]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/translate-a64.c
625ef2dfd23bc3179a416e54cf14d577f96bb31d
[mirror_qemu.git] / target / arm / translate-a64.c
1 /*
2 * AArch64 translation
3 *
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "translate.h"
27 #include "internals.h"
28 #include "qemu/host-utils.h"
29
30 #include "exec/semihost.h"
31 #include "exec/gen-icount.h"
32
33 #include "exec/helper-proto.h"
34 #include "exec/helper-gen.h"
35 #include "exec/log.h"
36
37 #include "trace-tcg.h"
38
39 static TCGv_i64 cpu_X[32];
40 static TCGv_i64 cpu_pc;
41
42 /* Load/store exclusive handling */
43 static TCGv_i64 cpu_exclusive_high;
44 static TCGv_i64 cpu_reg(DisasContext *s, int reg);
45
46 static const char *regnames[] = {
47 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
48 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
49 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
50 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
51 };
52
53 enum a64_shift_type {
54 A64_SHIFT_TYPE_LSL = 0,
55 A64_SHIFT_TYPE_LSR = 1,
56 A64_SHIFT_TYPE_ASR = 2,
57 A64_SHIFT_TYPE_ROR = 3
58 };
59
60 /* Table based decoder typedefs - used when the relevant bits for decode
61 * are too awkwardly scattered across the instruction (eg SIMD).
62 */
63 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
64
65 typedef struct AArch64DecodeTable {
66 uint32_t pattern;
67 uint32_t mask;
68 AArch64DecodeFn *disas_fn;
69 } AArch64DecodeTable;
70
71 /* Function prototype for gen_ functions for calling Neon helpers */
72 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
73 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
74 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
75 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
76 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
77 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
78 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
79 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
80 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
81 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
82 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
83 typedef void CryptoTwoOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32);
84 typedef void CryptoThreeOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
85
86 /* initialize TCG globals. */
87 void a64_translate_init(void)
88 {
89 int i;
90
91 cpu_pc = tcg_global_mem_new_i64(cpu_env,
92 offsetof(CPUARMState, pc),
93 "pc");
94 for (i = 0; i < 32; i++) {
95 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
96 offsetof(CPUARMState, xregs[i]),
97 regnames[i]);
98 }
99
100 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
101 offsetof(CPUARMState, exclusive_high), "exclusive_high");
102 }
103
104 static inline int get_a64_user_mem_index(DisasContext *s)
105 {
106 /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns:
107 * if EL1, access as if EL0; otherwise access at current EL
108 */
109 ARMMMUIdx useridx;
110
111 switch (s->mmu_idx) {
112 case ARMMMUIdx_S12NSE1:
113 useridx = ARMMMUIdx_S12NSE0;
114 break;
115 case ARMMMUIdx_S1SE1:
116 useridx = ARMMMUIdx_S1SE0;
117 break;
118 case ARMMMUIdx_S2NS:
119 g_assert_not_reached();
120 default:
121 useridx = s->mmu_idx;
122 break;
123 }
124 return arm_to_core_mmu_idx(useridx);
125 }
126
127 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
128 fprintf_function cpu_fprintf, int flags)
129 {
130 ARMCPU *cpu = ARM_CPU(cs);
131 CPUARMState *env = &cpu->env;
132 uint32_t psr = pstate_read(env);
133 int i;
134 int el = arm_current_el(env);
135 const char *ns_status;
136
137 cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
138 env->pc, env->xregs[31]);
139 for (i = 0; i < 31; i++) {
140 cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
141 if ((i % 4) == 3) {
142 cpu_fprintf(f, "\n");
143 } else {
144 cpu_fprintf(f, " ");
145 }
146 }
147
148 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
149 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
150 } else {
151 ns_status = "";
152 }
153
154 cpu_fprintf(f, "\nPSTATE=%08x %c%c%c%c %sEL%d%c\n",
155 psr,
156 psr & PSTATE_N ? 'N' : '-',
157 psr & PSTATE_Z ? 'Z' : '-',
158 psr & PSTATE_C ? 'C' : '-',
159 psr & PSTATE_V ? 'V' : '-',
160 ns_status,
161 el,
162 psr & PSTATE_SP ? 'h' : 't');
163
164 if (flags & CPU_DUMP_FPU) {
165 int numvfpregs = 32;
166 for (i = 0; i < numvfpregs; i += 2) {
167 uint64_t vlo = float64_val(env->vfp.regs[i * 2]);
168 uint64_t vhi = float64_val(env->vfp.regs[(i * 2) + 1]);
169 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 " ",
170 i, vhi, vlo);
171 vlo = float64_val(env->vfp.regs[(i + 1) * 2]);
172 vhi = float64_val(env->vfp.regs[((i + 1) * 2) + 1]);
173 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "\n",
174 i + 1, vhi, vlo);
175 }
176 cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
177 vfp_get_fpcr(env), vfp_get_fpsr(env));
178 }
179 }
180
181 void gen_a64_set_pc_im(uint64_t val)
182 {
183 tcg_gen_movi_i64(cpu_pc, val);
184 }
185
186 /* Load the PC from a generic TCG variable.
187 *
188 * If address tagging is enabled via the TCR TBI bits, then loading
189 * an address into the PC will clear out any tag in the it:
190 * + for EL2 and EL3 there is only one TBI bit, and if it is set
191 * then the address is zero-extended, clearing bits [63:56]
192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193 * and TBI1 controls addressses with bit 55 == 1.
194 * If the appropriate TBI bit is set for the address then
195 * the address is sign-extended from bit 55 into bits [63:56]
196 *
197 * We can avoid doing this for relative-branches, because the
198 * PC + offset can never overflow into the tag bits (assuming
199 * that virtual addresses are less than 56 bits wide, as they
200 * are currently), but we must handle it for branch-to-register.
201 */
202 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
203 {
204
205 if (s->current_el <= 1) {
206 /* Test if NEITHER or BOTH TBI values are set. If so, no need to
207 * examine bit 55 of address, can just generate code.
208 * If mixed, then test via generated code
209 */
210 if (s->tbi0 && s->tbi1) {
211 TCGv_i64 tmp_reg = tcg_temp_new_i64();
212 /* Both bits set, sign extension from bit 55 into [63:56] will
213 * cover both cases
214 */
215 tcg_gen_shli_i64(tmp_reg, src, 8);
216 tcg_gen_sari_i64(cpu_pc, tmp_reg, 8);
217 tcg_temp_free_i64(tmp_reg);
218 } else if (!s->tbi0 && !s->tbi1) {
219 /* Neither bit set, just load it as-is */
220 tcg_gen_mov_i64(cpu_pc, src);
221 } else {
222 TCGv_i64 tcg_tmpval = tcg_temp_new_i64();
223 TCGv_i64 tcg_bit55 = tcg_temp_new_i64();
224 TCGv_i64 tcg_zero = tcg_const_i64(0);
225
226 tcg_gen_andi_i64(tcg_bit55, src, (1ull << 55));
227
228 if (s->tbi0) {
229 /* tbi0==1, tbi1==0, so 0-fill upper byte if bit 55 = 0 */
230 tcg_gen_andi_i64(tcg_tmpval, src,
231 0x00FFFFFFFFFFFFFFull);
232 tcg_gen_movcond_i64(TCG_COND_EQ, cpu_pc, tcg_bit55, tcg_zero,
233 tcg_tmpval, src);
234 } else {
235 /* tbi0==0, tbi1==1, so 1-fill upper byte if bit 55 = 1 */
236 tcg_gen_ori_i64(tcg_tmpval, src,
237 0xFF00000000000000ull);
238 tcg_gen_movcond_i64(TCG_COND_NE, cpu_pc, tcg_bit55, tcg_zero,
239 tcg_tmpval, src);
240 }
241 tcg_temp_free_i64(tcg_zero);
242 tcg_temp_free_i64(tcg_bit55);
243 tcg_temp_free_i64(tcg_tmpval);
244 }
245 } else { /* EL > 1 */
246 if (s->tbi0) {
247 /* Force tag byte to all zero */
248 tcg_gen_andi_i64(cpu_pc, src, 0x00FFFFFFFFFFFFFFull);
249 } else {
250 /* Load unmodified address */
251 tcg_gen_mov_i64(cpu_pc, src);
252 }
253 }
254 }
255
256 typedef struct DisasCompare64 {
257 TCGCond cond;
258 TCGv_i64 value;
259 } DisasCompare64;
260
261 static void a64_test_cc(DisasCompare64 *c64, int cc)
262 {
263 DisasCompare c32;
264
265 arm_test_cc(&c32, cc);
266
267 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
268 * properly. The NE/EQ comparisons are also fine with this choice. */
269 c64->cond = c32.cond;
270 c64->value = tcg_temp_new_i64();
271 tcg_gen_ext_i32_i64(c64->value, c32.value);
272
273 arm_free_cc(&c32);
274 }
275
276 static void a64_free_cc(DisasCompare64 *c64)
277 {
278 tcg_temp_free_i64(c64->value);
279 }
280
281 static void gen_exception_internal(int excp)
282 {
283 TCGv_i32 tcg_excp = tcg_const_i32(excp);
284
285 assert(excp_is_internal(excp));
286 gen_helper_exception_internal(cpu_env, tcg_excp);
287 tcg_temp_free_i32(tcg_excp);
288 }
289
290 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
291 {
292 TCGv_i32 tcg_excp = tcg_const_i32(excp);
293 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
294 TCGv_i32 tcg_el = tcg_const_i32(target_el);
295
296 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
297 tcg_syn, tcg_el);
298 tcg_temp_free_i32(tcg_el);
299 tcg_temp_free_i32(tcg_syn);
300 tcg_temp_free_i32(tcg_excp);
301 }
302
303 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
304 {
305 gen_a64_set_pc_im(s->pc - offset);
306 gen_exception_internal(excp);
307 s->base.is_jmp = DISAS_NORETURN;
308 }
309
310 static void gen_exception_insn(DisasContext *s, int offset, int excp,
311 uint32_t syndrome, uint32_t target_el)
312 {
313 gen_a64_set_pc_im(s->pc - offset);
314 gen_exception(excp, syndrome, target_el);
315 s->base.is_jmp = DISAS_NORETURN;
316 }
317
318 static void gen_ss_advance(DisasContext *s)
319 {
320 /* If the singlestep state is Active-not-pending, advance to
321 * Active-pending.
322 */
323 if (s->ss_active) {
324 s->pstate_ss = 0;
325 gen_helper_clear_pstate_ss(cpu_env);
326 }
327 }
328
329 static void gen_step_complete_exception(DisasContext *s)
330 {
331 /* We just completed step of an insn. Move from Active-not-pending
332 * to Active-pending, and then also take the swstep exception.
333 * This corresponds to making the (IMPDEF) choice to prioritize
334 * swstep exceptions over asynchronous exceptions taken to an exception
335 * level where debug is disabled. This choice has the advantage that
336 * we do not need to maintain internal state corresponding to the
337 * ISV/EX syndrome bits between completion of the step and generation
338 * of the exception, and our syndrome information is always correct.
339 */
340 gen_ss_advance(s);
341 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
342 default_exception_el(s));
343 s->base.is_jmp = DISAS_NORETURN;
344 }
345
346 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
347 {
348 /* No direct tb linking with singlestep (either QEMU's or the ARM
349 * debug architecture kind) or deterministic io
350 */
351 if (s->base.singlestep_enabled || s->ss_active ||
352 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
353 return false;
354 }
355
356 #ifndef CONFIG_USER_ONLY
357 /* Only link tbs from inside the same guest page */
358 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
359 return false;
360 }
361 #endif
362
363 return true;
364 }
365
366 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
367 {
368 TranslationBlock *tb;
369
370 tb = s->base.tb;
371 if (use_goto_tb(s, n, dest)) {
372 tcg_gen_goto_tb(n);
373 gen_a64_set_pc_im(dest);
374 tcg_gen_exit_tb((intptr_t)tb + n);
375 s->base.is_jmp = DISAS_NORETURN;
376 } else {
377 gen_a64_set_pc_im(dest);
378 if (s->ss_active) {
379 gen_step_complete_exception(s);
380 } else if (s->base.singlestep_enabled) {
381 gen_exception_internal(EXCP_DEBUG);
382 } else {
383 tcg_gen_lookup_and_goto_ptr();
384 s->base.is_jmp = DISAS_NORETURN;
385 }
386 }
387 }
388
389 static void unallocated_encoding(DisasContext *s)
390 {
391 /* Unallocated and reserved encodings are uncategorized */
392 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
393 default_exception_el(s));
394 }
395
396 #define unsupported_encoding(s, insn) \
397 do { \
398 qemu_log_mask(LOG_UNIMP, \
399 "%s:%d: unsupported instruction encoding 0x%08x " \
400 "at pc=%016" PRIx64 "\n", \
401 __FILE__, __LINE__, insn, s->pc - 4); \
402 unallocated_encoding(s); \
403 } while (0);
404
405 static void init_tmp_a64_array(DisasContext *s)
406 {
407 #ifdef CONFIG_DEBUG_TCG
408 int i;
409 for (i = 0; i < ARRAY_SIZE(s->tmp_a64); i++) {
410 TCGV_UNUSED_I64(s->tmp_a64[i]);
411 }
412 #endif
413 s->tmp_a64_count = 0;
414 }
415
416 static void free_tmp_a64(DisasContext *s)
417 {
418 int i;
419 for (i = 0; i < s->tmp_a64_count; i++) {
420 tcg_temp_free_i64(s->tmp_a64[i]);
421 }
422 init_tmp_a64_array(s);
423 }
424
425 static TCGv_i64 new_tmp_a64(DisasContext *s)
426 {
427 assert(s->tmp_a64_count < TMP_A64_MAX);
428 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
429 }
430
431 static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
432 {
433 TCGv_i64 t = new_tmp_a64(s);
434 tcg_gen_movi_i64(t, 0);
435 return t;
436 }
437
438 /*
439 * Register access functions
440 *
441 * These functions are used for directly accessing a register in where
442 * changes to the final register value are likely to be made. If you
443 * need to use a register for temporary calculation (e.g. index type
444 * operations) use the read_* form.
445 *
446 * B1.2.1 Register mappings
447 *
448 * In instruction register encoding 31 can refer to ZR (zero register) or
449 * the SP (stack pointer) depending on context. In QEMU's case we map SP
450 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
451 * This is the point of the _sp forms.
452 */
453 static TCGv_i64 cpu_reg(DisasContext *s, int reg)
454 {
455 if (reg == 31) {
456 return new_tmp_a64_zero(s);
457 } else {
458 return cpu_X[reg];
459 }
460 }
461
462 /* register access for when 31 == SP */
463 static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
464 {
465 return cpu_X[reg];
466 }
467
468 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
469 * representing the register contents. This TCGv is an auto-freed
470 * temporary so it need not be explicitly freed, and may be modified.
471 */
472 static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
473 {
474 TCGv_i64 v = new_tmp_a64(s);
475 if (reg != 31) {
476 if (sf) {
477 tcg_gen_mov_i64(v, cpu_X[reg]);
478 } else {
479 tcg_gen_ext32u_i64(v, cpu_X[reg]);
480 }
481 } else {
482 tcg_gen_movi_i64(v, 0);
483 }
484 return v;
485 }
486
487 static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
488 {
489 TCGv_i64 v = new_tmp_a64(s);
490 if (sf) {
491 tcg_gen_mov_i64(v, cpu_X[reg]);
492 } else {
493 tcg_gen_ext32u_i64(v, cpu_X[reg]);
494 }
495 return v;
496 }
497
498 /* We should have at some point before trying to access an FP register
499 * done the necessary access check, so assert that
500 * (a) we did the check and
501 * (b) we didn't then just plough ahead anyway if it failed.
502 * Print the instruction pattern in the abort message so we can figure
503 * out what we need to fix if a user encounters this problem in the wild.
504 */
505 static inline void assert_fp_access_checked(DisasContext *s)
506 {
507 #ifdef CONFIG_DEBUG_TCG
508 if (unlikely(!s->fp_access_checked || s->fp_excp_el)) {
509 fprintf(stderr, "target-arm: FP access check missing for "
510 "instruction 0x%08x\n", s->insn);
511 abort();
512 }
513 #endif
514 }
515
516 /* Return the offset into CPUARMState of an element of specified
517 * size, 'element' places in from the least significant end of
518 * the FP/vector register Qn.
519 */
520 static inline int vec_reg_offset(DisasContext *s, int regno,
521 int element, TCGMemOp size)
522 {
523 int offs = 0;
524 #ifdef HOST_WORDS_BIGENDIAN
525 /* This is complicated slightly because vfp.regs[2n] is
526 * still the low half and vfp.regs[2n+1] the high half
527 * of the 128 bit vector, even on big endian systems.
528 * Calculate the offset assuming a fully bigendian 128 bits,
529 * then XOR to account for the order of the two 64 bit halves.
530 */
531 offs += (16 - ((element + 1) * (1 << size)));
532 offs ^= 8;
533 #else
534 offs += element * (1 << size);
535 #endif
536 offs += offsetof(CPUARMState, vfp.regs[regno * 2]);
537 assert_fp_access_checked(s);
538 return offs;
539 }
540
541 /* Return the offset into CPUARMState of a slice (from
542 * the least significant end) of FP register Qn (ie
543 * Dn, Sn, Hn or Bn).
544 * (Note that this is not the same mapping as for A32; see cpu.h)
545 */
546 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
547 {
548 int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
549 #ifdef HOST_WORDS_BIGENDIAN
550 offs += (8 - (1 << size));
551 #endif
552 assert_fp_access_checked(s);
553 return offs;
554 }
555
556 /* Offset of the high half of the 128 bit vector Qn */
557 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
558 {
559 assert_fp_access_checked(s);
560 return offsetof(CPUARMState, vfp.regs[regno * 2 + 1]);
561 }
562
563 /* Convenience accessors for reading and writing single and double
564 * FP registers. Writing clears the upper parts of the associated
565 * 128 bit vector register, as required by the architecture.
566 * Note that unlike the GP register accessors, the values returned
567 * by the read functions must be manually freed.
568 */
569 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
570 {
571 TCGv_i64 v = tcg_temp_new_i64();
572
573 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
574 return v;
575 }
576
577 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
578 {
579 TCGv_i32 v = tcg_temp_new_i32();
580
581 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
582 return v;
583 }
584
585 static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
586 {
587 TCGv_i64 tcg_zero = tcg_const_i64(0);
588
589 tcg_gen_st_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
590 tcg_gen_st_i64(tcg_zero, cpu_env, fp_reg_hi_offset(s, reg));
591 tcg_temp_free_i64(tcg_zero);
592 }
593
594 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
595 {
596 TCGv_i64 tmp = tcg_temp_new_i64();
597
598 tcg_gen_extu_i32_i64(tmp, v);
599 write_fp_dreg(s, reg, tmp);
600 tcg_temp_free_i64(tmp);
601 }
602
603 static TCGv_ptr get_fpstatus_ptr(void)
604 {
605 TCGv_ptr statusptr = tcg_temp_new_ptr();
606 int offset;
607
608 /* In A64 all instructions (both FP and Neon) use the FPCR;
609 * there is no equivalent of the A32 Neon "standard FPSCR value"
610 * and all operations use vfp.fp_status.
611 */
612 offset = offsetof(CPUARMState, vfp.fp_status);
613 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
614 return statusptr;
615 }
616
617 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
618 * than the 32 bit equivalent.
