]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/helper-a64.c
target/arm: Implement FCMP for fp16
[mirror_qemu.git] / target / arm / helper-a64.c
1 /*
2 * AArch64 specific helpers
3 *
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/gdbstub.h"
23 #include "exec/helper-proto.h"
24 #include "qemu/host-utils.h"
25 #include "qemu/log.h"
26 #include "sysemu/sysemu.h"
27 #include "qemu/bitops.h"
28 #include "internals.h"
29 #include "qemu/crc32c.h"
30 #include "exec/exec-all.h"
31 #include "exec/cpu_ldst.h"
32 #include "qemu/int128.h"
33 #include "tcg.h"
34 #include "fpu/softfloat.h"
35 #include <zlib.h> /* For crc32 */
36
37 /* C2.4.7 Multiply and divide */
38 /* special cases for 0 and LLONG_MIN are mandated by the standard */
39 uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
40 {
41 if (den == 0) {
42 return 0;
43 }
44 return num / den;
45 }
46
47 int64_t HELPER(sdiv64)(int64_t num, int64_t den)
48 {
49 if (den == 0) {
50 return 0;
51 }
52 if (num == LLONG_MIN && den == -1) {
53 return LLONG_MIN;
54 }
55 return num / den;
56 }
57
58 uint64_t HELPER(rbit64)(uint64_t x)
59 {
60 return revbit64(x);
61 }
62
63 /* Convert a softfloat float_relation_ (as returned by
64 * the float*_compare functions) to the correct ARM
65 * NZCV flag state.
66 */
67 static inline uint32_t float_rel_to_flags(int res)
68 {
69 uint64_t flags;
70 switch (res) {
71 case float_relation_equal:
72 flags = PSTATE_Z | PSTATE_C;
73 break;
74 case float_relation_less:
75 flags = PSTATE_N;
76 break;
77 case float_relation_greater:
78 flags = PSTATE_C;
79 break;
80 case float_relation_unordered:
81 default:
82 flags = PSTATE_C | PSTATE_V;
83 break;
84 }
85 return flags;
86 }
87
88 uint64_t HELPER(vfp_cmph_a64)(float16 x, float16 y, void *fp_status)
89 {
90 return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
91 }
92
93 uint64_t HELPER(vfp_cmpeh_a64)(float16 x, float16 y, void *fp_status)
94 {
95 return float_rel_to_flags(float16_compare(x, y, fp_status));
96 }
97
98 uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
99 {
100 return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
101 }
102
103 uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
104 {
105 return float_rel_to_flags(float32_compare(x, y, fp_status));
106 }
107
108 uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
109 {
110 return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
111 }
112
113 uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
114 {
115 return float_rel_to_flags(float64_compare(x, y, fp_status));
116 }
117
118 float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
119 {
120 float_status *fpst = fpstp;
121
122 a = float32_squash_input_denormal(a, fpst);
123 b = float32_squash_input_denormal(b, fpst);
124
125 if ((float32_is_zero(a) && float32_is_infinity(b)) ||
126 (float32_is_infinity(a) && float32_is_zero(b))) {
127 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
128 return make_float32((1U << 30) |
129 ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
130 }
131 return float32_mul(a, b, fpst);
132 }
133
134 float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
135 {
136 float_status *fpst = fpstp;
137
138 a = float64_squash_input_denormal(a, fpst);
139 b = float64_squash_input_denormal(b, fpst);
140
141 if ((float64_is_zero(a) && float64_is_infinity(b)) ||
142 (float64_is_infinity(a) && float64_is_zero(b))) {
143 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
144 return make_float64((1ULL << 62) |
145 ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
146 }
147 return float64_mul(a, b, fpst);
148 }
149
150 uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
151 uint32_t rn, uint32_t numregs)
152 {
153 /* Helper function for SIMD TBL and TBX. We have to do the table
154 * lookup part for the 64 bits worth of indices we're passed in.
