]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/tcg/tlb_helper.c
59bff8b4527b9aa21ff597544efa9038abf7f239
[mirror_qemu.git] / target / arm / tcg / tlb_helper.c
1 /*
2 * ARM TLB (Translation lookaside buffer) helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8 #include "qemu/osdep.h"
9 #include "cpu.h"
10 #include "internals.h"
11 #include "exec/exec-all.h"
12 #include "exec/helper-proto.h"
13
14
15 /*
16 * Returns true if the stage 1 translation regime is using LPAE format page
17 * tables. Used when raising alignment exceptions, whose FSR changes depending
18 * on whether the long or short descriptor format is in use.
19 */
20 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
21 {
22 mmu_idx = stage_1_mmu_idx(mmu_idx);
23 return regime_using_lpae_format(env, mmu_idx);
24 }
25
26 static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
27 ARMMMUFaultInfo *fi,
28 unsigned int target_el,
29 bool same_el, bool is_write,
30 int fsc)
31 {
32 uint32_t syn;
33
34 /*
35 * ISV is only set for stage-2 data aborts routed to EL2 and
36 * never for stage-1 page table walks faulting on stage 2
37 * or for stage-1 faults.
38 *
39 * Furthermore, ISV is only set for certain kinds of load/stores.
40 * If the template syndrome does not have ISV set, we should leave
41 * it cleared.
42 *
43 * See ARMv8 specs, D7-1974:
44 * ISS encoding for an exception from a Data Abort, the
45 * ISV field.
46 *
47 * TODO: FEAT_LS64/FEAT_LS64_V/FEAT_SL64_ACCDATA: Translation,
48 * Access Flag, and Permission faults caused by LD64B, ST64B,
49 * ST64BV, or ST64BV0 insns report syndrome info even for stage-1
50 * faults and regardless of the target EL.
51 */
52 if (!(template_syn & ARM_EL_ISV) || target_el != 2
53 || fi->s1ptw || !fi->stage2) {
54 syn = syn_data_abort_no_iss(same_el, 0,
55 fi->ea, 0, fi->s1ptw, is_write, fsc);
56 } else {
57 /*
58 * Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
59 * syndrome created at translation time.
60 * Now we create the runtime syndrome with the remaining fields.
61 */
62 syn = syn_data_abort_with_iss(same_el,
63 0, 0, 0, 0, 0,
64 fi->ea, 0, fi->s1ptw, is_write, fsc,
65 true);
66 /* Merge the runtime syndrome with the template syndrome. */
67 syn |= template_syn;
68 }
69 return syn;
70 }
71
72 static uint32_t compute_fsr_fsc(CPUARMState *env, ARMMMUFaultInfo *fi,
73 int target_el, int mmu_idx, uint32_t *ret_fsc)
74 {
75 ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
76 uint32_t fsr, fsc;
77
78 /*
79 * For M-profile there is no guest-facing FSR. We compute a
80 * short-form value for env->exception.fsr which we will then
81 * examine in arm_v7m_cpu_do_interrupt(). In theory we could
82 * use the LPAE format instead as long as both bits of code agree
83 * (and arm_fi_to_lfsc() handled the M-profile specific
84 * ARMFault_QEMU_NSCExec and ARMFault_QEMU_SFault cases).
85 */
86 if (!arm_feature(env, ARM_FEATURE_M) &&
87 (target_el == 2 || arm_el_is_aa64(env, target_el) ||
88 arm_s1_regime_using_lpae_format(env, arm_mmu_idx))) {
89 /*
90 * LPAE format fault status register : bottom 6 bits are
91 * status code in the same form as needed for syndrome
92 */
93 fsr = arm_fi_to_lfsc(fi);
94 fsc = extract32(fsr, 0, 6);
95 } else {
96 fsr = arm_fi_to_sfsc(fi);
97 /*
98 * Short format FSR : this fault will never actually be reported
99 * to an EL that uses a syndrome register. Use a (currently)
100 * reserved FSR code in case the constructed syndrome does leak
101 * into the guest somehow.
102 */
103 fsc = 0x3f;
104 }
105
106 *ret_fsc = fsc;
107 return fsr;
108 }
109
110 static bool report_as_gpc_exception(ARMCPU *cpu, int current_el,
111 ARMMMUFaultInfo *fi)
112 {
113 bool ret;
114
115 switch (fi->gpcf) {
116 case GPCF_None:
117 return false;
118 case GPCF_AddressSize:
119 case GPCF_Walk:
120 case GPCF_EABT:
121 /* R_PYTGX: GPT faults are reported as GPC. */
122 ret = true;
123 break;
124 case GPCF_Fail:
125 /*
126 * R_BLYPM: A GPF at EL3 is reported as insn or data abort.