619 */
620 static inline void gen_set_NZ64(TCGv_i64 result)
621 {
622 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
623 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
624 }
625
626 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
627 static inline void gen_logic_CC(int sf, TCGv_i64 result)
628 {
629 if (sf) {
630 gen_set_NZ64(result);
631 } else {
632 tcg_gen_extrl_i64_i32(cpu_ZF, result);
633 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
634 }
635 tcg_gen_movi_i32(cpu_CF, 0);
636 tcg_gen_movi_i32(cpu_VF, 0);
637 }
638
639 /* dest = T0 + T1; compute C, N, V and Z flags */
640 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
641 {
642 if (sf) {
643 TCGv_i64 result, flag, tmp;
644 result = tcg_temp_new_i64();
645 flag = tcg_temp_new_i64();
646 tmp = tcg_temp_new_i64();
647
648 tcg_gen_movi_i64(tmp, 0);
649 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
650
651 tcg_gen_extrl_i64_i32(cpu_CF, flag);
652
653 gen_set_NZ64(result);
654
655 tcg_gen_xor_i64(flag, result, t0);
656 tcg_gen_xor_i64(tmp, t0, t1);
657 tcg_gen_andc_i64(flag, flag, tmp);
658 tcg_temp_free_i64(tmp);
659 tcg_gen_extrh_i64_i32(cpu_VF, flag);
660
661 tcg_gen_mov_i64(dest, result);
662 tcg_temp_free_i64(result);
663 tcg_temp_free_i64(flag);
664 } else {
665 /* 32 bit arithmetic */
666 TCGv_i32 t0_32 = tcg_temp_new_i32();
667 TCGv_i32 t1_32 = tcg_temp_new_i32();
668 TCGv_i32 tmp = tcg_temp_new_i32();
669
670 tcg_gen_movi_i32(tmp, 0);
671 tcg_gen_extrl_i64_i32(t0_32, t0);
672 tcg_gen_extrl_i64_i32(t1_32, t1);
673 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
674 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
675 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
676 tcg_gen_xor_i32(tmp, t0_32, t1_32);
677 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
678 tcg_gen_extu_i32_i64(dest, cpu_NF);
679
680 tcg_temp_free_i32(tmp);
681 tcg_temp_free_i32(t0_32);
682 tcg_temp_free_i32(t1_32);
683 }
684 }
685
686 /* dest = T0 - T1; compute C, N, V and Z flags */
687 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
688 {
689 if (sf) {
690 /* 64 bit arithmetic */
691 TCGv_i64 result, flag, tmp;
692
693 result = tcg_temp_new_i64();
694 flag = tcg_temp_new_i64();
695 tcg_gen_sub_i64(result, t0, t1);
696
697 gen_set_NZ64(result);
698
699 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
700 tcg_gen_extrl_i64_i32(cpu_CF, flag);
701
702 tcg_gen_xor_i64(flag, result, t0);
703 tmp = tcg_temp_new_i64();
704 tcg_gen_xor_i64(tmp, t0, t1);
705 tcg_gen_and_i64(flag, flag, tmp);
706 tcg_temp_free_i64(tmp);
707 tcg_gen_extrh_i64_i32(cpu_VF, flag);
708 tcg_gen_mov_i64(dest, result);
709 tcg_temp_free_i64(flag);
710 tcg_temp_free_i64(result);
711 } else {
712 /* 32 bit arithmetic */
713 TCGv_i32 t0_32 = tcg_temp_new_i32();
714 TCGv_i32 t1_32 = tcg_temp_new_i32();
715 TCGv_i32 tmp;
716
717 tcg_gen_extrl_i64_i32(t0_32, t0);
718 tcg_gen_extrl_i64_i32(t1_32, t1);
719 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
720 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
721 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
722 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
723 tmp = tcg_temp_new_i32();
724 tcg_gen_xor_i32(tmp, t0_32, t1_32);
725 tcg_temp_free_i32(t0_32);
726 tcg_temp_free_i32(t1_32);
727 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
728 tcg_temp_free_i32(tmp);
729 tcg_gen_extu_i32_i64(dest, cpu_NF);
730 }
731 }
732
733 /* dest = T0 + T1 + CF; do not compute flags. */
734 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
735 {
736 TCGv_i64 flag = tcg_temp_new_i64();
737 tcg_gen_extu_i32_i64(flag, cpu_CF);
738 tcg_gen_add_i64(dest, t0, t1);
739 tcg_gen_add_i64(dest, dest, flag);
740 tcg_temp_free_i64(flag);
741
742 if (!sf) {
743 tcg_gen_ext32u_i64(dest, dest);
744 }
745 }
746
747 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
748 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
749 {
750 if (sf) {
751 TCGv_i64 result, cf_64, vf_64, tmp;
752 result = tcg_temp_new_i64();
753 cf_64 = tcg_temp_new_i64();
754 vf_64 = tcg_temp_new_i64();
755 tmp = tcg_const_i64(0);
756
757 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
758 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
759 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
760 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
761 gen_set_NZ64(result);
762
763 tcg_gen_xor_i64(vf_64, result, t0);
764 tcg_gen_xor_i64(tmp, t0, t1);
765 tcg_gen_andc_i64(vf_64, vf_64, tmp);
766 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
767
768 tcg_gen_mov_i64(dest, result);
769
770 tcg_temp_free_i64(tmp);
771 tcg_temp_free_i64(vf_64);
772 tcg_temp_free_i64(cf_64);
773 tcg_temp_free_i64(result);
774 } else {
775 TCGv_i32 t0_32, t1_32, tmp;
776 t0_32 = tcg_temp_new_i32();
777 t1_32 = tcg_temp_new_i32();
778 tmp = tcg_const_i32(0);
779
780 tcg_gen_extrl_i64_i32(t0_32, t0);
781 tcg_gen_extrl_i64_i32(t1_32, t1);
782 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
783 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
784
785 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
786 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
787 tcg_gen_xor_i32(tmp, t0_32, t1_32);
788 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
789 tcg_gen_extu_i32_i64(dest, cpu_NF);
790
791 tcg_temp_free_i32(tmp);
792 tcg_temp_free_i32(t1_32);
793 tcg_temp_free_i32(t0_32);
794 }
795 }
796
797 /*
798 * Load/Store generators
799 */
800
801 /*
802 * Store from GPR register to memory.
803 */
804 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
805 TCGv_i64 tcg_addr, int size, int memidx,
806 bool iss_valid,
807 unsigned int iss_srt,
808 bool iss_sf, bool iss_ar)
809 {
810 g_assert(size <= 3);
811 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
812
813 if (iss_valid) {
814 uint32_t syn;
815
816 syn = syn_data_abort_with_iss(0,
817 size,
818 false,
819 iss_srt,
820 iss_sf,
821 iss_ar,
822 0, 0, 0, 0, 0, false);
823 disas_set_insn_syndrome(s, syn);
824 }
825 }
826
827 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
828 TCGv_i64 tcg_addr, int size,
829 bool iss_valid,
830 unsigned int iss_srt,
831 bool iss_sf, bool iss_ar)
832 {
833 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
834 iss_valid, iss_srt, iss_sf, iss_ar);
835 }
836
837 /*
838 * Load from memory to GPR register
839 */
840 static void do_gpr_ld_memidx(DisasContext *s,
841 TCGv_i64 dest, TCGv_i64 tcg_addr,
842 int size, bool is_signed,
843 bool extend, int memidx,
844 bool iss_valid, unsigned int iss_srt,
845 bool iss_sf, bool iss_ar)
846 {
847 TCGMemOp memop = s->be_data + size;
848
849 g_assert(size <= 3);
850
851 if (is_signed) {
852 memop += MO_SIGN;
853 }
854
855 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
856
857 if (extend && is_signed) {
858 g_assert(size < 3);
859 tcg_gen_ext32u_i64(dest, dest);
860 }
861
862 if (iss_valid) {
863 uint32_t syn;
864
865 syn = syn_data_abort_with_iss(0,
866 size,
867 is_signed,
868 iss_srt,
869 iss_sf,
870 iss_ar,
871 0, 0, 0, 0, 0, false);
872 disas_set_insn_syndrome(s, syn);
873 }
874 }
875
876 static void do_gpr_ld(DisasContext *s,
877 TCGv_i64 dest, TCGv_i64 tcg_addr,
878 int size, bool is_signed, bool extend,
879 bool iss_valid, unsigned int iss_srt,
880 bool iss_sf, bool iss_ar)
881 {
882 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
883 get_mem_index(s),
884 iss_valid, iss_srt, iss_sf, iss_ar);
885 }
886
887 /*
888 * Store from FP register to memory
889 */
890 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
891 {
892 /* This writes the bottom N bits of a 128 bit wide vector to memory */
893 TCGv_i64 tmp = tcg_temp_new_i64();
894 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
895 if (size < 4) {
896 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
897 s->be_data + size);
898 } else {
899 bool be = s->be_data == MO_BE;
900 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
901
902 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
903 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
904 s->be_data | MO_Q);
905 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
906 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
907 s->be_data | MO_Q);
908 tcg_temp_free_i64(tcg_hiaddr);
909 }
910
911 tcg_temp_free_i64(tmp);
912 }
913
914 /*
915 * Load from memory to FP register
916 */
917 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
918 {
919 /* This always zero-extends and writes to a full 128 bit wide vector */
920 TCGv_i64 tmplo = tcg_temp_new_i64();
921 TCGv_i64 tmphi;
922
923 if (size < 4) {
924 TCGMemOp memop = s->be_data + size;
925 tmphi = tcg_const_i64(0);
926 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
927 } else {
928 bool be = s->be_data == MO_BE;
929 TCGv_i64 tcg_hiaddr;
930
931 tmphi = tcg_temp_new_i64();
932 tcg_hiaddr = tcg_temp_new_i64();
933
934 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
935 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
936 s->be_data | MO_Q);
937 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
938 s->be_data | MO_Q);
939 tcg_temp_free_i64(tcg_hiaddr);
940 }
941
942 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
943 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
944
945 tcg_temp_free_i64(tmplo);
946 tcg_temp_free_i64(tmphi);
947 }
948
949 /*
950 * Vector load/store helpers.
951 *
952 * The principal difference between this and a FP load is that we don't
953 * zero extend as we are filling a partial chunk of the vector register.
954 * These functions don't support 128 bit loads/stores, which would be
955 * normal load/store operations.
956 *
957 * The _i32 versions are useful when operating on 32 bit quantities
958 * (eg for floating point single or using Neon helper functions).
959 */
960
961 /* Get value of an element within a vector register */
962 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
963 int element, TCGMemOp memop)
964 {
965 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
966 switch (memop) {
967 case MO_8:
968 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
969 break;
970 case MO_16:
971 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
972 break;
973 case MO_32:
974 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
975 break;
976 case MO_8|MO_SIGN:
977 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
978 break;
979 case MO_16|MO_SIGN:
980 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
981 break;
982 case MO_32|MO_SIGN:
983 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
984 break;
985 case MO_64:
986 case MO_64|MO_SIGN:
987 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
988 break;
989 default:
990 g_assert_not_reached();
991 }
992 }
993
994 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
995 int element, TCGMemOp memop)
996 {
997 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
998 switch (memop) {
999 case MO_8:
1000 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1001 break;
1002 case MO_16:
1003 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1004 break;
1005 case MO_8|MO_SIGN:
1006 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1007 break;
1008 case MO_16|MO_SIGN:
1009 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1010 break;
1011 case MO_32:
1012 case MO_32|MO_SIGN:
1013 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1014 break;
1015 default:
1016 g_assert_not_reached();
1017 }
1018 }
1019
1020 /* Set value of an element within a vector register */
1021 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1022 int element, TCGMemOp memop)
1023 {
1024 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1025 switch (memop) {
1026 case MO_8:
1027 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1028 break;
1029 case MO_16:
1030 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1031 break;
1032 case MO_32:
1033 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1034 break;
1035 case MO_64:
1036 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1037 break;
1038 default:
1039 g_assert_not_reached();
1040 }
1041 }
1042
1043 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1044 int destidx, int element, TCGMemOp memop)
1045 {
1046 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1047 switch (memop) {
1048 case MO_8:
1049 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1050 break;
1051 case MO_16:
1052 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1053 break;
1054 case MO_32:
1055 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1056 break;
1057 default:
1058 g_assert_not_reached();
1059 }
1060 }
1061
1062 /* Clear the high 64 bits of a 128 bit vector (in general non-quad
1063 * vector ops all need to do this).
1064 */
1065 static void clear_vec_high(DisasContext *s, int rd)
1066 {
1067 TCGv_i64 tcg_zero = tcg_const_i64(0);
1068
1069 write_vec_element(s, tcg_zero, rd, 1, MO_64);
1070 tcg_temp_free_i64(tcg_zero);
1071 }
1072
1073 /* Store from vector register to memory */
1074 static void do_vec_st(DisasContext *s, int srcidx, int element,
1075 TCGv_i64 tcg_addr, int size)
1076 {
1077 TCGMemOp memop = s->be_data + size;
1078 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1079
1080 read_vec_element(s, tcg_tmp, srcidx, element, size);
1081 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1082
1083 tcg_temp_free_i64(tcg_tmp);
1084 }
1085
1086 /* Load from memory to vector register */
1087 static void do_vec_ld(DisasContext *s, int destidx, int element,
1088 TCGv_i64 tcg_addr, int size)
1089 {
1090 TCGMemOp memop = s->be_data + size;
1091 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1092
1093 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1094 write_vec_element(s, tcg_tmp, destidx, element, size);
1095
1096 tcg_temp_free_i64(tcg_tmp);
1097 }
1098
1099 /* Check that FP/Neon access is enabled. If it is, return
1100 * true. If not, emit code to generate an appropriate exception,
1101 * and return false; the caller should not emit any code for
1102 * the instruction. Note that this check must happen after all
1103 * unallocated-encoding checks (otherwise the syndrome information
1104 * for the resulting exception will be incorrect).
1105 */
1106 static inline bool fp_access_check(DisasContext *s)
1107 {
1108 assert(!s->fp_access_checked);
1109 s->fp_access_checked = true;
1110
1111 if (!s->fp_excp_el) {
1112 return true;
1113 }
1114
1115 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
1116 s->fp_excp_el);
1117 return false;
1118 }
1119
1120 /*
1121 * This utility function is for doing register extension with an
1122 * optional shift. You will likely want to pass a temporary for the
1123 * destination register. See DecodeRegExtend() in the ARM ARM.
1124 */
1125 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1126 int option, unsigned int shift)
1127 {
1128 int extsize = extract32(option, 0, 2);
1129 bool is_signed = extract32(option, 2, 1);
1130
1131 if (is_signed) {
1132 switch (extsize) {
1133 case 0:
1134 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1135 break;
1136 case 1:
1137 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1138 break;
1139 case 2:
1140 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1141 break;
1142 case 3:
1143 tcg_gen_mov_i64(tcg_out, tcg_in);
1144 break;
1145 }
1146 } else {
1147 switch (extsize) {
1148 case 0:
1149 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1150 break;
1151 case 1:
1152 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1153 break;
1154 case 2:
1155 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1156 break;
1157 case 3:
1158 tcg_gen_mov_i64(tcg_out, tcg_in);
1159 break;
1160 }
1161 }
1162
1163 if (shift) {
1164 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1165 }
1166 }
1167
1168 static inline void gen_check_sp_alignment(DisasContext *s)
1169 {
1170 /* The AArch64 architecture mandates that (if enabled via PSTATE
1171 * or SCTLR bits) there is a check that SP is 16-aligned on every
1172 * SP-relative load or store (with an exception generated if it is not).
1173 * In line with general QEMU practice regarding misaligned accesses,
1174 * we omit these checks for the sake of guest program performance.
1175 * This function is provided as a hook so we can more easily add these
1176 * checks in future (possibly as a "favour catching guest program bugs
1177 * over speed" user selectable option).
1178 */
1179 }
1180
1181 /*
1182 * This provides a simple table based table lookup decoder. It is
1183 * intended to be used when the relevant bits for decode are too
1184 * awkwardly placed and switch/if based logic would be confusing and
1185 * deeply nested. Since it's a linear search through the table, tables
1186 * should be kept small.
1187 *
1188 * It returns the first handler where insn & mask == pattern, or
1189 * NULL if there is no match.
1190 * The table is terminated by an empty mask (i.e. 0)
1191 */
1192 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1193 uint32_t insn)
1194 {
1195 const AArch64DecodeTable *tptr = table;
1196
1197 while (tptr->mask) {
1198 if ((insn & tptr->mask) == tptr->pattern) {
1199 return tptr->disas_fn;
1200 }
1201 tptr++;
1202 }
1203 return NULL;
1204 }
1205
1206 /*
1207 * The instruction disassembly implemented here matches
1208 * the instruction encoding classifications in chapter C4
1209 * of the ARM Architecture Reference Manual (DDI0487B_a);
1210 * classification names and decode diagrams here should generally
1211 * match up with those in the manual.
1212 */
1213
1214 /* Unconditional branch (immediate)
1215 * 31 30 26 25 0
1216 * +----+-----------+-------------------------------------+
1217 * | op | 0 0 1 0 1 | imm26 |
1218 * +----+-----------+-------------------------------------+
1219 */
1220 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1221 {
1222 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1223
1224 if (insn & (1U << 31)) {
1225 /* BL Branch with link */
1226 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1227 }
1228
1229 /* B Branch / BL Branch with link */
1230 gen_goto_tb(s, 0, addr);
1231 }
1232
1233 /* Compare and branch (immediate)
1234 * 31 30 25 24 23 5 4 0
1235 * +----+-------------+----+---------------------+--------+
1236 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1237 * +----+-------------+----+---------------------+--------+
1238 */
1239 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1240 {
1241 unsigned int sf, op, rt;
1242 uint64_t addr;
1243 TCGLabel *label_match;
1244 TCGv_i64 tcg_cmp;
1245
1246 sf = extract32(insn, 31, 1);
1247 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1248 rt = extract32(insn, 0, 5);
1249 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1250
1251 tcg_cmp = read_cpu_reg(s, rt, sf);
1252 label_match = gen_new_label();
1253
1254 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1255 tcg_cmp, 0, label_match);
1256
1257 gen_goto_tb(s, 0, s->pc);
1258 gen_set_label(label_match);
1259 gen_goto_tb(s, 1, addr);
1260 }
1261
1262 /* Test and branch (immediate)
1263 * 31 30 25 24 23 19 18 5 4 0
1264 * +----+-------------+----+-------+-------------+------+
1265 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1266 * +----+-------------+----+-------+-------------+------+
1267 */
1268 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1269 {
1270 unsigned int bit_pos, op, rt;
1271 uint64_t addr;
1272 TCGLabel *label_match;
1273 TCGv_i64 tcg_cmp;
1274
1275 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1276 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1277 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1278 rt = extract32(insn, 0, 5);
1279
1280 tcg_cmp = tcg_temp_new_i64();
1281 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1282 label_match = gen_new_label();
1283 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1284 tcg_cmp, 0, label_match);
1285 tcg_temp_free_i64(tcg_cmp);
1286 gen_goto_tb(s, 0, s->pc);
1287 gen_set_label(label_match);
1288 gen_goto_tb(s, 1, addr);
1289 }
1290
1291 /* Conditional branch (immediate)
1292 * 31 25 24 23 5 4 3 0
1293 * +---------------+----+---------------------+----+------+
1294 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1295 * +---------------+----+---------------------+----+------+
1296 */
1297 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1298 {
1299 unsigned int cond;
1300 uint64_t addr;
1301
1302 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1303 unallocated_encoding(s);
1304 return;
1305 }
1306 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1307 cond = extract32(insn, 0, 4);
1308
1309 if (cond < 0x0e) {
1310 /* genuinely conditional branches */
1311 TCGLabel *label_match = gen_new_label();
1312 arm_gen_test_cc(cond, label_match);
1313 gen_goto_tb(s, 0, s->pc);
1314 gen_set_label(label_match);
1315 gen_goto_tb(s, 1, addr);
1316 } else {
1317 /* 0xe and 0xf are both "always" conditions */
1318 gen_goto_tb(s, 0, addr);
1319 }
1320 }
1321
1322 /* HINT instruction group, including various allocated HINTs */
1323 static void handle_hint(DisasContext *s, uint32_t insn,
1324 unsigned int op1, unsigned int op2, unsigned int crm)
1325 {
1326 unsigned int selector = crm << 3 | op2;
1327
1328 if (op1 != 3) {
1329 unallocated_encoding(s);
1330 return;
1331 }
1332
1333 switch (selector) {
1334 case 0: /* NOP */
1335 return;
1336 case 3: /* WFI */
1337 s->base.is_jmp = DISAS_WFI;
1338 return;
1339 /* When running in MTTCG we don't generate jumps to the yield and
1340 * WFE helpers as it won't affect the scheduling of other vCPUs.
1341 * If we wanted to more completely model WFE/SEV so we don't busy
1342 * spin unnecessarily we would need to do something more involved.
1343 */
1344 case 1: /* YIELD */
1345 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1346 s->base.is_jmp = DISAS_YIELD;
1347 }
1348 return;
1349 case 2: /* WFE */
1350 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1351 s->base.is_jmp = DISAS_WFE;
1352 }
1353 return;
1354 case 4: /* SEV */
1355 case 5: /* SEVL */
1356 /* we treat all as NOP at least for now */
1357 return;
1358 default:
1359 /* default specified as NOP equivalent */
1360 return;
1361 }
1362 }
1363
1364 static void gen_clrex(DisasContext *s, uint32_t insn)
1365 {
1366 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1367 }
1368
1369 /* CLREX, DSB, DMB, ISB */
1370 static void handle_sync(DisasContext *s, uint32_t insn,
1371 unsigned int op1, unsigned int op2, unsigned int crm)
1372 {
1373 TCGBar bar;
1374
1375 if (op1 != 3) {
1376 unallocated_encoding(s);
1377 return;
1378 }
1379
1380 switch (op2) {
1381 case 2: /* CLREX */
1382 gen_clrex(s, insn);
1383 return;
1384 case 4: /* DSB */
1385 case 5: /* DMB */
1386 switch (crm & 3) {
1387 case 1: /* MBReqTypes_Reads */
1388 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1389 break;
1390 case 2: /* MBReqTypes_Writes */
1391 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1392 break;
1393 default: /* MBReqTypes_All */
1394 bar = TCG_BAR_SC | TCG_MO_ALL;
1395 break;
1396 }
1397 tcg_gen_mb(bar);
1398 return;
1399 case 6: /* ISB */
1400 /* We need to break the TB after this insn to execute
1401 * a self-modified code correctly and also to take
1402 * any pending interrupts immediately.
