]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/helper.c
b29edb26af827e8cd5051d6298f192c3a8bfb432
[mirror_qemu.git] / target / arm / helper.c
1 /*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "exec/helper-proto.h"
15 #include "qemu/main-loop.h"
16 #include "qemu/timer.h"
17 #include "qemu/bitops.h"
18 #include "qemu/crc32c.h"
19 #include "qemu/qemu-print.h"
20 #include "exec/exec-all.h"
21 #include <zlib.h> /* For crc32 */
22 #include "hw/irq.h"
23 #include "sysemu/cpu-timers.h"
24 #include "sysemu/kvm.h"
25 #include "sysemu/tcg.h"
26 #include "qapi/error.h"
27 #include "qemu/guest-random.h"
28 #ifdef CONFIG_TCG
29 #include "semihosting/common-semi.h"
30 #endif
31 #include "cpregs.h"
32
33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
34
35 static void switch_mode(CPUARMState *env, int mode);
36
37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
38 {
39 assert(ri->fieldoffset);
40 if (cpreg_field_is_64bit(ri)) {
41 return CPREG_FIELD64(env, ri);
42 } else {
43 return CPREG_FIELD32(env, ri);
44 }
45 }
46
47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
48 {
49 assert(ri->fieldoffset);
50 if (cpreg_field_is_64bit(ri)) {
51 CPREG_FIELD64(env, ri) = value;
52 } else {
53 CPREG_FIELD32(env, ri) = value;
54 }
55 }
56
57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
58 {
59 return (char *)env + ri->fieldoffset;
60 }
61
62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
63 {
64 /* Raw read of a coprocessor register (as needed for migration, etc). */
65 if (ri->type & ARM_CP_CONST) {
66 return ri->resetvalue;
67 } else if (ri->raw_readfn) {
68 return ri->raw_readfn(env, ri);
69 } else if (ri->readfn) {
70 return ri->readfn(env, ri);
71 } else {
72 return raw_read(env, ri);
73 }
74 }
75
76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
77 uint64_t v)
78 {
79 /*
80 * Raw write of a coprocessor register (as needed for migration, etc).
81 * Note that constant registers are treated as write-ignored; the
82 * caller should check for success by whether a readback gives the
83 * value written.
84 */
85 if (ri->type & ARM_CP_CONST) {
86 return;
87 } else if (ri->raw_writefn) {
88 ri->raw_writefn(env, ri, v);
89 } else if (ri->writefn) {
90 ri->writefn(env, ri, v);
91 } else {
92 raw_write(env, ri, v);
93 }
94 }
95
96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
97 {
98 /*
99 * Return true if the regdef would cause an assertion if you called
100 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
101 * program bug for it not to have the NO_RAW flag).
102 * NB that returning false here doesn't necessarily mean that calling
103 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
104 * read/write access functions which are safe for raw use" from "has
105 * read/write access functions which have side effects but has forgotten
106 * to provide raw access functions".
107 * The tests here line up with the conditions in read/write_raw_cp_reg()
108 * and assertions in raw_read()/raw_write().
109 */
110 if ((ri->type & ARM_CP_CONST) ||
111 ri->fieldoffset ||
112 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
113 return false;
114 }
115 return true;
116 }
117
118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
119 {
120 /* Write the coprocessor state from cpu->env to the (index,value) list. */
121 int i;
122 bool ok = true;
123
124 for (i = 0; i < cpu->cpreg_array_len; i++) {
125 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
126 const ARMCPRegInfo *ri;
127 uint64_t newval;
128
129 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
130 if (!ri) {
131 ok = false;
132 continue;
133 }
134 if (ri->type & ARM_CP_NO_RAW) {
135 continue;
136 }
137
138 newval = read_raw_cp_reg(&cpu->env, ri);
139 if (kvm_sync) {
140 /*
141 * Only sync if the previous list->cpustate sync succeeded.
142 * Rather than tracking the success/failure state for every
143 * item in the list, we just recheck "does the raw write we must
144 * have made in write_list_to_cpustate() read back OK" here.
145 */
146 uint64_t oldval = cpu->cpreg_values[i];
147
148 if (oldval == newval) {
149 continue;
150 }
151
152 write_raw_cp_reg(&cpu->env, ri, oldval);
153 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
154 continue;
155 }
156
157 write_raw_cp_reg(&cpu->env, ri, newval);
158 }
159 cpu->cpreg_values[i] = newval;
160 }
161 return ok;
162 }
163
164 bool write_list_to_cpustate(ARMCPU *cpu)
165 {
166 int i;
167 bool ok = true;
168
169 for (i = 0; i < cpu->cpreg_array_len; i++) {
170 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
171 uint64_t v = cpu->cpreg_values[i];
172 const ARMCPRegInfo *ri;
173
174 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
175 if (!ri) {
176 ok = false;
177 continue;
178 }
179 if (ri->type & ARM_CP_NO_RAW) {
180 continue;
181 }
182 /*
183 * Write value and confirm it reads back as written
184 * (to catch read-only registers and partially read-only
185 * registers where the incoming migration value doesn't match)
186 */
187 write_raw_cp_reg(&cpu->env, ri, v);
188 if (read_raw_cp_reg(&cpu->env, ri) != v) {
189 ok = false;
190 }
191 }
192 return ok;
193 }
194
195 static void add_cpreg_to_list(gpointer key, gpointer opaque)
196 {
197 ARMCPU *cpu = opaque;
198 uint32_t regidx = (uintptr_t)key;
199 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
200
201 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
202 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
203 /* The value array need not be initialized at this point */
204 cpu->cpreg_array_len++;
205 }
206 }
207
208 static void count_cpreg(gpointer key, gpointer opaque)
209 {
210 ARMCPU *cpu = opaque;
211 const ARMCPRegInfo *ri;
212
213 ri = g_hash_table_lookup(cpu->cp_regs, key);
214
215 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
216 cpu->cpreg_array_len++;
217 }
218 }
219
220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
221 {
222 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
223 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
224
225 if (aidx > bidx) {
226 return 1;
227 }
228 if (aidx < bidx) {
229 return -1;
230 }
231 return 0;
232 }
233
234 void init_cpreg_list(ARMCPU *cpu)
235 {
236 /*
237 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
238 * Note that we require cpreg_tuples[] to be sorted by key ID.
239 */
240 GList *keys;
241 int arraylen;
242
243 keys = g_hash_table_get_keys(cpu->cp_regs);
244 keys = g_list_sort(keys, cpreg_key_compare);
245
246 cpu->cpreg_array_len = 0;
247
248 g_list_foreach(keys, count_cpreg, cpu);
249
250 arraylen = cpu->cpreg_array_len;
251 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
252 cpu->cpreg_values = g_new(uint64_t, arraylen);
253 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
254 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
256 cpu->cpreg_array_len = 0;
257
258 g_list_foreach(keys, add_cpreg_to_list, cpu);
259
260 assert(cpu->cpreg_array_len == arraylen);
261
262 g_list_free(keys);
263 }
264
265 /*
266 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
267 */
268 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
269 const ARMCPRegInfo *ri,
270 bool isread)
271 {
272 if (!is_a64(env) && arm_current_el(env) == 3 &&
273 arm_is_secure_below_el3(env)) {
274 return CP_ACCESS_TRAP_UNCATEGORIZED;
275 }
276 return CP_ACCESS_OK;
277 }
278
279 /*
280 * Some secure-only AArch32 registers trap to EL3 if used from
281 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
282 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
283 * We assume that the .access field is set to PL1_RW.
284 */
285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
286 const ARMCPRegInfo *ri,
287 bool isread)
288 {
289 if (arm_current_el(env) == 3) {
290 return CP_ACCESS_OK;
291 }
292 if (arm_is_secure_below_el3(env)) {
293 if (env->cp15.scr_el3 & SCR_EEL2) {
294 return CP_ACCESS_TRAP_EL2;
295 }
296 return CP_ACCESS_TRAP_EL3;
297 }
298 /* This will be EL1 NS and EL2 NS, which just UNDEF */
299 return CP_ACCESS_TRAP_UNCATEGORIZED;
300 }
301
302 /*
303 * Check for traps to performance monitor registers, which are controlled
304 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
305 */
306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
307 bool isread)
308 {
309 int el = arm_current_el(env);
310 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
311
312 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
313 return CP_ACCESS_TRAP_EL2;
314 }
315 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
316 return CP_ACCESS_TRAP_EL3;
317 }
318 return CP_ACCESS_OK;
319 }
320
321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
322 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
323 bool isread)
324 {
325 if (arm_current_el(env) == 1) {
326 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
327 if (arm_hcr_el2_eff(env) & trap) {
328 return CP_ACCESS_TRAP_EL2;
329 }
330 }
331 return CP_ACCESS_OK;
332 }
333
334 /* Check for traps from EL1 due to HCR_EL2.TSW. */
335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
336 bool isread)
337 {
338 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
339 return CP_ACCESS_TRAP_EL2;
340 }
341 return CP_ACCESS_OK;
342 }
343
344 /* Check for traps from EL1 due to HCR_EL2.TACR. */
345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
346 bool isread)
347 {
348 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
349 return CP_ACCESS_TRAP_EL2;
350 }
351 return CP_ACCESS_OK;
352 }
353
354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
356 bool isread)
357 {
358 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
359 return CP_ACCESS_TRAP_EL2;
360 }
361 return CP_ACCESS_OK;
362 }
363
364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
366 bool isread)
367 {
368 if (arm_current_el(env) == 1 &&
369 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
370 return CP_ACCESS_TRAP_EL2;
371 }
372 return CP_ACCESS_OK;
373 }
374
375 #ifdef TARGET_AARCH64
376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
378 bool isread)
379 {
380 if (arm_current_el(env) == 1 &&
381 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
382 return CP_ACCESS_TRAP_EL2;
383 }
384 return CP_ACCESS_OK;
385 }
386 #endif
387
388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
389 {
390 ARMCPU *cpu = env_archcpu(env);
391
392 raw_write(env, ri, value);
393 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
394 }
395
396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
397 {
398 ARMCPU *cpu = env_archcpu(env);
399
400 if (raw_read(env, ri) != value) {
401 /*
402 * Unlike real hardware the qemu TLB uses virtual addresses,
403 * not modified virtual addresses, so this causes a TLB flush.
404 */
405 tlb_flush(CPU(cpu));
406 raw_write(env, ri, value);
407 }
408 }
409
410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
411 uint64_t value)
412 {
413 ARMCPU *cpu = env_archcpu(env);
414
415 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
416 && !extended_addresses_enabled(env)) {
417 /*
418 * For VMSA (when not using the LPAE long descriptor page table
419 * format) this register includes the ASID, so do a TLB flush.
420 * For PMSA it is purely a process ID and no action is needed.
421 */
422 tlb_flush(CPU(cpu));
423 }
424 raw_write(env, ri, value);
425 }
426
427 static int alle1_tlbmask(CPUARMState *env)
428 {
429 /*
430 * Note that the 'ALL' scope must invalidate both stage 1 and
431 * stage 2 translations, whereas most other scopes only invalidate
432 * stage 1 translations.
433 */
434 return (ARMMMUIdxBit_E10_1 |
435 ARMMMUIdxBit_E10_1_PAN |
436 ARMMMUIdxBit_E10_0 |
437 ARMMMUIdxBit_Stage2 |
438 ARMMMUIdxBit_Stage2_S);
439 }
440
441
442 /* IS variants of TLB operations must affect all cores */
443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
444 uint64_t value)
445 {
446 CPUState *cs = env_cpu(env);
447
448 tlb_flush_all_cpus_synced(cs);
449 }
450
451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
452 uint64_t value)
453 {
454 CPUState *cs = env_cpu(env);
455
456 tlb_flush_all_cpus_synced(cs);
457 }
458
459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
460 uint64_t value)
461 {
462 CPUState *cs = env_cpu(env);
463
464 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
465 }
466
467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
468 uint64_t value)
469 {
470 CPUState *cs = env_cpu(env);
471
472 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
473 }
474
475 /*
476 * Non-IS variants of TLB operations are upgraded to
477 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
478 * force broadcast of these operations.
479 */
480 static bool tlb_force_broadcast(CPUARMState *env)
481 {
482 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
483 }
484
485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
486 uint64_t value)
487 {
488 /* Invalidate all (TLBIALL) */
489 CPUState *cs = env_cpu(env);
490
491 if (tlb_force_broadcast(env)) {
492 tlb_flush_all_cpus_synced(cs);
493 } else {
494 tlb_flush(cs);
495 }
496 }
497
498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
499 uint64_t value)
500 {
501 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
502 CPUState *cs = env_cpu(env);
503
504 value &= TARGET_PAGE_MASK;
505 if (tlb_force_broadcast(env)) {
506 tlb_flush_page_all_cpus_synced(cs, value);
507 } else {
508 tlb_flush_page(cs, value);
509 }
510 }
511
512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 uint64_t value)
514 {
515 /* Invalidate by ASID (TLBIASID) */
516 CPUState *cs = env_cpu(env);
517
518 if (tlb_force_broadcast(env)) {
519 tlb_flush_all_cpus_synced(cs);
520 } else {
521 tlb_flush(cs);
522 }
523 }
524
525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
526 uint64_t value)
527 {
528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
529 CPUState *cs = env_cpu(env);
530
531 value &= TARGET_PAGE_MASK;
532 if (tlb_force_broadcast(env)) {
533 tlb_flush_page_all_cpus_synced(cs, value);
534 } else {
535 tlb_flush_page(cs, value);
536 }
537 }
538
539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
540 uint64_t value)
541 {
542 CPUState *cs = env_cpu(env);
543
544 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
545 }
546
547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
548 uint64_t value)
549 {
550 CPUState *cs = env_cpu(env);
551
552 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
553 }
554
555
556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
557 uint64_t value)
558 {
559 CPUState *cs = env_cpu(env);
560
561 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
562 }
563
564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
566 {
567 CPUState *cs = env_cpu(env);
568
569 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
570 }
571
572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
573 uint64_t value)
574 {
575 CPUState *cs = env_cpu(env);
576 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
577
578 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
579 }
580
581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
582 uint64_t value)
583 {
584 CPUState *cs = env_cpu(env);
585 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
586
587 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
588 ARMMMUIdxBit_E2);
589 }
590
591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
592 uint64_t value)
593 {
594 CPUState *cs = env_cpu(env);
595 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
596
597 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
598 }
599
600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
601 uint64_t value)
602 {
603 CPUState *cs = env_cpu(env);
604 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
605
606 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
607 }
608
609 static const ARMCPRegInfo cp_reginfo[] = {
610 /*
611 * Define the secure and non-secure FCSE identifier CP registers
612 * separately because there is no secure bank in V8 (no _EL3). This allows
613 * the secure register to be properly reset and migrated. There is also no
614 * v8 EL1 version of the register so the non-secure instance stands alone.
615 */
616 { .name = "FCSEIDR",
617 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
618 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
619 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
620 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
621 { .name = "FCSEIDR_S",
622 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
623 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
624 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
625 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
626 /*
627 * Define the secure and non-secure context identifier CP registers
628 * separately because there is no secure bank in V8 (no _EL3). This allows
629 * the secure register to be properly reset and migrated. In the
630 * non-secure case, the 32-bit register will have reset and migration
631 * disabled during registration as it is handled by the 64-bit instance.
632 */
633 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
634 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
635 .access = PL1_RW, .accessfn = access_tvm_trvm,
636 .fgt = FGT_CONTEXTIDR_EL1,
637 .secure = ARM_CP_SECSTATE_NS,
638 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
639 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
640 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
641 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
642 .access = PL1_RW, .accessfn = access_tvm_trvm,
643 .secure = ARM_CP_SECSTATE_S,
644 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
645 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
646 };
647
648 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
649 /*
650 * NB: Some of these registers exist in v8 but with more precise
651 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
652 */
653 /* MMU Domain access control / MPU write buffer control */
654 { .name = "DACR",
655 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
656 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
657 .writefn = dacr_write, .raw_writefn = raw_write,
658 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
659 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
660 /*
661 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
662 * For v6 and v5, these mappings are overly broad.
663 */
664 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
665 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
666 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
667 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
668 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
669 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
670 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
671 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
672 /* Cache maintenance ops; some of this space may be overridden later. */
673 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
674 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
675 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
676 };
677
678 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
679 /*
680 * Not all pre-v6 cores implemented this WFI, so this is slightly
681 * over-broad.
682 */
683 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
684 .access = PL1_W, .type = ARM_CP_WFI },
685 };
686
687 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
688 /*
689 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
690 * is UNPREDICTABLE; we choose to NOP as most implementations do).
691 */
692 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
693 .access = PL1_W, .type = ARM_CP_WFI },
694 /*
695 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
696 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
697 * OMAPCP will override this space.
698 */
699 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
700 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
701 .resetvalue = 0 },
702 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
703 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
704 .resetvalue = 0 },
705 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
706 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
707 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
708 .resetvalue = 0 },
709 /*
710 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
711 * implementing it as RAZ means the "debug architecture version" bits
712 * will read as a reserved value, which should cause Linux to not try
713 * to use the debug hardware.
714 */
715 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
716 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
717 /*
718 * MMU TLB control. Note that the wildcarding means we cover not just
719 * the unified TLB ops but also the dside/iside/inner-shareable variants.
720 */
721 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
722 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
723 .type = ARM_CP_NO_RAW },
724 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
725 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
726 .type = ARM_CP_NO_RAW },
727 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
728 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
729 .type = ARM_CP_NO_RAW },
730 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
731 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
732 .type = ARM_CP_NO_RAW },
733 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
734 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
735 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
736 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
737 };
738
739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
740 uint64_t value)
741 {
742 uint32_t mask = 0;
743
744 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
745 if (!arm_feature(env, ARM_FEATURE_V8)) {
746 /*
747 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
748 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
749 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
750 */
751 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
752 /* VFP coprocessor: cp10 & cp11 [23:20] */
753 mask |= R_CPACR_ASEDIS_MASK |
754 R_CPACR_D32DIS_MASK |
755 R_CPACR_CP11_MASK |
756 R_CPACR_CP10_MASK;
757
758 if (!arm_feature(env, ARM_FEATURE_NEON)) {
759 /* ASEDIS [31] bit is RAO/WI */
760 value |= R_CPACR_ASEDIS_MASK;
761 }
762
763 /*
764 * VFPv3 and upwards with NEON implement 32 double precision
765 * registers (D0-D31).
766 */
767 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
768 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
769 value |= R_CPACR_D32DIS_MASK;
770 }
771 }
772 value &= mask;
773 }
774
775 /*
776 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
777 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
778 */
779 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
780 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
781 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
782 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
783 }
784
785 env->cp15.cpacr_el1 = value;
786 }
787
788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
789 {
790 /*
791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
793 */
794 uint64_t value = env->cp15.cpacr_el1;
795
796 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
797 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
798 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
799 }
800 return value;
801 }
802
803
804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
805 {
806 /*
807 * Call cpacr_write() so that we reset with the correct RAO bits set
808 * for our CPU features.
809 */
810 cpacr_write(env, ri, 0);
811 }
812
813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
814 bool isread)
815 {
816 if (arm_feature(env, ARM_FEATURE_V8)) {
817 /* Check if CPACR accesses are to be trapped to EL2 */
818 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
819 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
820 return CP_ACCESS_TRAP_EL2;
821 /* Check if CPACR accesses are to be trapped to EL3 */
822 } else if (arm_current_el(env) < 3 &&
823 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
824 return CP_ACCESS_TRAP_EL3;
825 }
826 }
827
828 return CP_ACCESS_OK;
829 }
830
831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
832 bool isread)
833 {
834 /* Check if CPTR accesses are set to trap to EL3 */
835 if (arm_current_el(env) == 2 &&
836 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
837 return CP_ACCESS_TRAP_EL3;
838 }
839
840 return CP_ACCESS_OK;
841 }
842
843 static const ARMCPRegInfo v6_cp_reginfo[] = {
844 /* prefetch by MVA in v6, NOP in v7 */
845 { .name = "MVA_prefetch",
846 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
847 .access = PL1_W, .type = ARM_CP_NOP },
848 /*
849 * We need to break the TB after ISB to execute self-modifying code
850 * correctly and also to take any pending interrupts immediately.
851 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
852 */
853 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
854 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
855 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
856 .access = PL0_W, .type = ARM_CP_NOP },
857 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
858 .access = PL0_W, .type = ARM_CP_NOP },
859 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
860 .access = PL1_RW, .accessfn = access_tvm_trvm,
861 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
862 offsetof(CPUARMState, cp15.ifar_ns) },
863 .resetvalue = 0, },
864 /*
865 * Watchpoint Fault Address Register : should actually only be present
866 * for 1136, 1176, 11MPCore.
867 */
868 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
869 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
870 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
871 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
872 .fgt = FGT_CPACR_EL1,
873 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
874 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
875 };
876
877 typedef struct pm_event {
878 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
879 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
880 bool (*supported)(CPUARMState *);
881 /*
882 * Retrieve the current count of the underlying event. The programmed
883 * counters hold a difference from the return value from this function
884 */
885 uint64_t (*get_count)(CPUARMState *);
886 /*
887 * Return how many nanoseconds it will take (at a minimum) for count events
888 * to occur. A negative value indicates the counter will never overflow, or
889 * that the counter has otherwise arranged for the overflow bit to be set
890 * and the PMU interrupt to be raised on overflow.
891 */
892 int64_t (*ns_per_count)(uint64_t);
893 } pm_event;
894
895 static bool event_always_supported(CPUARMState *env)
896 {
897 return true;
898 }
899
900 static uint64_t swinc_get_count(CPUARMState *env)
901 {
902 /*
903 * SW_INCR events are written directly to the pmevcntr's by writes to
904 * PMSWINC, so there is no underlying count maintained by the PMU itself
905 */
906 return 0;
907 }
908
909 static int64_t swinc_ns_per(uint64_t ignored)
910 {
911 return -1;
912 }
913
914 /*
915 * Return the underlying cycle count for the PMU cycle counters. If we're in
916 * usermode, simply return 0.
917 */
918 static uint64_t cycles_get_count(CPUARMState *env)
919 {
920 #ifndef CONFIG_USER_ONLY
921 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
922 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
923 #else
924 return cpu_get_host_ticks();
925 #endif
926 }
927
928 #ifndef CONFIG_USER_ONLY
929 static int64_t cycles_ns_per(uint64_t cycles)
930 {
931 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
932 }
933
934 static bool instructions_supported(CPUARMState *env)
935 {
936 return icount_enabled() == 1; /* Precise instruction counting */
937 }
938
939 static uint64_t instructions_get_count(CPUARMState *env)
940 {
941 return (uint64_t)icount_get_raw();
942 }
943
944 static int64_t instructions_ns_per(uint64_t icount)
945 {
946 return icount_to_ns((int64_t)icount);
947 }
948 #endif
949
950 static bool pmuv3p1_events_supported(CPUARMState *env)
951 {
952 /* For events which are supported in any v8.1 PMU */
953 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
954 }
955
956 static bool pmuv3p4_events_supported(CPUARMState *env)
957 {
958 /* For events which are supported in any v8.1 PMU */
959 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
960 }
961
962 static uint64_t zero_event_get_count(CPUARMState *env)
963 {
964 /* For events which on QEMU never fire, so their count is always zero */
965 return 0;
966 }
967
968 static int64_t zero_event_ns_per(uint64_t cycles)
969 {
970 /* An event which never fires can never overflow */
971 return -1;
972 }
973
974 static const pm_event pm_events[] = {
975 { .number = 0x000, /* SW_INCR */
976 .supported = event_always_supported,
977 .get_count = swinc_get_count,
978 .ns_per_count = swinc_ns_per,
979 },
980 #ifndef CONFIG_USER_ONLY
981 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
982 .supported = instructions_supported,
983 .get_count = instructions_get_count,
984 .ns_per_count = instructions_ns_per,
985 },
986 { .number = 0x011, /* CPU_CYCLES, Cycle */
987 .supported = event_always_supported,
988 .get_count = cycles_get_count,
989 .ns_per_count = cycles_ns_per,
990 },
991 #endif
992 { .number = 0x023, /* STALL_FRONTEND */
993 .supported = pmuv3p1_events_supported,
994 .get_count = zero_event_get_count,
995 .ns_per_count = zero_event_ns_per,
996 },
997 { .number = 0x024, /* STALL_BACKEND */
998 .supported = pmuv3p1_events_supported,
999 .get_count = zero_event_get_count,
1000 .ns_per_count = zero_event_ns_per,
1001 },
1002 { .number = 0x03c, /* STALL */
1003 .supported = pmuv3p4_events_supported,
1004 .get_count = zero_event_get_count,
1005 .ns_per_count = zero_event_ns_per,
1006 },
1007 };
1008
1009 /*
1010 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1011 * events (i.e. the statistical profiling extension), this implementation
1012 * should first be updated to something sparse instead of the current
1013 * supported_event_map[] array.
1014 */
1015 #define MAX_EVENT_ID 0x3c
1016 #define UNSUPPORTED_EVENT UINT16_MAX
1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1018
1019 /*
1020 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1021 * of ARM event numbers to indices in our pm_events array.
1022 *
1023 * Note: Events in the 0x40XX range are not currently supported.
1024 */
1025 void pmu_init(ARMCPU *cpu)
1026 {
1027 unsigned int i;
1028
1029 /*
1030 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1031 * events to them
1032 */
1033 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1034 supported_event_map[i] = UNSUPPORTED_EVENT;
1035 }
1036 cpu->pmceid0 = 0;
1037 cpu->pmceid1 = 0;
1038
1039 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1040 const pm_event *cnt = &pm_events[i];
1041 assert(cnt->number <= MAX_EVENT_ID);
1042 /* We do not currently support events in the 0x40xx range */
1043 assert(cnt->number <= 0x3f);
1044
1045 if (cnt->supported(&cpu->env)) {
1046 supported_event_map[cnt->number] = i;
1047 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1048 if (cnt->number & 0x20) {
1049 cpu->pmceid1 |= event_mask;
1050 } else {
1051 cpu->pmceid0 |= event_mask;
1052 }
1053 }
1054 }
1055 }
1056
1057 /*
1058 * Check at runtime whether a PMU event is supported for the current machine
1059 */
1060 static bool event_supported(uint16_t number)
1061 {
1062 if (number > MAX_EVENT_ID) {
1063 return false;
1064 }
1065 return supported_event_map[number] != UNSUPPORTED_EVENT;
1066 }
1067
1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1069 bool isread)
1070 {
1071 /*
1072 * Performance monitor registers user accessibility is controlled
1073 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1074 * trapping to EL2 or EL3 for other accesses.
1075 */
1076 int el = arm_current_el(env);
1077 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1078
1079 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1080 return CP_ACCESS_TRAP;
1081 }
1082 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1083 return CP_ACCESS_TRAP_EL2;
1084 }
1085 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1086 return CP_ACCESS_TRAP_EL3;
1087 }
1088
1089 return CP_ACCESS_OK;
1090 }
1091
1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1093 const ARMCPRegInfo *ri,
1094 bool isread)
1095 {
1096 /* ER: event counter read trap control */
1097 if (arm_feature(env, ARM_FEATURE_V8)
1098 && arm_current_el(env) == 0
1099 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1100 && isread) {
1101 return CP_ACCESS_OK;
1102 }
1103
1104 return pmreg_access(env, ri, isread);
1105 }
1106
1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1108 const ARMCPRegInfo *ri,
1109 bool isread)
1110 {
1111 /* SW: software increment write trap control */
1112 if (arm_feature(env, ARM_FEATURE_V8)
1113 && arm_current_el(env) == 0
1114 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1115 && !isread) {
1116 return CP_ACCESS_OK;
1117 }
1118
1119 return pmreg_access(env, ri, isread);
1120 }
1121
1122 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1123 const ARMCPRegInfo *ri,
1124 bool isread)
1125 {
1126 /* ER: event counter read trap control */
1127 if (arm_feature(env, ARM_FEATURE_V8)
1128 && arm_current_el(env) == 0
1129 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1130 return CP_ACCESS_OK;
1131 }
1132
1133 return pmreg_access(env, ri, isread);
1134 }
1135
1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1137 const ARMCPRegInfo *ri,
1138 bool isread)
1139 {
1140 /* CR: cycle counter read trap control */
1141 if (arm_feature(env, ARM_FEATURE_V8)
1142 && arm_current_el(env) == 0
1143 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1144 && isread) {
1145 return CP_ACCESS_OK;
1146 }
1147
1148 return pmreg_access(env, ri, isread);
1149 }
1150
1151 /*
1152 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1153 * We use these to decide whether we need to wrap a write to MDCR_EL2
1154 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1155 */
1156 #define MDCR_EL2_PMU_ENABLE_BITS \
1157 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1159
1160 /*
1161 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1162 * the current EL, security state, and register configuration.
1163 */
1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1165 {
1166 uint64_t filter;
1167 bool e, p, u, nsk, nsu, nsh, m;
1168 bool enabled, prohibited = false, filtered;
1169 bool secure = arm_is_secure(env);
1170 int el = arm_current_el(env);
1171 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1172 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1173
1174 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1175 return false;
1176 }
1177
1178 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1179 (counter < hpmn || counter == 31)) {
1180 e = env->cp15.c9_pmcr & PMCRE;
1181 } else {
1182 e = mdcr_el2 & MDCR_HPME;
1183 }
1184 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1185
1186 /* Is event counting prohibited? */
1187 if (el == 2 && (counter < hpmn || counter == 31)) {
1188 prohibited = mdcr_el2 & MDCR_HPMD;
1189 }
1190 if (secure) {
1191 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1192 }
1193
1194 if (counter == 31) {
1195 /*
1196 * The cycle counter defaults to running. PMCR.DP says "disable
1197 * the cycle counter when event counting is prohibited".
1198 * Some MDCR bits disable the cycle counter specifically.
1199 */
1200 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1201 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1202 if (secure) {
1203 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1204 }
1205 if (el == 2) {
1206 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1207 }
1208 }
1209 }
1210
1211 if (counter == 31) {
1212 filter = env->cp15.pmccfiltr_el0;
1213 } else {
1214 filter = env->cp15.c14_pmevtyper[counter];
1215 }
1216
1217 p = filter & PMXEVTYPER_P;
1218 u = filter & PMXEVTYPER_U;
1219 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1220 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1221 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1222 m = arm_el_is_aa64(env, 1) &&
1223 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1224
1225 if (el == 0) {
1226 filtered = secure ? u : u != nsu;
1227 } else if (el == 1) {
1228 filtered = secure ? p : p != nsk;
1229 } else if (el == 2) {
1230 filtered = !nsh;
1231 } else { /* EL3 */
1232 filtered = m != p;
1233 }
1234
1235 if (counter != 31) {
1236 /*
1237 * If not checking PMCCNTR, ensure the counter is setup to an event we
1238 * support
1239 */
1240 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1241 if (!event_supported(event)) {
1242 return false;
1243 }
1244 }
1245
1246 return enabled && !prohibited && !filtered;
1247 }
1248
1249 static void pmu_update_irq(CPUARMState *env)
1250 {
1251 ARMCPU *cpu = env_archcpu(env);
1252 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1253 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1254 }
1255
1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1257 {
1258 /*
1259 * Return true if the clock divider is enabled and the cycle counter
1260 * is supposed to tick only once every 64 clock cycles. This is
1261 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1262 * (64-bit) cycle counter PMCR.D has no effect.
1263 */
1264 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1265 }
1266
1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1268 {
1269 /* Return true if the specified event counter is configured to be 64 bit */
1270
1271 /* This isn't intended to be used with the cycle counter */
1272 assert(counter < 31);
1273
1274 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1275 return false;
1276 }
1277
1278 if (arm_feature(env, ARM_FEATURE_EL2)) {
1279 /*
1280 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1281 * current security state, so we don't use arm_mdcr_el2_eff() here.
1282 */
1283 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1284 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1285
1286 if (counter >= hpmn) {
1287 return hlp;
1288 }
1289 }
1290 return env->cp15.c9_pmcr & PMCRLP;
1291 }
1292
1293 /*
1294 * Ensure c15_ccnt is the guest-visible count so that operations such as
1295 * enabling/disabling the counter or filtering, modifying the count itself,
1296 * etc. can be done logically. This is essentially a no-op if the counter is
1297 * not enabled at the time of the call.
1298 */
1299 static void pmccntr_op_start(CPUARMState *env)
1300 {
1301 uint64_t cycles = cycles_get_count(env);
1302
1303 if (pmu_counter_enabled(env, 31)) {
1304 uint64_t eff_cycles = cycles;
1305 if (pmccntr_clockdiv_enabled(env)) {
1306 eff_cycles /= 64;
1307 }
1308
1309 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1310
1311 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1312 1ull << 63 : 1ull << 31;
1313 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1314 env->cp15.c9_pmovsr |= (1ULL << 31);
1315 pmu_update_irq(env);
1316 }
1317
1318 env->cp15.c15_ccnt = new_pmccntr;
1319 }
1320 env->cp15.c15_ccnt_delta = cycles;
1321 }
1322
1323 /*
1324 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1325 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1326 * pmccntr_op_start.
1327 */
1328 static void pmccntr_op_finish(CPUARMState *env)
1329 {
1330 if (pmu_counter_enabled(env, 31)) {
1331 #ifndef CONFIG_USER_ONLY
1332 /* Calculate when the counter will next overflow */
1333 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1334 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1335 remaining_cycles = (uint32_t)remaining_cycles;
1336 }
1337 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1338
1339 if (overflow_in > 0) {
1340 int64_t overflow_at;
1341
1342 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1343 overflow_in, &overflow_at)) {
1344 ARMCPU *cpu = env_archcpu(env);
1345 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1346 }
1347 }
1348 #endif
1349
1350 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1351 if (pmccntr_clockdiv_enabled(env)) {
1352 prev_cycles /= 64;
1353 }
1354 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1355 }
1356 }
1357
1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1359 {
1360
1361 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1362 uint64_t count = 0;
1363 if (event_supported(event)) {
1364 uint16_t event_idx = supported_event_map[event];
1365 count = pm_events[event_idx].get_count(env);
1366 }
1367
1368 if (pmu_counter_enabled(env, counter)) {
1369 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1370 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1371 1ULL << 63 : 1ULL << 31;
1372
1373 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1374 env->cp15.c9_pmovsr |= (1 << counter);
1375 pmu_update_irq(env);
1376 }
1377 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1378 }
1379 env->cp15.c14_pmevcntr_delta[counter] = count;
1380 }
1381
1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1383 {
1384 if (pmu_counter_enabled(env, counter)) {
1385 #ifndef CONFIG_USER_ONLY
1386 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1387 uint16_t event_idx = supported_event_map[event];
1388 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1389 int64_t overflow_in;
1390
1391 if (!pmevcntr_is_64_bit(env, counter)) {
1392 delta = (uint32_t)delta;
1393 }
1394 overflow_in = pm_events[event_idx].ns_per_count(delta);
1395
1396 if (overflow_in > 0) {
1397 int64_t overflow_at;
1398
1399 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1400 overflow_in, &overflow_at)) {
1401 ARMCPU *cpu = env_archcpu(env);
1402 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1403 }
1404 }
1405 #endif
1406
1407 env->cp15.c14_pmevcntr_delta[counter] -=
1408 env->cp15.c14_pmevcntr[counter];
1409 }
1410 }
1411
1412 void pmu_op_start(CPUARMState *env)
1413 {
1414 unsigned int i;
1415 pmccntr_op_start(env);
1416 for (i = 0; i < pmu_num_counters(env); i++) {
1417 pmevcntr_op_start(env, i);
1418 }
1419 }
1420
1421 void pmu_op_finish(CPUARMState *env)
1422 {
1423 unsigned int i;
1424 pmccntr_op_finish(env);
1425 for (i = 0; i < pmu_num_counters(env); i++) {
1426 pmevcntr_op_finish(env, i);
1427 }
1428 }
1429
1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1431 {
1432 pmu_op_start(&cpu->env);
1433 }
1434
1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1436 {
1437 pmu_op_finish(&cpu->env);
1438 }
1439
1440 void arm_pmu_timer_cb(void *opaque)
1441 {
1442 ARMCPU *cpu = opaque;
1443
1444 /*
1445 * Update all the counter values based on the current underlying counts,
1446 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1447 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1448 * counter may expire.
1449 */
1450 pmu_op_start(&cpu->env);
1451 pmu_op_finish(&cpu->env);
1452 }
1453
1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1455 uint64_t value)
1456 {
1457 pmu_op_start(env);
1458
1459 if (value & PMCRC) {
1460 /* The counter has been reset */
1461 env->cp15.c15_ccnt = 0;
1462 }
1463
1464 if (value & PMCRP) {
1465 unsigned int i;
1466 for (i = 0; i < pmu_num_counters(env); i++) {
1467 env->cp15.c14_pmevcntr[i] = 0;
1468 }
1469 }
1470
1471 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1472 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1473
1474 pmu_op_finish(env);
1475 }
1476
1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478 uint64_t value)
1479 {
1480 unsigned int i;
1481 uint64_t overflow_mask, new_pmswinc;
1482
1483 for (i = 0; i < pmu_num_counters(env); i++) {
1484 /* Increment a counter's count iff: */
1485 if ((value & (1 << i)) && /* counter's bit is set */
1486 /* counter is enabled and not filtered */
1487 pmu_counter_enabled(env, i) &&
1488 /* counter is SW_INCR */
1489 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1490 pmevcntr_op_start(env, i);
1491
1492 /*
1493 * Detect if this write causes an overflow since we can't predict
1494 * PMSWINC overflows like we can for other events
1495 */
1496 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1497
1498 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1499 1ULL << 63 : 1ULL << 31;
1500
1501 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1502 env->cp15.c9_pmovsr |= (1 << i);
1503 pmu_update_irq(env);
1504 }
1505
1506 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1507
1508 pmevcntr_op_finish(env, i);
1509 }
1510 }
1511 }
1512
1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1514 {
1515 uint64_t ret;
1516 pmccntr_op_start(env);
1517 ret = env->cp15.c15_ccnt;
1518 pmccntr_op_finish(env);
1519 return ret;
1520 }
1521
1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523 uint64_t value)
1524 {
1525 /*
1526 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1527 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1528 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1529 * accessed.
1530 */
1531 env->cp15.c9_pmselr = value & 0x1f;
1532 }
1533
1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1535 uint64_t value)
1536 {
1537 pmccntr_op_start(env);
1538 env->cp15.c15_ccnt = value;
1539 pmccntr_op_finish(env);
1540 }
1541
1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1543 uint64_t value)
1544 {
1545 uint64_t cur_val = pmccntr_read(env, NULL);
1546
1547 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1548 }
1549
1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1551 uint64_t value)
1552 {
1553 pmccntr_op_start(env);
1554 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1555 pmccntr_op_finish(env);
1556 }
1557
1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1559 uint64_t value)
1560 {
1561 pmccntr_op_start(env);
1562 /* M is not accessible from AArch32 */
1563 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1564 (value & PMCCFILTR);
1565 pmccntr_op_finish(env);
1566 }
1567
1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1569 {
1570 /* M is not visible in AArch32 */
1571 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1572 }
1573
1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1575 uint64_t value)
1576 {
1577 pmu_op_start(env);
1578 value &= pmu_counter_mask(env);
1579 env->cp15.c9_pmcnten |= value;
1580 pmu_op_finish(env);
1581 }
1582
1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1584 uint64_t value)
1585 {
1586 pmu_op_start(env);
1587 value &= pmu_counter_mask(env);
1588 env->cp15.c9_pmcnten &= ~value;
1589 pmu_op_finish(env);
1590 }
1591
1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1593 uint64_t value)
1594 {
1595 value &= pmu_counter_mask(env);
1596 env->cp15.c9_pmovsr &= ~value;
1597 pmu_update_irq(env);
1598 }
1599
1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1601 uint64_t value)
1602 {
1603 value &= pmu_counter_mask(env);
1604 env->cp15.c9_pmovsr |= value;
1605 pmu_update_irq(env);
1606 }
1607
1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1609 uint64_t value, const uint8_t counter)
1610 {
1611 if (counter == 31) {
1612 pmccfiltr_write(env, ri, value);
1613 } else if (counter < pmu_num_counters(env)) {
1614 pmevcntr_op_start(env, counter);
1615
1616 /*
1617 * If this counter's event type is changing, store the current
1618 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1619 * pmevcntr_op_finish has the correct baseline when it converts back to
1620 * a delta.
1621 */
1622 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1623 PMXEVTYPER_EVTCOUNT;
1624 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1625 if (old_event != new_event) {
1626 uint64_t count = 0;
1627 if (event_supported(new_event)) {
1628 uint16_t event_idx = supported_event_map[new_event];
1629 count = pm_events[event_idx].get_count(env);
1630 }
1631 env->cp15.c14_pmevcntr_delta[counter] = count;
1632 }
1633
1634 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1635 pmevcntr_op_finish(env, counter);
1636 }
1637 /*
1638 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1639 * PMSELR value is equal to or greater than the number of implemented
1640 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1641 */
1642 }
1643
1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1645 const uint8_t counter)
1646 {
1647 if (counter == 31) {
1648 return env->cp15.pmccfiltr_el0;
1649 } else if (counter < pmu_num_counters(env)) {
1650 return env->cp15.c14_pmevtyper[counter];
1651 } else {
1652 /*
1653 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1654 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1655 */
1656 return 0;
1657 }
1658 }
1659
1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1661 uint64_t value)
1662 {
1663 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1664 pmevtyper_write(env, ri, value, counter);
1665 }
1666
1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1668 uint64_t value)
1669 {
1670 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1671 env->cp15.c14_pmevtyper[counter] = value;
1672
1673 /*
1674 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1675 * pmu_op_finish calls when loading saved state for a migration. Because
1676 * we're potentially updating the type of event here, the value written to
1677 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1678 * different counter type. Therefore, we need to set this value to the
1679 * current count for the counter type we're writing so that pmu_op_finish
1680 * has the correct count for its calculation.
1681 */
1682 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1683 if (event_supported(event)) {
1684 uint16_t event_idx = supported_event_map[event];
1685 env->cp15.c14_pmevcntr_delta[counter] =
1686 pm_events[event_idx].get_count(env);
1687 }
1688 }
1689
1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1691 {
1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693 return pmevtyper_read(env, ri, counter);
1694 }
1695
1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1697 uint64_t value)
1698 {
1699 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1700 }
1701
1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1703 {
1704 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1705 }
1706
1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1708 uint64_t value, uint8_t counter)
1709 {
1710 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1711 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1712 value &= MAKE_64BIT_MASK(0, 32);
1713 }
1714 if (counter < pmu_num_counters(env)) {
1715 pmevcntr_op_start(env, counter);
1716 env->cp15.c14_pmevcntr[counter] = value;
1717 pmevcntr_op_finish(env, counter);
1718 }
1719 /*
1720 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1721 * are CONSTRAINED UNPREDICTABLE.
