]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/tcg/translate.h
b4046611f533d107f5d3bc383f08ddd286e69bd9
[mirror_qemu.git] / target / arm / tcg / translate.h
1 #ifndef TARGET_ARM_TRANSLATE_H
2 #define TARGET_ARM_TRANSLATE_H
3
4 #include "cpu.h"
5 #include "tcg/tcg-op.h"
6 #include "tcg/tcg-op-gvec.h"
7 #include "exec/exec-all.h"
8 #include "exec/translator.h"
9 #include "exec/helper-gen.h"
10 #include "internals.h"
11
12
13 /* internal defines */
14
15 /*
16 * Save pc_save across a branch, so that we may restore the value from
17 * before the branch at the point the label is emitted.
18 */
19 typedef struct DisasLabel {
20 TCGLabel *label;
21 target_ulong pc_save;
22 } DisasLabel;
23
24 typedef struct DisasContext {
25 DisasContextBase base;
26 const ARMISARegisters *isar;
27
28 /* The address of the current instruction being translated. */
29 target_ulong pc_curr;
30 /*
31 * For CF_PCREL, the full value of cpu_pc is not known
32 * (although the page offset is known). For convenience, the
33 * translation loop uses the full virtual address that triggered
34 * the translation, from base.pc_start through pc_curr.
35 * For efficiency, we do not update cpu_pc for every instruction.
36 * Instead, pc_save has the value of pc_curr at the time of the
37 * last update to cpu_pc, which allows us to compute the addend
38 * needed to bring cpu_pc current: pc_curr - pc_save.
39 * If cpu_pc now contains the destination of an indirect branch,
40 * pc_save contains -1 to indicate that relative updates are no
41 * longer possible.
42 */
43 target_ulong pc_save;
44 target_ulong page_start;
45 uint32_t insn;
46 /* Nonzero if this instruction has been conditionally skipped. */
47 int condjmp;
48 /* The label that will be jumped to when the instruction is skipped. */
49 DisasLabel condlabel;
50 /* Thumb-2 conditional execution bits. */
51 int condexec_mask;
52 int condexec_cond;
53 /* M-profile ECI/ICI exception-continuable instruction state */
54 int eci;
55 /*
56 * trans_ functions for insns which are continuable should set this true
57 * after decode (ie after any UNDEF checks)
58 */
59 bool eci_handled;
60 int sctlr_b;
61 MemOp be_data;
62 #if !defined(CONFIG_USER_ONLY)
63 int user;
64 #endif
65 ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */
66 uint8_t tbii; /* TBI1|TBI0 for insns */
67 uint8_t tbid; /* TBI1|TBI0 for data */
68 uint8_t tcma; /* TCMA1|TCMA0 for MTE */
69 bool ns; /* Use non-secure CPREG bank on access */
70 int fp_excp_el; /* FP exception EL or 0 if enabled */
71 int sve_excp_el; /* SVE exception EL or 0 if enabled */
72 int sme_excp_el; /* SME exception EL or 0 if enabled */
73 int vl; /* current vector length in bytes */
74 int svl; /* current streaming vector length in bytes */
75 bool vfp_enabled; /* FP enabled via FPSCR.EN */
76 int vec_len;
77 int vec_stride;
78 bool v7m_handler_mode;
79 bool v8m_secure; /* true if v8M and we're in Secure mode */
80 bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */
81 bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */
82 bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */
83 bool v7m_lspact; /* FPCCR.LSPACT set */
84 /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
85 * so that top level loop can generate correct syndrome information.
86 */
87 uint32_t svc_imm;
88 int current_el;
89 GHashTable *cp_regs;
90 uint64_t features; /* CPU features bits */
91 bool aarch64;
92 bool thumb;
93 bool lse2;
94 /* Because unallocated encodings generate different exception syndrome
95 * information from traps due to FP being disabled, we can't do a single
96 * "is fp access disabled" check at a high level in the decode tree.
97 * To help in catching bugs where the access check was forgotten in some
98 * code path, we set this flag when the access check is done, and assert
99 * that it is set at the point where we actually touch the FP regs.
100 */
101 bool fp_access_checked;
102 bool sve_access_checked;
103 /* ARMv8 single-step state (this is distinct from the QEMU gdbstub
104 * single-step support).
