]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/debug_helper.c
abe72e35ae6095dceded4a06aff688a66f169a0b
[mirror_qemu.git] / target / arm / debug_helper.c
1 /*
2 * ARM debug helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8 #include "qemu/osdep.h"
9 #include "qemu/log.h"
10 #include "cpu.h"
11 #include "internals.h"
12 #include "cpregs.h"
13 #include "exec/exec-all.h"
14 #include "exec/helper-proto.h"
15 #include "sysemu/tcg.h"
16
17 #ifdef CONFIG_TCG
18 /* Return the Exception Level targeted by debug exceptions. */
19 static int arm_debug_target_el(CPUARMState *env)
20 {
21 bool secure = arm_is_secure(env);
22 bool route_to_el2 = false;
23
24 if (arm_feature(env, ARM_FEATURE_M)) {
25 return 1;
26 }
27
28 if (arm_is_el2_enabled(env)) {
29 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
30 env->cp15.mdcr_el2 & MDCR_TDE;
31 }
32
33 if (route_to_el2) {
34 return 2;
35 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
36 !arm_el_is_aa64(env, 3) && secure) {
37 return 3;
38 } else {
39 return 1;
40 }
41 }
42
43 /*
44 * Raise an exception to the debug target el.
45 * Modify syndrome to indicate when origin and target EL are the same.
46 */
47 G_NORETURN static void
48 raise_exception_debug(CPUARMState *env, uint32_t excp, uint32_t syndrome)
49 {
50 int debug_el = arm_debug_target_el(env);
51 int cur_el = arm_current_el(env);
52
53 /*
54 * If singlestep is targeting a lower EL than the current one, then
55 * DisasContext.ss_active must be false and we can never get here.
56 * Similarly for watchpoint and breakpoint matches.
57 */
58 assert(debug_el >= cur_el);
59 syndrome |= (debug_el == cur_el) << ARM_EL_EC_SHIFT;
60 raise_exception(env, excp, syndrome, debug_el);
61 }
62
63 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
64 static bool aa64_generate_debug_exceptions(CPUARMState *env)
65 {
66 int cur_el = arm_current_el(env);
67 int debug_el;
68
69 if (cur_el == 3) {
70 return false;
71 }
72
73 /* MDCR_EL3.SDD disables debug events from Secure state */
74 if (arm_is_secure_below_el3(env)
75 && extract32(env->cp15.mdcr_el3, 16, 1)) {
76 return false;
77 }
78
79 /*
80 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
81 * while not masking the (D)ebug bit in DAIF.
82 */
83 debug_el = arm_debug_target_el(env);
84
85 if (cur_el == debug_el) {
86 return extract32(env->cp15.mdscr_el1, 13, 1)
87 && !(env->daif & PSTATE_D);
88 }
89
90 /* Otherwise the debug target needs to be a higher EL */
91 return debug_el > cur_el;
92 }
93
94 static bool aa32_generate_debug_exceptions(CPUARMState *env)
95 {
96 int el = arm_current_el(env);
97
98 if (el == 0 && arm_el_is_aa64(env, 1)) {
99 return aa64_generate_debug_exceptions(env);
100 }
101
102 if (arm_is_secure(env)) {
103 int spd;
104
105 if (el == 0 && (env->cp15.sder & 1)) {
106 /*
107 * SDER.SUIDEN means debug exceptions from Secure EL0
108 * are always enabled. Otherwise they are controlled by
109 * SDCR.SPD like those from other Secure ELs.
110 */
111 return true;
112 }
113
114 spd = extract32(env->cp15.mdcr_el3, 14, 2);
115 switch (spd) {
116 case 1:
117 /* SPD == 0b01 is reserved, but behaves as 0b00. */
118 case 0:
119 /*
120 * For 0b00 we return true if external secure invasive debug
121 * is enabled. On real hardware this is controlled by external
122 * signals to the core. QEMU always permits debug, and behaves
123 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
124 */
125 return true;
126 case 2:
127 return false;
128 case 3:
129 return true;
130 }
131 }
132
133 return el != 2;
134 }
135
136 /*
137 * Return true if debugging exceptions are currently enabled.
138 * This corresponds to what in ARM ARM pseudocode would be
139 * if UsingAArch32() then
140 * return AArch32.GenerateDebugExceptions()
141 * else
142 * return AArch64.GenerateDebugExceptions()
143 * We choose to push the if() down into this function for clarity,
144 * since the pseudocode has it at all callsites except for the one in
145 * CheckSoftwareStep(), where it is elided because both branches would
146 * always return the same value.
147 */
148 bool arm_generate_debug_exceptions(CPUARMState *env)
149 {
150 if ((env->cp15.oslsr_el1 & 1) || (env->cp15.osdlr_el1 & 1)) {
151 return false;
152 }
153 if (is_a64(env)) {
154 return aa64_generate_debug_exceptions(env);
155 } else {
156 return aa32_generate_debug_exceptions(env);
157 }
158 }
159
160 /*
161 * Is single-stepping active? (Note that the "is EL_D AArch64?" check
162 * implicitly means this always returns false in pre-v8 CPUs.)
