]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/kvm.c
8f52b211f9ac917e2e80f11f7c3136be2a3e65bb
[mirror_qemu.git] / target / arm / kvm.c
1 /*
2 * ARM implementation of KVM hooks
3 *
4 * Copyright Christoffer Dall 2009-2010
5 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6 * Copyright Alex Bennée 2014, Linaro
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
9 * See the COPYING file in the top-level directory.
10 *
11 */
12
13 #include "qemu/osdep.h"
14 #include <sys/ioctl.h>
15
16 #include <linux/kvm.h>
17
18 #include "qemu/timer.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qom/object.h"
22 #include "qapi/error.h"
23 #include "sysemu/sysemu.h"
24 #include "sysemu/runstate.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/kvm_int.h"
27 #include "kvm_arm.h"
28 #include "cpu.h"
29 #include "trace.h"
30 #include "internals.h"
31 #include "hw/pci/pci.h"
32 #include "exec/memattrs.h"
33 #include "exec/address-spaces.h"
34 #include "exec/gdbstub.h"
35 #include "hw/boards.h"
36 #include "hw/irq.h"
37 #include "qapi/visitor.h"
38 #include "qemu/log.h"
39 #include "hw/acpi/acpi.h"
40 #include "hw/acpi/ghes.h"
41
42 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
43 KVM_CAP_LAST_INFO
44 };
45
46 static bool cap_has_mp_state;
47 static bool cap_has_inject_serror_esr;
48 static bool cap_has_inject_ext_dabt;
49
50 /**
51 * ARMHostCPUFeatures: information about the host CPU (identified
52 * by asking the host kernel)
53 */
54 typedef struct ARMHostCPUFeatures {
55 ARMISARegisters isar;
56 uint64_t features;
57 uint32_t target;
58 const char *dtb_compatible;
59 } ARMHostCPUFeatures;
60
61 static ARMHostCPUFeatures arm_host_cpu_features;
62
63 /**
64 * kvm_arm_vcpu_init:
65 * @cpu: ARMCPU
66 *
67 * Initialize (or reinitialize) the VCPU by invoking the
68 * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
69 * bitmask specified in the CPUState.
70 *
71 * Returns: 0 if success else < 0 error code
72 */
73 static int kvm_arm_vcpu_init(ARMCPU *cpu)
74 {
75 struct kvm_vcpu_init init;
76
77 init.target = cpu->kvm_target;
78 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
79
80 return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
81 }
82
83 /**
84 * kvm_arm_vcpu_finalize:
85 * @cpu: ARMCPU
86 * @feature: feature to finalize
87 *
88 * Finalizes the configuration of the specified VCPU feature by
89 * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
90 * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
91 * KVM's API documentation.
92 *
93 * Returns: 0 if success else < 0 error code
94 */
95 static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
96 {
97 return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
98 }
99
100 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
101 int *fdarray,
102 struct kvm_vcpu_init *init)
103 {
104 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
105 int max_vm_pa_size;
106
107 kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
108 if (kvmfd < 0) {
109 goto err;
110 }
111 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
112 if (max_vm_pa_size < 0) {
113 max_vm_pa_size = 0;
114 }
115 do {
116 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
117 } while (vmfd == -1 && errno == EINTR);
118 if (vmfd < 0) {
119 goto err;
120 }
121 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
122 if (cpufd < 0) {
123 goto err;
124 }
125
126 if (!init) {
127 /* Caller doesn't want the VCPU to be initialized, so skip it */
128 goto finish;
129 }
130
131 if (init->target == -1) {
132 struct kvm_vcpu_init preferred;
133
134 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
135 if (!ret) {
136 init->target = preferred.target;
137 }
138 }
139 if (ret >= 0) {
140 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
141 if (ret < 0) {
142 goto err;
143 }
144 } else if (cpus_to_try) {
145 /* Old kernel which doesn't know about the
146 * PREFERRED_TARGET ioctl: we know it will only support
147 * creating one kind of guest CPU which is its preferred
148 * CPU type.
149 */
150 struct kvm_vcpu_init try;
151
152 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
153 try.target = *cpus_to_try++;
154 memcpy(try.features, init->features, sizeof(init->features));
155 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
156 if (ret >= 0) {
157 break;
158 }
159 }
160 if (ret < 0) {
161 goto err;
162 }
163 init->target = try.target;
164 } else {
165 /* Treat a NULL cpus_to_try argument the same as an empty
166 * list, which means we will fail the call since this must
167 * be an old kernel which doesn't support PREFERRED_TARGET.
168 */
169 goto err;
170 }
171
172 finish:
173 fdarray[0] = kvmfd;
174 fdarray[1] = vmfd;
175 fdarray[2] = cpufd;
176
177 return true;
178
179 err:
180 if (cpufd >= 0) {
181 close(cpufd);
182 }
183 if (vmfd >= 0) {
184 close(vmfd);
185 }
186 if (kvmfd >= 0) {
187 close(kvmfd);
188 }
189
190 return false;
191 }
192
193 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
194 {
195 int i;
196
197 for (i = 2; i >= 0; i--) {
198 close(fdarray[i]);
199 }
200 }
201
202 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
203 {
204 uint64_t ret;
205 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
206 int err;
207
208 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
209 err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
210 if (err < 0) {
211 return -1;
212 }
213 *pret = ret;
214 return 0;
215 }
216
217 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
218 {
219 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
220
221 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
222 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
223 }
224
225 static bool kvm_arm_pauth_supported(void)
226 {
227 return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
228 kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
229 }
230
231 static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
232 {
233 /* Identify the feature bits corresponding to the host CPU, and
234 * fill out the ARMHostCPUClass fields accordingly. To do this
235 * we have to create a scratch VM, create a single CPU inside it,
236 * and then query that CPU for the relevant ID registers.
237 */
238 int fdarray[3];
239 bool sve_supported;
240 bool pmu_supported = false;
241 uint64_t features = 0;
242 int err;
243
244 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
245 * we know these will only support creating one kind of guest CPU,
246 * which is its preferred CPU type. Fortunately these old kernels
247 * support only a very limited number of CPUs.
248 */
249 static const uint32_t cpus_to_try[] = {
250 KVM_ARM_TARGET_AEM_V8,
251 KVM_ARM_TARGET_FOUNDATION_V8,
252 KVM_ARM_TARGET_CORTEX_A57,
253 QEMU_KVM_ARM_TARGET_NONE
254 };
255 /*
256 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
257 * to use the preferred target
258 */
259 struct kvm_vcpu_init init = { .target = -1, };
260
261 /*
262 * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
263 * which is otherwise RAZ.
264 */
265 sve_supported = kvm_arm_sve_supported();
266 if (sve_supported) {
267 init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
268 }
269
270 /*
271 * Ask for Pointer Authentication if supported, so that we get
272 * the unsanitized field values for AA64ISAR1_EL1.
273 */
274 if (kvm_arm_pauth_supported()) {
275 init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
276 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
277 }
278
279 if (kvm_arm_pmu_supported()) {
280 init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
281 pmu_supported = true;
282 }
283
284 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
285 return false;
286 }
287
288 ahcf->target = init.target;
289 ahcf->dtb_compatible = "arm,arm-v8";
290
291 err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
292 ARM64_SYS_REG(3, 0, 0, 4, 0));
293 if (unlikely(err < 0)) {
294 /*
295 * Before v4.15, the kernel only exposed a limited number of system
296 * registers, not including any of the interesting AArch64 ID regs.
297 * For the most part we could leave these fields as zero with minimal
298 * effect, since this does not affect the values seen by the guest.
299 *
300 * However, it could cause problems down the line for QEMU,
301 * so provide a minimal v8.0 default.
302 *
303 * ??? Could read MIDR and use knowledge from cpu64.c.
304 * ??? Could map a page of memory into our temp guest and
305 * run the tiniest of hand-crafted kernels to extract
306 * the values seen by the guest.
307 * ??? Either of these sounds like too much effort just
308 * to work around running a modern host kernel.