105 */
106 bool ss_active;
107 bool pstate_ss;
108 /* True if the insn just emitted was a load-exclusive instruction
109 * (necessary for syndrome information for single step exceptions),
110 * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
111 */
112 bool is_ldex;
113 /* True if AccType_UNPRIV should be used for LDTR et al */
114 bool unpriv;
115 /* True if v8.3-PAuth is active. */
116 bool pauth_active;
117 /* True if v8.5-MTE access to tags is enabled; index with is_unpriv. */
118 bool ata[2];
119 /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv. */
120 bool mte_active[2];
121 /* True with v8.5-BTI and SCTLR_ELx.BT* set. */
122 bool bt;
123 /* True if any CP15 access is trapped by HSTR_EL2 */
124 bool hstr_active;
125 /* True if memory operations require alignment */
126 bool align_mem;
127 /* True if PSTATE.IL is set */
128 bool pstate_il;
129 /* True if PSTATE.SM is set. */
130 bool pstate_sm;
131 /* True if PSTATE.ZA is set. */
132 bool pstate_za;
133 /* True if non-streaming insns should raise an SME Streaming exception. */
134 bool sme_trap_nonstreaming;
135 /* True if the current instruction is non-streaming. */
136 bool is_nonstreaming;
137 /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */
138 bool mve_no_pred;
139 /* True if fine-grained traps are active */
140 bool fgt_active;
141 /* True if fine-grained trap on ERET is enabled */
142 bool fgt_eret;
143 /* True if fine-grained trap on SVC is enabled */
144 bool fgt_svc;
145 /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */
146 bool naa;
147 /*
148 * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
149 * < 0, set by the current instruction.
150 */
151 int8_t btype;
152 /* A copy of cpu->dcz_blocksize. */
153 uint8_t dcz_blocksize;
154 /* A copy of cpu->gm_blocksize. */
155 uint8_t gm_blocksize;
156 /* True if this page is guarded. */
157 bool guarded_page;
158 /* Bottom two bits of XScale c15_cpar coprocessor access control reg */
159 int c15_cpar;
160 /* TCG op of the current insn_start. */
161 TCGOp *insn_start;
162 } DisasContext;
163
164 typedef struct DisasCompare {
165 TCGCond cond;
166 TCGv_i32 value;
167 } DisasCompare;
168
169 /* Share the TCG temporaries common between 32 and 64 bit modes. */
170 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
171 extern TCGv_i64 cpu_exclusive_addr;
172 extern TCGv_i64 cpu_exclusive_val;
173
174 /*
175 * Constant expanders for the decoders.
176 */
177
178 static inline int negate(DisasContext *s, int x)
179 {
180 return -x;
181 }
182
183 static inline int plus_1(DisasContext *s, int x)
184 {
185 return x + 1;
186 }
187
188 static inline int plus_2(DisasContext *s, int x)
189 {
190 return x + 2;
191 }
192
193 static inline int plus_12(DisasContext *s, int x)
194 {
195 return x + 12;
196 }
197
198 static inline int times_2(DisasContext *s, int x)
199 {
200 return x * 2;
201 }
202
203 static inline int times_4(DisasContext *s, int x)
204 {
205 return x * 4;
206 }
207
208 static inline int times_2_plus_1(DisasContext *s, int x)
209 {
210 return x * 2 + 1;
211 }
212
213 static inline int rsub_64(DisasContext *s, int x)
214 {
215 return 64 - x;
216 }
217
218 static inline int rsub_32(DisasContext *s, int x)
219 {
220 return 32 - x;
221 }
222
223 static inline int rsub_16(DisasContext *s, int x)
224 {
225 return 16 - x;
226 }
227
228 static inline int rsub_8(DisasContext *s, int x)
229 {
230 return 8 - x;
231 }
232
233 static inline int shl_12(DisasContext *s, int x)
234 {
235 return x << 12;
236 }
237
238 static inline int neon_3same_fp_size(DisasContext *s, int x)
239 {
240 /* Convert 0==fp32, 1==fp16 into a MO_* value */
241 return MO_32 - x;
242 }
243
244 static inline int arm_dc_feature(DisasContext *dc, int feature)
245 {
246 return (dc->features & (1ULL << feature)) != 0;
247 }
248
249 static inline int get_mem_index(DisasContext *s)
250 {
251 return arm_to_core_mmu_idx(s->mmu_idx);
252 }
253
254 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
255 {
256 /* We don't need to save all of the syndrome so we mask and shift
257 * out unneeded bits to help the sleb128 encoder do a better job.
