]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/internals.h
1dd9182a54a52738d8ca31323dc5c2bf06d103e6
[mirror_qemu.git] / target / arm / internals.h
1 /*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
23 */
24
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC 1
35 #define BANK_ABT 2
36 #define BANK_UND 3
37 #define BANK_IRQ 4
38 #define BANK_FIQ 5
39 #define BANK_HYP 6
40 #define BANK_MON 7
41
42 static inline bool excp_is_internal(int excp)
43 {
44 /* Return true if this exception number represents a QEMU-internal
45 * exception that will not be passed to the guest.
46 */
47 return excp == EXCP_INTERRUPT
48 || excp == EXCP_HLT
49 || excp == EXCP_DEBUG
50 || excp == EXCP_HALTED
51 || excp == EXCP_EXCEPTION_EXIT
52 || excp == EXCP_KERNEL_TRAP
53 || excp == EXCP_SEMIHOST;
54 }
55
56 /* Scale factor for generic timers, ie number of ns per tick.
57 * This gives a 62.5MHz timer.
58 */
59 #define GTIMER_SCALE 16
60
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80 * when using v8M security extension
81 */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83
84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
85 FIELD(DBGWCR, E, 0, 1)
86 FIELD(DBGWCR, PAC, 1, 2)
87 FIELD(DBGWCR, LSC, 3, 2)
88 FIELD(DBGWCR, BAS, 5, 8)
89 FIELD(DBGWCR, HMC, 13, 1)
90 FIELD(DBGWCR, SSC, 14, 2)
91 FIELD(DBGWCR, LBN, 16, 4)
92 FIELD(DBGWCR, WT, 20, 1)
93 FIELD(DBGWCR, MASK, 24, 5)
94 FIELD(DBGWCR, SSCE, 29, 1)
95
96 /* We use a few fake FSR values for internal purposes in M profile.
97 * M profile cores don't have A/R format FSRs, but currently our
98 * get_phys_addr() code assumes A/R profile and reports failures via
99 * an A/R format FSR value. We then translate that into the proper
100 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
101 * Mostly the FSR values we use for this are those defined for v7PMSA,
102 * since we share some of that codepath. A few kinds of fault are
103 * only for M profile and have no A/R equivalent, though, so we have
104 * to pick a value from the reserved range (which we never otherwise
105 * generate) to use for these.
106 * These values will never be visible to the guest.
107 */
108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
110
111 /**
112 * raise_exception: Raise the specified exception.
113 * Raise a guest exception with the specified value, syndrome register
114 * and target exception level. This should be called from helper functions,
115 * and never returns because we will longjump back up to the CPU main loop.
116 */
117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
118 uint32_t syndrome, uint32_t target_el);
119
120 /*
121 * Similarly, but also use unwinding to restore cpu state.
122 */
123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
124 uint32_t syndrome, uint32_t target_el,
125 uintptr_t ra);
126
127 /*
128 * For AArch64, map a given EL to an index in the banked_spsr array.
129 * Note that this mapping and the AArch32 mapping defined in bank_number()
130 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
131 * mandated mapping between each other.
132 */
133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
134 {
135 static const unsigned int map[4] = {
136 [1] = BANK_SVC, /* EL1. */
137 [2] = BANK_HYP, /* EL2. */
138 [3] = BANK_MON, /* EL3. */
139 };
140 assert(el >= 1 && el <= 3);
141 return map[el];
142 }
143
144 /* Map CPU modes onto saved register banks. */
145 static inline int bank_number(int mode)
146 {
147 switch (mode) {
148 case ARM_CPU_MODE_USR:
149 case ARM_CPU_MODE_SYS:
150 return BANK_USRSYS;
151 case ARM_CPU_MODE_SVC:
152 return BANK_SVC;
153 case ARM_CPU_MODE_ABT:
154 return BANK_ABT;
155 case ARM_CPU_MODE_UND:
156 return BANK_UND;
157 case ARM_CPU_MODE_IRQ:
158 return BANK_IRQ;
159 case ARM_CPU_MODE_FIQ:
160 return BANK_FIQ;
161 case ARM_CPU_MODE_HYP:
162 return BANK_HYP;
163 case ARM_CPU_MODE_MON:
164 return BANK_MON;
165 }
166 g_assert_not_reached();
167 }
168
169 /**
170 * r14_bank_number: Map CPU mode onto register bank for r14
171 *
172 * Given an AArch32 CPU mode, return the index into the saved register
173 * banks to use for the R14 (LR) in that mode. This is the same as
174 * bank_number(), except for the special case of Hyp mode, where
175 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
176 * This should be used as the index into env->banked_r14[], and
177 * bank_number() used for the index into env->banked_r13[] and
178 * env->banked_spsr[].
179 */
180 static inline int r14_bank_number(int mode)
181 {
182 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
183 }
184
185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
186 void arm_translate_init(void);
187
188 void arm_restore_state_to_opc(CPUState *cs,
189 const TranslationBlock *tb,
190 const uint64_t *data);
191
192 #ifdef CONFIG_TCG
193 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
194 #endif /* CONFIG_TCG */
195
196 typedef enum ARMFPRounding {
197 FPROUNDING_TIEEVEN,
198 FPROUNDING_POSINF,
199 FPROUNDING_NEGINF,
200 FPROUNDING_ZERO,
201 FPROUNDING_TIEAWAY,
202 FPROUNDING_ODD
203 } ARMFPRounding;
204
205 extern const FloatRoundMode arm_rmode_to_sf_map[6];
206
207 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
208 {
209 assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
210 return arm_rmode_to_sf_map[rmode];
211 }
212
213 static inline void aarch64_save_sp(CPUARMState *env, int el)
214 {
215 if (env->pstate & PSTATE_SP) {
216 env->sp_el[el] = env->xregs[31];
217 } else {
218 env->sp_el[0] = env->xregs[31];
219 }
220 }
221
222 static inline void aarch64_restore_sp(CPUARMState *env, int el)
223 {
224 if (env->pstate & PSTATE_SP) {
225 env->xregs[31] = env->sp_el[el];
226 } else {
227 env->xregs[31] = env->sp_el[0];
228 }
229 }
230
231 static inline void update_spsel(CPUARMState *env, uint32_t imm)
232 {
233 unsigned int cur_el = arm_current_el(env);
234 /* Update PSTATE SPSel bit; this requires us to update the
235 * working stack pointer in xregs[31].
