpu) &&
1194 FIELD_EX64(env->svcr, SVCR, ZA) &&
1195 sme_exception_el(env, el) == 0) {
1196 int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1197 int svl = (zcr_len + 1) * 16;
1198 int svl_lg10 = svl < 100 ? 2 : 3;
1199
1200 for (i = 0; i < svl; i++) {
1201 qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1202 for (j = zcr_len; j >= 0; --j) {
1203 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1204 env->zarray[i].d[2 * j + 1],
1205 env->zarray[i].d[2 * j],
1206 j ? ':' : '\n');
1207 }
1208 }
1209 }
1210 }
1211
1212 #else
1213
1214 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1215 {
1216 g_assert_not_reached();
1217 }
1218
1219 #endif
1220
1221 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1222 {
1223 ARMCPU *cpu = ARM_CPU(cs);
1224 CPUARMState *env = &cpu->env;
1225 int i;
1226
1227 if (is_a64(env)) {
1228 aarch64_cpu_dump_state(cs, f, flags);
1229 return;
1230 }
1231
1232 for (i = 0; i < 16; i++) {
1233 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1234 if ((i % 4) == 3) {
1235 qemu_fprintf(f, "\n");
1236 } else {
1237 qemu_fprintf(f, " ");
1238 }
1239 }
1240
1241 if (arm_feature(env, ARM_FEATURE_M)) {
1242 uint32_t xpsr = xpsr_read(env);
1243 const char *mode;
1244 const char *ns_status = "";
1245
1246 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1247 ns_status = env->v7m.secure ? "S " : "NS ";
1248 }
1249
1250 if (xpsr & XPSR_EXCP) {
1251 mode = "handler";
1252 } else {
1253 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1254 mode = "unpriv-thread";
1255 } else {
1256 mode = "priv-thread";
1257 }
1258 }
1259
1260 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1261 xpsr,
1262 xpsr & XPSR_N ? 'N' : '-',
1263 xpsr & XPSR_Z ? 'Z' : '-',
1264 xpsr & XPSR_C ? 'C' : '-',
1265 xpsr & XPSR_V ? 'V' : '-',
1266 xpsr & XPSR_T ? 'T' : 'A',
1267 ns_status,
1268 mode);
1269 } else {
1270 uint32_t psr = cpsr_read(env);
1271 const char *ns_status = "";
1272
1273 if (arm_feature(env, ARM_FEATURE_EL3) &&
1274 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1275 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1276 }
1277
1278 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1279 psr,
1280 psr & CPSR_N ? 'N' : '-',
1281 psr & CPSR_Z ? 'Z' : '-',
1282 psr & CPSR_C ? 'C' : '-',
1283 psr & CPSR_V ? 'V' : '-',
1284 psr & CPSR_T ? 'T' : 'A',
1285 ns_status,
1286 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1287 }
1288
1289 if (flags & CPU_DUMP_FPU) {
1290 int numvfpregs = 0;
1291 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1292 numvfpregs = 32;
1293 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1294 numvfpregs = 16;
1295 }
1296 for (i = 0; i < numvfpregs; i++) {
1297 uint64_t v = *aa32_vfp_dreg(env, i);
1298 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1299 i * 2, (uint32_t)v,
1300 i * 2 + 1, (uint32_t)(v >> 32),
1301 i, v);
1302 }
1303 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1304 if (cpu_isar_feature(aa32_mve, cpu)) {
1305 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1306 }
1307 }
1308 }
1309
1310 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1311 {
1312 uint32_t Aff1 = idx / clustersz;
1313 uint32_t Aff0 = idx % clustersz;
1314 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1315 }
1316
1317 static void arm_cpu_initfn(Object *obj)
1318 {
1319 ARMCPU *cpu = ARM_CPU(obj);
1320
1321 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1322 NULL, g_free);
1323
1324 QLIST_INIT(&cpu->pre_el_change_hooks);
1325 QLIST_INIT(&cpu->el_change_hooks);
1326
1327 #ifdef CONFIG_USER_ONLY
1328 # ifdef TARGET_AARCH64
1329 /*
1330 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1331 * These values were chosen to fit within the default signal frame.
1332 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1333 * and our corresponding cpu property.
1334 */
1335 cpu->sve_default_vq = 4;
1336 cpu->sme_default_vq = 2;
1337 # endif
1338 #else
1339 /* Our inbound IRQ and FIQ lines */
1340 if (kvm_enabled()) {
1341 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1342 * the same interface as non-KVM CPUs.
1343 */
1344 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1345 } else {
1346 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1347 }
1348
1349 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1350 ARRAY_SIZE(cpu->gt_timer_outputs));
1351
1352 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1353 "gicv3-maintenance-interrupt", 1);
1354 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1355 "pmu-interrupt", 1);
1356 #endif
1357
1358 /* DTB consumers generally don't in fact care what the 'compatible'
1359 * string is, so always provide some string and trust that a hypothetical
1360 * picky DTB consumer will also provide a helpful error message.