1722 */
1723 }
1724
1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1726 uint8_t counter)
1727 {
1728 if (counter < pmu_num_counters(env)) {
1729 uint64_t ret;
1730 pmevcntr_op_start(env, counter);
1731 ret = env->cp15.c14_pmevcntr[counter];
1732 pmevcntr_op_finish(env, counter);
1733 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1734 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1735 ret &= MAKE_64BIT_MASK(0, 32);
1736 }
1737 return ret;
1738 } else {
1739 /*
1740 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1741 * are CONSTRAINED UNPREDICTABLE.
1742 */
1743 return 0;
1744 }
1745 }
1746
1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1748 uint64_t value)
1749 {
1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751 pmevcntr_write(env, ri, value, counter);
1752 }
1753
1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1755 {
1756 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1757 return pmevcntr_read(env, ri, counter);
1758 }
1759
1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1761 uint64_t value)
1762 {
1763 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1764 assert(counter < pmu_num_counters(env));
1765 env->cp15.c14_pmevcntr[counter] = value;
1766 pmevcntr_write(env, ri, value, counter);
1767 }
1768
1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1770 {
1771 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1772 assert(counter < pmu_num_counters(env));
1773 return env->cp15.c14_pmevcntr[counter];
1774 }
1775
1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1777 uint64_t value)
1778 {
1779 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1780 }
1781
1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1783 {
1784 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1785 }
1786
1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1788 uint64_t value)
1789 {
1790 if (arm_feature(env, ARM_FEATURE_V8)) {
1791 env->cp15.c9_pmuserenr = value & 0xf;
1792 } else {
1793 env->cp15.c9_pmuserenr = value & 1;
1794 }
1795 }
1796
1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1798 uint64_t value)
1799 {
1800 /* We have no event counters so only the C bit can be changed */
1801 value &= pmu_counter_mask(env);
1802 env->cp15.c9_pminten |= value;
1803 pmu_update_irq(env);
1804 }
1805
1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807 uint64_t value)
1808 {
1809 value &= pmu_counter_mask(env);
1810 env->cp15.c9_pminten &= ~value;
1811 pmu_update_irq(env);
1812 }
1813
1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value)
1816 {
1817 /*
1818 * Note that even though the AArch64 view of this register has bits
1819 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1820 * architectural requirements for bits which are RES0 only in some
1821 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1822 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1823 */
1824 raw_write(env, ri, value & ~0x1FULL);
1825 }
1826
1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1828 {
1829 /* Begin with base v8.0 state. */
1830 uint64_t valid_mask = 0x3fff;
1831 ARMCPU *cpu = env_archcpu(env);
1832 uint64_t changed;
1833
1834 /*
1835 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1836 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1837 * Instead, choose the format based on the mode of EL3.
1838 */
1839 if (arm_el_is_aa64(env, 3)) {
1840 value |= SCR_FW | SCR_AW; /* RES1 */
1841 valid_mask &= ~SCR_NET; /* RES0 */
1842
1843 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1844 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1845 value |= SCR_RW; /* RAO/WI */
1846 }
1847 if (cpu_isar_feature(aa64_ras, cpu)) {
1848 valid_mask |= SCR_TERR;
1849 }
1850 if (cpu_isar_feature(aa64_lor, cpu)) {
1851 valid_mask |= SCR_TLOR;
1852 }
1853 if (cpu_isar_feature(aa64_pauth, cpu)) {
1854 valid_mask |= SCR_API | SCR_APK;
1855 }
1856 if (cpu_isar_feature(aa64_sel2, cpu)) {
1857 valid_mask |= SCR_EEL2;
1858 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1859 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1860 value |= SCR_NS;
1861 }
1862 if (cpu_isar_feature(aa64_mte, cpu)) {
1863 valid_mask |= SCR_ATA;
1864 }
1865 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1866 valid_mask |= SCR_ENSCXT;
1867 }
1868 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1869 valid_mask |= SCR_EASE | SCR_NMEA;
1870 }
1871 if (cpu_isar_feature(aa64_sme, cpu)) {
1872 valid_mask |= SCR_ENTP2;
1873 }
1874 if (cpu_isar_feature(aa64_hcx, cpu)) {
1875 valid_mask |= SCR_HXEN;
1876 }
1877 if (cpu_isar_feature(aa64_fgt, cpu)) {
1878 valid_mask |= SCR_FGTEN;
1879 }
1880 if (cpu_isar_feature(aa64_rme, cpu)) {
1881 valid_mask |= SCR_NSE | SCR_GPF;
1882 }
1883 } else {
1884 valid_mask &= ~(SCR_RW | SCR_ST);
1885 if (cpu_isar_feature(aa32_ras, cpu)) {
1886 valid_mask |= SCR_TERR;
1887 }
1888 }
1889
1890 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1891 valid_mask &= ~SCR_HCE;
1892
1893 /*
1894 * On ARMv7, SMD (or SCD as it is called in v7) is only
1895 * supported if EL2 exists. The bit is UNK/SBZP when
1896 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1897 * when EL2 is unavailable.
1898 * On ARMv8, this bit is always available.
1899 */
1900 if (arm_feature(env, ARM_FEATURE_V7) &&
1901 !arm_feature(env, ARM_FEATURE_V8)) {
1902 valid_mask &= ~SCR_SMD;
1903 }
1904 }
1905
1906 /* Clear all-context RES0 bits. */
1907 value &= valid_mask;
1908 changed = env->cp15.scr_el3 ^ value;
1909 env->cp15.scr_el3 = value;
1910
1911 /*
1912 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1913 * we must invalidate all TLBs below EL3.
1914 */
1915 if (changed & (SCR_NS | SCR_NSE)) {
1916 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1917 ARMMMUIdxBit_E20_0 |
1918 ARMMMUIdxBit_E10_1 |
1919 ARMMMUIdxBit_E20_2 |
1920 ARMMMUIdxBit_E10_1_PAN |
1921 ARMMMUIdxBit_E20_2_PAN |
1922 ARMMMUIdxBit_E2));
1923 }
1924 }
1925
1926 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1927 {
1928 /*
1929 * scr_write will set the RES1 bits on an AArch64-only CPU.
1930 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1931 */
1932 scr_write(env, ri, 0);
1933 }
1934
1935 static CPAccessResult access_tid4(CPUARMState *env,
1936 const ARMCPRegInfo *ri,
1937 bool isread)
1938 {
1939 if (arm_current_el(env) == 1 &&
1940 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1941 return CP_ACCESS_TRAP_EL2;
1942 }
1943
1944 return CP_ACCESS_OK;
1945 }
1946
1947 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1948 {
1949 ARMCPU *cpu = env_archcpu(env);
1950
1951 /*
1952 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1953 * bank
1954 */
1955 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1956 ri->secure & ARM_CP_SECSTATE_S);
1957
1958 return cpu->ccsidr[index];
1959 }
1960
1961 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1962 uint64_t value)
1963 {
1964 raw_write(env, ri, value & 0xf);
1965 }
1966
1967 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1968 {
1969 CPUState *cs = env_cpu(env);
1970 bool el1 = arm_current_el(env) == 1;
1971 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1972 uint64_t ret = 0;
1973
1974 if (hcr_el2 & HCR_IMO) {
1975 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1976 ret |= CPSR_I;
1977 }
1978 } else {
1979 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1980 ret |= CPSR_I;
1981 }
1982 }
1983
1984 if (hcr_el2 & HCR_FMO) {
1985 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1986 ret |= CPSR_F;
1987 }
1988 } else {
1989 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1990 ret |= CPSR_F;
1991 }
1992 }
1993
1994 if (hcr_el2 & HCR_AMO) {
1995 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1996 ret |= CPSR_A;
1997 }
1998 }
1999
2000 return ret;
2001 }
2002
2003 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2004 bool isread)
2005 {
2006 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2007 return CP_ACCESS_TRAP_EL2;
2008 }
2009
2010 return CP_ACCESS_OK;
2011 }
2012
2013 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2014 bool isread)
2015 {
2016 if (arm_feature(env, ARM_FEATURE_V8)) {
2017 return access_aa64_tid1(env, ri, isread);
2018 }
2019
2020 return CP_ACCESS_OK;
2021 }
2022
2023 static const ARMCPRegInfo v7_cp_reginfo[] = {
2024 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2025 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2026 .access = PL1_W, .type = ARM_CP_NOP },
2027 /*
2028 * Performance monitors are implementation defined in v7,
2029 * but with an ARM recommended set of registers, which we
2030 * follow.
2031 *
2032 * Performance registers fall into three categories:
2033 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2034 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2035 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2036 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2037 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2038 */
2039 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2040 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2041 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2042 .writefn = pmcntenset_write,
2043 .accessfn = pmreg_access,
2044 .fgt = FGT_PMCNTEN,
2045 .raw_writefn = raw_write },
2046 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2047 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2048 .access = PL0_RW, .accessfn = pmreg_access,
2049 .fgt = FGT_PMCNTEN,
2050 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2051 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2052 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2053 .access = PL0_RW,
2054 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2055 .accessfn = pmreg_access,
2056 .fgt = FGT_PMCNTEN,
2057 .writefn = pmcntenclr_write,
2058 .type = ARM_CP_ALIAS | ARM_CP_IO },
2059 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2060 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2061 .access = PL0_RW, .accessfn = pmreg_access,
2062 .fgt = FGT_PMCNTEN,
2063 .type = ARM_CP_ALIAS | ARM_CP_IO,
2064 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2065 .writefn = pmcntenclr_write },
2066 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2067 .access = PL0_RW, .type = ARM_CP_IO,
2068 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2069 .accessfn = pmreg_access,
2070 .fgt = FGT_PMOVS,
2071 .writefn = pmovsr_write,
2072 .raw_writefn = raw_write },
2073 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2074 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2075 .access = PL0_RW, .accessfn = pmreg_access,
2076 .fgt = FGT_PMOVS,
2077 .type = ARM_CP_ALIAS | ARM_CP_IO,
2078 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2079 .writefn = pmovsr_write,
2080 .raw_writefn = raw_write },
2081 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2082 .access = PL0_W, .accessfn = pmreg_access_swinc,
2083 .fgt = FGT_PMSWINC_EL0,
2084 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2085 .writefn = pmswinc_write },
2086 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2087 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2088 .access = PL0_W, .accessfn = pmreg_access_swinc,
2089 .fgt = FGT_PMSWINC_EL0,
2090 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2091 .writefn = pmswinc_write },
2092 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2093 .access = PL0_RW, .type = ARM_CP_ALIAS,
2094 .fgt = FGT_PMSELR_EL0,
2095 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2096 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2097 .raw_writefn = raw_write},
2098 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2099 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2100 .access = PL0_RW, .accessfn = pmreg_access_selr,
2101 .fgt = FGT_PMSELR_EL0,
2102 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2103 .writefn = pmselr_write, .raw_writefn = raw_write, },
2104 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2105 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2106 .fgt = FGT_PMCCNTR_EL0,
2107 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2108 .accessfn = pmreg_access_ccntr },
2109 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2110 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2111 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2112 .fgt = FGT_PMCCNTR_EL0,
2113 .type = ARM_CP_IO,
2114 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2115 .readfn = pmccntr_read, .writefn = pmccntr_write,
2116 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2117 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2118 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2119 .access = PL0_RW, .accessfn = pmreg_access,
2120 .fgt = FGT_PMCCFILTR_EL0,
2121 .type = ARM_CP_ALIAS | ARM_CP_IO,
2122 .resetvalue = 0, },
2123 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2125 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2126 .access = PL0_RW, .accessfn = pmreg_access,
2127 .fgt = FGT_PMCCFILTR_EL0,
2128 .type = ARM_CP_IO,
2129 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2130 .resetvalue = 0, },
2131 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2132 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2133 .accessfn = pmreg_access,
2134 .fgt = FGT_PMEVTYPERN_EL0,
2135 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2136 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2137 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2138 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2139 .accessfn = pmreg_access,
2140 .fgt = FGT_PMEVTYPERN_EL0,
2141 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2142 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2143 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2144 .accessfn = pmreg_access_xevcntr,
2145 .fgt = FGT_PMEVCNTRN_EL0,
2146 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2147 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2148 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2149 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2150 .accessfn = pmreg_access_xevcntr,
2151 .fgt = FGT_PMEVCNTRN_EL0,
2152 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2153 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2154 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2155 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2156 .resetvalue = 0,
2157 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2158 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2159 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2160 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2161 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2162 .resetvalue = 0,
2163 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2164 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2165 .access = PL1_RW, .accessfn = access_tpm,
2166 .fgt = FGT_PMINTEN,
2167 .type = ARM_CP_ALIAS | ARM_CP_IO,
2168 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2169 .resetvalue = 0,
2170 .writefn = pmintenset_write, .raw_writefn = raw_write },
2171 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2172 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2173 .access = PL1_RW, .accessfn = access_tpm,
2174 .fgt = FGT_PMINTEN,
2175 .type = ARM_CP_IO,
2176 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2177 .writefn = pmintenset_write, .raw_writefn = raw_write,
2178 .resetvalue = 0x0 },
2179 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2180 .access = PL1_RW, .accessfn = access_tpm,
2181 .fgt = FGT_PMINTEN,
2182 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2183 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2184 .writefn = pmintenclr_write, },
2185 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2186 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2187 .access = PL1_RW, .accessfn = access_tpm,
2188 .fgt = FGT_PMINTEN,
2189 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2190 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2191 .writefn = pmintenclr_write },
2192 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2193 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2194 .access = PL1_R,
2195 .accessfn = access_tid4,
2196 .fgt = FGT_CCSIDR_EL1,
2197 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2198 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2199 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2200 .access = PL1_RW,
2201 .accessfn = access_tid4,
2202 .fgt = FGT_CSSELR_EL1,
2203 .writefn = csselr_write, .resetvalue = 0,
2204 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2205 offsetof(CPUARMState, cp15.csselr_ns) } },
2206 /*
2207 * Auxiliary ID register: this actually has an IMPDEF value but for now
2208 * just RAZ for all cores:
2209 */
2210 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2211 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2212 .access = PL1_R, .type = ARM_CP_CONST,
2213 .accessfn = access_aa64_tid1,
2214 .fgt = FGT_AIDR_EL1,
2215 .resetvalue = 0 },
2216 /*
2217 * Auxiliary fault status registers: these also are IMPDEF, and we
2218 * choose to RAZ/WI for all cores.
2219 */
2220 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2221 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2222 .access = PL1_RW, .accessfn = access_tvm_trvm,
2223 .fgt = FGT_AFSR0_EL1,
2224 .type = ARM_CP_CONST, .resetvalue = 0 },
2225 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2226 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2227 .access = PL1_RW, .accessfn = access_tvm_trvm,
2228 .fgt = FGT_AFSR1_EL1,
2229 .type = ARM_CP_CONST, .resetvalue = 0 },
2230 /*
2231 * MAIR can just read-as-written because we don't implement caches
2232 * and so don't need to care about memory attributes.
2233 */
2234 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2235 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2236 .access = PL1_RW, .accessfn = access_tvm_trvm,
2237 .fgt = FGT_MAIR_EL1,
2238 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2239 .resetvalue = 0 },
2240 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2241 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2242 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2243 .resetvalue = 0 },
2244 /*
2245 * For non-long-descriptor page tables these are PRRR and NMRR;
2246 * regardless they still act as reads-as-written for QEMU.
2247 */
2248 /*
2249 * MAIR0/1 are defined separately from their 64-bit counterpart which
2250 * allows them to assign the correct fieldoffset based on the endianness
2251 * handled in the field definitions.
2252 */
2253 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2254 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2255 .access = PL1_RW, .accessfn = access_tvm_trvm,
2256 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2257 offsetof(CPUARMState, cp15.mair0_ns) },
2258 .resetfn = arm_cp_reset_ignore },
2259 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2260 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2261 .access = PL1_RW, .accessfn = access_tvm_trvm,
2262 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2263 offsetof(CPUARMState, cp15.mair1_ns) },
2264 .resetfn = arm_cp_reset_ignore },
2265 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2266 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2267 .fgt = FGT_ISR_EL1,
2268 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2269 /* 32 bit ITLB invalidates */
2270 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2271 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2272 .writefn = tlbiall_write },
2273 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2274 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2275 .writefn = tlbimva_write },
2276 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2277 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2278 .writefn = tlbiasid_write },
2279 /* 32 bit DTLB invalidates */
2280 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2281 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2282 .writefn = tlbiall_write },
2283 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2284 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2285 .writefn = tlbimva_write },
2286 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2287 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2288 .writefn = tlbiasid_write },
2289 /* 32 bit TLB invalidates */
2290 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2291 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2292 .writefn = tlbiall_write },
2293 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2294 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2295 .writefn = tlbimva_write },
2296 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2297 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2298 .writefn = tlbiasid_write },
2299 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2300 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2301 .writefn = tlbimvaa_write },
2302 };
2303
2304 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2305 /* 32 bit TLB invalidates, Inner Shareable */
2306 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2307 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2308 .writefn = tlbiall_is_write },
2309 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2310 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2311 .writefn = tlbimva_is_write },
2312 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2313 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2314 .writefn = tlbiasid_is_write },
2315 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2316 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2317 .writefn = tlbimvaa_is_write },
2318 };
2319
2320 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2321 /* PMOVSSET is not implemented in v7 before v7ve */
2322 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2323 .access = PL0_RW, .accessfn = pmreg_access,
2324 .fgt = FGT_PMOVS,
2325 .type = ARM_CP_ALIAS | ARM_CP_IO,
2326 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2327 .writefn = pmovsset_write,
2328 .raw_writefn = raw_write },
2329 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2330 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2331 .access = PL0_RW, .accessfn = pmreg_access,
2332 .fgt = FGT_PMOVS,
2333 .type = ARM_CP_ALIAS | ARM_CP_IO,
2334 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2335 .writefn = pmovsset_write,
2336 .raw_writefn = raw_write },
2337 };
2338
2339 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2340 uint64_t value)
2341 {
2342 value &= 1;
2343 env->teecr = value;
2344 }
2345
2346 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2347 bool isread)
2348 {
2349 /*
2350 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2351 * at all, so we don't need to check whether we're v8A.
2352 */
2353 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2354 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2355 return CP_ACCESS_TRAP_EL2;
2356 }
2357 return CP_ACCESS_OK;
2358 }
2359
2360 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2361 bool isread)
2362 {
2363 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2364 return CP_ACCESS_TRAP;
2365 }
2366 return teecr_access(env, ri, isread);
2367 }
2368
2369 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2370 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2371 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2372 .resetvalue = 0,
2373 .writefn = teecr_write, .accessfn = teecr_access },
2374 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2375 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2376 .accessfn = teehbr_access, .resetvalue = 0 },
2377 };
2378
2379 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2380 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2381 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2382 .access = PL0_RW,
2383 .fgt = FGT_TPIDR_EL0,
2384 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2385 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2386 .access = PL0_RW,
2387 .fgt = FGT_TPIDR_EL0,
2388 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2389 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2390 .resetfn = arm_cp_reset_ignore },
2391 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2392 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2393 .access = PL0_R | PL1_W,
2394 .fgt = FGT_TPIDRRO_EL0,
2395 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2396 .resetvalue = 0},
2397 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2398 .access = PL0_R | PL1_W,
2399 .fgt = FGT_TPIDRRO_EL0,
2400 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2401 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2402 .resetfn = arm_cp_reset_ignore },
2403 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2404 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2405 .access = PL1_RW,
2406 .fgt = FGT_TPIDR_EL1,
2407 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2408 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2409 .access = PL1_RW,
2410 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2411 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2412 .resetvalue = 0 },
2413 };
2414
2415 #ifndef CONFIG_USER_ONLY
2416
2417 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2418 bool isread)
2419 {
2420 /*
2421 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2422 * Writable only at the highest implemented exception level.
2423 */
2424 int el = arm_current_el(env);
2425 uint64_t hcr;
2426 uint32_t cntkctl;
2427
2428 switch (el) {
2429 case 0:
2430 hcr = arm_hcr_el2_eff(env);
2431 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2432 cntkctl = env->cp15.cnthctl_el2;
2433 } else {
2434 cntkctl = env->cp15.c14_cntkctl;
2435 }
2436 if (!extract32(cntkctl, 0, 2)) {
2437 return CP_ACCESS_TRAP;
2438 }
2439 break;
2440 case 1:
2441 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2442 arm_is_secure_below_el3(env)) {
2443 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2444 return CP_ACCESS_TRAP_UNCATEGORIZED;
2445 }
2446 break;
2447 case 2:
2448 case 3:
2449 break;
2450 }
2451
2452 if (!isread && el < arm_highest_el(env)) {
2453 return CP_ACCESS_TRAP_UNCATEGORIZED;
2454 }
2455
2456 return CP_ACCESS_OK;
2457 }
2458
2459 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2460 bool isread)
2461 {
2462 unsigned int cur_el = arm_current_el(env);
2463 bool has_el2 = arm_is_el2_enabled(env);
2464 uint64_t hcr = arm_hcr_el2_eff(env);
2465
2466 switch (cur_el) {
2467 case 0:
2468 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2469 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2470 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2471 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2472 }
2473
2474 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2475 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2476 return CP_ACCESS_TRAP;
2477 }
2478 /* fall through */
2479 case 1:
2480 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2481 if (has_el2 && timeridx == GTIMER_PHYS &&
2482 (hcr & HCR_E2H
2483 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2484 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2485 return CP_ACCESS_TRAP_EL2;
2486 }
2487 break;
2488 }
2489 return CP_ACCESS_OK;
2490 }
2491
2492 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2493 bool isread)
2494 {
2495 unsigned int cur_el = arm_current_el(env);
2496 bool has_el2 = arm_is_el2_enabled(env);
2497 uint64_t hcr = arm_hcr_el2_eff(env);
2498
2499 switch (cur_el) {
2500 case 0:
2501 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2502 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2503 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2504 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2505 }
2506
2507 /*
2508 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2509 * EL0 if EL0[PV]TEN is zero.
2510 */
2511 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2512 return CP_ACCESS_TRAP;
2513 }
2514 /* fall through */
2515
2516 case 1:
2517 if (has_el2 && timeridx == GTIMER_PHYS) {
2518 if (hcr & HCR_E2H) {
2519 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2520 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2521 return CP_ACCESS_TRAP_EL2;
2522 }
2523 } else {
2524 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2525 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2526 return CP_ACCESS_TRAP_EL2;
2527 }
2528 }
2529 }
2530 break;
2531 }
2532 return CP_ACCESS_OK;
2533 }
2534
2535 static CPAccessResult gt_pct_access(CPUARMState *env,
2536 const ARMCPRegInfo *ri,
2537 bool isread)
2538 {
2539 return gt_counter_access(env, GTIMER_PHYS, isread);
2540 }
2541
2542 static CPAccessResult gt_vct_access(CPUARMState *env,
2543 const ARMCPRegInfo *ri,
2544 bool isread)
2545 {
2546 return gt_counter_access(env, GTIMER_VIRT, isread);
2547 }
2548
2549 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2550 bool isread)
2551 {
2552 return gt_timer_access(env, GTIMER_PHYS, isread);
2553 }
2554
2555 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2556 bool isread)
2557 {
2558 return gt_timer_access(env, GTIMER_VIRT, isread);
2559 }
2560
2561 static CPAccessResult gt_stimer_access(CPUARMState *env,
2562 const ARMCPRegInfo *ri,
2563 bool isread)
2564 {
2565 /*
2566 * The AArch64 register view of the secure physical timer is
2567 * always accessible from EL3, and configurably accessible from
2568 * Secure EL1.
2569 */
2570 switch (arm_current_el(env)) {
2571 case 1:
2572 if (!arm_is_secure(env)) {
2573 return CP_ACCESS_TRAP;
2574 }
2575 if (!(env->cp15.scr_el3 & SCR_ST)) {
2576 return CP_ACCESS_TRAP_EL3;
2577 }
2578 return CP_ACCESS_OK;
2579 case 0:
2580 case 2:
2581 return CP_ACCESS_TRAP;
2582 case 3:
2583 return CP_ACCESS_OK;
2584 default:
2585 g_assert_not_reached();
2586 }
2587 }
2588
2589 static uint64_t gt_get_countervalue(CPUARMState *env)
2590 {
2591 ARMCPU *cpu = env_archcpu(env);
2592
2593 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2594 }
2595
2596 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2597 {
2598 CPUARMState *env = &cpu->env;
2599 uint64_t cnthctl = env->cp15.cnthctl_el2;
2600 ARMSecuritySpace ss = arm_security_space(env);
2601 /* ISTATUS && !IMASK */
2602 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2603
2604 /*
2605 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2606 * It is RES0 in Secure and NonSecure state.
2607 */
2608 if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2609 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) ||
2610 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) {
2611 irqstate = 0;
2612 }
2613
2614 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2615 trace_arm_gt_update_irq(timeridx, irqstate);
2616 }
2617
2618 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2619 {
2620 /*
2621 * Changing security state between Root and Secure/NonSecure, which may
2622 * happen when switching EL, can change the effective value of CNTHCTL_EL2
2623 * mask bits. Update the IRQ state accordingly.
2624 */
2625 gt_update_irq(cpu, GTIMER_VIRT);
2626 gt_update_irq(cpu, GTIMER_PHYS);
2627 }
2628
2629 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2630 {
2631 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2632
2633 if (gt->ctl & 1) {
2634 /*
2635 * Timer enabled: calculate and set current ISTATUS, irq, and
2636 * reset timer to when ISTATUS next has to change
2637 */
2638 uint64_t offset = timeridx == GTIMER_VIRT ?
2639 cpu->env.cp15.cntvoff_el2 : 0;
2640 uint64_t count = gt_get_countervalue(&cpu->env);
2641 /* Note that this must be unsigned 64 bit arithmetic: */
2642 int istatus = count - offset >= gt->cval;
2643 uint64_t nexttick;
2644
2645 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2646
2647 if (istatus) {
2648 /* Next transition is when count rolls back over to zero */
2649 nexttick = UINT64_MAX;
2650 } else {
2651 /* Next transition is when we hit cval */
2652 nexttick = gt->cval + offset;
2653 }
2654 /*
2655 * Note that the desired next expiry time might be beyond the
2656 * signed-64-bit range of a QEMUTimer -- in this case we just
2657 * set the timer for as far in the future as possible. When the
2658 * timer expires we will reset the timer for any remaining period.
2659 */
2660 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2661 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2662 } else {
2663 timer_mod(cpu->gt_timer[timeridx], nexttick);
2664 }
2665 trace_arm_gt_recalc(timeridx, nexttick);
2666 } else {
2667 /* Timer disabled: ISTATUS and timer output always clear */
2668 gt->ctl &= ~4;
2669 timer_del(cpu->gt_timer[timeridx]);
2670 trace_arm_gt_recalc_disabled(timeridx);
2671 }
2672 gt_update_irq(cpu, timeridx);
2673 }
2674
2675 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2676 int timeridx)
2677 {
2678 ARMCPU *cpu = env_archcpu(env);
2679
2680 timer_del(cpu->gt_timer[timeridx]);
2681 }
2682
2683 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2684 {
2685 return gt_get_countervalue(env);
2686 }
2687
2688 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2689 {
2690 uint64_t hcr;
2691
2692 switch (arm_current_el(env)) {
2693 case 2:
2694 hcr = arm_hcr_el2_eff(env);
2695 if (hcr & HCR_E2H) {
2696 return 0;
2697 }
2698 break;
2699 case 0:
2700 hcr = arm_hcr_el2_eff(env);
2701 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2702 return 0;
2703 }
2704 break;
2705 }
2706
2707 return env->cp15.cntvoff_el2;
2708 }
2709
2710 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2711 {
2712 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2713 }
2714
2715 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2716 int timeridx,
2717 uint64_t value)
2718 {
2719 trace_arm_gt_cval_write(timeridx, value);
2720 env->cp15.c14_timer[timeridx].cval = value;
2721 gt_recalc_timer(env_archcpu(env), timeridx);
2722 }
2723
2724 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2725 int timeridx)
2726 {
2727 uint64_t offset = 0;
2728
2729 switch (timeridx) {
2730 case GTIMER_VIRT:
2731 case GTIMER_HYPVIRT:
2732 offset = gt_virt_cnt_offset(env);
2733 break;
2734 }
2735
2736 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2737 (gt_get_countervalue(env) - offset));
2738 }
2739
2740 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2741 int timeridx,
2742 uint64_t value)
2743 {
2744 uint64_t offset = 0;
2745
2746 switch (timeridx) {
2747 case GTIMER_VIRT:
2748 case GTIMER_HYPVIRT:
2749 offset = gt_virt_cnt_offset(env);
2750 break;
2751 }
2752
2753 trace_arm_gt_tval_write(timeridx, value);
2754 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2755 sextract64(value, 0, 32);
2756 gt_recalc_timer(env_archcpu(env), timeridx);
2757 }
2758
2759 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2760 int timeridx,
2761 uint64_t value)
2762 {
2763 ARMCPU *cpu = env_archcpu(env);
2764 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2765
2766 trace_arm_gt_ctl_write(timeridx, value);
2767 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2768 if ((oldval ^ value) & 1) {
2769 /* Enable toggled */
2770 gt_recalc_timer(cpu, timeridx);
2771 } else if ((oldval ^ value) & 2) {
2772 /*
2773 * IMASK toggled: don't need to recalculate,
2774 * just set the interrupt line based on ISTATUS
2775 */
2776 trace_arm_gt_imask_toggle(timeridx);
2777 gt_update_irq(cpu, timeridx);
2778 }
2779 }
2780
2781 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2782 {
2783 gt_timer_reset(env, ri, GTIMER_PHYS);
2784 }
2785
2786 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2787 uint64_t value)
2788 {
2789 gt_cval_write(env, ri, GTIMER_PHYS, value);
2790 }
2791
2792 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2793 {
2794 return gt_tval_read(env, ri, GTIMER_PHYS);
2795 }
2796
2797 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2798 uint64_t value)
2799 {
2800 gt_tval_write(env, ri, GTIMER_PHYS, value);
2801 }
2802
2803 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2804 uint64_t value)
2805 {
2806 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2807 }
2808
2809 static int gt_phys_redir_timeridx(CPUARMState *env)
2810 {
2811 switch (arm_mmu_idx(env)) {
2812 case ARMMMUIdx_E20_0:
2813 case ARMMMUIdx_E20_2:
2814 case ARMMMUIdx_E20_2_PAN:
2815 return GTIMER_HYP;
2816 default:
2817 return GTIMER_PHYS;
2818 }
2819 }
2820
2821 static int gt_virt_redir_timeridx(CPUARMState *env)
2822 {
2823 switch (arm_mmu_idx(env)) {
2824 case ARMMMUIdx_E20_0:
2825 case ARMMMUIdx_E20_2:
2826 case ARMMMUIdx_E20_2_PAN:
2827 return GTIMER_HYPVIRT;
2828 default:
2829 return GTIMER_VIRT;
2830 }
2831 }
2832
2833 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2834 const ARMCPRegInfo *ri)
2835 {
2836 int timeridx = gt_phys_redir_timeridx(env);
2837 return env->cp15.c14_timer[timeridx].cval;
2838 }
2839
2840 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2841 uint64_t value)
2842 {
2843 int timeridx = gt_phys_redir_timeridx(env);
2844 gt_cval_write(env, ri, timeridx, value);
2845 }
2846
2847 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2848 const ARMCPRegInfo *ri)
2849 {
2850 int timeridx = gt_phys_redir_timeridx(env);
2851 return gt_tval_read(env, ri, timeridx);
2852 }
2853
2854 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2855 uint64_t value)
2856 {
2857 int timeridx = gt_phys_redir_timeridx(env);
2858 gt_tval_write(env, ri, timeridx, value);
2859 }
2860
2861 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2862 const ARMCPRegInfo *ri)
2863 {
2864 int timeridx = gt_phys_redir_timeridx(env);
2865 return env->cp15.c14_timer[timeridx].ctl;
2866 }
2867
2868 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2869 uint64_t value)
2870 {
2871 int timeridx = gt_phys_redir_timeridx(env);
2872 gt_ctl_write(env, ri, timeridx, value);
2873 }
2874
2875 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2876 {
2877 gt_timer_reset(env, ri, GTIMER_VIRT);
2878 }
2879
2880 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2881 uint64_t value)
2882 {
2883 gt_cval_write(env, ri, GTIMER_VIRT, value);
2884 }
2885
2886 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2887 {
2888 return gt_tval_read(env, ri, GTIMER_VIRT);
2889 }
2890
2891 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2892 uint64_t value)
2893 {
2894 gt_tval_write(env, ri, GTIMER_VIRT, value);
2895 }
2896
2897 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2898 uint64_t value)
2899 {
2900 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2901 }
2902
2903 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2904 uint64_t value)
2905 {
2906 ARMCPU *cpu = env_archcpu(env);
2907 uint32_t oldval = env->cp15.cnthctl_el2;
2908
2909 raw_write(env, ri, value);
2910
2911 if ((oldval ^ value) & CNTHCTL_CNTVMASK) {
2912 gt_update_irq(cpu, GTIMER_VIRT);
2913 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) {
2914 gt_update_irq(cpu, GTIMER_PHYS);
2915 }
2916 }
2917
2918 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2919 uint64_t value)
2920 {
2921 ARMCPU *cpu = env_archcpu(env);
2922
2923 trace_arm_gt_cntvoff_write(value);
2924 raw_write(env, ri, value);
2925 gt_recalc_timer(cpu, GTIMER_VIRT);
2926 }
2927
2928 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2929 const ARMCPRegInfo *ri)
2930 {
2931 int timeridx = gt_virt_redir_timeridx(env);
2932 return env->cp15.c14_timer[timeridx].cval;
2933 }
2934
2935 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2936 uint64_t value)
2937 {
2938 int timeridx = gt_virt_redir_timeridx(env);
2939 gt_cval_write(env, ri, timeridx, value);
2940 }
2941
2942 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2943 const ARMCPRegInfo *ri)
2944 {
2945 int timeridx = gt_virt_redir_timeridx(env);
2946 return gt_tval_read(env, ri, timeridx);
2947 }
2948
2949 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2950 uint64_t value)
2951 {
2952 int timeridx = gt_virt_redir_timeridx(env);
2953 gt_tval_write(env, ri, timeridx, value);
2954 }
2955
2956 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2957 const ARMCPRegInfo *ri)
2958 {
2959 int timeridx = gt_virt_redir_timeridx(env);
2960 return env->cp15.c14_timer[timeridx].ctl;
2961 }
2962
2963 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2964 uint64_t value)
2965 {
2966 int timeridx = gt_virt_redir_timeridx(env);
2967 gt_ctl_write(env, ri, timeridx, value);
2968 }
2969
2970 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2971 {
2972 gt_timer_reset(env, ri, GTIMER_HYP);
2973 }
2974
2975 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2976 uint64_t value)
2977 {
2978 gt_cval_write(env, ri, GTIMER_HYP, value);
2979 }
2980
2981 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2982 {
2983 return gt_tval_read(env, ri, GTIMER_HYP);
2984 }
2985
2986 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2987 uint64_t value)
2988 {
2989 gt_tval_write(env, ri, GTIMER_HYP, value);
2990 }
2991
2992 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2993 uint64_t value)
2994 {
2995 gt_ctl_write(env, ri, GTIMER_HYP, value);
2996 }
2997
2998 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2999 {
3000 gt_timer_reset(env, ri, GTIMER_SEC);
3001 }
3002
3003 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3004 uint64_t value)
3005 {
3006 gt_cval_write(env, ri, GTIMER_SEC, value);
3007 }
3008
3009 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3010 {
3011 return gt_tval_read(env, ri, GTIMER_SEC);
3012 }
3013
3014 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3015 uint64_t value)
3016 {
3017 gt_tval_write(env, ri, GTIMER_SEC, value);
3018 }
3019
3020 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3021 uint64_t value)
3022 {
3023 gt_ctl_write(env, ri, GTIMER_SEC, value);
3024 }
3025
3026 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3027 {
3028 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3029 }
3030
3031 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3032 uint64_t value)
3033 {
3034 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3035 }
3036
3037 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3038 {
3039 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3040 }
3041
3042 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3043 uint64_t value)
3044 {
3045 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3046 }
3047
3048 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3049 uint64_t value)
3050 {
3051 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3052 }
3053
3054 void arm_gt_ptimer_cb(void *opaque)
3055 {
3056 ARMCPU *cpu = opaque;
3057
3058 gt_recalc_timer(cpu, GTIMER_PHYS);
3059 }
3060
3061 void arm_gt_vtimer_cb(void *opaque)
3062 {
3063 ARMCPU *cpu = opaque;
3064
3065 gt_recalc_timer(cpu, GTIMER_VIRT);
3066 }
3067
3068 void arm_gt_htimer_cb(void *opaque)
3069 {
3070 ARMCPU *cpu = opaque;
3071
3072 gt_recalc_timer(cpu, GTIMER_HYP);
3073 }
3074
3075 void arm_gt_stimer_cb(void *opaque)
3076 {
3077 ARMCPU *cpu = opaque;
3078
3079 gt_recalc_timer(cpu, GTIMER_SEC);
3080 }
3081
3082 void arm_gt_hvtimer_cb(void *opaque)
3083 {
3084 ARMCPU *cpu = opaque;
3085
3086 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3087 }
3088
3089 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3090 {
3091 ARMCPU *cpu = env_archcpu(env);
3092
3093 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3094 }
3095
3096 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3097 /*
3098 * Note that CNTFRQ is purely reads-as-written for the benefit
3099 * of software; writing it doesn't actually change the timer frequency.
3100 * Our reset value matches the fixed frequency we implement the timer at.
3101 */
3102 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3103 .type = ARM_CP_ALIAS,
3104 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3105 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3106 },
3107 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3108 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3109 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3110 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3111 .resetfn = arm_gt_cntfrq_reset,
3112 },
3113 /* overall control: mostly access permissions */
3114 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3115 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3116 .access = PL1_RW,
3117 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3118 .resetvalue = 0,
3119 },
3120 /* per-timer control */
3121 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3122 .secure = ARM_CP_SECSTATE_NS,
3123 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3124 .accessfn = gt_ptimer_access,
3125 .fieldoffset = offsetoflow32(CPUARMState,
3126 cp15.c14_timer[GTIMER_PHYS].ctl),
3127 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3128 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3129 },
3130 { .name = "CNTP_CTL_S",
3131 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3132 .secure = ARM_CP_SECSTATE_S,
3133 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3134 .accessfn = gt_ptimer_access,
3135 .fieldoffset = offsetoflow32(CPUARMState,
3136 cp15.c14_timer[GTIMER_SEC].ctl),
3137 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3138 },
3139 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3140 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3141 .type = ARM_CP_IO, .access = PL0_RW,
3142 .accessfn = gt_ptimer_access,
3143 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3144 .resetvalue = 0,
3145 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3146 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3147 },
3148 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3149 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3150 .accessfn = gt_vtimer_access,
3151 .fieldoffset = offsetoflow32(CPUARMState,
3152 cp15.c14_timer[GTIMER_VIRT].ctl),
3153 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3154 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3155 },
3156 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3157 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3158 .type = ARM_CP_IO, .access = PL0_RW,
3159 .accessfn = gt_vtimer_access,
3160 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3161 .resetvalue = 0,
3162 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3163 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3164 },
3165 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3166 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3167 .secure = ARM_CP_SECSTATE_NS,
3168 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3169 .accessfn = gt_ptimer_access,
3170 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3171 },
3172 { .name = "CNTP_TVAL_S",
3173 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3174 .secure = ARM_CP_SECSTATE_S,
3175 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3176 .accessfn = gt_ptimer_access,
3177 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3178 },
3179 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3180 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3181 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3182 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3183 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3184 },
3185 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3186 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3187 .accessfn = gt_vtimer_access,
3188 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3189 },
3190 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3191 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3192 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3193 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3194 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3195 },
3196 /* The counter itself */
3197 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3198 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3199 .accessfn = gt_pct_access,
3200 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3201 },
3202 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3203 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3204 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3205 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3206 },
3207 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3208 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3209 .accessfn = gt_vct_access,
3210 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3211 },
3212 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3213 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3214 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3215 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3216 },
3217 /* Comparison value, indicating when the timer goes off */
3218 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3219 .secure = ARM_CP_SECSTATE_NS,
3220 .access = PL0_RW,
3221 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3222 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3223 .accessfn = gt_ptimer_access,
3224 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3225 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3226 },
3227 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3228 .secure = ARM_CP_SECSTATE_S,
3229 .access = PL0_RW,
3230 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3231 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3232 .accessfn = gt_ptimer_access,
3233 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3234 },
3235 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3236 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3237 .access = PL0_RW,
3238 .type = ARM_CP_IO,
3239 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3240 .resetvalue = 0, .accessfn = gt_ptimer_access,
3241 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3242 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3243 },
3244 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3245 .access = PL0_RW,
3246 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3247 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3248 .accessfn = gt_vtimer_access,
3249 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3250 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3251 },
3252 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3253 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3254 .access = PL0_RW,
3255 .type = ARM_CP_IO,
3256 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3257 .resetvalue = 0, .accessfn = gt_vtimer_access,
3258 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3259 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3260 },
3261 /*
3262 * Secure timer -- this is actually restricted to only EL3
3263 * and configurably Secure-EL1 via the accessfn.
3264 */
3265 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3266 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3267 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3268 .accessfn = gt_stimer_access,
3269 .readfn = gt_sec_tval_read,
3270 .writefn = gt_sec_tval_write,
3271 .resetfn = gt_sec_timer_reset,
3272 },
3273 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3274 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3275 .type = ARM_CP_IO, .access = PL1_RW,
3276 .accessfn = gt_stimer_access,
3277 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3278 .resetvalue = 0,
3279 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3280 },
3281 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3282 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3283 .type = ARM_CP_IO, .access = PL1_RW,
3284 .accessfn = gt_stimer_access,
3285 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3286 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3287 },
3288 };
3289
3290 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3291 bool isread)
3292 {
3293 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3294 return CP_ACCESS_TRAP;
3295 }
3296 return CP_ACCESS_OK;
3297 }
3298
3299 #else
3300
3301 /*
3302 * In user-mode most of the generic timer registers are inaccessible
3303 * however modern kernels (4.12+) allow access to cntvct_el0
3304 */
3305
3306 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3307 {
3308 ARMCPU *cpu = env_archcpu(env);
3309
3310 /*
3311 * Currently we have no support for QEMUTimer in linux-user so we
3312 * can't call gt_get_countervalue(env), instead we directly
3313 * call the lower level functions.
3314 */
3315 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3316 }
3317
3318 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3319 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3320 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3321 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3322 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3323 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3324 },
3325 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3326 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3327 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3328 .readfn = gt_virt_cnt_read,
3329 },
3330 };
3331
3332 #endif
3333
3334 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3335 {
3336 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3337 raw_write(env, ri, value);
3338 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3339 raw_write(env, ri, value & 0xfffff6ff);
3340 } else {
3341 raw_write(env, ri, value & 0xfffff1ff);
3342 }
3343 }
3344
3345 #ifndef CONFIG_USER_ONLY
3346 /* get_phys_addr() isn't present for user-mode-only targets */
3347
3348 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3349 bool isread)
3350 {
3351 if (ri->opc2 & 4) {
3352 /*
3353 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3354 * Secure EL1 (which can only happen if EL3 is AArch64).