155 * result is the initial results vector (either zeroes for TBL
156 * or some guest values for TBX), rn the register number where
157 * the table starts, and numregs the number of registers in the table.
158 * We return the results of the lookups.
159 */
160 int shift;
161
162 for (shift = 0; shift < 64; shift += 8) {
163 int index = extract64(indices, shift, 8);
164 if (index < 16 * numregs) {
165 /* Convert index (a byte offset into the virtual table
166 * which is a series of 128-bit vectors concatenated)
167 * into the correct register element plus a bit offset
168 * into that element, bearing in mind that the table
169 * can wrap around from V31 to V0.
170 */
171 int elt = (rn * 2 + (index >> 3)) % 64;
172 int bitidx = (index & 7) * 8;
173 uint64_t *q = aa64_vfp_qreg(env, elt >> 1);
174 uint64_t val = extract64(q[elt & 1], bitidx, 8);
175
176 result = deposit64(result, shift, 8, val);
177 }
178 }
179 return result;
180 }
181
182 /* 64bit/double versions of the neon float compare functions */
183 uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
184 {
185 float_status *fpst = fpstp;
186 return -float64_eq_quiet(a, b, fpst);
187 }
188
189 uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
190 {
191 float_status *fpst = fpstp;
192 return -float64_le(b, a, fpst);
193 }
194
195 uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
196 {
197 float_status *fpst = fpstp;
198 return -float64_lt(b, a, fpst);
199 }
200
201 /* Reciprocal step and sqrt step. Note that unlike the A32/T32
202 * versions, these do a fully fused multiply-add or
203 * multiply-add-and-halve.
204 */
205 #define float16_two make_float16(0x4000)
206 #define float16_three make_float16(0x4200)
207 #define float16_one_point_five make_float16(0x3e00)
208
209 #define float32_two make_float32(0x40000000)
210 #define float32_three make_float32(0x40400000)
211 #define float32_one_point_five make_float32(0x3fc00000)
212
213 #define float64_two make_float64(0x4000000000000000ULL)
214 #define float64_three make_float64(0x4008000000000000ULL)
215 #define float64_one_point_five make_float64(0x3FF8000000000000ULL)
216
217 float16 HELPER(recpsf_f16)(float16 a, float16 b, void *fpstp)
218 {
219 float_status *fpst = fpstp;
220
221 a = float16_squash_input_denormal(a, fpst);
222 b = float16_squash_input_denormal(b, fpst);
223
224 a = float16_chs(a);
225 if ((float16_is_infinity(a) && float16_is_zero(b)) ||
226 (float16_is_infinity(b) && float16_is_zero(a))) {
227 return float16_two;
228 }
229 return float16_muladd(a, b, float16_two, 0, fpst);
230 }
231
232 float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
233 {
234 float_status *fpst = fpstp;
235
236 a = float32_squash_input_denormal(a, fpst);
237 b = float32_squash_input_denormal(b, fpst);
238
239 a = float32_chs(a);
240 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
241 (float32_is_infinity(b) && float32_is_zero(a))) {
242 return float32_two;
243 }
244 return float32_muladd(a, b, float32_two, 0, fpst);
245 }
246
247 float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
248 {
249 float_status *fpst = fpstp;
250
251 a = float64_squash_input_denormal(a, fpst);
252 b = float64_squash_input_denormal(b, fpst);
253
254 a = float64_chs(a);
255 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
256 (float64_is_infinity(b) && float64_is_zero(a))) {