236 */
237 if (!((imm ^ env->pstate) & PSTATE_SP)) {
238 return;
239 }
240 aarch64_save_sp(env, cur_el);
241 env->pstate = deposit32(env->pstate, 0, 1, imm);
242
243 /* We rely on illegal updates to SPsel from EL0 to get trapped
244 * at translation time.
245 */
246 assert(cur_el >= 1 && cur_el <= 3);
247 aarch64_restore_sp(env, cur_el);
248 }
249
250 /*
251 * arm_pamax
252 * @cpu: ARMCPU
253 *
254 * Returns the implementation defined bit-width of physical addresses.
255 * The ARMv8 reference manuals refer to this as PAMax().
256 */
257 unsigned int arm_pamax(ARMCPU *cpu);
258
259 /* Return true if extended addresses are enabled.
260 * This is always the case if our translation regime is 64 bit,
261 * but depends on TTBCR.EAE for 32 bit.
262 */
263 static inline bool extended_addresses_enabled(CPUARMState *env)
264 {
265 uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
266 if (arm_feature(env, ARM_FEATURE_PMSA) &&
267 arm_feature(env, ARM_FEATURE_V8)) {
268 return true;
269 }
270 return arm_el_is_aa64(env, 1) ||
271 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
272 }
273
274 /* Update a QEMU watchpoint based on the information the guest has set in the
275 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
276 */
277 void hw_watchpoint_update(ARMCPU *cpu, int n);
278 /* Update the QEMU watchpoints for every guest watchpoint. This does a
279 * complete delete-and-reinstate of the QEMU watchpoint list and so is
280 * suitable for use after migration or on reset.
281 */
282 void hw_watchpoint_update_all(ARMCPU *cpu);
283 /* Update a QEMU breakpoint based on the information the guest has set in the
284 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
285 */
286 void hw_breakpoint_update(ARMCPU *cpu, int n);
287 /* Update the QEMU breakpoints for every guest breakpoint. This does a
288 * complete delete-and-reinstate of the QEMU breakpoint list and so is
289 * suitable for use after migration or on reset.
290 */
291 void hw_breakpoint_update_all(ARMCPU *cpu);
292
293 /* Callback function for checking if a breakpoint should trigger. */
294 bool arm_debug_check_breakpoint(CPUState *cs);
295
296 /* Callback function for checking if a watchpoint should trigger. */
297 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
298
299 /* Adjust addresses (in BE32 mode) before testing against watchpoint
300 * addresses.
301 */
302 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
303
304 /* Callback function for when a watchpoint or breakpoint triggers. */
305 void arm_debug_excp_handler(CPUState *cs);
306
307 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
308 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
309 {
310 return false;
311 }
312 static inline void arm_handle_psci_call(ARMCPU *cpu)
313 {
314 g_assert_not_reached();
315 }
316 #else
317 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
318 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
319 /* Actually handle a PSCI call */
320 void arm_handle_psci_call(ARMCPU *cpu);
321 #endif
322
323 /**
324 * arm_clear_exclusive: clear the exclusive monitor
325 * @env: CPU env
326 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
327 */
328 static inline void arm_clear_exclusive(CPUARMState *env)
329 {
330 env->exclusive_addr = -1;
331 }
332
333 /**
334 * ARMFaultType: type of an ARM MMU fault
335 * This corresponds to the v8A pseudocode's Fault enumeration,
336 * with extensions for QEMU internal conditions.
337 */
338 typedef enum ARMFaultType {
339 ARMFault_None,
340 ARMFault_AccessFlag,
341 ARMFault_Alignment,
342 ARMFault_Background,
343 ARMFault_Domain,
344 ARMFault_Permission,
345 ARMFault_Translation,
346 ARMFault_AddressSize,
347 ARMFault_SyncExternal,
348 ARMFault_SyncExternalOnWalk,
349 ARMFault_SyncParity,
350 ARMFault_SyncParityOnWalk,
351 ARMFault_AsyncParity,
352 ARMFault_AsyncExternal,
353 ARMFault_Debug,
354 ARMFault_TLBConflict,
355 ARMFault_UnsuppAtomicUpdate,
356 ARMFault_Lockdown,
357 ARMFault_Exclusive,
358 ARMFault_ICacheMaint,
359 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
360 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
361 ARMFault_GPCFOnWalk,
362 ARMFault_GPCFOnOutput,
363 } ARMFaultType;
364
365 typedef enum ARMGPCF {
366 GPCF_None,
367 GPCF_AddressSize,
368 GPCF_Walk,
369 GPCF_EABT,
370 GPCF_Fail,
371 } ARMGPCF;
372
373 /**
374 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
375 * @type: Type of fault
376 * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
377 * @level: Table walk level (for translation, access flag and permission faults)
378 * @domain: Domain of the fault address (for non-LPAE CPUs only)
379 * @s2addr: Address that caused a fault at stage 2
380 * @paddr: physical address that caused a fault for gpc
381 * @paddr_space: physical address space that caused a fault for gpc
382 * @stage2: True if we faulted at stage 2
383 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
384 * @s1ns: True if we faulted on a non-secure IPA while in secure state
385 * @ea: True if we should set the EA (external abort type) bit in syndrome
386 */
387 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
388 struct ARMMMUFaultInfo {
389 ARMFaultType type;
390 ARMGPCF gpcf;
391 target_ulong s2addr;
392 target_ulong paddr;
393 ARMSecuritySpace paddr_space;
394 int level;
395 int domain;
396 bool stage2;
397 bool s1ptw;
398 bool s1ns;
399 bool ea;
400 };
401
402 /**
403 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
404 * Compare pseudocode EncodeSDFSC(), though unlike that function
405 * we set up a whole FSR-format code including domain field and
406 * putting the high bit of the FSC into bit 10.
