]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.c
aa4e006f21a67745619ef80c5ee426b2b1f1aebc
[mirror_qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "exec/exec-all.h"
35 #include "hw/qdev-properties.h"
36 #if !defined(CONFIG_USER_ONLY)
37 #include "hw/loader.h"
38 #include "hw/boards.h"
39 #ifdef CONFIG_TCG
40 #include "hw/intc/armv7m_nvic.h"
41 #endif /* CONFIG_TCG */
42 #endif /* !CONFIG_USER_ONLY */
43 #include "sysemu/tcg.h"
44 #include "sysemu/qtest.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_arm.h"
47 #include "disas/capstone.h"
48 #include "fpu/softfloat.h"
49 #include "cpregs.h"
50
51 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
52 {
53 ARMCPU *cpu = ARM_CPU(cs);
54 CPUARMState *env = &cpu->env;
55
56 if (is_a64(env)) {
57 env->pc = value;
58 env->thumb = false;
59 } else {
60 env->regs[15] = value & ~1;
61 env->thumb = value & 1;
62 }
63 }
64
65 static vaddr arm_cpu_get_pc(CPUState *cs)
66 {
67 ARMCPU *cpu = ARM_CPU(cs);
68 CPUARMState *env = &cpu->env;
69
70 if (is_a64(env)) {
71 return env->pc;
72 } else {
73 return env->regs[15];
74 }
75 }
76
77 #ifdef CONFIG_TCG
78 void arm_cpu_synchronize_from_tb(CPUState *cs,
79 const TranslationBlock *tb)
80 {
81 /* The program counter is always up to date with CF_PCREL. */
82 if (!(tb_cflags(tb) & CF_PCREL)) {
83 CPUARMState *env = cpu_env(cs);
84 /*
85 * It's OK to look at env for the current mode here, because it's
86 * never possible for an AArch64 TB to chain to an AArch32 TB.
87 */
88 if (is_a64(env)) {
89 env->pc = tb->pc;
90 } else {
91 env->regs[15] = tb->pc;
92 }
93 }
94 }
95
96 void arm_restore_state_to_opc(CPUState *cs,
97 const TranslationBlock *tb,
98 const uint64_t *data)
99 {
100 CPUARMState *env = cpu_env(cs);
101
102 if (is_a64(env)) {
103 if (tb_cflags(tb) & CF_PCREL) {
104 env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
105 } else {
106 env->pc = data[0];
107 }
108 env->condexec_bits = 0;
109 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
110 } else {
111 if (tb_cflags(tb) & CF_PCREL) {
112 env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
113 } else {
114 env->regs[15] = data[0];
115 }
116 env->condexec_bits = data[1];
117 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
118 }
119 }
120 #endif /* CONFIG_TCG */
121
122 static bool arm_cpu_has_work(CPUState *cs)
123 {
124 ARMCPU *cpu = ARM_CPU(cs);
125
126 return (cpu->power_state != PSCI_OFF)
127 && cs->interrupt_request &
128 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
129 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
130 | CPU_INTERRUPT_EXITTB);
131 }
132
133 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
134 void *opaque)
135 {
136 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
137
138 entry->hook = hook;
139 entry->opaque = opaque;
140
141 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
142 }
143
144 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
145 void *opaque)
146 {
147 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
148
149 entry->hook = hook;
150 entry->opaque = opaque;
151
152 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
153 }
154
155 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
156 {
157 /* Reset a single ARMCPRegInfo register */
158 ARMCPRegInfo *ri = value;
159 ARMCPU *cpu = opaque;
160
161 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
162 return;
163 }
164
165 if (ri->resetfn) {
166 ri->resetfn(&cpu->env, ri);
167 return;
168 }
169
170 /* A zero offset is never possible as it would be regs[0]
171 * so we use it to indicate that reset is being handled elsewhere.
172 * This is basically only used for fields in non-core coprocessors
173 * (like the pxa2xx ones).
174 */
175 if (!ri->fieldoffset) {
176 return;
177 }
178
179 if (cpreg_field_is_64bit(ri)) {
180 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
181 } else {
182 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
183 }
184 }
185
186 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
187 {
188 /* Purely an assertion check: we've already done reset once,
189 * so now check that running the reset for the cpreg doesn't
190 * change its value. This traps bugs where two different cpregs
191 * both try to reset the same state field but to different values.
192 */
193 ARMCPRegInfo *ri = value;
194 ARMCPU *cpu = opaque;
195 uint64_t oldvalue, newvalue;
196
197 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
198 return;
199 }
200
201 oldvalue = read_raw_cp_reg(&cpu->env, ri);
202 cp_reg_reset(key, value, opaque);
203 newvalue = read_raw_cp_reg(&cpu->env, ri);
204 assert(oldvalue == newvalue);
205 }
206
207 static void arm_cpu_reset_hold(Object *obj)
208 {
209 CPUState *s = CPU(obj);
210 ARMCPU *cpu = ARM_CPU(s);
211 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
212 CPUARMState *env = &cpu->env;
213
214 if (acc->parent_phases.hold) {
215 acc->parent_phases.hold(obj);
216 }
217
218 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
219
220 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
221 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
222
223 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
224 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
225 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
226 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
227
228 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
229
230 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
232 }
233
234 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
235 /* 64 bit CPUs always start in 64 bit mode */
236 env->aarch64 = true;
237 #if defined(CONFIG_USER_ONLY)
238 env->pstate = PSTATE_MODE_EL0t;
239 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
240 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
241 /* Enable all PAC keys. */
242 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
243 SCTLR_EnDA | SCTLR_EnDB);
244 /* Trap on btype=3 for PACIxSP. */
245 env->cp15.sctlr_el[1] |= SCTLR_BT0;
246 /* Trap on implementation defined registers. */
247 if (cpu_isar_feature(aa64_tidcp1, cpu)) {
248 env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
249 }
250 /* and to the FP/Neon instructions */
251 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
252 CPACR_EL1, FPEN, 3);
253 /* and to the SVE instructions, with default vector length */
254 if (cpu_isar_feature(aa64_sve, cpu)) {
255 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
256 CPACR_EL1, ZEN, 3);
257 env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
258 }
259 /* and for SME instructions, with default vector length, and TPIDR2 */
260 if (cpu_isar_feature(aa64_sme, cpu)) {
261 env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
262 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
263 CPACR_EL1, SMEN, 3);
264 env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
265 if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
266 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
267 SMCR, FA64, 1);
268 }
269 }
270 /*
271 * Enable 48-bit address space (TODO: take reserved_va into account).
272 * Enable TBI0 but not TBI1.
273 * Note that this must match useronly_clean_ptr.
274 */
275 env->cp15.tcr_el[1] = 5 | (1ULL << 37);
276
277 /* Enable MTE */
278 if (cpu_isar_feature(aa64_mte, cpu)) {
279 /* Enable tag access, but leave TCF0 as No Effect (0). */
280 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
281 /*
282 * Exclude all tags, so that tag 0 is always used.
283 * This corresponds to Linux current->thread.gcr_incl = 0.
284 *
285 * Set RRND, so that helper_irg() will generate a seed later.
286 * Here in cpu_reset(), the crypto subsystem has not yet been
287 * initialized.
288 */
289 env->cp15.gcr_el1 = 0x1ffff;
290 }
291 /*
292 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
293 * This is not yet exposed from the Linux kernel in any way.
294 */
295 env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
296 /* Disable access to Debug Communication Channel (DCC). */
297 env->cp15.mdscr_el1 |= 1 << 12;
298 #else
299 /* Reset into the highest available EL */
300 if (arm_feature(env, ARM_FEATURE_EL3)) {
301 env->pstate = PSTATE_MODE_EL3h;
302 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
303 env->pstate = PSTATE_MODE_EL2h;
304 } else {
305 env->pstate = PSTATE_MODE_EL1h;
306 }
307
308 /* Sample rvbar at reset. */
309 env->cp15.rvbar = cpu->rvbar_prop;
310 env->pc = env->cp15.rvbar;
311 #endif
312 } else {
313 #if defined(CONFIG_USER_ONLY)
314 /* Userspace expects access to cp10 and cp11 for FP/Neon */
315 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
316 CPACR, CP10, 3);
317 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
318 CPACR, CP11, 3);
319 #endif
320 if (arm_feature(env, ARM_FEATURE_V8)) {
321 env->cp15.rvbar = cpu->rvbar_prop;
322 env->regs[15] = cpu->rvbar_prop;
323 }
324 }
325
326 #if defined(CONFIG_USER_ONLY)
327 env->uncached_cpsr = ARM_CPU_MODE_USR;
328 /* For user mode we must enable access to coprocessors */
329 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
330 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
331 env->cp15.c15_cpar = 3;
332 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
333 env->cp15.c15_cpar = 1;
334 }
335 #else
336
337 /*
338 * If the highest available EL is EL2, AArch32 will start in Hyp
339 * mode; otherwise it starts in SVC. Note that if we start in
340 * AArch64 then these values in the uncached_cpsr will be ignored.
341 */
342 if (arm_feature(env, ARM_FEATURE_EL2) &&
343 !arm_feature(env, ARM_FEATURE_EL3)) {
344 env->uncached_cpsr = ARM_CPU_MODE_HYP;
345 } else {
346 env->uncached_cpsr = ARM_CPU_MODE_SVC;
347 }
348 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
349
350 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
351 * executing as AArch32 then check if highvecs are enabled and
352 * adjust the PC accordingly.