163 */
164 bool arm_singlestep_active(CPUARMState *env)
165 {
166 return extract32(env->cp15.mdscr_el1, 0, 1)
167 && arm_el_is_aa64(env, arm_debug_target_el(env))
168 && arm_generate_debug_exceptions(env);
169 }
170
171 /* Return true if the linked breakpoint entry lbn passes its checks */
172 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
173 {
174 CPUARMState *env = &cpu->env;
175 uint64_t bcr = env->cp15.dbgbcr[lbn];
176 int brps = arm_num_brps(cpu);
177 int ctx_cmps = arm_num_ctx_cmps(cpu);
178 int bt;
179 uint32_t contextidr;
180 uint64_t hcr_el2;
181
182 /*
183 * Links to unimplemented or non-context aware breakpoints are
184 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
185 * as if linked to an UNKNOWN context-aware breakpoint (in which
186 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
187 * We choose the former.
188 */
189 if (lbn >= brps || lbn < (brps - ctx_cmps)) {
190 return false;
191 }
192
193 bcr = env->cp15.dbgbcr[lbn];
194
195 if (extract64(bcr, 0, 1) == 0) {
196 /* Linked breakpoint disabled : generate no events */
197 return false;
198 }
199
200 bt = extract64(bcr, 20, 4);
201 hcr_el2 = arm_hcr_el2_eff(env);
202
203 switch (bt) {
204 case 3: /* linked context ID match */
205 switch (arm_current_el(env)) {
206 default:
207 /* Context matches never fire in AArch64 EL3 */
208 return false;
209 case 2:
210 if (!(hcr_el2 & HCR_E2H)) {
211 /* Context matches never fire in EL2 without E2H enabled. */
212 return false;
213 }
214 contextidr = env->cp15.contextidr_el[2];
215 break;
216 case 1:
217 contextidr = env->cp15.contextidr_el[1];
218 break;
219 case 0:
220 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
221 contextidr = env->cp15.contextidr_el[2];
222 } else {
223 contextidr = env->cp15.contextidr_el[1];
224 }
225 break;
226 }
227 break;
228
229 case 7: /* linked contextidr_el1 match */
230 contextidr = env->cp15.contextidr_el[1];
231 break;
232 case 13: /* linked contextidr_el2 match */
233 contextidr = env->cp15.contextidr_el[2];
234 break;
235
236 case 9: /* linked VMID match (reserved if no EL2) */
237 case 11: /* linked context ID and VMID match (reserved if no EL2) */
238 case 15: /* linked full context ID match */
239 default:
240 /*
241 * Links to Unlinked context breakpoints must generate no
242 * events; we choose to do the same for reserved values too.
243 */
244 return false;
245 }
246
247 /*
248 * We match the whole register even if this is AArch32 using the
249 * short descriptor format (in which case it holds both PROCID and ASID),
250 * since we don't implement the optional v7 context ID masking.
251 */
252 return contextidr == (uint32_t)env->cp15.dbgbvr[lbn];
253 }
254
255 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
256 {
257 CPUARMState *env = &cpu->env;
258 uint64_t cr;
259 int pac, hmc, ssc, wt, lbn;
260 /*
261 * Note that for watchpoints the check is against the CPU security
262 * state, not the S/NS attribute on the offending data access.
263 */
264 bool is_secure = arm_is_secure(env);
265 int access_el = arm_current_el(env);
266
267 if (is_wp) {
268 CPUWatchpoint *wp = env->cpu_watchpoint[n];
269
270 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
271 return false;
272 }
273 cr = env->cp15.dbgwcr[n];
274 if (wp->hitattrs.user) {
275 /*
276 * The LDRT/STRT/LDT/STT "unprivileged access" instructions should
277 * match watchpoints as if they were accesses done at EL0, even if
278 * the CPU is at EL1 or higher.
279 */
280 access_el = 0;
281 }
282 } else {
283 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
284
285 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
286 return false;
287 }
288 cr = env->cp15.dbgbcr[n];
289 }
290 /*
291 * The WATCHPOINT_HIT flag guarantees us that the watchpoint is
292 * enabled and that the address and access type match; for breakpoints
293 * we know the address matched; check the remaining fields, including
294 * linked breakpoints. We rely on WCR and BCR having the same layout
295 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
296 * Note that some combinations of {PAC, HMC, SSC} are reserved and
297 * must act either like some valid combination or as if the watchpoint
298 * were disabled. We choose the former, and use this together with
299 * the fact that EL3 must always be Secure and EL2 must always be
300 * Non-Secure to simplify the code slightly compared to the full
301 * table in the ARM ARM.