3355 * They are simply UNDEF if executed from NS EL1.
3356 * They function normally from EL2 or EL3.
3357 */
3358 if (arm_current_el(env) == 1) {
3359 if (arm_is_secure_below_el3(env)) {
3360 if (env->cp15.scr_el3 & SCR_EEL2) {
3361 return CP_ACCESS_TRAP_EL2;
3362 }
3363 return CP_ACCESS_TRAP_EL3;
3364 }
3365 return CP_ACCESS_TRAP_UNCATEGORIZED;
3366 }
3367 }
3368 return CP_ACCESS_OK;
3369 }
3370
3371 #ifdef CONFIG_TCG
3372 static int par_el1_shareability(GetPhysAddrResult *res)
3373 {
3374 /*
3375 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3376 * memory -- see pseudocode PAREncodeShareability().
3377 */
3378 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3379 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3380 return 2;
3381 }
3382 return res->cacheattrs.shareability;
3383 }
3384
3385 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3386 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3387 ARMSecuritySpace ss)
3388 {
3389 bool ret;
3390 uint64_t par64;
3391 bool format64 = false;
3392 ARMMMUFaultInfo fi = {};
3393 GetPhysAddrResult res = {};
3394
3395 /*
3396 * I_MXTJT: Granule protection checks are not performed on the final address
3397 * of a successful translation.
3398 */
3399 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3400 &res, &fi);
3401
3402 /*
3403 * ATS operations only do S1 or S1+S2 translations, so we never
3404 * have to deal with the ARMCacheAttrs format for S2 only.
3405 */
3406 assert(!res.cacheattrs.is_s2_format);
3407
3408 if (ret) {
3409 /*
3410 * Some kinds of translation fault must cause exceptions rather
3411 * than being reported in the PAR.
3412 */
3413 int current_el = arm_current_el(env);
3414 int target_el;
3415 uint32_t syn, fsr, fsc;
3416 bool take_exc = false;
3417
3418 if (fi.s1ptw && current_el == 1
3419 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3420 /*
3421 * Synchronous stage 2 fault on an access made as part of the
3422 * translation table walk for AT S1E0* or AT S1E1* insn
3423 * executed from NS EL1. If this is a synchronous external abort
3424 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3425 * to EL3. Otherwise the fault is taken as an exception to EL2,
3426 * and HPFAR_EL2 holds the faulting IPA.
3427 */
3428 if (fi.type == ARMFault_SyncExternalOnWalk &&
3429 (env->cp15.scr_el3 & SCR_EA)) {
3430 target_el = 3;
3431 } else {
3432 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3433 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3434 env->cp15.hpfar_el2 |= HPFAR_NS;
3435 }
3436 target_el = 2;
3437 }
3438 take_exc = true;
3439 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3440 /*
3441 * Synchronous external aborts during a translation table walk
3442 * are taken as Data Abort exceptions.
3443 */
3444 if (fi.stage2) {
3445 if (current_el == 3) {
3446 target_el = 3;
3447 } else {
3448 target_el = 2;
3449 }
3450 } else {
3451 target_el = exception_target_el(env);
3452 }
3453 take_exc = true;
3454 }
3455
3456 if (take_exc) {
3457 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3458 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3459 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3460 fsr = arm_fi_to_lfsc(&fi);
3461 fsc = extract32(fsr, 0, 6);
3462 } else {
3463 fsr = arm_fi_to_sfsc(&fi);
3464 fsc = 0x3f;
3465 }
3466 /*
3467 * Report exception with ESR indicating a fault due to a
3468 * translation table walk for a cache maintenance instruction.
3469 */
3470 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3471 fi.ea, 1, fi.s1ptw, 1, fsc);
3472 env->exception.vaddress = value;
3473 env->exception.fsr = fsr;
3474 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3475 }
3476 }
3477
3478 if (is_a64(env)) {
3479 format64 = true;
3480 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3481 /*
3482 * ATS1Cxx:
3483 * * TTBCR.EAE determines whether the result is returned using the
3484 * 32-bit or the 64-bit PAR format
3485 * * Instructions executed in Hyp mode always use the 64bit format
3486 *
3487 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3488 * * The Non-secure TTBCR.EAE bit is set to 1
3489 * * The implementation includes EL2, and the value of HCR.VM is 1
3490 *
3491 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3492 *
3493 * ATS1Hx always uses the 64bit format.
3494 */
3495 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3496
3497 if (arm_feature(env, ARM_FEATURE_EL2)) {
3498 if (mmu_idx == ARMMMUIdx_E10_0 ||
3499 mmu_idx == ARMMMUIdx_E10_1 ||
3500 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3501 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3502 } else {
3503 format64 |= arm_current_el(env) == 2;
3504 }
3505 }
3506 }
3507
3508 if (format64) {
3509 /* Create a 64-bit PAR */
3510 par64 = (1 << 11); /* LPAE bit always set */
3511 if (!ret) {
3512 par64 |= res.f.phys_addr & ~0xfffULL;
3513 if (!res.f.attrs.secure) {
3514 par64 |= (1 << 9); /* NS */
3515 }
3516 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3517 par64 |= par_el1_shareability(&res) << 7; /* SH */
3518 } else {
3519 uint32_t fsr = arm_fi_to_lfsc(&fi);
3520
3521 par64 |= 1; /* F */
3522 par64 |= (fsr & 0x3f) << 1; /* FS */
3523 if (fi.stage2) {
3524 par64 |= (1 << 9); /* S */
3525 }
3526 if (fi.s1ptw) {
3527 par64 |= (1 << 8); /* PTW */
3528 }
3529 }
3530 } else {
3531 /*
3532 * fsr is a DFSR/IFSR value for the short descriptor
3533 * translation table format (with WnR always clear).
3534 * Convert it to a 32-bit PAR.
3535 */
3536 if (!ret) {
3537 /* We do not set any attribute bits in the PAR */
3538 if (res.f.lg_page_size == 24
3539 && arm_feature(env, ARM_FEATURE_V7)) {
3540 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3541 } else {
3542 par64 = res.f.phys_addr & 0xfffff000;
3543 }
3544 if (!res.f.attrs.secure) {
3545 par64 |= (1 << 9); /* NS */
3546 }
3547 } else {
3548 uint32_t fsr = arm_fi_to_sfsc(&fi);
3549
3550 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3551 ((fsr & 0xf) << 1) | 1;
3552 }
3553 }
3554 return par64;
3555 }
3556 #endif /* CONFIG_TCG */
3557
3558 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3559 {
3560 #ifdef CONFIG_TCG
3561 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3562 uint64_t par64;
3563 ARMMMUIdx mmu_idx;
3564 int el = arm_current_el(env);
3565 ARMSecuritySpace ss = arm_security_space(env);
3566
3567 switch (ri->opc2 & 6) {
3568 case 0:
3569 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3570 switch (el) {
3571 case 3:
3572 mmu_idx = ARMMMUIdx_E3;
3573 break;
3574 case 2:
3575 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3576 /* fall through */
3577 case 1:
3578 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3579 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3580 } else {
3581 mmu_idx = ARMMMUIdx_Stage1_E1;
3582 }
3583 break;
3584 default:
3585 g_assert_not_reached();
3586 }
3587 break;
3588 case 2:
3589 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3590 switch (el) {
3591 case 3:
3592 mmu_idx = ARMMMUIdx_E10_0;
3593 break;
3594 case 2:
3595 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3596 mmu_idx = ARMMMUIdx_Stage1_E0;
3597 break;
3598 case 1:
3599 mmu_idx = ARMMMUIdx_Stage1_E0;
3600 break;
3601 default:
3602 g_assert_not_reached();
3603 }
3604 break;
3605 case 4:
3606 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3607 mmu_idx = ARMMMUIdx_E10_1;
3608 ss = ARMSS_NonSecure;
3609 break;
3610 case 6:
3611 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3612 mmu_idx = ARMMMUIdx_E10_0;
3613 ss = ARMSS_NonSecure;
3614 break;
3615 default:
3616 g_assert_not_reached();
3617 }
3618
3619 par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3620
3621 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3622 #else
3623 /* Handled by hardware accelerator. */
3624 g_assert_not_reached();
3625 #endif /* CONFIG_TCG */
3626 }
3627
3628 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3629 uint64_t value)
3630 {
3631 #ifdef CONFIG_TCG
3632 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3633 uint64_t par64;
3634
3635 /* There is no SecureEL2 for AArch32. */
3636 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3637 ARMSS_NonSecure);
3638
3639 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3640 #else
3641 /* Handled by hardware accelerator. */
3642 g_assert_not_reached();
3643 #endif /* CONFIG_TCG */
3644 }
3645
3646 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3647 bool isread)
3648 {
3649 /*
3650 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3651 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3652 * only happen when executing at EL3 because that combination also causes an
3653 * illegal exception return. We don't need to check FEAT_RME either, because
3654 * scr_write() ensures that the NSE bit is not set otherwise.
3655 */
3656 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3657 return CP_ACCESS_TRAP;
3658 }
3659 return CP_ACCESS_OK;
3660 }
3661
3662 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3663 bool isread)
3664 {
3665 if (arm_current_el(env) == 3 &&
3666 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3667 return CP_ACCESS_TRAP;
3668 }
3669 return at_e012_access(env, ri, isread);
3670 }
3671
3672 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3673 uint64_t value)
3674 {
3675 #ifdef CONFIG_TCG
3676 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3677 ARMMMUIdx mmu_idx;
3678 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3679 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3680
3681 switch (ri->opc2 & 6) {
3682 case 0:
3683 switch (ri->opc1) {
3684 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3685 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3686 mmu_idx = regime_e20 ?
3687 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3688 } else {
3689 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3690 }
3691 break;
3692 case 4: /* AT S1E2R, AT S1E2W */
3693 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3694 break;
3695 case 6: /* AT S1E3R, AT S1E3W */
3696 mmu_idx = ARMMMUIdx_E3;
3697 break;
3698 default:
3699 g_assert_not_reached();
3700 }
3701 break;
3702 case 2: /* AT S1E0R, AT S1E0W */
3703 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3704 break;
3705 case 4: /* AT S12E1R, AT S12E1W */
3706 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3707 break;
3708 case 6: /* AT S12E0R, AT S12E0W */
3709 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3710 break;
3711 default:
3712 g_assert_not_reached();
3713 }
3714
3715 env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3716 mmu_idx, arm_security_space(env));
3717 #else
3718 /* Handled by hardware accelerator. */
3719 g_assert_not_reached();
3720 #endif /* CONFIG_TCG */
3721 }
3722 #endif
3723
3724 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3725 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3726 .access = PL1_RW, .resetvalue = 0,
3727 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3728 offsetoflow32(CPUARMState, cp15.par_ns) },
3729 .writefn = par_write },
3730 #ifndef CONFIG_USER_ONLY
3731 /* This underdecoding is safe because the reginfo is NO_RAW. */
3732 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3733 .access = PL1_W, .accessfn = ats_access,
3734 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3735 #endif
3736 };
3737
3738 /* Return basic MPU access permission bits. */
3739 static uint32_t simple_mpu_ap_bits(uint32_t val)
3740 {
3741 uint32_t ret;
3742 uint32_t mask;
3743 int i;
3744 ret = 0;
3745 mask = 3;
3746 for (i = 0; i < 16; i += 2) {
3747 ret |= (val >> i) & mask;
3748 mask <<= 2;
3749 }
3750 return ret;
3751 }
3752
3753 /* Pad basic MPU access permission bits to extended format. */
3754 static uint32_t extended_mpu_ap_bits(uint32_t val)
3755 {
3756 uint32_t ret;
3757 uint32_t mask;
3758 int i;
3759 ret = 0;
3760 mask = 3;
3761 for (i = 0; i < 16; i += 2) {
3762 ret |= (val & mask) << i;
3763 mask <<= 2;
3764 }
3765 return ret;
3766 }
3767
3768 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3769 uint64_t value)
3770 {
3771 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3772 }
3773
3774 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3775 {
3776 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3777 }
3778
3779 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3780 uint64_t value)
3781 {
3782 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3783 }
3784
3785 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3786 {
3787 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3788 }
3789
3790 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3791 {
3792 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3793
3794 if (!u32p) {
3795 return 0;
3796 }
3797
3798 u32p += env->pmsav7.rnr[M_REG_NS];
3799 return *u32p;
3800 }
3801
3802 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3803 uint64_t value)
3804 {
3805 ARMCPU *cpu = env_archcpu(env);
3806 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3807
3808 if (!u32p) {
3809 return;
3810 }
3811
3812 u32p += env->pmsav7.rnr[M_REG_NS];
3813 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3814 *u32p = value;
3815 }
3816
3817 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3818 uint64_t value)
3819 {
3820 ARMCPU *cpu = env_archcpu(env);
3821 uint32_t nrgs = cpu->pmsav7_dregion;
3822
3823 if (value >= nrgs) {
3824 qemu_log_mask(LOG_GUEST_ERROR,
3825 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3826 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3827 return;
3828 }
3829
3830 raw_write(env, ri, value);
3831 }
3832
3833 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3834 uint64_t value)
3835 {
3836 ARMCPU *cpu = env_archcpu(env);
3837
3838 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3839 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3840 }
3841
3842 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3843 {
3844 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3845 }
3846
3847 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3848 uint64_t value)
3849 {
3850 ARMCPU *cpu = env_archcpu(env);
3851
3852 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3853 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3854 }
3855
3856 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3857 {
3858 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3859 }
3860
3861 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3862 uint64_t value)
3863 {
3864 ARMCPU *cpu = env_archcpu(env);
3865
3866 /*
3867 * Ignore writes that would select not implemented region.
3868 * This is architecturally UNPREDICTABLE.
3869 */
3870 if (value >= cpu->pmsav7_dregion) {
3871 return;
3872 }
3873
3874 env->pmsav7.rnr[M_REG_NS] = value;
3875 }
3876
3877 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3878 uint64_t value)
3879 {
3880 ARMCPU *cpu = env_archcpu(env);
3881
3882 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3883 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3884 }
3885
3886 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3887 {
3888 return env->pmsav8.hprbar[env->pmsav8.hprselr];
3889 }
3890
3891 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3892 uint64_t value)
3893 {
3894 ARMCPU *cpu = env_archcpu(env);
3895
3896 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3897 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3898 }
3899
3900 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3901 {
3902 return env->pmsav8.hprlar[env->pmsav8.hprselr];
3903 }
3904
3905 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3906 uint64_t value)
3907 {
3908 uint32_t n;
3909 uint32_t bit;
3910 ARMCPU *cpu = env_archcpu(env);
3911
3912 /* Ignore writes to unimplemented regions */
3913 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3914 value &= MAKE_64BIT_MASK(0, rmax);
3915
3916 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3917
3918 /* Register alias is only valid for first 32 indexes */
3919 for (n = 0; n < rmax; ++n) {
3920 bit = extract32(value, n, 1);
3921 env->pmsav8.hprlar[n] = deposit32(
3922 env->pmsav8.hprlar[n], 0, 1, bit);
3923 }
3924 }
3925
3926 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3927 {
3928 uint32_t n;
3929 uint32_t result = 0x0;
3930 ARMCPU *cpu = env_archcpu(env);
3931
3932 /* Register alias is only valid for first 32 indexes */
3933 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3934 if (env->pmsav8.hprlar[n] & 0x1) {
3935 result |= (0x1 << n);
3936 }
3937 }
3938 return result;
3939 }
3940
3941 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3942 uint64_t value)
3943 {
3944 ARMCPU *cpu = env_archcpu(env);
3945
3946 /*
3947 * Ignore writes that would select not implemented region.
3948 * This is architecturally UNPREDICTABLE.
3949 */
3950 if (value >= cpu->pmsav8r_hdregion) {
3951 return;
3952 }
3953
3954 env->pmsav8.hprselr = value;
3955 }
3956
3957 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3958 uint64_t value)
3959 {
3960 ARMCPU *cpu = env_archcpu(env);
3961 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3962 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3963
3964 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3965
3966 if (ri->opc1 & 4) {
3967 if (index >= cpu->pmsav8r_hdregion) {
3968 return;
3969 }
3970 if (ri->opc2 & 0x1) {
3971 env->pmsav8.hprlar[index] = value;
3972 } else {
3973 env->pmsav8.hprbar[index] = value;
3974 }
3975 } else {
3976 if (index >= cpu->pmsav7_dregion) {
3977 return;
3978 }
3979 if (ri->opc2 & 0x1) {
3980 env->pmsav8.rlar[M_REG_NS][index] = value;
3981 } else {
3982 env->pmsav8.rbar[M_REG_NS][index] = value;
3983 }
3984 }
3985 }
3986
3987 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3988 {
3989 ARMCPU *cpu = env_archcpu(env);
3990 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3991 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3992
3993 if (ri->opc1 & 4) {
3994 if (index >= cpu->pmsav8r_hdregion) {
3995 return 0x0;
3996 }
3997 if (ri->opc2 & 0x1) {
3998 return env->pmsav8.hprlar[index];
3999 } else {
4000 return env->pmsav8.hprbar[index];
4001 }
4002 } else {
4003 if (index >= cpu->pmsav7_dregion) {
4004 return 0x0;
4005 }
4006 if (ri->opc2 & 0x1) {
4007 return env->pmsav8.rlar[M_REG_NS][index];
4008 } else {
4009 return env->pmsav8.rbar[M_REG_NS][index];
4010 }
4011 }
4012 }
4013
4014 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4015 { .name = "PRBAR",
4016 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4017 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4018 .accessfn = access_tvm_trvm,
4019 .readfn = prbar_read, .writefn = prbar_write },
4020 { .name = "PRLAR",
4021 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4022 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4023 .accessfn = access_tvm_trvm,
4024 .readfn = prlar_read, .writefn = prlar_write },
4025 { .name = "PRSELR", .resetvalue = 0,
4026 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4027 .access = PL1_RW, .accessfn = access_tvm_trvm,
4028 .writefn = prselr_write,
4029 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4030 { .name = "HPRBAR", .resetvalue = 0,
4031 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4032 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4033 .readfn = hprbar_read, .writefn = hprbar_write },
4034 { .name = "HPRLAR",
4035 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4036 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4037 .readfn = hprlar_read, .writefn = hprlar_write },
4038 { .name = "HPRSELR", .resetvalue = 0,
4039 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4040 .access = PL2_RW,
4041 .writefn = hprselr_write,
4042 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4043 { .name = "HPRENR",
4044 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4045 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4046 .readfn = hprenr_read, .writefn = hprenr_write },
4047 };
4048
4049 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4050 /*
4051 * Reset for all these registers is handled in arm_cpu_reset(),
4052 * because the PMSAv7 is also used by M-profile CPUs, which do
4053 * not register cpregs but still need the state to be reset.
4054 */
4055 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4056 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4057 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4058 .readfn = pmsav7_read, .writefn = pmsav7_write,
4059 .resetfn = arm_cp_reset_ignore },
4060 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4061 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4062 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4063 .readfn = pmsav7_read, .writefn = pmsav7_write,
4064 .resetfn = arm_cp_reset_ignore },
4065 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4066 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4067 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4068 .readfn = pmsav7_read, .writefn = pmsav7_write,
4069 .resetfn = arm_cp_reset_ignore },
4070 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4071 .access = PL1_RW,
4072 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4073 .writefn = pmsav7_rgnr_write,
4074 .resetfn = arm_cp_reset_ignore },
4075 };
4076
4077 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4078 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4079 .access = PL1_RW, .type = ARM_CP_ALIAS,
4080 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4081 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4082 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4083 .access = PL1_RW, .type = ARM_CP_ALIAS,
4084 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4085 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4086 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4087 .access = PL1_RW,
4088 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4089 .resetvalue = 0, },
4090 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4091 .access = PL1_RW,
4092 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4093 .resetvalue = 0, },
4094 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4095 .access = PL1_RW,
4096 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4097 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4098 .access = PL1_RW,
4099 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4100 /* Protection region base and size registers */
4101 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4102 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4103 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4104 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4105 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4106 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4107 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4108 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4109 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4110 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4111 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4112 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4113 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4114 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4115 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4116 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4117 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4118 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4119 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4120 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4121 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4122 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4123 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4124 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4125 };
4126
4127 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4128 uint64_t value)
4129 {
4130 ARMCPU *cpu = env_archcpu(env);
4131
4132 if (!arm_feature(env, ARM_FEATURE_V8)) {
4133 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4134 /*
4135 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4136 * using Long-descriptor translation table format
4137 */
4138 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4139 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4140 /*
4141 * In an implementation that includes the Security Extensions
4142 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4143 * Short-descriptor translation table format.
4144 */
4145 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4146 } else {
4147 value &= TTBCR_N;
4148 }
4149 }
4150
4151 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4152 /*
4153 * With LPAE the TTBCR could result in a change of ASID
4154 * via the TTBCR.A1 bit, so do a TLB flush.
4155 */
4156 tlb_flush(CPU(cpu));
4157 }
4158 raw_write(env, ri, value);
4159 }
4160
4161 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4162 uint64_t value)
4163 {
4164 ARMCPU *cpu = env_archcpu(env);
4165
4166 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4167 tlb_flush(CPU(cpu));
4168 raw_write(env, ri, value);
4169 }
4170
4171 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4172 uint64_t value)
4173 {
4174 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4175 if (cpreg_field_is_64bit(ri) &&
4176 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4177 ARMCPU *cpu = env_archcpu(env);
4178 tlb_flush(CPU(cpu));
4179 }
4180 raw_write(env, ri, value);
4181 }
4182
4183 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4184 uint64_t value)
4185 {
4186 /*
4187 * If we are running with E2&0 regime, then an ASID is active.
4188 * Flush if that might be changing. Note we're not checking
4189 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4190 * holds the active ASID, only checking the field that might.
4191 */
4192 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4193 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4194 uint16_t mask = ARMMMUIdxBit_E20_2 |
4195 ARMMMUIdxBit_E20_2_PAN |
4196 ARMMMUIdxBit_E20_0;
4197 tlb_flush_by_mmuidx(env_cpu(env), mask);
4198 }
4199 raw_write(env, ri, value);
4200 }
4201
4202 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4203 uint64_t value)
4204 {
4205 ARMCPU *cpu = env_archcpu(env);
4206 CPUState *cs = CPU(cpu);
4207
4208 /*
4209 * A change in VMID to the stage2 page table (Stage2) invalidates
4210 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4211 */
4212 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4213 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4214 }
4215 raw_write(env, ri, value);
4216 }
4217
4218 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4219 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4220 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4221 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4222 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4223 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4224 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4225 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4226 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4227 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4228 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4229 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4230 offsetof(CPUARMState, cp15.dfar_ns) } },
4231 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4232 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4233 .access = PL1_RW, .accessfn = access_tvm_trvm,
4234 .fgt = FGT_FAR_EL1,
4235 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4236 .resetvalue = 0, },
4237 };
4238
4239 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4240 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4241 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4242 .access = PL1_RW, .accessfn = access_tvm_trvm,
4243 .fgt = FGT_ESR_EL1,
4244 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4245 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4246 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4247 .access = PL1_RW, .accessfn = access_tvm_trvm,
4248 .fgt = FGT_TTBR0_EL1,
4249 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4250 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4251 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4252 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4253 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4254 .access = PL1_RW, .accessfn = access_tvm_trvm,
4255 .fgt = FGT_TTBR1_EL1,
4256 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4257 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4258 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4259 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4260 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4261 .access = PL1_RW, .accessfn = access_tvm_trvm,
4262 .fgt = FGT_TCR_EL1,
4263 .writefn = vmsa_tcr_el12_write,
4264 .raw_writefn = raw_write,
4265 .resetvalue = 0,
4266 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4267 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4268 .access = PL1_RW, .accessfn = access_tvm_trvm,
4269 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4270 .raw_writefn = raw_write,
4271 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4272 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4273 };
4274
4275 /*
4276 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4277 * qemu tlbs nor adjusting cached masks.
4278 */
4279 static const ARMCPRegInfo ttbcr2_reginfo = {
4280 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4281 .access = PL1_RW, .accessfn = access_tvm_trvm,
4282 .type = ARM_CP_ALIAS,
4283 .bank_fieldoffsets = {
4284 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4285 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4286 },
4287 };
4288
4289 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4290 uint64_t value)
4291 {
4292 env->cp15.c15_ticonfig = value & 0xe7;
4293 /* The OS_TYPE bit in this register changes the reported CPUID! */
4294 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4295 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4296 }
4297
4298 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4299 uint64_t value)
4300 {
4301 env->cp15.c15_threadid = value & 0xffff;
4302 }
4303
4304 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4305 uint64_t value)
4306 {
4307 /* Wait-for-interrupt (deprecated) */
4308 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4309 }
4310
4311 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4312 uint64_t value)
4313 {
4314 /*
4315 * On OMAP there are registers indicating the max/min index of dcache lines
4316 * containing a dirty line; cache flush operations have to reset these.
4317 */
4318 env->cp15.c15_i_max = 0x000;
4319 env->cp15.c15_i_min = 0xff0;
4320 }
4321
4322 static const ARMCPRegInfo omap_cp_reginfo[] = {
4323 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4324 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4325 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4326 .resetvalue = 0, },
4327 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4328 .access = PL1_RW, .type = ARM_CP_NOP },
4329 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4330 .access = PL1_RW,
4331 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4332 .writefn = omap_ticonfig_write },
4333 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4334 .access = PL1_RW,
4335 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4336 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4337 .access = PL1_RW, .resetvalue = 0xff0,
4338 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4339 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4340 .access = PL1_RW,
4341 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4342 .writefn = omap_threadid_write },
4343 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4344 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4345 .type = ARM_CP_NO_RAW,
4346 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4347 /*
4348 * TODO: Peripheral port remap register:
4349 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4350 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4351 * when MMU is off.
4352 */
4353 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4354 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4355 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4356 .writefn = omap_cachemaint_write },
4357 { .name = "C9", .cp = 15, .crn = 9,
4358 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4359 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4360 };
4361
4362 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4363 uint64_t value)
4364 {
4365 env->cp15.c15_cpar = value & 0x3fff;
4366 }
4367
4368 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4369 { .name = "XSCALE_CPAR",
4370 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4371 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4372 .writefn = xscale_cpar_write, },
4373 { .name = "XSCALE_AUXCR",
4374 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4375 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4376 .resetvalue = 0, },
4377 /*
4378 * XScale specific cache-lockdown: since we have no cache we NOP these
4379 * and hope the guest does not really rely on cache behaviour.
4380 */
4381 { .name = "XSCALE_LOCK_ICACHE_LINE",
4382 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4383 .access = PL1_W, .type = ARM_CP_NOP },
4384 { .name = "XSCALE_UNLOCK_ICACHE",
4385 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4386 .access = PL1_W, .type = ARM_CP_NOP },
4387 { .name = "XSCALE_DCACHE_LOCK",
4388 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4389 .access = PL1_RW, .type = ARM_CP_NOP },
4390 { .name = "XSCALE_UNLOCK_DCACHE",
4391 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4392 .access = PL1_W, .type = ARM_CP_NOP },
4393 };
4394
4395 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4396 /*
4397 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4398 * implementation of this implementation-defined space.
4399 * Ideally this should eventually disappear in favour of actually
4400 * implementing the correct behaviour for all cores.
4401 */
4402 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4403 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4404 .access = PL1_RW,
4405 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4406 .resetvalue = 0 },
4407 };
4408
4409 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4410 /* Cache status: RAZ because we have no cache so it's always clean */
4411 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4412 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4413 .resetvalue = 0 },
4414 };
4415
4416 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4417 /* We never have a block transfer operation in progress */
4418 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4419 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4420 .resetvalue = 0 },
4421 /* The cache ops themselves: these all NOP for QEMU */
4422 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4423 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4424 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4425 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4426 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4427 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4428 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4429 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4430 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4431 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4432 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4433 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4434 };
4435
4436 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4437 /*
4438 * The cache test-and-clean instructions always return (1 << 30)
4439 * to indicate that there are no dirty cache lines.
4440 */
4441 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4442 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4443 .resetvalue = (1 << 30) },
4444 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4445 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4446 .resetvalue = (1 << 30) },
4447 };
4448
4449 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4450 /* Ignore ReadBuffer accesses */
4451 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4452 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4453 .access = PL1_RW, .resetvalue = 0,
4454 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4455 };
4456
4457 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4458 {
4459 unsigned int cur_el = arm_current_el(env);
4460
4461 if (arm_is_el2_enabled(env) && cur_el == 1) {
4462 return env->cp15.vpidr_el2;
4463 }
4464 return raw_read(env, ri);
4465 }
4466
4467 static uint64_t mpidr_read_val(CPUARMState *env)
4468 {
4469 ARMCPU *cpu = env_archcpu(env);
4470 uint64_t mpidr = cpu->mp_affinity;
4471
4472 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4473 mpidr |= (1U << 31);
4474 /*
4475 * Cores which are uniprocessor (non-coherent)
4476 * but still implement the MP extensions set
4477 * bit 30. (For instance, Cortex-R5).
4478 */
4479 if (cpu->mp_is_up) {
4480 mpidr |= (1u << 30);
4481 }
4482 }
4483 return mpidr;
4484 }
4485
4486 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4487 {
4488 unsigned int cur_el = arm_current_el(env);
4489
4490 if (arm_is_el2_enabled(env) && cur_el == 1) {
4491 return env->cp15.vmpidr_el2;
4492 }
4493 return mpidr_read_val(env);
4494 }
4495
4496 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4497 /* NOP AMAIR0/1 */
4498 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4499 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4500 .access = PL1_RW, .accessfn = access_tvm_trvm,
4501 .fgt = FGT_AMAIR_EL1,
4502 .type = ARM_CP_CONST, .resetvalue = 0 },
4503 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4504 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4505 .access = PL1_RW, .accessfn = access_tvm_trvm,
4506 .type = ARM_CP_CONST, .resetvalue = 0 },
4507 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4508 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4509 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4510 offsetof(CPUARMState, cp15.par_ns)} },
4511 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4512 .access = PL1_RW, .accessfn = access_tvm_trvm,
4513 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4514 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4515 offsetof(CPUARMState, cp15.ttbr0_ns) },
4516 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4517 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4518 .access = PL1_RW, .accessfn = access_tvm_trvm,
4519 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4520 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4521 offsetof(CPUARMState, cp15.ttbr1_ns) },
4522 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4523 };
4524
4525 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4526 {
4527 return vfp_get_fpcr(env);
4528 }
4529
4530 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4531 uint64_t value)
4532 {
4533 vfp_set_fpcr(env, value);
4534 }
4535
4536 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4537 {
4538 return vfp_get_fpsr(env);
4539 }
4540
4541 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4542 uint64_t value)
4543 {
4544 vfp_set_fpsr(env, value);
4545 }
4546
4547 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4548 bool isread)
4549 {
4550 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4551 return CP_ACCESS_TRAP;
4552 }
4553 return CP_ACCESS_OK;
4554 }
4555
4556 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4557 uint64_t value)
4558 {
4559 env->daif = value & PSTATE_DAIF;
4560 }
4561
4562 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4563 {
4564 return env->pstate & PSTATE_PAN;
4565 }
4566
4567 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4568 uint64_t value)
4569 {
4570 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4571 }
4572
4573 static const ARMCPRegInfo pan_reginfo = {
4574 .name = "PAN", .state = ARM_CP_STATE_AA64,
4575 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4576 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4577 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4578 };
4579
4580 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4581 {
4582 return env->pstate & PSTATE_UAO;
4583 }
4584
4585 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4586 uint64_t value)
4587 {
4588 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4589 }
4590
4591 static const ARMCPRegInfo uao_reginfo = {
4592 .name = "UAO", .state = ARM_CP_STATE_AA64,
4593 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4594 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4595 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4596 };
4597
4598 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4599 {
4600 return env->pstate & PSTATE_DIT;
4601 }
4602
4603 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4604 uint64_t value)
4605 {
4606 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4607 }
4608
4609 static const ARMCPRegInfo dit_reginfo = {
4610 .name = "DIT", .state = ARM_CP_STATE_AA64,
4611 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4612 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4613 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4614 };
4615
4616 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4617 {
4618 return env->pstate & PSTATE_SSBS;
4619 }
4620
4621 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4622 uint64_t value)
4623 {
4624 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4625 }
4626
4627 static const ARMCPRegInfo ssbs_reginfo = {
4628 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4629 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4630 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4631 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4632 };
4633
4634 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4635 const ARMCPRegInfo *ri,
4636 bool isread)
4637 {
4638 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4639 switch (arm_current_el(env)) {
4640 case 0:
4641 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4642 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4643 return CP_ACCESS_TRAP;
4644 }
4645 /* fall through */
4646 case 1:
4647 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4648 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4649 return CP_ACCESS_TRAP_EL2;
4650 }
4651 break;
4652 }
4653 return CP_ACCESS_OK;
4654 }
4655
4656 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4657 {
4658 /* Cache invalidate/clean to Point of Unification... */
4659 switch (arm_current_el(env)) {
4660 case 0:
4661 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4662 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4663 return CP_ACCESS_TRAP;
4664 }
4665 /* fall through */
4666 case 1:
4667 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4668 if (arm_hcr_el2_eff(env) & hcrflags) {
4669 return CP_ACCESS_TRAP_EL2;
4670 }
4671 break;
4672 }
4673 return CP_ACCESS_OK;
4674 }
4675
4676 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4677 bool isread)
4678 {
4679 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4680 }
4681
4682 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4683 bool isread)
4684 {
4685 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4686 }
4687
4688 /*
4689 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4690 * Page D4-1736 (DDI0487A.b)
4691 */
4692
4693 static int vae1_tlbmask(CPUARMState *env)
4694 {
4695 uint64_t hcr = arm_hcr_el2_eff(env);
4696 uint16_t mask;
4697
4698 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4699 mask = ARMMMUIdxBit_E20_2 |
4700 ARMMMUIdxBit_E20_2_PAN |
4701 ARMMMUIdxBit_E20_0;
4702 } else {
4703 mask = ARMMMUIdxBit_E10_1 |
4704 ARMMMUIdxBit_E10_1_PAN |
4705 ARMMMUIdxBit_E10_0;
4706 }
4707 return mask;
4708 }
4709
4710 static int vae2_tlbmask(CPUARMState *env)
4711 {
4712 uint64_t hcr = arm_hcr_el2_eff(env);
4713 uint16_t mask;
4714
4715 if (hcr & HCR_E2H) {
4716 mask = ARMMMUIdxBit_E20_2 |
4717 ARMMMUIdxBit_E20_2_PAN |
4718 ARMMMUIdxBit_E20_0;
4719 } else {
4720 mask = ARMMMUIdxBit_E2;
4721 }
4722 return mask;
4723 }
4724
4725 /* Return 56 if TBI is enabled, 64 otherwise. */
4726 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4727 uint64_t addr)
4728 {
4729 uint64_t tcr = regime_tcr(env, mmu_idx);
4730 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4731 int select = extract64(addr, 55, 1);
4732
4733 return (tbi >> select) & 1 ? 56 : 64;
4734 }
4735
4736 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4737 {
4738 uint64_t hcr = arm_hcr_el2_eff(env);
4739 ARMMMUIdx mmu_idx;
4740
4741 /* Only the regime of the mmu_idx below is significant. */
4742 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4743 mmu_idx = ARMMMUIdx_E20_0;
4744 } else {
4745 mmu_idx = ARMMMUIdx_E10_0;
4746 }
4747
4748 return tlbbits_for_regime(env, mmu_idx, addr);
4749 }
4750
4751 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4752 {
4753 uint64_t hcr = arm_hcr_el2_eff(env);
4754 ARMMMUIdx mmu_idx;
4755
4756 /*
4757 * Only the regime of the mmu_idx below is significant.
4758 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4759 * only has one.
4760 */
4761 if (hcr & HCR_E2H) {
4762 mmu_idx = ARMMMUIdx_E20_2;
4763 } else {
4764 mmu_idx = ARMMMUIdx_E2;
4765 }
4766
4767 return tlbbits_for_regime(env, mmu_idx, addr);
4768 }
4769
4770 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4771 uint64_t value)
4772 {
4773 CPUState *cs = env_cpu(env);
4774 int mask = vae1_tlbmask(env);
4775
4776 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4777 }
4778
4779 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4780 uint64_t value)
4781 {
4782 CPUState *cs = env_cpu(env);
4783 int mask = vae1_tlbmask(env);
4784
4785 if (tlb_force_broadcast(env)) {
4786 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4787 } else {
4788 tlb_flush_by_mmuidx(cs, mask);
4789 }
4790 }
4791
4792 static int e2_tlbmask(CPUARMState *env)
4793 {
4794 return (ARMMMUIdxBit_E20_0 |
4795 ARMMMUIdxBit_E20_2 |
4796 ARMMMUIdxBit_E20_2_PAN |
4797 ARMMMUIdxBit_E2);
4798 }
4799
4800 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4801 uint64_t value)
4802 {
4803 CPUState *cs = env_cpu(env);
4804 int mask = alle1_tlbmask(env);
4805
4806 tlb_flush_by_mmuidx(cs, mask);
4807 }
4808
4809 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4810 uint64_t value)
4811 {
4812 CPUState *cs = env_cpu(env);
4813 int mask = e2_tlbmask(env);
4814
4815 tlb_flush_by_mmuidx(cs, mask);
4816 }
4817
4818 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4819 uint64_t value)
4820 {
4821 ARMCPU *cpu = env_archcpu(env);
4822 CPUState *cs = CPU(cpu);
4823
4824 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4825 }
4826
4827 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4828 uint64_t value)
4829 {
4830 CPUState *cs = env_cpu(env);
4831 int mask = alle1_tlbmask(env);
4832
4833 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4834 }
4835
4836 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4837 uint64_t value)
4838 {
4839 CPUState *cs = env_cpu(env);
4840 int mask = e2_tlbmask(env);
4841
4842 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4843 }
4844
4845 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4846 uint64_t value)
4847 {
4848 CPUState *cs = env_cpu(env);
4849
4850 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4851 }
4852
4853 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4854 uint64_t value)
4855 {
4856 /*
4857 * Invalidate by VA, EL2
4858 * Currently handles both VAE2 and VALE2, since we don't support
4859 * flush-last-level-only.
4860 */
4861 CPUState *cs = env_cpu(env);
4862 int mask = vae2_tlbmask(env);
4863 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4864 int bits = vae2_tlbbits(env, pageaddr);
4865
4866 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4867 }
4868
4869 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4870 uint64_t value)
4871 {
4872 /*
4873 * Invalidate by VA, EL3
4874 * Currently handles both VAE3 and VALE3, since we don't support
4875 * flush-last-level-only.
4876 */
4877 ARMCPU *cpu = env_archcpu(env);
4878 CPUState *cs = CPU(cpu);
4879 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4880
4881 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4882 }
4883
4884 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4885 uint64_t value)
4886 {
4887 CPUState *cs = env_cpu(env);
4888 int mask = vae1_tlbmask(env);
4889 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4890 int bits = vae1_tlbbits(env, pageaddr);
4891
4892 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4893 }
4894
4895 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4896 uint64_t value)
4897 {
4898 /*
4899 * Invalidate by VA, EL1&0 (AArch64 version).
4900 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4901 * since we don't support flush-for-specific-ASID-only or
4902 * flush-last-level-only.
4903 */
4904 CPUState *cs = env_cpu(env);
4905 int mask = vae1_tlbmask(env);
4906 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4907 int bits = vae1_tlbbits(env, pageaddr);
4908
4909 if (tlb_force_broadcast(env)) {
4910 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4911 } else {
4912 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4913 }
4914 }
4915
4916 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4917 uint64_t value)
4918 {
4919 CPUState *cs = env_cpu(env);
4920 int mask = vae2_tlbmask(env);
4921 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4922 int bits = vae2_tlbbits(env, pageaddr);
4923
4924 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4925 }
4926
4927 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4928 uint64_t value)
4929 {
4930 CPUState *cs = env_cpu(env);
4931 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4932 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4933
4934 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4935 ARMMMUIdxBit_E3, bits);
4936 }
4937
4938 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4939 {
4940 /*
4941 * The MSB of value is the NS field, which only applies if SEL2
4942 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4943 */
4944 return (value >= 0
4945 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4946 && arm_is_secure_below_el3(env)
4947 ? ARMMMUIdxBit_Stage2_S
4948 : ARMMMUIdxBit_Stage2);
4949 }
4950
4951 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4952 uint64_t value)
4953 {
4954 CPUState *cs = env_cpu(env);
4955 int mask = ipas2e1_tlbmask(env, value);
4956 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4957
4958 if (tlb_force_broadcast(env)) {
4959 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4960 } else {
4961 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4962 }
4963 }
4964
4965 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4966 uint64_t value)
4967 {
4968 CPUState *cs = env_cpu(env);
4969 int mask = ipas2e1_tlbmask(env, value);
4970 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4971
4972 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4973 }
4974
4975 #ifdef TARGET_AARCH64
4976 typedef struct {
4977 uint64_t base;
4978 uint64_t length;
4979 } TLBIRange;
4980
4981 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4982 {
4983 /*
4984 * Note that the TLBI range TG field encoding differs from both
4985 * TG0 and TG1 encodings.
4986 */
4987 switch (tg) {
4988 case 1:
4989 return Gran4K;
4990 case 2:
4991 return Gran16K;
4992 case 3:
4993 return Gran64K;
4994 default:
4995 return GranInvalid;
4996 }
4997 }
4998
4999 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5000 uint64_t value)
5001 {
5002 unsigned int page_size_granule, page_shift, num, scale, exponent;
5003 /* Extract one bit to represent the va selector in use. */
5004 uint64_t select = sextract64(value, 36, 1);
5005 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5006 TLBIRange ret = { };
5007 ARMGranuleSize gran;
5008
5009 page_size_granule = extract64(value, 46, 2);
5010 gran = tlbi_range_tg_to_gran_size(page_size_granule);
5011
5012 /* The granule encoded in value must match the granule in use. */
5013 if (gran != param.gran) {
5014 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5015 page_size_granule);
5016 return ret;
5017 }
5018
5019 page_shift = arm_granule_bits(gran);
5020 num = extract64(value, 39, 5);
5021 scale = extract64(value, 44, 2);
5022 exponent = (5 * scale) + 1;
5023
5024 ret.length = (num + 1) << (exponent + page_shift);
5025
5026 if (param.select) {
5027 ret.base = sextract64(value, 0, 37);
5028 } else {
5029 ret.base = extract64(value, 0, 37);
5030 }
5031 if (param.ds) {
5032 /*
5033 * With DS=1, BaseADDR is always shifted 16 so that it is able
5034 * to address all 52 va bits. The input address is perforce
5035 * aligned on a 64k boundary regardless of translation granule.