309 */
310 ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
311 err = 0;
312 } else {
313 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
314 ARM64_SYS_REG(3, 0, 0, 4, 1));
315 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
316 ARM64_SYS_REG(3, 0, 0, 4, 5));
317 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
318 ARM64_SYS_REG(3, 0, 0, 5, 0));
319 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
320 ARM64_SYS_REG(3, 0, 0, 5, 1));
321 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
322 ARM64_SYS_REG(3, 0, 0, 6, 0));
323 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
324 ARM64_SYS_REG(3, 0, 0, 6, 1));
325 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
326 ARM64_SYS_REG(3, 0, 0, 6, 2));
327 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
328 ARM64_SYS_REG(3, 0, 0, 7, 0));
329 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
330 ARM64_SYS_REG(3, 0, 0, 7, 1));
331 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
332 ARM64_SYS_REG(3, 0, 0, 7, 2));
333
334 /*
335 * Note that if AArch32 support is not present in the host,
336 * the AArch32 sysregs are present to be read, but will
337 * return UNKNOWN values. This is neither better nor worse
338 * than skipping the reads and leaving 0, as we must avoid
339 * considering the values in every case.
340 */
341 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
342 ARM64_SYS_REG(3, 0, 0, 1, 0));
343 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
344 ARM64_SYS_REG(3, 0, 0, 1, 1));
345 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
346 ARM64_SYS_REG(3, 0, 0, 1, 2));
347 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
348 ARM64_SYS_REG(3, 0, 0, 1, 4));
349 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
350 ARM64_SYS_REG(3, 0, 0, 1, 5));
351 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
352 ARM64_SYS_REG(3, 0, 0, 1, 6));
353 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
354 ARM64_SYS_REG(3, 0, 0, 1, 7));
355 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
356 ARM64_SYS_REG(3, 0, 0, 2, 0));
357 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
358 ARM64_SYS_REG(3, 0, 0, 2, 1));
359 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
360 ARM64_SYS_REG(3, 0, 0, 2, 2));
361 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
362 ARM64_SYS_REG(3, 0, 0, 2, 3));
363 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
364 ARM64_SYS_REG(3, 0, 0, 2, 4));
365 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
366 ARM64_SYS_REG(3, 0, 0, 2, 5));
367 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
368 ARM64_SYS_REG(3, 0, 0, 2, 6));
369 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
370 ARM64_SYS_REG(3, 0, 0, 2, 7));
371
372 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
373 ARM64_SYS_REG(3, 0, 0, 3, 0));
374 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
375 ARM64_SYS_REG(3, 0, 0, 3, 1));
376 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
377 ARM64_SYS_REG(3, 0, 0, 3, 2));
378 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
379 ARM64_SYS_REG(3, 0, 0, 3, 4));
380 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
381 ARM64_SYS_REG(3, 0, 0, 3, 5));
382 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
383 ARM64_SYS_REG(3, 0, 0, 3, 6));
384
385 /*
386 * DBGDIDR is a bit complicated because the kernel doesn't
387 * provide an accessor for it in 64-bit mode, which is what this
388 * scratch VM is in, and there's no architected "64-bit sysreg
389 * which reads the same as the 32-bit register" the way there is
390 * for other ID registers. Instead we synthesize a value from the
391 * AArch64 ID_AA64DFR0, the same way the kernel code in
392 * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
393 * We only do this if the CPU supports AArch32 at EL1.
394 */
395 if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
396 int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
397 int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
398 int ctx_cmps =
399 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
400 int version = 6; /* ARMv8 debug architecture */
401 bool has_el3 =
402 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
403 uint32_t dbgdidr = 0;
404
405 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
406 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
407 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
408 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
409 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
410 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
411 dbgdidr |= (1 << 15); /* RES1 bit */
412 ahcf->isar.dbgdidr = dbgdidr;
413 }
414
415 if (pmu_supported) {
416 /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
417 err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
418 ARM64_SYS_REG(3, 3, 9, 12, 0));
419 }
420
421 if (sve_supported) {
422 /*
423 * There is a range of kernels between kernel commit 73433762fcae
424 * and f81cb2c3ad41 which have a bug where the kernel doesn't
425 * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
426 * enabled SVE support, which resulted in an error rather than RAZ.
427 * So only read the register if we set KVM_ARM_VCPU_SVE above.
428 */
429 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
430 ARM64_SYS_REG(3, 0, 0, 4, 4));
431 }
432 }
433
434 kvm_arm_destroy_scratch_host_vcpu(fdarray);
435
436 if (err < 0) {
437 return false;
438 }
439
440 /*
441 * We can assume any KVM supporting CPU is at least a v8
442 * with VFPv4+Neon; this in turn implies most of the other
443 * feature bits.
444 */
445 features |= 1ULL << ARM_FEATURE_V8;
446 features |= 1ULL << ARM_FEATURE_NEON;
447 features |= 1ULL << ARM_FEATURE_AARCH64;
448 features |= 1ULL << ARM_FEATURE_PMU;
449 features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
450
451 ahcf->features = features;
452
453 return true;
454 }
455
456 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
457 {
458 CPUARMState *env = &cpu->env;
459
460 if (!arm_host_cpu_features.dtb_compatible) {
461 if (!kvm_enabled() ||
462 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
463 /* We can't report this error yet, so flag that we need to
464 * in arm_cpu_realizefn().
465 */
466 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
467 cpu->host_cpu_probe_failed = true;
468 return;
469 }
470 }
471
472 cpu->kvm_target = arm_host_cpu_features.target;
473 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
474 cpu->isar = arm_host_cpu_features.isar;
475 env->features = arm_host_cpu_features.features;
476 }
477
478 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
479 {
480 return !ARM_CPU(obj)->kvm_adjvtime;
481 }
482
483 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
484 {
485 ARM_CPU(obj)->kvm_adjvtime = !value;
486 }
487
488 static bool kvm_steal_time_get(Object *obj, Error **errp)
489 {
490 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
491 }
492
493 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
494 {
495 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
496 }
497
498 /* KVM VCPU properties should be prefixed with "kvm-". */
499 void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
500 {
501 CPUARMState *env = &cpu->env;
502 Object *obj = OBJECT(cpu);
503
504 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
505 cpu->kvm_adjvtime = true;
506 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
507 kvm_no_adjvtime_set);
508 object_property_set_description(obj, "kvm-no-adjvtime",
509 "Set on to disable the adjustment of "
510 "the virtual counter. VM stopped time "
511 "will be counted.");
512 }
513
514 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
515 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
516 kvm_steal_time_set);
517 object_property_set_description(obj, "kvm-steal-time",
518 "Set off to disable KVM steal time.");
519 }
520
521 bool kvm_arm_pmu_supported(void)
522 {
523 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
524 }
525
526 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
527 {
528 KVMState *s = KVM_STATE(ms->accelerator);
529 int ret;
530
531 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
532 *fixed_ipa = ret <= 0;
533
534 return ret > 0 ? ret : 40;
535 }
536
537 int kvm_arch_get_default_type(MachineState *ms)
538 {
539 bool fixed_ipa;
540 int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
541 return fixed_ipa ? 0 : size;
542 }
543
544 int kvm_arch_init(MachineState *ms, KVMState *s)
545 {
546 int ret = 0;
547 /* For ARM interrupt delivery is always asynchronous,
548 * whether we are using an in-kernel VGIC or not.
549 */
550 kvm_async_interrupts_allowed = true;
551
552 /*
553 * PSCI wakes up secondary cores, so we always need to
554 * have vCPUs waiting in kernel space
555 */
556 kvm_halt_in_kernel_allowed = true;
557
558 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
559
560 /* Check whether user space can specify guest syndrome value */
561 cap_has_inject_serror_esr =
562 kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
563
564 if (ms->smp.cpus > 256 &&
565 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
566 error_report("Using more than 256 vcpus requires a host kernel "
567 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
568 ret = -EINVAL;
569 }
570
571 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
572 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
573 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
574 } else {
575 /* Set status for supporting the external dabt injection */
576 cap_has_inject_ext_dabt = kvm_check_extension(s,
577 KVM_CAP_ARM_INJECT_EXT_DABT);
578 }
579 }
580
581 if (s->kvm_eager_split_size) {
582 uint32_t sizes;
583
584 sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
585 if (!sizes) {
586 s->kvm_eager_split_size = 0;
587 warn_report("Eager Page Split support not available");
588 } else if (!(s->kvm_eager_split_size & sizes)) {
589 error_report("Eager Page Split requested chunk size not valid");
590 ret = -EINVAL;
591 } else {
592 ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
593 s->kvm_eager_split_size);
594 if (ret < 0) {
595 error_report("Enabling of Eager Page Split failed: %s",
596 strerror(-ret));
597 }
598 }
599 }
600
601 max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
602 hw_watchpoints = g_array_sized_new(true, true,
603 sizeof(HWWatchpoint), max_hw_wps);
604
605 max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
606 hw_breakpoints = g_array_sized_new(true, true,
607 sizeof(HWBreakpoint), max_hw_bps);
608
609 return ret;
610 }
611
612 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
613 {
614 return cpu->cpu_index;
615 }
616
617 /* We track all the KVM devices which need their memory addresses
618 * passing to the kernel in a list of these structures.