127 * R_VBZMW, R_LXHQR: A GPF at EL[0-2] is reported as a GPC
128 * if SCR_EL3.GPF is set, otherwise an insn or data abort.
129 */
130 ret = (cpu->env.cp15.scr_el3 & SCR_GPF) && current_el != 3;
131 break;
132 default:
133 g_assert_not_reached();
134 }
135
136 assert(cpu_isar_feature(aa64_rme, cpu));
137 assert(fi->type == ARMFault_GPCFOnWalk ||
138 fi->type == ARMFault_GPCFOnOutput);
139 if (fi->gpcf == GPCF_AddressSize) {
140 assert(fi->level == 0);
141 } else {
142 assert(fi->level >= 0 && fi->level <= 1);
143 }
144
145 return ret;
146 }
147
148 static unsigned encode_gpcsc(ARMMMUFaultInfo *fi)
149 {
150 static uint8_t const gpcsc[] = {
151 [GPCF_AddressSize] = 0b000000,
152 [GPCF_Walk] = 0b000100,
153 [GPCF_Fail] = 0b001100,
154 [GPCF_EABT] = 0b010100,
155 };
156
157 /* Note that we've validated fi->gpcf and fi->level above. */
158 return gpcsc[fi->gpcf] | fi->level;
159 }
160
161 static G_NORETURN
162 void arm_deliver_fault(ARMCPU *cpu, vaddr addr,
163 MMUAccessType access_type,
164 int mmu_idx, ARMMMUFaultInfo *fi)
165 {
166 CPUARMState *env = &cpu->env;
167 int target_el = exception_target_el(env);
168 int current_el = arm_current_el(env);
169 bool same_el;
170 uint32_t syn, exc, fsr, fsc;
171
172 if (report_as_gpc_exception(cpu, current_el, fi)) {
173 target_el = 3;
174
175 fsr = compute_fsr_fsc(env, fi, target_el, mmu_idx, &fsc);
176
177 syn = syn_gpc(fi->stage2 && fi->type == ARMFault_GPCFOnWalk,
178 access_type == MMU_INST_FETCH,
179 encode_gpcsc(fi), 0, fi->s1ptw,
180 access_type == MMU_DATA_STORE, fsc);
181
182 env->cp15.mfar_el3 = fi->paddr;
183 switch (fi->paddr_space) {
184 case ARMSS_Secure:
185 break;
186 case ARMSS_NonSecure:
187 env->cp15.mfar_el3 |= R_MFAR_NS_MASK;
188 break;
189 case ARMSS_Root:
190 env->cp15.mfar_el3 |= R_MFAR_NSE_MASK;
191 break;
192 case ARMSS_Realm:
193 env->cp15.mfar_el3 |= R_MFAR_NSE_MASK | R_MFAR_NS_MASK;
194 break;
195 default:
196 g_assert_not_reached();
197 }
198
199 exc = EXCP_GPC;
200 goto do_raise;
201 }
202
203 /* If SCR_EL3.GPF is unset, GPF may still be routed to EL2. */
204 if (fi->gpcf == GPCF_Fail && target_el < 2) {
205 if (arm_hcr_el2_eff(env) & HCR_GPF) {
206 target_el = 2;
207 }
208 }
209
210 if (fi->stage2) {
211 target_el = 2;
212 env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
213 if (arm_is_secure_below_el3(env) && fi->s1ns) {
214 env->cp15.hpfar_el2 |= HPFAR_NS;
215 }
216 }
217
218 same_el = current_el == target_el;
219 fsr = compute_fsr_fsc(env, fi, target_el, mmu_idx, &fsc);
220
221 if (access_type == MMU_INST_FETCH) {
222 syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
223 exc = EXCP_PREFETCH_ABORT;
224 } else {
225 syn = merge_syn_data_abort(env->exception.syndrome, fi, target_el,
226 same_el, access_type == MMU_DATA_STORE,
227 fsc);
228 if (access_type == MMU_DATA_STORE
229 && arm_feature(env, ARM_FEATURE_V6)) {
230 fsr |= (1 << 11);
231 }
232 exc = EXCP_DATA_ABORT;
233 }
234
235 do_raise:
236 env->exception.vaddress = addr;
237 env->exception.fsr = fsr;
238 raise_exception(env, exc, syn, target_el);
239 }
240
241 /* Raise a data fault alignment exception for the specified virtual address */
242 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
243 MMUAccessType access_type,
244 int mmu_idx, uintptr_t retaddr)
245 {
246 ARMCPU *cpu = ARM_CPU(cs);
247 ARMMMUFaultInfo fi = {};
248
249 /* now we have a real cpu fault */
250 cpu_restore_state(cs, retaddr);
251
252 fi.type = ARMFault_Alignment;
253 arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
254 }
255
256 void helper_exception_pc_alignment(CPUARMState *env, target_ulong pc)
257 {
258 ARMMMUFaultInfo fi = { .type = ARMFault_Alignment };
259 int target_el = exception_target_el(env);
260 int mmu_idx = cpu_mmu_index(env, true);
261 uint32_t fsc;
262
263 env->exception.vaddress = pc;
264
265 /*
266 * Note that the fsc is not applicable to this exception,
267 * since any syndrome is pcalignment not insn_abort.