407 */
408 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
409 {
410 uint32_t fsc;
411
412 switch (fi->type) {
413 case ARMFault_None:
414 return 0;
415 case ARMFault_AccessFlag:
416 fsc = fi->level == 1 ? 0x3 : 0x6;
417 break;
418 case ARMFault_Alignment:
419 fsc = 0x1;
420 break;
421 case ARMFault_Permission:
422 fsc = fi->level == 1 ? 0xd : 0xf;
423 break;
424 case ARMFault_Domain:
425 fsc = fi->level == 1 ? 0x9 : 0xb;
426 break;
427 case ARMFault_Translation:
428 fsc = fi->level == 1 ? 0x5 : 0x7;
429 break;
430 case ARMFault_SyncExternal:
431 fsc = 0x8 | (fi->ea << 12);
432 break;
433 case ARMFault_SyncExternalOnWalk:
434 fsc = fi->level == 1 ? 0xc : 0xe;
435 fsc |= (fi->ea << 12);
436 break;
437 case ARMFault_SyncParity:
438 fsc = 0x409;
439 break;
440 case ARMFault_SyncParityOnWalk:
441 fsc = fi->level == 1 ? 0x40c : 0x40e;
442 break;
443 case ARMFault_AsyncParity:
444 fsc = 0x408;
445 break;
446 case ARMFault_AsyncExternal:
447 fsc = 0x406 | (fi->ea << 12);
448 break;
449 case ARMFault_Debug:
450 fsc = 0x2;
451 break;
452 case ARMFault_TLBConflict:
453 fsc = 0x400;
454 break;
455 case ARMFault_Lockdown:
456 fsc = 0x404;
457 break;
458 case ARMFault_Exclusive:
459 fsc = 0x405;
460 break;
461 case ARMFault_ICacheMaint:
462 fsc = 0x4;
463 break;
464 case ARMFault_Background:
465 fsc = 0x0;
466 break;
467 case ARMFault_QEMU_NSCExec:
468 fsc = M_FAKE_FSR_NSC_EXEC;
469 break;
470 case ARMFault_QEMU_SFault:
471 fsc = M_FAKE_FSR_SFAULT;
472 break;
473 default:
474 /* Other faults can't occur in a context that requires a
475 * short-format status code.
476 */
477 g_assert_not_reached();
478 }
479
480 fsc |= (fi->domain << 4);
481 return fsc;
482 }
483
484 /**
485 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
486 * Compare pseudocode EncodeLDFSC(), though unlike that function
487 * we fill in also the LPAE bit 9 of a DFSR format.
488 */
489 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
490 {
491 uint32_t fsc;
492
493 switch (fi->type) {
494 case ARMFault_None:
495 return 0;
496 case ARMFault_AddressSize:
497 assert(fi->level >= -1 && fi->level <= 3);
498 if (fi->level < 0) {
499 fsc = 0b101001;
500 } else {
501 fsc = fi->level;
502 }
503 break;
504 case ARMFault_AccessFlag:
505 assert(fi->level >= 0 && fi->level <= 3);
506 fsc = 0b001000 | fi->level;
507 break;
508 case ARMFault_Permission:
509 assert(fi->level >= 0 && fi->level <= 3);
510 fsc = 0b001100 | fi->level;
511 break;
512 case ARMFault_Translation:
513 assert(fi->level >= -1 && fi->level <= 3);
514 if (fi->level < 0) {
515 fsc = 0b101011;
516 } else {
517 fsc = 0b000100 | fi->level;
518 }
519 break;
520 case ARMFault_SyncExternal:
521 fsc = 0x10 | (fi->ea << 12);
522 break;
523 case ARMFault_SyncExternalOnWalk:
524 assert(fi->level >= -1 && fi->level <= 3);
525 if (fi->level < 0) {
526 fsc = 0b010011;
527 } else {
528 fsc = 0b010100 | fi->level;
529 }
530 fsc |= fi->ea << 12;
531 break;
532 case ARMFault_SyncParity:
533 fsc = 0x18;
534 break;
535 case ARMFault_SyncParityOnWalk:
536 assert(fi->level >= -1 && fi->level <= 3);
537 if (fi->level < 0) {
538 fsc = 0b011011;
539 } else {
540 fsc = 0b011100 | fi->level;
541 }
542 break;
543 case ARMFault_AsyncParity:
544 fsc = 0x19;
545 break;
546 case ARMFault_AsyncExternal:
547 fsc = 0x11 | (fi->ea << 12);
548 break;
549 case ARMFault_Alignment:
550 fsc = 0x21;
551 break;
552 case ARMFault_Debug:
553 fsc = 0x22;
554 break;
555 case ARMFault_TLBConflict:
556 fsc = 0x30;
557 break;
558 case ARMFault_UnsuppAtomicUpdate:
559 fsc = 0x31;
560 break;
561 case ARMFault_Lockdown:
562 fsc = 0x34;
563 break;
564 case ARMFault_Exclusive:
565 fsc = 0x35;
566 break;
567 case ARMFault_GPCFOnWalk:
568 assert(fi->level >= -1 && fi->level <= 3);
569 if (fi->level < 0) {
570 fsc = 0b100011;
571 } else {
572 fsc = 0b100100 | fi->level;
573 }
574 break;
575 case ARMFault_GPCFOnOutput:
576 fsc = 0b101000;
577 break;
578 default:
579 /* Other faults can't occur in a context that requires a
580 * long-format status code.
581 */
582 g_assert_not_reached();
583 }
584
585 fsc |= 1 << 9;
586 return fsc;
587 }
588
589 static inline bool arm_extabort_type(MemTxResult result)
590 {
591 /* The EA bit in syndromes and fault status registers is an
592 * IMPDEF classification of external aborts. ARM implementations
593 * usually use this to indicate AXI bus Decode error (0) or
594 * Slave error (1); in QEMU we follow that.