258 */
259 syn &= ARM_INSN_START_WORD2_MASK;
260 syn >>= ARM_INSN_START_WORD2_SHIFT;
261
262 /* We check and clear insn_start_idx to catch multiple updates. */
263 assert(s->insn_start != NULL);
264 tcg_set_insn_start_param(s->insn_start, 2, syn);
265 s->insn_start = NULL;
266 }
267
268 static inline int curr_insn_len(DisasContext *s)
269 {
270 return s->base.pc_next - s->pc_curr;
271 }
272
273 /* is_jmp field values */
274 #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */
275 /* CPU state was modified dynamically; exit to main loop for interrupts. */
276 #define DISAS_UPDATE_EXIT DISAS_TARGET_1
277 /* These instructions trap after executing, so the A32/T32 decoder must
278 * defer them until after the conditional execution state has been updated.
279 * WFI also needs special handling when single-stepping.
280 */
281 #define DISAS_WFI DISAS_TARGET_2
282 #define DISAS_SWI DISAS_TARGET_3
283 /* WFE */
284 #define DISAS_WFE DISAS_TARGET_4
285 #define DISAS_HVC DISAS_TARGET_5
286 #define DISAS_SMC DISAS_TARGET_6
287 #define DISAS_YIELD DISAS_TARGET_7
288 /* M profile branch which might be an exception return (and so needs
289 * custom end-of-TB code)
290 */
291 #define DISAS_BX_EXCRET DISAS_TARGET_8
292 /*
293 * For instructions which want an immediate exit to the main loop, as opposed
294 * to attempting to use lookup_and_goto_ptr. Unlike DISAS_UPDATE_EXIT, this
295 * doesn't write the PC on exiting the translation loop so you need to ensure
296 * something (gen_a64_update_pc or runtime helper) has done so before we reach
297 * return from cpu_tb_exec.
298 */
299 #define DISAS_EXIT DISAS_TARGET_9
300 /* CPU state was modified dynamically; no need to exit, but do not chain. */
301 #define DISAS_UPDATE_NOCHAIN DISAS_TARGET_10
302
303 #ifdef TARGET_AARCH64
304 void a64_translate_init(void);
305 void gen_a64_update_pc(DisasContext *s, target_long diff);
306 extern const TranslatorOps aarch64_translator_ops;
307 #else
308 static inline void a64_translate_init(void)
309 {
310 }
311
312 static inline void gen_a64_update_pc(DisasContext *s, target_long diff)
313 {
314 }
315 #endif
316
317 void arm_test_cc(DisasCompare *cmp, int cc);
318 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label);
319 void arm_gen_test_cc(int cc, TCGLabel *label);
320 MemOp pow2_align(unsigned i);
321 void unallocated_encoding(DisasContext *s);
322 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp,
323 uint32_t syn, uint32_t target_el);
324 void gen_exception_insn(DisasContext *s, target_long pc_diff,
325 int excp, uint32_t syn);
326
327 /* Return state of Alternate Half-precision flag, caller frees result */
328 static inline TCGv_i32 get_ahp_flag(void)
329 {
330 TCGv_i32 ret = tcg_temp_new_i32();
331
332 tcg_gen_ld_i32(ret, tcg_env,
333 offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPSCR]));
334 tcg_gen_extract_i32(ret, ret, 26, 1);
335
336 return ret;
337 }
338
339 /* Set bits within PSTATE. */
340 static inline void set_pstate_bits(uint32_t bits)
341 {
342 TCGv_i32 p = tcg_temp_new_i32();
343
344 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
345
346 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
347 tcg_gen_ori_i32(p, p, bits);
348 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
349 }
350
351 /* Clear bits within PSTATE. */
352 static inline void clear_pstate_bits(uint32_t bits)
353 {
354 TCGv_i32 p = tcg_temp_new_i32();
355
356 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
357
358 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
359 tcg_gen_andi_i32(p, p, ~bits);
360 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
361 }
362
363 /* If the singlestep state is Active-not-pending, advance to Active-pending. */
364 static inline void gen_ss_advance(DisasContext *s)
365 {
366 if (s->ss_active) {
367 s->pstate_ss = 0;
368 clear_pstate_bits(PSTATE_SS);
369 }
370 }
371
372 /* Generate an architectural singlestep exception */
373 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
374 {
375 /* Fill in the same_el field of the syndrome in the helper. */
376 uint32_t syn = syn_swstep(false, isv, ex);
377 gen_helper_exception_swstep(tcg_env, tcg_constant_i32(syn));
378 }
379
380 /*
381 * Given a VFP floating point constant encoded into an 8 bit immediate in an
382 * instruction, expand it to the actual constant value of the specified
383 * size, as per the VFPExpandImm() pseudocode in the Arm ARM.