619 * When board init is complete we run through the list and
620 * tell the kernel the base addresses of the memory regions.
621 * We use a MemoryListener to track mapping and unmapping of
622 * the regions during board creation, so the board models don't
623 * need to do anything special for the KVM case.
624 *
625 * Sometimes the address must be OR'ed with some other fields
626 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
627 * @kda_addr_ormask aims at storing the value of those fields.
628 */
629 typedef struct KVMDevice {
630 struct kvm_arm_device_addr kda;
631 struct kvm_device_attr kdattr;
632 uint64_t kda_addr_ormask;
633 MemoryRegion *mr;
634 QSLIST_ENTRY(KVMDevice) entries;
635 int dev_fd;
636 } KVMDevice;
637
638 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
639
640 static void kvm_arm_devlistener_add(MemoryListener *listener,
641 MemoryRegionSection *section)
642 {
643 KVMDevice *kd;
644
645 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
646 if (section->mr == kd->mr) {
647 kd->kda.addr = section->offset_within_address_space;
648 }
649 }
650 }
651
652 static void kvm_arm_devlistener_del(MemoryListener *listener,
653 MemoryRegionSection *section)
654 {
655 KVMDevice *kd;
656
657 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
658 if (section->mr == kd->mr) {
659 kd->kda.addr = -1;
660 }
661 }
662 }
663
664 static MemoryListener devlistener = {
665 .name = "kvm-arm",
666 .region_add = kvm_arm_devlistener_add,
667 .region_del = kvm_arm_devlistener_del,
668 .priority = MEMORY_LISTENER_PRIORITY_MIN,
669 };
670
671 static void kvm_arm_set_device_addr(KVMDevice *kd)
672 {
673 struct kvm_device_attr *attr = &kd->kdattr;
674 int ret;
675
676 /* If the device control API is available and we have a device fd on the
677 * KVMDevice struct, let's use the newer API
678 */
679 if (kd->dev_fd >= 0) {
680 uint64_t addr = kd->kda.addr;
681
682 addr |= kd->kda_addr_ormask;
683 attr->addr = (uintptr_t)&addr;
684 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
685 } else {
686 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
687 }
688
689 if (ret < 0) {
690 fprintf(stderr, "Failed to set device address: %s\n",
691 strerror(-ret));
692 abort();
693 }
694 }
695
696 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
697 {
698 KVMDevice *kd, *tkd;
699
700 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
701 if (kd->kda.addr != -1) {
702 kvm_arm_set_device_addr(kd);
703 }
704 memory_region_unref(kd->mr);
705 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
706 g_free(kd);
707 }
708 memory_listener_unregister(&devlistener);
709 }
710
711 static Notifier notify = {
712 .notify = kvm_arm_machine_init_done,
713 };
714
715 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
716 uint64_t attr, int dev_fd, uint64_t addr_ormask)
717 {
718 KVMDevice *kd;
719
720 if (!kvm_irqchip_in_kernel()) {
721 return;
722 }
723
724 if (QSLIST_EMPTY(&kvm_devices_head)) {
725 memory_listener_register(&devlistener, &address_space_memory);
726 qemu_add_machine_init_done_notifier(&notify);
727 }
728 kd = g_new0(KVMDevice, 1);
729 kd->mr = mr;
730 kd->kda.id = devid;
731 kd->kda.addr = -1;
732 kd->kdattr.flags = 0;
733 kd->kdattr.group = group;
734 kd->kdattr.attr = attr;
735 kd->dev_fd = dev_fd;
736 kd->kda_addr_ormask = addr_ormask;
737 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
738 memory_region_ref(kd->mr);
739 }
740
741 static int compare_u64(const void *a, const void *b)
742 {
743 if (*(uint64_t *)a > *(uint64_t *)b) {
744 return 1;
745 }
746 if (*(uint64_t *)a < *(uint64_t *)b) {
747 return -1;
748 }
749 return 0;
750 }
751
752 /*
753 * cpreg_values are sorted in ascending order by KVM register ID
754 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
755 * the storage for a KVM register by ID with a binary search.
756 */
757 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
758 {
759 uint64_t *res;
760
761 res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
762 sizeof(uint64_t), compare_u64);
763 assert(res);
764
765 return &cpu->cpreg_values[res - cpu->cpreg_indexes];
766 }
767
768 /**
769 * kvm_arm_reg_syncs_via_cpreg_list:
770 * @regidx: KVM register index
771 *
772 * Return true if this KVM register should be synchronized via the
773 * cpreg list of arbitrary system registers, false if it is synchronized
774 * by hand using code in kvm_arch_get/put_registers().
775 */
776 static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
777 {
778 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
779 case KVM_REG_ARM_CORE:
780 case KVM_REG_ARM64_SVE:
781 return false;
782 default:
783 return true;
784 }
785 }
786
787 /**
788 * kvm_arm_init_cpreg_list:
789 * @cpu: ARMCPU
790 *
791 * Initialize the ARMCPU cpreg list according to the kernel's
792 * definition of what CPU registers it knows about (and throw away
793 * the previous TCG-created cpreg list).
794 *
795 * Returns: 0 if success, else < 0 error code
796 */
797 static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
798 {
799 struct kvm_reg_list rl;
800 struct kvm_reg_list *rlp;
801 int i, ret, arraylen;
802 CPUState *cs = CPU(cpu);
803
804 rl.n = 0;
805 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
806 if (ret != -E2BIG) {
807 return ret;
808 }
809 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
810 rlp->n = rl.n;
811 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
812 if (ret) {
813 goto out;
814 }
815 /* Sort the list we get back from the kernel, since cpreg_tuples
816 * must be in strictly ascending order.
817 */
818 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
819
820 for (i = 0, arraylen = 0; i < rlp->n; i++) {
821 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
822 continue;
823 }
824 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
825 case KVM_REG_SIZE_U32:
826 case KVM_REG_SIZE_U64:
827 break;
828 default:
829 fprintf(stderr, "Can't handle size of register in kernel list\n");
830 ret = -EINVAL;
831 goto out;
832 }
833
834 arraylen++;
835 }
836
837 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
838 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
839 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
840 arraylen);
841 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
842 arraylen);
843 cpu->cpreg_array_len = arraylen;
844 cpu->cpreg_vmstate_array_len = arraylen;
845
846 for (i = 0, arraylen = 0; i < rlp->n; i++) {
847 uint64_t regidx = rlp->reg[i];
848 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
849 continue;
850 }
851 cpu->cpreg_indexes[arraylen] = regidx;
852 arraylen++;
853 }
854 assert(cpu->cpreg_array_len == arraylen);
855
856 if (!write_kvmstate_to_list(cpu)) {
857 /* Shouldn't happen unless kernel is inconsistent about
858 * what registers exist.