595 */
596 return result != MEMTX_DECODE_ERROR;
597 }
598
599 #ifdef CONFIG_USER_ONLY
600 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
601 MMUAccessType access_type,
602 bool maperr, uintptr_t ra);
603 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
604 MMUAccessType access_type, uintptr_t ra);
605 #else
606 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
607 MMUAccessType access_type, int mmu_idx,
608 bool probe, uintptr_t retaddr);
609 #endif
610
611 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
612 {
613 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
614 }
615
616 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
617 {
618 if (arm_feature(env, ARM_FEATURE_M)) {
619 return mmu_idx | ARM_MMU_IDX_M;
620 } else {
621 return mmu_idx | ARM_MMU_IDX_A;
622 }
623 }
624
625 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
626 {
627 /* AArch64 is always a-profile. */
628 return mmu_idx | ARM_MMU_IDX_A;
629 }
630
631 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
632
633 /* Return the MMU index for a v7M CPU in the specified security state */
634 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
635
636 /*
637 * Return true if the stage 1 translation regime is using LPAE
638 * format page tables
639 */
640 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
641
642 /* Raise a data fault alignment exception for the specified virtual address */
643 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
644 MMUAccessType access_type,
645 int mmu_idx, uintptr_t retaddr);
646
647 #ifndef CONFIG_USER_ONLY
648 /* arm_cpu_do_transaction_failed: handle a memory system error response
649 * (eg "no device/memory present at address") by raising an external abort
650 * exception
651 */
652 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
653 vaddr addr, unsigned size,
654 MMUAccessType access_type,
655 int mmu_idx, MemTxAttrs attrs,
656 MemTxResult response, uintptr_t retaddr);
657 #endif
658
659 /* Call any registered EL change hooks */
660 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
661 {
662 ARMELChangeHook *hook, *next;
663 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
664 hook->hook(cpu, hook->opaque);
665 }
666 }
667 static inline void arm_call_el_change_hook(ARMCPU *cpu)
668 {
669 ARMELChangeHook *hook, *next;
670 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
671 hook->hook(cpu, hook->opaque);
672 }
673 }
674
675 /* Return true if this address translation regime has two ranges. */
676 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
677 {
678 switch (mmu_idx) {
679 case ARMMMUIdx_Stage1_E0:
680 case ARMMMUIdx_Stage1_E1:
681 case ARMMMUIdx_Stage1_E1_PAN:
682 case ARMMMUIdx_E10_0:
683 case ARMMMUIdx_E10_1:
684 case ARMMMUIdx_E10_1_PAN:
685 case ARMMMUIdx_E20_0:
686 case ARMMMUIdx_E20_2:
687 case ARMMMUIdx_E20_2_PAN:
688 return true;
689 default:
690 return false;
691 }
692 }
693
694 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
695 {
696 switch (mmu_idx) {
697 case ARMMMUIdx_Stage1_E1_PAN:
698 case ARMMMUIdx_E10_1_PAN:
699 case ARMMMUIdx_E20_2_PAN:
700 return true;
701 default:
702 return false;
703 }
704 }
705
706 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
707 {
708 return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
709 }
710
711 /* Return the exception level which controls this address translation regime */
712 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
713 {
714 switch (mmu_idx) {
715 case ARMMMUIdx_E20_0:
716 case ARMMMUIdx_E20_2:
717 case ARMMMUIdx_E20_2_PAN:
718 case ARMMMUIdx_Stage2:
719 case ARMMMUIdx_Stage2_S:
720 case ARMMMUIdx_E2:
721 return 2;
722 case ARMMMUIdx_E3:
723 return 3;
724 case ARMMMUIdx_E10_0:
725 case ARMMMUIdx_Stage1_E0:
726 return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
727 case ARMMMUIdx_Stage1_E1:
728 case ARMMMUIdx_Stage1_E1_PAN:
729 case ARMMMUIdx_E10_1:
730 case ARMMMUIdx_E10_1_PAN:
731 case ARMMMUIdx_MPrivNegPri:
732 case ARMMMUIdx_MUserNegPri:
733 case ARMMMUIdx_MPriv:
734 case ARMMMUIdx_MUser:
735 case ARMMMUIdx_MSPrivNegPri:
736 case ARMMMUIdx_MSUserNegPri:
737 case ARMMMUIdx_MSPriv:
738 case ARMMMUIdx_MSUser:
739 return 1;
740 default:
741 g_assert_not_reached();
742 }
743 }
744
745 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
746 {
747 switch (mmu_idx) {
748 case ARMMMUIdx_E20_0:
749 case ARMMMUIdx_Stage1_E0:
750 case ARMMMUIdx_MUser:
751 case ARMMMUIdx_MSUser:
752 case ARMMMUIdx_MUserNegPri:
753 case ARMMMUIdx_MSUserNegPri:
754 return true;
755 default:
756 return false;
757 case ARMMMUIdx_E10_0:
758 case ARMMMUIdx_E10_1:
759 case ARMMMUIdx_E10_1_PAN:
760 g_assert_not_reached();
761 }
762 }
763
764 /* Return the SCTLR value which controls this address translation regime */
765 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
766 {
767 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
768 }
769
770 /*
771 * These are the fields in VTCR_EL2 which affect both the Secure stage 2
772 * and the Non-Secure stage 2 translation regimes (and hence which are
773 * not present in VSTCR_EL2).
774 */
775 #define VTCR_SHARED_FIELD_MASK \
776 (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
777 R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
778 R_VTCR_DS_MASK)
779
780 /* Return the value of the TCR controlling this translation regime */
781 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
782 {
783 if (mmu_idx == ARMMMUIdx_Stage2) {
784 return env->cp15.vtcr_el2;
785 }
786 if (mmu_idx == ARMMMUIdx_Stage2_S) {
787 /*
788 * Secure stage 2 shares fields from VTCR_EL2. We merge those
789 * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
790 * value so the callers don't need to special case this.
791 *
792 * If a future architecture change defines bits in VSTCR_EL2 that
793 * overlap with these VTCR_EL2 fields we may need to revisit this.