384 */
385 uint64_t vfp_expand_imm(int size, uint8_t imm8);
386
387 /* Vector operations shared between ARM and AArch64. */
388 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
389 uint32_t opr_sz, uint32_t max_sz);
390 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
391 uint32_t opr_sz, uint32_t max_sz);
392 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
393 uint32_t opr_sz, uint32_t max_sz);
394 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
395 uint32_t opr_sz, uint32_t max_sz);
396 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
397 uint32_t opr_sz, uint32_t max_sz);
398
399 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
400 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
401 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
402 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
403
404 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
405 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
406 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
407 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
408 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
409 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
410
411 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
412 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
413 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
414 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
415 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
416
417 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
418 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
419 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
420 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
421 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
422 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
423 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
424 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
425
426 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
427 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
428 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
429 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
430
431 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
432 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
433 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
434 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
435 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
436 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
437 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
438 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
439
440 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
441 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
442 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
443 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
444
445 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
446 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
447 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
448 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
449
450 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
451 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
452 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
453 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
454
455 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
456 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
457 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
458 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
459
460 /*
461 * Forward to the isar_feature_* tests given a DisasContext pointer.
462 */
463 #define dc_isar_feature(name, ctx) \
464 ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); })
465
466 /* Note that the gvec expanders operate on offsets + sizes. */
467 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
468 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
469 uint32_t, uint32_t);
470 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
471 uint32_t, uint32_t, uint32_t);
472 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t,
473 uint32_t, uint32_t, uint32_t);
474
475 /* Function prototype for gen_ functions for calling Neon helpers */
476 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32);
477 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
478 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
479 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
480 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32,
481 TCGv_i32, TCGv_i32);
482 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
483 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
484 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
485 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
486 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
487 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32);
488 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr);
489 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
490 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
491 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64);
492 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
493 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
494 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
495 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
496 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift);
497 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32);
498 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift);
499 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
500
501 /**
502 * arm_tbflags_from_tb:
503 * @tb: the TranslationBlock
504 *
505 * Extract the flag values from @tb.
506 */
507 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb)
508 {
509 return (CPUARMTBFlags){ tb->flags, tb->cs_base };
510 }
511
512 /*
513 * Enum for argument to fpstatus_ptr().
514 */
515 typedef enum ARMFPStatusFlavour {
516 FPST_FPCR,
517 FPST_FPCR_F16,
518 FPST_STD,
519 FPST_STD_F16,
520 } ARMFPStatusFlavour;
521
522 /**
523 * fpstatus_ptr: return TCGv_ptr to the specified fp_status field
524 *
525 * We have multiple softfloat float_status fields in the Arm CPU state struct
526 * (see the comment in cpu.h for details). Return a TCGv_ptr which has
527 * been set up to point to the requested field in the CPU state struct.
528 * The options are:
529 *
530 * FPST_FPCR
531 * for non-FP16 operations controlled by the FPCR
532 * FPST_FPCR_F16
533 * for operations controlled by the FPCR where FPCR.FZ16 is to be used
534 * FPST_STD
535 * for A32/T32 Neon operations using the "standard FPSCR value"
536 * FPST_STD_F16
537 * as FPST_STD, but where FPCR.FZ16 is to be used
538 */
539 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour)
540 {
541 TCGv_ptr statusptr = tcg_temp_new_ptr();
542 int offset;
543
544 switch (flavour) {
545 case FPST_FPCR:
546 offset = offsetof(CPUARMState, vfp.fp_status);
547 break;
548 case FPST_FPCR_F16:
549 offset = offsetof(CPUARMState, vfp.fp_status_f16);
550 break;
551 case FPST_STD:
552 offset = offsetof(CPUARMState, vfp.standard_fp_status);
553 break;
554 case FPST_STD_F16:
555 offset = offsetof(CPUARMState, vfp.standard_fp_status_f16);
556 break;
557 default:
558 g_assert_not_reached();
559 }
560 tcg_gen_addi_ptr(statusptr, tcg_env, offset);
561 return statusptr;
562 }
563
564 /**
565 * finalize_memop_atom:
566 * @s: DisasContext
567 * @opc: size+sign+align of the memory operation
568 * @atom: atomicity of the memory operation
569 *
570 * Build the complete MemOp for a memory operation, including alignment,
571 * endianness, and atomicity.