257 return float64_two;
258 }
259 return float64_muladd(a, b, float64_two, 0, fpst);
260 }
261
262 float16 HELPER(rsqrtsf_f16)(float16 a, float16 b, void *fpstp)
263 {
264 float_status *fpst = fpstp;
265
266 a = float16_squash_input_denormal(a, fpst);
267 b = float16_squash_input_denormal(b, fpst);
268
269 a = float16_chs(a);
270 if ((float16_is_infinity(a) && float16_is_zero(b)) ||
271 (float16_is_infinity(b) && float16_is_zero(a))) {
272 return float16_one_point_five;
273 }
274 return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst);
275 }
276
277 float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
278 {
279 float_status *fpst = fpstp;
280
281 a = float32_squash_input_denormal(a, fpst);
282 b = float32_squash_input_denormal(b, fpst);
283
284 a = float32_chs(a);
285 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
286 (float32_is_infinity(b) && float32_is_zero(a))) {
287 return float32_one_point_five;
288 }
289 return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
290 }
291
292 float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
293 {
294 float_status *fpst = fpstp;
295
296 a = float64_squash_input_denormal(a, fpst);
297 b = float64_squash_input_denormal(b, fpst);
298
299 a = float64_chs(a);
300 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
301 (float64_is_infinity(b) && float64_is_zero(a))) {
302 return float64_one_point_five;
303 }
304 return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
305 }
306
307 /* Pairwise long add: add pairs of adjacent elements into
308 * double-width elements in the result (eg _s8 is an 8x8->16 op)
309 */
310 uint64_t HELPER(neon_addlp_s8)(uint64_t a)
311 {
312 uint64_t nsignmask = 0x0080008000800080ULL;
313 uint64_t wsignmask = 0x8000800080008000ULL;
314 uint64_t elementmask = 0x00ff00ff00ff00ffULL;
315 uint64_t tmp1, tmp2;
316 uint64_t res, signres;
317
318 /* Extract odd elements, sign extend each to a 16 bit field */
319 tmp1 = a & elementmask;
320 tmp1 ^= nsignmask;
321 tmp1 |= wsignmask;
322 tmp1 = (tmp1 - nsignmask) ^ wsignmask;
323 /* Ditto for the even elements */
324 tmp2 = (a >> 8) & elementmask;
325 tmp2 ^= nsignmask;
326 tmp2 |= wsignmask;
327 tmp2 = (tmp2 - nsignmask) ^ wsignmask;
328
329 /* calculate the result by summing bits 0..14, 16..22, etc,
330 * and then adjusting the sign bits 15, 23, etc manually.
331 * This ensures the addition can't overflow the 16 bit field.
332 */
333 signres = (tmp1 ^ tmp2) & wsignmask;
334 res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
335 res ^= signres;
336
337 return res;
338 }
339
340 uint64_t HELPER(neon_addlp_u8)(uint64_t a)
341 {
342 uint64_t tmp;
343
344 tmp = a & 0x00ff00ff00ff00ffULL;
345 tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
346 return tmp;
347 }
348
349 uint64_t HELPER(neon_addlp_s16)(uint64_t a)
350 {
351 int32_t reslo, reshi;
352
353 reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
354 reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
355
356 return (uint32_t)reslo | (((uint64_t)reshi) << 32);
357 }
358
359 uint64_t HELPER(neon_addlp_u16)(uint64_t a)
360 {
361 uint64_t tmp;
362
363 tmp = a & 0x0000ffff0000ffffULL;
364 tmp += (a >> 16) & 0x0000ffff0000ffffULL;
365 return tmp;
366 }
367
368 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
369 float16 HELPER(frecpx_f16)(float16 a, void *fpstp)