859 */
860 fprintf(stderr, "Initial read of kernel register state failed\n");
861 ret = -EINVAL;
862 goto out;
863 }
864
865 out:
866 g_free(rlp);
867 return ret;
868 }
869
870 /**
871 * kvm_arm_cpreg_level:
872 * @regidx: KVM register index
873 *
874 * Return the level of this coprocessor/system register. Return value is
875 * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
876 */
877 static int kvm_arm_cpreg_level(uint64_t regidx)
878 {
879 /*
880 * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
881 * If a register should be written less often, you must add it here
882 * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
883 */
884 switch (regidx) {
885 case KVM_REG_ARM_TIMER_CNT:
886 case KVM_REG_ARM_PTIMER_CNT:
887 return KVM_PUT_FULL_STATE;
888 }
889 return KVM_PUT_RUNTIME_STATE;
890 }
891
892 bool write_kvmstate_to_list(ARMCPU *cpu)
893 {
894 CPUState *cs = CPU(cpu);
895 int i;
896 bool ok = true;
897
898 for (i = 0; i < cpu->cpreg_array_len; i++) {
899 uint64_t regidx = cpu->cpreg_indexes[i];
900 uint32_t v32;
901 int ret;
902
903 switch (regidx & KVM_REG_SIZE_MASK) {
904 case KVM_REG_SIZE_U32:
905 ret = kvm_get_one_reg(cs, regidx, &v32);
906 if (!ret) {
907 cpu->cpreg_values[i] = v32;
908 }
909 break;
910 case KVM_REG_SIZE_U64:
911 ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
912 break;
913 default:
914 g_assert_not_reached();
915 }
916 if (ret) {
917 ok = false;
918 }
919 }
920 return ok;
921 }
922
923 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
924 {
925 CPUState *cs = CPU(cpu);
926 int i;
927 bool ok = true;
928
929 for (i = 0; i < cpu->cpreg_array_len; i++) {
930 uint64_t regidx = cpu->cpreg_indexes[i];
931 uint32_t v32;
932 int ret;
933
934 if (kvm_arm_cpreg_level(regidx) > level) {
935 continue;
936 }
937
938 switch (regidx & KVM_REG_SIZE_MASK) {
939 case KVM_REG_SIZE_U32:
940 v32 = cpu->cpreg_values[i];
941 ret = kvm_set_one_reg(cs, regidx, &v32);
942 break;
943 case KVM_REG_SIZE_U64:
944 ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
945 break;
946 default:
947 g_assert_not_reached();
948 }
949 if (ret) {
950 /* We might fail for "unknown register" and also for
951 * "you tried to set a register which is constant with
952 * a different value from what it actually contains".
953 */
954 ok = false;
955 }
956 }
957 return ok;
958 }
959
960 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
961 {
962 /* KVM virtual time adjustment */
963 if (cpu->kvm_vtime_dirty) {
964 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
965 }
966 }
967
968 void kvm_arm_cpu_post_load(ARMCPU *cpu)
969 {
970 /* KVM virtual time adjustment */
971 if (cpu->kvm_adjvtime) {
972 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
973 cpu->kvm_vtime_dirty = true;
974 }
975 }
976
977 void kvm_arm_reset_vcpu(ARMCPU *cpu)
978 {
979 int ret;
980
981 /* Re-init VCPU so that all registers are set to
982 * their respective reset values.
983 */
984 ret = kvm_arm_vcpu_init(cpu);
985 if (ret < 0) {
986 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
987 abort();
988 }
989 if (!write_kvmstate_to_list(cpu)) {
990 fprintf(stderr, "write_kvmstate_to_list failed\n");
991 abort();
992 }
993 /*
994 * Sync the reset values also into the CPUState. This is necessary
995 * because the next thing we do will be a kvm_arch_put_registers()
996 * which will update the list values from the CPUState before copying
997 * the list values back to KVM. It's OK to ignore failure returns here
998 * for the same reason we do so in kvm_arch_get_registers().
999 */
1000 write_list_to_cpustate(cpu);
1001 }
1002
1003 /*
1004 * Update KVM's MP_STATE based on what QEMU thinks it is
1005 */
1006 static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
1007 {
1008 if (cap_has_mp_state) {
1009 struct kvm_mp_state mp_state = {
1010 .mp_state = (cpu->power_state == PSCI_OFF) ?
1011 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
1012 };
1013 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1014 }
1015 return 0;
1016 }
1017
1018 /*
1019 * Sync the KVM MP_STATE into QEMU
1020 */
1021 static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
1022 {
1023 if (cap_has_mp_state) {
1024 struct kvm_mp_state mp_state;
1025 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1026 if (ret) {
1027 return ret;
1028 }
1029 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
1030 PSCI_OFF : PSCI_ON;
1031 }
1032 return 0;
1033 }
1034
1035 /**
1036 * kvm_arm_get_virtual_time:
1037 * @cpu: ARMCPU
1038 *
1039 * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
1040 */
1041 static void kvm_arm_get_virtual_time(ARMCPU *cpu)
1042 {
1043 int ret;
1044
1045 if (cpu->kvm_vtime_dirty) {
1046 return;
1047 }
1048
1049 ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1050 if (ret) {
1051 error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
1052 abort();
1053 }
1054
1055 cpu->kvm_vtime_dirty = true;
1056 }
1057
1058 /**
1059 * kvm_arm_put_virtual_time:
1060 * @cpu: ARMCPU
1061 *
1062 * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
1063 */
1064 static void kvm_arm_put_virtual_time(ARMCPU *cpu)
1065 {
1066 int ret;
1067
1068 if (!cpu->kvm_vtime_dirty) {
1069 return;
1070 }
1071
1072 ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1073 if (ret) {
1074 error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
1075 abort();
1076 }
1077
1078 cpu->kvm_vtime_dirty = false;
1079 }
1080
1081 /**
1082 * kvm_put_vcpu_events:
1083 * @cpu: ARMCPU
1084 *
1085 * Put VCPU related state to kvm.
1086 *
1087 * Returns: 0 if success else < 0 error code
1088 */
1089 static int kvm_put_vcpu_events(ARMCPU *cpu)
1090 {
1091 CPUARMState *env = &cpu->env;
1092 struct kvm_vcpu_events events;
1093 int ret;
1094
1095 if (!kvm_has_vcpu_events()) {
1096 return 0;
1097 }
1098
1099 memset(&events, 0, sizeof(events));
1100 events.exception.serror_pending = env->serror.pending;
1101
1102 /* Inject SError to guest with specified syndrome if host kernel
1103 * supports it, otherwise inject SError without syndrome.
1104 */
1105 if (cap_has_inject_serror_esr) {
1106 events.exception.serror_has_esr = env->serror.has_esr;
1107 events.exception.serror_esr = env->serror.esr;
1108 }
1109
1110 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1111 if (ret) {
1112 error_report("failed to put vcpu events");
1113 }
1114
1115 return ret;
1116 }
1117
1118 /**
1119 * kvm_get_vcpu_events:
1120 * @cpu: ARMCPU
1121 *
1122 * Get VCPU related state from kvm.
1123 *
1124 * Returns: 0 if success else < 0 error code
1125 */
1126 static int kvm_get_vcpu_events(ARMCPU *cpu)
1127 {
1128 CPUARMState *env = &cpu->env;
1129 struct kvm_vcpu_events events;
1130 int ret;
1131
1132 if (!kvm_has_vcpu_events()) {
1133 return 0;
1134 }
1135
1136 memset(&events, 0, sizeof(events));
1137 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1138 if (ret) {
1139 error_report("failed to get vcpu events");
1140 return ret;
1141 }
1142
1143 env->serror.pending = events.exception.serror_pending;
1144 env->serror.has_esr = events.exception.serror_has_esr;
1145 env->serror.esr = events.exception.serror_esr;
1146
1147 return 0;
1148 }
1149
1150 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1151 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1152
1153 /*
1154 * ESR_EL1
1155 * ISS encoding
1156 * AARCH64: DFSC, bits [5:0]
1157 * AARCH32:
1158 * TTBCR.EAE == 0
1159 * FS[4] - DFSR[10]
1160 * FS[3:0] - DFSR[3:0]
1161 * TTBCR.EAE == 1
1162 * FS, bits [5:0]
1163 */
1164 #define ESR_DFSC(aarch64, lpae, v) \
1165 ((aarch64 || (lpae)) ? ((v) & 0x3F) \
1166 : (((v) >> 6) | ((v) & 0x1F)))
1167
1168 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1169 ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1170
1171 /**
1172 * kvm_arm_verify_ext_dabt_pending:
1173 * @cpu: ARMCPU
1174 *
1175 * Verify the fault status code wrt the Ext DABT injection
1176 *
1177 * Returns: true if the fault status code is as expected, false otherwise
1178 */
1179 static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
1180 {
1181 CPUState *cs = CPU(cpu);
1182 uint64_t dfsr_val;
1183
1184 if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1185 CPUARMState *env = &cpu->env;
1186 int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1187 int lpae = 0;
1188
1189 if (!aarch64_mode) {
1190 uint64_t ttbcr;
1191
1192 if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1193 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1194 && (ttbcr & TTBCR_EAE);
1195 }
1196 }
1197 /*
1198 * The verification here is based on the DFSC bits
1199 * of the ESR_EL1 reg only
1200 */
1201 return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1202 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1203 }
1204 return false;
1205 }
1206
1207 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1208 {
1209 ARMCPU *cpu = ARM_CPU(cs);
1210 CPUARMState *env = &cpu->env;
1211
1212 if (unlikely(env->ext_dabt_raised)) {
1213 /*
1214 * Verifying that the ext DABT has been properly injected,
1215 * otherwise risking indefinitely re-running the faulting instruction
1216 * Covering a very narrow case for kernels 5.5..5.5.4
1217 * when injected abort was misconfigured to be
1218 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
1219 */
1220 if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
1221 unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
1222
1223 error_report("Data abort exception with no valid ISS generated by "
1224 "guest memory access. KVM unable to emulate faulting "
1225 "instruction. Failed to inject an external data abort "
1226 "into the guest.");
1227 abort();
1228 }
1229 /* Clear the status */
1230 env->ext_dabt_raised = 0;
1231 }
1232 }
1233
1234 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1235 {
1236 ARMCPU *cpu;
1237 uint32_t switched_level;
1238
1239 if (kvm_irqchip_in_kernel()) {
1240 /*
1241 * We only need to sync timer states with user-space interrupt
1242 * controllers, so return early and save cycles if we don't.