1361 */
1362 cpu->dtb_compatible = "qemu,unknown";
1363 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1364 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1365
1366 if (tcg_enabled() || hvf_enabled()) {
1367 /* TCG and HVF implement PSCI 1.1 */
1368 cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1369 }
1370 }
1371
1372 static Property arm_cpu_gt_cntfrq_property =
1373 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1374 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1375
1376 static Property arm_cpu_reset_cbar_property =
1377 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1378
1379 static Property arm_cpu_reset_hivecs_property =
1380 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1381
1382 #ifndef CONFIG_USER_ONLY
1383 static Property arm_cpu_has_el2_property =
1384 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1385
1386 static Property arm_cpu_has_el3_property =
1387 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1388 #endif
1389
1390 static Property arm_cpu_cfgend_property =
1391 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1392
1393 static Property arm_cpu_has_vfp_property =
1394 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1395
1396 static Property arm_cpu_has_vfp_d32_property =
1397 DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1398
1399 static Property arm_cpu_has_neon_property =
1400 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1401
1402 static Property arm_cpu_has_dsp_property =
1403 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1404
1405 static Property arm_cpu_has_mpu_property =
1406 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1407
1408 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1409 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1410 * the right value for that particular CPU type, and we don't want
1411 * to override that with an incorrect constant value.
1412 */
1413 static Property arm_cpu_pmsav7_dregion_property =
1414 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1415 pmsav7_dregion,
1416 qdev_prop_uint32, uint32_t);
1417
1418 static bool arm_get_pmu(Object *obj, Error **errp)
1419 {
1420 ARMCPU *cpu = ARM_CPU(obj);
1421
1422 return cpu->has_pmu;
1423 }
1424
1425 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1426 {
1427 ARMCPU *cpu = ARM_CPU(obj);
1428
1429 if (value) {
1430 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1431 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1432 return;
1433 }
1434 set_feature(&cpu->env, ARM_FEATURE_PMU);
1435 } else {
1436 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1437 }
1438 cpu->has_pmu = value;
1439 }
1440
1441 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1442 {
1443 /*
1444 * The exact approach to calculating guest ticks is:
1445 *
1446 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1447 * NANOSECONDS_PER_SECOND);
1448 *
1449 * We don't do that. Rather we intentionally use integer division
1450 * truncation below and in the caller for the conversion of host monotonic
1451 * time to guest ticks to provide the exact inverse for the semantics of
1452 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1453 * it loses precision when representing frequencies where
1454 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1455 * provide an exact inverse leads to scheduling timers with negative
1456 * periods, which in turn leads to sticky behaviour in the guest.
1457 *
1458 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1459 * cannot become zero.
1460 */
1461 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1462 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1463 }
1464
1465 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1466 {
1467 CPUARMState *env = &cpu->env;
1468 bool no_aa32 = false;
1469
1470 /*
1471 * Some features automatically imply others: set the feature
1472 * bits explicitly for these cases.
1473 */
1474
1475 if (arm_feature(env, ARM_FEATURE_M)) {
1476 set_feature(env, ARM_FEATURE_PMSA);
1477 }
1478
1479 if (arm_feature(env, ARM_FEATURE_V8)) {
1480 if (arm_feature(env, ARM_FEATURE_M)) {
1481 set_feature(env, ARM_FEATURE_V7);
1482 } else {
1483 set_feature(env, ARM_FEATURE_V7VE);
1484 }
1485 }
1486
1487 /*
1488 * There exist AArch64 cpus without AArch32 support. When KVM
1489 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1490 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1491 * As a general principle, we also do not make ID register
1492 * consistency checks anywhere unless using TCG, because only
1493 * for TCG would a consistency-check failure be a QEMU bug.
1494 */
1495 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1496 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1497 }
1498
1499 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1500 /*
1501 * v7 Virtualization Extensions. In real hardware this implies
1502 * EL2 and also the presence of the Security Extensions.
1503 * For QEMU, for backwards-compatibility we implement some
1504 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1505 * include the various other features that V7VE implies.
1506 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1507 * Security Extensions is ARM_FEATURE_EL3.
1508 */
1509 assert(!tcg_enabled() || no_aa32 ||
1510 cpu_isar_feature(aa32_arm_div, cpu));
1511 set_feature(env, ARM_FEATURE_LPAE);
1512 set_feature(env, ARM_FEATURE_V7);
1513 }
1514 if (arm_feature(env, ARM_FEATURE_V7)) {
1515 set_feature(env, ARM_FEATURE_VAPA);
1516 set_feature(env, ARM_FEATURE_THUMB2);
1517 set_feature(env, ARM_FEATURE_MPIDR);
1518 if (!arm_feature(env, ARM_FEATURE_M)) {
1519 set_feature(env, ARM_FEATURE_V6K);
1520 } else {
1521 set_feature(env, ARM_FEATURE_V6);
1522 }
1523
1524 /*
1525 * Always define VBAR for V7 CPUs even if it doesn't exist in
1526 * non-EL3 configs. This is needed by some legacy boards.