302 */
303 pac = FIELD_EX64(cr, DBGWCR, PAC);
304 hmc = FIELD_EX64(cr, DBGWCR, HMC);
305 ssc = FIELD_EX64(cr, DBGWCR, SSC);
306
307 switch (ssc) {
308 case 0:
309 break;
310 case 1:
311 case 3:
312 if (is_secure) {
313 return false;
314 }
315 break;
316 case 2:
317 if (!is_secure) {
318 return false;
319 }
320 break;
321 }
322
323 switch (access_el) {
324 case 3:
325 case 2:
326 if (!hmc) {
327 return false;
328 }
329 break;
330 case 1:
331 if (extract32(pac, 0, 1) == 0) {
332 return false;
333 }
334 break;
335 case 0:
336 if (extract32(pac, 1, 1) == 0) {
337 return false;
338 }
339 break;
340 default:
341 g_assert_not_reached();
342 }
343
344 wt = FIELD_EX64(cr, DBGWCR, WT);
345 lbn = FIELD_EX64(cr, DBGWCR, LBN);
346
347 if (wt && !linked_bp_matches(cpu, lbn)) {
348 return false;
349 }
350
351 return true;
352 }
353
354 static bool check_watchpoints(ARMCPU *cpu)
355 {
356 CPUARMState *env = &cpu->env;
357 int n;
358
359 /*
360 * If watchpoints are disabled globally or we can't take debug
361 * exceptions here then watchpoint firings are ignored.
362 */
363 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
364 || !arm_generate_debug_exceptions(env)) {
365 return false;
366 }
367
368 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
369 if (bp_wp_matches(cpu, n, true)) {
370 return true;
371 }
372 }
373 return false;
374 }
375
376 bool arm_debug_check_breakpoint(CPUState *cs)
377 {
378 ARMCPU *cpu = ARM_CPU(cs);
379 CPUARMState *env = &cpu->env;
380 target_ulong pc;
381 int n;
382
383 /*
384 * If breakpoints are disabled globally or we can't take debug
385 * exceptions here then breakpoint firings are ignored.
386 */
387 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
388 || !arm_generate_debug_exceptions(env)) {
389 return false;
390 }
391
392 /*
393 * Single-step exceptions have priority over breakpoint exceptions.
394 * If single-step state is active-pending, suppress the bp.
395 */
396 if (arm_singlestep_active(env) && !(env->pstate & PSTATE_SS)) {
397 return false;
398 }
399
400 /*
401 * PC alignment faults have priority over breakpoint exceptions.
402 */
403 pc = is_a64(env) ? env->pc : env->regs[15];
404 if ((is_a64(env) || !env->thumb) && (pc & 3) != 0) {
405 return false;
406 }
407
408 /*
409 * Instruction aborts have priority over breakpoint exceptions.
410 * TODO: We would need to look up the page for PC and verify that
411 * it is present and executable.
412 */
413
414 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
415 if (bp_wp_matches(cpu, n, false)) {
416 return true;
417 }
418 }
419 return false;
420 }
421
422 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
423 {
424 /*
425 * Called by core code when a CPU watchpoint fires; need to check if this
426 * is also an architectural watchpoint match.
427 */
428 ARMCPU *cpu = ARM_CPU(cs);
429
430 return check_watchpoints(cpu);
431 }
432
433 /*
434 * Return the FSR value for a debug exception (watchpoint, hardware
435 * breakpoint or BKPT insn) targeting the specified exception level.
436 */
437 static uint32_t arm_debug_exception_fsr(CPUARMState *env)
438 {
439 ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
440 int target_el = arm_debug_target_el(env);
441 bool using_lpae;
442
443 if (arm_feature(env, ARM_FEATURE_M)) {
444 using_lpae = false;
445 } else if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
446 using_lpae = true;
447 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
448 arm_feature(env, ARM_FEATURE_V8)) {
449 using_lpae = true;
450 } else if (arm_feature(env, ARM_FEATURE_LPAE) &&
451 (env->cp15.tcr_el[target_el] & TTBCR_EAE)) {
452 using_lpae = true;
453 } else {
454 using_lpae = false;
455 }
456
457 if (using_lpae) {
458 return arm_fi_to_lfsc(&fi);
459 } else {
460 return arm_fi_to_sfsc(&fi);
461 }
462 }
463
464 void arm_debug_excp_handler(CPUState *cs)
465 {
466 /*
467 * Called by core code when a watchpoint or breakpoint fires;
468 * need to check which one and raise the appropriate exception.
469 */
470 ARMCPU *cpu = ARM_CPU(cs);
471 CPUARMState *env = &cpu->env;
472 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
473
474 if (wp_hit) {
475 if (wp_hit->flags & BP_CPU) {
476 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
477
478 cs->watchpoint_hit = NULL;
479
480 env->exception.fsr = arm_debug_exception_fsr(env);
481 env->exception.vaddress = wp_hit->hitaddr;
482 raise_exception_debug(env, EXCP_DATA_ABORT,
483 syn_watchpoint(0, 0, wnr));
484 }
485 } else {
486 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
487
488 /*
489 * (1) GDB breakpoints should be handled first.
490 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
491 * since singlestep is also done by generating a debug internal
492 * exception.
493 */
494 if (cpu_breakpoint_test(cs, pc, BP_GDB)
495 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
496 return;
497 }
498
499 env->exception.fsr = arm_debug_exception_fsr(env);
500 /*
501 * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
502 * values to the guest that it shouldn't be able to see at its
503 * exception/security level.