1403 */
1404 gen_goto_tb(s, 0, s->pc);
1405 return;
1406 default:
1407 unallocated_encoding(s);
1408 return;
1409 }
1410 }
1411
1412 /* MSR (immediate) - move immediate to processor state field */
1413 static void handle_msr_i(DisasContext *s, uint32_t insn,
1414 unsigned int op1, unsigned int op2, unsigned int crm)
1415 {
1416 int op = op1 << 3 | op2;
1417 switch (op) {
1418 case 0x05: /* SPSel */
1419 if (s->current_el == 0) {
1420 unallocated_encoding(s);
1421 return;
1422 }
1423 /* fall through */
1424 case 0x1e: /* DAIFSet */
1425 case 0x1f: /* DAIFClear */
1426 {
1427 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1428 TCGv_i32 tcg_op = tcg_const_i32(op);
1429 gen_a64_set_pc_im(s->pc - 4);
1430 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1431 tcg_temp_free_i32(tcg_imm);
1432 tcg_temp_free_i32(tcg_op);
1433 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1434 gen_a64_set_pc_im(s->pc);
1435 s->base.is_jmp = (op == 0x1f ? DISAS_EXIT : DISAS_JUMP);
1436 break;
1437 }
1438 default:
1439 unallocated_encoding(s);
1440 return;
1441 }
1442 }
1443
1444 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1445 {
1446 TCGv_i32 tmp = tcg_temp_new_i32();
1447 TCGv_i32 nzcv = tcg_temp_new_i32();
1448
1449 /* build bit 31, N */
1450 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1451 /* build bit 30, Z */
1452 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1453 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1454 /* build bit 29, C */
1455 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1456 /* build bit 28, V */
1457 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1458 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1459 /* generate result */
1460 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1461
1462 tcg_temp_free_i32(nzcv);
1463 tcg_temp_free_i32(tmp);
1464 }
1465
1466 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1467
1468 {
1469 TCGv_i32 nzcv = tcg_temp_new_i32();
1470
1471 /* take NZCV from R[t] */
1472 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1473
1474 /* bit 31, N */
1475 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1476 /* bit 30, Z */
1477 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1478 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1479 /* bit 29, C */
1480 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1481 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1482 /* bit 28, V */
1483 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1484 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1485 tcg_temp_free_i32(nzcv);
1486 }
1487
1488 /* MRS - move from system register
1489 * MSR (register) - move to system register
1490 * SYS
1491 * SYSL
1492 * These are all essentially the same insn in 'read' and 'write'
1493 * versions, with varying op0 fields.
1494 */
1495 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1496 unsigned int op0, unsigned int op1, unsigned int op2,
1497 unsigned int crn, unsigned int crm, unsigned int rt)
1498 {
1499 const ARMCPRegInfo *ri;
1500 TCGv_i64 tcg_rt;
1501
1502 ri = get_arm_cp_reginfo(s->cp_regs,
1503 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1504 crn, crm, op0, op1, op2));
1505
1506 if (!ri) {
1507 /* Unknown register; this might be a guest error or a QEMU
1508 * unimplemented feature.
1509 */
1510 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1511 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1512 isread ? "read" : "write", op0, op1, crn, crm, op2);
1513 unallocated_encoding(s);
1514 return;
1515 }
1516
1517 /* Check access permissions */
1518 if (!cp_access_ok(s->current_el, ri, isread)) {
1519 unallocated_encoding(s);
1520 return;
1521 }
1522
1523 if (ri->accessfn) {
1524 /* Emit code to perform further access permissions checks at
1525 * runtime; this may result in an exception.
1526 */
1527 TCGv_ptr tmpptr;
1528 TCGv_i32 tcg_syn, tcg_isread;
1529 uint32_t syndrome;
1530
1531 gen_a64_set_pc_im(s->pc - 4);
1532 tmpptr = tcg_const_ptr(ri);
1533 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1534 tcg_syn = tcg_const_i32(syndrome);
1535 tcg_isread = tcg_const_i32(isread);
1536 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1537 tcg_temp_free_ptr(tmpptr);
1538 tcg_temp_free_i32(tcg_syn);
1539 tcg_temp_free_i32(tcg_isread);
1540 }
1541
1542 /* Handle special cases first */
1543 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1544 case ARM_CP_NOP:
1545 return;
1546 case ARM_CP_NZCV:
1547 tcg_rt = cpu_reg(s, rt);
1548 if (isread) {
1549 gen_get_nzcv(tcg_rt);
1550 } else {
1551 gen_set_nzcv(tcg_rt);
1552 }
1553 return;
1554 case ARM_CP_CURRENTEL:
1555 /* Reads as current EL value from pstate, which is
1556 * guaranteed to be constant by the tb flags.
1557 */
1558 tcg_rt = cpu_reg(s, rt);
1559 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1560 return;
1561 case ARM_CP_DC_ZVA:
1562 /* Writes clear the aligned block of memory which rt points into. */
1563 tcg_rt = cpu_reg(s, rt);
1564 gen_helper_dc_zva(cpu_env, tcg_rt);
1565 return;
1566 default:
1567 break;
1568 }
1569
1570 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1571 gen_io_start();
1572 }
1573
1574 tcg_rt = cpu_reg(s, rt);
1575
1576 if (isread) {
1577 if (ri->type & ARM_CP_CONST) {
1578 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1579 } else if (ri->readfn) {
1580 TCGv_ptr tmpptr;
1581 tmpptr = tcg_const_ptr(ri);
1582 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1583 tcg_temp_free_ptr(tmpptr);
1584 } else {
1585 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1586 }
1587 } else {
1588 if (ri->type & ARM_CP_CONST) {
1589 /* If not forbidden by access permissions, treat as WI */
1590 return;
1591 } else if (ri->writefn) {
1592 TCGv_ptr tmpptr;
1593 tmpptr = tcg_const_ptr(ri);
1594 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1595 tcg_temp_free_ptr(tmpptr);
1596 } else {
1597 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1598 }
1599 }
1600
1601 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1602 /* I/O operations must end the TB here (whether read or write) */
1603 gen_io_end();
1604 s->base.is_jmp = DISAS_UPDATE;
1605 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1606 /* We default to ending the TB on a coprocessor register write,
1607 * but allow this to be suppressed by the register definition
1608 * (usually only necessary to work around guest bugs).
1609 */
1610 s->base.is_jmp = DISAS_UPDATE;
1611 }
1612 }
1613
1614 /* System
1615 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1616 * +---------------------+---+-----+-----+-------+-------+-----+------+
1617 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1618 * +---------------------+---+-----+-----+-------+-------+-----+------+
1619 */
1620 static void disas_system(DisasContext *s, uint32_t insn)
1621 {
1622 unsigned int l, op0, op1, crn, crm, op2, rt;
1623 l = extract32(insn, 21, 1);
1624 op0 = extract32(insn, 19, 2);
1625 op1 = extract32(insn, 16, 3);
1626 crn = extract32(insn, 12, 4);
1627 crm = extract32(insn, 8, 4);
1628 op2 = extract32(insn, 5, 3);
1629 rt = extract32(insn, 0, 5);
1630
1631 if (op0 == 0) {
1632 if (l || rt != 31) {
1633 unallocated_encoding(s);
1634 return;
1635 }
1636 switch (crn) {
1637 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
1638 handle_hint(s, insn, op1, op2, crm);
1639 break;
1640 case 3: /* CLREX, DSB, DMB, ISB */
1641 handle_sync(s, insn, op1, op2, crm);
1642 break;
1643 case 4: /* MSR (immediate) */
1644 handle_msr_i(s, insn, op1, op2, crm);
1645 break;
1646 default:
1647 unallocated_encoding(s);
1648 break;
1649 }
1650 return;
1651 }
1652 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1653 }
1654
1655 /* Exception generation
1656 *
1657 * 31 24 23 21 20 5 4 2 1 0
1658 * +-----------------+-----+------------------------+-----+----+
1659 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1660 * +-----------------------+------------------------+----------+
1661 */
1662 static void disas_exc(DisasContext *s, uint32_t insn)
1663 {
1664 int opc = extract32(insn, 21, 3);
1665 int op2_ll = extract32(insn, 0, 5);
1666 int imm16 = extract32(insn, 5, 16);
1667 TCGv_i32 tmp;
1668
1669 switch (opc) {
1670 case 0:
1671 /* For SVC, HVC and SMC we advance the single-step state
1672 * machine before taking the exception. This is architecturally
1673 * mandated, to ensure that single-stepping a system call
1674 * instruction works properly.
1675 */
1676 switch (op2_ll) {
1677 case 1: /* SVC */
1678 gen_ss_advance(s);
1679 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1680 default_exception_el(s));
1681 break;
1682 case 2: /* HVC */
1683 if (s->current_el == 0) {
1684 unallocated_encoding(s);
1685 break;
1686 }
1687 /* The pre HVC helper handles cases when HVC gets trapped
1688 * as an undefined insn by runtime configuration.
1689 */
1690 gen_a64_set_pc_im(s->pc - 4);
1691 gen_helper_pre_hvc(cpu_env);
1692 gen_ss_advance(s);
1693 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1694 break;
1695 case 3: /* SMC */
1696 if (s->current_el == 0) {
1697 unallocated_encoding(s);
1698 break;
1699 }
1700 gen_a64_set_pc_im(s->pc - 4);
1701 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1702 gen_helper_pre_smc(cpu_env, tmp);
1703 tcg_temp_free_i32(tmp);
1704 gen_ss_advance(s);
1705 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1706 break;
1707 default:
1708 unallocated_encoding(s);
1709 break;
1710 }
1711 break;
1712 case 1:
1713 if (op2_ll != 0) {
1714 unallocated_encoding(s);
1715 break;
1716 }
1717 /* BRK */
1718 gen_exception_insn(s, 4, EXCP_BKPT, syn_aa64_bkpt(imm16),
1719 default_exception_el(s));
1720 break;
1721 case 2:
1722 if (op2_ll != 0) {
1723 unallocated_encoding(s);
1724 break;
1725 }
1726 /* HLT. This has two purposes.
1727 * Architecturally, it is an external halting debug instruction.
1728 * Since QEMU doesn't implement external debug, we treat this as
1729 * it is required for halting debug disabled: it will UNDEF.
1730 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1731 */
1732 if (semihosting_enabled() && imm16 == 0xf000) {
1733 #ifndef CONFIG_USER_ONLY
1734 /* In system mode, don't allow userspace access to semihosting,
1735 * to provide some semblance of security (and for consistency
1736 * with our 32-bit semihosting).
1737 */
1738 if (s->current_el == 0) {
1739 unsupported_encoding(s, insn);
1740 break;
1741 }
1742 #endif
1743 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1744 } else {
1745 unsupported_encoding(s, insn);
1746 }
1747 break;
1748 case 5:
1749 if (op2_ll < 1 || op2_ll > 3) {
1750 unallocated_encoding(s);
1751 break;
1752 }
1753 /* DCPS1, DCPS2, DCPS3 */
1754 unsupported_encoding(s, insn);
1755 break;
1756 default:
1757 unallocated_encoding(s);
1758 break;
1759 }
1760 }
1761
1762 /* Unconditional branch (register)
1763 * 31 25 24 21 20 16 15 10 9 5 4 0
1764 * +---------------+-------+-------+-------+------+-------+
1765 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1766 * +---------------+-------+-------+-------+------+-------+
1767 */
1768 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1769 {
1770 unsigned int opc, op2, op3, rn, op4;
1771
1772 opc = extract32(insn, 21, 4);
1773 op2 = extract32(insn, 16, 5);
1774 op3 = extract32(insn, 10, 6);
1775 rn = extract32(insn, 5, 5);
1776 op4 = extract32(insn, 0, 5);
1777
1778 if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
1779 unallocated_encoding(s);
1780 return;
1781 }
1782
1783 switch (opc) {
1784 case 0: /* BR */
1785 case 1: /* BLR */
1786 case 2: /* RET */
1787 gen_a64_set_pc(s, cpu_reg(s, rn));
1788 /* BLR also needs to load return address */
1789 if (opc == 1) {
1790 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1791 }
1792 break;
1793 case 4: /* ERET */
1794 if (s->current_el == 0) {
1795 unallocated_encoding(s);
1796 return;
1797 }
1798 gen_helper_exception_return(cpu_env);
1799 /* Must exit loop to check un-masked IRQs */
1800 s->base.is_jmp = DISAS_EXIT;
1801 return;
1802 case 5: /* DRPS */
1803 if (rn != 0x1f) {
1804 unallocated_encoding(s);
1805 } else {
1806 unsupported_encoding(s, insn);
1807 }
1808 return;
1809 default:
1810 unallocated_encoding(s);
1811 return;
1812 }
1813
1814 s->base.is_jmp = DISAS_JUMP;
1815 }
1816
1817 /* Branches, exception generating and system instructions */
1818 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
1819 {
1820 switch (extract32(insn, 25, 7)) {
1821 case 0x0a: case 0x0b:
1822 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
1823 disas_uncond_b_imm(s, insn);
1824 break;
1825 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
1826 disas_comp_b_imm(s, insn);
1827 break;
1828 case 0x1b: case 0x5b: /* Test & branch (immediate) */
1829 disas_test_b_imm(s, insn);
1830 break;
1831 case 0x2a: /* Conditional branch (immediate) */
1832 disas_cond_b_imm(s, insn);
1833 break;
1834 case 0x6a: /* Exception generation / System */
1835 if (insn & (1 << 24)) {
1836 disas_system(s, insn);
1837 } else {
1838 disas_exc(s, insn);
1839 }
1840 break;
1841 case 0x6b: /* Unconditional branch (register) */
1842 disas_uncond_b_reg(s, insn);
1843 break;
1844 default:
1845 unallocated_encoding(s);
1846 break;
1847 }
1848 }
1849
1850 /*
1851 * Load/Store exclusive instructions are implemented by remembering
1852 * the value/address loaded, and seeing if these are the same
1853 * when the store is performed. This is not actually the architecturally
1854 * mandated semantics, but it works for typical guest code sequences
1855 * and avoids having to monitor regular stores.
1856 *
1857 * The store exclusive uses the atomic cmpxchg primitives to avoid
1858 * races in multi-threaded linux-user and when MTTCG softmmu is
1859 * enabled.
1860 */
1861 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
1862 TCGv_i64 addr, int size, bool is_pair)
1863 {
1864 int idx = get_mem_index(s);
1865 TCGMemOp memop = s->be_data;
1866
1867 g_assert(size <= 3);
1868 if (is_pair) {
1869 g_assert(size >= 2);
1870 if (size == 2) {
1871 /* The pair must be single-copy atomic for the doubleword. */
1872 memop |= MO_64 | MO_ALIGN;
1873 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
1874 if (s->be_data == MO_LE) {
1875 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
1876 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
1877 } else {
1878 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
1879 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
1880 }
1881 } else {
1882 /* The pair must be single-copy atomic for *each* doubleword, not
1883 the entire quadword, however it must be quadword aligned. */
1884 memop |= MO_64;
1885 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
1886 memop | MO_ALIGN_16);
1887
1888 TCGv_i64 addr2 = tcg_temp_new_i64();
1889 tcg_gen_addi_i64(addr2, addr, 8);
1890 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
1891 tcg_temp_free_i64(addr2);
1892
1893 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
1894 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
1895 }
1896 } else {
1897 memop |= size | MO_ALIGN;
1898 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
1899 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
1900 }
1901 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
1902 }
1903
1904 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
1905 TCGv_i64 addr, int size, int is_pair)
1906 {
1907 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
1908 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
1909 * [addr] = {Rt};
1910 * if (is_pair) {
1911 * [addr + datasize] = {Rt2};
1912 * }
1913 * {Rd} = 0;
1914 * } else {
1915 * {Rd} = 1;
1916 * }
1917 * env->exclusive_addr = -1;
1918 */
1919 TCGLabel *fail_label = gen_new_label();
1920 TCGLabel *done_label = gen_new_label();
1921 TCGv_i64 tmp;
1922
1923 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
1924
1925 tmp = tcg_temp_new_i64();
1926 if (is_pair) {
1927 if (size == 2) {
1928 if (s->be_data == MO_LE) {
1929 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
1930 } else {
1931 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
1932 }
1933 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
1934 cpu_exclusive_val, tmp,
1935 get_mem_index(s),
1936 MO_64 | MO_ALIGN | s->be_data);
1937 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
1938 } else if (s->be_data == MO_LE) {
1939 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
1940 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
1941 cpu_exclusive_addr,
1942 cpu_reg(s, rt),
1943 cpu_reg(s, rt2));
1944 } else {
1945 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
1946 cpu_reg(s, rt), cpu_reg(s, rt2));
1947 }
1948 } else {
1949 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
1950 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
1951 cpu_exclusive_addr,
1952 cpu_reg(s, rt),
1953 cpu_reg(s, rt2));
1954 } else {
1955 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
1956 cpu_reg(s, rt), cpu_reg(s, rt2));
1957 }
1958 }
1959 } else {
1960 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
1961 cpu_reg(s, rt), get_mem_index(s),
1962 size | MO_ALIGN | s->be_data);
1963 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
1964 }
1965 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
1966 tcg_temp_free_i64(tmp);
1967 tcg_gen_br(done_label);
1968
1969 gen_set_label(fail_label);
1970 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
1971 gen_set_label(done_label);
1972 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1973 }
1974
1975 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
1976 * from the ARMv8 specs for LDR (Shared decode for all encodings).
1977 */
1978 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
1979 {
1980 int opc0 = extract32(opc, 0, 1);
1981 int regsize;
1982
1983 if (is_signed) {
1984 regsize = opc0 ? 32 : 64;
1985 } else {
1986 regsize = size == 3 ? 64 : 32;
1987 }
1988 return regsize == 64;
1989 }
1990
1991 /* Load/store exclusive
1992 *
1993 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
1994 * +-----+-------------+----+---+----+------+----+-------+------+------+
1995 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
1996 * +-----+-------------+----+---+----+------+----+-------+------+------+
1997 *
1998 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
1999 * L: 0 -> store, 1 -> load
2000 * o2: 0 -> exclusive, 1 -> not
2001 * o1: 0 -> single register, 1 -> register pair
2002 * o0: 1 -> load-acquire/store-release, 0 -> not
2003 */
2004 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2005 {
2006 int rt = extract32(insn, 0, 5);
2007 int rn = extract32(insn, 5, 5);
2008 int rt2 = extract32(insn, 10, 5);
2009 int is_lasr = extract32(insn, 15, 1);
2010 int rs = extract32(insn, 16, 5);
2011 int is_pair = extract32(insn, 21, 1);
2012 int is_store = !extract32(insn, 22, 1);
2013 int is_excl = !extract32(insn, 23, 1);
2014 int size = extract32(insn, 30, 2);
2015 TCGv_i64 tcg_addr;
2016
2017 if ((!is_excl && !is_pair && !is_lasr) ||
2018 (!is_excl && is_pair) ||
2019 (is_pair && size < 2)) {
2020 unallocated_encoding(s);
2021 return;
2022 }
2023
2024 if (rn == 31) {
2025 gen_check_sp_alignment(s);
2026 }
2027 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2028
2029 /* Note that since TCG is single threaded load-acquire/store-release
2030 * semantics require no extra if (is_lasr) { ... } handling.