353 */
354 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
355 env->regs[15] = 0xFFFF0000;
356 }
357
358 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
359 #endif
360
361 if (arm_feature(env, ARM_FEATURE_M)) {
362 #ifndef CONFIG_USER_ONLY
363 uint32_t initial_msp; /* Loaded from 0x0 */
364 uint32_t initial_pc; /* Loaded from 0x4 */
365 uint8_t *rom;
366 uint32_t vecbase;
367 #endif
368
369 if (cpu_isar_feature(aa32_lob, cpu)) {
370 /*
371 * LTPSIZE is constant 4 if MVE not implemented, and resets
372 * to an UNKNOWN value if MVE is implemented. We choose to
373 * always reset to 4.
374 */
375 env->v7m.ltpsize = 4;
376 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
377 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
378 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
379 }
380
381 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
382 env->v7m.secure = true;
383 } else {
384 /* This bit resets to 0 if security is supported, but 1 if
385 * it is not. The bit is not present in v7M, but we set it
386 * here so we can avoid having to make checks on it conditional
387 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
388 */
389 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
390 /*
391 * Set NSACR to indicate "NS access permitted to everything";
392 * this avoids having to have all the tests of it being
393 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
394 * v8.1M the guest-visible value of NSACR in a CPU without the
395 * Security Extension is 0xcff.
396 */
397 env->v7m.nsacr = 0xcff;
398 }
399
400 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
401 * that it resets to 1, so QEMU always does that rather than making
402 * it dependent on CPU model. In v8M it is RES1.
403 */
404 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
405 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
406 if (arm_feature(env, ARM_FEATURE_V8)) {
407 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
408 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
409 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
410 }
411 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
412 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
413 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
414 }
415
416 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
417 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
418 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
419 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
420 }
421
422 #ifndef CONFIG_USER_ONLY
423 /* Unlike A/R profile, M profile defines the reset LR value */
424 env->regs[14] = 0xffffffff;
425
426 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
427 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
428
429 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
430 vecbase = env->v7m.vecbase[env->v7m.secure];
431 rom = rom_ptr_for_as(s->as, vecbase, 8);
432 if (rom) {
433 /* Address zero is covered by ROM which hasn't yet been
434 * copied into physical memory.
435 */
436 initial_msp = ldl_p(rom);
437 initial_pc = ldl_p(rom + 4);
438 } else {
439 /* Address zero not covered by a ROM blob, or the ROM blob
440 * is in non-modifiable memory and this is a second reset after
441 * it got copied into memory. In the latter case, rom_ptr
442 * will return a NULL pointer and we should use ldl_phys instead.
443 */
444 initial_msp = ldl_phys(s->as, vecbase);
445 initial_pc = ldl_phys(s->as, vecbase + 4);
446 }
447
448 qemu_log_mask(CPU_LOG_INT,
449 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
450 initial_msp, initial_pc);
451
452 env->regs[13] = initial_msp & 0xFFFFFFFC;
453 env->regs[15] = initial_pc & ~1;
454 env->thumb = initial_pc & 1;
455 #else
456 /*
457 * For user mode we run non-secure and with access to the FPU.
458 * The FPU context is active (ie does not need further setup)
459 * and is owned by non-secure.
460 */
461 env->v7m.secure = false;
462 env->v7m.nsacr = 0xcff;
463 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
464 env->v7m.fpccr[M_REG_S] &=
465 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
466 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
467 #endif
468 }
469
470 /* M profile requires that reset clears the exclusive monitor;
471 * A profile does not, but clearing it makes more sense than having it
472 * set with an exclusive access on address zero.
473 */
474 arm_clear_exclusive(env);
475
476 if (arm_feature(env, ARM_FEATURE_PMSA)) {
477 if (cpu->pmsav7_dregion > 0) {
478 if (arm_feature(env, ARM_FEATURE_V8)) {
479 memset(env->pmsav8.rbar[M_REG_NS], 0,
480 sizeof(*env->pmsav8.rbar[M_REG_NS])
481 * cpu->pmsav7_dregion);
482 memset(env->pmsav8.rlar[M_REG_NS], 0,
483 sizeof(*env->pmsav8.rlar[M_REG_NS])
484 * cpu->pmsav7_dregion);
485 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
486 memset(env->pmsav8.rbar[M_REG_S], 0,
487 sizeof(*env->pmsav8.rbar[M_REG_S])
488 * cpu->pmsav7_dregion);
489 memset(env->pmsav8.rlar[M_REG_S], 0,
490 sizeof(*env->pmsav8.rlar[M_REG_S])
491 * cpu->pmsav7_dregion);
492 }
493 } else if (arm_feature(env, ARM_FEATURE_V7)) {
494 memset(env->pmsav7.drbar, 0,
495 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
496 memset(env->pmsav7.drsr, 0,
497 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
498 memset(env->pmsav7.dracr, 0,
499 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
500 }
501 }
502
503 if (cpu->pmsav8r_hdregion > 0) {
504 memset(env->pmsav8.hprbar, 0,
505 sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
506 memset(env->pmsav8.hprlar, 0,
507 sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
508 }
509
510 env->pmsav7.rnr[M_REG_NS] = 0;
511 env->pmsav7.rnr[M_REG_S] = 0;
512 env->pmsav8.mair0[M_REG_NS] = 0;
513 env->pmsav8.mair0[M_REG_S] = 0;
514 env->pmsav8.mair1[M_REG_NS] = 0;
515 env->pmsav8.mair1[M_REG_S] = 0;
516 }
517
518 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
519 if (cpu->sau_sregion > 0) {
520 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
521 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
522 }
523 env->sau.rnr = 0;
524 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
525 * the Cortex-M33 does.
526 */
527 env->sau.ctrl = 0;
528 }
529
530 set_flush_to_zero(1, &env->vfp.standard_fp_status);
531 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
532 set_default_nan_mode(1, &env->vfp.standard_fp_status);
533 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
534 set_float_detect_tininess(float_tininess_before_rounding,
535 &env->vfp.fp_status);
536 set_float_detect_tininess(float_tininess_before_rounding,
537 &env->vfp.standard_fp_status);
538 set_float_detect_tininess(float_tininess_before_rounding,
539 &env->vfp.fp_status_f16);
540 set_float_detect_tininess(float_tininess_before_rounding,
541 &env->vfp.standard_fp_status_f16);
542 #ifndef CONFIG_USER_ONLY
543 if (kvm_enabled()) {
544 kvm_arm_reset_vcpu(cpu);
545 }
546 #endif
547
548 if (tcg_enabled()) {
549 hw_breakpoint_update_all(cpu);
550 hw_watchpoint_update_all(cpu);
551
552 arm_rebuild_hflags(env);
553 }
554 }
555
556 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
557 {
558 ARMCPU *cpu = ARM_CPU(cpustate);
559 CPUARMState *env = &cpu->env;
560 bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
561 bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
562
563 /*
564 * Check we have the EL we're aiming for. If that is the
565 * highest implemented EL, then cpu_reset has already done
566 * all the work.
567 */
568 switch (target_el) {
569 case 3:
570 assert(have_el3);
571 return;
572 case 2:
573 assert(have_el2);
574 if (!have_el3) {
575 return;
576 }
577 break;
578 case 1:
579 if (!have_el3 && !have_el2) {
580 return;
581 }
582 break;
583 default:
584 g_assert_not_reached();
585 }
586
587 if (have_el3) {
588 /*
589 * Set the EL3 state so code can run at EL2. This should match
590 * the requirements set by Linux in its booting spec.
591 */
592 if (env->aarch64) {
593 env->cp15.scr_el3 |= SCR_RW;
594 if (cpu_isar_feature(aa64_pauth, cpu)) {
595 env->cp15.scr_el3 |= SCR_API | SCR_APK;
596 }
597 if (cpu_isar_feature(aa64_mte, cpu)) {
598 env->cp15.scr_el3 |= SCR_ATA;
599 }
600 if (cpu_isar_feature(aa64_sve, cpu)) {
601 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
602 env->vfp.zcr_el[3] = 0xf;
603 }
604 if (cpu_isar_feature(aa64_sme, cpu)) {
605 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
606 env->cp15.scr_el3 |= SCR_ENTP2;
607 env->vfp.smcr_el[3] = 0xf;
608 }
609 if (cpu_isar_feature(aa64_hcx, cpu)) {
610 env->cp15.scr_el3 |= SCR_HXEN;
611 }
612 if (cpu_isar_feature(aa64_fgt, cpu)) {
613 env->cp15.scr_el3 |= SCR_FGTEN;
614 }
615 }
616
617 if (target_el == 2) {
618 /* If the guest is at EL2 then Linux expects the HVC insn to work */
619 env->cp15.scr_el3 |= SCR_HCE;
620 }
621
622 /* Put CPU into non-secure state */
623 env->cp15.scr_el3 |= SCR_NS;
624 /* Set NSACR.{CP11,CP10} so NS can access the FPU */
625 env->cp15.nsacr |= 3 << 10;
626 }
627
628 if (have_el2 && target_el < 2) {
629 /* Set EL2 state so code can run at EL1. */
630 if (env->aarch64) {
631 env->cp15.hcr_el2 |= HCR_RW;
632 }
633 }
634
635 /* Set the CPU to the desired state */
636 if (env->aarch64) {
637 env->pstate = aarch64_pstate_mode(target_el, true);
638 } else {
639 static const uint32_t mode_for_el[] = {
640 0,
641 ARM_CPU_MODE_SVC,
642 ARM_CPU_MODE_HYP,
643 ARM_CPU_MODE_SVC,
644 };
645
646 cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
647 }
648 }
649
650
651 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
652
653 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
654 unsigned int target_el,
655 unsigned int cur_el, bool secure,
656 uint64_t hcr_el2)
657 {
658 CPUARMState *env = cpu_env(cs);
659 bool pstate_unmasked;
660 bool unmasked = false;
661
662 /*
663 * Don't take exceptions if they target a lower EL.