370 {
371 float_status *fpst = fpstp;
372 uint16_t val16, sbit;
373 int16_t exp;
374
375 if (float16_is_any_nan(a)) {
376 float16 nan = a;
377 if (float16_is_signaling_nan(a, fpst)) {
378 float_raise(float_flag_invalid, fpst);
379 nan = float16_maybe_silence_nan(a, fpst);
380 }
381 if (fpst->default_nan_mode) {
382 nan = float16_default_nan(fpst);
383 }
384 return nan;
385 }
386
387 val16 = float16_val(a);
388 sbit = 0x8000 & val16;
389 exp = extract32(val16, 10, 5);
390
391 if (exp == 0) {
392 return make_float16(deposit32(sbit, 10, 5, 0x1e));
393 } else {
394 return make_float16(deposit32(sbit, 10, 5, ~exp));
395 }
396 }
397
398 float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
399 {
400 float_status *fpst = fpstp;
401 uint32_t val32, sbit;
402 int32_t exp;
403
404 if (float32_is_any_nan(a)) {
405 float32 nan = a;
406 if (float32_is_signaling_nan(a, fpst)) {
407 float_raise(float_flag_invalid, fpst);
408 nan = float32_maybe_silence_nan(a, fpst);
409 }
410 if (fpst->default_nan_mode) {
411 nan = float32_default_nan(fpst);
412 }
413 return nan;
414 }
415
416 val32 = float32_val(a);
417 sbit = 0x80000000ULL & val32;
418 exp = extract32(val32, 23, 8);
419
420 if (exp == 0) {
421 return make_float32(sbit | (0xfe << 23));
422 } else {
423 return make_float32(sbit | (~exp & 0xff) << 23);
424 }
425 }
426
427 float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
428 {
429 float_status *fpst = fpstp;
430 uint64_t val64, sbit;
431 int64_t exp;
432
433 if (float64_is_any_nan(a)) {
434 float64 nan = a;
435 if (float64_is_signaling_nan(a, fpst)) {
436 float_raise(float_flag_invalid, fpst);
437 nan = float64_maybe_silence_nan(a, fpst);
438 }
439 if (fpst->default_nan_mode) {
440 nan = float64_default_nan(fpst);
441 }
442 return nan;
443 }
444
445 val64 = float64_val(a);
446 sbit = 0x8000000000000000ULL & val64;
447 exp = extract64(float64_val(a), 52, 11);
448
449 if (exp == 0) {
450 return make_float64(sbit | (0x7feULL << 52));
451 } else {
452 return make_float64(sbit | (~exp & 0x7ffULL) << 52);
453 }
454 }
455
456 float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
457 {
458 /* Von Neumann rounding is implemented by using round-to-zero
459 * and then setting the LSB of the result if Inexact was raised.
460 */
461 float32 r;
462 float_status *fpst = &env->vfp.fp_status;
463 float_status tstat = *fpst;
464 int exflags;
465
466 set_float_rounding_mode(float_round_to_zero, &tstat);
467 set_float_exception_flags(0, &tstat);
468 r = float64_to_float32(a, &tstat);
469 r = float32_maybe_silence_nan(r, &tstat);
470 exflags = get_float_exception_flags(&tstat);
471 if (exflags & float_flag_inexact) {
472 r = make_float32(float32_val(r) | 1);
473 }
474 exflags |= get_float_exception_flags(fpst);
475 set_float_exception_flags(exflags, fpst);
476 return r;
477 }
478
479 /* 64-bit versions of the CRC helpers. Note that although the operation
480 * (and the prototypes of crc32c() and crc32() mean that only the bottom
481 * 32 bits of the accumulator and result are used, we pass and return
482 * uint64_t for convenience of the generated code. Unlike the 32-bit
483 * instruction set versions, val may genuinely have 64 bits of data in it.
484 * The upper bytes of val (above the number specified by 'bytes') must have
485 * been zeroed out by the caller.