1527 */
1528 set_feature(env, ARM_FEATURE_VBAR);
1529 }
1530 if (arm_feature(env, ARM_FEATURE_V6K)) {
1531 set_feature(env, ARM_FEATURE_V6);
1532 set_feature(env, ARM_FEATURE_MVFR);
1533 }
1534 if (arm_feature(env, ARM_FEATURE_V6)) {
1535 set_feature(env, ARM_FEATURE_V5);
1536 if (!arm_feature(env, ARM_FEATURE_M)) {
1537 assert(!tcg_enabled() || no_aa32 ||
1538 cpu_isar_feature(aa32_jazelle, cpu));
1539 set_feature(env, ARM_FEATURE_AUXCR);
1540 }
1541 }
1542 if (arm_feature(env, ARM_FEATURE_V5)) {
1543 set_feature(env, ARM_FEATURE_V4T);
1544 }
1545 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1546 set_feature(env, ARM_FEATURE_V7MP);
1547 }
1548 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1549 set_feature(env, ARM_FEATURE_CBAR);
1550 }
1551 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1552 !arm_feature(env, ARM_FEATURE_M)) {
1553 set_feature(env, ARM_FEATURE_THUMB_DSP);
1554 }
1555 }
1556
1557 void arm_cpu_post_init(Object *obj)
1558 {
1559 ARMCPU *cpu = ARM_CPU(obj);
1560
1561 /*
1562 * Some features imply others. Figure this out now, because we
1563 * are going to look at the feature bits in deciding which
1564 * properties to add.
1565 */
1566 arm_cpu_propagate_feature_implications(cpu);
1567
1568 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1569 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1570 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1571 }
1572
1573 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1574 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1575 }
1576
1577 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1578 object_property_add_uint64_ptr(obj, "rvbar",
1579 &cpu->rvbar_prop,
1580 OBJ_PROP_FLAG_READWRITE);
1581 }
1582
1583 #ifndef CONFIG_USER_ONLY
1584 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1585 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1586 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1587 */
1588 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1589
1590 object_property_add_link(obj, "secure-memory",
1591 TYPE_MEMORY_REGION,
1592 (Object **)&cpu->secure_memory,
1593 qdev_prop_allow_set_link_before_realize,
1594 OBJ_PROP_LINK_STRONG);
1595 }
1596
1597 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1598 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1599 }
1600 #endif
1601
1602 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1603 cpu->has_pmu = true;
1604 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1605 }
1606
1607 /*
1608 * Allow user to turn off VFP and Neon support, but only for TCG --
1609 * KVM does not currently allow us to lie to the guest about its
1610 * ID/feature registers, so the guest always sees what the host has.
1611 */
1612 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1613 if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1614 cpu->has_vfp = true;
1615 cpu->has_vfp_d32 = true;
1616 if (tcg_enabled() || qtest_enabled()) {
1617 qdev_property_add_static(DEVICE(obj),
1618 &arm_cpu_has_vfp_property);
1619 }
1620 }
1621 } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1622 cpu->has_vfp = true;
1623 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1624 cpu->has_vfp_d32 = true;
1625 /*
1626 * The permitted values of the SIMDReg bits [3:0] on
1627 * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1628 * make sure that has_vfp_d32 can not be set to false.
1629 */
1630 if ((tcg_enabled() || qtest_enabled())
1631 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1632 && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1633 qdev_property_add_static(DEVICE(obj),
1634 &arm_cpu_has_vfp_d32_property);
1635 }
1636 }
1637 }
1638
1639 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1640 cpu->has_neon = true;
1641 if (!kvm_enabled()) {
1642 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1643 }
1644 }
1645
1646 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1647 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1648 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1649 }
1650
1651 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1652 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1653 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1654 qdev_property_add_static(DEVICE(obj),
1655 &arm_cpu_pmsav7_dregion_property);
1656 }
1657 }
1658
1659 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1660 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1661 qdev_prop_allow_set_link_before_realize,
1662 OBJ_PROP_LINK_STRONG);
1663 /*
1664 * M profile: initial value of the Secure VTOR. We can't just use
1665 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1666 * the property to be set after realize.
1667 */
1668 object_property_add_uint32_ptr(obj, "init-svtor",
1669 &cpu->init_svtor,
1670 OBJ_PROP_FLAG_READWRITE);
1671 }
1672 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1673 /*
1674 * Initial value of the NS VTOR (for cores without the Security
1675 * extension, this is the only VTOR)
1676 */
1677 object_property_add_uint32_ptr(obj, "init-nsvtor",
1678 &cpu->init_nsvtor,
1679 OBJ_PROP_FLAG_READWRITE);
1680 }
1681
1682 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1683 object_property_add_uint32_ptr(obj, "psci-conduit",
1684 &cpu->psci_conduit,
1685 OBJ_PROP_FLAG_READWRITE);
1686
1687 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1688
1689 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1690 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1691 }
1692
1693 if (kvm_enabled()) {
1694 kvm_arm_add_vcpu_properties(cpu);
1695 }
1696
1697 #ifndef CONFIG_USER_ONLY
1698 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1699 cpu_isar_feature(aa64_mte, cpu)) {
1700 object_property_add_link(obj, "tag-memory",
1701 TYPE_MEMORY_REGION,
1702 (Object **)&cpu->tag_memory,
1703 qdev_prop_allow_set_link_before_realize,
1704 OBJ_PROP_LINK_STRONG);
1705
1706 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1707 object_property_add_link(obj, "secure-tag-memory",
1708 TYPE_MEMORY_REGION,
1709 (Object **)&cpu->secure_tag_memory,
1710 qdev_prop_allow_set_link_before_realize,
1711 OBJ_PROP_LINK_STRONG);
1712 }
1713 }
1714 #endif
1715 }
1716
1717 static void arm_cpu_finalizefn(Object *obj)
1718 {
1719 ARMCPU *cpu = ARM_CPU(obj);
1720 ARMELChangeHook *hook, *next;
1721
1722 g_hash_table_destroy(cpu->cp_regs);
1723
1724 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1725 QLIST_REMOVE(hook, node);
1726 g_free(hook);
1727 }
1728 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1729 QLIST_REMOVE(hook, node);
1730 g_free(hook);
1731 }
1732 #ifndef CONFIG_USER_ONLY
1733 if (cpu->pmu_timer) {
1734 timer_free(cpu->pmu_timer);
1735 }
1736 #endif
1737 }
1738
1739 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1740 {
1741 Error *local_err = NULL;
1742
1743 #ifdef TARGET_AARCH64
1744 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1745 arm_cpu_sve_finalize(cpu, &local_err);
1746 if (local_err != NULL) {
1747 error_propagate(errp, local_err);
1748 return;
1749 }
1750
1751 /*
1752 * FEAT_SME is not architecturally dependent on FEAT_SVE (unless
1753 * FEAT_SME_FA64 is present). However our implementation currently
1754 * assumes it, so if the user asked for sve=off then turn off SME also.