664 * This check should catch any exceptions that would not be taken
665 * but left pending.
666 */
667 if (cur_el > target_el) {
668 return false;
669 }
670
671 switch (excp_idx) {
672 case EXCP_FIQ:
673 pstate_unmasked = !(env->daif & PSTATE_F);
674 break;
675
676 case EXCP_IRQ:
677 pstate_unmasked = !(env->daif & PSTATE_I);
678 break;
679
680 case EXCP_VFIQ:
681 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
682 /* VFIQs are only taken when hypervized. */
683 return false;
684 }
685 return !(env->daif & PSTATE_F);
686 case EXCP_VIRQ:
687 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
688 /* VIRQs are only taken when hypervized. */
689 return false;
690 }
691 return !(env->daif & PSTATE_I);
692 case EXCP_VSERR:
693 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
694 /* VIRQs are only taken when hypervized. */
695 return false;
696 }
697 return !(env->daif & PSTATE_A);
698 default:
699 g_assert_not_reached();
700 }
701
702 /*
703 * Use the target EL, current execution state and SCR/HCR settings to
704 * determine whether the corresponding CPSR bit is used to mask the
705 * interrupt.
706 */
707 if ((target_el > cur_el) && (target_el != 1)) {
708 /* Exceptions targeting a higher EL may not be maskable */
709 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
710 switch (target_el) {
711 case 2:
712 /*
713 * According to ARM DDI 0487H.a, an interrupt can be masked
714 * when HCR_E2H and HCR_TGE are both set regardless of the
715 * current Security state. Note that we need to revisit this
716 * part again once we need to support NMI.
717 */
718 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
719 unmasked = true;
720 }
721 break;
722 case 3:
723 /* Interrupt cannot be masked when the target EL is 3 */
724 unmasked = true;
725 break;
726 default:
727 g_assert_not_reached();
728 }
729 } else {
730 /*
731 * The old 32-bit-only environment has a more complicated
732 * masking setup. HCR and SCR bits not only affect interrupt
733 * routing but also change the behaviour of masking.
734 */
735 bool hcr, scr;
736
737 switch (excp_idx) {
738 case EXCP_FIQ:
739 /*
740 * If FIQs are routed to EL3 or EL2 then there are cases where
741 * we override the CPSR.F in determining if the exception is
742 * masked or not. If neither of these are set then we fall back
743 * to the CPSR.F setting otherwise we further assess the state
744 * below.
745 */
746 hcr = hcr_el2 & HCR_FMO;
747 scr = (env->cp15.scr_el3 & SCR_FIQ);
748
749 /*
750 * When EL3 is 32-bit, the SCR.FW bit controls whether the
751 * CPSR.F bit masks FIQ interrupts when taken in non-secure
752 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
753 * when non-secure but only when FIQs are only routed to EL3.
754 */
755 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
756 break;
757 case EXCP_IRQ:
758 /*
759 * When EL3 execution state is 32-bit, if HCR.IMO is set then
760 * we may override the CPSR.I masking when in non-secure state.
761 * The SCR.IRQ setting has already been taken into consideration
762 * when setting the target EL, so it does not have a further
763 * affect here.
764 */
765 hcr = hcr_el2 & HCR_IMO;
766 scr = false;
767 break;
768 default:
769 g_assert_not_reached();
770 }
771
772 if ((scr || hcr) && !secure) {
773 unmasked = true;
774 }
775 }
776 }
777
778 /*
779 * The PSTATE bits only mask the interrupt if we have not overridden the
780 * ability above.
781 */
782 return unmasked || pstate_unmasked;
783 }
784
785 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
786 {
787 CPUClass *cc = CPU_GET_CLASS(cs);
788 CPUARMState *env = cpu_env(cs);
789 uint32_t cur_el = arm_current_el(env);
790 bool secure = arm_is_secure(env);
791 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
792 uint32_t target_el;
793 uint32_t excp_idx;
794
795 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
796
797 if (interrupt_request & CPU_INTERRUPT_FIQ) {
798 excp_idx = EXCP_FIQ;
799 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
800 if (arm_excp_unmasked(cs, excp_idx, target_el,
801 cur_el, secure, hcr_el2)) {
802 goto found;
803 }
804 }
805 if (interrupt_request & CPU_INTERRUPT_HARD) {
806 excp_idx = EXCP_IRQ;
807 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
808 if (arm_excp_unmasked(cs, excp_idx, target_el,
809 cur_el, secure, hcr_el2)) {
810 goto found;
811 }
812 }
813 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
814 excp_idx = EXCP_VIRQ;
815 target_el = 1;
816 if (arm_excp_unmasked(cs, excp_idx, target_el,
817 cur_el, secure, hcr_el2)) {
818 goto found;
819 }
820 }
821 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
822 excp_idx = EXCP_VFIQ;
823 target_el = 1;
824 if (arm_excp_unmasked(cs, excp_idx, target_el,
825 cur_el, secure, hcr_el2)) {
826 goto found;
827 }
828 }
829 if (interrupt_request & CPU_INTERRUPT_VSERR) {
830 excp_idx = EXCP_VSERR;
831 target_el = 1;
832 if (arm_excp_unmasked(cs, excp_idx, target_el,
833 cur_el, secure, hcr_el2)) {
834 /* Taking a virtual abort clears HCR_EL2.VSE */
835 env->cp15.hcr_el2 &= ~HCR_VSE;
836 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
837 goto found;
838 }
839 }
840 return false;
841
842 found:
843 cs->exception_index = excp_idx;
844 env->exception.target_el = target_el;
845 cc->tcg_ops->do_interrupt(cs);
846 return true;
847 }
848
849 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
850
851 void arm_cpu_update_virq(ARMCPU *cpu)
852 {
853 /*
854 * Update the interrupt level for VIRQ, which is the logical OR of
855 * the HCR_EL2.VI bit and the input line level from the GIC.
856 */
857 CPUARMState *env = &cpu->env;
858 CPUState *cs = CPU(cpu);
859
860 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
861 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
862
863 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
864 if (new_state) {
865 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
866 } else {
867 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
868 }
869 }
870 }
871
872 void arm_cpu_update_vfiq(ARMCPU *cpu)
873 {
874 /*
875 * Update the interrupt level for VFIQ, which is the logical OR of
876 * the HCR_EL2.VF bit and the input line level from the GIC.
877 */
878 CPUARMState *env = &cpu->env;
879 CPUState *cs = CPU(cpu);
880
881 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
882 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
883
884 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
885 if (new_state) {
886 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
887 } else {
888 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
889 }
890 }
891 }
892
893 void arm_cpu_update_vserr(ARMCPU *cpu)
894 {
895 /*
896 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
897 */
898 CPUARMState *env = &cpu->env;
899 CPUState *cs = CPU(cpu);
900
901 bool new_state = env->cp15.hcr_el2 & HCR_VSE;
902
903 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
904 if (new_state) {
905 cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
906 } else {
907 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
908 }
909 }
910 }
911
912 #ifndef CONFIG_USER_ONLY
913 static void arm_cpu_set_irq(void *opaque, int irq, int level)
914 {
915 ARMCPU *cpu = opaque;
916 CPUARMState *env = &cpu->env;
917 CPUState *cs = CPU(cpu);
918 static const int mask[] = {
919 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
920 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
921 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
922 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
923 };
924
925 if (!arm_feature(env, ARM_FEATURE_EL2) &&
926 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
927 /*
928 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
929 * have EL2 support we don't care. (Unless the guest is doing something
930 * silly this will only be calls saying "level is still 0".)