486 */
487 uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
488 {
489 uint8_t buf[8];
490
491 stq_le_p(buf, val);
492
493 /* zlib crc32 converts the accumulator and output to one's complement. */
494 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
495 }
496
497 uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
498 {
499 uint8_t buf[8];
500
501 stq_le_p(buf, val);
502
503 /* Linux crc32c converts the output to one's complement. */
504 return crc32c(acc, buf, bytes) ^ 0xffffffff;
505 }
506
507 /* Returns 0 on success; 1 otherwise. */
508 static uint64_t do_paired_cmpxchg64_le(CPUARMState *env, uint64_t addr,
509 uint64_t new_lo, uint64_t new_hi,
510 bool parallel, uintptr_t ra)
511 {
512 Int128 oldv, cmpv, newv;
513 bool success;
514
515 cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
516 newv = int128_make128(new_lo, new_hi);
517
518 if (parallel) {
519 #ifndef CONFIG_ATOMIC128
520 cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
521 #else
522 int mem_idx = cpu_mmu_index(env, false);
523 TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
524 oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
525 success = int128_eq(oldv, cmpv);
526 #endif
527 } else {
528 uint64_t o0, o1;
529
530 #ifdef CONFIG_USER_ONLY
531 /* ??? Enforce alignment. */
532 uint64_t *haddr = g2h(addr);
533
534 helper_retaddr = ra;
535 o0 = ldq_le_p(haddr + 0);
536 o1 = ldq_le_p(haddr + 1);
537 oldv = int128_make128(o0, o1);
538
539 success = int128_eq(oldv, cmpv);
540 if (success) {
541 stq_le_p(haddr + 0, int128_getlo(newv));
542 stq_le_p(haddr + 1, int128_gethi(newv));
543 }
544 helper_retaddr = 0;
545 #else
546 int mem_idx = cpu_mmu_index(env, false);
547 TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
548 TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx);
549
550 o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra);
551 o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra);
552 oldv = int128_make128(o0, o1);
553
554 success = int128_eq(oldv, cmpv);
555 if (success) {
556 helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra);
557 helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra);
558 }
559 #endif
560 }
561
562 return !success;
563 }
564
565 uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr,
566 uint64_t new_lo, uint64_t new_hi)
567 {
568 return do_paired_cmpxchg64_le(env, addr, new_lo, new_hi, false, GETPC());
569 }
570
571 uint64_t HELPER(paired_cmpxchg64_le_parallel)(CPUARMState *env, uint64_t addr,
572 uint64_t new_lo, uint64_t new_hi)
573 {
574 return do_paired_cmpxchg64_le(env, addr, new_lo, new_hi, true, GETPC());
575 }
576
577 static uint64_t do_paired_cmpxchg64_be(CPUARMState *env, uint64_t addr,
578 uint64_t new_lo, uint64_t new_hi,
579 bool parallel, uintptr_t ra)
580 {
581 Int128 oldv, cmpv, newv;
582 bool success;
583
584 /* high and low need to be switched here because this is not actually a
585 * 128bit store but two doublewords stored consecutively
586 */
587 cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
588 newv = int128_make128(new_hi, new_lo);
589
590 if (parallel) {
591 #ifndef CONFIG_ATOMIC128
592 cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
593 #else
594 int mem_idx = cpu_mmu_index(env, false);
595 TCGMemOpIdx oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
596 oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
597 success = int128_eq(oldv, cmpv);
598 #endif
599 } else {
600 uint64_t o0, o1;
601
602 #ifdef CONFIG_USER_ONLY
603 /* ??? Enforce alignment. */
604 uint64_t *haddr = g2h(addr);
605
606 helper_retaddr = ra;
607 o1 = ldq_be_p(haddr + 0);
608 o0 = ldq_be_p(haddr + 1);
609 oldv = int128_make128(o0, o1);
610
611 success = int128_eq(oldv, cmpv);
612 if (success) {
613 stq_be_p(haddr + 0, int128_gethi(newv));
614 stq_be_p(haddr + 1, int128_getlo(newv));