5036 */
5037 page_shift = 16;
5038 }
5039 ret.base <<= page_shift;
5040
5041 return ret;
5042 }
5043
5044 static void do_rvae_write(CPUARMState *env, uint64_t value,
5045 int idxmap, bool synced)
5046 {
5047 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5048 TLBIRange range;
5049 int bits;
5050
5051 range = tlbi_aa64_get_range(env, one_idx, value);
5052 bits = tlbbits_for_regime(env, one_idx, range.base);
5053
5054 if (synced) {
5055 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5056 range.base,
5057 range.length,
5058 idxmap,
5059 bits);
5060 } else {
5061 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5062 range.length, idxmap, bits);
5063 }
5064 }
5065
5066 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5067 const ARMCPRegInfo *ri,
5068 uint64_t value)
5069 {
5070 /*
5071 * Invalidate by VA range, EL1&0.
5072 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5073 * since we don't support flush-for-specific-ASID-only or
5074 * flush-last-level-only.
5075 */
5076
5077 do_rvae_write(env, value, vae1_tlbmask(env),
5078 tlb_force_broadcast(env));
5079 }
5080
5081 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5082 const ARMCPRegInfo *ri,
5083 uint64_t value)
5084 {
5085 /*
5086 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5087 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5088 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5089 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5090 * shareable specific flushes.
5091 */
5092
5093 do_rvae_write(env, value, vae1_tlbmask(env), true);
5094 }
5095
5096 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5097 const ARMCPRegInfo *ri,
5098 uint64_t value)
5099 {
5100 /*
5101 * Invalidate by VA range, EL2.
5102 * Currently handles all of RVAE2 and RVALE2,
5103 * since we don't support flush-for-specific-ASID-only or
5104 * flush-last-level-only.
5105 */
5106
5107 do_rvae_write(env, value, vae2_tlbmask(env),
5108 tlb_force_broadcast(env));
5109
5110
5111 }
5112
5113 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5114 const ARMCPRegInfo *ri,
5115 uint64_t value)
5116 {
5117 /*
5118 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5119 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5120 * since we don't support flush-for-specific-ASID-only,
5121 * flush-last-level-only or inner/outer shareable specific flushes.
5122 */
5123
5124 do_rvae_write(env, value, vae2_tlbmask(env), true);
5125
5126 }
5127
5128 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5129 const ARMCPRegInfo *ri,
5130 uint64_t value)
5131 {
5132 /*
5133 * Invalidate by VA range, EL3.
5134 * Currently handles all of RVAE3 and RVALE3,
5135 * since we don't support flush-for-specific-ASID-only or
5136 * flush-last-level-only.
5137 */
5138
5139 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5140 }
5141
5142 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5143 const ARMCPRegInfo *ri,
5144 uint64_t value)
5145 {
5146 /*
5147 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5148 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5149 * since we don't support flush-for-specific-ASID-only,
5150 * flush-last-level-only or inner/outer specific flushes.
5151 */
5152
5153 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5154 }
5155
5156 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5157 uint64_t value)
5158 {
5159 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5160 tlb_force_broadcast(env));
5161 }
5162
5163 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5164 const ARMCPRegInfo *ri,
5165 uint64_t value)
5166 {
5167 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5168 }
5169 #endif
5170
5171 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5172 bool isread)
5173 {
5174 int cur_el = arm_current_el(env);
5175
5176 if (cur_el < 2) {
5177 uint64_t hcr = arm_hcr_el2_eff(env);
5178
5179 if (cur_el == 0) {
5180 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5181 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5182 return CP_ACCESS_TRAP_EL2;
5183 }
5184 } else {
5185 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5186 return CP_ACCESS_TRAP;
5187 }
5188 if (hcr & HCR_TDZ) {
5189 return CP_ACCESS_TRAP_EL2;
5190 }
5191 }
5192 } else if (hcr & HCR_TDZ) {
5193 return CP_ACCESS_TRAP_EL2;
5194 }
5195 }
5196 return CP_ACCESS_OK;
5197 }
5198
5199 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5200 {
5201 ARMCPU *cpu = env_archcpu(env);
5202 int dzp_bit = 1 << 4;
5203
5204 /* DZP indicates whether DC ZVA access is allowed */
5205 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5206 dzp_bit = 0;
5207 }
5208 return cpu->dcz_blocksize | dzp_bit;
5209 }
5210
5211 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5212 bool isread)
5213 {
5214 if (!(env->pstate & PSTATE_SP)) {
5215 /*
5216 * Access to SP_EL0 is undefined if it's being used as
5217 * the stack pointer.
5218 */
5219 return CP_ACCESS_TRAP_UNCATEGORIZED;
5220 }
5221 return CP_ACCESS_OK;
5222 }
5223
5224 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5225 {
5226 return env->pstate & PSTATE_SP;
5227 }
5228
5229 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5230 {
5231 update_spsel(env, val);
5232 }
5233
5234 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5235 uint64_t value)
5236 {
5237 ARMCPU *cpu = env_archcpu(env);
5238
5239 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5240 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5241 value &= ~SCTLR_M;
5242 }
5243
5244 /* ??? Lots of these bits are not implemented. */
5245
5246 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5247 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5248 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5249 } else {
5250 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5251 SCTLR_ATA0 | SCTLR_ATA);
5252 }
5253 }
5254
5255 if (raw_read(env, ri) == value) {
5256 /*
5257 * Skip the TLB flush if nothing actually changed; Linux likes
5258 * to do a lot of pointless SCTLR writes.
5259 */
5260 return;
5261 }
5262
5263 raw_write(env, ri, value);
5264
5265 /* This may enable/disable the MMU, so do a TLB flush. */
5266 tlb_flush(CPU(cpu));
5267
5268 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5269 /*
5270 * Normally we would always end the TB on an SCTLR write; see the
5271 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5272 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5273 * of hflags from the translator, so do it here.
5274 */
5275 arm_rebuild_hflags(env);
5276 }
5277 }
5278
5279 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5280 uint64_t value)
5281 {
5282 /*
5283 * Some MDCR_EL3 bits affect whether PMU counters are running:
5284 * if we are trying to change any of those then we must
5285 * bracket this update with PMU start/finish calls.
5286 */
5287 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5288
5289 if (pmu_op) {
5290 pmu_op_start(env);
5291 }
5292 env->cp15.mdcr_el3 = value;
5293 if (pmu_op) {
5294 pmu_op_finish(env);
5295 }
5296 }
5297
5298 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5299 uint64_t value)
5300 {
5301 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5302 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5303 }
5304
5305 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5306 uint64_t value)
5307 {
5308 /*
5309 * Some MDCR_EL2 bits affect whether PMU counters are running:
5310 * if we are trying to change any of those then we must
5311 * bracket this update with PMU start/finish calls.
5312 */
5313 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5314
5315 if (pmu_op) {
5316 pmu_op_start(env);
5317 }
5318 env->cp15.mdcr_el2 = value;
5319 if (pmu_op) {
5320 pmu_op_finish(env);
5321 }
5322 }
5323
5324 #ifdef CONFIG_USER_ONLY
5325 /*
5326 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5327 * code to get around W^X restrictions, where one region is writable and the
5328 * other is executable.
5329 *
5330 * Since the executable region is never written to we cannot detect code
5331 * changes when running in user mode, and rely on the emulated JIT telling us
5332 * that the code has changed by executing this instruction.
5333 */
5334 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5335 uint64_t value)
5336 {
5337 uint64_t icache_line_mask, start_address, end_address;
5338 const ARMCPU *cpu;
5339
5340 cpu = env_archcpu(env);
5341
5342 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5343 start_address = value & ~icache_line_mask;
5344 end_address = value | icache_line_mask;
5345
5346 mmap_lock();
5347
5348 tb_invalidate_phys_range(start_address, end_address);
5349
5350 mmap_unlock();
5351 }
5352 #endif
5353
5354 static const ARMCPRegInfo v8_cp_reginfo[] = {
5355 /*
5356 * Minimal set of EL0-visible registers. This will need to be expanded
5357 * significantly for system emulation of AArch64 CPUs.
5358 */
5359 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5360 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5361 .access = PL0_RW, .type = ARM_CP_NZCV },
5362 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5363 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5364 .type = ARM_CP_NO_RAW,
5365 .access = PL0_RW, .accessfn = aa64_daif_access,
5366 .fieldoffset = offsetof(CPUARMState, daif),
5367 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5368 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5369 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5370 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5371 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5372 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5373 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5374 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5375 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5376 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5377 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5378 .access = PL0_R, .type = ARM_CP_NO_RAW,
5379 .fgt = FGT_DCZID_EL0,
5380 .readfn = aa64_dczid_read },
5381 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5382 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5383 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5384 #ifndef CONFIG_USER_ONLY
5385 /* Avoid overhead of an access check that always passes in user-mode */
5386 .accessfn = aa64_zva_access,
5387 .fgt = FGT_DCZVA,
5388 #endif
5389 },
5390 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5391 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5392 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5393 /*
5394 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5395 * don't emulate caches.
5396 */
5397 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5398 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5399 .access = PL1_W, .type = ARM_CP_NOP,
5400 .fgt = FGT_ICIALLUIS,
5401 .accessfn = access_ticab },
5402 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5403 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5404 .access = PL1_W, .type = ARM_CP_NOP,
5405 .fgt = FGT_ICIALLU,
5406 .accessfn = access_tocu },
5407 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5408 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5409 .access = PL0_W,
5410 .fgt = FGT_ICIVAU,
5411 .accessfn = access_tocu,
5412 #ifdef CONFIG_USER_ONLY
5413 .type = ARM_CP_NO_RAW,
5414 .writefn = ic_ivau_write
5415 #else
5416 .type = ARM_CP_NOP
5417 #endif
5418 },
5419 /* Cache ops: all NOPs since we don't emulate caches */
5420 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5421 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5422 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5423 .fgt = FGT_DCIVAC,
5424 .type = ARM_CP_NOP },
5425 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5426 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5427 .fgt = FGT_DCISW,
5428 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5429 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5430 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5431 .access = PL0_W, .type = ARM_CP_NOP,
5432 .fgt = FGT_DCCVAC,
5433 .accessfn = aa64_cacheop_poc_access },
5434 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5435 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5436 .fgt = FGT_DCCSW,
5437 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5438 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5439 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5440 .access = PL0_W, .type = ARM_CP_NOP,
5441 .fgt = FGT_DCCVAU,
5442 .accessfn = access_tocu },
5443 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5444 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5445 .access = PL0_W, .type = ARM_CP_NOP,
5446 .fgt = FGT_DCCIVAC,
5447 .accessfn = aa64_cacheop_poc_access },
5448 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5449 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5450 .fgt = FGT_DCCISW,
5451 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5452 /* TLBI operations */
5453 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5454 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5455 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5456 .fgt = FGT_TLBIVMALLE1IS,
5457 .writefn = tlbi_aa64_vmalle1is_write },
5458 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5459 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5460 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5461 .fgt = FGT_TLBIVAE1IS,
5462 .writefn = tlbi_aa64_vae1is_write },
5463 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5464 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5465 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5466 .fgt = FGT_TLBIASIDE1IS,
5467 .writefn = tlbi_aa64_vmalle1is_write },
5468 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5469 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5470 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5471 .fgt = FGT_TLBIVAAE1IS,
5472 .writefn = tlbi_aa64_vae1is_write },
5473 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5474 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5475 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5476 .fgt = FGT_TLBIVALE1IS,
5477 .writefn = tlbi_aa64_vae1is_write },
5478 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5479 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5480 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5481 .fgt = FGT_TLBIVAALE1IS,
5482 .writefn = tlbi_aa64_vae1is_write },
5483 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5484 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5485 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5486 .fgt = FGT_TLBIVMALLE1,
5487 .writefn = tlbi_aa64_vmalle1_write },
5488 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5489 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5490 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5491 .fgt = FGT_TLBIVAE1,
5492 .writefn = tlbi_aa64_vae1_write },
5493 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5494 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5495 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5496 .fgt = FGT_TLBIASIDE1,
5497 .writefn = tlbi_aa64_vmalle1_write },
5498 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5499 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5500 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5501 .fgt = FGT_TLBIVAAE1,
5502 .writefn = tlbi_aa64_vae1_write },
5503 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5504 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5505 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5506 .fgt = FGT_TLBIVALE1,
5507 .writefn = tlbi_aa64_vae1_write },
5508 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5509 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5510 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5511 .fgt = FGT_TLBIVAALE1,
5512 .writefn = tlbi_aa64_vae1_write },
5513 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5514 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5515 .access = PL2_W, .type = ARM_CP_NO_RAW,
5516 .writefn = tlbi_aa64_ipas2e1is_write },
5517 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5518 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5519 .access = PL2_W, .type = ARM_CP_NO_RAW,
5520 .writefn = tlbi_aa64_ipas2e1is_write },
5521 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5522 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5523 .access = PL2_W, .type = ARM_CP_NO_RAW,
5524 .writefn = tlbi_aa64_alle1is_write },
5525 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5526 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5527 .access = PL2_W, .type = ARM_CP_NO_RAW,
5528 .writefn = tlbi_aa64_alle1is_write },
5529 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5530 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5531 .access = PL2_W, .type = ARM_CP_NO_RAW,
5532 .writefn = tlbi_aa64_ipas2e1_write },
5533 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5534 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5535 .access = PL2_W, .type = ARM_CP_NO_RAW,
5536 .writefn = tlbi_aa64_ipas2e1_write },
5537 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5538 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5539 .access = PL2_W, .type = ARM_CP_NO_RAW,
5540 .writefn = tlbi_aa64_alle1_write },
5541 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5542 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5543 .access = PL2_W, .type = ARM_CP_NO_RAW,
5544 .writefn = tlbi_aa64_alle1is_write },
5545 #ifndef CONFIG_USER_ONLY
5546 /* 64 bit address translation operations */
5547 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5548 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5549 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5550 .fgt = FGT_ATS1E1R,
5551 .accessfn = at_e012_access, .writefn = ats_write64 },
5552 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5553 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5554 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5555 .fgt = FGT_ATS1E1W,
5556 .accessfn = at_e012_access, .writefn = ats_write64 },
5557 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5558 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5559 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5560 .fgt = FGT_ATS1E0R,
5561 .accessfn = at_e012_access, .writefn = ats_write64 },
5562 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5563 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5564 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5565 .fgt = FGT_ATS1E0W,
5566 .accessfn = at_e012_access, .writefn = ats_write64 },
5567 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5568 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5569 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5570 .accessfn = at_e012_access, .writefn = ats_write64 },
5571 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5572 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5573 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5574 .accessfn = at_e012_access, .writefn = ats_write64 },
5575 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5576 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5577 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5578 .accessfn = at_e012_access, .writefn = ats_write64 },
5579 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5580 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5581 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5582 .accessfn = at_e012_access, .writefn = ats_write64 },
5583 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5584 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5585 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5586 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5587 .writefn = ats_write64 },
5588 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5589 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5590 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5591 .writefn = ats_write64 },
5592 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5593 .type = ARM_CP_ALIAS,
5594 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5595 .access = PL1_RW, .resetvalue = 0,
5596 .fgt = FGT_PAR_EL1,
5597 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5598 .writefn = par_write },
5599 #endif
5600 /* TLB invalidate last level of translation table walk */
5601 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5602 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5603 .writefn = tlbimva_is_write },
5604 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5605 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5606 .writefn = tlbimvaa_is_write },
5607 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5608 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5609 .writefn = tlbimva_write },
5610 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5611 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5612 .writefn = tlbimvaa_write },
5613 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5614 .type = ARM_CP_NO_RAW, .access = PL2_W,
5615 .writefn = tlbimva_hyp_write },
5616 { .name = "TLBIMVALHIS",
5617 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5618 .type = ARM_CP_NO_RAW, .access = PL2_W,
5619 .writefn = tlbimva_hyp_is_write },
5620 { .name = "TLBIIPAS2",
5621 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5622 .type = ARM_CP_NO_RAW, .access = PL2_W,
5623 .writefn = tlbiipas2_hyp_write },
5624 { .name = "TLBIIPAS2IS",
5625 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5626 .type = ARM_CP_NO_RAW, .access = PL2_W,
5627 .writefn = tlbiipas2is_hyp_write },
5628 { .name = "TLBIIPAS2L",
5629 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5630 .type = ARM_CP_NO_RAW, .access = PL2_W,
5631 .writefn = tlbiipas2_hyp_write },
5632 { .name = "TLBIIPAS2LIS",
5633 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5634 .type = ARM_CP_NO_RAW, .access = PL2_W,
5635 .writefn = tlbiipas2is_hyp_write },
5636 /* 32 bit cache operations */
5637 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5638 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5639 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5640 .type = ARM_CP_NOP, .access = PL1_W },
5641 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5642 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5643 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5644 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5645 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5646 .type = ARM_CP_NOP, .access = PL1_W },
5647 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5648 .type = ARM_CP_NOP, .access = PL1_W },
5649 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5650 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5651 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5652 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5653 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5654 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5655 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5656 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5657 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5658 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5659 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5660 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5661 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5662 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5663 /* MMU Domain access control / MPU write buffer control */
5664 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5665 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5666 .writefn = dacr_write, .raw_writefn = raw_write,
5667 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5668 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5669 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5670 .type = ARM_CP_ALIAS,
5671 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5672 .access = PL1_RW,
5673 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5674 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5675 .type = ARM_CP_ALIAS,
5676 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5677 .access = PL1_RW,
5678 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5679 /*
5680 * We rely on the access checks not allowing the guest to write to the
5681 * state field when SPSel indicates that it's being used as the stack
5682 * pointer.
5683 */
5684 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5685 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5686 .access = PL1_RW, .accessfn = sp_el0_access,
5687 .type = ARM_CP_ALIAS,
5688 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5689 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5690 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5691 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5692 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5693 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5694 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5695 .type = ARM_CP_NO_RAW,
5696 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5697 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5698 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5699 .access = PL2_RW,
5700 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5701 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5702 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5703 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5704 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5705 .writefn = dacr_write, .raw_writefn = raw_write,
5706 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5707 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5708 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5709 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5710 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5711 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5712 .type = ARM_CP_ALIAS,
5713 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5714 .access = PL2_RW,
5715 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5716 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5717 .type = ARM_CP_ALIAS,
5718 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5719 .access = PL2_RW,
5720 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5721 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5722 .type = ARM_CP_ALIAS,
5723 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5724 .access = PL2_RW,
5725 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5726 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5727 .type = ARM_CP_ALIAS,
5728 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5729 .access = PL2_RW,
5730 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5731 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5732 .type = ARM_CP_IO,
5733 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5734 .resetvalue = 0,
5735 .access = PL3_RW,
5736 .writefn = mdcr_el3_write,
5737 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5738 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5739 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5740 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5741 .writefn = sdcr_write,
5742 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5743 };
5744
5745 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5746 {
5747 ARMCPU *cpu = env_archcpu(env);
5748
5749 if (arm_feature(env, ARM_FEATURE_V8)) {
5750 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5751 } else {
5752 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5753 }
5754
5755 if (arm_feature(env, ARM_FEATURE_EL3)) {
5756 valid_mask &= ~HCR_HCD;
5757 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5758 /*
5759 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5760 * However, if we're using the SMC PSCI conduit then QEMU is
5761 * effectively acting like EL3 firmware and so the guest at
5762 * EL2 should retain the ability to prevent EL1 from being
5763 * able to make SMC calls into the ersatz firmware, so in
5764 * that case HCR.TSC should be read/write.
5765 */
5766 valid_mask &= ~HCR_TSC;
5767 }
5768
5769 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5770 if (cpu_isar_feature(aa64_vh, cpu)) {
5771 valid_mask |= HCR_E2H;
5772 }
5773 if (cpu_isar_feature(aa64_ras, cpu)) {
5774 valid_mask |= HCR_TERR | HCR_TEA;
5775 }
5776 if (cpu_isar_feature(aa64_lor, cpu)) {
5777 valid_mask |= HCR_TLOR;
5778 }
5779 if (cpu_isar_feature(aa64_pauth, cpu)) {
5780 valid_mask |= HCR_API | HCR_APK;
5781 }
5782 if (cpu_isar_feature(aa64_mte, cpu)) {
5783 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5784 }
5785 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5786 valid_mask |= HCR_ENSCXT;
5787 }
5788 if (cpu_isar_feature(aa64_fwb, cpu)) {
5789 valid_mask |= HCR_FWB;
5790 }
5791 if (cpu_isar_feature(aa64_rme, cpu)) {
5792 valid_mask |= HCR_GPF;
5793 }
5794 }
5795
5796 if (cpu_isar_feature(any_evt, cpu)) {
5797 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5798 } else if (cpu_isar_feature(any_half_evt, cpu)) {
5799 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5800 }
5801
5802 /* Clear RES0 bits. */
5803 value &= valid_mask;
5804
5805 /*
5806 * These bits change the MMU setup:
5807 * HCR_VM enables stage 2 translation
5808 * HCR_PTW forbids certain page-table setups
5809 * HCR_DC disables stage1 and enables stage2 translation
5810 * HCR_DCT enables tagging on (disabled) stage1 translation
5811 * HCR_FWB changes the interpretation of stage2 descriptor bits
5812 */
5813 if ((env->cp15.hcr_el2 ^ value) &
5814 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5815 tlb_flush(CPU(cpu));
5816 }
5817 env->cp15.hcr_el2 = value;
5818
5819 /*
5820 * Updates to VI and VF require us to update the status of
5821 * virtual interrupts, which are the logical OR of these bits
5822 * and the state of the input lines from the GIC. (This requires
5823 * that we have the iothread lock, which is done by marking the
5824 * reginfo structs as ARM_CP_IO.)
5825 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5826 * possible for it to be taken immediately, because VIRQ and
5827 * VFIQ are masked unless running at EL0 or EL1, and HCR
5828 * can only be written at EL2.
5829 */
5830 g_assert(qemu_mutex_iothread_locked());
5831 arm_cpu_update_virq(cpu);
5832 arm_cpu_update_vfiq(cpu);
5833 arm_cpu_update_vserr(cpu);
5834 }
5835
5836 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5837 {
5838 do_hcr_write(env, value, 0);
5839 }
5840
5841 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5842 uint64_t value)
5843 {
5844 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5845 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5846 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5847 }
5848
5849 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5850 uint64_t value)
5851 {
5852 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5853 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5854 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5855 }
5856
5857 /*
5858 * Return the effective value of HCR_EL2, at the given security state.
5859 * Bits that are not included here:
5860 * RW (read from SCR_EL3.RW as needed)
5861 */
5862 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
5863 {
5864 uint64_t ret = env->cp15.hcr_el2;
5865
5866 assert(space != ARMSS_Root);
5867
5868 if (!arm_is_el2_enabled_secstate(env, space)) {
5869 /*
5870 * "This register has no effect if EL2 is not enabled in the
5871 * current Security state". This is ARMv8.4-SecEL2 speak for
5872 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5873 *
5874 * Prior to that, the language was "In an implementation that
5875 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5876 * as if this field is 0 for all purposes other than a direct
5877 * read or write access of HCR_EL2". With lots of enumeration
5878 * on a per-field basis. In current QEMU, this is condition
5879 * is arm_is_secure_below_el3.
5880 *
5881 * Since the v8.4 language applies to the entire register, and
5882 * appears to be backward compatible, use that.
5883 */
5884 return 0;
5885 }
5886
5887 /*
5888 * For a cpu that supports both aarch64 and aarch32, we can set bits
5889 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5890 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5891 */
5892 if (!arm_el_is_aa64(env, 2)) {
5893 uint64_t aa32_valid;
5894
5895 /*
5896 * These bits are up-to-date as of ARMv8.6.
5897 * For HCR, it's easiest to list just the 2 bits that are invalid.
5898 * For HCR2, list those that are valid.
5899 */
5900 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5901 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5902 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5903 ret &= aa32_valid;
5904 }
5905
5906 if (ret & HCR_TGE) {
5907 /* These bits are up-to-date as of ARMv8.6. */
5908 if (ret & HCR_E2H) {
5909 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5910 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5911 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5912 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5913 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5914 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5915 } else {
5916 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5917 }
5918 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5919 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5920 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5921 HCR_TLOR);
5922 }
5923
5924 return ret;
5925 }
5926
5927 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5928 {
5929 if (arm_feature(env, ARM_FEATURE_M)) {
5930 return 0;
5931 }
5932 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
5933 }
5934
5935 /*
5936 * Corresponds to ARM pseudocode function ELIsInHost().
5937 */
5938 bool el_is_in_host(CPUARMState *env, int el)
5939 {
5940 uint64_t mask;
5941
5942 /*
5943 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5944 * Perform the simplest bit tests first, and validate EL2 afterward.
5945 */
5946 if (el & 1) {
5947 return false; /* EL1 or EL3 */
5948 }
5949
5950 /*
5951 * Note that hcr_write() checks isar_feature_aa64_vh(),
5952 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5953 */
5954 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5955 if ((env->cp15.hcr_el2 & mask) != mask) {
5956 return false;
5957 }
5958
5959 /* TGE and/or E2H set: double check those bits are currently legal. */
5960 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5961 }
5962
5963 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5964 uint64_t value)
5965 {
5966 uint64_t valid_mask = 0;
5967
5968 /* FEAT_MOPS adds MSCEn and MCE2 */
5969 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
5970 valid_mask |= HCRX_MSCEN | HCRX_MCE2;
5971 }
5972
5973 /* Clear RES0 bits. */
5974 env->cp15.hcrx_el2 = value & valid_mask;
5975 }
5976
5977 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5978 bool isread)
5979 {
5980 if (arm_current_el(env) < 3
5981 && arm_feature(env, ARM_FEATURE_EL3)
5982 && !(env->cp15.scr_el3 & SCR_HXEN)) {
5983 return CP_ACCESS_TRAP_EL3;
5984 }
5985 return CP_ACCESS_OK;
5986 }
5987
5988 static const ARMCPRegInfo hcrx_el2_reginfo = {
5989 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5990 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5991 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5992 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5993 };
5994
5995 /* Return the effective value of HCRX_EL2. */
5996 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5997 {
5998 /*
5999 * The bits in this register behave as 0 for all purposes other than
6000 * direct reads of the register if SCR_EL3.HXEn is 0.
6001 * If EL2 is not enabled in the current security state, then the
6002 * bit may behave as if 0, or as if 1, depending on the bit.
6003 * For the moment, we treat the EL2-disabled case as taking
6004 * priority over the HXEn-disabled case. This is true for the only
6005 * bit for a feature which we implement where the answer is different
6006 * for the two cases (MSCEn for FEAT_MOPS).
6007 * This may need to be revisited for future bits.
6008 */
6009 if (!arm_is_el2_enabled(env)) {
6010 uint64_t hcrx = 0;
6011 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6012 /* MSCEn behaves as 1 if EL2 is not enabled */
6013 hcrx |= HCRX_MSCEN;
6014 }
6015 return hcrx;
6016 }
6017 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6018 return 0;
6019 }
6020 return env->cp15.hcrx_el2;
6021 }
6022
6023 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6024 uint64_t value)
6025 {
6026 /*
6027 * For A-profile AArch32 EL3, if NSACR.CP10
6028 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6029 */
6030 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6031 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6032 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6033 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6034 }
6035 env->cp15.cptr_el[2] = value;
6036 }
6037
6038 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6039 {
6040 /*
6041 * For A-profile AArch32 EL3, if NSACR.CP10
6042 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6043 */
6044 uint64_t value = env->cp15.cptr_el[2];
6045
6046 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6047 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6048 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6049 }
6050 return value;
6051 }
6052
6053 static const ARMCPRegInfo el2_cp_reginfo[] = {
6054 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6055 .type = ARM_CP_IO,
6056 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6057 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6058 .writefn = hcr_write, .raw_writefn = raw_write },
6059 { .name = "HCR", .state = ARM_CP_STATE_AA32,
6060 .type = ARM_CP_ALIAS | ARM_CP_IO,
6061 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6062 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6063 .writefn = hcr_writelow },
6064 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6065 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6066 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6067 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6068 .type = ARM_CP_ALIAS,
6069 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6070 .access = PL2_RW,
6071 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6072 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6073 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6074 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6075 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6076 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6077 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6078 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6079 .type = ARM_CP_ALIAS,
6080 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6081 .access = PL2_RW,
6082 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6083 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6084 .type = ARM_CP_ALIAS,
6085 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6086 .access = PL2_RW,
6087 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6088 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6089 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6090 .access = PL2_RW, .writefn = vbar_write,
6091 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6092 .resetvalue = 0 },
6093 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6094 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6095 .access = PL3_RW, .type = ARM_CP_ALIAS,
6096 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6097 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6098 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6099 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6100 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6101 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6102 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6103 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6104 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6105 .resetvalue = 0 },
6106 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6107 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6108 .access = PL2_RW, .type = ARM_CP_ALIAS,
6109 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6110 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6111 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6112 .access = PL2_RW, .type = ARM_CP_CONST,
6113 .resetvalue = 0 },
6114 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6115 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6116 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6117 .access = PL2_RW, .type = ARM_CP_CONST,
6118 .resetvalue = 0 },
6119 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6120 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6121 .access = PL2_RW, .type = ARM_CP_CONST,
6122 .resetvalue = 0 },
6123 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6124 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6125 .access = PL2_RW, .type = ARM_CP_CONST,
6126 .resetvalue = 0 },
6127 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6128 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6129 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6130 .raw_writefn = raw_write,
6131 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6132 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6133 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6134 .type = ARM_CP_ALIAS,
6135 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6136 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6137 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6138 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6139 .access = PL2_RW,
6140 /* no .writefn needed as this can't cause an ASID change */
6141 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6142 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6143 .cp = 15, .opc1 = 6, .crm = 2,
6144 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6145 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6146 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6147 .writefn = vttbr_write, .raw_writefn = raw_write },
6148 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6149 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6150 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6151 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6152 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6153 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6154 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6155 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6156 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6157 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6158 .access = PL2_RW, .resetvalue = 0,
6159 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6160 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6161 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6162 .access = PL2_RW, .resetvalue = 0,
6163 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6164 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6165 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6166 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6167 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6168 { .name = "TLBIALLNSNH",
6169 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6170 .type = ARM_CP_NO_RAW, .access = PL2_W,
6171 .writefn = tlbiall_nsnh_write },
6172 { .name = "TLBIALLNSNHIS",
6173 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6174 .type = ARM_CP_NO_RAW, .access = PL2_W,
6175 .writefn = tlbiall_nsnh_is_write },
6176 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6177 .type = ARM_CP_NO_RAW, .access = PL2_W,
6178 .writefn = tlbiall_hyp_write },
6179 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6180 .type = ARM_CP_NO_RAW, .access = PL2_W,
6181 .writefn = tlbiall_hyp_is_write },
6182 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6183 .type = ARM_CP_NO_RAW, .access = PL2_W,
6184 .writefn = tlbimva_hyp_write },
6185 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6186 .type = ARM_CP_NO_RAW, .access = PL2_W,
6187 .writefn = tlbimva_hyp_is_write },
6188 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6189 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6190 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6191 .writefn = tlbi_aa64_alle2_write },
6192 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6193 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6194 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6195 .writefn = tlbi_aa64_vae2_write },
6196 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6197 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6198 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6199 .writefn = tlbi_aa64_vae2_write },
6200 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6201 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6202 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6203 .writefn = tlbi_aa64_alle2is_write },
6204 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6205 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6206 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6207 .writefn = tlbi_aa64_vae2is_write },
6208 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6209 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6210 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6211 .writefn = tlbi_aa64_vae2is_write },
6212 #ifndef CONFIG_USER_ONLY
6213 /*
6214 * Unlike the other EL2-related AT operations, these must
6215 * UNDEF from EL3 if EL2 is not implemented, which is why we
6216 * define them here rather than with the rest of the AT ops.
6217 */
6218 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6219 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6220 .access = PL2_W, .accessfn = at_s1e2_access,
6221 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6222 .writefn = ats_write64 },
6223 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6224 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6225 .access = PL2_W, .accessfn = at_s1e2_access,
6226 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6227 .writefn = ats_write64 },
6228 /*
6229 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6230 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6231 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6232 * to behave as if SCR.NS was 1.
6233 */
6234 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6235 .access = PL2_W,
6236 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6237 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6238 .access = PL2_W,
6239 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6240 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6241 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6242 /*
6243 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6244 * reset values as IMPDEF. We choose to reset to 3 to comply with
6245 * both ARMv7 and ARMv8.
6246 */
6247 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6248 .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6249 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6250 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6251 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6252 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6253 .writefn = gt_cntvoff_write,
6254 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6255 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6256 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6257 .writefn = gt_cntvoff_write,
6258 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6259 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6260 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6261 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6262 .type = ARM_CP_IO, .access = PL2_RW,
6263 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6264 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6265 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6266 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6267 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6268 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6269 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6270 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6271 .resetfn = gt_hyp_timer_reset,
6272 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6273 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6274 .type = ARM_CP_IO,
6275 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6276 .access = PL2_RW,
6277 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6278 .resetvalue = 0,
6279 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6280 #endif
6281 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6282 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6283 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6284 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6285 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6286 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6287 .access = PL2_RW,
6288 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6289 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6290 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6291 .access = PL2_RW,
6292 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6293 };
6294
6295 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6296 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6297 .type = ARM_CP_ALIAS | ARM_CP_IO,
6298 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6299 .access = PL2_RW,
6300 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6301 .writefn = hcr_writehigh },
6302 };
6303
6304 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6305 bool isread)
6306 {
6307 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6308 return CP_ACCESS_OK;
6309 }
6310 return CP_ACCESS_TRAP_UNCATEGORIZED;
6311 }
6312
6313 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6314 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6315 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6316 .access = PL2_RW, .accessfn = sel2_access,
6317 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6318 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6319 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6320 .access = PL2_RW, .accessfn = sel2_access,
6321 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6322 };
6323
6324 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6325 bool isread)
6326 {
6327 /*
6328 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6329 * At Secure EL1 it traps to EL3 or EL2.
6330 */
6331 if (arm_current_el(env) == 3) {
6332 return CP_ACCESS_OK;
6333 }
6334 if (arm_is_secure_below_el3(env)) {
6335 if (env->cp15.scr_el3 & SCR_EEL2) {
6336 return CP_ACCESS_TRAP_EL2;
6337 }
6338 return CP_ACCESS_TRAP_EL3;
6339 }
6340 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6341 if (isread) {
6342 return CP_ACCESS_OK;
6343 }
6344 return CP_ACCESS_TRAP_UNCATEGORIZED;
6345 }
6346
6347 static const ARMCPRegInfo el3_cp_reginfo[] = {
6348 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6349 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6350 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6351 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6352 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6353 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6354 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6355 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6356 .writefn = scr_write, .raw_writefn = raw_write },
6357 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6358 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6359 .access = PL3_RW, .resetvalue = 0,
6360 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6361 { .name = "SDER",
6362 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6363 .access = PL3_RW, .resetvalue = 0,
6364 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6365 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6366 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6367 .writefn = vbar_write, .resetvalue = 0,
6368 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6369 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6370 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6371 .access = PL3_RW, .resetvalue = 0,
6372 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6373 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6374 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6375 .access = PL3_RW,
6376 /* no .writefn needed as this can't cause an ASID change */
6377 .resetvalue = 0,
6378 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6379 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6380 .type = ARM_CP_ALIAS,
6381 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6382 .access = PL3_RW,
6383 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6384 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6385 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6386 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6387 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6388 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6389 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6390 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6391 .type = ARM_CP_ALIAS,
6392 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6393 .access = PL3_RW,
6394 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6395 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6396 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6397 .access = PL3_RW, .writefn = vbar_write,
6398 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6399 .resetvalue = 0 },
6400 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6401 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6402 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6403 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6404 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6405 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6406 .access = PL3_RW, .resetvalue = 0,
6407 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6408 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6409 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6410 .access = PL3_RW, .type = ARM_CP_CONST,
6411 .resetvalue = 0 },
6412 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6413 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6414 .access = PL3_RW, .type = ARM_CP_CONST,
6415 .resetvalue = 0 },
6416 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6417 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6418 .access = PL3_RW, .type = ARM_CP_CONST,
6419 .resetvalue = 0 },
6420 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6421 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6422 .access = PL3_W, .type = ARM_CP_NO_RAW,
6423 .writefn = tlbi_aa64_alle3is_write },
6424 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6425 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6426 .access = PL3_W, .type = ARM_CP_NO_RAW,
6427 .writefn = tlbi_aa64_vae3is_write },
6428 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6429 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6430 .access = PL3_W, .type = ARM_CP_NO_RAW,
6431 .writefn = tlbi_aa64_vae3is_write },
6432 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6433 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6434 .access = PL3_W, .type = ARM_CP_NO_RAW,
6435 .writefn = tlbi_aa64_alle3_write },
6436 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6437 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6438 .access = PL3_W, .type = ARM_CP_NO_RAW,
6439 .writefn = tlbi_aa64_vae3_write },
6440 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6441 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6442 .access = PL3_W, .type = ARM_CP_NO_RAW,
6443 .writefn = tlbi_aa64_vae3_write },
6444 };
6445
6446 #ifndef CONFIG_USER_ONLY
6447 /* Test if system register redirection is to occur in the current state. */
6448 static bool redirect_for_e2h(CPUARMState *env)
6449 {
6450 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6451 }
6452
6453 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6454 {
6455 CPReadFn *readfn;
6456
6457 if (redirect_for_e2h(env)) {
6458 /* Switch to the saved EL2 version of the register. */
6459 ri = ri->opaque;
6460 readfn = ri->readfn;
6461 } else {
6462 readfn = ri->orig_readfn;
6463 }
6464 if (readfn == NULL) {
6465 readfn = raw_read;
6466 }
6467 return readfn(env, ri);
6468 }
6469
6470 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6471 uint64_t value)
6472 {
6473 CPWriteFn *writefn;
6474
6475 if (redirect_for_e2h(env)) {
6476 /* Switch to the saved EL2 version of the register. */
6477 ri = ri->opaque;
6478 writefn = ri->writefn;
6479 } else {
6480 writefn = ri->orig_writefn;
6481 }
6482 if (writefn == NULL) {
6483 writefn = raw_write;
6484 }
6485 writefn(env, ri, value);
6486 }
6487
6488 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6489 {
6490 struct E2HAlias {
6491 uint32_t src_key, dst_key, new_key;
6492 const char *src_name, *dst_name, *new_name;
6493 bool (*feature)(const ARMISARegisters *id);
6494 };
6495
6496 #define K(op0, op1, crn, crm, op2) \
6497 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6498
6499 static const struct E2HAlias aliases[] = {
6500 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6501 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6502 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6503 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6504 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6505 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6506 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6507 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6508 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6509 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6510 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6511 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6512 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6513 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6514 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6515 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6516 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6517 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6518 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6519 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6520 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6521 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6522 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6523 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6524 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6525 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6526 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6527 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6528 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6529 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6530 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6531 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6532
6533 /*
6534 * Note that redirection of ZCR is mentioned in the description
6535 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6536 * not in the summary table.
6537 */
6538 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6539 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6540 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6541 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6542
6543 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6544 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6545
6546 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6547 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6548 isar_feature_aa64_scxtnum },
6549
6550 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6551 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6552 };
6553 #undef K
6554
6555 size_t i;
6556
6557 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6558 const struct E2HAlias *a = &aliases[i];
6559 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6560 bool ok;
6561
6562 if (a->feature && !a->feature(&cpu->isar)) {
6563 continue;
6564 }
6565
6566 src_reg = g_hash_table_lookup(cpu->cp_regs,
6567 (gpointer)(uintptr_t)a->src_key);
6568 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6569 (gpointer)(uintptr_t)a->dst_key);
6570 g_assert(src_reg != NULL);
6571 g_assert(dst_reg != NULL);
6572
6573 /* Cross-compare names to detect typos in the keys. */
6574 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6575 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6576
6577 /* None of the core system registers use opaque; we will. */
6578 g_assert(src_reg->opaque == NULL);
6579
6580 /* Create alias before redirection so we dup the right data. */
6581 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6582
6583 new_reg->name = a->new_name;
6584 new_reg->type |= ARM_CP_ALIAS;
6585 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6586 new_reg->access &= PL2_RW | PL3_RW;
6587
6588 ok = g_hash_table_insert(cpu->cp_regs,
6589 (gpointer)(uintptr_t)a->new_key, new_reg);
6590 g_assert(ok);
6591
6592 src_reg->opaque = dst_reg;
6593 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6594 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6595 if (!src_reg->raw_readfn) {
6596 src_reg->raw_readfn = raw_read;
6597 }
6598 if (!src_reg->raw_writefn) {
6599 src_reg->raw_writefn = raw_write;
6600 }
6601 src_reg->readfn = el2_e2h_read;
6602 src_reg->writefn = el2_e2h_write;
6603 }
6604 }
6605 #endif
6606
6607 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6608 bool isread)
6609 {
6610 int cur_el = arm_current_el(env);
6611
6612 if (cur_el < 2) {
6613 uint64_t hcr = arm_hcr_el2_eff(env);
6614
6615 if (cur_el == 0) {
6616 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6617 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6618 return CP_ACCESS_TRAP_EL2;
6619 }
6620 } else {
6621 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6622 return CP_ACCESS_TRAP;
6623 }
6624 if (hcr & HCR_TID2) {
6625 return CP_ACCESS_TRAP_EL2;
6626 }
6627 }
6628 } else if (hcr & HCR_TID2) {
6629 return CP_ACCESS_TRAP_EL2;
6630 }
6631 }
6632
6633 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6634 return CP_ACCESS_TRAP_EL2;
6635 }
6636
6637 return CP_ACCESS_OK;
6638 }
6639
6640 /*
6641 * Check for traps to RAS registers, which are controlled
6642 * by HCR_EL2.TERR and SCR_EL3.TERR.
6643 */
6644 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6645 bool isread)
6646 {
6647 int el = arm_current_el(env);
6648
6649 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6650 return CP_ACCESS_TRAP_EL2;
6651 }
6652 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6653 return CP_ACCESS_TRAP_EL3;
6654 }
6655 return CP_ACCESS_OK;
6656 }
6657
6658 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6659 {
6660 int el = arm_current_el(env);
6661
6662 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6663 return env->cp15.vdisr_el2;
6664 }
6665 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6666 return 0; /* RAZ/WI */
6667 }
6668 return env->cp15.disr_el1;
6669 }
6670
6671 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6672 {
6673 int el = arm_current_el(env);
6674
6675 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6676 env->cp15.vdisr_el2 = val;
6677 return;
6678 }
6679 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6680 return; /* RAZ/WI */
6681 }
6682 env->cp15.disr_el1 = val;
6683 }
6684
6685 /*
6686 * Minimal RAS implementation with no Error Records.