931 */
932 return;
933 }
934
935 if (level) {
936 env->irq_line_state |= mask[irq];
937 } else {
938 env->irq_line_state &= ~mask[irq];
939 }
940
941 switch (irq) {
942 case ARM_CPU_VIRQ:
943 arm_cpu_update_virq(cpu);
944 break;
945 case ARM_CPU_VFIQ:
946 arm_cpu_update_vfiq(cpu);
947 break;
948 case ARM_CPU_IRQ:
949 case ARM_CPU_FIQ:
950 if (level) {
951 cpu_interrupt(cs, mask[irq]);
952 } else {
953 cpu_reset_interrupt(cs, mask[irq]);
954 }
955 break;
956 default:
957 g_assert_not_reached();
958 }
959 }
960
961 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
962 {
963 #ifdef CONFIG_KVM
964 ARMCPU *cpu = opaque;
965 CPUARMState *env = &cpu->env;
966 CPUState *cs = CPU(cpu);
967 uint32_t linestate_bit;
968 int irq_id;
969
970 switch (irq) {
971 case ARM_CPU_IRQ:
972 irq_id = KVM_ARM_IRQ_CPU_IRQ;
973 linestate_bit = CPU_INTERRUPT_HARD;
974 break;
975 case ARM_CPU_FIQ:
976 irq_id = KVM_ARM_IRQ_CPU_FIQ;
977 linestate_bit = CPU_INTERRUPT_FIQ;
978 break;
979 default:
980 g_assert_not_reached();
981 }
982
983 if (level) {
984 env->irq_line_state |= linestate_bit;
985 } else {
986 env->irq_line_state &= ~linestate_bit;
987 }
988 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
989 #endif
990 }
991
992 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
993 {
994 ARMCPU *cpu = ARM_CPU(cs);
995 CPUARMState *env = &cpu->env;
996
997 cpu_synchronize_state(cs);
998 return arm_cpu_data_is_big_endian(env);
999 }
1000
1001 #endif
1002
1003 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1004 {
1005 ARMCPU *ac = ARM_CPU(cpu);
1006 CPUARMState *env = &ac->env;
1007 bool sctlr_b;
1008
1009 if (is_a64(env)) {
1010 info->cap_arch = CS_ARCH_ARM64;
1011 info->cap_insn_unit = 4;
1012 info->cap_insn_split = 4;
1013 } else {
1014 int cap_mode;
1015 if (env->thumb) {
1016 info->cap_insn_unit = 2;
1017 info->cap_insn_split = 4;
1018 cap_mode = CS_MODE_THUMB;
1019 } else {
1020 info->cap_insn_unit = 4;
1021 info->cap_insn_split = 4;
1022 cap_mode = CS_MODE_ARM;
1023 }
1024 if (arm_feature(env, ARM_FEATURE_V8)) {
1025 cap_mode |= CS_MODE_V8;
1026 }
1027 if (arm_feature(env, ARM_FEATURE_M)) {
1028 cap_mode |= CS_MODE_MCLASS;
1029 }
1030 info->cap_arch = CS_ARCH_ARM;
1031 info->cap_mode = cap_mode;
1032 }
1033
1034 sctlr_b = arm_sctlr_b(env);
1035 if (bswap_code(sctlr_b)) {
1036 #if TARGET_BIG_ENDIAN
1037 info->endian = BFD_ENDIAN_LITTLE;
1038 #else
1039 info->endian = BFD_ENDIAN_BIG;
1040 #endif
1041 }
1042 info->flags &= ~INSN_ARM_BE32;
1043 #ifndef CONFIG_USER_ONLY
1044 if (sctlr_b) {
1045 info->flags |= INSN_ARM_BE32;
1046 }
1047 #endif
1048 }
1049
1050 #ifdef TARGET_AARCH64
1051
1052 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1053 {
1054 ARMCPU *cpu = ARM_CPU(cs);
1055 CPUARMState *env = &cpu->env;
1056 uint32_t psr = pstate_read(env);
1057 int i, j;
1058 int el = arm_current_el(env);
1059 const char *ns_status;
1060 bool sve;
1061
1062 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1063 for (i = 0; i < 32; i++) {
1064 if (i == 31) {
1065 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1066 } else {
1067 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1068 (i + 2) % 3 ? " " : "\n");
1069 }
1070 }
1071
1072 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1073 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1074 } else {
1075 ns_status = "";
1076 }
1077 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1078 psr,
1079 psr & PSTATE_N ? 'N' : '-',
1080 psr & PSTATE_Z ? 'Z' : '-',
1081 psr & PSTATE_C ? 'C' : '-',
1082 psr & PSTATE_V ? 'V' : '-',
1083 ns_status,
1084 el,
1085 psr & PSTATE_SP ? 'h' : 't');
1086
1087 if (cpu_isar_feature(aa64_sme, cpu)) {
1088 qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c",
1089 env->svcr,
1090 (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1091 (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1092 }
1093 if (cpu_isar_feature(aa64_bti, cpu)) {
1094 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1095 }
1096 if (!(flags & CPU_DUMP_FPU)) {
1097 qemu_fprintf(f, "\n");
1098 return;
1099 }
1100 if (fp_exception_el(env, el) != 0) {
1101 qemu_fprintf(f, " FPU disabled\n");
1102 return;
1103 }
1104 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
1105 vfp_get_fpcr(env), vfp_get_fpsr(env));
1106
1107 if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1108 sve = sme_exception_el(env, el) == 0;
1109 } else if (cpu_isar_feature(aa64_sve, cpu)) {
1110 sve = sve_exception_el(env, el) == 0;
1111 } else {
1112 sve = false;
1113 }
1114
1115 if (sve) {
1116 int zcr_len = sve_vqm1_for_el(env, el);
1117
1118 for (i = 0; i <= FFR_PRED_NUM; i++) {
1119 bool eol;
1120 if (i == FFR_PRED_NUM) {
1121 qemu_fprintf(f, "FFR=");
1122 /* It's last, so end the line. */
1123 eol = true;
1124 } else {
1125 qemu_fprintf(f, "P%02d=", i);
1126 switch (zcr_len) {
1127 case 0:
1128 eol = i % 8 == 7;
1129 break;
1130 case 1:
1131 eol = i % 6 == 5;
1132 break;
1133 case 2:
1134 case 3:
1135 eol = i % 3 == 2;
1136 break;
1137 default:
1138 /* More than one quadword per predicate. */
1139 eol = true;
1140 break;
1141 }
1142 }
1143 for (j = zcr_len / 4; j >= 0; j--) {
1144 int digits;
1145 if (j * 4 + 4 <= zcr_len + 1) {
1146 digits = 16;
1147 } else {
1148 digits = (zcr_len % 4 + 1) * 4;
1149 }
1150 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1151 env->vfp.pregs[i].p[j],
1152 j ? ":" : eol ? "\n" : " ");
1153 }
1154 }
1155
1156 if (zcr_len == 0) {
1157 /*
1158 * With vl=16, there are only 37 columns per register,
1159 * so output two registers per line.
1160 */
1161 for (i = 0; i < 32; i++) {
1162 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1163 i, env->vfp.zregs[i].d[1],
1164 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1165 }
1166 } else {
1167 for (i = 0; i < 32; i++) {
1168 qemu_fprintf(f, "Z%02d=", i);
1169 for (j = zcr_len; j >= 0; j--) {
1170 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1171 env->vfp.zregs[i].d[j * 2 + 1],
1172 env->vfp.zregs[i].d[j * 2 + 0],
1173 j ? ":" : "\n");
1174 }
1175 }
1176 }
1177 } else {
1178 for (i = 0; i < 32; i++) {
1179 uint64_t *q = aa64_vfp_qreg(env, i);
1180 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1181 i, q[1], q[0], (i & 1 ? "\n" : " "));
1182 }
1183 }
1184
1185 if (cpu_isar_feature(aa64_sme, cpu) &&
1186 FIELD_EX64(env->svcr, SVCR, ZA) &&
1187 sme_exception_el(env, el) == 0) {
1188 int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1189 int svl = (zcr_len + 1) * 16;
1190 int svl_lg10 = svl < 100 ? 2 : 3;
1191
1192 for (i = 0; i < svl; i++) {
1193 qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1194 for (j = zcr_len; j >= 0; --j) {
1195 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1196 env->zarray[i].d[2 * j + 1],
1197 env->zarray[i].d[2 * j],
1198 j ? ':' : '\n');
1199 }
1200 }
1201 }
1202 }
1203
1204 #else
1205
1206 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1207 {
1208 g_assert_not_reached();
1209 }
1210
1211 #endif
1212
1213 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1214 {
1215 ARMCPU *cpu = ARM_CPU(cs);
1216 CPUARMState *env = &cpu->env;
1217 int i;
1218
1219 if (is_a64(env)) {
1220 aarch64_cpu_dump_state(cs, f, flags);
1221 return;
1222 }
1223
1224 for (i = 0; i < 16; i++) {
1225 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1226 if ((i % 4) == 3) {
1227 qemu_fprintf(f, "\n");
1228 } else {
1229 qemu_fprintf(f, " ");
1230 }
1231 }
1232
1233 if (arm_feature(env, ARM_FEATURE_M)) {
1234 uint32_t xpsr = xpsr_read(env);
1235 const char *mode;
1236 const char *ns_status = "";
1237
1238 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1239 ns_status = env->v7m.secure ? "S " : "NS ";
1240 }
1241
1242 if (xpsr & XPSR_EXCP) {
1243 mode = "handler";
1244 } else {
1245 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1246 mode = "unpriv-thread";
1247 } else {
1248 mode = "priv-thread";
1249 }
1250 }
1251
1252 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1253 xpsr,
1254 xpsr & XPSR_N ? 'N' : '-',
1255 xpsr & XPSR_Z ? 'Z' : '-',
1256 xpsr & XPSR_C ? 'C' : '-',
1257 xpsr & XPSR_V ? 'V' : '-',
1258 xpsr & XPSR_T ? 'T' : 'A',
1259 ns_status,
1260 mode);
1261 } else {
1262 uint32_t psr = cpsr_read(env);
1263 const char *ns_status = "";
1264
1265 if (arm_feature(env, ARM_FEATURE_EL3) &&
1266 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1267 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1268 }
1269
1270 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1271 psr,
1272 psr & CPSR_N ? 'N' : '-',
1273 psr & CPSR_Z ? 'Z' : '-',
1274 psr & CPSR_C ? 'C' : '-',
1275 psr & CPSR_V ? 'V' : '-',
1276 psr & CPSR_T ? 'T' : 'A',
1277 ns_status,
1278 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1279 }
1280
1281 if (flags & CPU_DUMP_FPU) {
1282 int numvfpregs = 0;
1283 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1284 numvfpregs = 32;
1285 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1286 numvfpregs = 16;
1287 }
1288 for (i = 0; i < numvfpregs; i++) {
1289 uint64_t v = *aa32_vfp_dreg(env, i);
1290 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1291 i * 2, (uint32_t)v,
1292 i * 2 + 1, (uint32_t)(v >> 32),
1293 i, v);
1294 }
1295 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1296 if (cpu_isar_feature(aa32_mve, cpu)) {
1297 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1298 }
1299 }
1300 }
1301
1302 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1303 {
1304 uint32_t Aff1 = idx / clustersz;
1305 uint32_t Aff0 = idx % clustersz;
1306 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1307 }
1308
1309 static void arm_cpu_initfn(Object *obj)
1310 {
1311 ARMCPU *cpu = ARM_CPU(obj);
1312
1313 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1314 NULL, g_free);
1315
1316 QLIST_INIT(&cpu->pre_el_change_hooks);
1317 QLIST_INIT(&cpu->el_change_hooks);
1318
1319 #ifdef CONFIG_USER_ONLY
1320 # ifdef TARGET_AARCH64
1321 /*
1322 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1323 * These values were chosen to fit within the default signal frame.