794 */
795 uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
796 v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
797 return v;
798 }
799 return env->cp15.tcr_el[regime_el(env, mmu_idx)];
800 }
801
802 /* Return true if the translation regime is using LPAE format page tables */
803 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
804 {
805 int el = regime_el(env, mmu_idx);
806 if (el == 2 || arm_el_is_aa64(env, el)) {
807 return true;
808 }
809 if (arm_feature(env, ARM_FEATURE_PMSA) &&
810 arm_feature(env, ARM_FEATURE_V8)) {
811 return true;
812 }
813 if (arm_feature(env, ARM_FEATURE_LPAE)
814 && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
815 return true;
816 }
817 return false;
818 }
819
820 /**
821 * arm_num_brps: Return number of implemented breakpoints.
822 * Note that the ID register BRPS field is "number of bps - 1",
823 * and we return the actual number of breakpoints.
824 */
825 static inline int arm_num_brps(ARMCPU *cpu)
826 {
827 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
828 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
829 } else {
830 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
831 }
832 }
833
834 /**
835 * arm_num_wrps: Return number of implemented watchpoints.
836 * Note that the ID register WRPS field is "number of wps - 1",
837 * and we return the actual number of watchpoints.
838 */
839 static inline int arm_num_wrps(ARMCPU *cpu)
840 {
841 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
842 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
843 } else {
844 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
845 }
846 }
847
848 /**
849 * arm_num_ctx_cmps: Return number of implemented context comparators.
850 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
851 * and we return the actual number of comparators.
852 */
853 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
854 {
855 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
856 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
857 } else {
858 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
859 }
860 }
861
862 /**
863 * v7m_using_psp: Return true if using process stack pointer
864 * Return true if the CPU is currently using the process stack
865 * pointer, or false if it is using the main stack pointer.
866 */
867 static inline bool v7m_using_psp(CPUARMState *env)
868 {
869 /* Handler mode always uses the main stack; for thread mode
870 * the CONTROL.SPSEL bit determines the answer.
871 * Note that in v7M it is not possible to be in Handler mode with
872 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
873 */
874 return !arm_v7m_is_handler_mode(env) &&
875 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
876 }
877
878 /**
879 * v7m_sp_limit: Return SP limit for current CPU state
880 * Return the SP limit value for the current CPU security state
881 * and stack pointer.
882 */
883 static inline uint32_t v7m_sp_limit(CPUARMState *env)
884 {
885 if (v7m_using_psp(env)) {
886 return env->v7m.psplim[env->v7m.secure];
887 } else {
888 return env->v7m.msplim[env->v7m.secure];
889 }
890 }
891
892 /**
893 * v7m_cpacr_pass:
894 * Return true if the v7M CPACR permits access to the FPU for the specified
895 * security state and privilege level.
896 */
897 static inline bool v7m_cpacr_pass(CPUARMState *env,
898 bool is_secure, bool is_priv)
899 {
900 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
901 case 0:
902 case 2: /* UNPREDICTABLE: we treat like 0 */
903 return false;
904 case 1:
905 return is_priv;
906 case 3:
907 return true;
908 default:
909 g_assert_not_reached();
910 }
911 }
912
913 /**
914 * aarch32_mode_name(): Return name of the AArch32 CPU mode
915 * @psr: Program Status Register indicating CPU mode
916 *
917 * Returns, for debug logging purposes, a printable representation
918 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
919 * the low bits of the specified PSR.
920 */
921 static inline const char *aarch32_mode_name(uint32_t psr)
922 {
923 static const char cpu_mode_names[16][4] = {
924 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
925 "???", "???", "hyp", "und", "???", "???", "???", "sys"
926 };
927
928 return cpu_mode_names[psr & 0xf];
929 }
930
931 /**
932 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
933 *
934 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
935 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
936 * Must be called with the iothread lock held.
937 */
938 void arm_cpu_update_virq(ARMCPU *cpu);
939
940 /**
941 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
942 *
943 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
944 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
945 * Must be called with the iothread lock held.
946 */
947 void arm_cpu_update_vfiq(ARMCPU *cpu);
948
949 /**
950 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
951 *
952 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
953 * following a change to the HCR_EL2.VSE bit.
954 */
955 void arm_cpu_update_vserr(ARMCPU *cpu);
956
957 /**
958 * arm_mmu_idx_el:
959 * @env: The cpu environment
960 * @el: The EL to use.
961 *
962 * Return the full ARMMMUIdx for the translation regime for EL.
963 */
964 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
965
966 /**
967 * arm_mmu_idx:
968 * @env: The cpu environment
969 *
970 * Return the full ARMMMUIdx for the current translation regime.
971 */
972 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
973
974 /**
975 * arm_stage1_mmu_idx:
976 * @env: The cpu environment
977 *
978 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
979 */
980 #ifdef CONFIG_USER_ONLY
981 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
982 {
983 return ARMMMUIdx_Stage1_E0;
984 }
985 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
986 {
987 return ARMMMUIdx_Stage1_E0;
988 }
989 #else
990 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
991 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
992 #endif
993
994 /**
995 * arm_mmu_idx_is_stage1_of_2:
996 * @mmu_idx: The ARMMMUIdx to test
997 *
998 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
999 * first stage of a two stage regime.