1755 * (KVM doesn't currently support SME at all.)
1756 */
1757 if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) {
1758 object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort);
1759 }
1760
1761 arm_cpu_sme_finalize(cpu, &local_err);
1762 if (local_err != NULL) {
1763 error_propagate(errp, local_err);
1764 return;
1765 }
1766
1767 arm_cpu_pauth_finalize(cpu, &local_err);
1768 if (local_err != NULL) {
1769 error_propagate(errp, local_err);
1770 return;
1771 }
1772
1773 arm_cpu_lpa2_finalize(cpu, &local_err);
1774 if (local_err != NULL) {
1775 error_propagate(errp, local_err);
1776 return;
1777 }
1778 }
1779 #endif
1780
1781 if (kvm_enabled()) {
1782 kvm_arm_steal_time_finalize(cpu, &local_err);
1783 if (local_err != NULL) {
1784 error_propagate(errp, local_err);
1785 return;
1786 }
1787 }
1788 }
1789
1790 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1791 {
1792 CPUState *cs = CPU(dev);
1793 ARMCPU *cpu = ARM_CPU(dev);
1794 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1795 CPUARMState *env = &cpu->env;
1796 int pagebits;
1797 Error *local_err = NULL;
1798
1799 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
1800 /* Use pc-relative instructions in system-mode */
1801 cs->tcg_cflags |= CF_PCREL;
1802 #endif
1803
1804 /* If we needed to query the host kernel for the CPU features
1805 * then it's possible that might have failed in the initfn, but
1806 * this is the first point where we can report it.
1807 */
1808 if (cpu->host_cpu_probe_failed) {
1809 if (!kvm_enabled() && !hvf_enabled()) {
1810 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1811 } else {
1812 error_setg(errp, "Failed to retrieve host CPU features");
1813 }
1814 return;
1815 }
1816
1817 #ifndef CONFIG_USER_ONLY
1818 /* The NVIC and M-profile CPU are two halves of a single piece of
1819 * hardware; trying to use one without the other is a command line
1820 * error and will result in segfaults if not caught here.
1821 */
1822 if (arm_feature(env, ARM_FEATURE_M)) {
1823 if (!env->nvic) {
1824 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1825 return;
1826 }
1827 } else {
1828 if (env->nvic) {
1829 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1830 return;
1831 }
1832 }
1833
1834 if (!tcg_enabled() && !qtest_enabled()) {
1835 /*
1836 * We assume that no accelerator except TCG (and the "not really an
1837 * accelerator" qtest) can handle these features, because Arm hardware
1838 * virtualization can't virtualize them.
1839 *
1840 * Catch all the cases which might cause us to create more than one
1841 * address space for the CPU (otherwise we will assert() later in
1842 * cpu_address_space_init()).
1843 */
1844 if (arm_feature(env, ARM_FEATURE_M)) {
1845 error_setg(errp,
1846 "Cannot enable %s when using an M-profile guest CPU",
1847 current_accel_name());
1848 return;
1849 }
1850 if (cpu->has_el3) {
1851 error_setg(errp,
1852 "Cannot enable %s when guest CPU has EL3 enabled",
1853 current_accel_name());
1854 return;
1855 }
1856 if (cpu->tag_memory) {
1857 error_setg(errp,
1858 "Cannot enable %s when guest CPUs has MTE enabled",
1859 current_accel_name());
1860 return;
1861 }
1862 }
1863
1864 {
1865 uint64_t scale;
1866
1867 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1868 if (!cpu->gt_cntfrq_hz) {
1869 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1870 cpu->gt_cntfrq_hz);
1871 return;
1872 }
1873 scale = gt_cntfrq_period_ns(cpu);
1874 } else {
1875 scale = GTIMER_SCALE;
1876 }
1877
1878 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1879 arm_gt_ptimer_cb, cpu);
1880 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1881 arm_gt_vtimer_cb, cpu);
1882 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1883 arm_gt_htimer_cb, cpu);
1884 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1885 arm_gt_stimer_cb, cpu);
1886 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1887 arm_gt_hvtimer_cb, cpu);
1888 }
1889 #endif
1890
1891 cpu_exec_realizefn(cs, &local_err);
1892 if (local_err != NULL) {
1893 error_propagate(errp, local_err);
1894 return;
1895 }
1896
1897 arm_cpu_finalize_features(cpu, &local_err);
1898 if (local_err != NULL) {
1899 error_propagate(errp, local_err);
1900 return;
1901 }
1902
1903 #ifdef CONFIG_USER_ONLY
1904 /*
1905 * User mode relies on IC IVAU instructions to catch modification of
1906 * dual-mapped code.