6687 * Which means that all of the Error Record registers:
6688 * ERXADDR_EL1
6689 * ERXCTLR_EL1
6690 * ERXFR_EL1
6691 * ERXMISC0_EL1
6692 * ERXMISC1_EL1
6693 * ERXMISC2_EL1
6694 * ERXMISC3_EL1
6695 * ERXPFGCDN_EL1 (RASv1p1)
6696 * ERXPFGCTL_EL1 (RASv1p1)
6697 * ERXPFGF_EL1 (RASv1p1)
6698 * ERXSTATUS_EL1
6699 * and
6700 * ERRSELR_EL1
6701 * may generate UNDEFINED, which is the effect we get by not
6702 * listing them at all.
6703 *
6704 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6705 * is higher priority than FGT-to-EL2 so we do not need to list them
6706 * in order to check for an FGT.
6707 */
6708 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6709 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6710 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6711 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6712 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6713 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6714 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6715 .access = PL1_R, .accessfn = access_terr,
6716 .fgt = FGT_ERRIDR_EL1,
6717 .type = ARM_CP_CONST, .resetvalue = 0 },
6718 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6719 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6720 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6721 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6722 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6723 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6724 };
6725
6726 /*
6727 * Return the exception level to which exceptions should be taken
6728 * via SVEAccessTrap. This excludes the check for whether the exception
6729 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6730 * be found by testing 0 < fp_exception_el < sve_exception_el.
6731 *
6732 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6733 * pseudocode does *not* separate out the FP trap checks, but has them
6734 * all in one function.
6735 */
6736 int sve_exception_el(CPUARMState *env, int el)
6737 {
6738 #ifndef CONFIG_USER_ONLY
6739 if (el <= 1 && !el_is_in_host(env, el)) {
6740 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6741 case 1:
6742 if (el != 0) {
6743 break;
6744 }
6745 /* fall through */
6746 case 0:
6747 case 2:
6748 return 1;
6749 }
6750 }
6751
6752 if (el <= 2 && arm_is_el2_enabled(env)) {
6753 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6754 if (env->cp15.hcr_el2 & HCR_E2H) {
6755 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6756 case 1:
6757 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6758 break;
6759 }
6760 /* fall through */
6761 case 0:
6762 case 2:
6763 return 2;
6764 }
6765 } else {
6766 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6767 return 2;
6768 }
6769 }
6770 }
6771
6772 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6773 if (arm_feature(env, ARM_FEATURE_EL3)
6774 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6775 return 3;
6776 }
6777 #endif
6778 return 0;
6779 }
6780
6781 /*
6782 * Return the exception level to which exceptions should be taken for SME.
6783 * C.f. the ARM pseudocode function CheckSMEAccess.
6784 */
6785 int sme_exception_el(CPUARMState *env, int el)
6786 {
6787 #ifndef CONFIG_USER_ONLY
6788 if (el <= 1 && !el_is_in_host(env, el)) {
6789 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6790 case 1:
6791 if (el != 0) {
6792 break;
6793 }
6794 /* fall through */
6795 case 0:
6796 case 2:
6797 return 1;
6798 }
6799 }
6800
6801 if (el <= 2 && arm_is_el2_enabled(env)) {
6802 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6803 if (env->cp15.hcr_el2 & HCR_E2H) {
6804 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6805 case 1:
6806 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6807 break;
6808 }
6809 /* fall through */
6810 case 0:
6811 case 2:
6812 return 2;
6813 }
6814 } else {
6815 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6816 return 2;
6817 }
6818 }
6819 }
6820
6821 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6822 if (arm_feature(env, ARM_FEATURE_EL3)
6823 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6824 return 3;
6825 }
6826 #endif
6827 return 0;
6828 }
6829
6830 /*
6831 * Given that SVE is enabled, return the vector length for EL.
6832 */
6833 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6834 {
6835 ARMCPU *cpu = env_archcpu(env);
6836 uint64_t *cr = env->vfp.zcr_el;
6837 uint32_t map = cpu->sve_vq.map;
6838 uint32_t len = ARM_MAX_VQ - 1;
6839
6840 if (sm) {
6841 cr = env->vfp.smcr_el;
6842 map = cpu->sme_vq.map;
6843 }
6844
6845 if (el <= 1 && !el_is_in_host(env, el)) {
6846 len = MIN(len, 0xf & (uint32_t)cr[1]);
6847 }
6848 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6849 len = MIN(len, 0xf & (uint32_t)cr[2]);
6850 }
6851 if (arm_feature(env, ARM_FEATURE_EL3)) {
6852 len = MIN(len, 0xf & (uint32_t)cr[3]);
6853 }
6854
6855 map &= MAKE_64BIT_MASK(0, len + 1);
6856 if (map != 0) {
6857 return 31 - clz32(map);
6858 }
6859
6860 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6861 assert(sm);
6862 return ctz32(cpu->sme_vq.map);
6863 }
6864
6865 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6866 {
6867 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6868 }
6869
6870 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6871 uint64_t value)
6872 {
6873 int cur_el = arm_current_el(env);
6874 int old_len = sve_vqm1_for_el(env, cur_el);
6875 int new_len;
6876
6877 /* Bits other than [3:0] are RAZ/WI. */
6878 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6879 raw_write(env, ri, value & 0xf);
6880
6881 /*
6882 * Because we arrived here, we know both FP and SVE are enabled;
6883 * otherwise we would have trapped access to the ZCR_ELn register.
6884 */
6885 new_len = sve_vqm1_for_el(env, cur_el);
6886 if (new_len < old_len) {
6887 aarch64_sve_narrow_vq(env, new_len + 1);
6888 }
6889 }
6890
6891 static const ARMCPRegInfo zcr_reginfo[] = {
6892 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6893 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6894 .access = PL1_RW, .type = ARM_CP_SVE,
6895 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6896 .writefn = zcr_write, .raw_writefn = raw_write },
6897 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6898 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6899 .access = PL2_RW, .type = ARM_CP_SVE,
6900 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6901 .writefn = zcr_write, .raw_writefn = raw_write },
6902 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6903 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6904 .access = PL3_RW, .type = ARM_CP_SVE,
6905 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6906 .writefn = zcr_write, .raw_writefn = raw_write },
6907 };
6908
6909 #ifdef TARGET_AARCH64
6910 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6911 bool isread)
6912 {
6913 int el = arm_current_el(env);
6914
6915 if (el == 0) {
6916 uint64_t sctlr = arm_sctlr(env, el);
6917 if (!(sctlr & SCTLR_EnTP2)) {
6918 return CP_ACCESS_TRAP;
6919 }
6920 }
6921 /* TODO: FEAT_FGT */
6922 if (el < 3
6923 && arm_feature(env, ARM_FEATURE_EL3)
6924 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6925 return CP_ACCESS_TRAP_EL3;
6926 }
6927 return CP_ACCESS_OK;
6928 }
6929
6930 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6931 bool isread)
6932 {
6933 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6934 if (arm_current_el(env) < 3
6935 && arm_feature(env, ARM_FEATURE_EL3)
6936 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6937 return CP_ACCESS_TRAP_EL3;
6938 }
6939 return CP_ACCESS_OK;
6940 }
6941
6942 /* ResetSVEState */
6943 static void arm_reset_sve_state(CPUARMState *env)
6944 {
6945 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6946 /* Recall that FFR is stored as pregs[16]. */
6947 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6948 vfp_set_fpcr(env, 0x0800009f);
6949 }
6950
6951 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6952 {
6953 uint64_t change = (env->svcr ^ new) & mask;
6954
6955 if (change == 0) {
6956 return;
6957 }
6958 env->svcr ^= change;
6959
6960 if (change & R_SVCR_SM_MASK) {
6961 arm_reset_sve_state(env);
6962 }
6963
6964 /*
6965 * ResetSMEState.
6966 *
6967 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
6968 * on enable: while disabled, the storage is inaccessible and the
6969 * value does not matter. We're not saving the storage in vmstate
6970 * when disabled either.
6971 */
6972 if (change & new & R_SVCR_ZA_MASK) {
6973 memset(env->zarray, 0, sizeof(env->zarray));
6974 }
6975
6976 if (tcg_enabled()) {
6977 arm_rebuild_hflags(env);
6978 }
6979 }
6980
6981 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6982 uint64_t value)
6983 {
6984 aarch64_set_svcr(env, value, -1);
6985 }
6986
6987 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6988 uint64_t value)
6989 {
6990 int cur_el = arm_current_el(env);
6991 int old_len = sve_vqm1_for_el(env, cur_el);
6992 int new_len;
6993
6994 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6995 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6996 raw_write(env, ri, value);
6997
6998 /*
6999 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7000 * when SVL is widened (old values kept, or zeros). Choose to keep the
7001 * current values for simplicity. But for QEMU internals, we must still
7002 * apply the narrower SVL to the Zregs and Pregs -- see the comment
7003 * above aarch64_sve_narrow_vq.
7004 */
7005 new_len = sve_vqm1_for_el(env, cur_el);
7006 if (new_len < old_len) {
7007 aarch64_sve_narrow_vq(env, new_len + 1);
7008 }
7009 }
7010
7011 static const ARMCPRegInfo sme_reginfo[] = {
7012 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7013 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7014 .access = PL0_RW, .accessfn = access_tpidr2,
7015 .fgt = FGT_NTPIDR2_EL0,
7016 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7017 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7018 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7019 .access = PL0_RW, .type = ARM_CP_SME,
7020 .fieldoffset = offsetof(CPUARMState, svcr),
7021 .writefn = svcr_write, .raw_writefn = raw_write },
7022 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7023 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7024 .access = PL1_RW, .type = ARM_CP_SME,
7025 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7026 .writefn = smcr_write, .raw_writefn = raw_write },
7027 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7028 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7029 .access = PL2_RW, .type = ARM_CP_SME,
7030 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7031 .writefn = smcr_write, .raw_writefn = raw_write },
7032 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7033 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7034 .access = PL3_RW, .type = ARM_CP_SME,
7035 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7036 .writefn = smcr_write, .raw_writefn = raw_write },
7037 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7038 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7039 .access = PL1_R, .accessfn = access_aa64_tid1,
7040 /*
7041 * IMPLEMENTOR = 0 (software)
7042 * REVISION = 0 (implementation defined)
7043 * SMPS = 0 (no streaming execution priority in QEMU)
7044 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
7045 */
7046 .type = ARM_CP_CONST, .resetvalue = 0, },
7047 /*
7048 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7049 */
7050 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7051 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7052 .access = PL1_RW, .accessfn = access_esm,
7053 .fgt = FGT_NSMPRI_EL1,
7054 .type = ARM_CP_CONST, .resetvalue = 0 },
7055 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7056 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7057 .access = PL2_RW, .accessfn = access_esm,
7058 .type = ARM_CP_CONST, .resetvalue = 0 },
7059 };
7060
7061 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7062 uint64_t value)
7063 {
7064 CPUState *cs = env_cpu(env);
7065
7066 tlb_flush(cs);
7067 }
7068
7069 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7070 uint64_t value)
7071 {
7072 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7073 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7074 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7075 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7076
7077 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7078 }
7079
7080 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7081 {
7082 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7083 env_archcpu(env)->reset_l0gptsz);
7084 }
7085
7086 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7087 uint64_t value)
7088 {
7089 CPUState *cs = env_cpu(env);
7090
7091 tlb_flush_all_cpus_synced(cs);
7092 }
7093
7094 static const ARMCPRegInfo rme_reginfo[] = {
7095 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7096 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7097 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7098 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7099 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7100 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7101 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7102 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7103 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7104 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7105 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7106 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7107 .access = PL3_W, .type = ARM_CP_NO_RAW,
7108 .writefn = tlbi_aa64_paall_write },
7109 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7110 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7111 .access = PL3_W, .type = ARM_CP_NO_RAW,
7112 .writefn = tlbi_aa64_paallos_write },
7113 /*
7114 * QEMU does not have a way to invalidate by physical address, thus
7115 * invalidating a range of physical addresses is accomplished by
7116 * flushing all tlb entries in the outer shareable domain,
7117 * just like PAALLOS.
7118 */
7119 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7120 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7121 .access = PL3_W, .type = ARM_CP_NO_RAW,
7122 .writefn = tlbi_aa64_paallos_write },
7123 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7124 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7125 .access = PL3_W, .type = ARM_CP_NO_RAW,
7126 .writefn = tlbi_aa64_paallos_write },
7127 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7128 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7129 .access = PL3_W, .type = ARM_CP_NOP },
7130 };
7131
7132 static const ARMCPRegInfo rme_mte_reginfo[] = {
7133 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7134 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7135 .access = PL3_W, .type = ARM_CP_NOP },
7136 };
7137 #endif /* TARGET_AARCH64 */
7138
7139 static void define_pmu_regs(ARMCPU *cpu)
7140 {
7141 /*
7142 * v7 performance monitor control register: same implementor
7143 * field as main ID register, and we implement four counters in
7144 * addition to the cycle count register.
7145 */
7146 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7147 ARMCPRegInfo pmcr = {
7148 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7149 .access = PL0_RW,
7150 .fgt = FGT_PMCR_EL0,
7151 .type = ARM_CP_IO | ARM_CP_ALIAS,
7152 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7153 .accessfn = pmreg_access, .writefn = pmcr_write,
7154 .raw_writefn = raw_write,
7155 };
7156 ARMCPRegInfo pmcr64 = {
7157 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7158 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7159 .access = PL0_RW, .accessfn = pmreg_access,
7160 .fgt = FGT_PMCR_EL0,
7161 .type = ARM_CP_IO,
7162 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7163 .resetvalue = cpu->isar.reset_pmcr_el0,
7164 .writefn = pmcr_write, .raw_writefn = raw_write,
7165 };
7166
7167 define_one_arm_cp_reg(cpu, &pmcr);
7168 define_one_arm_cp_reg(cpu, &pmcr64);
7169 for (i = 0; i < pmcrn; i++) {
7170 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7171 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7172 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7173 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7174 ARMCPRegInfo pmev_regs[] = {
7175 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7176 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7177 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7178 .fgt = FGT_PMEVCNTRN_EL0,
7179 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7180 .accessfn = pmreg_access_xevcntr },
7181 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7182 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7183 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7184 .type = ARM_CP_IO,
7185 .fgt = FGT_PMEVCNTRN_EL0,
7186 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7187 .raw_readfn = pmevcntr_rawread,
7188 .raw_writefn = pmevcntr_rawwrite },
7189 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7190 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7191 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7192 .fgt = FGT_PMEVTYPERN_EL0,
7193 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7194 .accessfn = pmreg_access },
7195 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7196 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7197 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7198 .fgt = FGT_PMEVTYPERN_EL0,
7199 .type = ARM_CP_IO,
7200 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7201 .raw_writefn = pmevtyper_rawwrite },
7202 };
7203 define_arm_cp_regs(cpu, pmev_regs);
7204 g_free(pmevcntr_name);
7205 g_free(pmevcntr_el0_name);
7206 g_free(pmevtyper_name);
7207 g_free(pmevtyper_el0_name);
7208 }
7209 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7210 ARMCPRegInfo v81_pmu_regs[] = {
7211 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7212 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7213 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7214 .fgt = FGT_PMCEIDN_EL0,
7215 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7216 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7217 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7218 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7219 .fgt = FGT_PMCEIDN_EL0,
7220 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7221 };
7222 define_arm_cp_regs(cpu, v81_pmu_regs);
7223 }
7224 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7225 static const ARMCPRegInfo v84_pmmir = {
7226 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7227 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7228 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7229 .fgt = FGT_PMMIR_EL1,
7230 .resetvalue = 0
7231 };
7232 define_one_arm_cp_reg(cpu, &v84_pmmir);
7233 }
7234 }
7235
7236 #ifndef CONFIG_USER_ONLY
7237 /*
7238 * We don't know until after realize whether there's a GICv3
7239 * attached, and that is what registers the gicv3 sysregs.
7240 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7241 * at runtime.
7242 */
7243 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7244 {
7245 ARMCPU *cpu = env_archcpu(env);
7246 uint64_t pfr1 = cpu->isar.id_pfr1;
7247
7248 if (env->gicv3state) {
7249 pfr1 |= 1 << 28;
7250 }
7251 return pfr1;
7252 }
7253
7254 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7255 {
7256 ARMCPU *cpu = env_archcpu(env);
7257 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7258
7259 if (env->gicv3state) {
7260 pfr0 |= 1 << 24;
7261 }
7262 return pfr0;
7263 }
7264 #endif
7265
7266 /*
7267 * Shared logic between LORID and the rest of the LOR* registers.
7268 * Secure state exclusion has already been dealt with.
7269 */
7270 static CPAccessResult access_lor_ns(CPUARMState *env,
7271 const ARMCPRegInfo *ri, bool isread)
7272 {
7273 int el = arm_current_el(env);
7274
7275 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7276 return CP_ACCESS_TRAP_EL2;
7277 }
7278 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7279 return CP_ACCESS_TRAP_EL3;
7280 }
7281 return CP_ACCESS_OK;
7282 }
7283
7284 static CPAccessResult access_lor_other(CPUARMState *env,
7285 const ARMCPRegInfo *ri, bool isread)
7286 {
7287 if (arm_is_secure_below_el3(env)) {
7288 /* Access denied in secure mode. */
7289 return CP_ACCESS_TRAP;
7290 }
7291 return access_lor_ns(env, ri, isread);
7292 }
7293
7294 /*
7295 * A trivial implementation of ARMv8.1-LOR leaves all of these
7296 * registers fixed at 0, which indicates that there are zero
7297 * supported Limited Ordering regions.
7298 */
7299 static const ARMCPRegInfo lor_reginfo[] = {
7300 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7301 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7302 .access = PL1_RW, .accessfn = access_lor_other,
7303 .fgt = FGT_LORSA_EL1,
7304 .type = ARM_CP_CONST, .resetvalue = 0 },
7305 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7306 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7307 .access = PL1_RW, .accessfn = access_lor_other,
7308 .fgt = FGT_LOREA_EL1,
7309 .type = ARM_CP_CONST, .resetvalue = 0 },
7310 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7311 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7312 .access = PL1_RW, .accessfn = access_lor_other,
7313 .fgt = FGT_LORN_EL1,
7314 .type = ARM_CP_CONST, .resetvalue = 0 },
7315 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7316 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7317 .access = PL1_RW, .accessfn = access_lor_other,
7318 .fgt = FGT_LORC_EL1,
7319 .type = ARM_CP_CONST, .resetvalue = 0 },
7320 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7321 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7322 .access = PL1_R, .accessfn = access_lor_ns,
7323 .fgt = FGT_LORID_EL1,
7324 .type = ARM_CP_CONST, .resetvalue = 0 },
7325 };
7326
7327 #ifdef TARGET_AARCH64
7328 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7329 bool isread)
7330 {
7331 int el = arm_current_el(env);
7332
7333 if (el < 2 &&
7334 arm_is_el2_enabled(env) &&
7335 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7336 return CP_ACCESS_TRAP_EL2;
7337 }
7338 if (el < 3 &&
7339 arm_feature(env, ARM_FEATURE_EL3) &&
7340 !(env->cp15.scr_el3 & SCR_APK)) {
7341 return CP_ACCESS_TRAP_EL3;
7342 }
7343 return CP_ACCESS_OK;
7344 }
7345
7346 static const ARMCPRegInfo pauth_reginfo[] = {
7347 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7348 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7349 .access = PL1_RW, .accessfn = access_pauth,
7350 .fgt = FGT_APDAKEY,
7351 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7352 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7353 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7354 .access = PL1_RW, .accessfn = access_pauth,
7355 .fgt = FGT_APDAKEY,
7356 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7357 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7358 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7359 .access = PL1_RW, .accessfn = access_pauth,
7360 .fgt = FGT_APDBKEY,
7361 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7362 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7363 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7364 .access = PL1_RW, .accessfn = access_pauth,
7365 .fgt = FGT_APDBKEY,
7366 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7367 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7368 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7369 .access = PL1_RW, .accessfn = access_pauth,
7370 .fgt = FGT_APGAKEY,
7371 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7372 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7373 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7374 .access = PL1_RW, .accessfn = access_pauth,
7375 .fgt = FGT_APGAKEY,
7376 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7377 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7378 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7379 .access = PL1_RW, .accessfn = access_pauth,
7380 .fgt = FGT_APIAKEY,
7381 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7382 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7383 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7384 .access = PL1_RW, .accessfn = access_pauth,
7385 .fgt = FGT_APIAKEY,
7386 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7387 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7388 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7389 .access = PL1_RW, .accessfn = access_pauth,
7390 .fgt = FGT_APIBKEY,
7391 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7392 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7393 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7394 .access = PL1_RW, .accessfn = access_pauth,
7395 .fgt = FGT_APIBKEY,
7396 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7397 };
7398
7399 static const ARMCPRegInfo tlbirange_reginfo[] = {
7400 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7401 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7402 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7403 .fgt = FGT_TLBIRVAE1IS,
7404 .writefn = tlbi_aa64_rvae1is_write },
7405 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7406 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7407 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7408 .fgt = FGT_TLBIRVAAE1IS,
7409 .writefn = tlbi_aa64_rvae1is_write },
7410 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7411 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7412 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7413 .fgt = FGT_TLBIRVALE1IS,
7414 .writefn = tlbi_aa64_rvae1is_write },
7415 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7416 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7417 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7418 .fgt = FGT_TLBIRVAALE1IS,
7419 .writefn = tlbi_aa64_rvae1is_write },
7420 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7421 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7422 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7423 .fgt = FGT_TLBIRVAE1OS,
7424 .writefn = tlbi_aa64_rvae1is_write },
7425 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7426 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7427 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7428 .fgt = FGT_TLBIRVAAE1OS,
7429 .writefn = tlbi_aa64_rvae1is_write },
7430 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7431 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7432 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7433 .fgt = FGT_TLBIRVALE1OS,
7434 .writefn = tlbi_aa64_rvae1is_write },
7435 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7436 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7437 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7438 .fgt = FGT_TLBIRVAALE1OS,
7439 .writefn = tlbi_aa64_rvae1is_write },
7440 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7441 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7442 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7443 .fgt = FGT_TLBIRVAE1,
7444 .writefn = tlbi_aa64_rvae1_write },
7445 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7446 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7447 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7448 .fgt = FGT_TLBIRVAAE1,
7449 .writefn = tlbi_aa64_rvae1_write },
7450 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7451 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7452 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7453 .fgt = FGT_TLBIRVALE1,
7454 .writefn = tlbi_aa64_rvae1_write },
7455 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7456 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7457 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7458 .fgt = FGT_TLBIRVAALE1,
7459 .writefn = tlbi_aa64_rvae1_write },
7460 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7461 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7462 .access = PL2_W, .type = ARM_CP_NO_RAW,
7463 .writefn = tlbi_aa64_ripas2e1is_write },
7464 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7465 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7466 .access = PL2_W, .type = ARM_CP_NO_RAW,
7467 .writefn = tlbi_aa64_ripas2e1is_write },
7468 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7469 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7470 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7471 .writefn = tlbi_aa64_rvae2is_write },
7472 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7473 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7474 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7475 .writefn = tlbi_aa64_rvae2is_write },
7476 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7477 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7478 .access = PL2_W, .type = ARM_CP_NO_RAW,
7479 .writefn = tlbi_aa64_ripas2e1_write },
7480 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7481 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7482 .access = PL2_W, .type = ARM_CP_NO_RAW,
7483 .writefn = tlbi_aa64_ripas2e1_write },
7484 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7485 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7486 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7487 .writefn = tlbi_aa64_rvae2is_write },
7488 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7489 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7490 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7491 .writefn = tlbi_aa64_rvae2is_write },
7492 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7493 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7494 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7495 .writefn = tlbi_aa64_rvae2_write },
7496 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7497 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7498 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7499 .writefn = tlbi_aa64_rvae2_write },
7500 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7501 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7502 .access = PL3_W, .type = ARM_CP_NO_RAW,
7503 .writefn = tlbi_aa64_rvae3is_write },
7504 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7505 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7506 .access = PL3_W, .type = ARM_CP_NO_RAW,
7507 .writefn = tlbi_aa64_rvae3is_write },
7508 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7509 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7510 .access = PL3_W, .type = ARM_CP_NO_RAW,
7511 .writefn = tlbi_aa64_rvae3is_write },
7512 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7513 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7514 .access = PL3_W, .type = ARM_CP_NO_RAW,
7515 .writefn = tlbi_aa64_rvae3is_write },
7516 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7517 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7518 .access = PL3_W, .type = ARM_CP_NO_RAW,
7519 .writefn = tlbi_aa64_rvae3_write },
7520 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7521 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7522 .access = PL3_W, .type = ARM_CP_NO_RAW,
7523 .writefn = tlbi_aa64_rvae3_write },
7524 };
7525
7526 static const ARMCPRegInfo tlbios_reginfo[] = {
7527 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7528 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7529 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7530 .fgt = FGT_TLBIVMALLE1OS,
7531 .writefn = tlbi_aa64_vmalle1is_write },
7532 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7533 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7534 .fgt = FGT_TLBIVAE1OS,
7535 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7536 .writefn = tlbi_aa64_vae1is_write },
7537 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7538 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7539 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7540 .fgt = FGT_TLBIASIDE1OS,
7541 .writefn = tlbi_aa64_vmalle1is_write },
7542 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7543 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7544 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7545 .fgt = FGT_TLBIVAAE1OS,
7546 .writefn = tlbi_aa64_vae1is_write },
7547 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7548 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7549 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7550 .fgt = FGT_TLBIVALE1OS,
7551 .writefn = tlbi_aa64_vae1is_write },
7552 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7553 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7554 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7555 .fgt = FGT_TLBIVAALE1OS,
7556 .writefn = tlbi_aa64_vae1is_write },
7557 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7558 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7559 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7560 .writefn = tlbi_aa64_alle2is_write },
7561 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7562 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7563 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7564 .writefn = tlbi_aa64_vae2is_write },
7565 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7566 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7567 .access = PL2_W, .type = ARM_CP_NO_RAW,
7568 .writefn = tlbi_aa64_alle1is_write },
7569 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7570 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7571 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7572 .writefn = tlbi_aa64_vae2is_write },
7573 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7574 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7575 .access = PL2_W, .type = ARM_CP_NO_RAW,
7576 .writefn = tlbi_aa64_alle1is_write },
7577 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7578 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7579 .access = PL2_W, .type = ARM_CP_NOP },
7580 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7581 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7582 .access = PL2_W, .type = ARM_CP_NOP },
7583 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7584 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7585 .access = PL2_W, .type = ARM_CP_NOP },
7586 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7587 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7588 .access = PL2_W, .type = ARM_CP_NOP },
7589 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7590 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7591 .access = PL3_W, .type = ARM_CP_NO_RAW,
7592 .writefn = tlbi_aa64_alle3is_write },
7593 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7594 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7595 .access = PL3_W, .type = ARM_CP_NO_RAW,
7596 .writefn = tlbi_aa64_vae3is_write },
7597 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7598 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7599 .access = PL3_W, .type = ARM_CP_NO_RAW,
7600 .writefn = tlbi_aa64_vae3is_write },
7601 };
7602
7603 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7604 {
7605 Error *err = NULL;
7606 uint64_t ret;
7607
7608 /* Success sets NZCV = 0000. */
7609 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7610
7611 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7612 /*
7613 * ??? Failed, for unknown reasons in the crypto subsystem.
7614 * The best we can do is log the reason and return the
7615 * timed-out indication to the guest. There is no reason
7616 * we know to expect this failure to be transitory, so the
7617 * guest may well hang retrying the operation.
7618 */
7619 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7620 ri->name, error_get_pretty(err));
7621 error_free(err);
7622
7623 env->ZF = 0; /* NZCF = 0100 */
7624 return 0;
7625 }
7626 return ret;
7627 }
7628
7629 /* We do not support re-seeding, so the two registers operate the same. */
7630 static const ARMCPRegInfo rndr_reginfo[] = {
7631 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7632 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7633 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7634 .access = PL0_R, .readfn = rndr_readfn },
7635 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7636 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7637 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7638 .access = PL0_R, .readfn = rndr_readfn },
7639 };
7640
7641 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7642 uint64_t value)
7643 {
7644 ARMCPU *cpu = env_archcpu(env);
7645 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7646 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7647 uint64_t vaddr_in = (uint64_t) value;
7648 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7649 void *haddr;
7650 int mem_idx = cpu_mmu_index(env, false);
7651
7652 /* This won't be crossing page boundaries */
7653 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7654 if (haddr) {
7655 #ifndef CONFIG_USER_ONLY
7656
7657 ram_addr_t offset;
7658 MemoryRegion *mr;
7659
7660 /* RCU lock is already being held */
7661 mr = memory_region_from_host(haddr, &offset);
7662
7663 if (mr) {
7664 memory_region_writeback(mr, offset, dline_size);
7665 }
7666 #endif /*CONFIG_USER_ONLY*/
7667 }
7668 }
7669
7670 static const ARMCPRegInfo dcpop_reg[] = {
7671 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7672 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7673 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7674 .fgt = FGT_DCCVAP,
7675 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7676 };
7677
7678 static const ARMCPRegInfo dcpodp_reg[] = {
7679 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7680 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7681 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7682 .fgt = FGT_DCCVADP,
7683 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7684 };
7685
7686 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7687 bool isread)
7688 {
7689 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7690 return CP_ACCESS_TRAP_EL2;
7691 }
7692
7693 return CP_ACCESS_OK;
7694 }
7695
7696 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7697 bool isread)
7698 {
7699 int el = arm_current_el(env);
7700
7701 if (el < 2 && arm_is_el2_enabled(env)) {
7702 uint64_t hcr = arm_hcr_el2_eff(env);
7703 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7704 return CP_ACCESS_TRAP_EL2;
7705 }
7706 }
7707 if (el < 3 &&
7708 arm_feature(env, ARM_FEATURE_EL3) &&
7709 !(env->cp15.scr_el3 & SCR_ATA)) {
7710 return CP_ACCESS_TRAP_EL3;
7711 }
7712 return CP_ACCESS_OK;
7713 }
7714
7715 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7716 {
7717 return env->pstate & PSTATE_TCO;
7718 }
7719
7720 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7721 {
7722 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7723 }
7724
7725 static const ARMCPRegInfo mte_reginfo[] = {
7726 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7727 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7728 .access = PL1_RW, .accessfn = access_mte,
7729 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7730 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7731 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7732 .access = PL1_RW, .accessfn = access_mte,
7733 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7734 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7735 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7736 .access = PL2_RW, .accessfn = access_mte,
7737 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7738 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7739 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7740 .access = PL3_RW,
7741 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7742 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7743 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7744 .access = PL1_RW, .accessfn = access_mte,
7745 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7746 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7747 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7748 .access = PL1_RW, .accessfn = access_mte,
7749 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7750 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7751 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7752 .type = ARM_CP_NO_RAW,
7753 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7754 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7755 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7756 .type = ARM_CP_NOP, .access = PL1_W,
7757 .fgt = FGT_DCIVAC,
7758 .accessfn = aa64_cacheop_poc_access },
7759 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7760 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7761 .fgt = FGT_DCISW,
7762 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7763 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7764 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7765 .type = ARM_CP_NOP, .access = PL1_W,
7766 .fgt = FGT_DCIVAC,
7767 .accessfn = aa64_cacheop_poc_access },
7768 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7769 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7770 .fgt = FGT_DCISW,
7771 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7772 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7773 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7774 .fgt = FGT_DCCSW,
7775 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7776 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7777 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7778 .fgt = FGT_DCCSW,
7779 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7780 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7781 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7782 .fgt = FGT_DCCISW,
7783 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7784 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7785 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7786 .fgt = FGT_DCCISW,
7787 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7788 };
7789
7790 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7791 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7792 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7793 .type = ARM_CP_CONST, .access = PL0_RW, },
7794 };
7795
7796 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7797 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7798 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7799 .type = ARM_CP_NOP, .access = PL0_W,
7800 .fgt = FGT_DCCVAC,
7801 .accessfn = aa64_cacheop_poc_access },
7802 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7803 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7804 .type = ARM_CP_NOP, .access = PL0_W,
7805 .fgt = FGT_DCCVAC,
7806 .accessfn = aa64_cacheop_poc_access },
7807 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7808 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7809 .type = ARM_CP_NOP, .access = PL0_W,
7810 .fgt = FGT_DCCVAP,
7811 .accessfn = aa64_cacheop_poc_access },
7812 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7813 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7814 .type = ARM_CP_NOP, .access = PL0_W,
7815 .fgt = FGT_DCCVAP,
7816 .accessfn = aa64_cacheop_poc_access },
7817 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7818 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7819 .type = ARM_CP_NOP, .access = PL0_W,
7820 .fgt = FGT_DCCVADP,
7821 .accessfn = aa64_cacheop_poc_access },
7822 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7823 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7824 .type = ARM_CP_NOP, .access = PL0_W,
7825 .fgt = FGT_DCCVADP,
7826 .accessfn = aa64_cacheop_poc_access },
7827 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7828 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7829 .type = ARM_CP_NOP, .access = PL0_W,
7830 .fgt = FGT_DCCIVAC,
7831 .accessfn = aa64_cacheop_poc_access },
7832 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7833 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7834 .type = ARM_CP_NOP, .access = PL0_W,
7835 .fgt = FGT_DCCIVAC,
7836 .accessfn = aa64_cacheop_poc_access },
7837 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7838 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7839 .access = PL0_W, .type = ARM_CP_DC_GVA,
7840 #ifndef CONFIG_USER_ONLY
7841 /* Avoid overhead of an access check that always passes in user-mode */
7842 .accessfn = aa64_zva_access,
7843 .fgt = FGT_DCZVA,
7844 #endif
7845 },
7846 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7847 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7848 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7849 #ifndef CONFIG_USER_ONLY
7850 /* Avoid overhead of an access check that always passes in user-mode */
7851 .accessfn = aa64_zva_access,
7852 .fgt = FGT_DCZVA,
7853 #endif
7854 },
7855 };
7856
7857 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7858 bool isread)
7859 {
7860 uint64_t hcr = arm_hcr_el2_eff(env);
7861 int el = arm_current_el(env);
7862
7863 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7864 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7865 if (hcr & HCR_TGE) {
7866 return CP_ACCESS_TRAP_EL2;
7867 }
7868 return CP_ACCESS_TRAP;
7869 }
7870 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7871 return CP_ACCESS_TRAP_EL2;
7872 }
7873 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7874 return CP_ACCESS_TRAP_EL2;
7875 }
7876 if (el < 3
7877 && arm_feature(env, ARM_FEATURE_EL3)
7878 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7879 return CP_ACCESS_TRAP_EL3;
7880 }
7881 return CP_ACCESS_OK;
7882 }
7883
7884 static const ARMCPRegInfo scxtnum_reginfo[] = {
7885 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7886 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7887 .access = PL0_RW, .accessfn = access_scxtnum,
7888 .fgt = FGT_SCXTNUM_EL0,
7889 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7890 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7891 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7892 .access = PL1_RW, .accessfn = access_scxtnum,
7893 .fgt = FGT_SCXTNUM_EL1,
7894 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7895 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7896 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7897 .access = PL2_RW, .accessfn = access_scxtnum,
7898 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7899 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7900 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7901 .access = PL3_RW,
7902 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7903 };
7904
7905 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7906 bool isread)
7907 {
7908 if (arm_current_el(env) == 2 &&
7909 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7910 return CP_ACCESS_TRAP_EL3;
7911 }
7912 return CP_ACCESS_OK;
7913 }
7914
7915 static const ARMCPRegInfo fgt_reginfo[] = {
7916 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7917 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7918 .access = PL2_RW, .accessfn = access_fgt,
7919 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7920 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7921 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7922 .access = PL2_RW, .accessfn = access_fgt,
7923 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7924 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7925 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7926 .access = PL2_RW, .accessfn = access_fgt,
7927 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7928 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7929 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7930 .access = PL2_RW, .accessfn = access_fgt,
7931 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7932 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7933 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7934 .access = PL2_RW, .accessfn = access_fgt,
7935 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7936 };
7937 #endif /* TARGET_AARCH64 */
7938
7939 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7940 bool isread)
7941 {
7942 int el = arm_current_el(env);
7943
7944 if (el == 0) {
7945 uint64_t sctlr = arm_sctlr(env, el);
7946 if (!(sctlr & SCTLR_EnRCTX)) {
7947 return CP_ACCESS_TRAP;
7948 }
7949 } else if (el == 1) {
7950 uint64_t hcr = arm_hcr_el2_eff(env);
7951 if (hcr & HCR_NV) {
7952 return CP_ACCESS_TRAP_EL2;
7953 }
7954 }
7955 return CP_ACCESS_OK;
7956 }
7957
7958 static const ARMCPRegInfo predinv_reginfo[] = {
7959 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7960 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7961 .fgt = FGT_CFPRCTX,
7962 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7963 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7964 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7965 .fgt = FGT_DVPRCTX,
7966 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7967 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7968 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7969 .fgt = FGT_CPPRCTX,
7970 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7971 /*
7972 * Note the AArch32 opcodes have a different OPC1.
7973 */
7974 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7975 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7976 .fgt = FGT_CFPRCTX,
7977 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7978 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7979 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7980 .fgt = FGT_DVPRCTX,
7981 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7982 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7983 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7984 .fgt = FGT_CPPRCTX,
7985 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7986 };
7987
7988 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7989 {
7990 /* Read the high 32 bits of the current CCSIDR */
7991 return extract64(ccsidr_read(env, ri), 32, 32);
7992 }
7993
7994 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7995 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7996 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7997 .access = PL1_R,
7998 .accessfn = access_tid4,
7999 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8000 };
8001
8002 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8003 bool isread)
8004 {
8005 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8006 return CP_ACCESS_TRAP_EL2;
8007 }
8008
8009 return CP_ACCESS_OK;
8010 }
8011
8012 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8013 bool isread)
8014 {
8015 if (arm_feature(env, ARM_FEATURE_V8)) {
8016 return access_aa64_tid3(env, ri, isread);
8017 }
8018
8019 return CP_ACCESS_OK;
8020 }
8021
8022 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8023 bool isread)
8024 {
8025 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8026 return CP_ACCESS_TRAP_EL2;
8027 }
8028
8029 return CP_ACCESS_OK;
8030 }
8031
8032 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8033 const ARMCPRegInfo *ri, bool isread)
8034 {
8035 /*
8036 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8037 * in v7A, not in v8A.
8038 */
8039 if (!arm_feature(env, ARM_FEATURE_V8) &&
8040 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8041 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8042 return CP_ACCESS_TRAP_EL2;
8043 }
8044 return CP_ACCESS_OK;
8045 }
8046
8047 static const ARMCPRegInfo jazelle_regs[] = {
8048 { .name = "JIDR",
8049 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8050 .access = PL1_R, .accessfn = access_jazelle,
8051 .type = ARM_CP_CONST, .resetvalue = 0 },
8052 { .name = "JOSCR",
8053 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8054 .accessfn = access_joscr_jmcr,
8055 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8056 { .name = "JMCR",
8057 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8058 .accessfn = access_joscr_jmcr,
8059 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8060 };
8061
8062 static const ARMCPRegInfo contextidr_el2 = {
8063 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8064 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8065 .access = PL2_RW,
8066 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8067 };
8068
8069 static const ARMCPRegInfo vhe_reginfo[] = {
8070 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8071 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8072 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8073 .raw_writefn = raw_write,
8074 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8075 #ifndef CONFIG_USER_ONLY
8076 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8077 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8078 .fieldoffset =
8079 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8080 .type = ARM_CP_IO, .access = PL2_RW,
8081 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8082 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8083 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8084 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8085 .resetfn = gt_hv_timer_reset,
8086 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8087 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8088 .type = ARM_CP_IO,
8089 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8090 .access = PL2_RW,
8091 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8092 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8093 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8094 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8095 .type = ARM_CP_IO | ARM_CP_ALIAS,
8096 .access = PL2_RW, .accessfn = e2h_access,
8097 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8098 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8099 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8100 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8101 .type = ARM_CP_IO | ARM_CP_ALIAS,
8102 .access = PL2_RW, .accessfn = e2h_access,
8103 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8104 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8105 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8106 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8107 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8108 .access = PL2_RW, .accessfn = e2h_access,
8109 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8110 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8111 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8112 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8113 .access = PL2_RW, .accessfn = e2h_access,
8114 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8115 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8116 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8117 .type = ARM_CP_IO | ARM_CP_ALIAS,
8118 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8119 .access = PL2_RW, .accessfn = e2h_access,
8120 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8121 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8122 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8123 .type = ARM_CP_IO | ARM_CP_ALIAS,
8124 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8125 .access = PL2_RW, .accessfn = e2h_access,
8126 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8127 #endif
8128 };
8129
8130 #ifndef CONFIG_USER_ONLY
8131 static const ARMCPRegInfo ats1e1_reginfo[] = {
8132 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8133 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8134 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8135 .fgt = FGT_ATS1E1RP,
8136 .accessfn = at_e012_access, .writefn = ats_write64 },
8137 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8138 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8139 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8140 .fgt = FGT_ATS1E1WP,
8141 .accessfn = at_e012_access, .writefn = ats_write64 },
8142 };
8143
8144 static const ARMCPRegInfo ats1cp_reginfo[] = {
8145 { .name = "ATS1CPRP",
8146 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8147 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8148 .writefn = ats_write },
8149 { .name = "ATS1CPWP",
8150 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8151 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8152 .writefn = ats_write },
8153 };
8154 #endif
8155
8156 /*
8157 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8158 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8159 * is non-zero, which is never for ARMv7, optionally in ARMv8
8160 * and mandatorily for ARMv8.2 and up.
8161 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8162 * implementation is RAZ/WI we can ignore this detail, as we
8163 * do for ACTLR.
8164 */
8165 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8166 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8167 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8168 .access = PL1_RW, .accessfn = access_tacr,
8169 .type = ARM_CP_CONST, .resetvalue = 0 },
8170 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8171 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8172 .access = PL2_RW, .type = ARM_CP_CONST,
8173 .resetvalue = 0 },
8174 };
8175
8176 void register_cp_regs_for_features(ARMCPU *cpu)
8177 {
8178 /* Register all the coprocessor registers based on feature bits */
8179 CPUARMState *env = &cpu->env;
8180 if (arm_feature(env, ARM_FEATURE_M)) {
8181 /* M profile has no coprocessor registers */
8182 return;
8183 }
8184
8185 define_arm_cp_regs(cpu, cp_reginfo);
8186 if (!arm_feature(env, ARM_FEATURE_V8)) {
8187 /*
8188 * Must go early as it is full of wildcards that may be
8189 * overridden by later definitions.
8190 */
8191 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8192 }
8193
8194 if (arm_feature(env, ARM_FEATURE_V6)) {
8195 /* The ID registers all have impdef reset values */
8196 ARMCPRegInfo v6_idregs[] = {
8197 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8198 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8199 .access = PL1_R, .type = ARM_CP_CONST,
8200 .accessfn = access_aa32_tid3,
8201 .resetvalue = cpu->isar.id_pfr0 },
8202 /*
8203 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8204 * the value of the GIC field until after we define these regs.