1243 */
1244 return MEMTXATTRS_UNSPECIFIED;
1245 }
1246
1247 cpu = ARM_CPU(cs);
1248
1249 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
1250 if (run->s.regs.device_irq_level != cpu->device_irq_level) {
1251 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
1252
1253 bql_lock();
1254
1255 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
1256 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
1257 !!(run->s.regs.device_irq_level &
1258 KVM_ARM_DEV_EL1_VTIMER));
1259 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
1260 }
1261
1262 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
1263 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
1264 !!(run->s.regs.device_irq_level &
1265 KVM_ARM_DEV_EL1_PTIMER));
1266 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
1267 }
1268
1269 if (switched_level & KVM_ARM_DEV_PMU) {
1270 qemu_set_irq(cpu->pmu_interrupt,
1271 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
1272 switched_level &= ~KVM_ARM_DEV_PMU;
1273 }
1274
1275 if (switched_level) {
1276 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
1277 __func__, switched_level);
1278 }
1279
1280 /* We also mark unknown levels as processed to not waste cycles */
1281 cpu->device_irq_level = run->s.regs.device_irq_level;
1282 bql_unlock();
1283 }
1284
1285 return MEMTXATTRS_UNSPECIFIED;
1286 }
1287
1288 static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
1289 {
1290 ARMCPU *cpu = opaque;
1291
1292 if (running) {
1293 if (cpu->kvm_adjvtime) {
1294 kvm_arm_put_virtual_time(cpu);
1295 }
1296 } else {
1297 if (cpu->kvm_adjvtime) {
1298 kvm_arm_get_virtual_time(cpu);
1299 }
1300 }
1301 }
1302
1303 /**
1304 * kvm_arm_handle_dabt_nisv:
1305 * @cpu: ARMCPU
1306 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
1307 * ISV bit set to '0b0' -> no valid instruction syndrome
1308 * @fault_ipa: faulting address for the synchronous data abort
1309 *
1310 * Returns: 0 if the exception has been handled, < 0 otherwise
1311 */
1312 static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
1313 uint64_t fault_ipa)
1314 {
1315 CPUARMState *env = &cpu->env;
1316 /*
1317 * Request KVM to inject the external data abort into the guest
1318 */
1319 if (cap_has_inject_ext_dabt) {
1320 struct kvm_vcpu_events events = { };
1321 /*
1322 * The external data abort event will be handled immediately by KVM
1323 * using the address fault that triggered the exit on given VCPU.
1324 * Requesting injection of the external data abort does not rely
1325 * on any other VCPU state. Therefore, in this particular case, the VCPU
1326 * synchronization can be exceptionally skipped.
1327 */
1328 events.exception.ext_dabt_pending = 1;
1329 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
1330 if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
1331 env->ext_dabt_raised = 1;
1332 return 0;
1333 }
1334 } else {
1335 error_report("Data abort exception triggered by guest memory access "
1336 "at physical address: 0x" TARGET_FMT_lx,
1337 (target_ulong)fault_ipa);
1338 error_printf("KVM unable to emulate faulting instruction.\n");
1339 }
1340 return -1;
1341 }
1342
1343 /**
1344 * kvm_arm_handle_debug:
1345 * @cpu: ARMCPU
1346 * @debug_exit: debug part of the KVM exit structure
1347 *
1348 * Returns: TRUE if the debug exception was handled.
1349 *
1350 * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1351 *
1352 * To minimise translating between kernel and user-space the kernel
1353 * ABI just provides user-space with the full exception syndrome
1354 * register value to be decoded in QEMU.
1355 */
1356 static bool kvm_arm_handle_debug(ARMCPU *cpu,
1357 struct kvm_debug_exit_arch *debug_exit)
1358 {
1359 int hsr_ec = syn_get_ec(debug_exit->hsr);
1360 CPUState *cs = CPU(cpu);
1361 CPUARMState *env = &cpu->env;
1362
1363 /* Ensure PC is synchronised */
1364 kvm_cpu_synchronize_state(cs);
1365
1366 switch (hsr_ec) {
1367 case EC_SOFTWARESTEP:
1368 if (cs->singlestep_enabled) {
1369 return true;
1370 } else {
1371 /*
1372 * The kernel should have suppressed the guest's ability to
1373 * single step at this point so something has gone wrong.
1374 */
1375 error_report("%s: guest single-step while debugging unsupported"
1376 " (%"PRIx64", %"PRIx32")",
1377 __func__, env->pc, debug_exit->hsr);
1378 return false;
1379 }
1380 break;
1381 case EC_AA64_BKPT:
1382 if (kvm_find_sw_breakpoint(cs, env->pc)) {
1383 return true;
1384 }
1385 break;
1386 case EC_BREAKPOINT:
1387 if (find_hw_breakpoint(cs, env->pc)) {
1388 return true;
1389 }
1390 break;
1391 case EC_WATCHPOINT:
1392 {
1393 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1394 if (wp) {
1395 cs->watchpoint_hit = wp;
1396 return true;
1397 }
1398 break;
1399 }
1400 default:
1401 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1402 __func__, debug_exit->hsr, env->pc);
1403 }
1404
1405 /* If we are not handling the debug exception it must belong to
1406 * the guest. Let's re-use the existing TCG interrupt code to set
1407 * everything up properly.
1408 */
1409 cs->exception_index = EXCP_BKPT;
1410 env->exception.syndrome = debug_exit->hsr;
1411 env->exception.vaddress = debug_exit->far;
1412 env->exception.target_el = 1;
1413 bql_lock();
1414 arm_cpu_do_interrupt(cs);
1415 bql_unlock();
1416
1417 return false;
1418 }
1419
1420 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1421 {
1422 ARMCPU *cpu = ARM_CPU(cs);
1423 int ret = 0;
1424
1425 switch (run->exit_reason) {
1426 case KVM_EXIT_DEBUG:
1427 if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
1428 ret = EXCP_DEBUG;
1429 } /* otherwise return to guest */
1430 break;
1431 case KVM_EXIT_ARM_NISV:
1432 /* External DABT with no valid iss to decode */
1433 ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
1434 run->arm_nisv.fault_ipa);
1435 break;
1436 default:
1437 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1438 __func__, run->exit_reason);
1439 break;
1440 }
1441 return ret;
1442 }
1443
1444 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1445 {
1446 return true;
1447 }
1448
1449 int kvm_arch_process_async_events(CPUState *cs)
1450 {
1451 return 0;
1452 }
1453
1454 /**
1455 * kvm_arm_hw_debug_active:
1456 * @cpu: ARMCPU
1457 *
1458 * Return: TRUE if any hardware breakpoints in use.
1459 */
1460 static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
1461 {
1462 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
1463 }
1464
1465 /**
1466 * kvm_arm_copy_hw_debug_data:
1467 * @ptr: kvm_guest_debug_arch structure
1468 *
1469 * Copy the architecture specific debug registers into the
1470 * kvm_guest_debug ioctl structure.