615 }
616 helper_retaddr = 0;
617 #else
618 int mem_idx = cpu_mmu_index(env, false);
619 TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
620 TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx);
621
622 o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra);
623 o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra);
624 oldv = int128_make128(o0, o1);
625
626 success = int128_eq(oldv, cmpv);
627 if (success) {
628 helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra);
629 helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra);
630 }
631 #endif
632 }
633
634 return !success;
635 }
636
637 uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr,
638 uint64_t new_lo, uint64_t new_hi)
639 {
640 return do_paired_cmpxchg64_be(env, addr, new_lo, new_hi, false, GETPC());
641 }
642
643 uint64_t HELPER(paired_cmpxchg64_be_parallel)(CPUARMState *env, uint64_t addr,
644 uint64_t new_lo, uint64_t new_hi)
645 {
646 return do_paired_cmpxchg64_be(env, addr, new_lo, new_hi, true, GETPC());
647 }
648
649 /*
650 * AdvSIMD half-precision
651 */
652
653 #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
654
655 #define ADVSIMD_HALFOP(name) \
656 float16 ADVSIMD_HELPER(name, h)(float16 a, float16 b, void *fpstp) \
657 { \
658 float_status *fpst = fpstp; \
659 return float16_ ## name(a, b, fpst); \
660 }
661
662 ADVSIMD_HALFOP(add)
663 ADVSIMD_HALFOP(sub)
664 ADVSIMD_HALFOP(mul)
665 ADVSIMD_HALFOP(div)
666 ADVSIMD_HALFOP(min)
667 ADVSIMD_HALFOP(max)
668 ADVSIMD_HALFOP(minnum)
669 ADVSIMD_HALFOP(maxnum)
670
671 #define ADVSIMD_TWOHALFOP(name) \
672 uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
673 { \
674 float16 a1, a2, b1, b2; \
675 uint32_t r1, r2; \
676 float_status *fpst = fpstp; \
677 a1 = extract32(two_a, 0, 16); \
678 a2 = extract32(two_a, 16, 16); \
679 b1 = extract32(two_b, 0, 16); \
680 b2 = extract32(two_b, 16, 16); \
681 r1 = float16_ ## name(a1, b1, fpst); \
682 r2 = float16_ ## name(a2, b2, fpst); \
683 return deposit32(r1, 16, 16, r2); \
684 }
685
686 ADVSIMD_TWOHALFOP(add)
687 ADVSIMD_TWOHALFOP(sub)
688 ADVSIMD_TWOHALFOP(mul)
689 ADVSIMD_TWOHALFOP(div)
690 ADVSIMD_TWOHALFOP(min)
691 ADVSIMD_TWOHALFOP(max)
692 ADVSIMD_TWOHALFOP(minnum)
693 ADVSIMD_TWOHALFOP(maxnum)
694
695 /* Data processing - scalar floating-point and advanced SIMD */
696 static float16 float16_mulx(float16 a, float16 b, void *fpstp)
697 {
698 float_status *fpst = fpstp;
699
700 a = float16_squash_input_denormal(a, fpst);
701 b = float16_squash_input_denormal(b, fpst);
702
703 if ((float16_is_zero(a) && float16_is_infinity(b)) ||
704 (float16_is_infinity(a) && float16_is_zero(b))) {
705 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
706 return make_float16((1U << 14) |
707 ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
708 }
709 return float16_mul(a, b, fpst);
710 }
711
712 ADVSIMD_HALFOP(mulx)
713 ADVSIMD_TWOHALFOP(mulx)
714
715 /* fused multiply-accumulate */
716 float16 HELPER(advsimd_muladdh)(float16 a, float16 b, float16 c, void *fpstp)
717 {
718 float_status *fpst = fpstp;
719 return float16_muladd(a, b, c, 0, fpst);
720 }
721
722 uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
723 uint32_t two_c, void *fpstp)
724 {
725 float_status *fpst = fpstp;
726 float16 a1, a2, b1, b2, c1, c2;
727 uint32_t r1, r2;
728 a1 = extract32(two_a, 0, 16);
729 a2 = extract32(two_a, 16, 16);
730 b1 = extract32(two_b, 0, 16);
731 b2 = extract32(two_b, 16, 16);
732 c1 = extract32(two_c, 0, 16);
733 c2 = extract32(two_c, 16, 16);
734 r1 = float16_muladd(a1, b1, c1, 0, fpst);
735 r2 = float16_muladd(a2, b2, c2, 0, fpst);
736 return deposit32(r1, 16, 16, r2);
737 }
738
739 /*
740 * Floating point comparisons produce an integer result. Softfloat
741 * routines return float_relation types which we convert to the 0/-1
742 * Neon requires.