1000 */
1001 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1002 {
1003 switch (mmu_idx) {
1004 case ARMMMUIdx_Stage1_E0:
1005 case ARMMMUIdx_Stage1_E1:
1006 case ARMMMUIdx_Stage1_E1_PAN:
1007 return true;
1008 default:
1009 return false;
1010 }
1011 }
1012
1013 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1014 const ARMISARegisters *id)
1015 {
1016 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1017
1018 if ((features >> ARM_FEATURE_V4T) & 1) {
1019 valid |= CPSR_T;
1020 }
1021 if ((features >> ARM_FEATURE_V5) & 1) {
1022 valid |= CPSR_Q; /* V5TE in reality*/
1023 }
1024 if ((features >> ARM_FEATURE_V6) & 1) {
1025 valid |= CPSR_E | CPSR_GE;
1026 }
1027 if ((features >> ARM_FEATURE_THUMB2) & 1) {
1028 valid |= CPSR_IT;
1029 }
1030 if (isar_feature_aa32_jazelle(id)) {
1031 valid |= CPSR_J;
1032 }
1033 if (isar_feature_aa32_pan(id)) {
1034 valid |= CPSR_PAN;
1035 }
1036 if (isar_feature_aa32_dit(id)) {
1037 valid |= CPSR_DIT;
1038 }
1039 if (isar_feature_aa32_ssbs(id)) {
1040 valid |= CPSR_SSBS;
1041 }
1042
1043 return valid;
1044 }
1045
1046 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1047 {
1048 uint32_t valid;
1049
1050 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1051 if (isar_feature_aa64_bti(id)) {
1052 valid |= PSTATE_BTYPE;
1053 }
1054 if (isar_feature_aa64_pan(id)) {
1055 valid |= PSTATE_PAN;
1056 }
1057 if (isar_feature_aa64_uao(id)) {
1058 valid |= PSTATE_UAO;
1059 }
1060 if (isar_feature_aa64_dit(id)) {
1061 valid |= PSTATE_DIT;
1062 }
1063 if (isar_feature_aa64_ssbs(id)) {
1064 valid |= PSTATE_SSBS;
1065 }
1066 if (isar_feature_aa64_mte(id)) {
1067 valid |= PSTATE_TCO;
1068 }
1069
1070 return valid;
1071 }
1072
1073 /* Granule size (i.e. page size) */
1074 typedef enum ARMGranuleSize {
1075 /* Same order as TG0 encoding */
1076 Gran4K,
1077 Gran64K,
1078 Gran16K,
1079 GranInvalid,
1080 } ARMGranuleSize;
1081
1082 /**
1083 * arm_granule_bits: Return address size of the granule in bits
1084 *
1085 * Return the address size of the granule in bits. This corresponds
1086 * to the pseudocode TGxGranuleBits().
1087 */
1088 static inline int arm_granule_bits(ARMGranuleSize gran)
1089 {
1090 switch (gran) {
1091 case Gran64K:
1092 return 16;
1093 case Gran16K:
1094 return 14;
1095 case Gran4K:
1096 return 12;
1097 default:
1098 g_assert_not_reached();
1099 }
1100 }
1101
1102 /*
1103 * Parameters of a given virtual address, as extracted from the
1104 * translation control register (TCR) for a given regime.
1105 */
1106 typedef struct ARMVAParameters {
1107 unsigned tsz : 8;
1108 unsigned ps : 3;
1109 unsigned sh : 2;
1110 unsigned select : 1;
1111 bool tbi : 1;
1112 bool epd : 1;
1113 bool hpd : 1;
1114 bool tsz_oob : 1; /* tsz has been clamped to legal range */
1115 bool ds : 1;
1116 bool ha : 1;
1117 bool hd : 1;
1118 ARMGranuleSize gran : 2;
1119 } ARMVAParameters;
1120
1121 /**
1122 * aa64_va_parameters: Return parameters for an AArch64 virtual address
1123 * @env: CPU
1124 * @va: virtual address to look up
1125 * @mmu_idx: determines translation regime to use
1126 * @data: true if this is a data access
1127 * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
1128 * (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
1129 */
1130 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1131 ARMMMUIdx mmu_idx, bool data,
1132 bool el1_is_aa32);
1133
1134 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1135 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1136 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
1137
1138 /* Determine if allocation tags are available. */
1139 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1140 uint64_t sctlr)
1141 {
1142 if (el < 3
1143 && arm_feature(env, ARM_FEATURE_EL3)
1144 && !(env->cp15.scr_el3 & SCR_ATA)) {
1145 return false;
1146 }
1147 if (el < 2 && arm_is_el2_enabled(env)) {
1148 uint64_t hcr = arm_hcr_el2_eff(env);
1149 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1150 return false;
1151 }
1152 }
1153 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1154 return sctlr != 0;
1155 }
1156
1157 #ifndef CONFIG_USER_ONLY
1158
1159 /* Security attributes for an address, as returned by v8m_security_lookup. */
1160 typedef struct V8M_SAttributes {
1161 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1162 bool ns;
1163 bool nsc;
1164 uint8_t sregion;
1165 bool srvalid;
1166 uint8_t iregion;
1167 bool irvalid;
1168 } V8M_SAttributes;
1169
1170 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1171 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1172 bool secure, V8M_SAttributes *sattrs);
1173
1174 /* Cacheability and shareability attributes for a memory access */
1175 typedef struct ARMCacheAttrs {
1176 /*
1177 * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1178 * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1179 */
1180 unsigned int attrs:8;
1181 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1182 bool is_s2_format:1;
1183 bool guarded:1; /* guarded bit of the v8-64 PTE */
1184 } ARMCacheAttrs;
1185
1186 /* Fields that are valid upon success. */
1187 typedef struct GetPhysAddrResult {
1188 CPUTLBEntryFull f;
1189 ARMCacheAttrs cacheattrs;
1190 } GetPhysAddrResult;
1191
1192 /**
1193 * get_phys_addr: get the physical address for a virtual address
1194 * @env: CPUARMState
1195 * @address: virtual address to get physical address for
1196 * @access_type: 0 for read, 1 for write, 2 for execute
1197 * @mmu_idx: MMU index indicating required translation regime
1198 * @result: set on translation success.
1199 * @fi: set to fault info if the translation fails
1200 *
1201 * Find the physical address corresponding to the given virtual address,
1202 * by doing a translation table walk on MMU based systems or using the
1203 * MPU state on MPU based systems.
1204 *
1205 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1206 * prot and page_size may not be filled in, and the populated fsr value provides
1207 * information on why the translation aborted, in the format of a
1208 * DFSR/IFSR fault register, with the following caveats:
1209 * * we honour the short vs long DFSR format differences.
1210 * * the WnR bit is never set (the caller must do this).
1211 * * for PSMAv5 based systems we don't bother to return a full FSR format
1212 * value.