504 */
505 env->exception.vaddress = 0;
506 raise_exception_debug(env, EXCP_PREFETCH_ABORT, syn_breakpoint(0));
507 }
508 }
509
510 /*
511 * Raise an EXCP_BKPT with the specified syndrome register value,
512 * targeting the correct exception level for debug exceptions.
513 */
514 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
515 {
516 int debug_el = arm_debug_target_el(env);
517 int cur_el = arm_current_el(env);
518
519 /* FSR will only be used if the debug target EL is AArch32. */
520 env->exception.fsr = arm_debug_exception_fsr(env);
521 /*
522 * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
523 * values to the guest that it shouldn't be able to see at its
524 * exception/security level.
525 */
526 env->exception.vaddress = 0;
527 /*
528 * Other kinds of architectural debug exception are ignored if
529 * they target an exception level below the current one (in QEMU
530 * this is checked by arm_generate_debug_exceptions()). Breakpoint
531 * instructions are special because they always generate an exception
532 * to somewhere: if they can't go to the configured debug exception
533 * level they are taken to the current exception level.
534 */
535 if (debug_el < cur_el) {
536 debug_el = cur_el;
537 }
538 raise_exception(env, EXCP_BKPT, syndrome, debug_el);
539 }
540
541 void HELPER(exception_swstep)(CPUARMState *env, uint32_t syndrome)
542 {
543 raise_exception_debug(env, EXCP_UDEF, syndrome);
544 }
545
546 void hw_watchpoint_update(ARMCPU *cpu, int n)
547 {
548 CPUARMState *env = &cpu->env;
549 vaddr len = 0;
550 vaddr wvr = env->cp15.dbgwvr[n];
551 uint64_t wcr = env->cp15.dbgwcr[n];
552 int mask;
553 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
554
555 if (env->cpu_watchpoint[n]) {
556 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
557 env->cpu_watchpoint[n] = NULL;
558 }
559
560 if (!FIELD_EX64(wcr, DBGWCR, E)) {
561 /* E bit clear : watchpoint disabled */
562 return;
563 }
564
565 switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
566 case 0:
567 /* LSC 00 is reserved and must behave as if the wp is disabled */
568 return;
569 case 1:
570 flags |= BP_MEM_READ;
571 break;
572 case 2:
573 flags |= BP_MEM_WRITE;
574 break;
575 case 3:
576 flags |= BP_MEM_ACCESS;
577 break;
578 }
579
580 /*
581 * Attempts to use both MASK and BAS fields simultaneously are
582 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
583 * thus generating a watchpoint for every byte in the masked region.
584 */
585 mask = FIELD_EX64(wcr, DBGWCR, MASK);
586 if (mask == 1 || mask == 2) {
587 /*
588 * Reserved values of MASK; we must act as if the mask value was
589 * some non-reserved value, or as if the watchpoint were disabled.
590 * We choose the latter.
591 */
592 return;
593 } else if (mask) {
594 /* Watchpoint covers an aligned area up to 2GB in size */
595 len = 1ULL << mask;
596 /*
597 * If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
598 * whether the watchpoint fires when the unmasked bits match; we opt
599 * to generate the exceptions.
600 */
601 wvr &= ~(len - 1);
602 } else {
603 /* Watchpoint covers bytes defined by the byte address select bits */
604 int bas = FIELD_EX64(wcr, DBGWCR, BAS);
605 int basstart;
606
607 if (extract64(wvr, 2, 1)) {
608 /*
609 * Deprecated case of an only 4-aligned address. BAS[7:4] are
610 * ignored, and BAS[3:0] define which bytes to watch.
611 */
612 bas &= 0xf;
613 }
614
615 if (bas == 0) {
616 /* This must act as if the watchpoint is disabled */
617 return;
618 }
619
620 /*
621 * The BAS bits are supposed to be programmed to indicate a contiguous
622 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
623 * we fire for each byte in the word/doubleword addressed by the WVR.
624 * We choose to ignore any non-zero bits after the first range of 1s.
625 */
626 basstart = ctz32(bas);
627 len = cto32(bas >> basstart);
628 wvr += basstart;
629 }
630
631 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
632 &env->cpu_watchpoint[n]);
633 }
634
635 void hw_watchpoint_update_all(ARMCPU *cpu)
636 {
637 int i;
638 CPUARMState *env = &cpu->env;
639
640 /*
641 * Completely clear out existing QEMU watchpoints and our array, to
642 * avoid possible stale entries following migration load.
643 */
644 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
645 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
646
647 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
648 hw_watchpoint_update(cpu, i);
649 }
650 }
651
652 void hw_breakpoint_update(ARMCPU *cpu, int n)
653 {
654 CPUARMState *env = &cpu->env;
655 uint64_t bvr = env->cp15.dbgbvr[n];
656 uint64_t bcr = env->cp15.dbgbcr[n];
657 vaddr addr;
658 int bt;
659 int flags = BP_CPU;
660
661 if (env->cpu_breakpoint[n]) {
662 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
663 env->cpu_breakpoint[n] = NULL;
664 }
665
666 if (!extract64(bcr, 0, 1)) {
667 /* E bit clear : watchpoint disabled */
668 return;
669 }
670
671 bt = extract64(bcr, 20, 4);
672
673 switch (bt) {
674 case 4: /* unlinked address mismatch (reserved if AArch64) */
675 case 5: /* linked address mismatch (reserved if AArch64) */
676 qemu_log_mask(LOG_UNIMP,
677 "arm: address mismatch breakpoint types not implemented\n");
678 return;
679 case 0: /* unlinked address match */
680 case 1: /* linked address match */
681 {
682 /*
683 * Bits [1:0] are RES0.
