]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/kvm64.c
target/arm: Use tcg_gen_extrh_i64_i32 to extract the high word
[mirror_qemu.git] / target / arm / kvm64.c
1 /*
2 * ARM implementation of KVM hooks, 64 bit specific code
3 *
4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5 * Copyright Alex Bennée 2014, Linaro
6 *
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
9 *
10 */
11
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
15
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
18
19 #include "qemu-common.h"
20 #include "cpu.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "exec/gdbstub.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/kvm.h"
27 #include "sysemu/kvm_int.h"
28 #include "kvm_arm.h"
29 #include "hw/boards.h"
30 #include "internals.h"
31
32 static bool have_guest_debug;
33
34 /*
35 * Although the ARM implementation of hardware assisted debugging
36 * allows for different breakpoints per-core, the current GDB
37 * interface treats them as a global pool of registers (which seems to
38 * be the case for x86, ppc and s390). As a result we store one copy
39 * of registers which is used for all active cores.
40 *
41 * Write access is serialised by virtue of the GDB protocol which
42 * updates things. Read access (i.e. when the values are copied to the
43 * vCPU) is also gated by GDB's run control.
44 *
45 * This is not unreasonable as most of the time debugging kernels you
46 * never know which core will eventually execute your function.
47 */
48
49 typedef struct {
50 uint64_t bcr;
51 uint64_t bvr;
52 } HWBreakpoint;
53
54 /* The watchpoint registers can cover more area than the requested
55 * watchpoint so we need to store the additional information
56 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
57 * when the watchpoint is hit.
58 */
59 typedef struct {
60 uint64_t wcr;
61 uint64_t wvr;
62 CPUWatchpoint details;
63 } HWWatchpoint;
64
65 /* Maximum and current break/watch point counts */
66 int max_hw_bps, max_hw_wps;
67 GArray *hw_breakpoints, *hw_watchpoints;
68
69 #define cur_hw_wps (hw_watchpoints->len)
70 #define cur_hw_bps (hw_breakpoints->len)
71 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
72 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
73
74 /**
75 * kvm_arm_init_debug() - check for guest debug capabilities
76 * @cs: CPUState
77 *
78 * kvm_check_extension returns the number of debug registers we have
79 * or 0 if we have none.
80 *
81 */
82 static void kvm_arm_init_debug(CPUState *cs)
83 {
84 have_guest_debug = kvm_check_extension(cs->kvm_state,
85 KVM_CAP_SET_GUEST_DEBUG);
86
87 max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
88 hw_watchpoints = g_array_sized_new(true, true,
89 sizeof(HWWatchpoint), max_hw_wps);
90
91 max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
92 hw_breakpoints = g_array_sized_new(true, true,
93 sizeof(HWBreakpoint), max_hw_bps);
94 return;
95 }
96
97 /**
98 * insert_hw_breakpoint()
99 * @addr: address of breakpoint
100 *
101 * See ARM ARM D2.9.1 for details but here we are only going to create
102 * simple un-linked breakpoints (i.e. we don't chain breakpoints
103 * together to match address and context or vmid). The hardware is
104 * capable of fancier matching but that will require exposing that
105 * fanciness to GDB's interface
106 *
107 * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
108 *
109 * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
110 * +------+------+-------+-----+----+------+-----+------+-----+---+
111 * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
112 * +------+------+-------+-----+----+------+-----+------+-----+---+
113 *
114 * BT: Breakpoint type (0 = unlinked address match)
115 * LBN: Linked BP number (0 = unused)
116 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
117 * BAS: Byte Address Select (RES1 for AArch64)
118 * E: Enable bit
119 *
120 * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
121 *
122 * 63 53 52 49 48 2 1 0
123 * +------+-----------+----------+-----+
124 * | RESS | VA[52:49] | VA[48:2] | 0 0 |
125 * +------+-----------+----------+-----+
126 *
127 * Depending on the addressing mode bits the top bits of the register
128 * are a sign extension of the highest applicable VA bit. Some
129 * versions of GDB don't do it correctly so we ensure they are correct
130 * here so future PC comparisons will work properly.