1324 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1325 * and our corresponding cpu property.
1326 */
1327 cpu->sve_default_vq = 4;
1328 cpu->sme_default_vq = 2;
1329 # endif
1330 #else
1331 /* Our inbound IRQ and FIQ lines */
1332 if (kvm_enabled()) {
1333 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1334 * the same interface as non-KVM CPUs.
1335 */
1336 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1337 } else {
1338 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1339 }
1340
1341 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1342 ARRAY_SIZE(cpu->gt_timer_outputs));
1343
1344 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1345 "gicv3-maintenance-interrupt", 1);
1346 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1347 "pmu-interrupt", 1);
1348 #endif
1349
1350 /* DTB consumers generally don't in fact care what the 'compatible'
1351 * string is, so always provide some string and trust that a hypothetical
1352 * picky DTB consumer will also provide a helpful error message.
1353 */
1354 cpu->dtb_compatible = "qemu,unknown";
1355 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1356 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1357
1358 if (tcg_enabled() || hvf_enabled()) {
1359 /* TCG and HVF implement PSCI 1.1 */
1360 cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1361 }
1362 }
1363
1364 static Property arm_cpu_gt_cntfrq_property =
1365 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1366 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1367
1368 static Property arm_cpu_reset_cbar_property =
1369 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1370
1371 static Property arm_cpu_reset_hivecs_property =
1372 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1373
1374 #ifndef CONFIG_USER_ONLY
1375 static Property arm_cpu_has_el2_property =
1376 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1377
1378 static Property arm_cpu_has_el3_property =
1379 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1380 #endif
1381
1382 static Property arm_cpu_cfgend_property =
1383 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1384
1385 static Property arm_cpu_has_vfp_property =
1386 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1387
1388 static Property arm_cpu_has_vfp_d32_property =
1389 DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1390
1391 static Property arm_cpu_has_neon_property =
1392 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1393
1394 static Property arm_cpu_has_dsp_property =
1395 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1396
1397 static Property arm_cpu_has_mpu_property =
1398 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1399
1400 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1401 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1402 * the right value for that particular CPU type, and we don't want
1403 * to override that with an incorrect constant value.
1404 */
1405 static Property arm_cpu_pmsav7_dregion_property =
1406 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1407 pmsav7_dregion,
1408 qdev_prop_uint32, uint32_t);
1409
1410 static bool arm_get_pmu(Object *obj, Error **errp)
1411 {
1412 ARMCPU *cpu = ARM_CPU(obj);
1413
1414 return cpu->has_pmu;
1415 }
1416
1417 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1418 {
1419 ARMCPU *cpu = ARM_CPU(obj);
1420
1421 if (value) {
1422 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1423 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1424 return;
1425 }
1426 set_feature(&cpu->env, ARM_FEATURE_PMU);
1427 } else {
1428 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1429 }
1430 cpu->has_pmu = value;
1431 }
1432
1433 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1434 {
1435 /*
1436 * The exact approach to calculating guest ticks is:
1437 *
1438 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1439 * NANOSECONDS_PER_SECOND);
1440 *
1441 * We don't do that. Rather we intentionally use integer division
1442 * truncation below and in the caller for the conversion of host monotonic
1443 * time to guest ticks to provide the exact inverse for the semantics of
1444 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1445 * it loses precision when representing frequencies where
1446 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1447 * provide an exact inverse leads to scheduling timers with negative
1448 * periods, which in turn leads to sticky behaviour in the guest.
1449 *
1450 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1451 * cannot become zero.
1452 */
1453 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1454 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1455 }
1456
1457 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1458 {
1459 CPUARMState *env = &cpu->env;
1460 bool no_aa32 = false;
1461
1462 /*
1463 * Some features automatically imply others: set the feature
1464 * bits explicitly for these cases.
1465 */
1466
1467 if (arm_feature(env, ARM_FEATURE_M)) {
1468 set_feature(env, ARM_FEATURE_PMSA);
1469 }
1470
1471 if (arm_feature(env, ARM_FEATURE_V8)) {
1472 if (arm_feature(env, ARM_FEATURE_M)) {
1473 set_feature(env, ARM_FEATURE_V7);
1474 } else {
1475 set_feature(env, ARM_FEATURE_V7VE);
1476 }
1477 }
1478
1479 /*
1480 * There exist AArch64 cpus without AArch32 support. When KVM
1481 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1482 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1483 * As a general principle, we also do not make ID register
1484 * consistency checks anywhere unless using TCG, because only
1485 * for TCG would a consistency-check failure be a QEMU bug.
1486 */
1487 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1488 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1489 }
1490
1491 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1492 /*
1493 * v7 Virtualization Extensions. In real hardware this implies
1494 * EL2 and also the presence of the Security Extensions.
1495 * For QEMU, for backwards-compatibility we implement some
1496 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1497 * include the various other features that V7VE implies.
1498 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1499 * Security Extensions is ARM_FEATURE_EL3.
1500 */
1501 assert(!tcg_enabled() || no_aa32 ||
1502 cpu_isar_feature(aa32_arm_div, cpu));
1503 set_feature(env, ARM_FEATURE_LPAE);
1504 set_feature(env, ARM_FEATURE_V7);
1505 }
1506 if (arm_feature(env, ARM_FEATURE_V7)) {
1507 set_feature(env, ARM_FEATURE_VAPA);
1508 set_feature(env, ARM_FEATURE_THUMB2);
1509 set_feature(env, ARM_FEATURE_MPIDR);
1510 if (!arm_feature(env, ARM_FEATURE_M)) {
1511 set_feature(env, ARM_FEATURE_V6K);
1512 } else {
1513 set_feature(env, ARM_FEATURE_V6);
1514 }
1515
1516 /*
1517 * Always define VBAR for V7 CPUs even if it doesn't exist in
1518 * non-EL3 configs. This is needed by some legacy boards.
1519 */
1520 set_feature(env, ARM_FEATURE_VBAR);
1521 }
1522 if (arm_feature(env, ARM_FEATURE_V6K)) {
1523 set_feature(env, ARM_FEATURE_V6);
1524 set_feature(env, ARM_FEATURE_MVFR);
1525 }
1526 if (arm_feature(env, ARM_FEATURE_V6)) {
1527 set_feature(env, ARM_FEATURE_V5);
1528 if (!arm_feature(env, ARM_FEATURE_M)) {
1529 assert(!tcg_enabled() || no_aa32 ||
1530 cpu_isar_feature(aa32_jazelle, cpu));
1531 set_feature(env, ARM_FEATURE_AUXCR);
1532 }
1533 }
1534 if (arm_feature(env, ARM_FEATURE_V5)) {
1535 set_feature(env, ARM_FEATURE_V4T);
1536 }
1537 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1538 set_feature(env, ARM_FEATURE_V7MP);
1539 }
1540 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1541 set_feature(env, ARM_FEATURE_CBAR);
1542 }
1543 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1544 !arm_feature(env, ARM_FEATURE_M)) {
1545 set_feature(env, ARM_FEATURE_THUMB_DSP);
1546 }
1547 }
1548
1549 void arm_cpu_post_init(Object *obj)
1550 {
1551 ARMCPU *cpu = ARM_CPU(obj);
1552
1553 /*
1554 * Some features imply others. Figure this out now, because we
1555 * are going to look at the feature bits in deciding which
1556 * properties to add.
1557 */
1558 arm_cpu_propagate_feature_implications(cpu);
1559
1560 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1561 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1562 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1563 }
1564
1565 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1566 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1567 }
1568
1569 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1570 object_property_add_uint64_ptr(obj, "rvbar",
1571 &cpu->rvbar_prop,
1572 OBJ_PROP_FLAG_READWRITE);
1573 }
1574
1575 #ifndef CONFIG_USER_ONLY
1576 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1577 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1578 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1579 */
1580 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1581
1582 object_property_add_link(obj, "secure-memory",
1583 TYPE_MEMORY_REGION,
1584 (Object **)&cpu->secure_memory,
1585 qdev_prop_allow_set_link_before_realize,
1586 OBJ_PROP_LINK_STRONG);
1587 }
1588
1589 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1590 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1591 }
1592 #endif
1593
1594 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1595 cpu->has_pmu = true;
1596 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1597 }
1598
1599 /*
1600 * Allow user to turn off VFP and Neon support, but only for TCG --
1601 * KVM does not currently allow us to lie to the guest about its
1602 * ID/feature registers, so the guest always sees what the host has.
1603 */
1604 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1605 if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1606 cpu->has_vfp = true;
1607 cpu->has_vfp_d32 = true;
1608 if (tcg_enabled() || qtest_enabled()) {
1609 qdev_property_add_static(DEVICE(obj),
1610 &arm_cpu_has_vfp_property);
1611 }
1612 }
1613 } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1614 cpu->has_vfp = true;
1615 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1616 cpu->has_vfp_d32 = true;
1617 /*
1618 * The permitted values of the SIMDReg bits [3:0] on
1619 * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1620 * make sure that has_vfp_d32 can not be set to false.