743 */
744
745 #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
746
747 uint32_t HELPER(advsimd_ceq_f16)(float16 a, float16 b, void *fpstp)
748 {
749 float_status *fpst = fpstp;
750 int compare = float16_compare_quiet(a, b, fpst);
751 return ADVSIMD_CMPRES(compare == float_relation_equal);
752 }
753
754 uint32_t HELPER(advsimd_cge_f16)(float16 a, float16 b, void *fpstp)
755 {
756 float_status *fpst = fpstp;
757 int compare = float16_compare(a, b, fpst);
758 return ADVSIMD_CMPRES(compare == float_relation_greater ||
759 compare == float_relation_equal);
760 }
761
762 uint32_t HELPER(advsimd_cgt_f16)(float16 a, float16 b, void *fpstp)
763 {
764 float_status *fpst = fpstp;
765 int compare = float16_compare(a, b, fpst);
766 return ADVSIMD_CMPRES(compare == float_relation_greater);
767 }
768
769 uint32_t HELPER(advsimd_acge_f16)(float16 a, float16 b, void *fpstp)
770 {
771 float_status *fpst = fpstp;
772 float16 f0 = float16_abs(a);
773 float16 f1 = float16_abs(b);
774 int compare = float16_compare(f0, f1, fpst);
775 return ADVSIMD_CMPRES(compare == float_relation_greater ||
776 compare == float_relation_equal);
777 }
778
779 uint32_t HELPER(advsimd_acgt_f16)(float16 a, float16 b, void *fpstp)
780 {
781 float_status *fpst = fpstp;
782 float16 f0 = float16_abs(a);
783 float16 f1 = float16_abs(b);
784 int compare = float16_compare(f0, f1, fpst);
785 return ADVSIMD_CMPRES(compare == float_relation_greater);
786 }
787
788 /* round to integral */
789 float16 HELPER(advsimd_rinth_exact)(float16 x, void *fp_status)
790 {
791 return float16_round_to_int(x, fp_status);
792 }
793
794 float16 HELPER(advsimd_rinth)(float16 x, void *fp_status)
795 {
796 int old_flags = get_float_exception_flags(fp_status), new_flags;
797 float16 ret;
798
799 ret = float16_round_to_int(x, fp_status);
800
801 /* Suppress any inexact exceptions the conversion produced */
802 if (!(old_flags & float_flag_inexact)) {
803 new_flags = get_float_exception_flags(fp_status);
804 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
805 }
806
807 return ret;
808 }
809
810 /*
811 * Half-precision floating point conversion functions
812 *
813 * There are a multitude of conversion functions with various
814 * different rounding modes. This is dealt with by the calling code
815 * setting the mode appropriately before calling the helper.
816 */
817
818 uint32_t HELPER(advsimd_f16tosinth)(float16 a, void *fpstp)
819 {
820 float_status *fpst = fpstp;
821
822 /* Invalid if we are passed a NaN */
823 if (float16_is_any_nan(a)) {
824 float_raise(float_flag_invalid, fpst);
825 return 0;
826 }
827 return float16_to_int16(a, fpst);
828 }
829
830 uint32_t HELPER(advsimd_f16touinth)(float16 a, void *fpstp)
831 {
832 float_status *fpst = fpstp;
833
834 /* Invalid if we are passed a NaN */
835 if (float16_is_any_nan(a)) {
836 float_raise(float_flag_invalid, fpst);
837 return 0;
838 }
839 return float16_to_uint16(a, fpst);
840 }
841
842 /*
843 * Square Root and Reciprocal square root
844 */
845
846 float16 HELPER(sqrt_f16)(float16 a, void *fpstp)
847 {
848 float_status *s = fpstp;
849
850 return float16_sqrt(a, s);
851 }
852
853