1907 *
1908 * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
1909 * IC IVAU even if the emulated processor does not normally require it.
1910 */
1911 cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
1912 #endif
1913
1914 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1915 cpu->has_vfp != cpu->has_neon) {
1916 /*
1917 * This is an architectural requirement for AArch64; AArch32 is
1918 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1919 */
1920 error_setg(errp,
1921 "AArch64 CPUs must have both VFP and Neon or neither");
1922 return;
1923 }
1924
1925 if (cpu->has_vfp_d32 != cpu->has_neon) {
1926 error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1927 return;
1928 }
1929
1930 if (!cpu->has_vfp_d32) {
1931 uint32_t u;
1932
1933 u = cpu->isar.mvfr0;
1934 u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1935 cpu->isar.mvfr0 = u;
1936 }
1937
1938 if (!cpu->has_vfp) {
1939 uint64_t t;
1940 uint32_t u;
1941
1942 t = cpu->isar.id_aa64isar1;
1943 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1944 cpu->isar.id_aa64isar1 = t;
1945
1946 t = cpu->isar.id_aa64pfr0;
1947 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1948 cpu->isar.id_aa64pfr0 = t;
1949
1950 u = cpu->isar.id_isar6;
1951 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1952 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1953 cpu->isar.id_isar6 = u;
1954
1955 u = cpu->isar.mvfr0;
1956 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1957 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1958 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1959 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1960 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1961 if (!arm_feature(env, ARM_FEATURE_M)) {
1962 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1963 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1964 }
1965 cpu->isar.mvfr0 = u;
1966
1967 u = cpu->isar.mvfr1;
1968 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1969 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1970 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1971 if (arm_feature(env, ARM_FEATURE_M)) {
1972 u = FIELD_DP32(u, MVFR1, FP16, 0);
1973 }
1974 cpu->isar.mvfr1 = u;
1975
1976 u = cpu->isar.mvfr2;
1977 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1978 cpu->isar.mvfr2 = u;
1979 }
1980
1981 if (!cpu->has_neon) {
1982 uint64_t t;
1983 uint32_t u;
1984
1985 unset_feature(env, ARM_FEATURE_NEON);
1986
1987 t = cpu->isar.id_aa64isar0;
1988 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1989 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1990 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1991 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1992 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1993 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1994 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1995 cpu->isar.id_aa64isar0 = t;
1996
1997 t = cpu->isar.id_aa64isar1;
1998 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1999 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
2000 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
2001 cpu->isar.id_aa64isar1 = t;
2002
2003 t = cpu->isar.id_aa64pfr0;
2004 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
2005 cpu->isar.id_aa64pfr0 = t;
2006
2007 u = cpu->isar.id_isar5;
2008 u = FIELD_DP32(u, ID_ISAR5, AES, 0);
2009 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
2010 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
2011 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
2012 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
2013 cpu->isar.id_isar5 = u;
2014
2015 u = cpu->isar.id_isar6;
2016 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2017 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2018 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2019 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2020 cpu->isar.id_isar6 = u;
2021
2022 if (!arm_feature(env, ARM_FEATURE_M)) {
2023 u = cpu->isar.mvfr1;
2024 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2025 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2026 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2027 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2028 cpu->isar.mvfr1 = u;
2029
2030 u = cpu->isar.mvfr2;
2031 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2032 cpu->isar.mvfr2 = u;
2033 }
2034 }
2035
2036 if (!cpu->has_neon && !cpu->has_vfp) {
2037 uint64_t t;
2038 uint32_t u;
2039
2040 t = cpu->isar.id_aa64isar0;
2041 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2042 cpu->isar.id_aa64isar0 = t;
2043
2044 t = cpu->isar.id_aa64isar1;
2045 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2046 cpu->isar.id_aa64isar1 = t;
2047
2048 u = cpu->isar.mvfr0;
2049 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2050 cpu->isar.mvfr0 = u;
2051
2052 /* Despite the name, this field covers both VFP and Neon */
2053 u = cpu->isar.mvfr1;
2054 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2055 cpu->isar.mvfr1 = u;
2056 }
2057
2058 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2059 uint32_t u;
2060
2061 unset_feature(env, ARM_FEATURE_THUMB_DSP);
2062
2063 u = cpu->isar.id_isar1;
2064 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2065 cpu->isar.id_isar1 = u;
2066
2067 u = cpu->isar.id_isar2;
2068 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2069 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2070 cpu->isar.id_isar2 = u;
2071
2072 u = cpu->isar.id_isar3;
2073 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2074 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2075 cpu->isar.id_isar3 = u;
2076 }
2077
2078
2079 /*
2080 * We rely on no XScale CPU having VFP so we can use the same bits in the
2081 * TB flags field for VECSTRIDE and XSCALE_CPAR.