131 */
132
133 static int insert_hw_breakpoint(target_ulong addr)
134 {
135 HWBreakpoint brk = {
136 .bcr = 0x1, /* BCR E=1, enable */
137 .bvr = sextract64(addr, 0, 53)
138 };
139
140 if (cur_hw_bps >= max_hw_bps) {
141 return -ENOBUFS;
142 }
143
144 brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */
145 brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */
146
147 g_array_append_val(hw_breakpoints, brk);
148
149 return 0;
150 }
151
152 /**
153 * delete_hw_breakpoint()
154 * @pc: address of breakpoint
155 *
156 * Delete a breakpoint and shuffle any above down
157 */
158
159 static int delete_hw_breakpoint(target_ulong pc)
160 {
161 int i;
162 for (i = 0; i < hw_breakpoints->len; i++) {
163 HWBreakpoint *brk = get_hw_bp(i);
164 if (brk->bvr == pc) {
165 g_array_remove_index(hw_breakpoints, i);
166 return 0;
167 }
168 }
169 return -ENOENT;
170 }
171
172 /**
173 * insert_hw_watchpoint()
174 * @addr: address of watch point
175 * @len: size of area
176 * @type: type of watch point
177 *
178 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
179 * stuff if we want to. The watch points can be linked with the break
180 * points above to make them context aware. However for simplicity
181 * currently we only deal with simple read/write watch points.
182 *
183 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
184 *
185 * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
186 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
187 * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
188 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
189 *
190 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
191 * WT: 0 - unlinked, 1 - linked (not currently used)
192 * LBN: Linked BP number (not currently used)
193 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
194 * BAS: Byte Address Select
195 * LSC: Load/Store control (01: load, 10: store, 11: both)
196 * E: Enable
197 *
198 * The bottom 2 bits of the value register are masked. Therefore to
199 * break on any sizes smaller than an unaligned word you need to set
200 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
201 * need to ensure you mask the address as required and set BAS=0xff
202 */
203
204 static int insert_hw_watchpoint(target_ulong addr,
205 target_ulong len, int type)
206 {
207 HWWatchpoint wp = {
208 .wcr = 1, /* E=1, enable */
209 .wvr = addr & (~0x7ULL),
210 .details = { .vaddr = addr, .len = len }
211 };
212
213 if (cur_hw_wps >= max_hw_wps) {
214 return -ENOBUFS;
215 }
216
217 /*
218 * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
219 * valid whether EL3 is implemented or not
220 */
221 wp.wcr = deposit32(wp.wcr, 1, 2, 3);
222
223 switch (type) {
224 case GDB_WATCHPOINT_READ:
225 wp.wcr = deposit32(wp.wcr, 3, 2, 1);
226 wp.details.flags = BP_MEM_READ;
227 break;
228 case GDB_WATCHPOINT_WRITE:
229 wp.wcr = deposit32(wp.wcr, 3, 2, 2);
230 wp.details.flags = BP_MEM_WRITE;
231 break;
232 case GDB_WATCHPOINT_ACCESS:
233 wp.wcr = deposit32(wp.wcr, 3, 2, 3);
234 wp.details.flags = BP_MEM_ACCESS;
235 break;
236 default:
237 g_assert_not_reached();
238 break;
239 }
240 if (len <= 8) {
241 /* we align the address and set the bits in BAS */
242 int off = addr & 0x7;
243 int bas = (1 << len) - 1;
244
245 wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
246 } else {
247 /* For ranges above 8 bytes we need to be a power of 2 */
248 if (is_power_of_2(len)) {
249 int bits = ctz64(len);
250
251 wp.wvr &= ~((1 << bits) - 1);
252 wp.wcr = deposit32(wp.wcr, 24, 4, bits);
253 wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
254 } else {
255 return -ENOBUFS;
256 }
257 }
258
259 g_array_append_val(hw_watchpoints, wp);
260 return 0;
261 }
262
263
264 static bool check_watchpoint_in_range(int i, target_ulong addr)
265 {
266 HWWatchpoint *wp = get_hw_wp(i);
267 uint64_t addr_top, addr_bottom = wp->wvr;
268 int bas = extract32(wp->wcr, 5, 8);