684 *
685 * It is IMPLEMENTATION DEFINED whether bits [63:49]
686 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
687 * of the VA field ([48] or [52] for FEAT_LVA), or whether the
688 * value is read as written. It is CONSTRAINED UNPREDICTABLE
689 * whether the RESS bits are ignored when comparing an address.
690 * Therefore we are allowed to compare the entire register, which
691 * lets us avoid considering whether FEAT_LVA is actually enabled.
692 *
693 * The BAS field is used to allow setting breakpoints on 16-bit
694 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
695 * a bp will fire if the addresses covered by the bp and the addresses
696 * covered by the insn overlap but the insn doesn't start at the
697 * start of the bp address range. We choose to require the insn and
698 * the bp to have the same address. The constraints on writing to
699 * BAS enforced in dbgbcr_write mean we have only four cases:
700 * 0b0000 => no breakpoint
701 * 0b0011 => breakpoint on addr
702 * 0b1100 => breakpoint on addr + 2
703 * 0b1111 => breakpoint on addr
704 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
705 */
706 int bas = extract64(bcr, 5, 4);
707 addr = bvr & ~3ULL;
708 if (bas == 0) {
709 return;
710 }
711 if (bas == 0xc) {
712 addr += 2;
713 }
714 break;
715 }
716 case 2: /* unlinked context ID match */
717 case 8: /* unlinked VMID match (reserved if no EL2) */
718 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
719 qemu_log_mask(LOG_UNIMP,
720 "arm: unlinked context breakpoint types not implemented\n");
721 return;
722 case 9: /* linked VMID match (reserved if no EL2) */
723 case 11: /* linked context ID and VMID match (reserved if no EL2) */
724 case 3: /* linked context ID match */
725 default:
726 /*
727 * We must generate no events for Linked context matches (unless
728 * they are linked to by some other bp/wp, which is handled in
729 * updates for the linking bp/wp). We choose to also generate no events
730 * for reserved values.
731 */
732 return;
733 }
734
735 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
736 }
737
738 void hw_breakpoint_update_all(ARMCPU *cpu)
739 {
740 int i;
741 CPUARMState *env = &cpu->env;
742
743 /*
744 * Completely clear out existing QEMU breakpoints and our array, to
745 * avoid possible stale entries following migration load.
746 */
747 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
748 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
749
750 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
751 hw_breakpoint_update(cpu, i);
752 }
753 }
754
755 #if !defined(CONFIG_USER_ONLY)
756
757 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
758 {
759 ARMCPU *cpu = ARM_CPU(cs);
760 CPUARMState *env = &cpu->env;
761
762 /*
763 * In BE32 system mode, target memory is stored byteswapped (on a
764 * little-endian host system), and by the time we reach here (via an
765 * opcode helper) the addresses of subword accesses have been adjusted
766 * to account for that, which means that watchpoints will not match.
767 * Undo the adjustment here.
768 */
769 if (arm_sctlr_b(env)) {
770 if (len == 1) {
771 addr ^= 3;
772 } else if (len == 2) {
773 addr ^= 2;
774 }
775 }
776
777 return addr;
778 }
779
780 #endif /* !CONFIG_USER_ONLY */
781 #endif /* CONFIG_TCG */
782
783 /*
784 * Check for traps to "powerdown debug" registers, which are controlled
785 * by MDCR.TDOSA
786 */
787 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
788 bool isread)
789 {
790 int el = arm_current_el(env);
791 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
792 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
793 (arm_hcr_el2_eff(env) & HCR_TGE);
794
795 if (el < 2 && mdcr_el2_tdosa) {
796 return CP_ACCESS_TRAP_EL2;
797 }
798 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
799 return CP_ACCESS_TRAP_EL3;
800 }
801 return CP_ACCESS_OK;
802 }
803
804 /*
805 * Check for traps to "debug ROM" registers, which are controlled
806 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
807 */
808 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
809 bool isread)
810 {
811 int el = arm_current_el(env);
812 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
813 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
814 (arm_hcr_el2_eff(env) & HCR_TGE);
815
816 if (el < 2 && mdcr_el2_tdra) {
817 return CP_ACCESS_TRAP_EL2;
818 }
819 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
820 return CP_ACCESS_TRAP_EL3;
821 }
822 return CP_ACCESS_OK;
823 }
824
825 /*
826 * Check for traps to general debug registers, which are controlled
827 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
828 */
829 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
830 bool isread)
831 {
832 int el = arm_current_el(env);
833 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
834 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
835 (arm_hcr_el2_eff(env) & HCR_TGE);
836
837 if (el < 2 && mdcr_el2_tda) {
838 return CP_ACCESS_TRAP_EL2;
839 }
840 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
841 return CP_ACCESS_TRAP_EL3;
842 }
843 return CP_ACCESS_OK;
844 }
845
846 /*
847 * Check for traps to Debug Comms Channel registers. If FEAT_FGT
848 * is implemented then these are controlled by MDCR_EL2.TDCC for
849 * EL2 and MDCR_EL3.TDCC for EL3. They are also controlled by
850 * the general debug access trap bits MDCR_EL2.TDA and MDCR_EL3.TDA.