2031 */
2032
2033 if (is_excl) {
2034 if (!is_store) {
2035 s->is_ldex = true;
2036 gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
2037 if (is_lasr) {
2038 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2039 }
2040 } else {
2041 if (is_lasr) {
2042 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2043 }
2044 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
2045 }
2046 } else {
2047 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2048 bool iss_sf = disas_ldst_compute_iss_sf(size, false, 0);
2049
2050 /* Generate ISS for non-exclusive accesses including LASR. */
2051 if (is_store) {
2052 if (is_lasr) {
2053 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2054 }
2055 do_gpr_st(s, tcg_rt, tcg_addr, size,
2056 true, rt, iss_sf, is_lasr);
2057 } else {
2058 do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false,
2059 true, rt, iss_sf, is_lasr);
2060 if (is_lasr) {
2061 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2062 }
2063 }
2064 }
2065 }
2066
2067 /*
2068 * Load register (literal)
2069 *
2070 * 31 30 29 27 26 25 24 23 5 4 0
2071 * +-----+-------+---+-----+-------------------+-------+
2072 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2073 * +-----+-------+---+-----+-------------------+-------+
2074 *
2075 * V: 1 -> vector (simd/fp)
2076 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2077 * 10-> 32 bit signed, 11 -> prefetch
2078 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2079 */
2080 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2081 {
2082 int rt = extract32(insn, 0, 5);
2083 int64_t imm = sextract32(insn, 5, 19) << 2;
2084 bool is_vector = extract32(insn, 26, 1);
2085 int opc = extract32(insn, 30, 2);
2086 bool is_signed = false;
2087 int size = 2;
2088 TCGv_i64 tcg_rt, tcg_addr;
2089
2090 if (is_vector) {
2091 if (opc == 3) {
2092 unallocated_encoding(s);
2093 return;
2094 }
2095 size = 2 + opc;
2096 if (!fp_access_check(s)) {
2097 return;
2098 }
2099 } else {
2100 if (opc == 3) {
2101 /* PRFM (literal) : prefetch */
2102 return;
2103 }
2104 size = 2 + extract32(opc, 0, 1);
2105 is_signed = extract32(opc, 1, 1);
2106 }
2107
2108 tcg_rt = cpu_reg(s, rt);
2109
2110 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
2111 if (is_vector) {
2112 do_fp_ld(s, rt, tcg_addr, size);
2113 } else {
2114 /* Only unsigned 32bit loads target 32bit registers. */
2115 bool iss_sf = opc != 0;
2116
2117 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
2118 true, rt, iss_sf, false);
2119 }
2120 tcg_temp_free_i64(tcg_addr);
2121 }
2122
2123 /*
2124 * LDNP (Load Pair - non-temporal hint)
2125 * LDP (Load Pair - non vector)
2126 * LDPSW (Load Pair Signed Word - non vector)
2127 * STNP (Store Pair - non-temporal hint)
2128 * STP (Store Pair - non vector)
2129 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2130 * LDP (Load Pair of SIMD&FP)
2131 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2132 * STP (Store Pair of SIMD&FP)
2133 *
2134 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2135 * +-----+-------+---+---+-------+---+-----------------------------+
2136 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2137 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2138 *
2139 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2140 * LDPSW 01
2141 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2142 * V: 0 -> GPR, 1 -> Vector
2143 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2144 * 10 -> signed offset, 11 -> pre-index
2145 * L: 0 -> Store 1 -> Load
2146 *
2147 * Rt, Rt2 = GPR or SIMD registers to be stored
2148 * Rn = general purpose register containing address
2149 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2150 */
2151 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2152 {
2153 int rt = extract32(insn, 0, 5);
2154 int rn = extract32(insn, 5, 5);
2155 int rt2 = extract32(insn, 10, 5);
2156 uint64_t offset = sextract64(insn, 15, 7);
2157 int index = extract32(insn, 23, 2);
2158 bool is_vector = extract32(insn, 26, 1);
2159 bool is_load = extract32(insn, 22, 1);
2160 int opc = extract32(insn, 30, 2);
2161
2162 bool is_signed = false;
2163 bool postindex = false;
2164 bool wback = false;
2165
2166 TCGv_i64 tcg_addr; /* calculated address */
2167 int size;
2168
2169 if (opc == 3) {
2170 unallocated_encoding(s);
2171 return;
2172 }
2173
2174 if (is_vector) {
2175 size = 2 + opc;
2176 } else {
2177 size = 2 + extract32(opc, 1, 1);
2178 is_signed = extract32(opc, 0, 1);
2179 if (!is_load && is_signed) {
2180 unallocated_encoding(s);
2181 return;
2182 }
2183 }
2184
2185 switch (index) {
2186 case 1: /* post-index */
2187 postindex = true;
2188 wback = true;
2189 break;
2190 case 0:
2191 /* signed offset with "non-temporal" hint. Since we don't emulate
2192 * caches we don't care about hints to the cache system about
2193 * data access patterns, and handle this identically to plain
2194 * signed offset.
2195 */
2196 if (is_signed) {
2197 /* There is no non-temporal-hint version of LDPSW */
2198 unallocated_encoding(s);
2199 return;
2200 }
2201 postindex = false;
2202 break;
2203 case 2: /* signed offset, rn not updated */
2204 postindex = false;
2205 break;
2206 case 3: /* pre-index */
2207 postindex = false;
2208 wback = true;
2209 break;
2210 }
2211
2212 if (is_vector && !fp_access_check(s)) {
2213 return;
2214 }
2215
2216 offset <<= size;
2217
2218 if (rn == 31) {
2219 gen_check_sp_alignment(s);
2220 }
2221
2222 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2223
2224 if (!postindex) {
2225 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2226 }
2227
2228 if (is_vector) {
2229 if (is_load) {
2230 do_fp_ld(s, rt, tcg_addr, size);
2231 } else {
2232 do_fp_st(s, rt, tcg_addr, size);
2233 }
2234 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2235 if (is_load) {
2236 do_fp_ld(s, rt2, tcg_addr, size);
2237 } else {
2238 do_fp_st(s, rt2, tcg_addr, size);
2239 }
2240 } else {
2241 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2242 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2243
2244 if (is_load) {
2245 TCGv_i64 tmp = tcg_temp_new_i64();
2246
2247 /* Do not modify tcg_rt before recognizing any exception
2248 * from the second load.
2249 */
2250 do_gpr_ld(s, tmp, tcg_addr, size, is_signed, false,
2251 false, 0, false, false);
2252 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2253 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false,
2254 false, 0, false, false);
2255
2256 tcg_gen_mov_i64(tcg_rt, tmp);
2257 tcg_temp_free_i64(tmp);
2258 } else {
2259 do_gpr_st(s, tcg_rt, tcg_addr, size,
2260 false, 0, false, false);
2261 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2262 do_gpr_st(s, tcg_rt2, tcg_addr, size,
2263 false, 0, false, false);
2264 }
2265 }
2266
2267 if (wback) {
2268 if (postindex) {
2269 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2270 } else {
2271 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2272 }
2273 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2274 }
2275 }
2276
2277 /*
2278 * Load/store (immediate post-indexed)
2279 * Load/store (immediate pre-indexed)
2280 * Load/store (unscaled immediate)
2281 *
2282 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2283 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2284 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2285 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2286 *
2287 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2288 10 -> unprivileged
2289 * V = 0 -> non-vector
2290 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2291 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2292 */
2293 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2294 int opc,
2295 int size,
2296 int rt,
2297 bool is_vector)
2298 {
2299 int rn = extract32(insn, 5, 5);
2300 int imm9 = sextract32(insn, 12, 9);
2301 int idx = extract32(insn, 10, 2);
2302 bool is_signed = false;
2303 bool is_store = false;
2304 bool is_extended = false;
2305 bool is_unpriv = (idx == 2);
2306 bool iss_valid = !is_vector;
2307 bool post_index;
2308 bool writeback;
2309
2310 TCGv_i64 tcg_addr;
2311
2312 if (is_vector) {
2313 size |= (opc & 2) << 1;
2314 if (size > 4 || is_unpriv) {
2315 unallocated_encoding(s);
2316 return;
2317 }
2318 is_store = ((opc & 1) == 0);
2319 if (!fp_access_check(s)) {
2320 return;
2321 }
2322 } else {
2323 if (size == 3 && opc == 2) {
2324 /* PRFM - prefetch */
2325 if (is_unpriv) {
2326 unallocated_encoding(s);
2327 return;
2328 }
2329 return;
2330 }
2331 if (opc == 3 && size > 1) {
2332 unallocated_encoding(s);
2333 return;
2334 }
2335 is_store = (opc == 0);
2336 is_signed = extract32(opc, 1, 1);
2337 is_extended = (size < 3) && extract32(opc, 0, 1);
2338 }
2339
2340 switch (idx) {
2341 case 0:
2342 case 2:
2343 post_index = false;
2344 writeback = false;
2345 break;
2346 case 1:
2347 post_index = true;
2348 writeback = true;
2349 break;
2350 case 3:
2351 post_index = false;
2352 writeback = true;
2353 break;
2354 default:
2355 g_assert_not_reached();
2356 }
2357
2358 if (rn == 31) {
2359 gen_check_sp_alignment(s);
2360 }
2361 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2362
2363 if (!post_index) {
2364 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2365 }
2366
2367 if (is_vector) {
2368 if (is_store) {
2369 do_fp_st(s, rt, tcg_addr, size);
2370 } else {
2371 do_fp_ld(s, rt, tcg_addr, size);
2372 }
2373 } else {
2374 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2375 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2376 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2377
2378 if (is_store) {
2379 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx,
2380 iss_valid, rt, iss_sf, false);
2381 } else {
2382 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2383 is_signed, is_extended, memidx,
2384 iss_valid, rt, iss_sf, false);
2385 }
2386 }
2387
2388 if (writeback) {
2389 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2390 if (post_index) {
2391 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2392 }
2393 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2394 }
2395 }
2396
2397 /*
2398 * Load/store (register offset)
2399 *
2400 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2401 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2402 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2403 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2404 *
2405 * For non-vector:
2406 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2407 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2408 * For vector:
2409 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2410 * opc<0>: 0 -> store, 1 -> load
2411 * V: 1 -> vector/simd
2412 * opt: extend encoding (see DecodeRegExtend)
2413 * S: if S=1 then scale (essentially index by sizeof(size))
2414 * Rt: register to transfer into/out of
2415 * Rn: address register or SP for base
2416 * Rm: offset register or ZR for offset
2417 */
2418 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2419 int opc,
2420 int size,
2421 int rt,
2422 bool is_vector)
2423 {
2424 int rn = extract32(insn, 5, 5);
2425 int shift = extract32(insn, 12, 1);
2426 int rm = extract32(insn, 16, 5);
2427 int opt = extract32(insn, 13, 3);
2428 bool is_signed = false;
2429 bool is_store = false;
2430 bool is_extended = false;
2431
2432 TCGv_i64 tcg_rm;
2433 TCGv_i64 tcg_addr;
2434
2435 if (extract32(opt, 1, 1) == 0) {
2436 unallocated_encoding(s);
2437 return;
2438 }
2439
2440 if (is_vector) {
2441 size |= (opc & 2) << 1;
2442 if (size > 4) {
2443 unallocated_encoding(s);
2444 return;
2445 }
2446 is_store = !extract32(opc, 0, 1);
2447 if (!fp_access_check(s)) {
2448 return;
2449 }
2450 } else {
2451 if (size == 3 && opc == 2) {
2452 /* PRFM - prefetch */
2453 return;
2454 }
2455 if (opc == 3 && size > 1) {
2456 unallocated_encoding(s);
2457 return;
2458 }
2459 is_store = (opc == 0);
2460 is_signed = extract32(opc, 1, 1);
2461 is_extended = (size < 3) && extract32(opc, 0, 1);
2462 }
2463
2464 if (rn == 31) {
2465 gen_check_sp_alignment(s);
2466 }
2467 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2468
2469 tcg_rm = read_cpu_reg(s, rm, 1);
2470 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2471
2472 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
2473
2474 if (is_vector) {
2475 if (is_store) {
2476 do_fp_st(s, rt, tcg_addr, size);
2477 } else {
2478 do_fp_ld(s, rt, tcg_addr, size);
2479 }
2480 } else {
2481 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2482 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2483 if (is_store) {
2484 do_gpr_st(s, tcg_rt, tcg_addr, size,
2485 true, rt, iss_sf, false);
2486 } else {
2487 do_gpr_ld(s, tcg_rt, tcg_addr, size,
2488 is_signed, is_extended,
2489 true, rt, iss_sf, false);
2490 }
2491 }
2492 }
2493
2494 /*
2495 * Load/store (unsigned immediate)
2496 *
2497 * 31 30 29 27 26 25 24 23 22 21 10 9 5
2498 * +----+-------+---+-----+-----+------------+-------+------+
2499 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
2500 * +----+-------+---+-----+-----+------------+-------+------+
2501 *
2502 * For non-vector:
2503 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2504 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2505 * For vector:
2506 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2507 * opc<0>: 0 -> store, 1 -> load
2508 * Rn: base address register (inc SP)
2509 * Rt: target register
2510 */
2511 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
2512 int opc,
2513 int size,
2514 int rt,
2515 bool is_vector)
2516 {
2517 int rn = extract32(insn, 5, 5);
2518 unsigned int imm12 = extract32(insn, 10, 12);
2519 unsigned int offset;
2520
2521 TCGv_i64 tcg_addr;
2522
2523 bool is_store;
2524 bool is_signed = false;
2525 bool is_extended = false;
2526
2527 if (is_vector) {
2528 size |= (opc & 2) << 1;
2529 if (size > 4) {
2530 unallocated_encoding(s);
2531 return;
2532 }
2533 is_store = !extract32(opc, 0, 1);
2534 if (!fp_access_check(s)) {
2535 return;
2536 }
2537 } else {
2538 if (size == 3 && opc == 2) {
2539 /* PRFM - prefetch */
2540 return;
2541 }
2542 if (opc == 3 && size > 1) {
2543 unallocated_encoding(s);
2544 return;
2545 }
2546 is_store = (opc == 0);
2547 is_signed = extract32(opc, 1, 1);
2548 is_extended = (size < 3) && extract32(opc, 0, 1);
2549 }
2550
2551 if (rn == 31) {
2552 gen_check_sp_alignment(s);
2553 }
2554 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2555 offset = imm12 << size;
2556 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2557
2558 if (is_vector) {
2559 if (is_store) {
2560 do_fp_st(s, rt, tcg_addr, size);
2561 } else {
2562 do_fp_ld(s, rt, tcg_addr, size);
2563 }
2564 } else {
2565 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2566 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2567 if (is_store) {
2568 do_gpr_st(s, tcg_rt, tcg_addr, size,
2569 true, rt, iss_sf, false);
2570 } else {
2571 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended,
2572 true, rt, iss_sf, false);
2573 }
2574 }
2575 }
2576
2577 /* Load/store register (all forms) */
2578 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
2579 {
2580 int rt = extract32(insn, 0, 5);
2581 int opc = extract32(insn, 22, 2);
2582 bool is_vector = extract32(insn, 26, 1);
2583 int size = extract32(insn, 30, 2);
2584
2585 switch (extract32(insn, 24, 2)) {
2586 case 0:
2587 if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) {
2588 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
2589 } else {
2590 /* Load/store register (unscaled immediate)
2591 * Load/store immediate pre/post-indexed
2592 * Load/store register unprivileged
2593 */
2594 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
2595 }
2596 break;
2597 case 1:
2598 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
2599 break;
2600 default:
2601 unallocated_encoding(s);
2602 break;
2603 }
2604 }
2605
2606 /* AdvSIMD load/store multiple structures
2607 *
2608 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
2609 * +---+---+---------------+---+-------------+--------+------+------+------+
2610 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
2611 * +---+---+---------------+---+-------------+--------+------+------+------+
2612 *
2613 * AdvSIMD load/store multiple structures (post-indexed)
2614 *
2615 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
2616 * +---+---+---------------+---+---+---------+--------+------+------+------+
2617 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
2618 * +---+---+---------------+---+---+---------+--------+------+------+------+
2619 *
2620 * Rt: first (or only) SIMD&FP register to be transferred
2621 * Rn: base address or SP
2622 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2623 */
2624 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
2625 {
2626 int rt = extract32(insn, 0, 5);
2627 int rn = extract32(insn, 5, 5);
2628 int size = extract32(insn, 10, 2);
2629 int opcode = extract32(insn, 12, 4);
2630 bool is_store = !extract32(insn, 22, 1);
2631 bool is_postidx = extract32(insn, 23, 1);
2632 bool is_q = extract32(insn, 30, 1);
2633 TCGv_i64 tcg_addr, tcg_rn;
2634
2635 int ebytes = 1 << size;
2636 int elements = (is_q ? 128 : 64) / (8 << size);
2637 int rpt; /* num iterations */
2638 int selem; /* structure elements */
2639 int r;
2640
2641 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
2642 unallocated_encoding(s);
2643 return;
2644 }
2645
2646 /* From the shared decode logic */
2647 switch (opcode) {
2648 case 0x0:
2649 rpt = 1;
2650 selem = 4;
2651 break;
2652 case 0x2:
2653 rpt = 4;
2654 selem = 1;
2655 break;
2656 case 0x4:
2657 rpt = 1;
2658 selem = 3;
2659 break;
2660 case 0x6:
2661 rpt = 3;
2662 selem = 1;
2663 break;
2664 case 0x7:
2665 rpt = 1;
2666 selem = 1;
2667 break;
2668 case 0x8:
2669 rpt = 1;
2670 selem = 2;
2671 break;
2672 case 0xa:
2673 rpt = 2;
2674 selem = 1;
2675 break;
2676 default:
2677 unallocated_encoding(s);
2678 return;
2679 }
2680
2681 if (size == 3 && !is_q && selem != 1) {
2682 /* reserved */
2683 unallocated_encoding(s);
2684 return;
2685 }
2686
2687 if (!fp_access_check(s)) {
2688 return;
2689 }
2690
2691 if (rn == 31) {
2692 gen_check_sp_alignment(s);
2693 }
2694
2695 tcg_rn = cpu_reg_sp(s, rn);
2696 tcg_addr = tcg_temp_new_i64();
2697 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2698
2699 for (r = 0; r < rpt; r++) {
2700 int e;
2701 for (e = 0; e < elements; e++) {
2702 int tt = (rt + r) % 32;
2703 int xs;
2704 for (xs = 0; xs < selem; xs++) {
2705 if (is_store) {
2706 do_vec_st(s, tt, e, tcg_addr, size);
2707 } else {
2708 do_vec_ld(s, tt, e, tcg_addr, size);
2709
2710 /* For non-quad operations, setting a slice of the low
2711 * 64 bits of the register clears the high 64 bits (in
2712 * the ARM ARM pseudocode this is implicit in the fact
2713 * that 'rval' is a 64 bit wide variable). We optimize
2714 * by noticing that we only need to do this the first
2715 * time we touch a register.