269 int mask = extract32(wp->wcr, 24, 4);
270
271 if (mask) {
272 addr_top = addr_bottom + (1 << mask);
273 } else {
274 /* BAS must be contiguous but can offset against the base
275 * address in DBGWVR */
276 addr_bottom = addr_bottom + ctz32(bas);
277 addr_top = addr_bottom + clo32(bas);
278 }
279
280 if (addr >= addr_bottom && addr <= addr_top) {
281 return true;
282 }
283
284 return false;
285 }
286
287 /**
288 * delete_hw_watchpoint()
289 * @addr: address of breakpoint
290 *
291 * Delete a breakpoint and shuffle any above down
292 */
293
294 static int delete_hw_watchpoint(target_ulong addr,
295 target_ulong len, int type)
296 {
297 int i;
298 for (i = 0; i < cur_hw_wps; i++) {
299 if (check_watchpoint_in_range(i, addr)) {
300 g_array_remove_index(hw_watchpoints, i);
301 return 0;
302 }
303 }
304 return -ENOENT;
305 }
306
307
308 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
309 target_ulong len, int type)
310 {
311 switch (type) {
312 case GDB_BREAKPOINT_HW:
313 return insert_hw_breakpoint(addr);
314 break;
315 case GDB_WATCHPOINT_READ:
316 case GDB_WATCHPOINT_WRITE:
317 case GDB_WATCHPOINT_ACCESS:
318 return insert_hw_watchpoint(addr, len, type);
319 default:
320 return -ENOSYS;
321 }
322 }
323
324 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
325 target_ulong len, int type)
326 {
327 switch (type) {
328 case GDB_BREAKPOINT_HW:
329 return delete_hw_breakpoint(addr);
330 break;
331 case GDB_WATCHPOINT_READ:
332 case GDB_WATCHPOINT_WRITE:
333 case GDB_WATCHPOINT_ACCESS:
334 return delete_hw_watchpoint(addr, len, type);
335 default:
336 return -ENOSYS;
337 }
338 }
339
340
341 void kvm_arch_remove_all_hw_breakpoints(void)
342 {
343 if (cur_hw_wps > 0) {
344 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
345 }
346 if (cur_hw_bps > 0) {
347 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
348 }
349 }
350
351 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
352 {
353 int i;
354 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
355
356 for (i = 0; i < max_hw_wps; i++) {
357 HWWatchpoint *wp = get_hw_wp(i);
358 ptr->dbg_wcr[i] = wp->wcr;
359 ptr->dbg_wvr[i] = wp->wvr;
360 }
361 for (i = 0; i < max_hw_bps; i++) {
362 HWBreakpoint *bp = get_hw_bp(i);
363 ptr->dbg_bcr[i] = bp->bcr;
364 ptr->dbg_bvr[i] = bp->bvr;
365 }
366 }
367
368 bool kvm_arm_hw_debug_active(CPUState *cs)
369 {
370 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
371 }
372
373 static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
374 {
375 int i;
376
377 for (i = 0; i < cur_hw_bps; i++) {
378 HWBreakpoint *bp = get_hw_bp(i);
379 if (bp->bvr == pc) {
380 return true;
381 }
382 }
383 return false;
384 }
385
386 static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
387 {
388 int i;
389
390 for (i = 0; i < cur_hw_wps; i++) {
391 if (check_watchpoint_in_range(i, addr)) {
392 return &get_hw_wp(i)->details;
393 }
394 }
395 return NULL;
396 }
397
398 static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr)
399 {
400 int err;
401
402 err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
403 if (err != 0) {
404 error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err));
405 return false;
406 }
407
408 err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
409 if (err != 0) {
410 error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err));
411 return false;
412 }
413
414 return true;
415 }
416
417 void kvm_arm_pmu_init(CPUState *cs)
418 {
419 struct kvm_device_attr attr = {
420 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
421 .attr = KVM_ARM_VCPU_PMU_V3_INIT,
422 };
423
424 if (!ARM_CPU(cs)->has_pmu) {
425 return;
426 }
427 if (!kvm_arm_pmu_set_attr(cs, &attr)) {
428 error_report("failed to init PMU");
429 abort();
430 }
431 }
432
433 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
434 {
435 struct kvm_device_attr attr = {
436 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