2082 */
2083 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
2084 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2085 !arm_feature(env, ARM_FEATURE_XSCALE));
2086
2087 if (arm_feature(env, ARM_FEATURE_V7) &&
2088 !arm_feature(env, ARM_FEATURE_M) &&
2089 !arm_feature(env, ARM_FEATURE_PMSA)) {
2090 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
2091 * can use 4K pages.
2092 */
2093 pagebits = 12;
2094 } else {
2095 /* For CPUs which might have tiny 1K pages, or which have an
2096 * MPU and might have small region sizes, stick with 1K pages.
2097 */
2098 pagebits = 10;
2099 }
2100 if (!set_preferred_target_page_bits(pagebits)) {
2101 /* This can only ever happen for hotplugging a CPU, or if
2102 * the board code incorrectly creates a CPU which it has
2103 * promised via minimum_page_size that it will not.
2104 */
2105 error_setg(errp, "This CPU requires a smaller page size than the "
2106 "system is using");
2107 return;
2108 }
2109
2110 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2111 * We don't support setting cluster ID ([16..23]) (known as Aff2
2112 * in later ARM ARM versions), or any of the higher affinity level fields,
2113 * so these bits always RAZ.
2114 */
2115 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2116 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
2117 ARM_DEFAULT_CPUS_PER_CLUSTER);
2118 }
2119
2120 if (cpu->reset_hivecs) {
2121 cpu->reset_sctlr |= (1 << 13);
2122 }
2123
2124 if (cpu->cfgend) {
2125 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
2126 cpu->reset_sctlr |= SCTLR_EE;
2127 } else {
2128 cpu->reset_sctlr |= SCTLR_B;
2129 }
2130 }
2131
2132 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2133 /* If the has_el3 CPU property is disabled then we need to disable the
2134 * feature.
2135 */
2136 unset_feature(env, ARM_FEATURE_EL3);
2137
2138 /*
2139 * Disable the security extension feature bits in the processor
2140 * feature registers as well.
2141 */
2142 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2143 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2144 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2145 ID_AA64PFR0, EL3, 0);
2146
2147 /* Disable the realm management extension, which requires EL3. */
2148 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2149 ID_AA64PFR0, RME, 0);
2150 }
2151
2152 if (!cpu->has_el2) {
2153 unset_feature(env, ARM_FEATURE_EL2);
2154 }
2155
2156 if (!cpu->has_pmu) {
2157 unset_feature(env, ARM_FEATURE_PMU);
2158 }
2159 if (arm_feature(env, ARM_FEATURE_PMU)) {
2160 pmu_init(cpu);
2161
2162 if (!kvm_enabled()) {
2163 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2164 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2165 }
2166
2167 #ifndef CONFIG_USER_ONLY
2168 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2169 cpu);
2170 #endif
2171 } else {
2172 cpu->isar.id_aa64dfr0 =
2173 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2174 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2175 cpu->pmceid0 = 0;
2176 cpu->pmceid1 = 0;
2177 }
2178
2179 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2180 /*
2181 * Disable the hypervisor feature bits in the processor feature
2182 * registers if we don't have EL2.
2183 */
2184 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2185 ID_AA64PFR0, EL2, 0);
2186 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2187 ID_PFR1, VIRTUALIZATION, 0);
2188 }
2189
2190 if (cpu_isar_feature(aa64_mte, cpu)) {
2191 /*
2192 * The architectural range of GM blocksize is 2-6, however qemu
2193 * doesn't support blocksize of 2 (see HELPER(ldgm)).
2194 */
2195 if (tcg_enabled()) {
2196 assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2197 }
2198
2199 #ifndef CONFIG_USER_ONLY
2200 /*
2201 * If we do not have tag-memory provided by the machine,
2202 * reduce MTE support to instructions enabled at EL0.
2203 * This matches Cortex-A710 BROADCASTMTE input being LOW.
2204 */
2205 if (cpu->tag_memory == NULL) {
2206 cpu->isar.id_aa64pfr1 =
2207 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2208 }
2209 #endif
2210 }
2211
2212 if (tcg_enabled()) {
2213 /*
2214 * Don't report some architectural features in the ID registers
2215 * where TCG does not yet implement it (not even a minimal
2216 * stub version). This avoids guests falling over when they
2217 * try to access the non-existent system registers for them.
2218 */
2219 /* FEAT_SPE (Statistical Profiling Extension) */
2220 cpu->isar.id_aa64dfr0 =
2221 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2222 /* FEAT_TRBE (Trace Buffer Extension) */
2223 cpu->isar.id_aa64dfr0 =
2224 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2225 /* FEAT_TRF (Self-hosted Trace Extension) */
2226 cpu->isar.id_aa64dfr0 =
2227 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2228 cpu->isar.id_dfr0 =
2229 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2230 /* Trace Macrocell system register access */
2231 cpu->isar.id_aa64dfr0 =
2232 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2233 cpu->isar.id_dfr0 =
2234 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2235 /* Memory mapped trace */
2236 cpu->isar.id_dfr0 =
2237 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2238 /* FEAT_AMU (Activity Monitors Extension) */
2239 cpu->isar.id_aa64pfr0 =
2240 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2241 cpu->isar.id_pfr0 =
2242 FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2243 /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2244 cpu->isar.id_aa64pfr0 =
2245 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2246 }
2247
2248 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2249 * to false or by setting pmsav7-dregion to 0.