1471 */
1472 static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
1473 {
1474 int i;
1475 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
1476
1477 for (i = 0; i < max_hw_wps; i++) {
1478 HWWatchpoint *wp = get_hw_wp(i);
1479 ptr->dbg_wcr[i] = wp->wcr;
1480 ptr->dbg_wvr[i] = wp->wvr;
1481 }
1482 for (i = 0; i < max_hw_bps; i++) {
1483 HWBreakpoint *bp = get_hw_bp(i);
1484 ptr->dbg_bcr[i] = bp->bcr;
1485 ptr->dbg_bvr[i] = bp->bvr;
1486 }
1487 }
1488
1489 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1490 {
1491 if (kvm_sw_breakpoints_active(cs)) {
1492 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1493 }
1494 if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
1495 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
1496 kvm_arm_copy_hw_debug_data(&dbg->arch);
1497 }
1498 }
1499
1500 void kvm_arch_init_irq_routing(KVMState *s)
1501 {
1502 }
1503
1504 int kvm_arch_irqchip_create(KVMState *s)
1505 {
1506 if (kvm_kernel_irqchip_split()) {
1507 error_report("-machine kernel_irqchip=split is not supported on ARM.");
1508 exit(1);
1509 }
1510
1511 /* If we can create the VGIC using the newer device control API, we
1512 * let the device do this when it initializes itself, otherwise we
1513 * fall back to the old API */
1514 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1515 }
1516
1517 int kvm_arm_vgic_probe(void)
1518 {
1519 int val = 0;
1520
1521 if (kvm_create_device(kvm_state,
1522 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
1523 val |= KVM_ARM_VGIC_V3;
1524 }
1525 if (kvm_create_device(kvm_state,
1526 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
1527 val |= KVM_ARM_VGIC_V2;
1528 }
1529 return val;
1530 }
1531
1532 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
1533 {
1534 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
1535 int cpu_idx1 = cpu % 256;
1536 int cpu_idx2 = cpu / 256;
1537
1538 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
1539 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1540
1541 return kvm_set_irq(kvm_state, kvm_irq, !!level);
1542 }
1543
1544 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1545 uint64_t address, uint32_t data, PCIDevice *dev)
1546 {
1547 AddressSpace *as = pci_device_iommu_address_space(dev);
1548 hwaddr xlat, len, doorbell_gpa;
1549 MemoryRegionSection mrs;
1550 MemoryRegion *mr;
1551
1552 if (as == &address_space_memory) {
1553 return 0;
1554 }
1555
1556 /* MSI doorbell address is translated by an IOMMU */
1557
1558 RCU_READ_LOCK_GUARD();
1559
1560 mr = address_space_translate(as, address, &xlat, &len, true,
1561 MEMTXATTRS_UNSPECIFIED);
1562
1563 if (!mr) {
1564 return 1;
1565 }
1566
1567 mrs = memory_region_find(mr, xlat, 1);
1568
1569 if (!mrs.mr) {
1570 return 1;
1571 }
1572
1573 doorbell_gpa = mrs.offset_within_address_space;
1574 memory_region_unref(mrs.mr);
1575
1576 route->u.msi.address_lo = doorbell_gpa;
1577 route->u.msi.address_hi = doorbell_gpa >> 32;
1578
1579 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1580
1581 return 0;
1582 }
1583
1584 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1585 int vector, PCIDevice *dev)
1586 {
1587 return 0;
1588 }
1589
1590 int kvm_arch_release_virq_post(int virq)
1591 {
1592 return 0;
1593 }
1594
1595 int kvm_arch_msi_data_to_gsi(uint32_t data)
1596 {
1597 return (data - 32) & 0xffff;
1598 }
1599
1600 bool kvm_arch_cpu_check_are_resettable(void)
1601 {
1602 return true;
1603 }
1604
1605 static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
1606 const char *name, void *opaque,
1607 Error **errp)
1608 {
1609 KVMState *s = KVM_STATE(obj);
1610 uint64_t value = s->kvm_eager_split_size;
1611
1612 visit_type_size(v, name, &value, errp);
1613 }
1614
1615 static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
1616 const char *name, void *opaque,
1617 Error **errp)
1618 {
1619 KVMState *s = KVM_STATE(obj);
1620 uint64_t value;
1621
1622 if (s->fd != -1) {
1623 error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
1624 return;
1625 }
1626
1627 if (!visit_type_size(v, name, &value, errp)) {
1628 return;
1629 }
1630
1631 if (value && !is_power_of_2(value)) {
1632 error_setg(errp, "early-split-size must be a power of two");
1633 return;
1634 }
1635
1636 s->kvm_eager_split_size = value;
1637 }
1638
1639 void kvm_arch_accel_class_init(ObjectClass *oc)
1640 {
1641 object_class_property_add(oc, "eager-split-size", "size",
1642 kvm_arch_get_eager_split_size,
1643 kvm_arch_set_eager_split_size, NULL, NULL);
1644
1645 object_class_property_set_description(oc, "eager-split-size",
1646 "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
1647 }
1648
1649 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1650 {
1651 switch (type) {
1652 case GDB_BREAKPOINT_HW:
1653 return insert_hw_breakpoint(addr);
1654 break;
1655 case GDB_WATCHPOINT_READ:
1656 case GDB_WATCHPOINT_WRITE:
1657 case GDB_WATCHPOINT_ACCESS:
1658 return insert_hw_watchpoint(addr, len, type);
1659 default:
1660 return -ENOSYS;
1661 }
1662 }
1663
1664 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1665 {
1666 switch (type) {
1667 case GDB_BREAKPOINT_HW:
1668 return delete_hw_breakpoint(addr);
1669 case GDB_WATCHPOINT_READ:
1670 case GDB_WATCHPOINT_WRITE:
1671 case GDB_WATCHPOINT_ACCESS:
1672 return delete_hw_watchpoint(addr, len, type);
1673 default:
1674 return -ENOSYS;
1675 }
1676 }
1677
1678 void kvm_arch_remove_all_hw_breakpoints(void)
1679 {
1680 if (cur_hw_wps > 0) {
1681 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
1682 }
1683 if (cur_hw_bps > 0) {
1684 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
1685 }
1686 }
1687
1688 static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
1689 const char *name)
1690 {
1691 int err;
1692
1693 err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
1694 if (err != 0) {
1695 error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
1696 return false;
1697 }
1698
1699 err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
1700 if (err != 0) {
1701 error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
1702 return false;
1703 }
1704
1705 return true;
1706 }
1707
1708 void kvm_arm_pmu_init(ARMCPU *cpu)
1709 {
1710 struct kvm_device_attr attr = {
1711 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1712 .attr = KVM_ARM_VCPU_PMU_V3_INIT,
1713 };
1714
1715 if (!cpu->has_pmu) {
1716 return;
1717 }
1718 if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1719 error_report("failed to init PMU");
1720 abort();
1721 }
1722 }
1723
1724 void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
1725 {
1726 struct kvm_device_attr attr = {
1727 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1728 .addr = (intptr_t)&irq,
1729 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
1730 };
1731
1732 if (!cpu->has_pmu) {
1733 return;
1734 }
1735 if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1736 error_report("failed to set irq for PMU");
1737 abort();
1738 }
1739 }
1740
1741 void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
1742 {
1743 struct kvm_device_attr attr = {
1744 .group = KVM_ARM_VCPU_PVTIME_CTRL,
1745 .attr = KVM_ARM_VCPU_PVTIME_IPA,
1746 .addr = (uint64_t)&ipa,
1747 };
1748
1749 if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
1750 return;
1751 }
1752 if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
1753 error_report("failed to init PVTIME IPA");
1754 abort();
1755 }
1756 }
1757
1758 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
1759 {
1760 bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
1761
1762 if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
1763 if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1764 cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
1765 } else {
1766 cpu->kvm_steal_time = ON_OFF_AUTO_ON;
1767 }
1768 } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
1769 if (!has_steal_time) {
1770 error_setg(errp, "'kvm-steal-time' cannot be enabled "
1771 "on this host");
1772 return;
1773 } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1774 /*
1775 * DEN0057A chapter 2 says "This specification only covers
1776 * systems in which the Execution state of the hypervisor
1777 * as well as EL1 of virtual machines is AArch64.". And,
1778 * to ensure that, the smc/hvc calls are only specified as
1779 * smc64/hvc64.