437 .addr = (intptr_t)&irq,
438 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
439 };
440
441 if (!ARM_CPU(cs)->has_pmu) {
442 return;
443 }
444 if (!kvm_arm_pmu_set_attr(cs, &attr)) {
445 error_report("failed to set irq for PMU");
446 abort();
447 }
448 }
449
450 static inline void set_feature(uint64_t *features, int feature)
451 {
452 *features |= 1ULL << feature;
453 }
454
455 static inline void unset_feature(uint64_t *features, int feature)
456 {
457 *features &= ~(1ULL << feature);
458 }
459
460 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
461 {
462 uint64_t ret;
463 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
464 int err;
465
466 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
467 err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
468 if (err < 0) {
469 return -1;
470 }
471 *pret = ret;
472 return 0;
473 }
474
475 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
476 {
477 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
478
479 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
480 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
481 }
482
483 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
484 {
485 /* Identify the feature bits corresponding to the host CPU, and
486 * fill out the ARMHostCPUClass fields accordingly. To do this
487 * we have to create a scratch VM, create a single CPU inside it,
488 * and then query that CPU for the relevant ID registers.
489 */
490 int fdarray[3];
491 uint64_t features = 0;
492 int err;
493
494 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
495 * we know these will only support creating one kind of guest CPU,
496 * which is its preferred CPU type. Fortunately these old kernels
497 * support only a very limited number of CPUs.
498 */
499 static const uint32_t cpus_to_try[] = {
500 KVM_ARM_TARGET_AEM_V8,
501 KVM_ARM_TARGET_FOUNDATION_V8,
502 KVM_ARM_TARGET_CORTEX_A57,
503 QEMU_KVM_ARM_TARGET_NONE
504 };
505 struct kvm_vcpu_init init;
506
507 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
508 return false;
509 }
510
511 ahcf->target = init.target;
512 ahcf->dtb_compatible = "arm,arm-v8";
513
514 err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
515 ARM64_SYS_REG(3, 0, 0, 4, 0));
516 if (unlikely(err < 0)) {
517 /*
518 * Before v4.15, the kernel only exposed a limited number of system
519 * registers, not including any of the interesting AArch64 ID regs.
520 * For the most part we could leave these fields as zero with minimal
521 * effect, since this does not affect the values seen by the guest.
522 *
523 * However, it could cause problems down the line for QEMU,
524 * so provide a minimal v8.0 default.
525 *
526 * ??? Could read MIDR and use knowledge from cpu64.c.
527 * ??? Could map a page of memory into our temp guest and
528 * run the tiniest of hand-crafted kernels to extract
529 * the values seen by the guest.
530 * ??? Either of these sounds like too much effort just
531 * to work around running a modern host kernel.
532 */
533 ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
534 err = 0;
535 } else {
536 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
537 ARM64_SYS_REG(3, 0, 0, 4, 1));
538 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
539 ARM64_SYS_REG(3, 0, 0, 6, 0));
540 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
541 ARM64_SYS_REG(3, 0, 0, 6, 1));
542 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
543 ARM64_SYS_REG(3, 0, 0, 7, 0));
544 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
545 ARM64_SYS_REG(3, 0, 0, 7, 1));
546
547 /*
548 * Note that if AArch32 support is not present in the host,
549 * the AArch32 sysregs are present to be read, but will
550 * return UNKNOWN values. This is neither better nor worse
551 * than skipping the reads and leaving 0, as we must avoid
552 * considering the values in every case.