8205 */
8206 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8207 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8208 .access = PL1_R, .type = ARM_CP_NO_RAW,
8209 .accessfn = access_aa32_tid3,
8210 #ifdef CONFIG_USER_ONLY
8211 .type = ARM_CP_CONST,
8212 .resetvalue = cpu->isar.id_pfr1,
8213 #else
8214 .type = ARM_CP_NO_RAW,
8215 .accessfn = access_aa32_tid3,
8216 .readfn = id_pfr1_read,
8217 .writefn = arm_cp_write_ignore
8218 #endif
8219 },
8220 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8221 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8222 .access = PL1_R, .type = ARM_CP_CONST,
8223 .accessfn = access_aa32_tid3,
8224 .resetvalue = cpu->isar.id_dfr0 },
8225 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8226 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8227 .access = PL1_R, .type = ARM_CP_CONST,
8228 .accessfn = access_aa32_tid3,
8229 .resetvalue = cpu->id_afr0 },
8230 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8231 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8232 .access = PL1_R, .type = ARM_CP_CONST,
8233 .accessfn = access_aa32_tid3,
8234 .resetvalue = cpu->isar.id_mmfr0 },
8235 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8236 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8237 .access = PL1_R, .type = ARM_CP_CONST,
8238 .accessfn = access_aa32_tid3,
8239 .resetvalue = cpu->isar.id_mmfr1 },
8240 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8241 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8242 .access = PL1_R, .type = ARM_CP_CONST,
8243 .accessfn = access_aa32_tid3,
8244 .resetvalue = cpu->isar.id_mmfr2 },
8245 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8246 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8247 .access = PL1_R, .type = ARM_CP_CONST,
8248 .accessfn = access_aa32_tid3,
8249 .resetvalue = cpu->isar.id_mmfr3 },
8250 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8251 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8252 .access = PL1_R, .type = ARM_CP_CONST,
8253 .accessfn = access_aa32_tid3,
8254 .resetvalue = cpu->isar.id_isar0 },
8255 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8256 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8257 .access = PL1_R, .type = ARM_CP_CONST,
8258 .accessfn = access_aa32_tid3,
8259 .resetvalue = cpu->isar.id_isar1 },
8260 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8261 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8262 .access = PL1_R, .type = ARM_CP_CONST,
8263 .accessfn = access_aa32_tid3,
8264 .resetvalue = cpu->isar.id_isar2 },
8265 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8266 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8267 .access = PL1_R, .type = ARM_CP_CONST,
8268 .accessfn = access_aa32_tid3,
8269 .resetvalue = cpu->isar.id_isar3 },
8270 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8271 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8272 .access = PL1_R, .type = ARM_CP_CONST,
8273 .accessfn = access_aa32_tid3,
8274 .resetvalue = cpu->isar.id_isar4 },
8275 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8276 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8277 .access = PL1_R, .type = ARM_CP_CONST,
8278 .accessfn = access_aa32_tid3,
8279 .resetvalue = cpu->isar.id_isar5 },
8280 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8281 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8282 .access = PL1_R, .type = ARM_CP_CONST,
8283 .accessfn = access_aa32_tid3,
8284 .resetvalue = cpu->isar.id_mmfr4 },
8285 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8286 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8287 .access = PL1_R, .type = ARM_CP_CONST,
8288 .accessfn = access_aa32_tid3,
8289 .resetvalue = cpu->isar.id_isar6 },
8290 };
8291 define_arm_cp_regs(cpu, v6_idregs);
8292 define_arm_cp_regs(cpu, v6_cp_reginfo);
8293 } else {
8294 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8295 }
8296 if (arm_feature(env, ARM_FEATURE_V6K)) {
8297 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8298 }
8299 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8300 !arm_feature(env, ARM_FEATURE_PMSA)) {
8301 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8302 }
8303 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8304 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8305 }
8306 if (arm_feature(env, ARM_FEATURE_V7)) {
8307 ARMCPRegInfo clidr = {
8308 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8309 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8310 .access = PL1_R, .type = ARM_CP_CONST,
8311 .accessfn = access_tid4,
8312 .fgt = FGT_CLIDR_EL1,
8313 .resetvalue = cpu->clidr
8314 };
8315 define_one_arm_cp_reg(cpu, &clidr);
8316 define_arm_cp_regs(cpu, v7_cp_reginfo);
8317 define_debug_regs(cpu);
8318 define_pmu_regs(cpu);
8319 } else {
8320 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8321 }
8322 if (arm_feature(env, ARM_FEATURE_V8)) {
8323 /*
8324 * v8 ID registers, which all have impdef reset values.
8325 * Note that within the ID register ranges the unused slots
8326 * must all RAZ, not UNDEF; future architecture versions may
8327 * define new registers here.
8328 * ID registers which are AArch64 views of the AArch32 ID registers
8329 * which already existed in v6 and v7 are handled elsewhere,
8330 * in v6_idregs[].
8331 */
8332 int i;
8333 ARMCPRegInfo v8_idregs[] = {
8334 /*
8335 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8336 * emulation because we don't know the right value for the
8337 * GIC field until after we define these regs.
8338 */
8339 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8340 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8341 .access = PL1_R,
8342 #ifdef CONFIG_USER_ONLY
8343 .type = ARM_CP_CONST,
8344 .resetvalue = cpu->isar.id_aa64pfr0
8345 #else
8346 .type = ARM_CP_NO_RAW,
8347 .accessfn = access_aa64_tid3,
8348 .readfn = id_aa64pfr0_read,
8349 .writefn = arm_cp_write_ignore
8350 #endif
8351 },
8352 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8353 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8354 .access = PL1_R, .type = ARM_CP_CONST,
8355 .accessfn = access_aa64_tid3,
8356 .resetvalue = cpu->isar.id_aa64pfr1},
8357 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8358 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8359 .access = PL1_R, .type = ARM_CP_CONST,
8360 .accessfn = access_aa64_tid3,
8361 .resetvalue = 0 },
8362 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8363 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8364 .access = PL1_R, .type = ARM_CP_CONST,
8365 .accessfn = access_aa64_tid3,
8366 .resetvalue = 0 },
8367 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8368 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8369 .access = PL1_R, .type = ARM_CP_CONST,
8370 .accessfn = access_aa64_tid3,
8371 .resetvalue = cpu->isar.id_aa64zfr0 },
8372 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8373 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8374 .access = PL1_R, .type = ARM_CP_CONST,
8375 .accessfn = access_aa64_tid3,
8376 .resetvalue = cpu->isar.id_aa64smfr0 },
8377 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8378 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8379 .access = PL1_R, .type = ARM_CP_CONST,
8380 .accessfn = access_aa64_tid3,
8381 .resetvalue = 0 },
8382 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8383 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8384 .access = PL1_R, .type = ARM_CP_CONST,
8385 .accessfn = access_aa64_tid3,
8386 .resetvalue = 0 },
8387 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8388 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8389 .access = PL1_R, .type = ARM_CP_CONST,
8390 .accessfn = access_aa64_tid3,
8391 .resetvalue = cpu->isar.id_aa64dfr0 },
8392 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8393 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8394 .access = PL1_R, .type = ARM_CP_CONST,
8395 .accessfn = access_aa64_tid3,
8396 .resetvalue = cpu->isar.id_aa64dfr1 },
8397 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8398 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8399 .access = PL1_R, .type = ARM_CP_CONST,
8400 .accessfn = access_aa64_tid3,
8401 .resetvalue = 0 },
8402 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8403 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8404 .access = PL1_R, .type = ARM_CP_CONST,
8405 .accessfn = access_aa64_tid3,
8406 .resetvalue = 0 },
8407 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8408 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8409 .access = PL1_R, .type = ARM_CP_CONST,
8410 .accessfn = access_aa64_tid3,
8411 .resetvalue = cpu->id_aa64afr0 },
8412 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8413 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8414 .access = PL1_R, .type = ARM_CP_CONST,
8415 .accessfn = access_aa64_tid3,
8416 .resetvalue = cpu->id_aa64afr1 },
8417 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8418 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8419 .access = PL1_R, .type = ARM_CP_CONST,
8420 .accessfn = access_aa64_tid3,
8421 .resetvalue = 0 },
8422 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8423 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8424 .access = PL1_R, .type = ARM_CP_CONST,
8425 .accessfn = access_aa64_tid3,
8426 .resetvalue = 0 },
8427 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8428 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8429 .access = PL1_R, .type = ARM_CP_CONST,
8430 .accessfn = access_aa64_tid3,
8431 .resetvalue = cpu->isar.id_aa64isar0 },
8432 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8433 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8434 .access = PL1_R, .type = ARM_CP_CONST,
8435 .accessfn = access_aa64_tid3,
8436 .resetvalue = cpu->isar.id_aa64isar1 },
8437 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8438 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8439 .access = PL1_R, .type = ARM_CP_CONST,
8440 .accessfn = access_aa64_tid3,
8441 .resetvalue = cpu->isar.id_aa64isar2 },
8442 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8443 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8444 .access = PL1_R, .type = ARM_CP_CONST,
8445 .accessfn = access_aa64_tid3,
8446 .resetvalue = 0 },
8447 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8448 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8449 .access = PL1_R, .type = ARM_CP_CONST,
8450 .accessfn = access_aa64_tid3,
8451 .resetvalue = 0 },
8452 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8453 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8454 .access = PL1_R, .type = ARM_CP_CONST,
8455 .accessfn = access_aa64_tid3,
8456 .resetvalue = 0 },
8457 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8458 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8459 .access = PL1_R, .type = ARM_CP_CONST,
8460 .accessfn = access_aa64_tid3,
8461 .resetvalue = 0 },
8462 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8463 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8464 .access = PL1_R, .type = ARM_CP_CONST,
8465 .accessfn = access_aa64_tid3,
8466 .resetvalue = 0 },
8467 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8468 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8469 .access = PL1_R, .type = ARM_CP_CONST,
8470 .accessfn = access_aa64_tid3,
8471 .resetvalue = cpu->isar.id_aa64mmfr0 },
8472 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8473 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8474 .access = PL1_R, .type = ARM_CP_CONST,
8475 .accessfn = access_aa64_tid3,
8476 .resetvalue = cpu->isar.id_aa64mmfr1 },
8477 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8478 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8479 .access = PL1_R, .type = ARM_CP_CONST,
8480 .accessfn = access_aa64_tid3,
8481 .resetvalue = cpu->isar.id_aa64mmfr2 },
8482 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8483 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8484 .access = PL1_R, .type = ARM_CP_CONST,
8485 .accessfn = access_aa64_tid3,
8486 .resetvalue = 0 },
8487 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8488 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8489 .access = PL1_R, .type = ARM_CP_CONST,
8490 .accessfn = access_aa64_tid3,
8491 .resetvalue = 0 },
8492 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8493 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8494 .access = PL1_R, .type = ARM_CP_CONST,
8495 .accessfn = access_aa64_tid3,
8496 .resetvalue = 0 },
8497 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8498 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8499 .access = PL1_R, .type = ARM_CP_CONST,
8500 .accessfn = access_aa64_tid3,
8501 .resetvalue = 0 },
8502 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8503 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8504 .access = PL1_R, .type = ARM_CP_CONST,
8505 .accessfn = access_aa64_tid3,
8506 .resetvalue = 0 },
8507 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8508 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8509 .access = PL1_R, .type = ARM_CP_CONST,
8510 .accessfn = access_aa64_tid3,
8511 .resetvalue = cpu->isar.mvfr0 },
8512 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8513 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8514 .access = PL1_R, .type = ARM_CP_CONST,
8515 .accessfn = access_aa64_tid3,
8516 .resetvalue = cpu->isar.mvfr1 },
8517 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8518 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8519 .access = PL1_R, .type = ARM_CP_CONST,
8520 .accessfn = access_aa64_tid3,
8521 .resetvalue = cpu->isar.mvfr2 },
8522 /*
8523 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8524 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8525 * as RAZ, since it is in the "reserved for future ID
8526 * registers, RAZ" part of the AArch32 encoding space.
8527 */
8528 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8529 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8530 .access = PL1_R, .type = ARM_CP_CONST,
8531 .accessfn = access_aa64_tid3,
8532 .resetvalue = 0 },
8533 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8534 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8535 .access = PL1_R, .type = ARM_CP_CONST,
8536 .accessfn = access_aa64_tid3,
8537 .resetvalue = 0 },
8538 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8539 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8540 .access = PL1_R, .type = ARM_CP_CONST,
8541 .accessfn = access_aa64_tid3,
8542 .resetvalue = 0 },
8543 /*
8544 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8545 * they're also RAZ for AArch64, and in v8 are gradually
8546 * being filled with AArch64-view-of-AArch32-ID-register
8547 * for new ID registers.
8548 */
8549 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8550 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8551 .access = PL1_R, .type = ARM_CP_CONST,
8552 .accessfn = access_aa64_tid3,
8553 .resetvalue = 0 },
8554 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8556 .access = PL1_R, .type = ARM_CP_CONST,
8557 .accessfn = access_aa64_tid3,
8558 .resetvalue = cpu->isar.id_pfr2 },
8559 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8561 .access = PL1_R, .type = ARM_CP_CONST,
8562 .accessfn = access_aa64_tid3,
8563 .resetvalue = cpu->isar.id_dfr1 },
8564 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8565 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8566 .access = PL1_R, .type = ARM_CP_CONST,
8567 .accessfn = access_aa64_tid3,
8568 .resetvalue = cpu->isar.id_mmfr5 },
8569 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8570 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8571 .access = PL1_R, .type = ARM_CP_CONST,
8572 .accessfn = access_aa64_tid3,
8573 .resetvalue = 0 },
8574 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8575 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8576 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8577 .fgt = FGT_PMCEIDN_EL0,
8578 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8579 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8580 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8581 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8582 .fgt = FGT_PMCEIDN_EL0,
8583 .resetvalue = cpu->pmceid0 },
8584 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8585 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8586 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8587 .fgt = FGT_PMCEIDN_EL0,
8588 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8589 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8590 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8591 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8592 .fgt = FGT_PMCEIDN_EL0,
8593 .resetvalue = cpu->pmceid1 },
8594 };
8595 #ifdef CONFIG_USER_ONLY
8596 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8597 { .name = "ID_AA64PFR0_EL1",
8598 .exported_bits = R_ID_AA64PFR0_FP_MASK |
8599 R_ID_AA64PFR0_ADVSIMD_MASK |
8600 R_ID_AA64PFR0_SVE_MASK |
8601 R_ID_AA64PFR0_DIT_MASK,
8602 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8603 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8604 { .name = "ID_AA64PFR1_EL1",
8605 .exported_bits = R_ID_AA64PFR1_BT_MASK |
8606 R_ID_AA64PFR1_SSBS_MASK |
8607 R_ID_AA64PFR1_MTE_MASK |
8608 R_ID_AA64PFR1_SME_MASK },
8609 { .name = "ID_AA64PFR*_EL1_RESERVED",
8610 .is_glob = true },
8611 { .name = "ID_AA64ZFR0_EL1",
8612 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8613 R_ID_AA64ZFR0_AES_MASK |
8614 R_ID_AA64ZFR0_BITPERM_MASK |
8615 R_ID_AA64ZFR0_BFLOAT16_MASK |
8616 R_ID_AA64ZFR0_SHA3_MASK |
8617 R_ID_AA64ZFR0_SM4_MASK |
8618 R_ID_AA64ZFR0_I8MM_MASK |
8619 R_ID_AA64ZFR0_F32MM_MASK |
8620 R_ID_AA64ZFR0_F64MM_MASK },
8621 { .name = "ID_AA64SMFR0_EL1",
8622 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8623 R_ID_AA64SMFR0_BI32I32_MASK |
8624 R_ID_AA64SMFR0_B16F32_MASK |
8625 R_ID_AA64SMFR0_F16F32_MASK |
8626 R_ID_AA64SMFR0_I8I32_MASK |
8627 R_ID_AA64SMFR0_F16F16_MASK |
8628 R_ID_AA64SMFR0_B16B16_MASK |
8629 R_ID_AA64SMFR0_I16I32_MASK |
8630 R_ID_AA64SMFR0_F64F64_MASK |
8631 R_ID_AA64SMFR0_I16I64_MASK |
8632 R_ID_AA64SMFR0_SMEVER_MASK |
8633 R_ID_AA64SMFR0_FA64_MASK },
8634 { .name = "ID_AA64MMFR0_EL1",
8635 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8636 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8637 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8638 { .name = "ID_AA64MMFR1_EL1",
8639 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8640 { .name = "ID_AA64MMFR2_EL1",
8641 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8642 { .name = "ID_AA64MMFR*_EL1_RESERVED",
8643 .is_glob = true },
8644 { .name = "ID_AA64DFR0_EL1",
8645 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8646 { .name = "ID_AA64DFR1_EL1" },
8647 { .name = "ID_AA64DFR*_EL1_RESERVED",
8648 .is_glob = true },
8649 { .name = "ID_AA64AFR*",
8650 .is_glob = true },
8651 { .name = "ID_AA64ISAR0_EL1",
8652 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8653 R_ID_AA64ISAR0_SHA1_MASK |
8654 R_ID_AA64ISAR0_SHA2_MASK |
8655 R_ID_AA64ISAR0_CRC32_MASK |
8656 R_ID_AA64ISAR0_ATOMIC_MASK |
8657 R_ID_AA64ISAR0_RDM_MASK |
8658 R_ID_AA64ISAR0_SHA3_MASK |
8659 R_ID_AA64ISAR0_SM3_MASK |
8660 R_ID_AA64ISAR0_SM4_MASK |
8661 R_ID_AA64ISAR0_DP_MASK |
8662 R_ID_AA64ISAR0_FHM_MASK |
8663 R_ID_AA64ISAR0_TS_MASK |
8664 R_ID_AA64ISAR0_RNDR_MASK },
8665 { .name = "ID_AA64ISAR1_EL1",
8666 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8667 R_ID_AA64ISAR1_APA_MASK |
8668 R_ID_AA64ISAR1_API_MASK |
8669 R_ID_AA64ISAR1_JSCVT_MASK |
8670 R_ID_AA64ISAR1_FCMA_MASK |
8671 R_ID_AA64ISAR1_LRCPC_MASK |
8672 R_ID_AA64ISAR1_GPA_MASK |
8673 R_ID_AA64ISAR1_GPI_MASK |
8674 R_ID_AA64ISAR1_FRINTTS_MASK |
8675 R_ID_AA64ISAR1_SB_MASK |
8676 R_ID_AA64ISAR1_BF16_MASK |
8677 R_ID_AA64ISAR1_DGH_MASK |
8678 R_ID_AA64ISAR1_I8MM_MASK },
8679 { .name = "ID_AA64ISAR2_EL1",
8680 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8681 R_ID_AA64ISAR2_RPRES_MASK |
8682 R_ID_AA64ISAR2_GPA3_MASK |
8683 R_ID_AA64ISAR2_APA3_MASK |
8684 R_ID_AA64ISAR2_MOPS_MASK |
8685 R_ID_AA64ISAR2_BC_MASK |
8686 R_ID_AA64ISAR2_RPRFM_MASK |
8687 R_ID_AA64ISAR2_CSSC_MASK },
8688 { .name = "ID_AA64ISAR*_EL1_RESERVED",
8689 .is_glob = true },
8690 };
8691 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8692 #endif
8693 /*
8694 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
8695 * TODO: For RMR, a write with bit 1 set should do something with
8696 * cpu_reset(). In the meantime, "the bit is strictly a request",
8697 * so we are in spec just ignoring writes.
8698 */
8699 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8700 !arm_feature(env, ARM_FEATURE_EL2)) {
8701 ARMCPRegInfo el1_reset_regs[] = {
8702 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8703 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8704 .access = PL1_R,
8705 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8706 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
8707 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8708 .access = PL1_RW, .type = ARM_CP_CONST,
8709 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
8710 };
8711 define_arm_cp_regs(cpu, el1_reset_regs);
8712 }
8713 define_arm_cp_regs(cpu, v8_idregs);
8714 define_arm_cp_regs(cpu, v8_cp_reginfo);
8715
8716 for (i = 4; i < 16; i++) {
8717 /*
8718 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8719 * For pre-v8 cores there are RAZ patterns for these in
8720 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8721 * v8 extends the "must RAZ" part of the ID register space
8722 * to also cover c0, 0, c{8-15}, {0-7}.
8723 * These are STATE_AA32 because in the AArch64 sysreg space
8724 * c4-c7 is where the AArch64 ID registers live (and we've
8725 * already defined those in v8_idregs[]), and c8-c15 are not
8726 * "must RAZ" for AArch64.
8727 */
8728 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8729 ARMCPRegInfo v8_aa32_raz_idregs = {
8730 .name = name,
8731 .state = ARM_CP_STATE_AA32,
8732 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8733 .access = PL1_R, .type = ARM_CP_CONST,
8734 .accessfn = access_aa64_tid3,
8735 .resetvalue = 0 };
8736 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8737 }
8738 }
8739
8740 /*
8741 * Register the base EL2 cpregs.
8742 * Pre v8, these registers are implemented only as part of the
8743 * Virtualization Extensions (EL2 present). Beginning with v8,
8744 * if EL2 is missing but EL3 is enabled, mostly these become
8745 * RES0 from EL3, with some specific exceptions.
8746 */
8747 if (arm_feature(env, ARM_FEATURE_EL2)
8748 || (arm_feature(env, ARM_FEATURE_EL3)
8749 && arm_feature(env, ARM_FEATURE_V8))) {
8750 uint64_t vmpidr_def = mpidr_read_val(env);
8751 ARMCPRegInfo vpidr_regs[] = {
8752 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8753 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8754 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8755 .resetvalue = cpu->midr,
8756 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8757 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8758 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8759 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8760 .access = PL2_RW, .resetvalue = cpu->midr,
8761 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8762 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8763 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8764 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8765 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8766 .resetvalue = vmpidr_def,
8767 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8768 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8769 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8770 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8771 .access = PL2_RW, .resetvalue = vmpidr_def,
8772 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8773 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8774 };
8775 /*
8776 * The only field of MDCR_EL2 that has a defined architectural reset
8777 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8778 */
8779 ARMCPRegInfo mdcr_el2 = {
8780 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8781 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8782 .writefn = mdcr_el2_write,
8783 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8784 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8785 };
8786 define_one_arm_cp_reg(cpu, &mdcr_el2);
8787 define_arm_cp_regs(cpu, vpidr_regs);
8788 define_arm_cp_regs(cpu, el2_cp_reginfo);
8789 if (arm_feature(env, ARM_FEATURE_V8)) {
8790 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8791 }
8792 if (cpu_isar_feature(aa64_sel2, cpu)) {
8793 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8794 }
8795 /*
8796 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
8797 * See commentary near RMR_EL1.
8798 */
8799 if (!arm_feature(env, ARM_FEATURE_EL3)) {
8800 static const ARMCPRegInfo el2_reset_regs[] = {
8801 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8802 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8803 .access = PL2_R,
8804 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8805 { .name = "RVBAR", .type = ARM_CP_ALIAS,
8806 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8807 .access = PL2_R,
8808 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8809 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
8810 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
8811 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8812 };
8813 define_arm_cp_regs(cpu, el2_reset_regs);
8814 }
8815 }
8816
8817 /* Register the base EL3 cpregs. */
8818 if (arm_feature(env, ARM_FEATURE_EL3)) {
8819 define_arm_cp_regs(cpu, el3_cp_reginfo);
8820 ARMCPRegInfo el3_regs[] = {
8821 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8822 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8823 .access = PL3_R,
8824 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
8825 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
8826 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
8827 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8828 { .name = "RMR", .state = ARM_CP_STATE_AA32,
8829 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8830 .access = PL3_RW, .type = ARM_CP_CONST,
8831 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
8832 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8833 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8834 .access = PL3_RW,
8835 .raw_writefn = raw_write, .writefn = sctlr_write,
8836 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8837 .resetvalue = cpu->reset_sctlr },
8838 };
8839
8840 define_arm_cp_regs(cpu, el3_regs);
8841 }
8842 /*
8843 * The behaviour of NSACR is sufficiently various that we don't
8844 * try to describe it in a single reginfo:
8845 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8846 * reads as constant 0xc00 from NS EL1 and NS EL2
8847 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8848 * if v7 without EL3, register doesn't exist
8849 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8850 */
8851 if (arm_feature(env, ARM_FEATURE_EL3)) {
8852 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8853 static const ARMCPRegInfo nsacr = {
8854 .name = "NSACR", .type = ARM_CP_CONST,
8855 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8856 .access = PL1_RW, .accessfn = nsacr_access,
8857 .resetvalue = 0xc00
8858 };
8859 define_one_arm_cp_reg(cpu, &nsacr);
8860 } else {
8861 static const ARMCPRegInfo nsacr = {
8862 .name = "NSACR",
8863 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8864 .access = PL3_RW | PL1_R,
8865 .resetvalue = 0,
8866 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8867 };
8868 define_one_arm_cp_reg(cpu, &nsacr);
8869 }
8870 } else {
8871 if (arm_feature(env, ARM_FEATURE_V8)) {
8872 static const ARMCPRegInfo nsacr = {
8873 .name = "NSACR", .type = ARM_CP_CONST,
8874 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8875 .access = PL1_R,
8876 .resetvalue = 0xc00
8877 };
8878 define_one_arm_cp_reg(cpu, &nsacr);
8879 }
8880 }
8881
8882 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8883 if (arm_feature(env, ARM_FEATURE_V6)) {
8884 /* PMSAv6 not implemented */
8885 assert(arm_feature(env, ARM_FEATURE_V7));
8886 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8887 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8888 } else {
8889 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8890 }
8891 } else {
8892 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8893 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8894 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8895 if (cpu_isar_feature(aa32_hpd, cpu)) {
8896 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8897 }
8898 }
8899 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8900 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8901 }
8902 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8903 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8904 }
8905 if (arm_feature(env, ARM_FEATURE_VAPA)) {
8906 define_arm_cp_regs(cpu, vapa_cp_reginfo);
8907 }
8908 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8909 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8910 }
8911 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8912 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8913 }
8914 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8915 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8916 }
8917 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8918 define_arm_cp_regs(cpu, omap_cp_reginfo);
8919 }
8920 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8921 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8922 }
8923 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8924 define_arm_cp_regs(cpu, xscale_cp_reginfo);
8925 }
8926 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8927 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8928 }
8929 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8930 define_arm_cp_regs(cpu, lpae_cp_reginfo);
8931 }
8932 if (cpu_isar_feature(aa32_jazelle, cpu)) {
8933 define_arm_cp_regs(cpu, jazelle_regs);
8934 }
8935 /*
8936 * Slightly awkwardly, the OMAP and StrongARM cores need all of
8937 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8938 * be read-only (ie write causes UNDEF exception).
8939 */
8940 {
8941 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8942 /*
8943 * Pre-v8 MIDR space.
8944 * Note that the MIDR isn't a simple constant register because
8945 * of the TI925 behaviour where writes to another register can
8946 * cause the MIDR value to change.
8947 *
8948 * Unimplemented registers in the c15 0 0 0 space default to
8949 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8950 * and friends override accordingly.
8951 */
8952 { .name = "MIDR",
8953 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8954 .access = PL1_R, .resetvalue = cpu->midr,
8955 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8956 .readfn = midr_read,
8957 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8958 .type = ARM_CP_OVERRIDE },
8959 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8960 { .name = "DUMMY",
8961 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8962 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8963 { .name = "DUMMY",
8964 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8965 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8966 { .name = "DUMMY",
8967 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8968 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8969 { .name = "DUMMY",
8970 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8971 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8972 { .name = "DUMMY",
8973 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8974 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8975 };
8976 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8977 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8978 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8979 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8980 .fgt = FGT_MIDR_EL1,
8981 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8982 .readfn = midr_read },
8983 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8984 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8985 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8986 .access = PL1_R, .resetvalue = cpu->midr },
8987 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8988 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8989 .access = PL1_R,
8990 .accessfn = access_aa64_tid1,
8991 .fgt = FGT_REVIDR_EL1,
8992 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8993 };
8994 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
8995 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8996 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8997 .access = PL1_R, .resetvalue = cpu->midr
8998 };
8999 ARMCPRegInfo id_cp_reginfo[] = {
9000 /* These are common to v8 and pre-v8 */
9001 { .name = "CTR",
9002 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9003 .access = PL1_R, .accessfn = ctr_el0_access,
9004 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9005 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9006 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9007 .access = PL0_R, .accessfn = ctr_el0_access,
9008 .fgt = FGT_CTR_EL0,
9009 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9010 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9011 { .name = "TCMTR",
9012 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9013 .access = PL1_R,
9014 .accessfn = access_aa32_tid1,
9015 .type = ARM_CP_CONST, .resetvalue = 0 },
9016 };
9017 /* TLBTR is specific to VMSA */
9018 ARMCPRegInfo id_tlbtr_reginfo = {
9019 .name = "TLBTR",
9020 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9021 .access = PL1_R,
9022 .accessfn = access_aa32_tid1,
9023 .type = ARM_CP_CONST, .resetvalue = 0,
9024 };
9025 /* MPUIR is specific to PMSA V6+ */
9026 ARMCPRegInfo id_mpuir_reginfo = {
9027 .name = "MPUIR",
9028 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9029 .access = PL1_R, .type = ARM_CP_CONST,
9030 .resetvalue = cpu->pmsav7_dregion << 8
9031 };
9032 /* HMPUIR is specific to PMSA V8 */
9033 ARMCPRegInfo id_hmpuir_reginfo = {
9034 .name = "HMPUIR",
9035 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9036 .access = PL2_R, .type = ARM_CP_CONST,
9037 .resetvalue = cpu->pmsav8r_hdregion
9038 };
9039 static const ARMCPRegInfo crn0_wi_reginfo = {
9040 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9041 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9042 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9043 };
9044 #ifdef CONFIG_USER_ONLY
9045 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9046 { .name = "MIDR_EL1",
9047 .exported_bits = R_MIDR_EL1_REVISION_MASK |
9048 R_MIDR_EL1_PARTNUM_MASK |
9049 R_MIDR_EL1_ARCHITECTURE_MASK |
9050 R_MIDR_EL1_VARIANT_MASK |
9051 R_MIDR_EL1_IMPLEMENTER_MASK },
9052 { .name = "REVIDR_EL1" },
9053 };
9054 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9055 #endif
9056 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9057 arm_feature(env, ARM_FEATURE_STRONGARM)) {
9058 size_t i;
9059 /*
9060 * Register the blanket "writes ignored" value first to cover the
9061 * whole space. Then update the specific ID registers to allow write
9062 * access, so that they ignore writes rather than causing them to
9063 * UNDEF.
9064 */
9065 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9066 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9067 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9068 }
9069 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9070 id_cp_reginfo[i].access = PL1_RW;
9071 }
9072 id_mpuir_reginfo.access = PL1_RW;
9073 id_tlbtr_reginfo.access = PL1_RW;
9074 }
9075 if (arm_feature(env, ARM_FEATURE_V8)) {
9076 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9077 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9078 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9079 }
9080 } else {
9081 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9082 }
9083 define_arm_cp_regs(cpu, id_cp_reginfo);
9084 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9085 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9086 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9087 arm_feature(env, ARM_FEATURE_V8)) {
9088 uint32_t i = 0;
9089 char *tmp_string;
9090
9091 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9092 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9093 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9094
9095 /* Register alias is only valid for first 32 indexes */
9096 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9097 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9098 uint8_t opc1 = extract32(i, 4, 1);
9099 uint8_t opc2 = extract32(i, 0, 1) << 2;
9100
9101 tmp_string = g_strdup_printf("PRBAR%u", i);
9102 ARMCPRegInfo tmp_prbarn_reginfo = {
9103 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9104 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9105 .access = PL1_RW, .resetvalue = 0,
9106 .accessfn = access_tvm_trvm,
9107 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9108 };
9109 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9110 g_free(tmp_string);
9111
9112 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9113 tmp_string = g_strdup_printf("PRLAR%u", i);
9114 ARMCPRegInfo tmp_prlarn_reginfo = {
9115 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9116 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9117 .access = PL1_RW, .resetvalue = 0,
9118 .accessfn = access_tvm_trvm,
9119 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9120 };
9121 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9122 g_free(tmp_string);
9123 }
9124
9125 /* Register alias is only valid for first 32 indexes */
9126 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9127 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9128 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9129 uint8_t opc2 = extract32(i, 0, 1) << 2;
9130
9131 tmp_string = g_strdup_printf("HPRBAR%u", i);
9132 ARMCPRegInfo tmp_hprbarn_reginfo = {
9133 .name = tmp_string,
9134 .type = ARM_CP_NO_RAW,
9135 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9136 .access = PL2_RW, .resetvalue = 0,
9137 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9138 };
9139 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9140 g_free(tmp_string);
9141
9142 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9143 tmp_string = g_strdup_printf("HPRLAR%u", i);
9144 ARMCPRegInfo tmp_hprlarn_reginfo = {
9145 .name = tmp_string,
9146 .type = ARM_CP_NO_RAW,
9147 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9148 .access = PL2_RW, .resetvalue = 0,
9149 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9150 };
9151 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9152 g_free(tmp_string);
9153 }
9154 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9155 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9156 }
9157 }
9158
9159 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9160 ARMCPRegInfo mpidr_cp_reginfo[] = {
9161 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9162 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9163 .fgt = FGT_MPIDR_EL1,
9164 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9165 };
9166 #ifdef CONFIG_USER_ONLY
9167 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9168 { .name = "MPIDR_EL1",
9169 .fixed_bits = 0x0000000080000000 },
9170 };
9171 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9172 #endif
9173 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9174 }
9175
9176 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9177 ARMCPRegInfo auxcr_reginfo[] = {
9178 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9179 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9180 .access = PL1_RW, .accessfn = access_tacr,
9181 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9182 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9183 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9184 .access = PL2_RW, .type = ARM_CP_CONST,
9185 .resetvalue = 0 },
9186 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9187 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9188 .access = PL3_RW, .type = ARM_CP_CONST,
9189 .resetvalue = 0 },
9190 };
9191 define_arm_cp_regs(cpu, auxcr_reginfo);
9192 if (cpu_isar_feature(aa32_ac2, cpu)) {
9193 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9194 }
9195 }
9196
9197 if (arm_feature(env, ARM_FEATURE_CBAR)) {
9198 /*
9199 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9200 * There are two flavours:
9201 * (1) older 32-bit only cores have a simple 32-bit CBAR
9202 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9203 * 32-bit register visible to AArch32 at a different encoding
9204 * to the "flavour 1" register and with the bits rearranged to
9205 * be able to squash a 64-bit address into the 32-bit view.
9206 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9207 * in future if we support AArch32-only configs of some of the
9208 * AArch64 cores we might need to add a specific feature flag
9209 * to indicate cores with "flavour 2" CBAR.
9210 */
9211 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9212 /* 32 bit view is [31:18] 0...0 [43:32]. */
9213 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9214 | extract64(cpu->reset_cbar, 32, 12);
9215 ARMCPRegInfo cbar_reginfo[] = {
9216 { .name = "CBAR",
9217 .type = ARM_CP_CONST,
9218 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9219 .access = PL1_R, .resetvalue = cbar32 },
9220 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9221 .type = ARM_CP_CONST,
9222 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9223 .access = PL1_R, .resetvalue = cpu->reset_cbar },
9224 };
9225 /* We don't implement a r/w 64 bit CBAR currently */
9226 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9227 define_arm_cp_regs(cpu, cbar_reginfo);
9228 } else {
9229 ARMCPRegInfo cbar = {
9230 .name = "CBAR",
9231 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9232 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9233 .fieldoffset = offsetof(CPUARMState,
9234 cp15.c15_config_base_address)
9235 };
9236 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9237 cbar.access = PL1_R;
9238 cbar.fieldoffset = 0;
9239 cbar.type = ARM_CP_CONST;
9240 }
9241 define_one_arm_cp_reg(cpu, &cbar);
9242 }
9243 }
9244
9245 if (arm_feature(env, ARM_FEATURE_VBAR)) {
9246 static const ARMCPRegInfo vbar_cp_reginfo[] = {
9247 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9248 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9249 .access = PL1_RW, .writefn = vbar_write,
9250 .fgt = FGT_VBAR_EL1,
9251 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9252 offsetof(CPUARMState, cp15.vbar_ns) },
9253 .resetvalue = 0 },
9254 };
9255 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9256 }
9257
9258 /* Generic registers whose values depend on the implementation */
9259 {
9260 ARMCPRegInfo sctlr = {
9261 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9262 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9263 .access = PL1_RW, .accessfn = access_tvm_trvm,
9264 .fgt = FGT_SCTLR_EL1,
9265 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9266 offsetof(CPUARMState, cp15.sctlr_ns) },
9267 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9268 .raw_writefn = raw_write,
9269 };
9270 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9271 /*
9272 * Normally we would always end the TB on an SCTLR write, but Linux
9273 * arch/arm/mach-pxa/sleep.S expects two instructions following
9274 * an MMU enable to execute from cache. Imitate this behaviour.
9275 */
9276 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9277 }
9278 define_one_arm_cp_reg(cpu, &sctlr);
9279
9280 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9281 arm_feature(env, ARM_FEATURE_V8)) {
9282 ARMCPRegInfo vsctlr = {
9283 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9284 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9285 .access = PL2_RW, .resetvalue = 0x0,
9286 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9287 };
9288 define_one_arm_cp_reg(cpu, &vsctlr);
9289 }
9290 }
9291
9292 if (cpu_isar_feature(aa64_lor, cpu)) {
9293 define_arm_cp_regs(cpu, lor_reginfo);
9294 }
9295 if (cpu_isar_feature(aa64_pan, cpu)) {
9296 define_one_arm_cp_reg(cpu, &pan_reginfo);
9297 }
9298 #ifndef CONFIG_USER_ONLY
9299 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9300 define_arm_cp_regs(cpu, ats1e1_reginfo);
9301 }
9302 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9303 define_arm_cp_regs(cpu, ats1cp_reginfo);
9304 }
9305 #endif
9306 if (cpu_isar_feature(aa64_uao, cpu)) {
9307 define_one_arm_cp_reg(cpu, &uao_reginfo);
9308 }
9309
9310 if (cpu_isar_feature(aa64_dit, cpu)) {
9311 define_one_arm_cp_reg(cpu, &dit_reginfo);
9312 }
9313 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9314 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9315 }
9316 if (cpu_isar_feature(any_ras, cpu)) {
9317 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9318 }
9319
9320 if (cpu_isar_feature(aa64_vh, cpu) ||
9321 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9322 define_one_arm_cp_reg(cpu, &contextidr_el2);
9323 }
9324 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9325 define_arm_cp_regs(cpu, vhe_reginfo);
9326 }
9327
9328 if (cpu_isar_feature(aa64_sve, cpu)) {
9329 define_arm_cp_regs(cpu, zcr_reginfo);
9330 }
9331
9332 if (cpu_isar_feature(aa64_hcx, cpu)) {
9333 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9334 }
9335
9336 #ifdef TARGET_AARCH64
9337 if (cpu_isar_feature(aa64_sme, cpu)) {
9338 define_arm_cp_regs(cpu, sme_reginfo);
9339 }
9340 if (cpu_isar_feature(aa64_pauth, cpu)) {
9341 define_arm_cp_regs(cpu, pauth_reginfo);
9342 }
9343 if (cpu_isar_feature(aa64_rndr, cpu)) {
9344 define_arm_cp_regs(cpu, rndr_reginfo);
9345 }
9346 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9347 define_arm_cp_regs(cpu, tlbirange_reginfo);
9348 }
9349 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9350 define_arm_cp_regs(cpu, tlbios_reginfo);
9351 }
9352 /* Data Cache clean instructions up to PoP */
9353 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9354 define_one_arm_cp_reg(cpu, dcpop_reg);
9355
9356 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9357 define_one_arm_cp_reg(cpu, dcpodp_reg);
9358 }
9359 }
9360
9361 /*
9362 * If full MTE is enabled, add all of the system registers.
9363 * If only "instructions available at EL0" are enabled,
9364 * then define only a RAZ/WI version of PSTATE.TCO.
9365 */
9366 if (cpu_isar_feature(aa64_mte, cpu)) {
9367 ARMCPRegInfo gmid_reginfo = {
9368 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9369 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9370 .access = PL1_R, .accessfn = access_aa64_tid5,
9371 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9372 };
9373 define_one_arm_cp_reg(cpu, &gmid_reginfo);
9374 define_arm_cp_regs(cpu, mte_reginfo);
9375 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9376 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9377 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9378 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9379 }
9380
9381 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9382 define_arm_cp_regs(cpu, scxtnum_reginfo);
9383 }
9384
9385 if (cpu_isar_feature(aa64_fgt, cpu)) {
9386 define_arm_cp_regs(cpu, fgt_reginfo);
9387 }
9388
9389 if (cpu_isar_feature(aa64_rme, cpu)) {
9390 define_arm_cp_regs(cpu, rme_reginfo);
9391 if (cpu_isar_feature(aa64_mte, cpu)) {
9392 define_arm_cp_regs(cpu, rme_mte_reginfo);
9393 }
9394 }
9395 #endif
9396
9397 if (cpu_isar_feature(any_predinv, cpu)) {
9398 define_arm_cp_regs(cpu, predinv_reginfo);
9399 }
9400
9401 if (cpu_isar_feature(any_ccidx, cpu)) {
9402 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9403 }
9404
9405 #ifndef CONFIG_USER_ONLY
9406 /*
9407 * Register redirections and aliases must be done last,
9408 * after the registers from the other extensions have been defined.
9409 */
9410 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9411 define_arm_vh_e2h_redirects_aliases(cpu);
9412 }
9413 #endif
9414 }
9415
9416 /* Sort alphabetically by type name, except for "any". */
9417 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9418 {
9419 ObjectClass *class_a = (ObjectClass *)a;
9420 ObjectClass *class_b = (ObjectClass *)b;
9421 const char *name_a, *name_b;
9422
9423 name_a = object_class_get_name(class_a);
9424 name_b = object_class_get_name(class_b);
9425 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9426 return 1;
9427 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9428 return -1;
9429 } else {
9430 return strcmp(name_a, name_b);
9431 }
9432 }
9433
9434 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9435 {
9436 ObjectClass *oc = data;
9437 CPUClass *cc = CPU_CLASS(oc);
9438 const char *typename;
9439 char *name;
9440
9441 typename = object_class_get_name(oc);
9442 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9443 if (cc->deprecation_note) {
9444 qemu_printf(" %s (deprecated)\n", name);
9445 } else {
9446 qemu_printf(" %s\n", name);
9447 }
9448 g_free(name);
9449 }
9450
9451 void arm_cpu_list(void)
9452 {
9453 GSList *list;
9454
9455 list = object_class_get_list(TYPE_ARM_CPU, false);
9456 list = g_slist_sort(list, arm_cpu_list_compare);
9457 qemu_printf("Available CPUs:\n");
9458 g_slist_foreach(list, arm_cpu_list_entry, NULL);
9459 g_slist_free(list);
9460 }
9461
9462 /*
9463 * Private utility function for define_one_arm_cp_reg_with_opaque():
9464 * add a single reginfo struct to the hash table.