851 * For EL0, they are also controlled by MDSCR_EL1.TDCC.
852 */
853 static CPAccessResult access_tdcc(CPUARMState *env, const ARMCPRegInfo *ri,
854 bool isread)
855 {
856 int el = arm_current_el(env);
857 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
858 bool mdscr_el1_tdcc = extract32(env->cp15.mdscr_el1, 12, 1);
859 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
860 (arm_hcr_el2_eff(env) & HCR_TGE);
861 bool mdcr_el2_tdcc = cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
862 (mdcr_el2 & MDCR_TDCC);
863 bool mdcr_el3_tdcc = cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
864 (env->cp15.mdcr_el3 & MDCR_TDCC);
865
866 if (el < 1 && mdscr_el1_tdcc) {
867 return CP_ACCESS_TRAP;
868 }
869 if (el < 2 && (mdcr_el2_tda || mdcr_el2_tdcc)) {
870 return CP_ACCESS_TRAP_EL2;
871 }
872 if (el < 3 && ((env->cp15.mdcr_el3 & MDCR_TDA) || mdcr_el3_tdcc)) {
873 return CP_ACCESS_TRAP_EL3;
874 }
875 return CP_ACCESS_OK;
876 }
877
878 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
879 uint64_t value)
880 {
881 /*
882 * Writes to OSLAR_EL1 may update the OS lock status, which can be
883 * read via a bit in OSLSR_EL1.
884 */
885 int oslock;
886
887 if (ri->state == ARM_CP_STATE_AA32) {
888 oslock = (value == 0xC5ACCE55);
889 } else {
890 oslock = value & 1;
891 }
892
893 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
894 }
895
896 static void osdlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
897 uint64_t value)
898 {
899 ARMCPU *cpu = env_archcpu(env);
900 /*
901 * Only defined bit is bit 0 (DLK); if Feat_DoubleLock is not
902 * implemented this is RAZ/WI.
903 */
904 if(arm_feature(env, ARM_FEATURE_AARCH64)
905 ? cpu_isar_feature(aa64_doublelock, cpu)
906 : cpu_isar_feature(aa32_doublelock, cpu)) {
907 env->cp15.osdlr_el1 = value & 1;
908 }
909 }
910
911 static void dbgclaimset_write(CPUARMState *env, const ARMCPRegInfo *ri,
912 uint64_t value)
913 {
914 env->cp15.dbgclaim |= (value & 0xFF);
915 }
916
917 static uint64_t dbgclaimset_read(CPUARMState *env, const ARMCPRegInfo *ri)
918 {
919 /* CLAIM bits are RAO */
920 return 0xFF;
921 }
922
923 static void dbgclaimclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
924 uint64_t value)
925 {
926 env->cp15.dbgclaim &= ~(value & 0xFF);
927 }
928
929 static const ARMCPRegInfo debug_cp_reginfo[] = {
930 /*
931 * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
932 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
933 * unlike DBGDRAR it is never accessible from EL0.
934 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
935 * accessor.
936 */
937 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
938 .access = PL0_R, .accessfn = access_tdra,
939 .type = ARM_CP_CONST, .resetvalue = 0 },
940 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
941 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
942 .access = PL1_R, .accessfn = access_tdra,
943 .type = ARM_CP_CONST, .resetvalue = 0 },
944 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
945 .access = PL0_R, .accessfn = access_tdra,
946 .type = ARM_CP_CONST, .resetvalue = 0 },
947 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
948 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
949 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
950 .access = PL1_RW, .accessfn = access_tda,
951 .fgt = FGT_MDSCR_EL1,
952 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
953 .resetvalue = 0 },
954 /*
955 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external
956 * Debug Communication Channel is not implemented.
957 */
958 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
959 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
960 .access = PL0_R, .accessfn = access_tdcc,
961 .type = ARM_CP_CONST, .resetvalue = 0 },
962 /*
963 * These registers belong to the Debug Communications Channel,
964 * which is not implemented. However we implement RAZ/WI behaviour
965 * with trapping to prevent spurious SIGILLs if the guest OS does
966 * access them as the support cannot be probed for.