553 */
554 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
555 ARM64_SYS_REG(3, 0, 0, 2, 0));
556 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
557 ARM64_SYS_REG(3, 0, 0, 2, 1));
558 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
559 ARM64_SYS_REG(3, 0, 0, 2, 2));
560 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
561 ARM64_SYS_REG(3, 0, 0, 2, 3));
562 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
563 ARM64_SYS_REG(3, 0, 0, 2, 4));
564 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
565 ARM64_SYS_REG(3, 0, 0, 2, 5));
566 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
567 ARM64_SYS_REG(3, 0, 0, 2, 7));
568
569 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
570 ARM64_SYS_REG(3, 0, 0, 3, 0));
571 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
572 ARM64_SYS_REG(3, 0, 0, 3, 1));
573 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
574 ARM64_SYS_REG(3, 0, 0, 3, 2));
575 }
576
577 kvm_arm_destroy_scratch_host_vcpu(fdarray);
578
579 if (err < 0) {
580 return false;
581 }
582
583 /* We can assume any KVM supporting CPU is at least a v8
584 * with VFPv4+Neon; this in turn implies most of the other
585 * feature bits.
586 */
587 set_feature(&features, ARM_FEATURE_V8);
588 set_feature(&features, ARM_FEATURE_VFP4);
589 set_feature(&features, ARM_FEATURE_NEON);
590 set_feature(&features, ARM_FEATURE_AARCH64);
591 set_feature(&features, ARM_FEATURE_PMU);
592
593 ahcf->features = features;
594
595 return true;
596 }
597
598 bool kvm_arm_aarch32_supported(CPUState *cpu)
599 {
600 KVMState *s = KVM_STATE(current_machine->accelerator);
601
602 return kvm_check_extension(s, KVM_CAP_ARM_EL1_32BIT);
603 }
604
605 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
606
607 int kvm_arch_init_vcpu(CPUState *cs)
608 {
609 int ret;
610 uint64_t mpidr;
611 ARMCPU *cpu = ARM_CPU(cs);
612 CPUARMState *env = &cpu->env;
613
614 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
615 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
616 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
617 return -EINVAL;
618 }
619
620 /* Determine init features for this CPU */
621 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
622 if (cpu->start_powered_off) {
623 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
624 }
625 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
626 cpu->psci_version = 2;
627 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
628 }
629 if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
630 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
631 }
632 if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
633 cpu->has_pmu = false;
634 }
635 if (cpu->has_pmu) {
636 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
637 } else {
638 unset_feature(&env->features, ARM_FEATURE_PMU);
639 }
640
641 /* Do KVM_ARM_VCPU_INIT ioctl */
642 ret = kvm_arm_vcpu_init(cs);
643 if (ret) {
644 return ret;
645 }
646
647 /*
648 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
649 * Currently KVM has its own idea about MPIDR assignment, so we
650 * override our defaults with what we get from KVM.
651 */
652 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
653 if (ret) {
654 return ret;
655 }
656 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
657
658 kvm_arm_init_debug(cs);
659
660 /* Check whether user space can specify guest syndrome value */
661 kvm_arm_init_serror_injection(cs);
662
663 return kvm_arm_init_cpreg_list(cpu);
664 }
665
666 int kvm_arch_destroy_vcpu(CPUState *cs)
667 {
668 return 0;
669 }
670
671 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
672 {
673 /* Return true if the regidx is a register we should synchronize
674 * via the cpreg_tuples array (ie is not a core reg we sync by
675 * hand in kvm_arch_get/put_registers())
676 */
677 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
678 case KVM_REG_ARM_CORE:
679 return false;
680 default:
681 return true;
682 }
683 }
684
685 typedef struct CPRegStateLevel {
686 uint64_t regidx;
687 int level;
688 } CPRegStateLevel;
689
690 /* All system registers not listed in the following table are assumed to be