1213 */
1214 bool get_phys_addr(CPUARMState *env, target_ulong address,
1215 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1216 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1217 __attribute__((nonnull));
1218
1219 /**
1220 * get_phys_addr_with_space_nogpc: get the physical address for a virtual
1221 * address
1222 * @env: CPUARMState
1223 * @address: virtual address to get physical address for
1224 * @access_type: 0 for read, 1 for write, 2 for execute
1225 * @mmu_idx: MMU index indicating required translation regime
1226 * @space: security space for the access
1227 * @result: set on translation success.
1228 * @fi: set to fault info if the translation fails
1229 *
1230 * Similar to get_phys_addr, but use the given security space and don't perform
1231 * a Granule Protection Check on the resulting address.
1232 */
1233 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
1234 MMUAccessType access_type,
1235 ARMMMUIdx mmu_idx, ARMSecuritySpace space,
1236 GetPhysAddrResult *result,
1237 ARMMMUFaultInfo *fi)
1238 __attribute__((nonnull));
1239
1240 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1241 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1242 bool is_secure, GetPhysAddrResult *result,
1243 ARMMMUFaultInfo *fi, uint32_t *mregion);
1244
1245 void arm_log_exception(CPUState *cs);
1246
1247 #endif /* !CONFIG_USER_ONLY */
1248
1249 /*
1250 * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1251 * the same simd_desc() encoding due to restrictions on size.
1252 * Use these instead.
1253 */
1254 FIELD(PREDDESC, OPRSZ, 0, 6)
1255 FIELD(PREDDESC, ESZ, 6, 2)
1256 FIELD(PREDDESC, DATA, 8, 24)
1257
1258 /*
1259 * The SVE simd_data field, for memory ops, contains either
1260 * rd (5 bits) or a shift count (2 bits).
1261 */
1262 #define SVE_MTEDESC_SHIFT 5
1263
1264 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1265 FIELD(MTEDESC, MIDX, 0, 4)
1266 FIELD(MTEDESC, TBI, 4, 2)
1267 FIELD(MTEDESC, TCMA, 6, 2)
1268 FIELD(MTEDESC, WRITE, 8, 1)
1269 FIELD(MTEDESC, ALIGN, 9, 3)
1270 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - 12) /* size - 1 */
1271
1272 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1273 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1274
1275 /**
1276 * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation
1277 * @env: CPU env
1278 * @ptr: start address of memory region (dirty pointer)
1279 * @size: length of region (guaranteed not to cross a page boundary)
1280 * @desc: MTEDESC descriptor word (0 means no MTE checks)
1281 * Returns: the size of the region that can be copied without hitting
1282 * an MTE tag failure
1283 *
1284 * Note that we assume that the caller has already checked the TBI
1285 * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1286 * required.
1287 */
1288 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1289 uint32_t desc);
1290
1291 /**
1292 * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS
1293 * operation going in the reverse direction
1294 * @env: CPU env
1295 * @ptr: *end* address of memory region (dirty pointer)
1296 * @size: length of region (guaranteed not to cross a page boundary)
1297 * @desc: MTEDESC descriptor word (0 means no MTE checks)
1298 * Returns: the size of the region that can be copied without hitting
1299 * an MTE tag failure
1300 *
1301 * Note that we assume that the caller has already checked the TBI
1302 * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1303 * required.
1304 */
1305 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1306 uint32_t desc);
1307
1308 /**
1309 * mte_check_fail: Record an MTE tag check failure
1310 * @env: CPU env
1311 * @desc: MTEDESC descriptor word
1312 * @dirty_ptr: Failing dirty address
1313 * @ra: TCG retaddr
1314 *
1315 * This may never return (if the MTE tag checks are configured to fault).
1316 */
1317 void mte_check_fail(CPUARMState *env, uint32_t desc,
1318 uint64_t dirty_ptr, uintptr_t ra);
1319
1320 /**
1321 * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation
1322 * @env: CPU env
1323 * @dirty_ptr: Start address of memory region (dirty pointer)
1324 * @size: length of region (guaranteed not to cross page boundary)
1325 * @desc: MTEDESC descriptor word
1326 */
1327 void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size,
1328 uint32_t desc);
1329
1330 static inline int allocation_tag_from_addr(uint64_t ptr)
1331 {
1332 return extract64(ptr, 56, 4);
1333 }
1334
1335 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1336 {
1337 return deposit64(ptr, 56, 4, rtag);
1338 }
1339
1340 /* Return true if tbi bits mean that the access is checked. */
1341 static inline bool tbi_check(uint32_t desc, int bit55)
1342 {
1343 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1344 }
1345
1346 /* Return true if tcma bits mean that the access is unchecked. */
1347 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1348 {
1349 /*
1350 * We had extracted bit55 and ptr_tag for other reasons, so fold
1351 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1352 */
1353 bool match = ((ptr_tag + bit55) & 0xf) == 0;
1354 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1355 return tcma && match;
1356 }
1357
1358 /*
1359 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
1360 * for the tag to be present in the FAR_ELx register. But for user-only
1361 * mode, we do not have a TLB with which to implement this, so we must
1362 * remove the top byte.
1363 */
1364 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1365 {
1366 #ifdef CONFIG_USER_ONLY
1367 /* TBI0 is known to be enabled, while TBI1 is disabled. */
1368 ptr &= sextract64(ptr, 0, 56);
1369 #endif
1370 return ptr;
1371 }
1372
1373 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1374 {
1375 #ifdef CONFIG_USER_ONLY
1376 int64_t clean_ptr = sextract64(ptr, 0, 56);
1377 if (tbi_check(desc, clean_ptr < 0)) {
1378 ptr = clean_ptr;
1379 }
1380 #endif
1381 return ptr;
1382 }
1383
1384 /* Values for M-profile PSR.ECI for MVE insns */
1385 enum MVEECIState {
1386 ECI_NONE = 0, /* No completed beats */
1387 ECI_A0 = 1, /* Completed: A0 */
1388 ECI_A0A1 = 2, /* Completed: A0, A1 */
1389 /* 3 is reserved */
1390 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1391 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1392 /* All other values reserved */
1393 };
1394
1395 /* Definitions for the PMU registers */
1396 #define PMCRN_MASK 0xf800
1397 #define PMCRN_SHIFT 11
1398 #define PMCRLP 0x80
1399 #define PMCRLC 0x40
1400 #define PMCRDP 0x20
1401 #define PMCRX 0x10
1402 #define PMCRD 0x8
1403 #define PMCRC 0x4
1404 #define PMCRP 0x2
1405 #define PMCRE 0x1
1406 /*
1407 * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1408 * which can be written as 1 to trigger behaviour but which stay RAZ).