1780 */
1781 error_setg(errp, "'kvm-steal-time' cannot be enabled "
1782 "for AArch32 guests");
1783 return;
1784 }
1785 }
1786 }
1787
1788 bool kvm_arm_aarch32_supported(void)
1789 {
1790 return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
1791 }
1792
1793 bool kvm_arm_sve_supported(void)
1794 {
1795 return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
1796 }
1797
1798 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
1799
1800 uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
1801 {
1802 /* Only call this function if kvm_arm_sve_supported() returns true. */
1803 static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
1804 static bool probed;
1805 uint32_t vq = 0;
1806 int i;
1807
1808 /*
1809 * KVM ensures all host CPUs support the same set of vector lengths.
1810 * So we only need to create the scratch VCPUs once and then cache
1811 * the results.
1812 */
1813 if (!probed) {
1814 struct kvm_vcpu_init init = {
1815 .target = -1,
1816 .features[0] = (1 << KVM_ARM_VCPU_SVE),
1817 };
1818 struct kvm_one_reg reg = {
1819 .id = KVM_REG_ARM64_SVE_VLS,
1820 .addr = (uint64_t)&vls[0],
1821 };
1822 int fdarray[3], ret;
1823
1824 probed = true;
1825
1826 if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
1827 error_report("failed to create scratch VCPU with SVE enabled");
1828 abort();
1829 }
1830 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
1831 kvm_arm_destroy_scratch_host_vcpu(fdarray);
1832 if (ret) {
1833 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
1834 strerror(errno));
1835 abort();
1836 }
1837
1838 for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
1839 if (vls[i]) {
1840 vq = 64 - clz64(vls[i]) + i * 64;
1841 break;
1842 }
1843 }
1844 if (vq > ARM_MAX_VQ) {
1845 warn_report("KVM supports vector lengths larger than "
1846 "QEMU can enable");
1847 vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1848 }
1849 }
1850
1851 return vls[0];
1852 }
1853
1854 static int kvm_arm_sve_set_vls(ARMCPU *cpu)
1855 {
1856 uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
1857
1858 assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
1859
1860 return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
1861 }
1862
1863 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
1864
1865 int kvm_arch_init_vcpu(CPUState *cs)
1866 {
1867 int ret;
1868 uint64_t mpidr;
1869 ARMCPU *cpu = ARM_CPU(cs);
1870 CPUARMState *env = &cpu->env;
1871 uint64_t psciver;
1872
1873 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
1874 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
1875 error_report("KVM is not supported for this guest CPU type");
1876 return -EINVAL;
1877 }
1878
1879 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
1880
1881 /* Determine init features for this CPU */
1882 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
1883 if (cs->start_powered_off) {
1884 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
1885 }
1886 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
1887 cpu->psci_version = QEMU_PSCI_VERSION_0_2;
1888 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
1889 }
1890 if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1891 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
1892 }
1893 if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
1894 cpu->has_pmu = false;
1895 }
1896 if (cpu->has_pmu) {
1897 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
1898 } else {
1899 env->features &= ~(1ULL << ARM_FEATURE_PMU);
1900 }
1901 if (cpu_isar_feature(aa64_sve, cpu)) {
1902 assert(kvm_arm_sve_supported());
1903 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
1904 }
1905 if (cpu_isar_feature(aa64_pauth, cpu)) {
1906 cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1907 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
1908 }
1909
1910 /* Do KVM_ARM_VCPU_INIT ioctl */
1911 ret = kvm_arm_vcpu_init(cpu);
1912 if (ret) {
1913 return ret;
1914 }
1915
1916 if (cpu_isar_feature(aa64_sve, cpu)) {
1917 ret = kvm_arm_sve_set_vls(cpu);
1918 if (ret) {
1919 return ret;
1920 }
1921 ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
1922 if (ret) {
1923 return ret;
1924 }
1925 }
1926
1927 /*
1928 * KVM reports the exact PSCI version it is implementing via a
1929 * special sysreg. If it is present, use its contents to determine
1930 * what to report to the guest in the dtb (it is the PSCI version,
1931 * in the same 15-bits major 16-bits minor format that PSCI_VERSION
1932 * returns).
1933 */
1934 if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
1935 cpu->psci_version = psciver;
1936 }
1937
1938 /*
1939 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
1940 * Currently KVM has its own idea about MPIDR assignment, so we
1941 * override our defaults with what we get from KVM.
1942 */
1943 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
1944 if (ret) {
1945 return ret;
1946 }
1947 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
1948
1949 return kvm_arm_init_cpreg_list(cpu);
1950 }
1951
1952 int kvm_arch_destroy_vcpu(CPUState *cs)
1953 {
1954 return 0;
1955 }
1956
1957 /* Callers must hold the iothread mutex lock */
1958 static void kvm_inject_arm_sea(CPUState *c)
1959 {
1960 ARMCPU *cpu = ARM_CPU(c);
1961 CPUARMState *env = &cpu->env;
1962 uint32_t esr;
1963 bool same_el;
1964
1965 c->exception_index = EXCP_DATA_ABORT;
1966 env->exception.target_el = 1;
1967
1968 /*
1969 * Set the DFSC to synchronous external abort and set FnV to not valid,
1970 * this will tell guest the FAR_ELx is UNKNOWN for this abort.
1971 */
1972 same_el = arm_current_el(env) == env->exception.target_el;
1973 esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
1974
1975 env->exception.syndrome = esr;
1976
1977 arm_cpu_do_interrupt(c);
1978 }
1979
1980 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1981 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1982
1983 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1984 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1985
1986 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1987 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1988
1989 static int kvm_arch_put_fpsimd(CPUState *cs)
1990 {
1991 CPUARMState *env = &ARM_CPU(cs)->env;
1992 int i, ret;
1993
1994 for (i = 0; i < 32; i++) {
1995 uint64_t *q = aa64_vfp_qreg(env, i);
1996 #if HOST_BIG_ENDIAN
1997 uint64_t fp_val[2] = { q[1], q[0] };
1998 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
1999 fp_val);
2000 #else
2001 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2002 #endif
2003 if (ret) {
2004 return ret;
2005 }
2006 }
2007
2008 return 0;
2009 }
2010
2011 /*
2012 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2013 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2014 * code the slice index to zero for now as it's unlikely we'll need more than
2015 * one slice for quite some time.
2016 */
2017 static int kvm_arch_put_sve(CPUState *cs)
2018 {
2019 ARMCPU *cpu = ARM_CPU(cs);
2020 CPUARMState *env = &cpu->env;
2021 uint64_t tmp[ARM_MAX_VQ * 2];
2022 uint64_t *r;
2023 int n, ret;
2024
2025 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2026 r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
2027 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2028 if (ret) {
2029 return ret;
2030 }
2031 }
2032
2033 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2034 r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
2035 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2036 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2037 if (ret) {
2038 return ret;
2039 }
2040 }
2041
2042 r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
2043 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2044 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2045 if (ret) {
2046 return ret;
2047 }
2048
2049 return 0;
2050 }
2051
2052 int kvm_arch_put_registers(CPUState *cs, int level)
2053 {
2054 uint64_t val;
2055 uint32_t fpr;
2056 int i, ret;
2057 unsigned int el;
2058
2059 ARMCPU *cpu = ARM_CPU(cs);
2060 CPUARMState *env = &cpu->env;
2061
2062 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
2063 * AArch64 registers before pushing them out to 64-bit KVM.
2064 */
2065 if (!is_a64(env)) {
2066 aarch64_sync_32_to_64(env);
2067 }
2068
2069 for (i = 0; i < 31; i++) {
2070 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2071 &env->xregs[i]);
2072 if (ret) {
2073 return ret;
2074 }
2075 }
2076
2077 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2078 * QEMU side we keep the current SP in xregs[31] as well.
2079 */
2080 aarch64_save_sp(env, 1);
2081
2082 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2083 if (ret) {
2084 return ret;
2085 }
2086
2087 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2088 if (ret) {
2089 return ret;
2090 }
2091
2092 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
2093 if (is_a64(env)) {
2094 val = pstate_read(env);
2095 } else {
2096 val = cpsr_read(env);
2097 }
2098 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2099 if (ret) {
2100 return ret;
2101 }
2102
2103 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2104 if (ret) {
2105 return ret;
2106 }
2107
2108 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2109 if (ret) {
2110 return ret;
2111 }
2112
2113 /* Saved Program State Registers
2114 *
2115 * Before we restore from the banked_spsr[] array we need to
2116 * ensure that any modifications to env->spsr are correctly
2117 * reflected in the banks.