2716 */
2717 if (!is_q && e == 0 && (r == 0 || xs == selem - 1)) {
2718 clear_vec_high(s, tt);
2719 }
2720 }
2721 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2722 tt = (tt + 1) % 32;
2723 }
2724 }
2725 }
2726
2727 if (is_postidx) {
2728 int rm = extract32(insn, 16, 5);
2729 if (rm == 31) {
2730 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2731 } else {
2732 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2733 }
2734 }
2735 tcg_temp_free_i64(tcg_addr);
2736 }
2737
2738 /* AdvSIMD load/store single structure
2739 *
2740 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2741 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2742 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
2743 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2744 *
2745 * AdvSIMD load/store single structure (post-indexed)
2746 *
2747 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2748 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2749 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
2750 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2751 *
2752 * Rt: first (or only) SIMD&FP register to be transferred
2753 * Rn: base address or SP
2754 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2755 * index = encoded in Q:S:size dependent on size
2756 *
2757 * lane_size = encoded in R, opc
2758 * transfer width = encoded in opc, S, size
2759 */
2760 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
2761 {
2762 int rt = extract32(insn, 0, 5);
2763 int rn = extract32(insn, 5, 5);
2764 int size = extract32(insn, 10, 2);
2765 int S = extract32(insn, 12, 1);
2766 int opc = extract32(insn, 13, 3);
2767 int R = extract32(insn, 21, 1);
2768 int is_load = extract32(insn, 22, 1);
2769 int is_postidx = extract32(insn, 23, 1);
2770 int is_q = extract32(insn, 30, 1);
2771
2772 int scale = extract32(opc, 1, 2);
2773 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
2774 bool replicate = false;
2775 int index = is_q << 3 | S << 2 | size;
2776 int ebytes, xs;
2777 TCGv_i64 tcg_addr, tcg_rn;
2778
2779 switch (scale) {
2780 case 3:
2781 if (!is_load || S) {
2782 unallocated_encoding(s);
2783 return;
2784 }
2785 scale = size;
2786 replicate = true;
2787 break;
2788 case 0:
2789 break;
2790 case 1:
2791 if (extract32(size, 0, 1)) {
2792 unallocated_encoding(s);
2793 return;
2794 }
2795 index >>= 1;
2796 break;
2797 case 2:
2798 if (extract32(size, 1, 1)) {
2799 unallocated_encoding(s);
2800 return;
2801 }
2802 if (!extract32(size, 0, 1)) {
2803 index >>= 2;
2804 } else {
2805 if (S) {
2806 unallocated_encoding(s);
2807 return;
2808 }
2809 index >>= 3;
2810 scale = 3;
2811 }
2812 break;
2813 default:
2814 g_assert_not_reached();
2815 }
2816
2817 if (!fp_access_check(s)) {
2818 return;
2819 }
2820
2821 ebytes = 1 << scale;
2822
2823 if (rn == 31) {
2824 gen_check_sp_alignment(s);
2825 }
2826
2827 tcg_rn = cpu_reg_sp(s, rn);
2828 tcg_addr = tcg_temp_new_i64();
2829 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2830
2831 for (xs = 0; xs < selem; xs++) {
2832 if (replicate) {
2833 /* Load and replicate to all elements */
2834 uint64_t mulconst;
2835 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
2836
2837 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
2838 get_mem_index(s), s->be_data + scale);
2839 switch (scale) {
2840 case 0:
2841 mulconst = 0x0101010101010101ULL;
2842 break;
2843 case 1:
2844 mulconst = 0x0001000100010001ULL;
2845 break;
2846 case 2:
2847 mulconst = 0x0000000100000001ULL;
2848 break;
2849 case 3:
2850 mulconst = 0;
2851 break;
2852 default:
2853 g_assert_not_reached();
2854 }
2855 if (mulconst) {
2856 tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
2857 }
2858 write_vec_element(s, tcg_tmp, rt, 0, MO_64);
2859 if (is_q) {
2860 write_vec_element(s, tcg_tmp, rt, 1, MO_64);
2861 } else {
2862 clear_vec_high(s, rt);
2863 }
2864 tcg_temp_free_i64(tcg_tmp);
2865 } else {
2866 /* Load/store one element per register */
2867 if (is_load) {
2868 do_vec_ld(s, rt, index, tcg_addr, scale);
2869 } else {
2870 do_vec_st(s, rt, index, tcg_addr, scale);
2871 }
2872 }
2873 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2874 rt = (rt + 1) % 32;
2875 }
2876
2877 if (is_postidx) {
2878 int rm = extract32(insn, 16, 5);
2879 if (rm == 31) {
2880 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2881 } else {
2882 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2883 }
2884 }
2885 tcg_temp_free_i64(tcg_addr);
2886 }
2887
2888 /* Loads and stores */
2889 static void disas_ldst(DisasContext *s, uint32_t insn)
2890 {
2891 switch (extract32(insn, 24, 6)) {
2892 case 0x08: /* Load/store exclusive */
2893 disas_ldst_excl(s, insn);
2894 break;
2895 case 0x18: case 0x1c: /* Load register (literal) */
2896 disas_ld_lit(s, insn);
2897 break;
2898 case 0x28: case 0x29:
2899 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
2900 disas_ldst_pair(s, insn);
2901 break;
2902 case 0x38: case 0x39:
2903 case 0x3c: case 0x3d: /* Load/store register (all forms) */
2904 disas_ldst_reg(s, insn);
2905 break;
2906 case 0x0c: /* AdvSIMD load/store multiple structures */
2907 disas_ldst_multiple_struct(s, insn);
2908 break;
2909 case 0x0d: /* AdvSIMD load/store single structure */
2910 disas_ldst_single_struct(s, insn);
2911 break;
2912 default:
2913 unallocated_encoding(s);
2914 break;
2915 }
2916 }
2917
2918 /* PC-rel. addressing
2919 * 31 30 29 28 24 23 5 4 0
2920 * +----+-------+-----------+-------------------+------+
2921 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
2922 * +----+-------+-----------+-------------------+------+
2923 */
2924 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
2925 {
2926 unsigned int page, rd;
2927 uint64_t base;
2928 uint64_t offset;
2929
2930 page = extract32(insn, 31, 1);
2931 /* SignExtend(immhi:immlo) -> offset */
2932 offset = sextract64(insn, 5, 19);
2933 offset = offset << 2 | extract32(insn, 29, 2);
2934 rd = extract32(insn, 0, 5);
2935 base = s->pc - 4;
2936
2937 if (page) {
2938 /* ADRP (page based) */
2939 base &= ~0xfff;
2940 offset <<= 12;
2941 }
2942
2943 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
2944 }
2945
2946 /*
2947 * Add/subtract (immediate)
2948 *
2949 * 31 30 29 28 24 23 22 21 10 9 5 4 0
2950 * +--+--+--+-----------+-----+-------------+-----+-----+
2951 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
2952 * +--+--+--+-----------+-----+-------------+-----+-----+
2953 *
2954 * sf: 0 -> 32bit, 1 -> 64bit
2955 * op: 0 -> add , 1 -> sub
2956 * S: 1 -> set flags
2957 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
2958 */
2959 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
2960 {
2961 int rd = extract32(insn, 0, 5);
2962 int rn = extract32(insn, 5, 5);
2963 uint64_t imm = extract32(insn, 10, 12);
2964 int shift = extract32(insn, 22, 2);
2965 bool setflags = extract32(insn, 29, 1);
2966 bool sub_op = extract32(insn, 30, 1);
2967 bool is_64bit = extract32(insn, 31, 1);
2968
2969 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2970 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
2971 TCGv_i64 tcg_result;
2972
2973 switch (shift) {
2974 case 0x0:
2975 break;
2976 case 0x1:
2977 imm <<= 12;
2978 break;
2979 default:
2980 unallocated_encoding(s);
2981 return;
2982 }
2983
2984 tcg_result = tcg_temp_new_i64();
2985 if (!setflags) {
2986 if (sub_op) {
2987 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
2988 } else {
2989 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
2990 }
2991 } else {
2992 TCGv_i64 tcg_imm = tcg_const_i64(imm);
2993 if (sub_op) {
2994 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2995 } else {
2996 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2997 }
2998 tcg_temp_free_i64(tcg_imm);
2999 }
3000
3001 if (is_64bit) {
3002 tcg_gen_mov_i64(tcg_rd, tcg_result);
3003 } else {
3004 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3005 }
3006
3007 tcg_temp_free_i64(tcg_result);
3008 }
3009
3010 /* The input should be a value in the bottom e bits (with higher
3011 * bits zero); returns that value replicated into every element
3012 * of size e in a 64 bit integer.
3013 */
3014 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
3015 {
3016 assert(e != 0);
3017 while (e < 64) {
3018 mask |= mask << e;
3019 e *= 2;
3020 }
3021 return mask;
3022 }
3023
3024 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
3025 static inline uint64_t bitmask64(unsigned int length)
3026 {
3027 assert(length > 0 && length <= 64);
3028 return ~0ULL >> (64 - length);
3029 }
3030
3031 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
3032 * only require the wmask. Returns false if the imms/immr/immn are a reserved
3033 * value (ie should cause a guest UNDEF exception), and true if they are
3034 * valid, in which case the decoded bit pattern is written to result.
3035 */
3036 static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3037 unsigned int imms, unsigned int immr)
3038 {
3039 uint64_t mask;
3040 unsigned e, levels, s, r;
3041 int len;
3042
3043 assert(immn < 2 && imms < 64 && immr < 64);
3044
3045 /* The bit patterns we create here are 64 bit patterns which
3046 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3047 * 64 bits each. Each element contains the same value: a run
3048 * of between 1 and e-1 non-zero bits, rotated within the
3049 * element by between 0 and e-1 bits.
3050 *
3051 * The element size and run length are encoded into immn (1 bit)
3052 * and imms (6 bits) as follows:
3053 * 64 bit elements: immn = 1, imms = <length of run - 1>
3054 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3055 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3056 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3057 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3058 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3059 * Notice that immn = 0, imms = 11111x is the only combination
3060 * not covered by one of the above options; this is reserved.
3061 * Further, <length of run - 1> all-ones is a reserved pattern.
3062 *
3063 * In all cases the rotation is by immr % e (and immr is 6 bits).
3064 */
3065
3066 /* First determine the element size */
3067 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3068 if (len < 1) {
3069 /* This is the immn == 0, imms == 0x11111x case */
3070 return false;
3071 }
3072 e = 1 << len;
3073
3074 levels = e - 1;
3075 s = imms & levels;
3076 r = immr & levels;
3077
3078 if (s == levels) {
3079 /* <length of run - 1> mustn't be all-ones. */
3080 return false;
3081 }
3082
3083 /* Create the value of one element: s+1 set bits rotated
3084 * by r within the element (which is e bits wide)...
3085 */
3086 mask = bitmask64(s + 1);
3087 if (r) {
3088 mask = (mask >> r) | (mask << (e - r));
3089 mask &= bitmask64(e);
3090 }
3091 /* ...then replicate the element over the whole 64 bit value */
3092 mask = bitfield_replicate(mask, e);
3093 *result = mask;
3094 return true;
3095 }
3096
3097 /* Logical (immediate)
3098 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3099 * +----+-----+-------------+---+------+------+------+------+
3100 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3101 * +----+-----+-------------+---+------+------+------+------+
3102 */
3103 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3104 {
3105 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3106 TCGv_i64 tcg_rd, tcg_rn;
3107 uint64_t wmask;
3108 bool is_and = false;
3109
3110 sf = extract32(insn, 31, 1);
3111 opc = extract32(insn, 29, 2);
3112 is_n = extract32(insn, 22, 1);
3113 immr = extract32(insn, 16, 6);
3114 imms = extract32(insn, 10, 6);
3115 rn = extract32(insn, 5, 5);
3116 rd = extract32(insn, 0, 5);
3117
3118 if (!sf && is_n) {
3119 unallocated_encoding(s);
3120 return;
3121 }
3122
3123 if (opc == 0x3) { /* ANDS */
3124 tcg_rd = cpu_reg(s, rd);
3125 } else {
3126 tcg_rd = cpu_reg_sp(s, rd);
3127 }
3128 tcg_rn = cpu_reg(s, rn);
3129
3130 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3131 /* some immediate field values are reserved */
3132 unallocated_encoding(s);
3133 return;
3134 }
3135
3136 if (!sf) {
3137 wmask &= 0xffffffff;
3138 }
3139
3140 switch (opc) {
3141 case 0x3: /* ANDS */
3142 case 0x0: /* AND */
3143 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3144 is_and = true;
3145 break;
3146 case 0x1: /* ORR */
3147 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3148 break;
3149 case 0x2: /* EOR */
3150 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3151 break;
3152 default:
3153 assert(FALSE); /* must handle all above */
3154 break;
3155 }
3156
3157 if (!sf && !is_and) {
3158 /* zero extend final result; we know we can skip this for AND
3159 * since the immediate had the high 32 bits clear.
3160 */
3161 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3162 }
3163
3164 if (opc == 3) { /* ANDS */
3165 gen_logic_CC(sf, tcg_rd);
3166 }
3167 }
3168
3169 /*
3170 * Move wide (immediate)
3171 *
3172 * 31 30 29 28 23 22 21 20 5 4 0
3173 * +--+-----+-------------+-----+----------------+------+
3174 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3175 * +--+-----+-------------+-----+----------------+------+
3176 *
3177 * sf: 0 -> 32 bit, 1 -> 64 bit
3178 * opc: 00 -> N, 10 -> Z, 11 -> K
3179 * hw: shift/16 (0,16, and sf only 32, 48)
3180 */
3181 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3182 {
3183 int rd = extract32(insn, 0, 5);
3184 uint64_t imm = extract32(insn, 5, 16);
3185 int sf = extract32(insn, 31, 1);
3186 int opc = extract32(insn, 29, 2);
3187 int pos = extract32(insn, 21, 2) << 4;
3188 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3189 TCGv_i64 tcg_imm;
3190
3191 if (!sf && (pos >= 32)) {
3192 unallocated_encoding(s);
3193 return;
3194 }
3195
3196 switch (opc) {
3197 case 0: /* MOVN */
3198 case 2: /* MOVZ */
3199 imm <<= pos;
3200 if (opc == 0) {
3201 imm = ~imm;
3202 }
3203 if (!sf) {
3204 imm &= 0xffffffffu;
3205 }
3206 tcg_gen_movi_i64(tcg_rd, imm);
3207 break;
3208 case 3: /* MOVK */
3209 tcg_imm = tcg_const_i64(imm);
3210 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
3211 tcg_temp_free_i64(tcg_imm);
3212 if (!sf) {
3213 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3214 }
3215 break;
3216 default:
3217 unallocated_encoding(s);
3218 break;
3219 }
3220 }
3221
3222 /* Bitfield
3223 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3224 * +----+-----+-------------+---+------+------+------+------+
3225 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
3226 * +----+-----+-------------+---+------+------+------+------+
3227 */
3228 static void disas_bitfield(DisasContext *s, uint32_t insn)
3229 {
3230 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
3231 TCGv_i64 tcg_rd, tcg_tmp;
3232
3233 sf = extract32(insn, 31, 1);
3234 opc = extract32(insn, 29, 2);
3235 n = extract32(insn, 22, 1);
3236 ri = extract32(insn, 16, 6);
3237 si = extract32(insn, 10, 6);
3238 rn = extract32(insn, 5, 5);
3239 rd = extract32(insn, 0, 5);
3240 bitsize = sf ? 64 : 32;
3241
3242 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3243 unallocated_encoding(s);
3244 return;
3245 }
3246
3247 tcg_rd = cpu_reg(s, rd);
3248
3249 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3250 to be smaller than bitsize, we'll never reference data outside the
3251 low 32-bits anyway. */
3252 tcg_tmp = read_cpu_reg(s, rn, 1);
3253
3254 /* Recognize simple(r) extractions. */
3255 if (si >= ri) {
3256 /* Wd<s-r:0> = Wn<s:r> */
3257 len = (si - ri) + 1;
3258 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
3259 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
3260 goto done;
3261 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
3262 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
3263 return;
3264 }
3265 /* opc == 1, BXFIL fall through to deposit */
3266 tcg_gen_extract_i64(tcg_tmp, tcg_tmp, ri, len);
3267 pos = 0;
3268 } else {
3269 /* Handle the ri > si case with a deposit
3270 * Wd<32+s-r,32-r> = Wn<s:0>
3271 */
3272 len = si + 1;
3273 pos = (bitsize - ri) & (bitsize - 1);
3274 }
3275
3276 if (opc == 0 && len < ri) {
3277 /* SBFM: sign extend the destination field from len to fill
3278 the balance of the word. Let the deposit below insert all
3279 of those sign bits. */
3280 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
3281 len = ri;
3282 }
3283
3284 if (opc == 1) { /* BFM, BXFIL */
3285 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3286 } else {
3287 /* SBFM or UBFM: We start with zero, and we haven't modified
3288 any bits outside bitsize, therefore the zero-extension
3289 below is unneeded. */
3290 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
3291 return;
3292 }
3293
3294 done:
3295 if (!sf) { /* zero extend final result */
3296 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3297 }
3298 }
3299
3300 /* Extract
3301 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3302 * +----+------+-------------+---+----+------+--------+------+------+
3303 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3304 * +----+------+-------------+---+----+------+--------+------+------+
3305 */
3306 static void disas_extract(DisasContext *s, uint32_t insn)
3307 {
3308 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3309
3310 sf = extract32(insn, 31, 1);
3311 n = extract32(insn, 22, 1);
3312 rm = extract32(insn, 16, 5);
3313 imm = extract32(insn, 10, 6);
3314 rn = extract32(insn, 5, 5);
3315 rd = extract32(insn, 0, 5);
3316 op21 = extract32(insn, 29, 2);
3317 op0 = extract32(insn, 21, 1);
3318 bitsize = sf ? 64 : 32;
3319
3320 if (sf != n || op21 || op0 || imm >= bitsize) {
3321 unallocated_encoding(s);
3322 } else {
3323 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3324
3325 tcg_rd = cpu_reg(s, rd);
3326
3327 if (unlikely(imm == 0)) {
3328 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3329 * so an extract from bit 0 is a special case.
3330 */
3331 if (sf) {
3332 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3333 } else {
3334 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3335 }
3336 } else if (rm == rn) { /* ROR */
3337 tcg_rm = cpu_reg(s, rm);
3338 if (sf) {
3339 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
3340 } else {
3341 TCGv_i32 tmp = tcg_temp_new_i32();
3342 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
3343 tcg_gen_rotri_i32(tmp, tmp, imm);
3344 tcg_gen_extu_i32_i64(tcg_rd, tmp);
3345 tcg_temp_free_i32(tmp);
3346 }
3347 } else {
3348 tcg_rm = read_cpu_reg(s, rm, sf);
3349 tcg_rn = read_cpu_reg(s, rn, sf);
3350 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
3351 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
3352 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
3353 if (!sf) {
3354 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3355 }
3356 }
3357 }
3358 }
3359
3360 /* Data processing - immediate */
3361 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
3362 {
3363 switch (extract32(insn, 23, 6)) {
3364 case 0x20: case 0x21: /* PC-rel. addressing */
3365 disas_pc_rel_adr(s, insn);
3366 break;
3367 case 0x22: case 0x23: /* Add/subtract (immediate) */
3368 disas_add_sub_imm(s, insn);
3369 break;
3370 case 0x24: /* Logical (immediate) */
3371 disas_logic_imm(s, insn);
3372 break;
3373 case 0x25: /* Move wide (immediate) */
3374 disas_movw_imm(s, insn);
3375 break;
3376 case 0x26: /* Bitfield */
3377 disas_bitfield(s, insn);
3378 break;
3379 case 0x27: /* Extract */
3380 disas_extract(s, insn);
3381 break;
3382 default:
3383 unallocated_encoding(s);
3384 break;
3385 }
3386 }
3387
3388 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
3389 * Note that it is the caller's responsibility to ensure that the
3390 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
3391 * mandated semantics for out of range shifts.
3392 */
3393 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
3394 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
3395 {
3396 switch (shift_type) {
3397 case A64_SHIFT_TYPE_LSL:
3398 tcg_gen_shl_i64(dst, src, shift_amount);
3399 break;
3400 case A64_SHIFT_TYPE_LSR:
3401 tcg_gen_shr_i64(dst, src, shift_amount);
3402 break;
3403 case A64_SHIFT_TYPE_ASR:
3404 if (!sf) {
3405 tcg_gen_ext32s_i64(dst, src);
3406 }
3407 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
3408 break;
3409 case A64_SHIFT_TYPE_ROR:
3410 if (sf) {
3411 tcg_gen_rotr_i64(dst, src, shift_amount);
3412 } else {
3413 TCGv_i32 t0, t1;
3414 t0 = tcg_temp_new_i32();
3415 t1 = tcg_temp_new_i32();
3416 tcg_gen_extrl_i64_i32(t0, src);
3417 tcg_gen_extrl_i64_i32(t1, shift_amount);
3418 tcg_gen_rotr_i32(t0, t0, t1);
3419 tcg_gen_extu_i32_i64(dst, t0);
3420 tcg_temp_free_i32(t0);
3421 tcg_temp_free_i32(t1);
3422 }
3423 break;
3424 default:
3425 assert(FALSE); /* all shift types should be handled */
3426 break;
3427 }
3428
3429 if (!sf) { /* zero extend final result */
3430 tcg_gen_ext32u_i64(dst, dst);
3431 }
3432 }
3433
3434 /* Shift a TCGv src by immediate, put result in dst.
3435 * The shift amount must be in range (this should always be true as the
3436 * relevant instructions will UNDEF on bad shift immediates).
3437 */
3438 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
3439 enum a64_shift_type shift_type, unsigned int shift_i)
3440 {
3441 assert(shift_i < (sf ? 64 : 32));
3442
3443 if (shift_i == 0) {
3444 tcg_gen_mov_i64(dst, src);
3445 } else {
3446 TCGv_i64 shift_const;
3447
3448 shift_const = tcg_const_i64(shift_i);
3449 shift_reg(dst, src, sf, shift_type, shift_const);
3450 tcg_temp_free_i64(shift_const);
3451 }
3452 }
3453
3454 /* Logical (shifted register)
3455 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3456 * +----+-----+-----------+-------+---+------+--------+------+------+
3457 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
3458 * +----+-----+-----------+-------+---+------+--------+------+------+
3459 */
3460 static void disas_logic_reg(DisasContext *s, uint32_t insn)
3461 {
3462 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
3463 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
3464
3465 sf = extract32(insn, 31, 1);
3466 opc = extract32(insn, 29, 2);
3467 shift_type = extract32(insn, 22, 2);
3468 invert = extract32(insn, 21, 1);
3469 rm = extract32(insn, 16, 5);
3470 shift_amount = extract32(insn, 10, 6);
3471 rn = extract32(insn, 5, 5);
3472 rd = extract32(insn, 0, 5);
3473
3474 if (!sf && (shift_amount & (1 << 5))) {
3475 unallocated_encoding(s);
3476 return;
3477 }
3478
3479 tcg_rd = cpu_reg(s, rd);
3480
3481 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
3482 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
3483 * register-register MOV and MVN, so it is worth special casing.