572 *
573 * If (op & MO_AMASK) then the operation already contains the required
574 * alignment, e.g. for AccType_ATOMIC. Otherwise, this an optionally
575 * unaligned operation, e.g. for AccType_NORMAL.
576 *
577 * In the latter case, there are configuration bits that require alignment,
578 * and this is applied here. Note that there is no way to indicate that
579 * no alignment should ever be enforced; this must be handled manually.
580 */
581 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom)
582 {
583 if (s->align_mem && !(opc & MO_AMASK)) {
584 opc |= MO_ALIGN;
585 }
586 return opc | atom | s->be_data;
587 }
588
589 /**
590 * finalize_memop:
591 * @s: DisasContext
592 * @opc: size+sign+align of the memory operation
593 *
594 * Like finalize_memop_atom, but with default atomicity.
595 */
596 static inline MemOp finalize_memop(DisasContext *s, MemOp opc)
597 {
598 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN;
599 return finalize_memop_atom(s, opc, atom);
600 }
601
602 /**
603 * finalize_memop_pair:
604 * @s: DisasContext
605 * @opc: size+sign+align of the memory operation
606 *
607 * Like finalize_memop_atom, but with atomicity for a pair.
608 * C.f. Pseudocode for Mem[], operand ispair.
609 */
610 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc)
611 {
612 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR;
613 return finalize_memop_atom(s, opc, atom);
614 }
615
616 /**
617 * finalize_memop_asimd:
618 * @s: DisasContext
619 * @opc: size+sign+align of the memory operation
620 *
621 * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD.
622 */
623 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc)
624 {
625 /*
626 * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16,
627 * if IsAligned(8), the first case provides separate atomicity for
628 * the pair of 64-bit accesses. If !IsAligned(8), the middle cases
629 * do not apply, and we're left with the final case of no atomicity.
630 * Thus MO_ATOM_IFALIGN_PAIR.
631 *
632 * For other sizes, normal LSE2 rules apply.
633 */
634 if ((opc & MO_SIZE) == MO_128) {
635 return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR);
636 }
637 return finalize_memop(s, opc);
638 }
639
640 /**
641 * asimd_imm_const: Expand an encoded SIMD constant value
642 *
643 * Expand a SIMD constant value. This is essentially the pseudocode
644 * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for
645 * VMVN and VBIC (when cmode < 14 && op == 1).
646 *
647 * The combination cmode == 15 op == 1 is a reserved encoding for AArch32;
648 * callers must catch this; we return the 64-bit constant value defined
649 * for AArch64.
650 *
651 * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but
652 * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A;
653 * we produce an immediate constant value of 0 in these cases.
654 */
655 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op);
656
657 /*
658 * gen_disas_label:
659 * Create a label and cache a copy of pc_save.
660 */
661 static inline DisasLabel gen_disas_label(DisasContext *s)
662 {
663 return (DisasLabel){
664 .label = gen_new_label(),
665 .pc_save = s->pc_save,
666 };
667 }
668
669 /*
670 * set_disas_label:
671 * Emit a label and restore the cached copy of pc_save.
672 */
673 static inline void set_disas_label(DisasContext *s, DisasLabel l)
674 {
675 gen_set_label(l.label);
676 s->pc_save = l.pc_save;
677 }
678
679 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key)
680 {
681 TCGv_ptr ret = tcg_temp_new_ptr();
682 gen_helper_lookup_cp_reg(ret, tcg_env, tcg_constant_i32(key));
683 return ret;
684 }
685
686 /*
687 * Set and reset rounding mode around another operation.
688 */
689 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst)
690 {
691 TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode));
692 TCGv_i32 old = tcg_temp_new_i32();
693
694 gen_helper_set_rmode(old, new, fpst);
695 return old;
696 }
697
698 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst)
699 {
700 gen_helper_set_rmode(old, old, fpst);
701 }
702
703 /*
704 * Helpers for implementing sets of trans_* functions.
705 * Defer the implementation of NAME to FUNC, with optional extra arguments.
706 */
707 #define TRANS(NAME, FUNC, ...) \
708 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
709 { return FUNC(s, __VA_ARGS__); }
710 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \
711 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
712 { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); }
713
714 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...) \
715 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
716 { \
717 s->is_nonstreaming = true; \
718 return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); \
719 }
720
721 #endif /* TARGET_ARM_TRANSLATE_H */