1409 */
1410 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1411
1412 #define PMXEVTYPER_P 0x80000000
1413 #define PMXEVTYPER_U 0x40000000
1414 #define PMXEVTYPER_NSK 0x20000000
1415 #define PMXEVTYPER_NSU 0x10000000
1416 #define PMXEVTYPER_NSH 0x08000000
1417 #define PMXEVTYPER_M 0x04000000
1418 #define PMXEVTYPER_MT 0x02000000
1419 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1420 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1421 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1422 PMXEVTYPER_M | PMXEVTYPER_MT | \
1423 PMXEVTYPER_EVTCOUNT)
1424
1425 #define PMCCFILTR 0xf8000000
1426 #define PMCCFILTR_M PMXEVTYPER_M
1427 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1428
1429 static inline uint32_t pmu_num_counters(CPUARMState *env)
1430 {
1431 ARMCPU *cpu = env_archcpu(env);
1432
1433 return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1434 }
1435
1436 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1437 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1438 {
1439 return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1440 }
1441
1442 #ifdef TARGET_AARCH64
1443 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1444 int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg);
1445 int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg);
1446 int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg);
1447 int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg);
1448 int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg);
1449 int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg);
1450 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1451 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1452 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1453 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1454 void aarch64_max_tcg_initfn(Object *obj);
1455 void aarch64_add_pauth_properties(Object *obj);
1456 void aarch64_add_sve_properties(Object *obj);
1457 void aarch64_add_sme_properties(Object *obj);
1458 #endif
1459
1460 /* Read the CONTROL register as the MRS instruction would. */
1461 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
1462
1463 /*
1464 * Return a pointer to the location where we currently store the
1465 * stack pointer for the requested security state and thread mode.
1466 * This pointer will become invalid if the CPU state is updated
1467 * such that the stack pointers are switched around (eg changing
1468 * the SPSEL control bit).
1469 */
1470 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
1471 bool threadmode, bool spsel);
1472
1473 bool el_is_in_host(CPUARMState *env, int el);
1474
1475 void aa32_max_features(ARMCPU *cpu);
1476 int exception_target_el(CPUARMState *env);
1477 bool arm_singlestep_active(CPUARMState *env);
1478 bool arm_generate_debug_exceptions(CPUARMState *env);
1479
1480 /**
1481 * pauth_ptr_mask:
1482 * @param: parameters defining the MMU setup
1483 *
1484 * Return a mask of the address bits that contain the authentication code,
1485 * given the MMU config defined by @param.
1486 */
1487 static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
1488 {
1489 int bot_pac_bit = 64 - param.tsz;
1490 int top_pac_bit = 64 - 8 * param.tbi;
1491
1492 return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
1493 }
1494
1495 /* Add the cpreg definitions for debug related system registers */
1496 void define_debug_regs(ARMCPU *cpu);
1497
1498 /* Effective value of MDCR_EL2 */
1499 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1500 {
1501 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1502 }
1503
1504 /* Powers of 2 for sve_vq_map et al. */
1505 #define SVE_VQ_POW2_MAP \
1506 ((1 << (1 - 1)) | (1 << (2 - 1)) | \
1507 (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1508
1509 /*
1510 * Return true if it is possible to take a fine-grained-trap to EL2.
1511 */
1512 static inline bool arm_fgt_active(CPUARMState *env, int el)
1513 {
1514 /*
1515 * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1516 * that can affect EL0, but it is harmless to do the test also for
1517 * traps on registers that are only accessible at EL1 because if the test
1518 * returns true then we can't be executing at EL1 anyway.
1519 * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1520 * traps from AArch32 only happen for the EL0 is AArch32 case.
1521 */
1522 return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1523 el < 2 && arm_is_el2_enabled(env) &&
1524 arm_el_is_aa64(env, 1) &&
1525 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1526 (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1527 }
1528
1529 void assert_hflags_rebuild_correctly(CPUARMState *env);
1530
1531 /*
1532 * Although the ARM implementation of hardware assisted debugging
1533 * allows for different breakpoints per-core, the current GDB
1534 * interface treats them as a global pool of registers (which seems to
1535 * be the case for x86, ppc and s390). As a result we store one copy
1536 * of registers which is used for all active cores.
1537 *
1538 * Write access is serialised by virtue of the GDB protocol which
1539 * updates things. Read access (i.e. when the values are copied to the
1540 * vCPU) is also gated by GDB's run control.
1541 *
1542 * This is not unreasonable as most of the time debugging kernels you
1543 * never know which core will eventually execute your function.
1544 */
1545
1546 typedef struct {
1547 uint64_t bcr;
1548 uint64_t bvr;
1549 } HWBreakpoint;
1550
1551 /*
1552 * The watchpoint registers can cover more area than the requested
1553 * watchpoint so we need to store the additional information
1554 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
1555 * when the watchpoint is hit.
1556 */
1557 typedef struct {
1558 uint64_t wcr;
1559 uint64_t wvr;
1560 CPUWatchpoint details;
1561 } HWWatchpoint;
1562
1563 /* Maximum and current break/watch point counts */
1564 extern int max_hw_bps, max_hw_wps;
1565 extern GArray *hw_breakpoints, *hw_watchpoints;
1566
1567 #define cur_hw_wps (hw_watchpoints->len)
1568 #define cur_hw_bps (hw_breakpoints->len)
1569 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
1570 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
1571
1572 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
1573 int insert_hw_breakpoint(target_ulong pc);
1574 int delete_hw_breakpoint(target_ulong pc);
1575
1576 bool check_watchpoint_in_range(int i, target_ulong addr);
1577 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
1578 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1579 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1580 #endif