2118 */
2119 el = arm_current_el(env);
2120 if (el > 0 && !is_a64(env)) {
2121 i = bank_number(env->uncached_cpsr & CPSR_M);
2122 env->banked_spsr[i] = env->spsr;
2123 }
2124
2125 /* KVM 0-4 map to QEMU banks 1-5 */
2126 for (i = 0; i < KVM_NR_SPSR; i++) {
2127 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2128 &env->banked_spsr[i + 1]);
2129 if (ret) {
2130 return ret;
2131 }
2132 }
2133
2134 if (cpu_isar_feature(aa64_sve, cpu)) {
2135 ret = kvm_arch_put_sve(cs);
2136 } else {
2137 ret = kvm_arch_put_fpsimd(cs);
2138 }
2139 if (ret) {
2140 return ret;
2141 }
2142
2143 fpr = vfp_get_fpsr(env);
2144 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2145 if (ret) {
2146 return ret;
2147 }
2148
2149 fpr = vfp_get_fpcr(env);
2150 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2151 if (ret) {
2152 return ret;
2153 }
2154
2155 write_cpustate_to_list(cpu, true);
2156
2157 if (!write_list_to_kvmstate(cpu, level)) {
2158 return -EINVAL;
2159 }
2160
2161 /*
2162 * Setting VCPU events should be triggered after syncing the registers
2163 * to avoid overwriting potential changes made by KVM upon calling
2164 * KVM_SET_VCPU_EVENTS ioctl
2165 */
2166 ret = kvm_put_vcpu_events(cpu);
2167 if (ret) {
2168 return ret;
2169 }
2170
2171 return kvm_arm_sync_mpstate_to_kvm(cpu);
2172 }
2173
2174 static int kvm_arch_get_fpsimd(CPUState *cs)
2175 {
2176 CPUARMState *env = &ARM_CPU(cs)->env;
2177 int i, ret;
2178
2179 for (i = 0; i < 32; i++) {
2180 uint64_t *q = aa64_vfp_qreg(env, i);
2181 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2182 if (ret) {
2183 return ret;
2184 } else {
2185 #if HOST_BIG_ENDIAN
2186 uint64_t t;
2187 t = q[0], q[0] = q[1], q[1] = t;
2188 #endif
2189 }
2190 }
2191
2192 return 0;
2193 }
2194
2195 /*
2196 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2197 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2198 * code the slice index to zero for now as it's unlikely we'll need more than
2199 * one slice for quite some time.
2200 */
2201 static int kvm_arch_get_sve(CPUState *cs)
2202 {
2203 ARMCPU *cpu = ARM_CPU(cs);
2204 CPUARMState *env = &cpu->env;
2205 uint64_t *r;
2206 int n, ret;
2207
2208 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2209 r = &env->vfp.zregs[n].d[0];
2210 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2211 if (ret) {
2212 return ret;
2213 }
2214 sve_bswap64(r, r, cpu->sve_max_vq * 2);
2215 }
2216
2217 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2218 r = &env->vfp.pregs[n].p[0];
2219 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2220 if (ret) {
2221 return ret;
2222 }
2223 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2224 }
2225
2226 r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
2227 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2228 if (ret) {
2229 return ret;
2230 }
2231 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2232
2233 return 0;
2234 }
2235
2236 int kvm_arch_get_registers(CPUState *cs)
2237 {
2238 uint64_t val;
2239 unsigned int el;
2240 uint32_t fpr;
2241 int i, ret;
2242
2243 ARMCPU *cpu = ARM_CPU(cs);
2244 CPUARMState *env = &cpu->env;
2245
2246 for (i = 0; i < 31; i++) {
2247 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2248 &env->xregs[i]);
2249 if (ret) {
2250 return ret;
2251 }
2252 }
2253
2254 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2255 if (ret) {
2256 return ret;
2257 }
2258
2259 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2260 if (ret) {
2261 return ret;
2262 }
2263
2264 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2265 if (ret) {
2266 return ret;
2267 }
2268
2269 env->aarch64 = ((val & PSTATE_nRW) == 0);
2270 if (is_a64(env)) {
2271 pstate_write(env, val);
2272 } else {
2273 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
2274 }
2275
2276 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2277 * QEMU side we keep the current SP in xregs[31] as well.
2278 */
2279 aarch64_restore_sp(env, 1);
2280
2281 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2282 if (ret) {
2283 return ret;
2284 }
2285
2286 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
2287 * incoming AArch64 regs received from 64-bit KVM.
2288 * We must perform this after all of the registers have been acquired from
2289 * the kernel.
2290 */
2291 if (!is_a64(env)) {
2292 aarch64_sync_64_to_32(env);
2293 }
2294
2295 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2296 if (ret) {
2297 return ret;
2298 }
2299
2300 /* Fetch the SPSR registers
2301 *
2302 * KVM SPSRs 0-4 map to QEMU banks 1-5
2303 */
2304 for (i = 0; i < KVM_NR_SPSR; i++) {
2305 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2306 &env->banked_spsr[i + 1]);
2307 if (ret) {
2308 return ret;
2309 }
2310 }
2311
2312 el = arm_current_el(env);
2313 if (el > 0 && !is_a64(env)) {
2314 i = bank_number(env->uncached_cpsr & CPSR_M);
2315 env->spsr = env->banked_spsr[i];
2316 }
2317
2318 if (cpu_isar_feature(aa64_sve, cpu)) {
2319 ret = kvm_arch_get_sve(cs);
2320 } else {
2321 ret = kvm_arch_get_fpsimd(cs);
2322 }
2323 if (ret) {
2324 return ret;
2325 }
2326
2327 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2328 if (ret) {
2329 return ret;
2330 }
2331 vfp_set_fpsr(env, fpr);
2332
2333 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2334 if (ret) {
2335 return ret;
2336 }
2337 vfp_set_fpcr(env, fpr);
2338
2339 ret = kvm_get_vcpu_events(cpu);
2340 if (ret) {
2341 return ret;
2342 }
2343
2344 if (!write_kvmstate_to_list(cpu)) {
2345 return -EINVAL;
2346 }
2347 /* Note that it's OK to have registers which aren't in CPUState,
2348 * so we can ignore a failure return here.
2349 */
2350 write_list_to_cpustate(cpu);
2351
2352 ret = kvm_arm_sync_mpstate_to_qemu(cpu);
2353
2354 /* TODO: other registers */
2355 return ret;
2356 }
2357
2358 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
2359 {
2360 ram_addr_t ram_addr;
2361 hwaddr paddr;
2362
2363 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
2364
2365 if (acpi_ghes_present() && addr) {
2366 ram_addr = qemu_ram_addr_from_host(addr);
2367 if (ram_addr != RAM_ADDR_INVALID &&
2368 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
2369 kvm_hwpoison_page_add(ram_addr);
2370 /*
2371 * If this is a BUS_MCEERR_AR, we know we have been called
2372 * synchronously from the vCPU thread, so we can easily
2373 * synchronize the state and inject an error.
2374 *
2375 * TODO: we currently don't tell the guest at all about
2376 * BUS_MCEERR_AO. In that case we might either be being
2377 * called synchronously from the vCPU thread, or a bit
2378 * later from the main thread, so doing the injection of
2379 * the error would be more complicated.
2380 */
2381 if (code == BUS_MCEERR_AR) {
2382 kvm_cpu_synchronize_state(c);
2383 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
2384 kvm_inject_arm_sea(c);
2385 } else {
2386 error_report("failed to record the error");
2387 abort();
2388 }
2389 }
2390 return;
2391 }
2392 if (code == BUS_MCEERR_AO) {
2393 error_report("Hardware memory error at addr %p for memory used by "
2394 "QEMU itself instead of guest system!", addr);
2395 }
2396 }
2397
2398 if (code == BUS_MCEERR_AR) {
2399 error_report("Hardware memory error!");
2400 exit(1);
2401 }
2402 }
2403
2404 /* C6.6.29 BRK instruction */
2405 static const uint32_t brk_insn = 0xd4200000;
2406
2407 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2408 {
2409 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2410 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2411 return -EINVAL;
2412 }
2413 return 0;
2414 }
2415
2416 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2417 {
2418 static uint32_t brk;
2419
2420 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
2421 brk != brk_insn ||
2422 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2423 return -EINVAL;
2424 }
2425 return 0;
2426 }