1621 */
1622 if ((tcg_enabled() || qtest_enabled())
1623 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1624 && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1625 qdev_property_add_static(DEVICE(obj),
1626 &arm_cpu_has_vfp_d32_property);
1627 }
1628 }
1629 }
1630
1631 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1632 cpu->has_neon = true;
1633 if (!kvm_enabled()) {
1634 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1635 }
1636 }
1637
1638 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1639 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1640 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1641 }
1642
1643 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1644 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1645 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1646 qdev_property_add_static(DEVICE(obj),
1647 &arm_cpu_pmsav7_dregion_property);
1648 }
1649 }
1650
1651 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1652 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1653 qdev_prop_allow_set_link_before_realize,
1654 OBJ_PROP_LINK_STRONG);
1655 /*
1656 * M profile: initial value of the Secure VTOR. We can't just use
1657 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1658 * the property to be set after realize.
1659 */
1660 object_property_add_uint32_ptr(obj, "init-svtor",
1661 &cpu->init_svtor,
1662 OBJ_PROP_FLAG_READWRITE);
1663 }
1664 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1665 /*
1666 * Initial value of the NS VTOR (for cores without the Security
1667 * extension, this is the only VTOR)
1668 */
1669 object_property_add_uint32_ptr(obj, "init-nsvtor",
1670 &cpu->init_nsvtor,
1671 OBJ_PROP_FLAG_READWRITE);
1672 }
1673
1674 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1675 object_property_add_uint32_ptr(obj, "psci-conduit",
1676 &cpu->psci_conduit,
1677 OBJ_PROP_FLAG_READWRITE);
1678
1679 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1680
1681 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1682 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1683 }
1684
1685 if (kvm_enabled()) {
1686 kvm_arm_add_vcpu_properties(obj);
1687 }
1688
1689 #ifndef CONFIG_USER_ONLY
1690 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1691 cpu_isar_feature(aa64_mte, cpu)) {
1692 object_property_add_link(obj, "tag-memory",
1693 TYPE_MEMORY_REGION,
1694 (Object **)&cpu->tag_memory,
1695 qdev_prop_allow_set_link_before_realize,
1696 OBJ_PROP_LINK_STRONG);
1697
1698 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1699 object_property_add_link(obj, "secure-tag-memory",
1700 TYPE_MEMORY_REGION,
1701 (Object **)&cpu->secure_tag_memory,
1702 qdev_prop_allow_set_link_before_realize,
1703 OBJ_PROP_LINK_STRONG);
1704 }
1705 }
1706 #endif
1707 }
1708
1709 static void arm_cpu_finalizefn(Object *obj)
1710 {
1711 ARMCPU *cpu = ARM_CPU(obj);
1712 ARMELChangeHook *hook, *next;
1713
1714 g_hash_table_destroy(cpu->cp_regs);
1715
1716 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1717 QLIST_REMOVE(hook, node);
1718 g_free(hook);
1719 }
1720 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1721 QLIST_REMOVE(hook, node);
1722 g_free(hook);
1723 }
1724 #ifndef CONFIG_USER_ONLY
1725 if (cpu->pmu_timer) {
1726 timer_free(cpu->pmu_timer);
1727 }
1728 #endif
1729 }
1730
1731 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1732 {
1733 Error *local_err = NULL;
1734
1735 #ifdef TARGET_AARCH64
1736 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1737 arm_cpu_sve_finalize(cpu, &local_err);
1738 if (local_err != NULL) {
1739 error_propagate(errp, local_err);
1740 return;
1741 }
1742
1743 arm_cpu_sme_finalize(cpu, &local_err);
1744 if (local_err != NULL) {
1745 error_propagate(errp, local_err);
1746 return;
1747 }
1748
1749 arm_cpu_pauth_finalize(cpu, &local_err);
1750 if (local_err != NULL) {
1751 error_propagate(errp, local_err);
1752 return;
1753 }
1754
1755 arm_cpu_lpa2_finalize(cpu, &local_err);
1756 if (local_err != NULL) {
1757 error_propagate(errp, local_err);
1758 return;
1759 }
1760 }
1761 #endif
1762
1763 if (kvm_enabled()) {
1764 kvm_arm_steal_time_finalize(cpu, &local_err);
1765 if (local_err != NULL) {
1766 error_propagate(errp, local_err);
1767 return;
1768 }
1769 }
1770 }
1771
1772 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1773 {
1774 CPUState *cs = CPU(dev);
1775 ARMCPU *cpu = ARM_CPU(dev);
1776 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1777 CPUARMState *env = &cpu->env;
1778 int pagebits;
1779 Error *local_err = NULL;
1780
1781 /* Use pc-relative instructions in system-mode */
1782 #ifndef CONFIG_USER_ONLY
1783 cs->tcg_cflags |= CF_PCREL;
1784 #endif
1785
1786 /* If we needed to query the host kernel for the CPU features
1787 * then it's possible that might have failed in the initfn, but
1788 * this is the first point where we can report it.
1789 */
1790 if (cpu->host_cpu_probe_failed) {
1791 if (!kvm_enabled() && !hvf_enabled()) {
1792 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1793 } else {
1794 error_setg(errp, "Failed to retrieve host CPU features");
1795 }
1796 return;
1797 }
1798
1799 #ifndef CONFIG_USER_ONLY
1800 /* The NVIC and M-profile CPU are two halves of a single piece of
1801 * hardware; trying to use one without the other is a command line
1802 * error and will result in segfaults if not caught here.
1803 */
1804 if (arm_feature(env, ARM_FEATURE_M)) {
1805 if (!env->nvic) {
1806 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1807 return;
1808 }
1809 } else {
1810 if (env->nvic) {
1811 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1812 return;
1813 }
1814 }
1815
1816 if (!tcg_enabled() && !qtest_enabled()) {
1817 /*
1818 * We assume that no accelerator except TCG (and the "not really an
1819 * accelerator" qtest) can handle these features, because Arm hardware
1820 * virtualization can't virtualize them.
1821 *
1822 * Catch all the cases which might cause us to create more than one
1823 * address space for the CPU (otherwise we will assert() later in
1824 * cpu_address_space_init()).
1825 */
1826 if (arm_feature(env, ARM_FEATURE_M)) {
1827 error_setg(errp,
1828 "Cannot enable %s when using an M-profile guest CPU",
1829 current_accel_name());
1830 return;
1831 }
1832 if (cpu->has_el3) {
1833 error_setg(errp,
1834 "Cannot enable %s when guest CPU has EL3 enabled",
1835 current_accel_name());
1836 return;
1837 }
1838 if (cpu->tag_memory) {
1839 error_setg(errp,
1840 "Cannot enable %s when guest CPUs has MTE enabled",
1841 current_accel_name());
1842 return;
1843 }
1844 }
1845
1846 {
1847 uint64_t scale;
1848
1849 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1850 if (!cpu->gt_cntfrq_hz) {
1851 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1852 cpu->gt_cntfrq_hz);
1853 return;
1854 }
1855 scale = gt_cntfrq_period_ns(cpu);
1856 } else {
1857 scale = GTIMER_SCALE;
1858 }
1859
1860 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1861 arm_gt_ptimer_cb, cpu);
1862 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1863 arm_gt_vtimer_cb, cpu);
1864 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1865 arm_gt_htimer_cb, cpu);
1866 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1867 arm_gt_stimer_cb, cpu);
1868 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1869 arm_gt_hvtimer_cb, cpu);
1870 }
1871 #endif
1872
1873 cpu_exec_realizefn(cs, &local_err);
1874 if (local_err != NULL) {
1875 error_propagate(errp, local_err);
1876 return;
1877 }
1878
1879 arm_cpu_finalize_features(cpu, &local_err);
1880 if (local_err != NULL) {
1881 error_propagate(errp, local_err);
1882 return;
1883 }
1884
1885 #ifdef CONFIG_USER_ONLY
1886 /*
1887 * User mode relies on IC IVAU instructions to catch modification of
1888 * dual-mapped code.
1889 *
1890 * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
1891 * IC IVAU even if the emulated processor does not normally require it.