9465 */
9466 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9467 void *opaque, CPState state,
9468 CPSecureState secstate,
9469 int crm, int opc1, int opc2,
9470 const char *name)
9471 {
9472 CPUARMState *env = &cpu->env;
9473 uint32_t key;
9474 ARMCPRegInfo *r2;
9475 bool is64 = r->type & ARM_CP_64BIT;
9476 bool ns = secstate & ARM_CP_SECSTATE_NS;
9477 int cp = r->cp;
9478 size_t name_len;
9479 bool make_const;
9480
9481 switch (state) {
9482 case ARM_CP_STATE_AA32:
9483 /* We assume it is a cp15 register if the .cp field is left unset. */
9484 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9485 cp = 15;
9486 }
9487 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9488 break;
9489 case ARM_CP_STATE_AA64:
9490 /*
9491 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9492 * cp == 0 as equivalent to the value for "standard guest-visible
9493 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9494 * in their AArch64 view (the .cp value may be non-zero for the
9495 * benefit of the AArch32 view).
9496 */
9497 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9498 cp = CP_REG_ARM64_SYSREG_CP;
9499 }
9500 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9501 break;
9502 default:
9503 g_assert_not_reached();
9504 }
9505
9506 /* Overriding of an existing definition must be explicitly requested. */
9507 if (!(r->type & ARM_CP_OVERRIDE)) {
9508 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9509 if (oldreg) {
9510 assert(oldreg->type & ARM_CP_OVERRIDE);
9511 }
9512 }
9513
9514 /*
9515 * Eliminate registers that are not present because the EL is missing.
9516 * Doing this here makes it easier to put all registers for a given
9517 * feature into the same ARMCPRegInfo array and define them all at once.
9518 */
9519 make_const = false;
9520 if (arm_feature(env, ARM_FEATURE_EL3)) {
9521 /*
9522 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9523 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9524 */
9525 int min_el = ctz32(r->access) / 2;
9526 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9527 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9528 return;
9529 }
9530 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9531 }
9532 } else {
9533 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9534 ? PL2_RW : PL1_RW);
9535 if ((r->access & max_el) == 0) {
9536 return;
9537 }
9538 }
9539
9540 /* Combine cpreg and name into one allocation. */
9541 name_len = strlen(name) + 1;
9542 r2 = g_malloc(sizeof(*r2) + name_len);
9543 *r2 = *r;
9544 r2->name = memcpy(r2 + 1, name, name_len);
9545
9546 /*
9547 * Update fields to match the instantiation, overwiting wildcards
9548 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9549 */
9550 r2->cp = cp;
9551 r2->crm = crm;
9552 r2->opc1 = opc1;
9553 r2->opc2 = opc2;
9554 r2->state = state;
9555 r2->secure = secstate;
9556 if (opaque) {
9557 r2->opaque = opaque;
9558 }
9559
9560 if (make_const) {
9561 /* This should not have been a very special register to begin. */
9562 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9563 assert(old_special == 0 || old_special == ARM_CP_NOP);
9564 /*
9565 * Set the special function to CONST, retaining the other flags.
9566 * This is important for e.g. ARM_CP_SVE so that we still
9567 * take the SVE trap if CPTR_EL3.EZ == 0.
9568 */
9569 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9570 /*
9571 * Usually, these registers become RES0, but there are a few
9572 * special cases like VPIDR_EL2 which have a constant non-zero
9573 * value with writes ignored.
9574 */
9575 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9576 r2->resetvalue = 0;
9577 }
9578 /*
9579 * ARM_CP_CONST has precedence, so removing the callbacks and
9580 * offsets are not strictly necessary, but it is potentially
9581 * less confusing to debug later.
9582 */
9583 r2->readfn = NULL;
9584 r2->writefn = NULL;
9585 r2->raw_readfn = NULL;
9586 r2->raw_writefn = NULL;
9587 r2->resetfn = NULL;
9588 r2->fieldoffset = 0;
9589 r2->bank_fieldoffsets[0] = 0;
9590 r2->bank_fieldoffsets[1] = 0;
9591 } else {
9592 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9593
9594 if (isbanked) {
9595 /*
9596 * Register is banked (using both entries in array).
9597 * Overwriting fieldoffset as the array is only used to define
9598 * banked registers but later only fieldoffset is used.
9599 */
9600 r2->fieldoffset = r->bank_fieldoffsets[ns];
9601 }
9602 if (state == ARM_CP_STATE_AA32) {
9603 if (isbanked) {
9604 /*
9605 * If the register is banked then we don't need to migrate or
9606 * reset the 32-bit instance in certain cases:
9607 *
9608 * 1) If the register has both 32-bit and 64-bit instances
9609 * then we can count on the 64-bit instance taking care
9610 * of the non-secure bank.
9611 * 2) If ARMv8 is enabled then we can count on a 64-bit
9612 * version taking care of the secure bank. This requires
9613 * that separate 32 and 64-bit definitions are provided.
9614 */
9615 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9616 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9617 r2->type |= ARM_CP_ALIAS;
9618 }
9619 } else if ((secstate != r->secure) && !ns) {
9620 /*
9621 * The register is not banked so we only want to allow
9622 * migration of the non-secure instance.
9623 */
9624 r2->type |= ARM_CP_ALIAS;
9625 }
9626
9627 if (HOST_BIG_ENDIAN &&
9628 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9629 r2->fieldoffset += sizeof(uint32_t);
9630 }
9631 }
9632 }
9633
9634 /*
9635 * By convention, for wildcarded registers only the first
9636 * entry is used for migration; the others are marked as
9637 * ALIAS so we don't try to transfer the register
9638 * multiple times. Special registers (ie NOP/WFI) are
9639 * never migratable and not even raw-accessible.
9640 */
9641 if (r2->type & ARM_CP_SPECIAL_MASK) {
9642 r2->type |= ARM_CP_NO_RAW;
9643 }
9644 if (((r->crm == CP_ANY) && crm != 0) ||
9645 ((r->opc1 == CP_ANY) && opc1 != 0) ||
9646 ((r->opc2 == CP_ANY) && opc2 != 0)) {
9647 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9648 }
9649
9650 /*
9651 * Check that raw accesses are either forbidden or handled. Note that
9652 * we can't assert this earlier because the setup of fieldoffset for
9653 * banked registers has to be done first.
9654 */
9655 if (!(r2->type & ARM_CP_NO_RAW)) {
9656 assert(!raw_accessors_invalid(r2));
9657 }
9658
9659 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9660 }
9661
9662
9663 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9664 const ARMCPRegInfo *r, void *opaque)
9665 {
9666 /*
9667 * Define implementations of coprocessor registers.
9668 * We store these in a hashtable because typically
9669 * there are less than 150 registers in a space which
9670 * is 16*16*16*8*8 = 262144 in size.
9671 * Wildcarding is supported for the crm, opc1 and opc2 fields.
9672 * If a register is defined twice then the second definition is
9673 * used, so this can be used to define some generic registers and
9674 * then override them with implementation specific variations.
9675 * At least one of the original and the second definition should
9676 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9677 * against accidental use.
9678 *
9679 * The state field defines whether the register is to be
9680 * visible in the AArch32 or AArch64 execution state. If the
9681 * state is set to ARM_CP_STATE_BOTH then we synthesise a
9682 * reginfo structure for the AArch32 view, which sees the lower
9683 * 32 bits of the 64 bit register.
9684 *
9685 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9686 * be wildcarded. AArch64 registers are always considered to be 64
9687 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9688 * the register, if any.
9689 */
9690 int crm, opc1, opc2;
9691 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9692 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9693 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9694 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9695 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9696 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9697 CPState state;
9698
9699 /* 64 bit registers have only CRm and Opc1 fields */
9700 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9701 /* op0 only exists in the AArch64 encodings */
9702 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9703 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9704 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9705 /*
9706 * This API is only for Arm's system coprocessors (14 and 15) or
9707 * (M-profile or v7A-and-earlier only) for implementation defined
9708 * coprocessors in the range 0..7. Our decode assumes this, since
9709 * 8..13 can be used for other insns including VFP and Neon. See
9710 * valid_cp() in translate.c. Assert here that we haven't tried
9711 * to use an invalid coprocessor number.
9712 */
9713 switch (r->state) {
9714 case ARM_CP_STATE_BOTH:
9715 /* 0 has a special meaning, but otherwise the same rules as AA32. */
9716 if (r->cp == 0) {
9717 break;
9718 }
9719 /* fall through */
9720 case ARM_CP_STATE_AA32:
9721 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9722 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9723 assert(r->cp >= 14 && r->cp <= 15);
9724 } else {
9725 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9726 }
9727 break;
9728 case ARM_CP_STATE_AA64:
9729 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9730 break;
9731 default:
9732 g_assert_not_reached();
9733 }
9734 /*
9735 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9736 * encodes a minimum access level for the register. We roll this
9737 * runtime check into our general permission check code, so check
9738 * here that the reginfo's specified permissions are strict enough
9739 * to encompass the generic architectural permission check.
9740 */
9741 if (r->state != ARM_CP_STATE_AA32) {
9742 CPAccessRights mask;
9743 switch (r->opc1) {
9744 case 0:
9745 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9746 mask = PL0U_R | PL1_RW;
9747 break;
9748 case 1: case 2:
9749 /* min_EL EL1 */
9750 mask = PL1_RW;
9751 break;
9752 case 3:
9753 /* min_EL EL0 */
9754 mask = PL0_RW;
9755 break;
9756 case 4:
9757 case 5:
9758 /* min_EL EL2 */
9759 mask = PL2_RW;
9760 break;
9761 case 6:
9762 /* min_EL EL3 */
9763 mask = PL3_RW;
9764 break;
9765 case 7:
9766 /* min_EL EL1, secure mode only (we don't check the latter) */
9767 mask = PL1_RW;
9768 break;
9769 default:
9770 /* broken reginfo with out-of-range opc1 */
9771 g_assert_not_reached();
9772 }
9773 /* assert our permissions are not too lax (stricter is fine) */
9774 assert((r->access & ~mask) == 0);
9775 }
9776
9777 /*
9778 * Check that the register definition has enough info to handle
9779 * reads and writes if they are permitted.
9780 */
9781 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9782 if (r->access & PL3_R) {
9783 assert((r->fieldoffset ||
9784 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9785 r->readfn);
9786 }
9787 if (r->access & PL3_W) {
9788 assert((r->fieldoffset ||
9789 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9790 r->writefn);
9791 }
9792 }
9793
9794 for (crm = crmmin; crm <= crmmax; crm++) {
9795 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9796 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9797 for (state = ARM_CP_STATE_AA32;
9798 state <= ARM_CP_STATE_AA64; state++) {
9799 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9800 continue;
9801 }
9802 if (state == ARM_CP_STATE_AA32) {
9803 /*
9804 * Under AArch32 CP registers can be common
9805 * (same for secure and non-secure world) or banked.
9806 */
9807 char *name;
9808
9809 switch (r->secure) {
9810 case ARM_CP_SECSTATE_S:
9811 case ARM_CP_SECSTATE_NS:
9812 add_cpreg_to_hashtable(cpu, r, opaque, state,
9813 r->secure, crm, opc1, opc2,
9814 r->name);
9815 break;
9816 case ARM_CP_SECSTATE_BOTH:
9817 name = g_strdup_printf("%s_S", r->name);
9818 add_cpreg_to_hashtable(cpu, r, opaque, state,
9819 ARM_CP_SECSTATE_S,
9820 crm, opc1, opc2, name);
9821 g_free(name);
9822 add_cpreg_to_hashtable(cpu, r, opaque, state,
9823 ARM_CP_SECSTATE_NS,
9824 crm, opc1, opc2, r->name);
9825 break;
9826 default:
9827 g_assert_not_reached();
9828 }
9829 } else {
9830 /*
9831 * AArch64 registers get mapped to non-secure instance
9832 * of AArch32
9833 */
9834 add_cpreg_to_hashtable(cpu, r, opaque, state,
9835 ARM_CP_SECSTATE_NS,
9836 crm, opc1, opc2, r->name);
9837 }
9838 }
9839 }
9840 }
9841 }
9842 }
9843
9844 /* Define a whole list of registers */
9845 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9846 void *opaque, size_t len)
9847 {
9848 size_t i;
9849 for (i = 0; i < len; ++i) {
9850 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9851 }
9852 }
9853
9854 /*
9855 * Modify ARMCPRegInfo for access from userspace.
9856 *
9857 * This is a data driven modification directed by
9858 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9859 * user-space cannot alter any values and dynamic values pertaining to
9860 * execution state are hidden from user space view anyway.
9861 */
9862 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9863 const ARMCPRegUserSpaceInfo *mods,
9864 size_t mods_len)
9865 {
9866 for (size_t mi = 0; mi < mods_len; ++mi) {
9867 const ARMCPRegUserSpaceInfo *m = mods + mi;
9868 GPatternSpec *pat = NULL;
9869
9870 if (m->is_glob) {
9871 pat = g_pattern_spec_new(m->name);
9872 }
9873 for (size_t ri = 0; ri < regs_len; ++ri) {
9874 ARMCPRegInfo *r = regs + ri;
9875
9876 if (pat && g_pattern_match_string(pat, r->name)) {
9877 r->type = ARM_CP_CONST;
9878 r->access = PL0U_R;
9879 r->resetvalue = 0;
9880 /* continue */
9881 } else if (strcmp(r->name, m->name) == 0) {
9882 r->type = ARM_CP_CONST;
9883 r->access = PL0U_R;
9884 r->resetvalue &= m->exported_bits;
9885 r->resetvalue |= m->fixed_bits;
9886 break;
9887 }
9888 }
9889 if (pat) {
9890 g_pattern_spec_free(pat);
9891 }
9892 }
9893 }
9894
9895 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9896 {
9897 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9898 }
9899
9900 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9901 uint64_t value)
9902 {
9903 /* Helper coprocessor write function for write-ignore registers */
9904 }
9905
9906 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9907 {
9908 /* Helper coprocessor write function for read-as-zero registers */
9909 return 0;
9910 }
9911
9912 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9913 {
9914 /* Helper coprocessor reset function for do-nothing-on-reset registers */
9915 }
9916
9917 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9918 {
9919 /*
9920 * Return true if it is not valid for us to switch to
9921 * this CPU mode (ie all the UNPREDICTABLE cases in
9922 * the ARM ARM CPSRWriteByInstr pseudocode).
9923 */
9924
9925 /* Changes to or from Hyp via MSR and CPS are illegal. */
9926 if (write_type == CPSRWriteByInstr &&
9927 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9928 mode == ARM_CPU_MODE_HYP)) {
9929 return 1;
9930 }
9931
9932 switch (mode) {
9933 case ARM_CPU_MODE_USR:
9934 return 0;
9935 case ARM_CPU_MODE_SYS:
9936 case ARM_CPU_MODE_SVC:
9937 case ARM_CPU_MODE_ABT:
9938 case ARM_CPU_MODE_UND:
9939 case ARM_CPU_MODE_IRQ:
9940 case ARM_CPU_MODE_FIQ:
9941 /*
9942 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9943 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9944 */
9945 /*
9946 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9947 * and CPS are treated as illegal mode changes.
9948 */
9949 if (write_type == CPSRWriteByInstr &&
9950 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9951 (arm_hcr_el2_eff(env) & HCR_TGE)) {
9952 return 1;
9953 }
9954 return 0;
9955 case ARM_CPU_MODE_HYP:
9956 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9957 case ARM_CPU_MODE_MON:
9958 return arm_current_el(env) < 3;
9959 default:
9960 return 1;
9961 }
9962 }
9963
9964 uint32_t cpsr_read(CPUARMState *env)
9965 {
9966 int ZF;
9967 ZF = (env->ZF == 0);
9968 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9969 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9970 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9971 | ((env->condexec_bits & 0xfc) << 8)
9972 | (env->GE << 16) | (env->daif & CPSR_AIF);
9973 }
9974
9975 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9976 CPSRWriteType write_type)
9977 {
9978 uint32_t changed_daif;
9979 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9980 (mask & (CPSR_M | CPSR_E | CPSR_IL));
9981
9982 if (mask & CPSR_NZCV) {
9983 env->ZF = (~val) & CPSR_Z;
9984 env->NF = val;
9985 env->CF = (val >> 29) & 1;
9986 env->VF = (val << 3) & 0x80000000;
9987 }
9988 if (mask & CPSR_Q) {
9989 env->QF = ((val & CPSR_Q) != 0);
9990 }
9991 if (mask & CPSR_T) {
9992 env->thumb = ((val & CPSR_T) != 0);
9993 }
9994 if (mask & CPSR_IT_0_1) {
9995 env->condexec_bits &= ~3;
9996 env->condexec_bits |= (val >> 25) & 3;
9997 }
9998 if (mask & CPSR_IT_2_7) {
9999 env->condexec_bits &= 3;
10000 env->condexec_bits |= (val >> 8) & 0xfc;
10001 }
10002 if (mask & CPSR_GE) {
10003 env->GE = (val >> 16) & 0xf;
10004 }
10005
10006 /*
10007 * In a V7 implementation that includes the security extensions but does
10008 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10009 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10010 * bits respectively.
10011 *
10012 * In a V8 implementation, it is permitted for privileged software to
10013 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10014 */
10015 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10016 arm_feature(env, ARM_FEATURE_EL3) &&
10017 !arm_feature(env, ARM_FEATURE_EL2) &&
10018 !arm_is_secure(env)) {
10019
10020 changed_daif = (env->daif ^ val) & mask;
10021
10022 if (changed_daif & CPSR_A) {
10023 /*
10024 * Check to see if we are allowed to change the masking of async
10025 * abort exceptions from a non-secure state.
10026 */
10027 if (!(env->cp15.scr_el3 & SCR_AW)) {
10028 qemu_log_mask(LOG_GUEST_ERROR,
10029 "Ignoring attempt to switch CPSR_A flag from "
10030 "non-secure world with SCR.AW bit clear\n");
10031 mask &= ~CPSR_A;
10032 }
10033 }
10034
10035 if (changed_daif & CPSR_F) {
10036 /*
10037 * Check to see if we are allowed to change the masking of FIQ
10038 * exceptions from a non-secure state.
10039 */
10040 if (!(env->cp15.scr_el3 & SCR_FW)) {
10041 qemu_log_mask(LOG_GUEST_ERROR,
10042 "Ignoring attempt to switch CPSR_F flag from "
10043 "non-secure world with SCR.FW bit clear\n");
10044 mask &= ~CPSR_F;
10045 }
10046
10047 /*
10048 * Check whether non-maskable FIQ (NMFI) support is enabled.
10049 * If this bit is set software is not allowed to mask
10050 * FIQs, but is allowed to set CPSR_F to 0.
10051 */
10052 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10053 (val & CPSR_F)) {
10054 qemu_log_mask(LOG_GUEST_ERROR,
10055 "Ignoring attempt to enable CPSR_F flag "
10056 "(non-maskable FIQ [NMFI] support enabled)\n");
10057 mask &= ~CPSR_F;
10058 }
10059 }
10060 }
10061
10062 env->daif &= ~(CPSR_AIF & mask);
10063 env->daif |= val & CPSR_AIF & mask;
10064
10065 if (write_type != CPSRWriteRaw &&
10066 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10067 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10068 /*
10069 * Note that we can only get here in USR mode if this is a
10070 * gdb stub write; for this case we follow the architectural
10071 * behaviour for guest writes in USR mode of ignoring an attempt
10072 * to switch mode. (Those are caught by translate.c for writes
10073 * triggered by guest instructions.)
10074 */
10075 mask &= ~CPSR_M;
10076 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10077 /*
10078 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10079 * v7, and has defined behaviour in v8:
10080 * + leave CPSR.M untouched
10081 * + allow changes to the other CPSR fields
10082 * + set PSTATE.IL
10083 * For user changes via the GDB stub, we don't set PSTATE.IL,
10084 * as this would be unnecessarily harsh for a user error.
10085 */
10086 mask &= ~CPSR_M;
10087 if (write_type != CPSRWriteByGDBStub &&
10088 arm_feature(env, ARM_FEATURE_V8)) {
10089 mask |= CPSR_IL;
10090 val |= CPSR_IL;
10091 }
10092 qemu_log_mask(LOG_GUEST_ERROR,
10093 "Illegal AArch32 mode switch attempt from %s to %s\n",
10094 aarch32_mode_name(env->uncached_cpsr),
10095 aarch32_mode_name(val));
10096 } else {
10097 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10098 write_type == CPSRWriteExceptionReturn ?
10099 "Exception return from AArch32" :
10100 "AArch32 mode switch from",
10101 aarch32_mode_name(env->uncached_cpsr),
10102 aarch32_mode_name(val), env->regs[15]);
10103 switch_mode(env, val & CPSR_M);
10104 }
10105 }
10106 mask &= ~CACHED_CPSR_BITS;
10107 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10108 if (tcg_enabled() && rebuild_hflags) {
10109 arm_rebuild_hflags(env);
10110 }
10111 }
10112
10113 /* Sign/zero extend */
10114 uint32_t HELPER(sxtb16)(uint32_t x)
10115 {
10116 uint32_t res;
10117 res = (uint16_t)(int8_t)x;
10118 res |= (uint32_t)(int8_t)(x >> 16) << 16;
10119 return res;
10120 }
10121
10122 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
10123 {
10124 /*
10125 * Take a division-by-zero exception if necessary; otherwise return
10126 * to get the usual non-trapping division behaviour (result of 0)
10127 */
10128 if (arm_feature(env, ARM_FEATURE_M)
10129 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
10130 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
10131 }
10132 }
10133
10134 uint32_t HELPER(uxtb16)(uint32_t x)
10135 {
10136 uint32_t res;
10137 res = (uint16_t)(uint8_t)x;
10138 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
10139 return res;
10140 }
10141
10142 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
10143 {
10144 if (den == 0) {
10145 handle_possible_div0_trap(env, GETPC());
10146 return 0;
10147 }
10148 if (num == INT_MIN && den == -1) {
10149 return INT_MIN;
10150 }
10151 return num / den;
10152 }
10153
10154 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
10155 {
10156 if (den == 0) {
10157 handle_possible_div0_trap(env, GETPC());
10158 return 0;
10159 }
10160 return num / den;
10161 }
10162
10163 uint32_t HELPER(rbit)(uint32_t x)
10164 {
10165 return revbit32(x);
10166 }
10167
10168 #ifdef CONFIG_USER_ONLY
10169
10170 static void switch_mode(CPUARMState *env, int mode)
10171 {
10172 ARMCPU *cpu = env_archcpu(env);
10173
10174 if (mode != ARM_CPU_MODE_USR) {
10175 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10176 }
10177 }
10178
10179 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10180 uint32_t cur_el, bool secure)
10181 {
10182 return 1;
10183 }
10184
10185 void aarch64_sync_64_to_32(CPUARMState *env)
10186 {
10187 g_assert_not_reached();
10188 }
10189
10190 #else
10191
10192 static void switch_mode(CPUARMState *env, int mode)
10193 {
10194 int old_mode;
10195 int i;
10196
10197 old_mode = env->uncached_cpsr & CPSR_M;
10198 if (mode == old_mode) {
10199 return;
10200 }
10201
10202 if (old_mode == ARM_CPU_MODE_FIQ) {
10203 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10204 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10205 } else if (mode == ARM_CPU_MODE_FIQ) {
10206 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10207 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10208 }
10209
10210 i = bank_number(old_mode);
10211 env->banked_r13[i] = env->regs[13];
10212 env->banked_spsr[i] = env->spsr;
10213
10214 i = bank_number(mode);
10215 env->regs[13] = env->banked_r13[i];
10216 env->spsr = env->banked_spsr[i];
10217
10218 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10219 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10220 }
10221
10222 /*
10223 * Physical Interrupt Target EL Lookup Table
10224 *
10225 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10226 *
10227 * The below multi-dimensional table is used for looking up the target
10228 * exception level given numerous condition criteria. Specifically, the
10229 * target EL is based on SCR and HCR routing controls as well as the
10230 * currently executing EL and secure state.
10231 *
10232 * Dimensions:
10233 * target_el_table[2][2][2][2][2][4]
10234 * | | | | | +--- Current EL
10235 * | | | | +------ Non-secure(0)/Secure(1)
10236 * | | | +--------- HCR mask override
10237 * | | +------------ SCR exec state control
10238 * | +--------------- SCR mask override
10239 * +------------------ 32-bit(0)/64-bit(1) EL3
10240 *
10241 * The table values are as such:
10242 * 0-3 = EL0-EL3
10243 * -1 = Cannot occur
10244 *
10245 * The ARM ARM target EL table includes entries indicating that an "exception
10246 * is not taken". The two cases where this is applicable are:
10247 * 1) An exception is taken from EL3 but the SCR does not have the exception
10248 * routed to EL3.
10249 * 2) An exception is taken from EL2 but the HCR does not have the exception
10250 * routed to EL2.
10251 * In these two cases, the below table contain a target of EL1. This value is
10252 * returned as it is expected that the consumer of the table data will check
10253 * for "target EL >= current EL" to ensure the exception is not taken.
10254 *
10255 * SCR HCR
10256 * 64 EA AMO From
10257 * BIT IRQ IMO Non-secure Secure
10258 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10259 */
10260 static const int8_t target_el_table[2][2][2][2][2][4] = {
10261 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10262 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10263 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10264 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10265 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10266 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10267 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10268 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10269 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
10270 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10271 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10272 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10273 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10274 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10275 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10276 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10277 };
10278
10279 /*
10280 * Determine the target EL for physical exceptions
10281 */
10282 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10283 uint32_t cur_el, bool secure)
10284 {
10285 CPUARMState *env = cpu_env(cs);
10286 bool rw;
10287 bool scr;
10288 bool hcr;
10289 int target_el;
10290 /* Is the highest EL AArch64? */
10291 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10292 uint64_t hcr_el2;
10293
10294 if (arm_feature(env, ARM_FEATURE_EL3)) {
10295 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10296 } else {
10297 /*
10298 * Either EL2 is the highest EL (and so the EL2 register width
10299 * is given by is64); or there is no EL2 or EL3, in which case
10300 * the value of 'rw' does not affect the table lookup anyway.
10301 */
10302 rw = is64;
10303 }
10304
10305 hcr_el2 = arm_hcr_el2_eff(env);
10306 switch (excp_idx) {
10307 case EXCP_IRQ:
10308 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10309 hcr = hcr_el2 & HCR_IMO;
10310 break;
10311 case EXCP_FIQ:
10312 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10313 hcr = hcr_el2 & HCR_FMO;
10314 break;
10315 default:
10316 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10317 hcr = hcr_el2 & HCR_AMO;
10318 break;
10319 };
10320
10321 /*
10322 * For these purposes, TGE and AMO/IMO/FMO both force the
10323 * interrupt to EL2. Fold TGE into the bit extracted above.
10324 */
10325 hcr |= (hcr_el2 & HCR_TGE) != 0;
10326
10327 /* Perform a table-lookup for the target EL given the current state */
10328 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10329
10330 assert(target_el > 0);
10331
10332 return target_el;
10333 }
10334
10335 void arm_log_exception(CPUState *cs)
10336 {
10337 int idx = cs->exception_index;
10338
10339 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10340 const char *exc = NULL;
10341 static const char * const excnames[] = {
10342 [EXCP_UDEF] = "Undefined Instruction",
10343 [EXCP_SWI] = "SVC",
10344 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10345 [EXCP_DATA_ABORT] = "Data Abort",
10346 [EXCP_IRQ] = "IRQ",
10347 [EXCP_FIQ] = "FIQ",
10348 [EXCP_BKPT] = "Breakpoint",
10349 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10350 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10351 [EXCP_HVC] = "Hypervisor Call",
10352 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10353 [EXCP_SMC] = "Secure Monitor Call",
10354 [EXCP_VIRQ] = "Virtual IRQ",
10355 [EXCP_VFIQ] = "Virtual FIQ",
10356 [EXCP_SEMIHOST] = "Semihosting call",
10357 [EXCP_NOCP] = "v7M NOCP UsageFault",
10358 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10359 [EXCP_STKOF] = "v8M STKOF UsageFault",
10360 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10361 [EXCP_LSERR] = "v8M LSERR UsageFault",
10362 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10363 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10364 [EXCP_VSERR] = "Virtual SERR",
10365 [EXCP_GPC] = "Granule Protection Check",
10366 };
10367
10368 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10369 exc = excnames[idx];
10370 }
10371 if (!exc) {
10372 exc = "unknown";
10373 }
10374 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10375 idx, exc, cs->cpu_index);
10376 }
10377 }
10378
10379 /*
10380 * Function used to synchronize QEMU's AArch64 register set with AArch32
10381 * register set. This is necessary when switching between AArch32 and AArch64
10382 * execution state.
10383 */
10384 void aarch64_sync_32_to_64(CPUARMState *env)
10385 {
10386 int i;
10387 uint32_t mode = env->uncached_cpsr & CPSR_M;
10388
10389 /* We can blanket copy R[0:7] to X[0:7] */
10390 for (i = 0; i < 8; i++) {
10391 env->xregs[i] = env->regs[i];
10392 }
10393
10394 /*
10395 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10396 * Otherwise, they come from the banked user regs.
10397 */
10398 if (mode == ARM_CPU_MODE_FIQ) {
10399 for (i = 8; i < 13; i++) {
10400 env->xregs[i] = env->usr_regs[i - 8];
10401 }
10402 } else {
10403 for (i = 8; i < 13; i++) {
10404 env->xregs[i] = env->regs[i];
10405 }
10406 }
10407
10408 /*
10409 * Registers x13-x23 are the various mode SP and FP registers. Registers
10410 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10411 * from the mode banked register.
10412 */
10413 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10414 env->xregs[13] = env->regs[13];
10415 env->xregs[14] = env->regs[14];
10416 } else {
10417 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10418 /* HYP is an exception in that it is copied from r14 */
10419 if (mode == ARM_CPU_MODE_HYP) {
10420 env->xregs[14] = env->regs[14];
10421 } else {
10422 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10423 }
10424 }
10425
10426 if (mode == ARM_CPU_MODE_HYP) {
10427 env->xregs[15] = env->regs[13];
10428 } else {
10429 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10430 }
10431
10432 if (mode == ARM_CPU_MODE_IRQ) {
10433 env->xregs[16] = env->regs[14];
10434 env->xregs[17] = env->regs[13];
10435 } else {
10436 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10437 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10438 }
10439
10440 if (mode == ARM_CPU_MODE_SVC) {
10441 env->xregs[18] = env->regs[14];
10442 env->xregs[19] = env->regs[13];
10443 } else {
10444 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10445 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10446 }
10447
10448 if (mode == ARM_CPU_MODE_ABT) {
10449 env->xregs[20] = env->regs[14];
10450 env->xregs[21] = env->regs[13];
10451 } else {
10452 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10453 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10454 }
10455
10456 if (mode == ARM_CPU_MODE_UND) {
10457 env->xregs[22] = env->regs[14];
10458 env->xregs[23] = env->regs[13];
10459 } else {
10460 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10461 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10462 }
10463
10464 /*
10465 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10466 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10467 * FIQ bank for r8-r14.
10468 */
10469 if (mode == ARM_CPU_MODE_FIQ) {
10470 for (i = 24; i < 31; i++) {
10471 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10472 }
10473 } else {
10474 for (i = 24; i < 29; i++) {
10475 env->xregs[i] = env->fiq_regs[i - 24];
10476 }
10477 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10478 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10479 }
10480
10481 env->pc = env->regs[15];
10482 }
10483
10484 /*
10485 * Function used to synchronize QEMU's AArch32 register set with AArch64
10486 * register set. This is necessary when switching between AArch32 and AArch64
10487 * execution state.
10488 */
10489 void aarch64_sync_64_to_32(CPUARMState *env)
10490 {
10491 int i;
10492 uint32_t mode = env->uncached_cpsr & CPSR_M;
10493
10494 /* We can blanket copy X[0:7] to R[0:7] */
10495 for (i = 0; i < 8; i++) {
10496 env->regs[i] = env->xregs[i];
10497 }
10498
10499 /*
10500 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10501 * Otherwise, we copy x8-x12 into the banked user regs.
10502 */
10503 if (mode == ARM_CPU_MODE_FIQ) {
10504 for (i = 8; i < 13; i++) {
10505 env->usr_regs[i - 8] = env->xregs[i];
10506 }
10507 } else {
10508 for (i = 8; i < 13; i++) {
10509 env->regs[i] = env->xregs[i];
10510 }
10511 }
10512
10513 /*
10514 * Registers r13 & r14 depend on the current mode.
10515 * If we are in a given mode, we copy the corresponding x registers to r13
10516 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10517 * for the mode.
10518 */
10519 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10520 env->regs[13] = env->xregs[13];
10521 env->regs[14] = env->xregs[14];
10522 } else {
10523 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10524
10525 /*
10526 * HYP is an exception in that it does not have its own banked r14 but
10527 * shares the USR r14
10528 */
10529 if (mode == ARM_CPU_MODE_HYP) {
10530 env->regs[14] = env->xregs[14];
10531 } else {
10532 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10533 }
10534 }
10535
10536 if (mode == ARM_CPU_MODE_HYP) {
10537 env->regs[13] = env->xregs[15];
10538 } else {
10539 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10540 }
10541
10542 if (mode == ARM_CPU_MODE_IRQ) {
10543 env->regs[14] = env->xregs[16];
10544 env->regs[13] = env->xregs[17];
10545 } else {
10546 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10547 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10548 }
10549
10550 if (mode == ARM_CPU_MODE_SVC) {
10551 env->regs[14] = env->xregs[18];
10552 env->regs[13] = env->xregs[19];
10553 } else {
10554 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10555 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10556 }
10557
10558 if (mode == ARM_CPU_MODE_ABT) {
10559 env->regs[14] = env->xregs[20];
10560 env->regs[13] = env->xregs[21];
10561 } else {
10562 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10563 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10564 }
10565
10566 if (mode == ARM_CPU_MODE_UND) {
10567 env->regs[14] = env->xregs[22];
10568 env->regs[13] = env->xregs[23];
10569 } else {
10570 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10571 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10572 }
10573
10574 /*
10575 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10576 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10577 * FIQ bank for r8-r14.
10578 */
10579 if (mode == ARM_CPU_MODE_FIQ) {
10580 for (i = 24; i < 31; i++) {
10581 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10582 }
10583 } else {
10584 for (i = 24; i < 29; i++) {
10585 env->fiq_regs[i - 24] = env->xregs[i];
10586 }
10587 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10588 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10589 }
10590
10591 env->regs[15] = env->pc;
10592 }
10593
10594 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10595 uint32_t mask, uint32_t offset,
10596 uint32_t newpc)
10597 {
10598 int new_el;
10599
10600 /* Change the CPU state so as to actually take the exception. */
10601 switch_mode(env, new_mode);
10602
10603 /*
10604 * For exceptions taken to AArch32 we must clear the SS bit in both
10605 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10606 */
10607 env->pstate &= ~PSTATE_SS;
10608 env->spsr = cpsr_read(env);
10609 /* Clear IT bits. */
10610 env->condexec_bits = 0;
10611 /* Switch to the new mode, and to the correct instruction set. */
10612 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10613
10614 /* This must be after mode switching. */
10615 new_el = arm_current_el(env);
10616
10617 /* Set new mode endianness */
10618 env->uncached_cpsr &= ~CPSR_E;
10619 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10620 env->uncached_cpsr |= CPSR_E;
10621 }
10622 /* J and IL must always be cleared for exception entry */
10623 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10624 env->daif |= mask;
10625
10626 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10627 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10628 env->uncached_cpsr |= CPSR_SSBS;
10629 } else {
10630 env->uncached_cpsr &= ~CPSR_SSBS;
10631 }
10632 }
10633
10634 if (new_mode == ARM_CPU_MODE_HYP) {
10635 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10636 env->elr_el[2] = env->regs[15];
10637 } else {
10638 /* CPSR.PAN is normally preserved preserved unless... */
10639 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10640 switch (new_el) {
10641 case 3:
10642 if (!arm_is_secure_below_el3(env)) {
10643 /* ... the target is EL3, from non-secure state. */
10644 env->uncached_cpsr &= ~CPSR_PAN;
10645 break;
10646 }
10647 /* ... the target is EL3, from secure state ... */
10648 /* fall through */
10649 case 1:
10650 /* ... the target is EL1 and SCTLR.SPAN is 0. */
10651 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10652 env->uncached_cpsr |= CPSR_PAN;
10653 }
10654 break;
10655 }
10656 }
10657 /*
10658 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10659 * and we should just guard the thumb mode on V4
10660 */
10661 if (arm_feature(env, ARM_FEATURE_V4T)) {
10662 env->thumb =
10663 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10664 }
10665 env->regs[14] = env->regs[15] + offset;
10666 }
10667 env->regs[15] = newpc;
10668
10669 if (tcg_enabled()) {
10670 arm_rebuild_hflags(env);
10671 }
10672 }
10673
10674 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10675 {
10676 /*
10677 * Handle exception entry to Hyp mode; this is sufficiently
10678 * different to entry to other AArch32 modes that we handle it
10679 * separately here.
10680 *
10681 * The vector table entry used is always the 0x14 Hyp mode entry point,
10682 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10683 * The offset applied to the preferred return address is always zero
10684 * (see DDI0487C.a section G1.12.3).
10685 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10686 */
10687 uint32_t addr, mask;
10688 ARMCPU *cpu = ARM_CPU(cs);
10689 CPUARMState *env = &cpu->env;
10690
10691 switch (cs->exception_index) {
10692 case EXCP_UDEF:
10693 addr = 0x04;
10694 break;
10695 case EXCP_SWI:
10696 addr = 0x08;
10697 break;
10698 case EXCP_BKPT:
10699 /* Fall through to prefetch abort. */
10700 case EXCP_PREFETCH_ABORT:
10701 env->cp15.ifar_s = env->exception.vaddress;
10702 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10703 (uint32_t)env->exception.vaddress);
10704 addr = 0x0c;
10705 break;
10706 case EXCP_DATA_ABORT:
10707 env->cp15.dfar_s = env->exception.vaddress;
10708 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10709 (uint32_t)env->exception.vaddress);
10710 addr = 0x10;
10711 break;
10712 case EXCP_IRQ:
10713 addr = 0x18;
10714 break;
10715 case EXCP_FIQ:
10716 addr = 0x1c;
10717 break;
10718 case EXCP_HVC:
10719 addr = 0x08;
10720 break;
10721 case EXCP_HYP_TRAP:
10722 addr = 0x14;
10723 break;
10724 default:
10725 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10726 }
10727
10728 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10729 if (!arm_feature(env, ARM_FEATURE_V8)) {
10730 /*
10731 * QEMU syndrome values are v8-style. v7 has the IL bit
10732 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10733 * If this is a v7 CPU, squash the IL bit in those cases.
10734 */
10735 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10736 (cs->exception_index == EXCP_DATA_ABORT &&
10737 !(env->exception.syndrome & ARM_EL_ISV)) ||
10738 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10739 env->exception.syndrome &= ~ARM_EL_IL;
10740 }
10741 }
10742 env->cp15.esr_el[2] = env->exception.syndrome;
10743 }
10744
10745 if (arm_current_el(env) != 2 && addr < 0x14) {
10746 addr = 0x14;
10747 }
10748
10749 mask = 0;
10750 if (!(env->cp15.scr_el3 & SCR_EA)) {
10751 mask |= CPSR_A;
10752 }
10753 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10754 mask |= CPSR_I;
10755 }
10756 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10757 mask |= CPSR_F;
10758 }
10759
10760 addr += env->cp15.hvbar;
10761
10762 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10763 }
10764
10765 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10766 {
10767 ARMCPU *cpu = ARM_CPU(cs);
10768 CPUARMState *env = &cpu->env;
10769 uint32_t addr;
10770 uint32_t mask;
10771 int new_mode;
10772 uint32_t offset;
10773 uint32_t moe;
10774
10775 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10776 switch (syn_get_ec(env->exception.syndrome)) {
10777 case EC_BREAKPOINT:
10778 case EC_BREAKPOINT_SAME_EL:
10779 moe = 1;
10780 break;
10781 case EC_WATCHPOINT:
10782 case EC_WATCHPOINT_SAME_EL:
10783 moe = 10;
10784 break;
10785 case EC_AA32_BKPT:
10786 moe = 3;
10787 break;
10788 case EC_VECTORCATCH:
10789 moe = 5;
10790 break;
10791 default:
10792 moe = 0;
10793 break;
10794 }
10795
10796 if (moe) {
10797 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10798 }
10799
10800 if (env->exception.target_el == 2) {
10801 arm_cpu_do_interrupt_aarch32_hyp(cs);
10802 return;
10803 }
10804
10805 switch (cs->exception_index) {
10806 case EXCP_UDEF:
10807 new_mode = ARM_CPU_MODE_UND;
10808 addr = 0x04;
10809 mask = CPSR_I;
10810 if (env->thumb) {
10811 offset = 2;
10812 } else {
10813 offset = 4;
10814 }
10815 break;
10816 case EXCP_SWI:
10817 new_mode = ARM_CPU_MODE_SVC;
10818 addr = 0x08;
10819 mask = CPSR_I;
10820 /* The PC already points to the next instruction. */
10821 offset = 0;
10822 break;
10823 case EXCP_BKPT:
10824 /* Fall through to prefetch abort. */
10825 case EXCP_PREFETCH_ABORT:
10826 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10827 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10828 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10829 env->exception.fsr, (uint32_t)env->exception.vaddress);
10830 new_mode = ARM_CPU_MODE_ABT;
10831 addr = 0x0c;
10832 mask = CPSR_A | CPSR_I;
10833 offset = 4;
10834 break;
10835 case EXCP_DATA_ABORT:
10836 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10837 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10838 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10839 env->exception.fsr,
10840 (uint32_t)env->exception.vaddress);
10841 new_mode = ARM_CPU_MODE_ABT;
10842 addr = 0x10;
10843 mask = CPSR_A | CPSR_I;
10844 offset = 8;
10845 break;
10846 case EXCP_IRQ:
10847 new_mode = ARM_CPU_MODE_IRQ;
10848 addr = 0x18;
10849 /* Disable IRQ and imprecise data aborts. */
10850 mask = CPSR_A | CPSR_I;
10851 offset = 4;
10852 if (env->cp15.scr_el3 & SCR_IRQ) {
10853 /* IRQ routed to monitor mode */
10854 new_mode = ARM_CPU_MODE_MON;
10855 mask |= CPSR_F;
10856 }
10857 break;
10858 case EXCP_FIQ:
10859 new_mode = ARM_CPU_MODE_FIQ;
10860 addr = 0x1c;
10861 /* Disable FIQ, IRQ and imprecise data aborts. */
10862 mask = CPSR_A | CPSR_I | CPSR_F;
10863 if (env->cp15.scr_el3 & SCR_FIQ) {
10864 /* FIQ routed to monitor mode */
10865 new_mode = ARM_CPU_MODE_MON;
10866 }
10867 offset = 4;
10868 break;
10869 case EXCP_VIRQ:
10870 new_mode = ARM_CPU_MODE_IRQ;
10871 addr = 0x18;
10872 /* Disable IRQ and imprecise data aborts. */
10873 mask = CPSR_A | CPSR_I;
10874 offset = 4;
10875 break;
10876 case EXCP_VFIQ:
10877 new_mode = ARM_CPU_MODE_FIQ;
10878 addr = 0x1c;
10879 /* Disable FIQ, IRQ and imprecise data aborts. */
10880 mask = CPSR_A | CPSR_I | CPSR_F;
10881 offset = 4;
10882 break;
10883 case EXCP_VSERR:
10884 {
10885 /*
10886 * Note that this is reported as a data abort, but the DFAR
10887 * has an UNKNOWN value. Construct the SError syndrome from
10888 * AET and ExT fields.