691 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
692 * often, you must add it to this table with a state of either
693 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
694 */
695 static const CPRegStateLevel non_runtime_cpregs[] = {
696 { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
697 };
698
699 int kvm_arm_cpreg_level(uint64_t regidx)
700 {
701 int i;
702
703 for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
704 const CPRegStateLevel *l = &non_runtime_cpregs[i];
705 if (l->regidx == regidx) {
706 return l->level;
707 }
708 }
709
710 return KVM_PUT_RUNTIME_STATE;
711 }
712
713 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
714 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
715
716 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
717 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
718
719 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
720 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
721
722 static int kvm_arch_put_fpsimd(CPUState *cs)
723 {
724 ARMCPU *cpu = ARM_CPU(cs);
725 CPUARMState *env = &cpu->env;
726 struct kvm_one_reg reg;
727 uint32_t fpr;
728 int i, ret;
729
730 for (i = 0; i < 32; i++) {
731 uint64_t *q = aa64_vfp_qreg(env, i);
732 #ifdef HOST_WORDS_BIGENDIAN
733 uint64_t fp_val[2] = { q[1], q[0] };
734 reg.addr = (uintptr_t)fp_val;
735 #else
736 reg.addr = (uintptr_t)q;
737 #endif
738 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
739 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
740 if (ret) {
741 return ret;
742 }
743 }
744
745 reg.addr = (uintptr_t)(&fpr);
746 fpr = vfp_get_fpsr(env);
747 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
748 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
749 if (ret) {
750 return ret;
751 }
752
753 reg.addr = (uintptr_t)(&fpr);
754 fpr = vfp_get_fpcr(env);
755 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
756 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
757 if (ret) {
758 return ret;
759 }
760
761 return 0;
762 }
763
764 int kvm_arch_put_registers(CPUState *cs, int level)
765 {
766 struct kvm_one_reg reg;
767 uint64_t val;
768 int i, ret;
769 unsigned int el;
770
771 ARMCPU *cpu = ARM_CPU(cs);
772 CPUARMState *env = &cpu->env;
773
774 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
775 * AArch64 registers before pushing them out to 64-bit KVM.
776 */
777 if (!is_a64(env)) {
778 aarch64_sync_32_to_64(env);
779 }
780
781 for (i = 0; i < 31; i++) {
782 reg.id = AARCH64_CORE_REG(regs.regs[i]);
783 reg.addr = (uintptr_t) &env->xregs[i];
784 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
785 if (ret) {
786 return ret;
787 }
788 }
789
790 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
791 * QEMU side we keep the current SP in xregs[31] as well.
792 */
793 aarch64_save_sp(env, 1);
794
795 reg.id = AARCH64_CORE_REG(regs.sp);
796 reg.addr = (uintptr_t) &env->sp_el[0];
797 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
798 if (ret) {
799 return ret;
800 }
801
802 reg.id = AARCH64_CORE_REG(sp_el1);
803 reg.addr = (uintptr_t) &env->sp_el[1];
804 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
805 if (ret) {
806 return ret;
807 }
808
809 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
810 if (is_a64(env)) {
811 val = pstate_read(env);
812 } else {
813 val = cpsr_read(env);
814 }
815 reg.id = AARCH64_CORE_REG(regs.pstate);
816 reg.addr = (uintptr_t) &val;
817 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
818 if (ret) {
819 return ret;
820 }
821
822 reg.id = AARCH64_CORE_REG(regs.pc);
823 reg.addr = (uintptr_t) &env->pc;
824 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
825 if (ret) {
826 return ret;
827 }
828
829 reg.id = AARCH64_CORE_REG(elr_el1);
830 reg.addr = (uintptr_t) &env->elr_el[1];
831 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
832 if (ret) {
833 return ret;
834 }
835
836 /* Saved Program State Registers
837 *
838 * Before we restore from the banked_spsr[] array we need to
839 * ensure that any modifications to env->spsr are correctly
840 * reflected in the banks.