268 */
269 env->exception.fsr = compute_fsr_fsc(env, &fi, target_el, mmu_idx, &fsc);
270 raise_exception(env, EXCP_PREFETCH_ABORT, syn_pcalignment(), target_el);
271 }
272
273 #if !defined(CONFIG_USER_ONLY)
274
275 /*
276 * arm_cpu_do_transaction_failed: handle a memory system error response
277 * (eg "no device/memory present at address") by raising an external abort
278 * exception
279 */
280 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
281 vaddr addr, unsigned size,
282 MMUAccessType access_type,
283 int mmu_idx, MemTxAttrs attrs,
284 MemTxResult response, uintptr_t retaddr)
285 {
286 ARMCPU *cpu = ARM_CPU(cs);
287 ARMMMUFaultInfo fi = {};
288
289 /* now we have a real cpu fault */
290 cpu_restore_state(cs, retaddr);
291
292 fi.ea = arm_extabort_type(response);
293 fi.type = ARMFault_SyncExternal;
294 arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
295 }
296
297 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
298 MMUAccessType access_type, int mmu_idx,
299 bool probe, uintptr_t retaddr)
300 {
301 ARMCPU *cpu = ARM_CPU(cs);
302 GetPhysAddrResult res = {};
303 ARMMMUFaultInfo local_fi, *fi;
304 int ret;
305
306 /*
307 * Allow S1_ptw_translate to see any fault generated here.
308 * Since this may recurse, read and clear.
309 */
310 fi = cpu->env.tlb_fi;
311 if (fi) {
312 cpu->env.tlb_fi = NULL;
313 } else {
314 fi = memset(&local_fi, 0, sizeof(local_fi));
315 }
316
317 /*
318 * Walk the page table and (if the mapping exists) add the page
319 * to the TLB. On success, return true. Otherwise, if probing,
320 * return false. Otherwise populate fsr with ARM DFSR/IFSR fault
321 * register format, and signal the fault.
322 */
323 ret = get_phys_addr(&cpu->env, address, access_type,
324 core_to_arm_mmu_idx(&cpu->env, mmu_idx),
325 &res, fi);
326 if (likely(!ret)) {
327 /*
328 * Map a single [sub]page. Regions smaller than our declared
329 * target page size are handled specially, so for those we
330 * pass in the exact addresses.
331 */
332 if (res.f.lg_page_size >= TARGET_PAGE_BITS) {
333 res.f.phys_addr &= TARGET_PAGE_MASK;
334 address &= TARGET_PAGE_MASK;
335 }
336
337 res.f.extra.arm.pte_attrs = res.cacheattrs.attrs;
338 res.f.extra.arm.shareability = res.cacheattrs.shareability;
339
340 tlb_set_page_full(cs, mmu_idx, address, &res.f);
341 return true;
342 } else if (probe) {
343 return false;
344 } else {
345 /* now we have a real cpu fault */
346 cpu_restore_state(cs, retaddr);
347 arm_deliver_fault(cpu, address, access_type, mmu_idx, fi);
348 }
349 }
350 #else
351 void arm_cpu_record_sigsegv(CPUState *cs, vaddr addr,
352 MMUAccessType access_type,
353 bool maperr, uintptr_t ra)
354 {
355 ARMMMUFaultInfo fi = {
356 .type = maperr ? ARMFault_Translation : ARMFault_Permission,
357 .level = 3,
358 };
359 ARMCPU *cpu = ARM_CPU(cs);
360
361 /*
362 * We report both ESR and FAR to signal handlers.
363 * For now, it's easiest to deliver the fault normally.
364 */
365 cpu_restore_state(cs, ra);
366 arm_deliver_fault(cpu, addr, access_type, MMU_USER_IDX, &fi);
367 }
368
369 void arm_cpu_record_sigbus(CPUState *cs, vaddr addr,
370 MMUAccessType access_type, uintptr_t ra)
371 {
372 arm_cpu_do_unaligned_access(cs, addr, access_type, MMU_USER_IDX, ra);
373 }
374 #endif /* !defined(CONFIG_USER_ONLY) */