3484 */
3485 tcg_rm = cpu_reg(s, rm);
3486 if (invert) {
3487 tcg_gen_not_i64(tcg_rd, tcg_rm);
3488 if (!sf) {
3489 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3490 }
3491 } else {
3492 if (sf) {
3493 tcg_gen_mov_i64(tcg_rd, tcg_rm);
3494 } else {
3495 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
3496 }
3497 }
3498 return;
3499 }
3500
3501 tcg_rm = read_cpu_reg(s, rm, sf);
3502
3503 if (shift_amount) {
3504 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
3505 }
3506
3507 tcg_rn = cpu_reg(s, rn);
3508
3509 switch (opc | (invert << 2)) {
3510 case 0: /* AND */
3511 case 3: /* ANDS */
3512 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
3513 break;
3514 case 1: /* ORR */
3515 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
3516 break;
3517 case 2: /* EOR */
3518 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
3519 break;
3520 case 4: /* BIC */
3521 case 7: /* BICS */
3522 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
3523 break;
3524 case 5: /* ORN */
3525 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
3526 break;
3527 case 6: /* EON */
3528 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
3529 break;
3530 default:
3531 assert(FALSE);
3532 break;
3533 }
3534
3535 if (!sf) {
3536 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3537 }
3538
3539 if (opc == 3) {
3540 gen_logic_CC(sf, tcg_rd);
3541 }
3542 }
3543
3544 /*
3545 * Add/subtract (extended register)
3546 *
3547 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
3548 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3549 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
3550 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3551 *
3552 * sf: 0 -> 32bit, 1 -> 64bit
3553 * op: 0 -> add , 1 -> sub
3554 * S: 1 -> set flags
3555 * opt: 00
3556 * option: extension type (see DecodeRegExtend)
3557 * imm3: optional shift to Rm
3558 *
3559 * Rd = Rn + LSL(extend(Rm), amount)
3560 */
3561 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
3562 {
3563 int rd = extract32(insn, 0, 5);
3564 int rn = extract32(insn, 5, 5);
3565 int imm3 = extract32(insn, 10, 3);
3566 int option = extract32(insn, 13, 3);
3567 int rm = extract32(insn, 16, 5);
3568 bool setflags = extract32(insn, 29, 1);
3569 bool sub_op = extract32(insn, 30, 1);
3570 bool sf = extract32(insn, 31, 1);
3571
3572 TCGv_i64 tcg_rm, tcg_rn; /* temps */
3573 TCGv_i64 tcg_rd;
3574 TCGv_i64 tcg_result;
3575
3576 if (imm3 > 4) {
3577 unallocated_encoding(s);
3578 return;
3579 }
3580
3581 /* non-flag setting ops may use SP */
3582 if (!setflags) {
3583 tcg_rd = cpu_reg_sp(s, rd);
3584 } else {
3585 tcg_rd = cpu_reg(s, rd);
3586 }
3587 tcg_rn = read_cpu_reg_sp(s, rn, sf);
3588
3589 tcg_rm = read_cpu_reg(s, rm, sf);
3590 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
3591
3592 tcg_result = tcg_temp_new_i64();
3593
3594 if (!setflags) {
3595 if (sub_op) {
3596 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3597 } else {
3598 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3599 }
3600 } else {
3601 if (sub_op) {
3602 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3603 } else {
3604 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3605 }
3606 }
3607
3608 if (sf) {
3609 tcg_gen_mov_i64(tcg_rd, tcg_result);
3610 } else {
3611 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3612 }
3613
3614 tcg_temp_free_i64(tcg_result);
3615 }
3616
3617 /*
3618 * Add/subtract (shifted register)
3619 *
3620 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3621 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3622 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
3623 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3624 *
3625 * sf: 0 -> 32bit, 1 -> 64bit
3626 * op: 0 -> add , 1 -> sub
3627 * S: 1 -> set flags
3628 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
3629 * imm6: Shift amount to apply to Rm before the add/sub
3630 */
3631 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
3632 {
3633 int rd = extract32(insn, 0, 5);
3634 int rn = extract32(insn, 5, 5);
3635 int imm6 = extract32(insn, 10, 6);
3636 int rm = extract32(insn, 16, 5);
3637 int shift_type = extract32(insn, 22, 2);
3638 bool setflags = extract32(insn, 29, 1);
3639 bool sub_op = extract32(insn, 30, 1);
3640 bool sf = extract32(insn, 31, 1);
3641
3642 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3643 TCGv_i64 tcg_rn, tcg_rm;
3644 TCGv_i64 tcg_result;
3645
3646 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
3647 unallocated_encoding(s);
3648 return;
3649 }
3650
3651 tcg_rn = read_cpu_reg(s, rn, sf);
3652 tcg_rm = read_cpu_reg(s, rm, sf);
3653
3654 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
3655
3656 tcg_result = tcg_temp_new_i64();
3657
3658 if (!setflags) {
3659 if (sub_op) {
3660 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3661 } else {
3662 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3663 }
3664 } else {
3665 if (sub_op) {
3666 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3667 } else {
3668 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3669 }
3670 }
3671
3672 if (sf) {
3673 tcg_gen_mov_i64(tcg_rd, tcg_result);
3674 } else {
3675 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3676 }
3677
3678 tcg_temp_free_i64(tcg_result);
3679 }
3680
3681 /* Data-processing (3 source)
3682 *
3683 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
3684 * +--+------+-----------+------+------+----+------+------+------+
3685 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
3686 * +--+------+-----------+------+------+----+------+------+------+
3687 */
3688 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
3689 {
3690 int rd = extract32(insn, 0, 5);
3691 int rn = extract32(insn, 5, 5);
3692 int ra = extract32(insn, 10, 5);
3693 int rm = extract32(insn, 16, 5);
3694 int op_id = (extract32(insn, 29, 3) << 4) |
3695 (extract32(insn, 21, 3) << 1) |
3696 extract32(insn, 15, 1);
3697 bool sf = extract32(insn, 31, 1);
3698 bool is_sub = extract32(op_id, 0, 1);
3699 bool is_high = extract32(op_id, 2, 1);
3700 bool is_signed = false;
3701 TCGv_i64 tcg_op1;
3702 TCGv_i64 tcg_op2;
3703 TCGv_i64 tcg_tmp;
3704
3705 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
3706 switch (op_id) {
3707 case 0x42: /* SMADDL */
3708 case 0x43: /* SMSUBL */
3709 case 0x44: /* SMULH */
3710 is_signed = true;
3711 break;
3712 case 0x0: /* MADD (32bit) */
3713 case 0x1: /* MSUB (32bit) */
3714 case 0x40: /* MADD (64bit) */
3715 case 0x41: /* MSUB (64bit) */
3716 case 0x4a: /* UMADDL */
3717 case 0x4b: /* UMSUBL */
3718 case 0x4c: /* UMULH */
3719 break;
3720 default:
3721 unallocated_encoding(s);
3722 return;
3723 }
3724
3725 if (is_high) {
3726 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
3727 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3728 TCGv_i64 tcg_rn = cpu_reg(s, rn);
3729 TCGv_i64 tcg_rm = cpu_reg(s, rm);
3730
3731 if (is_signed) {
3732 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3733 } else {
3734 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3735 }
3736
3737 tcg_temp_free_i64(low_bits);
3738 return;
3739 }
3740
3741 tcg_op1 = tcg_temp_new_i64();
3742 tcg_op2 = tcg_temp_new_i64();
3743 tcg_tmp = tcg_temp_new_i64();
3744
3745 if (op_id < 0x42) {
3746 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
3747 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
3748 } else {
3749 if (is_signed) {
3750 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
3751 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
3752 } else {
3753 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
3754 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
3755 }
3756 }
3757
3758 if (ra == 31 && !is_sub) {
3759 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
3760 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
3761 } else {
3762 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
3763 if (is_sub) {
3764 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3765 } else {
3766 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3767 }
3768 }
3769
3770 if (!sf) {
3771 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
3772 }
3773
3774 tcg_temp_free_i64(tcg_op1);
3775 tcg_temp_free_i64(tcg_op2);
3776 tcg_temp_free_i64(tcg_tmp);
3777 }
3778
3779 /* Add/subtract (with carry)
3780 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
3781 * +--+--+--+------------------------+------+---------+------+-----+
3782 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
3783 * +--+--+--+------------------------+------+---------+------+-----+
3784 * [000000]
3785 */
3786
3787 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
3788 {
3789 unsigned int sf, op, setflags, rm, rn, rd;
3790 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
3791
3792 if (extract32(insn, 10, 6) != 0) {
3793 unallocated_encoding(s);
3794 return;
3795 }
3796
3797 sf = extract32(insn, 31, 1);
3798 op = extract32(insn, 30, 1);
3799 setflags = extract32(insn, 29, 1);
3800 rm = extract32(insn, 16, 5);
3801 rn = extract32(insn, 5, 5);
3802 rd = extract32(insn, 0, 5);
3803
3804 tcg_rd = cpu_reg(s, rd);
3805 tcg_rn = cpu_reg(s, rn);
3806
3807 if (op) {
3808 tcg_y = new_tmp_a64(s);
3809 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
3810 } else {
3811 tcg_y = cpu_reg(s, rm);
3812 }
3813
3814 if (setflags) {
3815 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
3816 } else {
3817 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
3818 }
3819 }
3820
3821 /* Conditional compare (immediate / register)
3822 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
3823 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3824 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
3825 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3826 * [1] y [0] [0]
3827 */
3828 static void disas_cc(DisasContext *s, uint32_t insn)
3829 {
3830 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
3831 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
3832 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
3833 DisasCompare c;
3834
3835 if (!extract32(insn, 29, 1)) {
3836 unallocated_encoding(s);
3837 return;
3838 }
3839 if (insn & (1 << 10 | 1 << 4)) {
3840 unallocated_encoding(s);
3841 return;
3842 }
3843 sf = extract32(insn, 31, 1);
3844 op = extract32(insn, 30, 1);
3845 is_imm = extract32(insn, 11, 1);
3846 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
3847 cond = extract32(insn, 12, 4);
3848 rn = extract32(insn, 5, 5);
3849 nzcv = extract32(insn, 0, 4);
3850
3851 /* Set T0 = !COND. */
3852 tcg_t0 = tcg_temp_new_i32();
3853 arm_test_cc(&c, cond);
3854 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
3855 arm_free_cc(&c);
3856
3857 /* Load the arguments for the new comparison. */
3858 if (is_imm) {
3859 tcg_y = new_tmp_a64(s);
3860 tcg_gen_movi_i64(tcg_y, y);
3861 } else {
3862 tcg_y = cpu_reg(s, y);
3863 }
3864 tcg_rn = cpu_reg(s, rn);
3865
3866 /* Set the flags for the new comparison. */
3867 tcg_tmp = tcg_temp_new_i64();
3868 if (op) {
3869 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3870 } else {
3871 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3872 }
3873 tcg_temp_free_i64(tcg_tmp);
3874
3875 /* If COND was false, force the flags to #nzcv. Compute two masks
3876 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
3877 * For tcg hosts that support ANDC, we can make do with just T1.
3878 * In either case, allow the tcg optimizer to delete any unused mask.
3879 */
3880 tcg_t1 = tcg_temp_new_i32();
3881 tcg_t2 = tcg_temp_new_i32();
3882 tcg_gen_neg_i32(tcg_t1, tcg_t0);
3883 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
3884
3885 if (nzcv & 8) { /* N */
3886 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
3887 } else {
3888 if (TCG_TARGET_HAS_andc_i32) {
3889 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
3890 } else {
3891 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
3892 }
3893 }
3894 if (nzcv & 4) { /* Z */
3895 if (TCG_TARGET_HAS_andc_i32) {
3896 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
3897 } else {
3898 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
3899 }
3900 } else {
3901 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
3902 }
3903 if (nzcv & 2) { /* C */
3904 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
3905 } else {
3906 if (TCG_TARGET_HAS_andc_i32) {
3907 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
3908 } else {
3909 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
3910 }
3911 }
3912 if (nzcv & 1) { /* V */
3913 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
3914 } else {
3915 if (TCG_TARGET_HAS_andc_i32) {
3916 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
3917 } else {
3918 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
3919 }
3920 }
3921 tcg_temp_free_i32(tcg_t0);
3922 tcg_temp_free_i32(tcg_t1);
3923 tcg_temp_free_i32(tcg_t2);
3924 }
3925
3926 /* Conditional select
3927 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
3928 * +----+----+---+-----------------+------+------+-----+------+------+
3929 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
3930 * +----+----+---+-----------------+------+------+-----+------+------+
3931 */
3932 static void disas_cond_select(DisasContext *s, uint32_t insn)
3933 {
3934 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
3935 TCGv_i64 tcg_rd, zero;
3936 DisasCompare64 c;
3937
3938 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
3939 /* S == 1 or op2<1> == 1 */
3940 unallocated_encoding(s);
3941 return;
3942 }
3943 sf = extract32(insn, 31, 1);
3944 else_inv = extract32(insn, 30, 1);
3945 rm = extract32(insn, 16, 5);
3946 cond = extract32(insn, 12, 4);
3947 else_inc = extract32(insn, 10, 1);
3948 rn = extract32(insn, 5, 5);
3949 rd = extract32(insn, 0, 5);
3950
3951 tcg_rd = cpu_reg(s, rd);
3952
3953 a64_test_cc(&c, cond);
3954 zero = tcg_const_i64(0);
3955
3956 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
3957 /* CSET & CSETM. */
3958 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
3959 if (else_inv) {
3960 tcg_gen_neg_i64(tcg_rd, tcg_rd);
3961 }
3962 } else {
3963 TCGv_i64 t_true = cpu_reg(s, rn);
3964 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
3965 if (else_inv && else_inc) {
3966 tcg_gen_neg_i64(t_false, t_false);
3967 } else if (else_inv) {
3968 tcg_gen_not_i64(t_false, t_false);
3969 } else if (else_inc) {
3970 tcg_gen_addi_i64(t_false, t_false, 1);
3971 }
3972 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
3973 }
3974
3975 tcg_temp_free_i64(zero);
3976 a64_free_cc(&c);
3977
3978 if (!sf) {
3979 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3980 }
3981 }
3982
3983 static void handle_clz(DisasContext *s, unsigned int sf,
3984 unsigned int rn, unsigned int rd)
3985 {
3986 TCGv_i64 tcg_rd, tcg_rn;
3987 tcg_rd = cpu_reg(s, rd);
3988 tcg_rn = cpu_reg(s, rn);
3989
3990 if (sf) {
3991 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
3992 } else {
3993 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3994 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3995 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
3996 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3997 tcg_temp_free_i32(tcg_tmp32);
3998 }
3999 }
4000
4001 static void handle_cls(DisasContext *s, unsigned int sf,
4002 unsigned int rn, unsigned int rd)
4003 {
4004 TCGv_i64 tcg_rd, tcg_rn;
4005 tcg_rd = cpu_reg(s, rd);
4006 tcg_rn = cpu_reg(s, rn);
4007
4008 if (sf) {
4009 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4010 } else {
4011 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4012 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4013 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4014 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4015 tcg_temp_free_i32(tcg_tmp32);
4016 }
4017 }
4018
4019 static void handle_rbit(DisasContext *s, unsigned int sf,
4020 unsigned int rn, unsigned int rd)
4021 {
4022 TCGv_i64 tcg_rd, tcg_rn;
4023 tcg_rd = cpu_reg(s, rd);
4024 tcg_rn = cpu_reg(s, rn);
4025
4026 if (sf) {
4027 gen_helper_rbit64(tcg_rd, tcg_rn);
4028 } else {
4029 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4030 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4031 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4032 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4033 tcg_temp_free_i32(tcg_tmp32);
4034 }
4035 }
4036
4037 /* REV with sf==1, opcode==3 ("REV64") */
4038 static void handle_rev64(DisasContext *s, unsigned int sf,
4039 unsigned int rn, unsigned int rd)
4040 {
4041 if (!sf) {
4042 unallocated_encoding(s);
4043 return;
4044 }
4045 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4046 }
4047
4048 /* REV with sf==0, opcode==2
4049 * REV32 (sf==1, opcode==2)
4050 */
4051 static void handle_rev32(DisasContext *s, unsigned int sf,
4052 unsigned int rn, unsigned int rd)
4053 {
4054 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4055
4056 if (sf) {
4057 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4058 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4059
4060 /* bswap32_i64 requires zero high word */
4061 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4062 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4063 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4064 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4065 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4066
4067 tcg_temp_free_i64(tcg_tmp);
4068 } else {
4069 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4070 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4071 }
4072 }
4073
4074 /* REV16 (opcode==1) */
4075 static void handle_rev16(DisasContext *s, unsigned int sf,
4076 unsigned int rn, unsigned int rd)
4077 {
4078 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4079 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4080 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4081 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4082
4083 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4084 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4085 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4086 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4087 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4088
4089 tcg_temp_free_i64(mask);
4090 tcg_temp_free_i64(tcg_tmp);
4091 }
4092
4093 /* Data-processing (1 source)
4094 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4095 * +----+---+---+-----------------+---------+--------+------+------+
4096 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4097 * +----+---+---+-----------------+---------+--------+------+------+
4098 */
4099 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4100 {
4101 unsigned int sf, opcode, rn, rd;
4102
4103 if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
4104 unallocated_encoding(s);
4105 return;
4106 }
4107
4108 sf = extract32(insn, 31, 1);
4109 opcode = extract32(insn, 10, 6);
4110 rn = extract32(insn, 5, 5);
4111 rd = extract32(insn, 0, 5);
4112
4113 switch (opcode) {
4114 case 0: /* RBIT */
4115 handle_rbit(s, sf, rn, rd);
4116 break;
4117 case 1: /* REV16 */
4118 handle_rev16(s, sf, rn, rd);
4119 break;
4120 case 2: /* REV32 */
4121 handle_rev32(s, sf, rn, rd);
4122 break;
4123 case 3: /* REV64 */
4124 handle_rev64(s, sf, rn, rd);
4125 break;
4126 case 4: /* CLZ */
4127 handle_clz(s, sf, rn, rd);
4128 break;
4129 case 5: /* CLS */
4130 handle_cls(s, sf, rn, rd);
4131 break;
4132 }
4133 }
4134
4135 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
4136 unsigned int rm, unsigned int rn, unsigned int rd)
4137 {
4138 TCGv_i64 tcg_n, tcg_m, tcg_rd;
4139 tcg_rd = cpu_reg(s, rd);
4140
4141 if (!sf && is_signed) {
4142 tcg_n = new_tmp_a64(s);
4143 tcg_m = new_tmp_a64(s);
4144 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
4145 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
4146 } else {
4147 tcg_n = read_cpu_reg(s, rn, sf);
4148 tcg_m = read_cpu_reg(s, rm, sf);
4149 }
4150
4151 if (is_signed) {
4152 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
4153 } else {
4154 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
4155 }
4156
4157 if (!sf) { /* zero extend final result */
4158 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4159 }
4160 }
4161
4162 /* LSLV, LSRV, ASRV, RORV */
4163 static void handle_shift_reg(DisasContext *s,
4164 enum a64_shift_type shift_type, unsigned int sf,
4165 unsigned int rm, unsigned int rn, unsigned int rd)
4166 {
4167 TCGv_i64 tcg_shift = tcg_temp_new_i64();