2250 */
2251 if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2252 cpu->has_mpu = false;
2253 cpu->pmsav7_dregion = 0;
2254 cpu->pmsav8r_hdregion = 0;
2255 }
2256
2257 if (arm_feature(env, ARM_FEATURE_PMSA) &&
2258 arm_feature(env, ARM_FEATURE_V7)) {
2259 uint32_t nr = cpu->pmsav7_dregion;
2260
2261 if (nr > 0xff) {
2262 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2263 return;
2264 }
2265
2266 if (nr) {
2267 if (arm_feature(env, ARM_FEATURE_V8)) {
2268 /* PMSAv8 */
2269 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2270 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2271 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2272 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2273 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2274 }
2275 } else {
2276 env->pmsav7.drbar = g_new0(uint32_t, nr);
2277 env->pmsav7.drsr = g_new0(uint32_t, nr);
2278 env->pmsav7.dracr = g_new0(uint32_t, nr);
2279 }
2280 }
2281
2282 if (cpu->pmsav8r_hdregion > 0xff) {
2283 error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2284 cpu->pmsav8r_hdregion);
2285 return;
2286 }
2287
2288 if (cpu->pmsav8r_hdregion) {
2289 env->pmsav8.hprbar = g_new0(uint32_t,
2290 cpu->pmsav8r_hdregion);
2291 env->pmsav8.hprlar = g_new0(uint32_t,
2292 cpu->pmsav8r_hdregion);
2293 }
2294 }
2295
2296 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2297 uint32_t nr = cpu->sau_sregion;
2298
2299 if (nr > 0xff) {
2300 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2301 return;
2302 }
2303
2304 if (nr) {
2305 env->sau.rbar = g_new0(uint32_t, nr);
2306 env->sau.rlar = g_new0(uint32_t, nr);
2307 }
2308 }
2309
2310 if (arm_feature(env, ARM_FEATURE_EL3)) {
2311 set_feature(env, ARM_FEATURE_VBAR);
2312 }
2313
2314 #ifndef CONFIG_USER_ONLY
2315 if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2316 arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2317 }
2318 #endif
2319
2320 register_cp_regs_for_features(cpu);
2321 arm_cpu_register_gdb_regs_for_features(cpu);
2322
2323 init_cpreg_list(cpu);
2324
2325 #ifndef CONFIG_USER_ONLY
2326 MachineState *ms = MACHINE(qdev_get_machine());
2327 unsigned int smp_cpus = ms->smp.cpus;
2328 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2329
2330 /*
2331 * We must set cs->num_ases to the final value before
2332 * the first call to cpu_address_space_init.
2333 */
2334 if (cpu->tag_memory != NULL) {
2335 cs->num_ases = 3 + has_secure;
2336 } else {
2337 cs->num_ases = 1 + has_secure;
2338 }
2339
2340 if (has_secure) {
2341 if (!cpu->secure_memory) {
2342 cpu->secure_memory = cs->memory;
2343 }
2344 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2345 cpu->secure_memory);
2346 }
2347
2348 if (cpu->tag_memory != NULL) {
2349 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2350 cpu->tag_memory);
2351 if (has_secure) {
2352 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2353 cpu->secure_tag_memory);
2354 }
2355 }
2356
2357 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2358
2359 /* No core_count specified, default to smp_cpus. */
2360 if (cpu->core_count == -1) {
2361 cpu->core_count = smp_cpus;
2362 }
2363 #endif
2364
2365 if (tcg_enabled()) {
2366 int dcz_blocklen = 4 << cpu->dcz_blocksize;
2367
2368 /*
2369 * We only support DCZ blocklen that fits on one page.
2370 *
2371 * Architectually this is always true. However TARGET_PAGE_SIZE
2372 * is variable and, for compatibility with -machine virt-2.7,
2373 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2374 * But even then, while the largest architectural DCZ blocklen
2375 * is 2KiB, no cpu actually uses such a large blocklen.
2376 */
2377 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2378
2379 /*
2380 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2381 * both nibbles of each byte storing tag data may be written at once.
2382 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2383 */
2384 if (cpu_isar_feature(aa64_mte, cpu)) {
2385 assert(dcz_blocklen >= 2 * TAG_GRANULE);
2386 }
2387 }
2388
2389 qemu_init_vcpu(cs);
2390 cpu_reset(cs);
2391
2392 acc->parent_realize(dev, errp);
2393 }
2394
2395 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2396 {
2397 ObjectClass *oc;
2398 char *typename;
2399 char **cpuname;
2400 const char *cpunamestr;
2401
2402 cpuname = g_strsplit(cpu_model, ",", 1);
2403 cpunamestr = cpuname[0];
2404 #ifdef CONFIG_USER_ONLY
2405 /* For backwards compatibility usermode emulation allows "-cpu any",
2406 * which has the same semantics as "-cpu max".