841 */
842 el = arm_current_el(env);
843 if (el > 0 && !is_a64(env)) {
844 i = bank_number(env->uncached_cpsr & CPSR_M);
845 env->banked_spsr[i] = env->spsr;
846 }
847
848 /* KVM 0-4 map to QEMU banks 1-5 */
849 for (i = 0; i < KVM_NR_SPSR; i++) {
850 reg.id = AARCH64_CORE_REG(spsr[i]);
851 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
852 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
853 if (ret) {
854 return ret;
855 }
856 }
857
858 ret = kvm_arch_put_fpsimd(cs);
859 if (ret) {
860 return ret;
861 }
862
863 ret = kvm_put_vcpu_events(cpu);
864 if (ret) {
865 return ret;
866 }
867
868 write_cpustate_to_list(cpu, true);
869
870 if (!write_list_to_kvmstate(cpu, level)) {
871 return -EINVAL;
872 }
873
874 kvm_arm_sync_mpstate_to_kvm(cpu);
875
876 return ret;
877 }
878
879 static int kvm_arch_get_fpsimd(CPUState *cs)
880 {
881 ARMCPU *cpu = ARM_CPU(cs);
882 CPUARMState *env = &cpu->env;
883 struct kvm_one_reg reg;
884 uint32_t fpr;
885 int i, ret;
886
887 for (i = 0; i < 32; i++) {
888 uint64_t *q = aa64_vfp_qreg(env, i);
889 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
890 reg.addr = (uintptr_t)q;
891 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
892 if (ret) {
893 return ret;
894 } else {
895 #ifdef HOST_WORDS_BIGENDIAN
896 uint64_t t;
897 t = q[0], q[0] = q[1], q[1] = t;
898 #endif
899 }
900 }
901
902 reg.addr = (uintptr_t)(&fpr);
903 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
904 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
905 if (ret) {
906 return ret;
907 }
908 vfp_set_fpsr(env, fpr);
909
910 reg.addr = (uintptr_t)(&fpr);
911 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
912 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
913 if (ret) {
914 return ret;
915 }
916 vfp_set_fpcr(env, fpr);
917
918 return 0;
919 }
920
921 int kvm_arch_get_registers(CPUState *cs)
922 {
923 struct kvm_one_reg reg;
924 uint64_t val;
925 unsigned int el;
926 int i, ret;
927
928 ARMCPU *cpu = ARM_CPU(cs);
929 CPUARMState *env = &cpu->env;
930
931 for (i = 0; i < 31; i++) {
932 reg.id = AARCH64_CORE_REG(regs.regs[i]);
933 reg.addr = (uintptr_t) &env->xregs[i];
934 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
935 if (ret) {
936 return ret;
937 }
938 }
939
940 reg.id = AARCH64_CORE_REG(regs.sp);
941 reg.addr = (uintptr_t) &env->sp_el[0];
942 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
943 if (ret) {
944 return ret;
945 }
946
947 reg.id = AARCH64_CORE_REG(sp_el1);
948 reg.addr = (uintptr_t) &env->sp_el[1];
949 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
950 if (ret) {
951 return ret;
952 }
953
954 reg.id = AARCH64_CORE_REG(regs.pstate);
955 reg.addr = (uintptr_t) &val;
956 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
957 if (ret) {
958 return ret;
959 }
960
961 env->aarch64 = ((val & PSTATE_nRW) == 0);
962 if (is_a64(env)) {
963 pstate_write(env, val);
964 } else {
965 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
966 }
967
968 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
969 * QEMU side we keep the current SP in xregs[31] as well.
970 */
971 aarch64_restore_sp(env, 1);
972
973 reg.id = AARCH64_CORE_REG(regs.pc);
974 reg.addr = (uintptr_t) &env->pc;
975 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
976 if (ret) {
977 return ret;
978 }
979
980 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
981 * incoming AArch64 regs received from 64-bit KVM.
982 * We must perform this after all of the registers have been acquired from
983 * the kernel.