1892 */
1893 cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
1894 #endif
1895
1896 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1897 cpu->has_vfp != cpu->has_neon) {
1898 /*
1899 * This is an architectural requirement for AArch64; AArch32 is
1900 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1901 */
1902 error_setg(errp,
1903 "AArch64 CPUs must have both VFP and Neon or neither");
1904 return;
1905 }
1906
1907 if (cpu->has_vfp_d32 != cpu->has_neon) {
1908 error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1909 return;
1910 }
1911
1912 if (!cpu->has_vfp_d32) {
1913 uint32_t u;
1914
1915 u = cpu->isar.mvfr0;
1916 u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1917 cpu->isar.mvfr0 = u;
1918 }
1919
1920 if (!cpu->has_vfp) {
1921 uint64_t t;
1922 uint32_t u;
1923
1924 t = cpu->isar.id_aa64isar1;
1925 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1926 cpu->isar.id_aa64isar1 = t;
1927
1928 t = cpu->isar.id_aa64pfr0;
1929 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1930 cpu->isar.id_aa64pfr0 = t;
1931
1932 u = cpu->isar.id_isar6;
1933 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1934 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1935 cpu->isar.id_isar6 = u;
1936
1937 u = cpu->isar.mvfr0;
1938 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1939 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1940 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1941 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1942 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1943 if (!arm_feature(env, ARM_FEATURE_M)) {
1944 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1945 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1946 }
1947 cpu->isar.mvfr0 = u;
1948
1949 u = cpu->isar.mvfr1;
1950 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1951 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1952 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1953 if (arm_feature(env, ARM_FEATURE_M)) {
1954 u = FIELD_DP32(u, MVFR1, FP16, 0);
1955 }
1956 cpu->isar.mvfr1 = u;
1957
1958 u = cpu->isar.mvfr2;
1959 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1960 cpu->isar.mvfr2 = u;
1961 }
1962
1963 if (!cpu->has_neon) {
1964 uint64_t t;
1965 uint32_t u;
1966
1967 unset_feature(env, ARM_FEATURE_NEON);
1968
1969 t = cpu->isar.id_aa64isar0;
1970 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1971 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1972 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1973 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1974 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1975 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1976 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1977 cpu->isar.id_aa64isar0 = t;
1978
1979 t = cpu->isar.id_aa64isar1;
1980 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1981 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1982 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1983 cpu->isar.id_aa64isar1 = t;
1984
1985 t = cpu->isar.id_aa64pfr0;
1986 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1987 cpu->isar.id_aa64pfr0 = t;
1988
1989 u = cpu->isar.id_isar5;
1990 u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1991 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1992 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1993 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1994 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1995 cpu->isar.id_isar5 = u;
1996
1997 u = cpu->isar.id_isar6;
1998 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1999 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2000 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2001 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2002 cpu->isar.id_isar6 = u;
2003
2004 if (!arm_feature(env, ARM_FEATURE_M)) {
2005 u = cpu->isar.mvfr1;
2006 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2007 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2008 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2009 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2010 cpu->isar.mvfr1 = u;
2011
2012 u = cpu->isar.mvfr2;
2013 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2014 cpu->isar.mvfr2 = u;
2015 }
2016 }
2017
2018 if (!cpu->has_neon && !cpu->has_vfp) {
2019 uint64_t t;
2020 uint32_t u;
2021
2022 t = cpu->isar.id_aa64isar0;
2023 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2024 cpu->isar.id_aa64isar0 = t;
2025
2026 t = cpu->isar.id_aa64isar1;
2027 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2028 cpu->isar.id_aa64isar1 = t;
2029
2030 u = cpu->isar.mvfr0;
2031 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2032 cpu->isar.mvfr0 = u;
2033
2034 /* Despite the name, this field covers both VFP and Neon */
2035 u = cpu->isar.mvfr1;
2036 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2037 cpu->isar.mvfr1 = u;
2038 }
2039
2040 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2041 uint32_t u;
2042
2043 unset_feature(env, ARM_FEATURE_THUMB_DSP);
2044
2045 u = cpu->isar.id_isar1;
2046 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2047 cpu->isar.id_isar1 = u;
2048
2049 u = cpu->isar.id_isar2;
2050 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2051 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2052 cpu->isar.id_isar2 = u;
2053
2054 u = cpu->isar.id_isar3;
2055 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2056 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2057 cpu->isar.id_isar3 = u;
2058 }
2059
2060
2061 /*
2062 * We rely on no XScale CPU having VFP so we can use the same bits in the
2063 * TB flags field for VECSTRIDE and XSCALE_CPAR.
2064 */
2065 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
2066 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2067 !arm_feature(env, ARM_FEATURE_XSCALE));
2068
2069 if (arm_feature(env, ARM_FEATURE_V7) &&
2070 !arm_feature(env, ARM_FEATURE_M) &&
2071 !arm_feature(env, ARM_FEATURE_PMSA)) {
2072 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
2073 * can use 4K pages.
2074 */
2075 pagebits = 12;
2076 } else {
2077 /* For CPUs which might have tiny 1K pages, or which have an
2078 * MPU and might have small region sizes, stick with 1K pages.
2079 */
2080 pagebits = 10;
2081 }
2082 if (!set_preferred_target_page_bits(pagebits)) {
2083 /* This can only ever happen for hotplugging a CPU, or if
2084 * the board code incorrectly creates a CPU which it has
2085 * promised via minimum_page_size that it will not.
2086 */
2087 error_setg(errp, "This CPU requires a smaller page size than the "
2088 "system is using");
2089 return;
2090 }
2091
2092 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2093 * We don't support setting cluster ID ([16..23]) (known as Aff2
2094 * in later ARM ARM versions), or any of the higher affinity level fields,
2095 * so these bits always RAZ.
2096 */
2097 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2098 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
2099 ARM_DEFAULT_CPUS_PER_CLUSTER);
2100 }
2101
2102 if (cpu->reset_hivecs) {
2103 cpu->reset_sctlr |= (1 << 13);
2104 }
2105
2106 if (cpu->cfgend) {
2107 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
2108 cpu->reset_sctlr |= SCTLR_EE;
2109 } else {
2110 cpu->reset_sctlr |= SCTLR_B;
2111 }
2112 }
2113
2114 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2115 /* If the has_el3 CPU property is disabled then we need to disable the
2116 * feature.
2117 */
2118 unset_feature(env, ARM_FEATURE_EL3);
2119
2120 /*
2121 * Disable the security extension feature bits in the processor
2122 * feature registers as well.
2123 */
2124 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2125 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2126 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2127 ID_AA64PFR0, EL3, 0);
2128
2129 /* Disable the realm management extension, which requires EL3. */
2130 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2131 ID_AA64PFR0, RME, 0);
2132 }
2133
2134 if (!cpu->has_el2) {
2135 unset_feature(env, ARM_FEATURE_EL2);
2136 }
2137
2138 if (!cpu->has_pmu) {
2139 unset_feature(env, ARM_FEATURE_PMU);
2140 }
2141 if (arm_feature(env, ARM_FEATURE_PMU)) {
2142 pmu_init(cpu);
2143
2144 if (!kvm_enabled()) {
2145 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2146 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2147 }
2148
2149 #ifndef CONFIG_USER_ONLY
2150 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2151 cpu);
2152 #endif
2153 } else {
2154 cpu->isar.id_aa64dfr0 =
2155 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2156 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2157 cpu->pmceid0 = 0;
2158 cpu->pmceid1 = 0;
2159 }
2160
2161 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2162 /*
2163 * Disable the hypervisor feature bits in the processor feature
2164 * registers if we don't have EL2.
2165 */
2166 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2167 ID_AA64PFR0, EL2, 0);
2168 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2169 ID_PFR1, VIRTUALIZATION, 0);
2170 }
2171
2172 if (cpu_isar_feature(aa64_mte, cpu)) {
2173 /*
2174 * The architectural range of GM blocksize is 2-6, however qemu
2175 * doesn't support blocksize of 2 (see HELPER(ldgm)).
2176 */
2177 if (tcg_enabled()) {
2178 assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2179 }
2180
2181 #ifndef CONFIG_USER_ONLY
2182 /*
2183 * If we do not have tag-memory provided by the machine,
2184 * reduce MTE support to instructions enabled at EL0.
2185 * This matches Cortex-A710 BROADCASTMTE input being LOW.
2186 */
2187 if (cpu->tag_memory == NULL) {
2188 cpu->isar.id_aa64pfr1 =
2189 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2190 }
2191 #endif
2192 }
2193
2194 if (tcg_enabled()) {
2195 /*
2196 * Don't report some architectural features in the ID registers
2197 * where TCG does not yet implement it (not even a minimal
2198 * stub version). This avoids guests falling over when they
2199 * try to access the non-existent system registers for them.
2200 */
2201 /* FEAT_SPE (Statistical Profiling Extension) */
2202 cpu->isar.id_aa64dfr0 =
2203 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2204 /* FEAT_TRBE (Trace Buffer Extension) */
2205 cpu->isar.id_aa64dfr0 =
2206 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2207 /* FEAT_TRF (Self-hosted Trace Extension) */
2208 cpu->isar.id_aa64dfr0 =
2209 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2210 cpu->isar.id_dfr0 =
2211 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2212 /* Trace Macrocell system register access */
2213 cpu->isar.id_aa64dfr0 =
2214 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2215 cpu->isar.id_dfr0 =
2216 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2217 /* Memory mapped trace */
2218 cpu->isar.id_dfr0 =
2219 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2220 /* FEAT_AMU (Activity Monitors Extension) */
2221 cpu->isar.id_aa64pfr0 =
2222 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2223 cpu->isar.id_pfr0 =
2224 FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2225 /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2226 cpu->isar.id_aa64pfr0 =
2227 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2228 /* FEAT_NV (Nested Virtualization) */
2229 cpu->isar.id_aa64mmfr2 =
2230 FIELD_DP64(cpu->isar.id_aa64mmfr2, ID_AA64MMFR2, NV, 0);
2231 }
2232
2233 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2234 * to false or by setting pmsav7-dregion to 0.