4168 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4169 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4170
4171 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
4172 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
4173 tcg_temp_free_i64(tcg_shift);
4174 }
4175
4176 /* CRC32[BHWX], CRC32C[BHWX] */
4177 static void handle_crc32(DisasContext *s,
4178 unsigned int sf, unsigned int sz, bool crc32c,
4179 unsigned int rm, unsigned int rn, unsigned int rd)
4180 {
4181 TCGv_i64 tcg_acc, tcg_val;
4182 TCGv_i32 tcg_bytes;
4183
4184 if (!arm_dc_feature(s, ARM_FEATURE_CRC)
4185 || (sf == 1 && sz != 3)
4186 || (sf == 0 && sz == 3)) {
4187 unallocated_encoding(s);
4188 return;
4189 }
4190
4191 if (sz == 3) {
4192 tcg_val = cpu_reg(s, rm);
4193 } else {
4194 uint64_t mask;
4195 switch (sz) {
4196 case 0:
4197 mask = 0xFF;
4198 break;
4199 case 1:
4200 mask = 0xFFFF;
4201 break;
4202 case 2:
4203 mask = 0xFFFFFFFF;
4204 break;
4205 default:
4206 g_assert_not_reached();
4207 }
4208 tcg_val = new_tmp_a64(s);
4209 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
4210 }
4211
4212 tcg_acc = cpu_reg(s, rn);
4213 tcg_bytes = tcg_const_i32(1 << sz);
4214
4215 if (crc32c) {
4216 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4217 } else {
4218 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4219 }
4220
4221 tcg_temp_free_i32(tcg_bytes);
4222 }
4223
4224 /* Data-processing (2 source)
4225 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4226 * +----+---+---+-----------------+------+--------+------+------+
4227 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
4228 * +----+---+---+-----------------+------+--------+------+------+
4229 */
4230 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
4231 {
4232 unsigned int sf, rm, opcode, rn, rd;
4233 sf = extract32(insn, 31, 1);
4234 rm = extract32(insn, 16, 5);
4235 opcode = extract32(insn, 10, 6);
4236 rn = extract32(insn, 5, 5);
4237 rd = extract32(insn, 0, 5);
4238
4239 if (extract32(insn, 29, 1)) {
4240 unallocated_encoding(s);
4241 return;
4242 }
4243
4244 switch (opcode) {
4245 case 2: /* UDIV */
4246 handle_div(s, false, sf, rm, rn, rd);
4247 break;
4248 case 3: /* SDIV */
4249 handle_div(s, true, sf, rm, rn, rd);
4250 break;
4251 case 8: /* LSLV */
4252 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
4253 break;
4254 case 9: /* LSRV */
4255 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
4256 break;
4257 case 10: /* ASRV */
4258 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
4259 break;
4260 case 11: /* RORV */
4261 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
4262 break;
4263 case 16:
4264 case 17:
4265 case 18:
4266 case 19:
4267 case 20:
4268 case 21:
4269 case 22:
4270 case 23: /* CRC32 */
4271 {
4272 int sz = extract32(opcode, 0, 2);
4273 bool crc32c = extract32(opcode, 2, 1);
4274 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
4275 break;
4276 }
4277 default:
4278 unallocated_encoding(s);
4279 break;
4280 }
4281 }
4282
4283 /* Data processing - register */
4284 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
4285 {
4286 switch (extract32(insn, 24, 5)) {
4287 case 0x0a: /* Logical (shifted register) */
4288 disas_logic_reg(s, insn);
4289 break;
4290 case 0x0b: /* Add/subtract */
4291 if (insn & (1 << 21)) { /* (extended register) */
4292 disas_add_sub_ext_reg(s, insn);
4293 } else {
4294 disas_add_sub_reg(s, insn);
4295 }
4296 break;
4297 case 0x1b: /* Data-processing (3 source) */
4298 disas_data_proc_3src(s, insn);
4299 break;
4300 case 0x1a:
4301 switch (extract32(insn, 21, 3)) {
4302 case 0x0: /* Add/subtract (with carry) */
4303 disas_adc_sbc(s, insn);
4304 break;
4305 case 0x2: /* Conditional compare */
4306 disas_cc(s, insn); /* both imm and reg forms */
4307 break;
4308 case 0x4: /* Conditional select */
4309 disas_cond_select(s, insn);
4310 break;
4311 case 0x6: /* Data-processing */
4312 if (insn & (1 << 30)) { /* (1 source) */
4313 disas_data_proc_1src(s, insn);
4314 } else { /* (2 source) */
4315 disas_data_proc_2src(s, insn);
4316 }
4317 break;
4318 default:
4319 unallocated_encoding(s);
4320 break;
4321 }
4322 break;
4323 default:
4324 unallocated_encoding(s);
4325 break;
4326 }
4327 }
4328
4329 static void handle_fp_compare(DisasContext *s, bool is_double,
4330 unsigned int rn, unsigned int rm,
4331 bool cmp_with_zero, bool signal_all_nans)
4332 {
4333 TCGv_i64 tcg_flags = tcg_temp_new_i64();
4334 TCGv_ptr fpst = get_fpstatus_ptr();
4335
4336 if (is_double) {
4337 TCGv_i64 tcg_vn, tcg_vm;
4338
4339 tcg_vn = read_fp_dreg(s, rn);
4340 if (cmp_with_zero) {
4341 tcg_vm = tcg_const_i64(0);
4342 } else {
4343 tcg_vm = read_fp_dreg(s, rm);
4344 }
4345 if (signal_all_nans) {
4346 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4347 } else {
4348 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4349 }
4350 tcg_temp_free_i64(tcg_vn);
4351 tcg_temp_free_i64(tcg_vm);
4352 } else {
4353 TCGv_i32 tcg_vn, tcg_vm;
4354
4355 tcg_vn = read_fp_sreg(s, rn);
4356 if (cmp_with_zero) {
4357 tcg_vm = tcg_const_i32(0);
4358 } else {
4359 tcg_vm = read_fp_sreg(s, rm);
4360 }
4361 if (signal_all_nans) {
4362 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4363 } else {
4364 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4365 }
4366 tcg_temp_free_i32(tcg_vn);
4367 tcg_temp_free_i32(tcg_vm);
4368 }
4369
4370 tcg_temp_free_ptr(fpst);
4371
4372 gen_set_nzcv(tcg_flags);
4373
4374 tcg_temp_free_i64(tcg_flags);
4375 }
4376
4377 /* Floating point compare
4378 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
4379 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4380 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
4381 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4382 */
4383 static void disas_fp_compare(DisasContext *s, uint32_t insn)
4384 {
4385 unsigned int mos, type, rm, op, rn, opc, op2r;
4386
4387 mos = extract32(insn, 29, 3);
4388 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4389 rm = extract32(insn, 16, 5);
4390 op = extract32(insn, 14, 2);
4391 rn = extract32(insn, 5, 5);
4392 opc = extract32(insn, 3, 2);
4393 op2r = extract32(insn, 0, 3);
4394
4395 if (mos || op || op2r || type > 1) {
4396 unallocated_encoding(s);
4397 return;
4398 }
4399
4400 if (!fp_access_check(s)) {
4401 return;
4402 }
4403
4404 handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2);
4405 }
4406
4407 /* Floating point conditional compare
4408 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4409 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4410 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
4411 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4412 */
4413 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
4414 {
4415 unsigned int mos, type, rm, cond, rn, op, nzcv;
4416 TCGv_i64 tcg_flags;
4417 TCGLabel *label_continue = NULL;
4418
4419 mos = extract32(insn, 29, 3);
4420 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4421 rm = extract32(insn, 16, 5);
4422 cond = extract32(insn, 12, 4);
4423 rn = extract32(insn, 5, 5);
4424 op = extract32(insn, 4, 1);
4425 nzcv = extract32(insn, 0, 4);
4426
4427 if (mos || type > 1) {
4428 unallocated_encoding(s);
4429 return;
4430 }
4431
4432 if (!fp_access_check(s)) {
4433 return;
4434 }
4435
4436 if (cond < 0x0e) { /* not always */
4437 TCGLabel *label_match = gen_new_label();
4438 label_continue = gen_new_label();
4439 arm_gen_test_cc(cond, label_match);
4440 /* nomatch: */
4441 tcg_flags = tcg_const_i64(nzcv << 28);
4442 gen_set_nzcv(tcg_flags);
4443 tcg_temp_free_i64(tcg_flags);
4444 tcg_gen_br(label_continue);
4445 gen_set_label(label_match);
4446 }
4447
4448 handle_fp_compare(s, type, rn, rm, false, op);
4449
4450 if (cond < 0x0e) {
4451 gen_set_label(label_continue);
4452 }
4453 }
4454
4455 /* Floating point conditional select
4456 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4457 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4458 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
4459 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4460 */
4461 static void disas_fp_csel(DisasContext *s, uint32_t insn)
4462 {
4463 unsigned int mos, type, rm, cond, rn, rd;
4464 TCGv_i64 t_true, t_false, t_zero;
4465 DisasCompare64 c;
4466
4467 mos = extract32(insn, 29, 3);
4468 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4469 rm = extract32(insn, 16, 5);
4470 cond = extract32(insn, 12, 4);
4471 rn = extract32(insn, 5, 5);
4472 rd = extract32(insn, 0, 5);
4473
4474 if (mos || type > 1) {
4475 unallocated_encoding(s);
4476 return;
4477 }
4478
4479 if (!fp_access_check(s)) {
4480 return;
4481 }
4482
4483 /* Zero extend sreg inputs to 64 bits now. */
4484 t_true = tcg_temp_new_i64();
4485 t_false = tcg_temp_new_i64();
4486 read_vec_element(s, t_true, rn, 0, type ? MO_64 : MO_32);
4487 read_vec_element(s, t_false, rm, 0, type ? MO_64 : MO_32);
4488
4489 a64_test_cc(&c, cond);
4490 t_zero = tcg_const_i64(0);
4491 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
4492 tcg_temp_free_i64(t_zero);
4493 tcg_temp_free_i64(t_false);
4494 a64_free_cc(&c);
4495
4496 /* Note that sregs write back zeros to the high bits,
4497 and we've already done the zero-extension. */
4498 write_fp_dreg(s, rd, t_true);
4499 tcg_temp_free_i64(t_true);
4500 }
4501
4502 /* Floating-point data-processing (1 source) - single precision */
4503 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
4504 {
4505 TCGv_ptr fpst;
4506 TCGv_i32 tcg_op;
4507 TCGv_i32 tcg_res;
4508
4509 fpst = get_fpstatus_ptr();
4510 tcg_op = read_fp_sreg(s, rn);
4511 tcg_res = tcg_temp_new_i32();
4512
4513 switch (opcode) {
4514 case 0x0: /* FMOV */
4515 tcg_gen_mov_i32(tcg_res, tcg_op);
4516 break;
4517 case 0x1: /* FABS */
4518 gen_helper_vfp_abss(tcg_res, tcg_op);
4519 break;
4520 case 0x2: /* FNEG */
4521 gen_helper_vfp_negs(tcg_res, tcg_op);
4522 break;
4523 case 0x3: /* FSQRT */
4524 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
4525 break;
4526 case 0x8: /* FRINTN */
4527 case 0x9: /* FRINTP */
4528 case 0xa: /* FRINTM */
4529 case 0xb: /* FRINTZ */
4530 case 0xc: /* FRINTA */
4531 {
4532 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4533
4534 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4535 gen_helper_rints(tcg_res, tcg_op, fpst);
4536
4537 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4538 tcg_temp_free_i32(tcg_rmode);
4539 break;
4540 }
4541 case 0xe: /* FRINTX */
4542 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
4543 break;
4544 case 0xf: /* FRINTI */
4545 gen_helper_rints(tcg_res, tcg_op, fpst);
4546 break;
4547 default:
4548 abort();
4549 }
4550
4551 write_fp_sreg(s, rd, tcg_res);
4552
4553 tcg_temp_free_ptr(fpst);
4554 tcg_temp_free_i32(tcg_op);
4555 tcg_temp_free_i32(tcg_res);
4556 }
4557
4558 /* Floating-point data-processing (1 source) - double precision */
4559 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
4560 {
4561 TCGv_ptr fpst;
4562 TCGv_i64 tcg_op;
4563 TCGv_i64 tcg_res;
4564
4565 fpst = get_fpstatus_ptr();
4566 tcg_op = read_fp_dreg(s, rn);
4567 tcg_res = tcg_temp_new_i64();
4568
4569 switch (opcode) {
4570 case 0x0: /* FMOV */
4571 tcg_gen_mov_i64(tcg_res, tcg_op);
4572 break;
4573 case 0x1: /* FABS */
4574 gen_helper_vfp_absd(tcg_res, tcg_op);
4575 break;
4576 case 0x2: /* FNEG */
4577 gen_helper_vfp_negd(tcg_res, tcg_op);
4578 break;
4579 case 0x3: /* FSQRT */
4580 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
4581 break;
4582 case 0x8: /* FRINTN */
4583 case 0x9: /* FRINTP */
4584 case 0xa: /* FRINTM */
4585 case 0xb: /* FRINTZ */
4586 case 0xc: /* FRINTA */
4587 {
4588 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4589
4590 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4591 gen_helper_rintd(tcg_res, tcg_op, fpst);
4592
4593 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4594 tcg_temp_free_i32(tcg_rmode);
4595 break;
4596 }
4597 case 0xe: /* FRINTX */
4598 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
4599 break;
4600 case 0xf: /* FRINTI */
4601 gen_helper_rintd(tcg_res, tcg_op, fpst);
4602 break;
4603 default:
4604 abort();
4605 }
4606
4607 write_fp_dreg(s, rd, tcg_res);
4608
4609 tcg_temp_free_ptr(fpst);
4610 tcg_temp_free_i64(tcg_op);
4611 tcg_temp_free_i64(tcg_res);
4612 }
4613
4614 static void handle_fp_fcvt(DisasContext *s, int opcode,
4615 int rd, int rn, int dtype, int ntype)
4616 {
4617 switch (ntype) {
4618 case 0x0:
4619 {
4620 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4621 if (dtype == 1) {
4622 /* Single to double */
4623 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4624 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
4625 write_fp_dreg(s, rd, tcg_rd);
4626 tcg_temp_free_i64(tcg_rd);
4627 } else {
4628 /* Single to half */
4629 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4630 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env);
4631 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4632 write_fp_sreg(s, rd, tcg_rd);
4633 tcg_temp_free_i32(tcg_rd);
4634 }
4635 tcg_temp_free_i32(tcg_rn);
4636 break;
4637 }
4638 case 0x1:
4639 {
4640 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
4641 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4642 if (dtype == 0) {
4643 /* Double to single */
4644 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
4645 } else {
4646 /* Double to half */
4647 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env);
4648 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4649 }
4650 write_fp_sreg(s, rd, tcg_rd);
4651 tcg_temp_free_i32(tcg_rd);
4652 tcg_temp_free_i64(tcg_rn);
4653 break;
4654 }
4655 case 0x3:
4656 {
4657 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4658 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
4659 if (dtype == 0) {
4660 /* Half to single */
4661 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4662 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env);
4663 write_fp_sreg(s, rd, tcg_rd);
4664 tcg_temp_free_i32(tcg_rd);
4665 } else {
4666 /* Half to double */
4667 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4668 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env);
4669 write_fp_dreg(s, rd, tcg_rd);
4670 tcg_temp_free_i64(tcg_rd);
4671 }
4672 tcg_temp_free_i32(tcg_rn);
4673 break;
4674 }
4675 default:
4676 abort();
4677 }
4678 }
4679
4680 /* Floating point data-processing (1 source)
4681 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
4682 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4683 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
4684 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4685 */
4686 static void disas_fp_1src(DisasContext *s, uint32_t insn)
4687 {
4688 int type = extract32(insn, 22, 2);
4689 int opcode = extract32(insn, 15, 6);
4690 int rn = extract32(insn, 5, 5);
4691 int rd = extract32(insn, 0, 5);
4692
4693 switch (opcode) {
4694 case 0x4: case 0x5: case 0x7:
4695 {
4696 /* FCVT between half, single and double precision */
4697 int dtype = extract32(opcode, 0, 2);
4698 if (type == 2 || dtype == type) {
4699 unallocated_encoding(s);
4700 return;
4701 }
4702 if (!fp_access_check(s)) {
4703 return;
4704 }
4705
4706 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
4707 break;
4708 }
4709 case 0x0 ... 0x3:
4710 case 0x8 ... 0xc:
4711 case 0xe ... 0xf:
4712 /* 32-to-32 and 64-to-64 ops */
4713 switch (type) {
4714 case 0:
4715 if (!fp_access_check(s)) {
4716 return;
4717 }
4718
4719 handle_fp_1src_single(s, opcode, rd, rn);
4720 break;
4721 case 1:
4722 if (!fp_access_check(s)) {
4723 return;
4724 }
4725
4726 handle_fp_1src_double(s, opcode, rd, rn);
4727 break;
4728 default:
4729 unallocated_encoding(s);
4730 }
4731 break;
4732 default:
4733 unallocated_encoding(s);
4734 break;
4735 }
4736 }
4737
4738 /* Floating-point data-processing (2 source) - single precision */
4739 static void handle_fp_2src_single(DisasContext *s, int opcode,
4740 int rd, int rn, int rm)
4741 {
4742 TCGv_i32 tcg_op1;
4743 TCGv_i32 tcg_op2;
4744 TCGv_i32 tcg_res;
4745 TCGv_ptr fpst;
4746
4747 tcg_res = tcg_temp_new_i32();
4748 fpst = get_fpstatus_ptr();
4749 tcg_op1 = read_fp_sreg(s, rn);
4750 tcg_op2 = read_fp_sreg(s, rm);
4751
4752 switch (opcode) {
4753 case 0x0: /* FMUL */
4754 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4755 break;
4756 case 0x1: /* FDIV */
4757 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
4758 break;
4759 case 0x2: /* FADD */
4760 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
4761 break;
4762 case 0x3: /* FSUB */
4763 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
4764 break;
4765 case 0x4: /* FMAX */
4766 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
4767 break;
4768 case 0x5: /* FMIN */
4769 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
4770 break;
4771 case 0x6: /* FMAXNM */
4772 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
4773 break;
4774 case 0x7: /* FMINNM */
4775 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
4776 break;
4777 case 0x8: /* FNMUL */
4778 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4779 gen_helper_vfp_negs(tcg_res, tcg_res);
4780 break;
4781 }
4782
4783 write_fp_sreg(s, rd, tcg_res);
4784
4785 tcg_temp_free_ptr(fpst);
4786 tcg_temp_free_i32(tcg_op1);
4787 tcg_temp_free_i32(tcg_op2);
4788 tcg_temp_free_i32(tcg_res);
4789 }
4790
4791 /* Floating-point data-processing (2 source) - double precision */
4792 static void handle_fp_2src_double(DisasContext *s, int opcode,
4793 int rd, int rn, int rm)
4794 {
4795 TCGv_i64 tcg_op1;
4796 TCGv_i64 tcg_op2;
4797 TCGv_i64 tcg_res;
4798 TCGv_ptr fpst;
4799
4800 tcg_res = tcg_temp_new_i64();
4801 fpst = get_fpstatus_ptr();
4802 tcg_op1 = read_fp_dreg(s, rn);
4803 tcg_op2 = read_fp_dreg(s, rm);
4804
4805 switch (opcode) {
4806 case 0x0: /* FMUL */
4807 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4808 break;
4809 case 0x1: /* FDIV */
4810 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
4811 break;
4812 case 0x2: /* FADD */
4813 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
4814 break;
4815 case 0x3: /* FSUB */
4816 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
4817 break;
4818 case 0x4: /* FMAX */
4819 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
4820 break;
4821 case 0x5: /* FMIN */
4822 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
4823 break;
4824 case 0x6: /* FMAXNM */
4825 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4826 break;
4827 case 0x7: /* FMINNM */
4828 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4829 break;
4830 case 0x8: /* FNMUL */
4831 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4832 gen_helper_vfp_negd(tcg_res, tcg_res);
4833 break;
4834 }
4835
4836 write_fp_dreg(s, rd, tcg_res);
4837
4838 tcg_temp_free_ptr(fpst);
4839 tcg_temp_free_i64(tcg_op1);
4840 tcg_temp_free_i64(tcg_op2);
4841 tcg_temp_free_i64(tcg_res);
4842 }
4843
4844 /* Floating point data-processing (2 source)
4845 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4846 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4847 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
4848 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4849 */
4850 static void disas_fp_2src(DisasContext *s, uint32_t insn)
4851 {
4852 int type = extract32(insn, 22, 2);
4853 int rd = extract32(insn, 0, 5);
4854 int rn = extract32(insn, 5, 5);
4855 int rm = extract32(insn, 16, 5);
4856 int opcode = extract32(insn, 12, 4);
4857
4858 if (opcode > 8) {
4859 unallocated_encoding(s);
4860 return;
4861 }
4862
4863 switch (type) {
4864 case 0:
4865 if (!fp_access_check(s)) {
4866 return;
4867 }
4868 handle_fp_2src_single(s, opcode, rd, rn, rm);
4869 break;
4870 case 1:
4871 if (!fp_access_check(s)) {
4872 return;
4873 }
4874 handle_fp_2src_double(s, opcode, rd, rn, rm);
4875 break;
4876 default:
4877 unallocated_encoding(s);
4878 }
4879 }
4880
4881 /* Floating-point data-processing (3 source) - single precision */
4882 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
4883 int rd, int rn, int rm, int ra)
4884 {
4885 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
4886 TCGv_i32 tcg_res = tcg_temp_new_i32();
4887 TCGv_ptr fpst = get_fpstatus_ptr();
4888
4889 tcg_op1 = read_fp_sreg(s, rn);
4890 tcg_op2 = read_fp_sreg(s, rm);
4891 tcg_op3 = read_fp_sreg(s, ra);
4892
4893 /* These are fused multiply-add, and must be done as one
4894 * floating point operation with no rounding between the
4895 * multiplication and addition steps.
4896 * NB that doing the negations here as separate steps is
4897 * correct : an input NaN should come out with its sign bit
4898 * flipped if it is a negated-input.