984 */
985 if (!is_a64(env)) {
986 aarch64_sync_64_to_32(env);
987 }
988
989 reg.id = AARCH64_CORE_REG(elr_el1);
990 reg.addr = (uintptr_t) &env->elr_el[1];
991 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
992 if (ret) {
993 return ret;
994 }
995
996 /* Fetch the SPSR registers
997 *
998 * KVM SPSRs 0-4 map to QEMU banks 1-5
999 */
1000 for (i = 0; i < KVM_NR_SPSR; i++) {
1001 reg.id = AARCH64_CORE_REG(spsr[i]);
1002 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1003 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1004 if (ret) {
1005 return ret;
1006 }
1007 }
1008
1009 el = arm_current_el(env);
1010 if (el > 0 && !is_a64(env)) {
1011 i = bank_number(env->uncached_cpsr & CPSR_M);
1012 env->spsr = env->banked_spsr[i];
1013 }
1014
1015 ret = kvm_arch_get_fpsimd(cs);
1016 if (ret) {
1017 return ret;
1018 }
1019
1020 ret = kvm_get_vcpu_events(cpu);
1021 if (ret) {
1022 return ret;
1023 }
1024
1025 if (!write_kvmstate_to_list(cpu)) {
1026 return -EINVAL;
1027 }
1028 /* Note that it's OK to have registers which aren't in CPUState,
1029 * so we can ignore a failure return here.
1030 */
1031 write_list_to_cpustate(cpu);
1032
1033 kvm_arm_sync_mpstate_to_qemu(cpu);
1034
1035 /* TODO: other registers */
1036 return ret;
1037 }
1038
1039 /* C6.6.29 BRK instruction */
1040 static const uint32_t brk_insn = 0xd4200000;
1041
1042 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1043 {
1044 if (have_guest_debug) {
1045 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
1046 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
1047 return -EINVAL;
1048 }
1049 return 0;
1050 } else {
1051 error_report("guest debug not supported on this kernel");
1052 return -EINVAL;
1053 }
1054 }
1055
1056 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1057 {
1058 static uint32_t brk;
1059
1060 if (have_guest_debug) {
1061 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
1062 brk != brk_insn ||
1063 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
1064 return -EINVAL;
1065 }
1066 return 0;
1067 } else {
1068 error_report("guest debug not supported on this kernel");
1069 return -EINVAL;
1070 }
1071 }
1072
1073 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1074 *
1075 * To minimise translating between kernel and user-space the kernel
1076 * ABI just provides user-space with the full exception syndrome
1077 * register value to be decoded in QEMU.
1078 */
1079
1080 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
1081 {
1082 int hsr_ec = syn_get_ec(debug_exit->hsr);
1083 ARMCPU *cpu = ARM_CPU(cs);
1084 CPUClass *cc = CPU_GET_CLASS(cs);
1085 CPUARMState *env = &cpu->env;
1086
1087 /* Ensure PC is synchronised */
1088 kvm_cpu_synchronize_state(cs);
1089
1090 switch (hsr_ec) {
1091 case EC_SOFTWARESTEP:
1092 if (cs->singlestep_enabled) {
1093 return true;
1094 } else {
1095 /*
1096 * The kernel should have suppressed the guest's ability to
1097 * single step at this point so something has gone wrong.
1098 */
1099 error_report("%s: guest single-step while debugging unsupported"
1100 " (%"PRIx64", %"PRIx32")",
1101 __func__, env->pc, debug_exit->hsr);
1102 return false;
1103 }
1104 break;
1105 case EC_AA64_BKPT:
1106 if (kvm_find_sw_breakpoint(cs, env->pc)) {
1107 return true;
1108 }
1109 break;
1110 case EC_BREAKPOINT:
1111 if (find_hw_breakpoint(cs, env->pc)) {
1112 return true;
1113 }
1114 break;
1115 case EC_WATCHPOINT:
1116 {
1117 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1118 if (wp) {
1119 cs->watchpoint_hit = wp;
1120 return true;
1121 }
1122 break;
1123 }
1124 default:
1125 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1126 __func__, debug_exit->hsr, env->pc);
1127 }
1128
1129 /* If we are not handling the debug exception it must belong to
1130 * the guest. Let's re-use the existing TCG interrupt code to set
1131 * everything up properly.
1132 */
1133 cs->exception_index = EXCP_BKPT;
1134 env->exception.syndrome = debug_exit->hsr;
1135 env->exception.vaddress = debug_exit->far;
1136 env->exception.target_el = 1;
1137 qemu_mutex_lock_iothread();
1138 cc->do_interrupt(cs);
1139 qemu_mutex_unlock_iothread();
1140
1141 return false;
1142 }