967 */
968 { .name = "OSDTRRX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
969 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 2,
970 .access = PL1_RW, .accessfn = access_tdcc,
971 .type = ARM_CP_CONST, .resetvalue = 0 },
972 { .name = "OSDTRTX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
973 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
974 .access = PL1_RW, .accessfn = access_tdcc,
975 .type = ARM_CP_CONST, .resetvalue = 0 },
976 /* DBGDTRTX_EL0/DBGDTRRX_EL0 depend on direction */
977 { .name = "DBGDTR_EL0", .state = ARM_CP_STATE_BOTH, .cp = 14,
978 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 5, .opc2 = 0,
979 .access = PL0_RW, .accessfn = access_tdcc,
980 .type = ARM_CP_CONST, .resetvalue = 0 },
981 /*
982 * OSECCR_EL1 provides a mechanism for an operating system
983 * to access the contents of EDECCR. EDECCR is not implemented though,
984 * as is the rest of external device mechanism.
985 */
986 { .name = "OSECCR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
987 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
988 .access = PL1_RW, .accessfn = access_tda,
989 .fgt = FGT_OSECCR_EL1,
990 .type = ARM_CP_CONST, .resetvalue = 0 },
991 /*
992 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as
993 * it is unlikely a guest will care.
994 * We don't implement the configurable EL0 access.
995 */
996 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
997 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
998 .type = ARM_CP_ALIAS,
999 .access = PL1_R, .accessfn = access_tda,
1000 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
1001 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
1002 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1003 .access = PL1_W, .type = ARM_CP_NO_RAW,
1004 .accessfn = access_tdosa,
1005 .fgt = FGT_OSLAR_EL1,
1006 .writefn = oslar_write },
1007 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
1008 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
1009 .access = PL1_R, .resetvalue = 10,
1010 .accessfn = access_tdosa,
1011 .fgt = FGT_OSLSR_EL1,
1012 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
1013 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
1014 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
1015 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
1016 .access = PL1_RW, .accessfn = access_tdosa,
1017 .fgt = FGT_OSDLR_EL1,
1018 .writefn = osdlr_write,
1019 .fieldoffset = offsetof(CPUARMState, cp15.osdlr_el1) },
1020 /*
1021 * Dummy DBGVCR: Linux wants to clear this on startup, but we don't
1022 * implement vector catch debug events yet.
1023 */
1024 { .name = "DBGVCR",
1025 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
1026 .access = PL1_RW, .accessfn = access_tda,
1027 .type = ARM_CP_NOP },
1028 /*
1029 * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
1030 * to save and restore a 32-bit guest's DBGVCR)
1031 */
1032 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
1033 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
1034 .access = PL2_RW, .accessfn = access_tda,
1035 .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
1036 /*
1037 * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
1038 * Channel but Linux may try to access this register. The 32-bit
1039 * alias is DBGDCCINT.
1040 */
1041 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
1042 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
1043 .access = PL1_RW, .accessfn = access_tdcc,
1044 .type = ARM_CP_NOP },
1045 /*
1046 * Dummy DBGCLAIM registers.
1047 * "The architecture does not define any functionality for the CLAIM tag bits.",
1048 * so we only keep the raw bits
1049 */
1050 { .name = "DBGCLAIMSET_EL1", .state = ARM_CP_STATE_BOTH,
1051 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 6,
1052 .type = ARM_CP_ALIAS,
1053 .access = PL1_RW, .accessfn = access_tda,
1054 .fgt = FGT_DBGCLAIM,
1055 .writefn = dbgclaimset_write, .readfn = dbgclaimset_read },
1056 { .name = "DBGCLAIMCLR_EL1", .state = ARM_CP_STATE_BOTH,
1057 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 6,
1058 .access = PL1_RW, .accessfn = access_tda,
1059 .fgt = FGT_DBGCLAIM,
1060 .writefn = dbgclaimclr_write, .raw_writefn = raw_write,
1061 .fieldoffset = offsetof(CPUARMState, cp15.dbgclaim) },
1062 };
1063
1064 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
1065 /* 64 bit access versions of the (dummy) debug registers */
1066 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1067 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
1068 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1069 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
1070 };
1071
1072 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1073 uint64_t value)
1074 {
1075 ARMCPU *cpu = env_archcpu(env);
1076 int i = ri->crm;
1077
1078 /*
1079 * Bits [1:0] are RES0.
1080 *
1081 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
1082 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
1083 * they contain the value written. It is CONSTRAINED UNPREDICTABLE
1084 * whether the RESS bits are ignored when comparing an address.
1085 *
1086 * Therefore we are allowed to compare the entire register, which lets
1087 * us avoid considering whether or not FEAT_LVA is actually enabled.
1088 */
1089 value &= ~3ULL;
1090
1091 raw_write(env, ri, value);
1092 if (tcg_enabled()) {
1093 hw_watchpoint_update(cpu, i);
1094 }
1095 }
1096
1097 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1098 uint64_t value)
1099 {
1100 ARMCPU *cpu = env_archcpu(env);
1101 int i = ri->crm;
1102
1103 raw_write(env, ri, value);
1104 if (tcg_enabled()) {
1105 hw_watchpoint_update(cpu, i);
1106 }
1107 }
1108
1109 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1110 uint64_t value)
1111 {
1112 ARMCPU *cpu = env_archcpu(env);
1113 int i = ri->crm;
1114
1115 raw_write(env, ri, value);
1116 if (tcg_enabled()) {
1117 hw_breakpoint_update(cpu, i);
1118 }
1119 }
1120
1121 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1122 uint64_t value)
1123 {
1124 ARMCPU *cpu = env_archcpu(env);
1125 int i = ri->crm;
1126
1127 /*
1128 * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
1129 * copy of BAS[0].