10889 */
10890 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10891
10892 if (extended_addresses_enabled(env)) {
10893 env->exception.fsr = arm_fi_to_lfsc(&fi);
10894 } else {
10895 env->exception.fsr = arm_fi_to_sfsc(&fi);
10896 }
10897 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10898 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10899 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10900 env->exception.fsr);
10901
10902 new_mode = ARM_CPU_MODE_ABT;
10903 addr = 0x10;
10904 mask = CPSR_A | CPSR_I;
10905 offset = 8;
10906 }
10907 break;
10908 case EXCP_SMC:
10909 new_mode = ARM_CPU_MODE_MON;
10910 addr = 0x08;
10911 mask = CPSR_A | CPSR_I | CPSR_F;
10912 offset = 0;
10913 break;
10914 default:
10915 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10916 return; /* Never happens. Keep compiler happy. */
10917 }
10918
10919 if (new_mode == ARM_CPU_MODE_MON) {
10920 addr += env->cp15.mvbar;
10921 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10922 /* High vectors. When enabled, base address cannot be remapped. */
10923 addr += 0xffff0000;
10924 } else {
10925 /*
10926 * ARM v7 architectures provide a vector base address register to remap
10927 * the interrupt vector table.
10928 * This register is only followed in non-monitor mode, and is banked.
10929 * Note: only bits 31:5 are valid.
10930 */
10931 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10932 }
10933
10934 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10935 env->cp15.scr_el3 &= ~SCR_NS;
10936 }
10937
10938 take_aarch32_exception(env, new_mode, mask, offset, addr);
10939 }
10940
10941 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10942 {
10943 /*
10944 * Return the register number of the AArch64 view of the AArch32
10945 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10946 * be that of the AArch32 mode the exception came from.
10947 */
10948 int mode = env->uncached_cpsr & CPSR_M;
10949
10950 switch (aarch32_reg) {
10951 case 0 ... 7:
10952 return aarch32_reg;
10953 case 8 ... 12:
10954 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10955 case 13:
10956 switch (mode) {
10957 case ARM_CPU_MODE_USR:
10958 case ARM_CPU_MODE_SYS:
10959 return 13;
10960 case ARM_CPU_MODE_HYP:
10961 return 15;
10962 case ARM_CPU_MODE_IRQ:
10963 return 17;
10964 case ARM_CPU_MODE_SVC:
10965 return 19;
10966 case ARM_CPU_MODE_ABT:
10967 return 21;
10968 case ARM_CPU_MODE_UND:
10969 return 23;
10970 case ARM_CPU_MODE_FIQ:
10971 return 29;
10972 default:
10973 g_assert_not_reached();
10974 }
10975 case 14:
10976 switch (mode) {
10977 case ARM_CPU_MODE_USR:
10978 case ARM_CPU_MODE_SYS:
10979 case ARM_CPU_MODE_HYP:
10980 return 14;
10981 case ARM_CPU_MODE_IRQ:
10982 return 16;
10983 case ARM_CPU_MODE_SVC:
10984 return 18;
10985 case ARM_CPU_MODE_ABT:
10986 return 20;
10987 case ARM_CPU_MODE_UND:
10988 return 22;
10989 case ARM_CPU_MODE_FIQ:
10990 return 30;
10991 default:
10992 g_assert_not_reached();
10993 }
10994 case 15:
10995 return 31;
10996 default:
10997 g_assert_not_reached();
10998 }
10999 }
11000
11001 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11002 {
11003 uint32_t ret = cpsr_read(env);
11004
11005 /* Move DIT to the correct location for SPSR_ELx */
11006 if (ret & CPSR_DIT) {
11007 ret &= ~CPSR_DIT;
11008 ret |= PSTATE_DIT;
11009 }
11010 /* Merge PSTATE.SS into SPSR_ELx */
11011 ret |= env->pstate & PSTATE_SS;
11012
11013 return ret;
11014 }
11015
11016 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11017 {
11018 /* Return true if this syndrome value is a synchronous external abort */
11019 switch (syn_get_ec(syndrome)) {
11020 case EC_INSNABORT:
11021 case EC_INSNABORT_SAME_EL:
11022 case EC_DATAABORT:
11023 case EC_DATAABORT_SAME_EL:
11024 /* Look at fault status code for all the synchronous ext abort cases */
11025 switch (syndrome & 0x3f) {
11026 case 0x10:
11027 case 0x13:
11028 case 0x14:
11029 case 0x15:
11030 case 0x16:
11031 case 0x17:
11032 return true;
11033 default:
11034 return false;
11035 }
11036 default:
11037 return false;
11038 }
11039 }
11040
11041 /* Handle exception entry to a target EL which is using AArch64 */
11042 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11043 {
11044 ARMCPU *cpu = ARM_CPU(cs);
11045 CPUARMState *env = &cpu->env;
11046 unsigned int new_el = env->exception.target_el;
11047 target_ulong addr = env->cp15.vbar_el[new_el];
11048 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11049 unsigned int old_mode;
11050 unsigned int cur_el = arm_current_el(env);
11051 int rt;
11052
11053 if (tcg_enabled()) {
11054 /*
11055 * Note that new_el can never be 0. If cur_el is 0, then
11056 * el0_a64 is is_a64(), else el0_a64 is ignored.
11057 */
11058 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11059 }
11060
11061 if (cur_el < new_el) {
11062 /*
11063 * Entry vector offset depends on whether the implemented EL
11064 * immediately lower than the target level is using AArch32 or AArch64
11065 */
11066 bool is_aa64;
11067 uint64_t hcr;
11068
11069 switch (new_el) {
11070 case 3:
11071 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11072 break;
11073 case 2:
11074 hcr = arm_hcr_el2_eff(env);
11075 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11076 is_aa64 = (hcr & HCR_RW) != 0;
11077 break;
11078 }
11079 /* fall through */
11080 case 1:
11081 is_aa64 = is_a64(env);
11082 break;
11083 default:
11084 g_assert_not_reached();
11085 }
11086
11087 if (is_aa64) {
11088 addr += 0x400;
11089 } else {
11090 addr += 0x600;
11091 }
11092 } else if (pstate_read(env) & PSTATE_SP) {
11093 addr += 0x200;
11094 }
11095
11096 switch (cs->exception_index) {
11097 case EXCP_GPC:
11098 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11099 env->cp15.mfar_el3);
11100 /* fall through */
11101 case EXCP_PREFETCH_ABORT:
11102 case EXCP_DATA_ABORT:
11103 /*
11104 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11105 * to be taken to the SError vector entrypoint.
11106 */
11107 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11108 syndrome_is_sync_extabt(env->exception.syndrome)) {
11109 addr += 0x180;
11110 }
11111 env->cp15.far_el[new_el] = env->exception.vaddress;
11112 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11113 env->cp15.far_el[new_el]);
11114 /* fall through */
11115 case EXCP_BKPT:
11116 case EXCP_UDEF:
11117 case EXCP_SWI:
11118 case EXCP_HVC:
11119 case EXCP_HYP_TRAP:
11120 case EXCP_SMC:
11121 switch (syn_get_ec(env->exception.syndrome)) {
11122 case EC_ADVSIMDFPACCESSTRAP:
11123 /*
11124 * QEMU internal FP/SIMD syndromes from AArch32 include the
11125 * TA and coproc fields which are only exposed if the exception
11126 * is taken to AArch32 Hyp mode. Mask them out to get a valid
11127 * AArch64 format syndrome.
11128 */
11129 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11130 break;
11131 case EC_CP14RTTRAP:
11132 case EC_CP15RTTRAP:
11133 case EC_CP14DTTRAP:
11134 /*
11135 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11136 * the raw register field from the insn; when taking this to
11137 * AArch64 we must convert it to the AArch64 view of the register
11138 * number. Notice that we read a 4-bit AArch32 register number and
11139 * write back a 5-bit AArch64 one.
11140 */
11141 rt = extract32(env->exception.syndrome, 5, 4);
11142 rt = aarch64_regnum(env, rt);
11143 env->exception.syndrome = deposit32(env->exception.syndrome,
11144 5, 5, rt);
11145 break;
11146 case EC_CP15RRTTRAP:
11147 case EC_CP14RRTTRAP:
11148 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11149 rt = extract32(env->exception.syndrome, 5, 4);
11150 rt = aarch64_regnum(env, rt);
11151 env->exception.syndrome = deposit32(env->exception.syndrome,
11152 5, 5, rt);
11153 rt = extract32(env->exception.syndrome, 10, 4);
11154 rt = aarch64_regnum(env, rt);
11155 env->exception.syndrome = deposit32(env->exception.syndrome,
11156 10, 5, rt);
11157 break;
11158 }
11159 env->cp15.esr_el[new_el] = env->exception.syndrome;
11160 break;
11161 case EXCP_IRQ:
11162 case EXCP_VIRQ:
11163 addr += 0x80;
11164 break;
11165 case EXCP_FIQ:
11166 case EXCP_VFIQ:
11167 addr += 0x100;
11168 break;
11169 case EXCP_VSERR:
11170 addr += 0x180;
11171 /* Construct the SError syndrome from IDS and ISS fields. */
11172 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11173 env->cp15.esr_el[new_el] = env->exception.syndrome;
11174 break;
11175 default:
11176 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11177 }
11178
11179 if (is_a64(env)) {
11180 old_mode = pstate_read(env);
11181 aarch64_save_sp(env, arm_current_el(env));
11182 env->elr_el[new_el] = env->pc;
11183 } else {
11184 old_mode = cpsr_read_for_spsr_elx(env);
11185 env->elr_el[new_el] = env->regs[15];
11186
11187 aarch64_sync_32_to_64(env);
11188
11189 env->condexec_bits = 0;
11190 }
11191 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11192
11193 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11194 env->elr_el[new_el]);
11195
11196 if (cpu_isar_feature(aa64_pan, cpu)) {
11197 /* The value of PSTATE.PAN is normally preserved, except when ... */
11198 new_mode |= old_mode & PSTATE_PAN;
11199 switch (new_el) {
11200 case 2:
11201 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11202 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11203 != (HCR_E2H | HCR_TGE)) {
11204 break;
11205 }
11206 /* fall through */
11207 case 1:
11208 /* ... the target is EL1 ... */
11209 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11210 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11211 new_mode |= PSTATE_PAN;
11212 }
11213 break;
11214 }
11215 }
11216 if (cpu_isar_feature(aa64_mte, cpu)) {
11217 new_mode |= PSTATE_TCO;
11218 }
11219
11220 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11221 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11222 new_mode |= PSTATE_SSBS;
11223 } else {
11224 new_mode &= ~PSTATE_SSBS;
11225 }
11226 }
11227
11228 pstate_write(env, PSTATE_DAIF | new_mode);
11229 env->aarch64 = true;
11230 aarch64_restore_sp(env, new_el);
11231
11232 if (tcg_enabled()) {
11233 helper_rebuild_hflags_a64(env, new_el);
11234 }
11235
11236 env->pc = addr;
11237
11238 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11239 new_el, env->pc, pstate_read(env));
11240 }
11241
11242 /*
11243 * Do semihosting call and set the appropriate return value. All the
11244 * permission and validity checks have been done at translate time.
11245 *
11246 * We only see semihosting exceptions in TCG only as they are not
11247 * trapped to the hypervisor in KVM.
11248 */
11249 #ifdef CONFIG_TCG
11250 static void tcg_handle_semihosting(CPUState *cs)
11251 {
11252 ARMCPU *cpu = ARM_CPU(cs);
11253 CPUARMState *env = &cpu->env;
11254
11255 if (is_a64(env)) {
11256 qemu_log_mask(CPU_LOG_INT,
11257 "...handling as semihosting call 0x%" PRIx64 "\n",
11258 env->xregs[0]);
11259 do_common_semihosting(cs);
11260 env->pc += 4;
11261 } else {
11262 qemu_log_mask(CPU_LOG_INT,
11263 "...handling as semihosting call 0x%x\n",
11264 env->regs[0]);
11265 do_common_semihosting(cs);
11266 env->regs[15] += env->thumb ? 2 : 4;
11267 }
11268 }
11269 #endif
11270
11271 /*
11272 * Handle a CPU exception for A and R profile CPUs.
11273 * Do any appropriate logging, handle PSCI calls, and then hand off
11274 * to the AArch64-entry or AArch32-entry function depending on the
11275 * target exception level's register width.
11276 *
11277 * Note: this is used for both TCG (as the do_interrupt tcg op),
11278 * and KVM to re-inject guest debug exceptions, and to
11279 * inject a Synchronous-External-Abort.
11280 */
11281 void arm_cpu_do_interrupt(CPUState *cs)
11282 {
11283 ARMCPU *cpu = ARM_CPU(cs);
11284 CPUARMState *env = &cpu->env;
11285 unsigned int new_el = env->exception.target_el;
11286
11287 assert(!arm_feature(env, ARM_FEATURE_M));
11288
11289 arm_log_exception(cs);
11290 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11291 new_el);
11292 if (qemu_loglevel_mask(CPU_LOG_INT)
11293 && !excp_is_internal(cs->exception_index)) {
11294 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11295 syn_get_ec(env->exception.syndrome),
11296 env->exception.syndrome);
11297 }
11298
11299 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11300 arm_handle_psci_call(cpu);
11301 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11302 return;
11303 }
11304
11305 /*
11306 * Semihosting semantics depend on the register width of the code
11307 * that caused the exception, not the target exception level, so
11308 * must be handled here.
11309 */
11310 #ifdef CONFIG_TCG
11311 if (cs->exception_index == EXCP_SEMIHOST) {
11312 tcg_handle_semihosting(cs);
11313 return;
11314 }
11315 #endif
11316
11317 /*
11318 * Hooks may change global state so BQL should be held, also the
11319 * BQL needs to be held for any modification of
11320 * cs->interrupt_request.
11321 */
11322 g_assert(qemu_mutex_iothread_locked());
11323
11324 arm_call_pre_el_change_hook(cpu);
11325
11326 assert(!excp_is_internal(cs->exception_index));
11327 if (arm_el_is_aa64(env, new_el)) {
11328 arm_cpu_do_interrupt_aarch64(cs);
11329 } else {
11330 arm_cpu_do_interrupt_aarch32(cs);
11331 }
11332
11333 arm_call_el_change_hook(cpu);
11334
11335 if (!kvm_enabled()) {
11336 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11337 }
11338 }
11339 #endif /* !CONFIG_USER_ONLY */
11340
11341 uint64_t arm_sctlr(CPUARMState *env, int el)
11342 {
11343 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11344 if (el == 0) {
11345 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11346 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11347 }
11348 return env->cp15.sctlr_el[el];
11349 }
11350
11351 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11352 {
11353 if (regime_has_2_ranges(mmu_idx)) {
11354 return extract64(tcr, 37, 2);
11355 } else if (regime_is_stage2(mmu_idx)) {
11356 return 0; /* VTCR_EL2 */
11357 } else {
11358 /* Replicate the single TBI bit so we always have 2 bits. */
11359 return extract32(tcr, 20, 1) * 3;
11360 }
11361 }
11362
11363 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11364 {
11365 if (regime_has_2_ranges(mmu_idx)) {
11366 return extract64(tcr, 51, 2);
11367 } else if (regime_is_stage2(mmu_idx)) {
11368 return 0; /* VTCR_EL2 */
11369 } else {
11370 /* Replicate the single TBID bit so we always have 2 bits. */
11371 return extract32(tcr, 29, 1) * 3;
11372 }
11373 }
11374
11375 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11376 {
11377 if (regime_has_2_ranges(mmu_idx)) {
11378 return extract64(tcr, 57, 2);
11379 } else {
11380 /* Replicate the single TCMA bit so we always have 2 bits. */
11381 return extract32(tcr, 30, 1) * 3;
11382 }
11383 }
11384
11385 static ARMGranuleSize tg0_to_gran_size(int tg)
11386 {
11387 switch (tg) {
11388 case 0:
11389 return Gran4K;
11390 case 1:
11391 return Gran64K;
11392 case 2:
11393 return Gran16K;
11394 default:
11395 return GranInvalid;
11396 }
11397 }
11398
11399 static ARMGranuleSize tg1_to_gran_size(int tg)
11400 {
11401 switch (tg) {
11402 case 1:
11403 return Gran16K;
11404 case 2:
11405 return Gran4K;
11406 case 3:
11407 return Gran64K;
11408 default:
11409 return GranInvalid;
11410 }
11411 }
11412
11413 static inline bool have4k(ARMCPU *cpu, bool stage2)
11414 {
11415 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11416 : cpu_isar_feature(aa64_tgran4, cpu);
11417 }
11418
11419 static inline bool have16k(ARMCPU *cpu, bool stage2)
11420 {
11421 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11422 : cpu_isar_feature(aa64_tgran16, cpu);
11423 }
11424
11425 static inline bool have64k(ARMCPU *cpu, bool stage2)
11426 {
11427 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11428 : cpu_isar_feature(aa64_tgran64, cpu);
11429 }
11430
11431 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11432 bool stage2)
11433 {
11434 switch (gran) {
11435 case Gran4K:
11436 if (have4k(cpu, stage2)) {
11437 return gran;
11438 }
11439 break;
11440 case Gran16K:
11441 if (have16k(cpu, stage2)) {
11442 return gran;
11443 }
11444 break;
11445 case Gran64K:
11446 if (have64k(cpu, stage2)) {
11447 return gran;
11448 }
11449 break;
11450 case GranInvalid:
11451 break;
11452 }
11453 /*
11454 * If the guest selects a granule size that isn't implemented,
11455 * the architecture requires that we behave as if it selected one
11456 * that is (with an IMPDEF choice of which one to pick). We choose
11457 * to implement the smallest supported granule size.
11458 */
11459 if (have4k(cpu, stage2)) {
11460 return Gran4K;
11461 }
11462 if (have16k(cpu, stage2)) {
11463 return Gran16K;
11464 }
11465 assert(have64k(cpu, stage2));
11466 return Gran64K;
11467 }
11468
11469 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11470 ARMMMUIdx mmu_idx, bool data,
11471 bool el1_is_aa32)
11472 {
11473 uint64_t tcr = regime_tcr(env, mmu_idx);
11474 bool epd, hpd, tsz_oob, ds, ha, hd;
11475 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11476 ARMGranuleSize gran;
11477 ARMCPU *cpu = env_archcpu(env);
11478 bool stage2 = regime_is_stage2(mmu_idx);
11479
11480 if (!regime_has_2_ranges(mmu_idx)) {
11481 select = 0;
11482 tsz = extract32(tcr, 0, 6);
11483 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11484 if (stage2) {
11485 /* VTCR_EL2 */
11486 hpd = false;
11487 } else {
11488 hpd = extract32(tcr, 24, 1);
11489 }
11490 epd = false;
11491 sh = extract32(tcr, 12, 2);
11492 ps = extract32(tcr, 16, 3);
11493 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11494 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11495 ds = extract64(tcr, 32, 1);
11496 } else {
11497 bool e0pd;
11498
11499 /*
11500 * Bit 55 is always between the two regions, and is canonical for
11501 * determining if address tagging is enabled.
11502 */
11503 select = extract64(va, 55, 1);
11504 if (!select) {
11505 tsz = extract32(tcr, 0, 6);
11506 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11507 epd = extract32(tcr, 7, 1);
11508 sh = extract32(tcr, 12, 2);
11509 hpd = extract64(tcr, 41, 1);
11510 e0pd = extract64(tcr, 55, 1);
11511 } else {
11512 tsz = extract32(tcr, 16, 6);
11513 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11514 epd = extract32(tcr, 23, 1);
11515 sh = extract32(tcr, 28, 2);
11516 hpd = extract64(tcr, 42, 1);
11517 e0pd = extract64(tcr, 56, 1);
11518 }
11519 ps = extract64(tcr, 32, 3);
11520 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11521 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11522 ds = extract64(tcr, 59, 1);
11523
11524 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11525 regime_is_user(env, mmu_idx)) {
11526 epd = true;
11527 }
11528 }
11529
11530 gran = sanitize_gran_size(cpu, gran, stage2);
11531
11532 if (cpu_isar_feature(aa64_st, cpu)) {
11533 max_tsz = 48 - (gran == Gran64K);
11534 } else {
11535 max_tsz = 39;
11536 }
11537
11538 /*
11539 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11540 * adjust the effective value of DS, as documented.
11541 */
11542 min_tsz = 16;
11543 if (gran == Gran64K) {
11544 if (cpu_isar_feature(aa64_lva, cpu)) {
11545 min_tsz = 12;
11546 }
11547 ds = false;
11548 } else if (ds) {
11549 if (regime_is_stage2(mmu_idx)) {
11550 if (gran == Gran16K) {
11551 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11552 } else {
11553 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11554 }
11555 } else {
11556 if (gran == Gran16K) {
11557 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11558 } else {
11559 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11560 }
11561 }
11562 if (ds) {
11563 min_tsz = 12;
11564 }
11565 }
11566
11567 if (stage2 && el1_is_aa32) {
11568 /*
11569 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11570 * are loosened: a configured IPA of 40 bits is permitted even if
11571 * the implemented PA is less than that (and so a 40 bit IPA would
11572 * fault for an AArch64 EL1). See R_DTLMN.
11573 */
11574 min_tsz = MIN(min_tsz, 24);
11575 }
11576
11577 if (tsz > max_tsz) {
11578 tsz = max_tsz;
11579 tsz_oob = true;
11580 } else if (tsz < min_tsz) {
11581 tsz = min_tsz;
11582 tsz_oob = true;
11583 } else {
11584 tsz_oob = false;
11585 }
11586
11587 /* Present TBI as a composite with TBID. */
11588 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11589 if (!data) {
11590 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11591 }
11592 tbi = (tbi >> select) & 1;
11593
11594 return (ARMVAParameters) {
11595 .tsz = tsz,
11596 .ps = ps,
11597 .sh = sh,
11598 .select = select,
11599 .tbi = tbi,
11600 .epd = epd,
11601 .hpd = hpd,
11602 .tsz_oob = tsz_oob,
11603 .ds = ds,
11604 .ha = ha,
11605 .hd = ha && hd,
11606 .gran = gran,
11607 };
11608 }
11609
11610 /*
11611 * Note that signed overflow is undefined in C. The following routines are
11612 * careful to use unsigned types where modulo arithmetic is required.
11613 * Failure to do so _will_ break on newer gcc.
11614 */
11615
11616 /* Signed saturating arithmetic. */
11617
11618 /* Perform 16-bit signed saturating addition. */
11619 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11620 {
11621 uint16_t res;
11622
11623 res = a + b;
11624 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11625 if (a & 0x8000) {
11626 res = 0x8000;
11627 } else {
11628 res = 0x7fff;
11629 }
11630 }
11631 return res;
11632 }
11633
11634 /* Perform 8-bit signed saturating addition. */
11635 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11636 {
11637 uint8_t res;
11638
11639 res = a + b;
11640 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11641 if (a & 0x80) {
11642 res = 0x80;
11643 } else {
11644 res = 0x7f;
11645 }
11646 }
11647 return res;
11648 }
11649
11650 /* Perform 16-bit signed saturating subtraction. */
11651 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11652 {
11653 uint16_t res;
11654
11655 res = a - b;
11656 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11657 if (a & 0x8000) {
11658 res = 0x8000;
11659 } else {
11660 res = 0x7fff;
11661 }
11662 }
11663 return res;
11664 }
11665
11666 /* Perform 8-bit signed saturating subtraction. */
11667 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11668 {
11669 uint8_t res;
11670
11671 res = a - b;
11672 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11673 if (a & 0x80) {
11674 res = 0x80;
11675 } else {
11676 res = 0x7f;
11677 }
11678 }
11679 return res;
11680 }
11681
11682 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11683 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11684 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11685 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11686 #define PFX q
11687
11688 #include "op_addsub.h"
11689
11690 /* Unsigned saturating arithmetic. */
11691 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11692 {
11693 uint16_t res;
11694 res = a + b;
11695 if (res < a) {
11696 res = 0xffff;
11697 }
11698 return res;
11699 }
11700
11701 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11702 {
11703 if (a > b) {
11704 return a - b;
11705 } else {
11706 return 0;
11707 }
11708 }
11709
11710 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11711 {
11712 uint8_t res;
11713 res = a + b;
11714 if (res < a) {
11715 res = 0xff;
11716 }
11717 return res;
11718 }
11719
11720 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11721 {
11722 if (a > b) {
11723 return a - b;
11724 } else {
11725 return 0;
11726 }
11727 }
11728
11729 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11730 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11731 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11732 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11733 #define PFX uq
11734
11735 #include "op_addsub.h"
11736
11737 /* Signed modulo arithmetic. */
11738 #define SARITH16(a, b, n, op) do { \
11739 int32_t sum; \
11740 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11741 RESULT(sum, n, 16); \
11742 if (sum >= 0) \
11743 ge |= 3 << (n * 2); \
11744 } while (0)
11745
11746 #define SARITH8(a, b, n, op) do { \
11747 int32_t sum; \
11748 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11749 RESULT(sum, n, 8); \
11750 if (sum >= 0) \
11751 ge |= 1 << n; \
11752 } while (0)
11753
11754
11755 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11756 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11757 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11758 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11759 #define PFX s
11760 #define ARITH_GE
11761
11762 #include "op_addsub.h"
11763
11764 /* Unsigned modulo arithmetic. */
11765 #define ADD16(a, b, n) do { \
11766 uint32_t sum; \
11767 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11768 RESULT(sum, n, 16); \
11769 if ((sum >> 16) == 1) \
11770 ge |= 3 << (n * 2); \
11771 } while (0)
11772
11773 #define ADD8(a, b, n) do { \
11774 uint32_t sum; \
11775 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11776 RESULT(sum, n, 8); \
11777 if ((sum >> 8) == 1) \
11778 ge |= 1 << n; \
11779 } while (0)
11780
11781 #define SUB16(a, b, n) do { \
11782 uint32_t sum; \
11783 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11784 RESULT(sum, n, 16); \
11785 if ((sum >> 16) == 0) \
11786 ge |= 3 << (n * 2); \
11787 } while (0)
11788
11789 #define SUB8(a, b, n) do { \
11790 uint32_t sum; \
11791 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11792 RESULT(sum, n, 8); \
11793 if ((sum >> 8) == 0) \
11794 ge |= 1 << n; \
11795 } while (0)
11796
11797 #define PFX u
11798 #define ARITH_GE
11799
11800 #include "op_addsub.h"
11801
11802 /* Halved signed arithmetic. */
11803 #define ADD16(a, b, n) \
11804 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11805 #define SUB16(a, b, n) \
11806 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11807 #define ADD8(a, b, n) \
11808 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11809 #define SUB8(a, b, n) \
11810 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11811 #define PFX sh
11812
11813 #include "op_addsub.h"
11814
11815 /* Halved unsigned arithmetic. */
11816 #define ADD16(a, b, n) \
11817 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11818 #define SUB16(a, b, n) \
11819 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11820 #define ADD8(a, b, n) \
11821 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11822 #define SUB8(a, b, n) \
11823 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11824 #define PFX uh
11825
11826 #include "op_addsub.h"
11827
11828 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11829 {
11830 if (a > b) {
11831 return a - b;
11832 } else {
11833 return b - a;
11834 }
11835 }
11836
11837 /* Unsigned sum of absolute byte differences. */
11838 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11839 {
11840 uint32_t sum;
11841 sum = do_usad(a, b);
11842 sum += do_usad(a >> 8, b >> 8);
11843 sum += do_usad(a >> 16, b >> 16);
11844 sum += do_usad(a >> 24, b >> 24);
11845 return sum;
11846 }
11847
11848 /* For ARMv6 SEL instruction. */
11849 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11850 {
11851 uint32_t mask;
11852
11853 mask = 0;
11854 if (flags & 1) {
11855 mask |= 0xff;
11856 }
11857 if (flags & 2) {
11858 mask |= 0xff00;
11859 }
11860 if (flags & 4) {
11861 mask |= 0xff0000;
11862 }
11863 if (flags & 8) {
11864 mask |= 0xff000000;
11865 }
11866 return (a & mask) | (b & ~mask);
11867 }
11868
11869 /*
11870 * CRC helpers.
11871 * The upper bytes of val (above the number specified by 'bytes') must have
11872 * been zeroed out by the caller.
11873 */
11874 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11875 {
11876 uint8_t buf[4];
11877
11878 stl_le_p(buf, val);
11879
11880 /* zlib crc32 converts the accumulator and output to one's complement. */
11881 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11882 }
11883
11884 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11885 {
11886 uint8_t buf[4];
11887
11888 stl_le_p(buf, val);
11889
11890 /* Linux crc32c converts the output to one's complement. */
11891 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11892 }
11893
11894 /*
11895 * Return the exception level to which FP-disabled exceptions should
11896 * be taken, or 0 if FP is enabled.
11897 */
11898 int fp_exception_el(CPUARMState *env, int cur_el)
11899 {
11900 #ifndef CONFIG_USER_ONLY
11901 uint64_t hcr_el2;
11902
11903 /*
11904 * CPACR and the CPTR registers don't exist before v6, so FP is
11905 * always accessible
11906 */
11907 if (!arm_feature(env, ARM_FEATURE_V6)) {
11908 return 0;
11909 }
11910
11911 if (arm_feature(env, ARM_FEATURE_M)) {
11912 /* CPACR can cause a NOCP UsageFault taken to current security state */
11913 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11914 return 1;
11915 }
11916
11917 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11918 if (!extract32(env->v7m.nsacr, 10, 1)) {
11919 /* FP insns cause a NOCP UsageFault taken to Secure */
11920 return 3;
11921 }
11922 }
11923
11924 return 0;
11925 }
11926
11927 hcr_el2 = arm_hcr_el2_eff(env);
11928
11929 /*
11930 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11931 * 0, 2 : trap EL0 and EL1/PL1 accesses
11932 * 1 : trap only EL0 accesses
11933 * 3 : trap no accesses
11934 * This register is ignored if E2H+TGE are both set.
11935 */
11936 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11937 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11938
11939 switch (fpen) {
11940 case 1:
11941 if (cur_el != 0) {
11942 break;
11943 }
11944 /* fall through */
11945 case 0:
11946 case 2:
11947 /* Trap from Secure PL0 or PL1 to Secure PL1. */
11948 if (!arm_el_is_aa64(env, 3)
11949 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11950 return 3;
11951 }
11952 if (cur_el <= 1) {
11953 return 1;
11954 }
11955 break;
11956 }
11957 }
11958
11959 /*
11960 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11961 * to control non-secure access to the FPU. It doesn't have any
11962 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11963 */
11964 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11965 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11966 if (!extract32(env->cp15.nsacr, 10, 1)) {
11967 /* FP insns act as UNDEF */
11968 return cur_el == 2 ? 2 : 1;
11969 }
11970 }
11971
11972 /*
11973 * CPTR_EL2 is present in v7VE or v8, and changes format
11974 * with HCR_EL2.E2H (regardless of TGE).
11975 */
11976 if (cur_el <= 2) {
11977 if (hcr_el2 & HCR_E2H) {
11978 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11979 case 1:
11980 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11981 break;
11982 }
11983 /* fall through */
11984 case 0:
11985 case 2:
11986 return 2;
11987 }
11988 } else if (arm_is_el2_enabled(env)) {
11989 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11990 return 2;
11991 }
11992 }
11993 }
11994
11995 /* CPTR_EL3 : present in v8 */
11996 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
11997 /* Trap all FP ops to EL3 */
11998 return 3;
11999 }
12000 #endif
12001 return 0;
12002 }
12003
12004 /* Return the exception level we're running at if this is our mmu_idx */
12005 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12006 {
12007 if (mmu_idx & ARM_MMU_IDX_M) {
12008 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12009 }
12010
12011 switch (mmu_idx) {
12012 case ARMMMUIdx_E10_0:
12013 case ARMMMUIdx_E20_0:
12014 return 0;
12015 case ARMMMUIdx_E10_1:
12016 case ARMMMUIdx_E10_1_PAN:
12017 return 1;
12018 case ARMMMUIdx_E2:
12019 case ARMMMUIdx_E20_2:
12020 case ARMMMUIdx_E20_2_PAN:
12021 return 2;
12022 case ARMMMUIdx_E3:
12023 return 3;
12024 default:
12025 g_assert_not_reached();
12026 }
12027 }
12028
12029 #ifndef CONFIG_TCG
12030 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12031 {
12032 g_assert_not_reached();
12033 }
12034 #endif
12035
12036 static bool arm_pan_enabled(CPUARMState *env)
12037 {
12038 if (is_a64(env)) {
12039 return env->pstate & PSTATE_PAN;
12040 } else {
12041 return env->uncached_cpsr & CPSR_PAN;
12042 }
12043 }
12044
12045 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12046 {
12047 ARMMMUIdx idx;
12048 uint64_t hcr;
12049
12050 if (arm_feature(env, ARM_FEATURE_M)) {
12051 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12052 }
12053
12054 /* See ARM pseudo-function ELIsInHost. */
12055 switch (el) {
12056 case 0:
12057 hcr = arm_hcr_el2_eff(env);
12058 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12059 idx = ARMMMUIdx_E20_0;
12060 } else {
12061 idx = ARMMMUIdx_E10_0;
12062 }
12063 break;
12064 case 1:
12065 if (arm_pan_enabled(env)) {
12066 idx = ARMMMUIdx_E10_1_PAN;
12067 } else {
12068 idx = ARMMMUIdx_E10_1;
12069 }
12070 break;
12071 case 2:
12072 /* Note that TGE does not apply at EL2. */
12073 if (arm_hcr_el2_eff(env) & HCR_E2H) {
12074 if (arm_pan_enabled(env)) {
12075 idx = ARMMMUIdx_E20_2_PAN;
12076 } else {
12077 idx = ARMMMUIdx_E20_2;
12078 }
12079 } else {
12080 idx = ARMMMUIdx_E2;
12081 }
12082 break;
12083 case 3:
12084 return ARMMMUIdx_E3;
12085 default:
12086 g_assert_not_reached();
12087 }
12088
12089 return idx;
12090 }
12091
12092 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12093 {
12094 return arm_mmu_idx_el(env, arm_current_el(env));
12095 }
12096
12097 static bool mve_no_pred(CPUARMState *env)
12098 {
12099 /*
12100 * Return true if there is definitely no predication of MVE
12101 * instructions by VPR or LTPSIZE. (Returning false even if there
12102 * isn't any predication is OK; generated code will just be
12103 * a little worse.)
12104 * If the CPU does not implement MVE then this TB flag is always 0.
12105 *
12106 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12107 * logic in gen_update_fp_context() needs to be updated to match.
12108 *
12109 * We do not include the effect of the ECI bits here -- they are
12110 * tracked in other TB flags. This simplifies the logic for
12111 * "when did we emit code that changes the MVE_NO_PRED TB flag
12112 * and thus need to end the TB?".
12113 */
12114 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12115 return false;
12116 }
12117 if (env->v7m.vpr) {
12118 return false;
12119 }
12120 if (env->v7m.ltpsize < 4) {
12121 return false;
12122 }
12123 return true;
12124 }
12125
12126 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12127 uint64_t *cs_base, uint32_t *pflags)
12128 {
12129 CPUARMTBFlags flags;
12130
12131 assert_hflags_rebuild_correctly(env);
12132 flags = env->hflags;
12133
12134 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12135 *pc = env->pc;
12136 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12137 DP_TBFLAG_A64(flags, BTYPE, env->btype);
12138 }
12139 } else {
12140 *pc = env->regs[15];
12141
12142 if (arm_feature(env, ARM_FEATURE_M)) {
12143 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12144 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12145 != env->v7m.secure) {
12146 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12147 }
12148
12149 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12150 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12151 (env->v7m.secure &&
12152 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12153 /*
12154 * ASPEN is set, but FPCA/SFPA indicate that there is no
12155 * active FP context; we must create a new FP context before
12156 * executing any FP insn.
12157 */
12158 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12159 }
12160
12161 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12162 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12163 DP_TBFLAG_M32(flags, LSPACT, 1);
12164 }
12165
12166 if (mve_no_pred(env)) {
12167 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12168 }
12169 } else {
12170 /*
12171 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12172 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12173 */
12174 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12175 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12176 } else {
12177 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12178 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12179 }
12180 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12181 DP_TBFLAG_A32(flags, VFPEN, 1);
12182 }
12183 }
12184
12185 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12186 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12187 }
12188
12189 /*
12190 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12191 * states defined in the ARM ARM for software singlestep:
12192 * SS_ACTIVE PSTATE.SS State
12193 * 0 x Inactive (the TB flag for SS is always 0)
12194 * 1 0 Active-pending
12195 * 1 1 Active-not-pending
12196 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12197 */
12198 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12199 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12200 }
12201
12202 *pflags = flags.flags;
12203 *cs_base = flags.flags2;
12204 }
12205
12206 #ifdef TARGET_AARCH64
12207 /*
12208 * The manual says that when SVE is enabled and VQ is widened the
12209 * implementation is allowed to zero the previously inaccessible
12210 * portion of the registers. The corollary to that is that when
12211 * SVE is enabled and VQ is narrowed we are also allowed to zero
12212 * the now inaccessible portion of the registers.
12213 *
12214 * The intent of this is that no predicate bit beyond VQ is ever set.
12215 * Which means that some operations on predicate registers themselves
12216 * may operate on full uint64_t or even unrolled across the maximum
12217 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12218 * may well be cheaper than conditionals to restrict the operation
12219 * to the relevant portion of a uint16_t[16].
12220 */
12221 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12222 {
12223 int i, j;
12224 uint64_t pmask;
12225
12226 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12227 assert(vq <= env_archcpu(env)->sve_max_vq);
12228
12229 /* Zap the high bits of the zregs. */
12230 for (i = 0; i < 32; i++) {
12231 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12232 }
12233
12234 /* Zap the high bits of the pregs and ffr. */
12235 pmask = 0;
12236 if (vq & 3) {
12237 pmask = ~(-1ULL << (16 * (vq & 3)));
12238 }
12239 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12240 for (i = 0; i < 17; ++i) {
12241 env->vfp.pregs[i].p[j] &= pmask;
12242 }
12243 pmask = 0;
12244 }
12245 }
12246
12247 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12248 {
12249 int exc_el;
12250
12251 if (sm) {
12252 exc_el = sme_exception_el(env, el);
12253 } else {
12254 exc_el = sve_exception_el(env, el);
12255 }
12256 if (exc_el) {
12257 return 0; /* disabled */
12258 }
12259 return sve_vqm1_for_el_sm(env, el, sm);
12260 }
12261
12262 /*
12263 * Notice a change in SVE vector size when changing EL.
12264 */
12265 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12266 int new_el, bool el0_a64)
12267 {
12268 ARMCPU *cpu = env_archcpu(env);
12269 int old_len, new_len;
12270 bool old_a64, new_a64, sm;
12271
12272 /* Nothing to do if no SVE. */
12273 if (!cpu_isar_feature(aa64_sve, cpu)) {
12274 return;
12275 }
12276
12277 /* Nothing to do if FP is disabled in either EL. */
12278 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12279 return;
12280 }
12281
12282 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12283 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12284
12285 /*
12286 * Both AArch64.TakeException and AArch64.ExceptionReturn
12287 * invoke ResetSVEState when taking an exception from, or
12288 * returning to, AArch32 state when PSTATE.SM is enabled.
12289 */
12290 sm = FIELD_EX64(env->svcr, SVCR, SM);
12291 if (old_a64 != new_a64 && sm) {
12292 arm_reset_sve_state(env);
12293 return;
12294 }
12295
12296 /*
12297 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12298 * at ELx, or not available because the EL is in AArch32 state, then
12299 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12300 * has an effective value of 0".
12301 *
12302 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12303 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12304 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12305 * we already have the correct register contents when encountering the
12306 * vq0->vq0 transition between EL0->EL1.
12307 */
12308 old_len = new_len = 0;
12309 if (old_a64) {
12310 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12311 }
12312 if (new_a64) {
12313 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12314 }
12315
12316 /* When changing vector length, clear inaccessible state. */
12317 if (new_len < old_len) {
12318 aarch64_sve_narrow_vq(env, new_len + 1);
12319 }
12320 }
12321 #endif
12322
12323 #ifndef CONFIG_USER_ONLY
12324 ARMSecuritySpace arm_security_space(CPUARMState *env)
12325 {
12326 if (arm_feature(env, ARM_FEATURE_M)) {
12327 return arm_secure_to_space(env->v7m.secure);
12328 }
12329
12330 /*
12331 * If EL3 is not supported then the secure state is implementation
12332 * defined, in which case QEMU defaults to non-secure.
12333 */
12334 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12335 return ARMSS_NonSecure;
12336 }
12337
12338 /* Check for AArch64 EL3 or AArch32 Mon. */
12339 if (is_a64(env)) {
12340 if (extract32(env->pstate, 2, 2) == 3) {
12341 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12342 return ARMSS_Root;
12343 } else {
12344 return ARMSS_Secure;
12345 }
12346 }
12347 } else {
12348 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12349 return ARMSS_Secure;
12350 }
12351 }
12352
12353 return arm_security_space_below_el3(env);
12354 }
12355
12356 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12357 {
12358 assert(!arm_feature(env, ARM_FEATURE_M));
12359
12360 /*
12361 * If EL3 is not supported then the secure state is implementation
12362 * defined, in which case QEMU defaults to non-secure.
12363 */
12364 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12365 return ARMSS_NonSecure;
12366 }
12367
12368 /*
12369 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12370 * Ignoring NSE when !NS retains consistency without having to
12371 * modify other predicates.
12372 */
12373 if (!(env->cp15.scr_el3 & SCR_NS)) {
12374 return ARMSS_Secure;
12375 } else if (env->cp15.scr_el3 & SCR_NSE) {
12376 return ARMSS_Realm;
12377 } else {
12378 return ARMSS_NonSecure;
12379 }
12380 }
12381 #endif /* !CONFIG_USER_ONLY */