2235 */
2236 if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2237 cpu->has_mpu = false;
2238 cpu->pmsav7_dregion = 0;
2239 cpu->pmsav8r_hdregion = 0;
2240 }
2241
2242 if (arm_feature(env, ARM_FEATURE_PMSA) &&
2243 arm_feature(env, ARM_FEATURE_V7)) {
2244 uint32_t nr = cpu->pmsav7_dregion;
2245
2246 if (nr > 0xff) {
2247 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2248 return;
2249 }
2250
2251 if (nr) {
2252 if (arm_feature(env, ARM_FEATURE_V8)) {
2253 /* PMSAv8 */
2254 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2255 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2256 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2257 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2258 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2259 }
2260 } else {
2261 env->pmsav7.drbar = g_new0(uint32_t, nr);
2262 env->pmsav7.drsr = g_new0(uint32_t, nr);
2263 env->pmsav7.dracr = g_new0(uint32_t, nr);
2264 }
2265 }
2266
2267 if (cpu->pmsav8r_hdregion > 0xff) {
2268 error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2269 cpu->pmsav8r_hdregion);
2270 return;
2271 }
2272
2273 if (cpu->pmsav8r_hdregion) {
2274 env->pmsav8.hprbar = g_new0(uint32_t,
2275 cpu->pmsav8r_hdregion);
2276 env->pmsav8.hprlar = g_new0(uint32_t,
2277 cpu->pmsav8r_hdregion);
2278 }
2279 }
2280
2281 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2282 uint32_t nr = cpu->sau_sregion;
2283
2284 if (nr > 0xff) {
2285 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2286 return;
2287 }
2288
2289 if (nr) {
2290 env->sau.rbar = g_new0(uint32_t, nr);
2291 env->sau.rlar = g_new0(uint32_t, nr);
2292 }
2293 }
2294
2295 if (arm_feature(env, ARM_FEATURE_EL3)) {
2296 set_feature(env, ARM_FEATURE_VBAR);
2297 }
2298
2299 #ifndef CONFIG_USER_ONLY
2300 if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2301 arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2302 }
2303 #endif
2304
2305 register_cp_regs_for_features(cpu);
2306 arm_cpu_register_gdb_regs_for_features(cpu);
2307
2308 init_cpreg_list(cpu);
2309
2310 #ifndef CONFIG_USER_ONLY
2311 MachineState *ms = MACHINE(qdev_get_machine());
2312 unsigned int smp_cpus = ms->smp.cpus;
2313 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2314
2315 /*
2316 * We must set cs->num_ases to the final value before
2317 * the first call to cpu_address_space_init.
2318 */
2319 if (cpu->tag_memory != NULL) {
2320 cs->num_ases = 3 + has_secure;
2321 } else {
2322 cs->num_ases = 1 + has_secure;
2323 }
2324
2325 if (has_secure) {
2326 if (!cpu->secure_memory) {
2327 cpu->secure_memory = cs->memory;
2328 }
2329 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2330 cpu->secure_memory);
2331 }
2332
2333 if (cpu->tag_memory != NULL) {
2334 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2335 cpu->tag_memory);
2336 if (has_secure) {
2337 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2338 cpu->secure_tag_memory);
2339 }
2340 }
2341
2342 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2343
2344 /* No core_count specified, default to smp_cpus. */
2345 if (cpu->core_count == -1) {
2346 cpu->core_count = smp_cpus;
2347 }
2348 #endif
2349
2350 if (tcg_enabled()) {
2351 int dcz_blocklen = 4 << cpu->dcz_blocksize;
2352
2353 /*
2354 * We only support DCZ blocklen that fits on one page.
2355 *
2356 * Architectually this is always true. However TARGET_PAGE_SIZE
2357 * is variable and, for compatibility with -machine virt-2.7,
2358 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2359 * But even then, while the largest architectural DCZ blocklen
2360 * is 2KiB, no cpu actually uses such a large blocklen.
2361 */
2362 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2363
2364 /*
2365 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2366 * both nibbles of each byte storing tag data may be written at once.
2367 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2368 */
2369 if (cpu_isar_feature(aa64_mte, cpu)) {
2370 assert(dcz_blocklen >= 2 * TAG_GRANULE);
2371 }
2372 }
2373
2374 qemu_init_vcpu(cs);
2375 cpu_reset(cs);
2376
2377 acc->parent_realize(dev, errp);
2378 }
2379
2380 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2381 {
2382 ObjectClass *oc;
2383 char *typename;
2384 char **cpuname;
2385 const char *cpunamestr;
2386
2387 cpuname = g_strsplit(cpu_model, ",", 1);
2388 cpunamestr = cpuname[0];
2389 #ifdef CONFIG_USER_ONLY
2390 /* For backwards compatibility usermode emulation allows "-cpu any",
2391 * which has the same semantics as "-cpu max".
2392 */
2393 if (!strcmp(cpunamestr, "any")) {
2394 cpunamestr = "max";
2395 }
2396 #endif
2397 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2398 oc = object_class_by_name(typename);
2399 g_strfreev(cpuname);
2400 g_free(typename);
2401 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2402 object_class_is_abstract(oc)) {
2403 return NULL;
2404 }
2405 return oc;
2406 }
2407
2408 static Property arm_cpu_properties[] = {
2409 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2410 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2411 mp_affinity, ARM64_AFFINITY_INVALID),
2412 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2413 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2414 DEFINE_PROP_END_OF_LIST()
2415 };
2416
2417 static const gchar *arm_gdb_arch_name(CPUState *cs)
2418 {
2419 ARMCPU *cpu = ARM_CPU(cs);
2420 CPUARMState *env = &cpu->env;
2421
2422 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2423 return "iwmmxt";
2424 }
2425 return "arm";
2426 }
2427
2428 #ifndef CONFIG_USER_ONLY
2429 #include "hw/core/sysemu-cpu-ops.h"
2430
2431 static const struct SysemuCPUOps arm_sysemu_ops = {
2432 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2433 .asidx_from_attrs = arm_asidx_from_attrs,
2434 .write_elf32_note = arm_cpu_write_elf32_note,
2435 .write_elf64_note = arm_cpu_write_elf64_note,
2436 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2437 .legacy_vmsd = &vmstate_arm_cpu,
2438 };
2439 #endif
2440
2441 #ifdef CONFIG_TCG
2442 static const struct TCGCPUOps arm_tcg_ops = {
2443 .initialize = arm_translate_init,
2444 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2445 .debug_excp_handler = arm_debug_excp_handler,
2446 .restore_state_to_opc = arm_restore_state_to_opc,
2447
2448 #ifdef CONFIG_USER_ONLY
2449 .record_sigsegv = arm_cpu_record_sigsegv,
2450 .record_sigbus = arm_cpu_record_sigbus,
2451 #else
2452 .tlb_fill = arm_cpu_tlb_fill,
2453 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2454 .do_interrupt = arm_cpu_do_interrupt,
2455 .do_transaction_failed = arm_cpu_do_transaction_failed,
2456 .do_unaligned_access = arm_cpu_do_unaligned_access,
2457 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2458 .debug_check_watchpoint = arm_debug_check_watchpoint,
2459 .debug_check_breakpoint = arm_debug_check_breakpoint,
2460 #endif /* !CONFIG_USER_ONLY */
2461 };
2462 #endif /* CONFIG_TCG */
2463
2464 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2465 {
2466 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2467 CPUClass *cc = CPU_CLASS(acc);
2468 DeviceClass *dc = DEVICE_CLASS(oc);
2469 ResettableClass *rc = RESETTABLE_CLASS(oc);
2470
2471 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2472 &acc->parent_realize);
2473
2474 device_class_set_props(dc, arm_cpu_properties);
2475
2476 resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2477 &acc->parent_phases);
2478
2479 cc->class_by_name = arm_cpu_class_by_name;
2480 cc->has_work = arm_cpu_has_work;
2481 cc->dump_state = arm_cpu_dump_state;
2482 cc->set_pc = arm_cpu_set_pc;
2483 cc->get_pc = arm_cpu_get_pc;
2484 cc->gdb_read_register = arm_cpu_gdb_read_register;
2485 cc->gdb_write_register = arm_cpu_gdb_write_register;
2486 #ifndef CONFIG_USER_ONLY
2487 cc->sysemu_ops = &arm_sysemu_ops;
2488 #endif
2489 cc->gdb_num_core_regs = 26;
2490 cc->gdb_arch_name = arm_gdb_arch_name;
2491 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2492 cc->gdb_stop_before_watchpoint = true;
2493 cc->disas_set_info = arm_disas_set_info;
2494
2495 #ifdef CONFIG_TCG
2496 cc->tcg_ops = &arm_tcg_ops;
2497 #endif /* CONFIG_TCG */
2498 }
2499
2500 static void arm_cpu_instance_init(Object *obj)
2501 {
2502 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2503
2504 acc->info->initfn(obj);
2505 arm_cpu_post_init(obj);
2506 }
2507
2508 static void cpu_register_class_init(ObjectClass *oc, void *data)
2509 {
2510 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2511 CPUClass *cc = CPU_CLASS(acc);
2512
2513 acc->info = data;
2514 cc->gdb_core_xml_file = "arm-core.xml";
2515 }
2516
2517 void arm_cpu_register(const ARMCPUInfo *info)
2518 {
2519 TypeInfo type_info = {
2520 .parent = TYPE_ARM_CPU,
2521 .instance_init = arm_cpu_instance_init,
2522 .class_init = info->class_init ?: cpu_register_class_init,
2523 .class_data = (void *)info,
2524 };
2525
2526 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2527 type_register(&type_info);
2528 g_free((void *)type_info.name);
2529 }
2530
2531 static const TypeInfo arm_cpu_type_info = {
2532 .name = TYPE_ARM_CPU,
2533 .parent = TYPE_CPU,
2534 .instance_size = sizeof(ARMCPU),
2535 .instance_align = __alignof__(ARMCPU),
2536 .instance_init = arm_cpu_initfn,
2537 .instance_finalize = arm_cpu_finalizefn,
2538 .abstract = true,
2539 .class_size = sizeof(ARMCPUClass),
2540 .class_init = arm_cpu_class_init,
2541 };
2542
2543 static void arm_cpu_register_types(void)
2544 {
2545 type_register_static(&arm_cpu_type_info);
2546 }
2547
2548 type_init(arm_cpu_register_types)