1130 */
1131 value = deposit64(value, 6, 1, extract64(value, 5, 1));
1132 value = deposit64(value, 8, 1, extract64(value, 7, 1));
1133
1134 raw_write(env, ri, value);
1135 if (tcg_enabled()) {
1136 hw_breakpoint_update(cpu, i);
1137 }
1138 }
1139
1140 void define_debug_regs(ARMCPU *cpu)
1141 {
1142 /*
1143 * Define v7 and v8 architectural debug registers.
1144 * These are just dummy implementations for now.
1145 */
1146 int i;
1147 int wrps, brps, ctx_cmps;
1148
1149 /*
1150 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
1151 * use AArch32. Given that bit 15 is RES1, if the value is 0 then
1152 * the register must not exist for this cpu.
1153 */
1154 if (cpu->isar.dbgdidr != 0) {
1155 ARMCPRegInfo dbgdidr = {
1156 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
1157 .opc1 = 0, .opc2 = 0,
1158 .access = PL0_R, .accessfn = access_tda,
1159 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
1160 };
1161 define_one_arm_cp_reg(cpu, &dbgdidr);
1162 }
1163
1164 /*
1165 * DBGDEVID is present in the v7 debug architecture if
1166 * DBGDIDR.DEVID_imp is 1 (bit 15); from v7.1 and on it is
1167 * mandatory (and bit 15 is RES1). DBGDEVID1 and DBGDEVID2 exist
1168 * from v7.1 of the debug architecture. Because no fields have yet
1169 * been defined in DBGDEVID2 (and quite possibly none will ever
1170 * be) we don't define an ARMISARegisters field for it.
1171 * These registers exist only if EL1 can use AArch32, but that
1172 * happens naturally because they are only PL1 accessible anyway.
1173 */
1174 if (extract32(cpu->isar.dbgdidr, 15, 1)) {
1175 ARMCPRegInfo dbgdevid = {
1176 .name = "DBGDEVID",
1177 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 2, .crn = 7,
1178 .access = PL1_R, .accessfn = access_tda,
1179 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid,
1180 };
1181 define_one_arm_cp_reg(cpu, &dbgdevid);
1182 }
1183 if (cpu_isar_feature(aa32_debugv7p1, cpu)) {
1184 ARMCPRegInfo dbgdevid12[] = {
1185 {
1186 .name = "DBGDEVID1",
1187 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 1, .crn = 7,
1188 .access = PL1_R, .accessfn = access_tda,
1189 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid1,
1190 }, {
1191 .name = "DBGDEVID2",
1192 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 0, .crn = 7,
1193 .access = PL1_R, .accessfn = access_tda,
1194 .type = ARM_CP_CONST, .resetvalue = 0,
1195 },
1196 };
1197 define_arm_cp_regs(cpu, dbgdevid12);
1198 }
1199
1200 brps = arm_num_brps(cpu);
1201 wrps = arm_num_wrps(cpu);
1202 ctx_cmps = arm_num_ctx_cmps(cpu);
1203
1204 assert(ctx_cmps <= brps);
1205
1206 define_arm_cp_regs(cpu, debug_cp_reginfo);
1207
1208 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
1209 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
1210 }
1211
1212 for (i = 0; i < brps; i++) {
1213 char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i);
1214 char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i);
1215 ARMCPRegInfo dbgregs[] = {
1216 { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH,
1217 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
1218 .access = PL1_RW, .accessfn = access_tda,
1219 .fgt = FGT_DBGBVRN_EL1,
1220 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
1221 .writefn = dbgbvr_write, .raw_writefn = raw_write
1222 },
1223 { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH,
1224 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
1225 .access = PL1_RW, .accessfn = access_tda,
1226 .fgt = FGT_DBGBCRN_EL1,
1227 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
1228 .writefn = dbgbcr_write, .raw_writefn = raw_write
1229 },
1230 };
1231 define_arm_cp_regs(cpu, dbgregs);
1232 g_free(dbgbvr_el1_name);
1233 g_free(dbgbcr_el1_name);
1234 }
1235
1236 for (i = 0; i < wrps; i++) {
1237 char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i);
1238 char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i);
1239 ARMCPRegInfo dbgregs[] = {
1240 { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH,
1241 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
1242 .access = PL1_RW, .accessfn = access_tda,
1243 .fgt = FGT_DBGWVRN_EL1,
1244 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
1245 .writefn = dbgwvr_write, .raw_writefn = raw_write
1246 },
1247 { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH,
1248 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
1249 .access = PL1_RW, .accessfn = access_tda,
1250 .fgt = FGT_DBGWCRN_EL1,
1251 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
1252 .writefn = dbgwcr_write, .raw_writefn = raw_write
1253 },
1254 };
1255 define_arm_cp_regs(cpu, dbgregs);
1256 g_free(dbgwvr_el1_name);
1257 g_free(dbgwcr_el1_name);
1258 }
1259 }