2407 */
2408 if (!strcmp(cpunamestr, "any")) {
2409 cpunamestr = "max";
2410 }
2411 #endif
2412 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2413 oc = object_class_by_name(typename);
2414 g_strfreev(cpuname);
2415 g_free(typename);
2416
2417 return oc;
2418 }
2419
2420 static Property arm_cpu_properties[] = {
2421 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2422 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2423 mp_affinity, ARM64_AFFINITY_INVALID),
2424 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2425 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2426 DEFINE_PROP_END_OF_LIST()
2427 };
2428
2429 static const gchar *arm_gdb_arch_name(CPUState *cs)
2430 {
2431 ARMCPU *cpu = ARM_CPU(cs);
2432 CPUARMState *env = &cpu->env;
2433
2434 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2435 return "iwmmxt";
2436 }
2437 return "arm";
2438 }
2439
2440 #ifndef CONFIG_USER_ONLY
2441 #include "hw/core/sysemu-cpu-ops.h"
2442
2443 static const struct SysemuCPUOps arm_sysemu_ops = {
2444 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2445 .asidx_from_attrs = arm_asidx_from_attrs,
2446 .write_elf32_note = arm_cpu_write_elf32_note,
2447 .write_elf64_note = arm_cpu_write_elf64_note,
2448 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2449 .legacy_vmsd = &vmstate_arm_cpu,
2450 };
2451 #endif
2452
2453 #ifdef CONFIG_TCG
2454 static const struct TCGCPUOps arm_tcg_ops = {
2455 .initialize = arm_translate_init,
2456 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2457 .debug_excp_handler = arm_debug_excp_handler,
2458 .restore_state_to_opc = arm_restore_state_to_opc,
2459
2460 #ifdef CONFIG_USER_ONLY
2461 .record_sigsegv = arm_cpu_record_sigsegv,
2462 .record_sigbus = arm_cpu_record_sigbus,
2463 #else
2464 .tlb_fill = arm_cpu_tlb_fill,
2465 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2466 .do_interrupt = arm_cpu_do_interrupt,
2467 .do_transaction_failed = arm_cpu_do_transaction_failed,
2468 .do_unaligned_access = arm_cpu_do_unaligned_access,
2469 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2470 .debug_check_watchpoint = arm_debug_check_watchpoint,
2471 .debug_check_breakpoint = arm_debug_check_breakpoint,
2472 #endif /* !CONFIG_USER_ONLY */
2473 };
2474 #endif /* CONFIG_TCG */
2475
2476 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2477 {
2478 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2479 CPUClass *cc = CPU_CLASS(acc);
2480 DeviceClass *dc = DEVICE_CLASS(oc);
2481 ResettableClass *rc = RESETTABLE_CLASS(oc);
2482
2483 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2484 &acc->parent_realize);
2485
2486 device_class_set_props(dc, arm_cpu_properties);
2487
2488 resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2489 &acc->parent_phases);
2490
2491 cc->class_by_name = arm_cpu_class_by_name;
2492 cc->has_work = arm_cpu_has_work;
2493 cc->dump_state = arm_cpu_dump_state;
2494 cc->set_pc = arm_cpu_set_pc;
2495 cc->get_pc = arm_cpu_get_pc;
2496 cc->gdb_read_register = arm_cpu_gdb_read_register;
2497 cc->gdb_write_register = arm_cpu_gdb_write_register;
2498 #ifndef CONFIG_USER_ONLY
2499 cc->sysemu_ops = &arm_sysemu_ops;
2500 #endif
2501 cc->gdb_num_core_regs = 26;
2502 cc->gdb_arch_name = arm_gdb_arch_name;
2503 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2504 cc->gdb_stop_before_watchpoint = true;
2505 cc->disas_set_info = arm_disas_set_info;
2506
2507 #ifdef CONFIG_TCG
2508 cc->tcg_ops = &arm_tcg_ops;
2509 #endif /* CONFIG_TCG */
2510 }
2511
2512 static void arm_cpu_instance_init(Object *obj)
2513 {
2514 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2515
2516 acc->info->initfn(obj);
2517 arm_cpu_post_init(obj);
2518 }
2519
2520 static void cpu_register_class_init(ObjectClass *oc, void *data)
2521 {
2522 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2523 CPUClass *cc = CPU_CLASS(acc);
2524
2525 acc->info = data;
2526 cc->gdb_core_xml_file = "arm-core.xml";
2527 }
2528
2529 void arm_cpu_register(const ARMCPUInfo *info)
2530 {
2531 TypeInfo type_info = {
2532 .parent = TYPE_ARM_CPU,
2533 .instance_init = arm_cpu_instance_init,
2534 .class_init = info->class_init ?: cpu_register_class_init,
2535 .class_data = (void *)info,
2536 };
2537
2538 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2539 type_register(&type_info);
2540 g_free((void *)type_info.name);
2541 }
2542
2543 static const TypeInfo arm_cpu_type_info = {
2544 .name = TYPE_ARM_CPU,
2545 .parent = TYPE_CPU,
2546 .instance_size = sizeof(ARMCPU),
2547 .instance_align = __alignof__(ARMCPU),
2548 .instance_init = arm_cpu_initfn,
2549 .instance_finalize = arm_cpu_finalizefn,
2550 .abstract = true,
2551 .class_size = sizeof(ARMCPUClass),
2552 .class_init = arm_cpu_class_init,
2553 };
2554
2555 static void arm_cpu_register_types(void)
2556 {
2557 type_register_static(&arm_cpu_type_info);
2558 }
2559
2560 type_init(arm_cpu_register_types)