4899 */
4900 if (o1 == true) {
4901 gen_helper_vfp_negs(tcg_op3, tcg_op3);
4902 }
4903
4904 if (o0 != o1) {
4905 gen_helper_vfp_negs(tcg_op1, tcg_op1);
4906 }
4907
4908 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4909
4910 write_fp_sreg(s, rd, tcg_res);
4911
4912 tcg_temp_free_ptr(fpst);
4913 tcg_temp_free_i32(tcg_op1);
4914 tcg_temp_free_i32(tcg_op2);
4915 tcg_temp_free_i32(tcg_op3);
4916 tcg_temp_free_i32(tcg_res);
4917 }
4918
4919 /* Floating-point data-processing (3 source) - double precision */
4920 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
4921 int rd, int rn, int rm, int ra)
4922 {
4923 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
4924 TCGv_i64 tcg_res = tcg_temp_new_i64();
4925 TCGv_ptr fpst = get_fpstatus_ptr();
4926
4927 tcg_op1 = read_fp_dreg(s, rn);
4928 tcg_op2 = read_fp_dreg(s, rm);
4929 tcg_op3 = read_fp_dreg(s, ra);
4930
4931 /* These are fused multiply-add, and must be done as one
4932 * floating point operation with no rounding between the
4933 * multiplication and addition steps.
4934 * NB that doing the negations here as separate steps is
4935 * correct : an input NaN should come out with its sign bit
4936 * flipped if it is a negated-input.
4937 */
4938 if (o1 == true) {
4939 gen_helper_vfp_negd(tcg_op3, tcg_op3);
4940 }
4941
4942 if (o0 != o1) {
4943 gen_helper_vfp_negd(tcg_op1, tcg_op1);
4944 }
4945
4946 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4947
4948 write_fp_dreg(s, rd, tcg_res);
4949
4950 tcg_temp_free_ptr(fpst);
4951 tcg_temp_free_i64(tcg_op1);
4952 tcg_temp_free_i64(tcg_op2);
4953 tcg_temp_free_i64(tcg_op3);
4954 tcg_temp_free_i64(tcg_res);
4955 }
4956
4957 /* Floating point data-processing (3 source)
4958 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
4959 * +---+---+---+-----------+------+----+------+----+------+------+------+
4960 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
4961 * +---+---+---+-----------+------+----+------+----+------+------+------+
4962 */
4963 static void disas_fp_3src(DisasContext *s, uint32_t insn)
4964 {
4965 int type = extract32(insn, 22, 2);
4966 int rd = extract32(insn, 0, 5);
4967 int rn = extract32(insn, 5, 5);
4968 int ra = extract32(insn, 10, 5);
4969 int rm = extract32(insn, 16, 5);
4970 bool o0 = extract32(insn, 15, 1);
4971 bool o1 = extract32(insn, 21, 1);
4972
4973 switch (type) {
4974 case 0:
4975 if (!fp_access_check(s)) {
4976 return;
4977 }
4978 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
4979 break;
4980 case 1:
4981 if (!fp_access_check(s)) {
4982 return;
4983 }
4984 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
4985 break;
4986 default:
4987 unallocated_encoding(s);
4988 }
4989 }
4990
4991 /* Floating point immediate
4992 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
4993 * +---+---+---+-----------+------+---+------------+-------+------+------+
4994 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
4995 * +---+---+---+-----------+------+---+------------+-------+------+------+
4996 */
4997 static void disas_fp_imm(DisasContext *s, uint32_t insn)
4998 {
4999 int rd = extract32(insn, 0, 5);
5000 int imm8 = extract32(insn, 13, 8);
5001 int is_double = extract32(insn, 22, 2);
5002 uint64_t imm;
5003 TCGv_i64 tcg_res;
5004
5005 if (is_double > 1) {
5006 unallocated_encoding(s);
5007 return;
5008 }
5009
5010 if (!fp_access_check(s)) {
5011 return;
5012 }
5013
5014 /* The imm8 encodes the sign bit, enough bits to represent
5015 * an exponent in the range 01....1xx to 10....0xx,
5016 * and the most significant 4 bits of the mantissa; see
5017 * VFPExpandImm() in the v8 ARM ARM.
5018 */
5019 if (is_double) {
5020 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5021 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
5022 extract32(imm8, 0, 6);
5023 imm <<= 48;
5024 } else {
5025 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5026 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
5027 (extract32(imm8, 0, 6) << 3);
5028 imm <<= 16;
5029 }
5030
5031 tcg_res = tcg_const_i64(imm);
5032 write_fp_dreg(s, rd, tcg_res);
5033 tcg_temp_free_i64(tcg_res);
5034 }
5035
5036 /* Handle floating point <=> fixed point conversions. Note that we can
5037 * also deal with fp <=> integer conversions as a special case (scale == 64)
5038 * OPTME: consider handling that special case specially or at least skipping
5039 * the call to scalbn in the helpers for zero shifts.
5040 */
5041 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
5042 bool itof, int rmode, int scale, int sf, int type)
5043 {
5044 bool is_signed = !(opcode & 1);
5045 bool is_double = type;
5046 TCGv_ptr tcg_fpstatus;
5047 TCGv_i32 tcg_shift;
5048
5049 tcg_fpstatus = get_fpstatus_ptr();
5050
5051 tcg_shift = tcg_const_i32(64 - scale);
5052
5053 if (itof) {
5054 TCGv_i64 tcg_int = cpu_reg(s, rn);
5055 if (!sf) {
5056 TCGv_i64 tcg_extend = new_tmp_a64(s);
5057
5058 if (is_signed) {
5059 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
5060 } else {
5061 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
5062 }
5063
5064 tcg_int = tcg_extend;
5065 }
5066
5067 if (is_double) {
5068 TCGv_i64 tcg_double = tcg_temp_new_i64();
5069 if (is_signed) {
5070 gen_helper_vfp_sqtod(tcg_double, tcg_int,
5071 tcg_shift, tcg_fpstatus);
5072 } else {
5073 gen_helper_vfp_uqtod(tcg_double, tcg_int,
5074 tcg_shift, tcg_fpstatus);
5075 }
5076 write_fp_dreg(s, rd, tcg_double);
5077 tcg_temp_free_i64(tcg_double);
5078 } else {
5079 TCGv_i32 tcg_single = tcg_temp_new_i32();
5080 if (is_signed) {
5081 gen_helper_vfp_sqtos(tcg_single, tcg_int,
5082 tcg_shift, tcg_fpstatus);
5083 } else {
5084 gen_helper_vfp_uqtos(tcg_single, tcg_int,
5085 tcg_shift, tcg_fpstatus);
5086 }
5087 write_fp_sreg(s, rd, tcg_single);
5088 tcg_temp_free_i32(tcg_single);
5089 }
5090 } else {
5091 TCGv_i64 tcg_int = cpu_reg(s, rd);
5092 TCGv_i32 tcg_rmode;
5093
5094 if (extract32(opcode, 2, 1)) {
5095 /* There are too many rounding modes to all fit into rmode,
5096 * so FCVTA[US] is a special case.
5097 */
5098 rmode = FPROUNDING_TIEAWAY;
5099 }
5100
5101 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
5102
5103 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
5104
5105 if (is_double) {
5106 TCGv_i64 tcg_double = read_fp_dreg(s, rn);
5107 if (is_signed) {
5108 if (!sf) {
5109 gen_helper_vfp_tosld(tcg_int, tcg_double,
5110 tcg_shift, tcg_fpstatus);
5111 } else {
5112 gen_helper_vfp_tosqd(tcg_int, tcg_double,
5113 tcg_shift, tcg_fpstatus);
5114 }
5115 } else {
5116 if (!sf) {
5117 gen_helper_vfp_tould(tcg_int, tcg_double,
5118 tcg_shift, tcg_fpstatus);
5119 } else {
5120 gen_helper_vfp_touqd(tcg_int, tcg_double,
5121 tcg_shift, tcg_fpstatus);
5122 }
5123 }
5124 tcg_temp_free_i64(tcg_double);
5125 } else {
5126 TCGv_i32 tcg_single = read_fp_sreg(s, rn);
5127 if (sf) {
5128 if (is_signed) {
5129 gen_helper_vfp_tosqs(tcg_int, tcg_single,
5130 tcg_shift, tcg_fpstatus);
5131 } else {
5132 gen_helper_vfp_touqs(tcg_int, tcg_single,
5133 tcg_shift, tcg_fpstatus);
5134 }
5135 } else {
5136 TCGv_i32 tcg_dest = tcg_temp_new_i32();
5137 if (is_signed) {
5138 gen_helper_vfp_tosls(tcg_dest, tcg_single,
5139 tcg_shift, tcg_fpstatus);
5140 } else {
5141 gen_helper_vfp_touls(tcg_dest, tcg_single,
5142 tcg_shift, tcg_fpstatus);
5143 }
5144 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
5145 tcg_temp_free_i32(tcg_dest);
5146 }
5147 tcg_temp_free_i32(tcg_single);
5148 }
5149
5150 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
5151 tcg_temp_free_i32(tcg_rmode);
5152
5153 if (!sf) {
5154 tcg_gen_ext32u_i64(tcg_int, tcg_int);
5155 }
5156 }
5157
5158 tcg_temp_free_ptr(tcg_fpstatus);
5159 tcg_temp_free_i32(tcg_shift);
5160 }
5161
5162 /* Floating point <-> fixed point conversions
5163 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5164 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5165 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
5166 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5167 */
5168 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
5169 {
5170 int rd = extract32(insn, 0, 5);
5171 int rn = extract32(insn, 5, 5);
5172 int scale = extract32(insn, 10, 6);
5173 int opcode = extract32(insn, 16, 3);
5174 int rmode = extract32(insn, 19, 2);
5175 int type = extract32(insn, 22, 2);
5176 bool sbit = extract32(insn, 29, 1);
5177 bool sf = extract32(insn, 31, 1);
5178 bool itof;
5179
5180 if (sbit || (type > 1)
5181 || (!sf && scale < 32)) {
5182 unallocated_encoding(s);
5183 return;
5184 }
5185
5186 switch ((rmode << 3) | opcode) {
5187 case 0x2: /* SCVTF */
5188 case 0x3: /* UCVTF */
5189 itof = true;
5190 break;
5191 case 0x18: /* FCVTZS */
5192 case 0x19: /* FCVTZU */
5193 itof = false;
5194 break;
5195 default:
5196 unallocated_encoding(s);
5197 return;
5198 }
5199
5200 if (!fp_access_check(s)) {
5201 return;
5202 }
5203
5204 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
5205 }
5206
5207 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
5208 {
5209 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
5210 * without conversion.
5211 */
5212
5213 if (itof) {
5214 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5215
5216 switch (type) {
5217 case 0:
5218 {
5219 /* 32 bit */
5220 TCGv_i64 tmp = tcg_temp_new_i64();
5221 tcg_gen_ext32u_i64(tmp, tcg_rn);
5222 tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(s, rd, MO_64));
5223 tcg_gen_movi_i64(tmp, 0);
5224 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5225 tcg_temp_free_i64(tmp);
5226 break;
5227 }
5228 case 1:
5229 {
5230 /* 64 bit */
5231 TCGv_i64 tmp = tcg_const_i64(0);
5232 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(s, rd, MO_64));
5233 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5234 tcg_temp_free_i64(tmp);
5235 break;
5236 }
5237 case 2:
5238 /* 64 bit to top half. */
5239 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
5240 break;
5241 }
5242 } else {
5243 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5244
5245 switch (type) {
5246 case 0:
5247 /* 32 bit */
5248 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
5249 break;
5250 case 1:
5251 /* 64 bit */
5252 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
5253 break;
5254 case 2:
5255 /* 64 bits from top half */
5256 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
5257 break;
5258 }
5259 }
5260 }
5261
5262 /* Floating point <-> integer conversions
5263 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5264 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5265 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
5266 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5267 */
5268 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
5269 {
5270 int rd = extract32(insn, 0, 5);
5271 int rn = extract32(insn, 5, 5);
5272 int opcode = extract32(insn, 16, 3);
5273 int rmode = extract32(insn, 19, 2);
5274 int type = extract32(insn, 22, 2);
5275 bool sbit = extract32(insn, 29, 1);
5276 bool sf = extract32(insn, 31, 1);
5277
5278 if (sbit) {
5279 unallocated_encoding(s);
5280 return;
5281 }
5282
5283 if (opcode > 5) {
5284 /* FMOV */
5285 bool itof = opcode & 1;
5286
5287 if (rmode >= 2) {
5288 unallocated_encoding(s);
5289 return;
5290 }
5291
5292 switch (sf << 3 | type << 1 | rmode) {
5293 case 0x0: /* 32 bit */
5294 case 0xa: /* 64 bit */
5295 case 0xd: /* 64 bit to top half of quad */
5296 break;
5297 default:
5298 /* all other sf/type/rmode combinations are invalid */
5299 unallocated_encoding(s);
5300 break;
5301 }
5302
5303 if (!fp_access_check(s)) {
5304 return;
5305 }
5306 handle_fmov(s, rd, rn, type, itof);
5307 } else {
5308 /* actual FP conversions */
5309 bool itof = extract32(opcode, 1, 1);
5310
5311 if (type > 1 || (rmode != 0 && opcode > 1)) {
5312 unallocated_encoding(s);
5313 return;
5314 }
5315
5316 if (!fp_access_check(s)) {
5317 return;
5318 }
5319 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
5320 }
5321 }
5322
5323 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
5324 * 31 30 29 28 25 24 0
5325 * +---+---+---+---------+-----------------------------+
5326 * | | 0 | | 1 1 1 1 | |
5327 * +---+---+---+---------+-----------------------------+
5328 */
5329 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
5330 {
5331 if (extract32(insn, 24, 1)) {
5332 /* Floating point data-processing (3 source) */
5333 disas_fp_3src(s, insn);
5334 } else if (extract32(insn, 21, 1) == 0) {
5335 /* Floating point to fixed point conversions */
5336 disas_fp_fixed_conv(s, insn);
5337 } else {
5338 switch (extract32(insn, 10, 2)) {
5339 case 1:
5340 /* Floating point conditional compare */
5341 disas_fp_ccomp(s, insn);
5342 break;
5343 case 2:
5344 /* Floating point data-processing (2 source) */
5345 disas_fp_2src(s, insn);
5346 break;
5347 case 3:
5348 /* Floating point conditional select */
5349 disas_fp_csel(s, insn);
5350 break;
5351 case 0:
5352 switch (ctz32(extract32(insn, 12, 4))) {
5353 case 0: /* [15:12] == xxx1 */
5354 /* Floating point immediate */
5355 disas_fp_imm(s, insn);
5356 break;
5357 case 1: /* [15:12] == xx10 */
5358 /* Floating point compare */
5359 disas_fp_compare(s, insn);
5360 break;
5361 case 2: /* [15:12] == x100 */
5362 /* Floating point data-processing (1 source) */
5363 disas_fp_1src(s, insn);
5364 break;
5365 case 3: /* [15:12] == 1000 */
5366 unallocated_encoding(s);
5367 break;
5368 default: /* [15:12] == 0000 */
5369 /* Floating point <-> integer conversions */
5370 disas_fp_int_conv(s, insn);
5371 break;
5372 }
5373 break;
5374 }
5375 }
5376 }
5377
5378 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
5379 int pos)
5380 {
5381 /* Extract 64 bits from the middle of two concatenated 64 bit
5382 * vector register slices left:right. The extracted bits start
5383 * at 'pos' bits into the right (least significant) side.
5384 * We return the result in tcg_right, and guarantee not to
5385 * trash tcg_left.
5386 */
5387 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5388 assert(pos > 0 && pos < 64);
5389
5390 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
5391 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
5392 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
5393
5394 tcg_temp_free_i64(tcg_tmp);
5395 }
5396
5397 /* EXT
5398 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
5399 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5400 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
5401 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5402 */
5403 static void disas_simd_ext(DisasContext *s, uint32_t insn)
5404 {
5405 int is_q = extract32(insn, 30, 1);
5406 int op2 = extract32(insn, 22, 2);
5407 int imm4 = extract32(insn, 11, 4);
5408 int rm = extract32(insn, 16, 5);
5409 int rn = extract32(insn, 5, 5);
5410 int rd = extract32(insn, 0, 5);
5411 int pos = imm4 << 3;
5412 TCGv_i64 tcg_resl, tcg_resh;
5413
5414 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
5415 unallocated_encoding(s);
5416 return;
5417 }
5418
5419 if (!fp_access_check(s)) {
5420 return;
5421 }
5422
5423 tcg_resh = tcg_temp_new_i64();
5424 tcg_resl = tcg_temp_new_i64();
5425
5426 /* Vd gets bits starting at pos bits into Vm:Vn. This is
5427 * either extracting 128 bits from a 128:128 concatenation, or
5428 * extracting 64 bits from a 64:64 concatenation.
5429 */
5430 if (!is_q) {
5431 read_vec_element(s, tcg_resl, rn, 0, MO_64);
5432 if (pos != 0) {
5433 read_vec_element(s, tcg_resh, rm, 0, MO_64);
5434 do_ext64(s, tcg_resh, tcg_resl, pos);
5435 }
5436 tcg_gen_movi_i64(tcg_resh, 0);
5437 } else {
5438 TCGv_i64 tcg_hh;
5439 typedef struct {
5440 int reg;
5441 int elt;
5442 } EltPosns;
5443 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
5444 EltPosns *elt = eltposns;
5445
5446 if (pos >= 64) {
5447 elt++;
5448 pos -= 64;
5449 }
5450
5451 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
5452 elt++;
5453 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
5454 elt++;
5455 if (pos != 0) {
5456 do_ext64(s, tcg_resh, tcg_resl, pos);
5457 tcg_hh = tcg_temp_new_i64();
5458 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
5459 do_ext64(s, tcg_hh, tcg_resh, pos);
5460 tcg_temp_free_i64(tcg_hh);
5461 }
5462 }
5463
5464 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5465 tcg_temp_free_i64(tcg_resl);
5466 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5467 tcg_temp_free_i64(tcg_resh);
5468 }
5469
5470 /* TBL/TBX
5471 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
5472 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5473 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
5474 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5475 */
5476 static void disas_simd_tb(DisasContext *s, uint32_t insn)
5477 {
5478 int op2 = extract32(insn, 22, 2);
5479 int is_q = extract32(insn, 30, 1);
5480 int rm = extract32(insn, 16, 5);
5481 int rn = extract32(insn, 5, 5);
5482 int rd = extract32(insn, 0, 5);
5483 int is_tblx = extract32(insn, 12, 1);
5484 int len = extract32(insn, 13, 2);
5485 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
5486 TCGv_i32 tcg_regno, tcg_numregs;
5487
5488 if (op2 != 0) {
5489 unallocated_encoding(s);
5490 return;
5491 }
5492
5493 if (!fp_access_check(s)) {
5494 return;
5495 }
5496
5497 /* This does a table lookup: for every byte element in the input
5498 * we index into a table formed from up to four vector registers,
5499 * and then the output is the result of the lookups. Our helper
5500 * function does the lookup operation for a single 64 bit part of
5501 * the input.
5502 */
5503 tcg_resl = tcg_temp_new_i64();
5504 tcg_resh = tcg_temp_new_i64();
5505
5506 if (is_tblx) {
5507 read_vec_element(s, tcg_resl, rd, 0, MO_64);
5508 } else {
5509 tcg_gen_movi_i64(tcg_resl, 0);
5510 }
5511 if (is_tblx && is_q) {
5512 read_vec_element(s, tcg_resh, rd, 1, MO_64);
5513 } else {
5514 tcg_gen_movi_i64(tcg_resh, 0);
5515 }
5516
5517 tcg_idx = tcg_temp_new_i64();
5518 tcg_regno = tcg_const_i32(rn);
5519 tcg_numregs = tcg_const_i32(len + 1);
5520 read_vec_element(s, tcg_idx, rm, 0, MO_64);
5521 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
5522 tcg_regno, tcg_numregs);
5523 if (is_q) {
5524 read_vec_element(s, tcg_idx, rm, 1, MO_64);
5525 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
5526 tcg_regno, tcg_numregs);
5527 }
5528 tcg_temp_free_i64(tcg_idx);
5529 tcg_temp_free_i32(tcg_regno);
5530 tcg_temp_free_i32(tcg_numregs);
5531
5532 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5533 tcg_temp_free_i64(tcg_resl);
5534 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5535 tcg_temp_free_i64(tcg_resh);
5536 }
5537
5538 /* ZIP/UZP/TRN
5539 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
5540 * +---+---+-------------+------+---+------+---+------------------+------+
5541 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
5542 * +---+---+-------------+------+---+------+---+------------------+------+
5543 */
5544 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
5545 {
5546 int rd = extract32(insn, 0, 5);
5547 int rn = extract32(insn, 5, 5);
5548 int rm = extract32(insn, 16, 5);
5549 int size = extract32(insn, 22, 2);
5550 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
5551 * bit 2 indicates 1 vs 2 variant of the insn.
5552 */
5553 int opcode = extract32(insn, 12, 2);
5554 bool part = extract32(insn, 14, 1);
5555 bool is_q = extract32(insn, 30, 1);
5556 int esize = 8 << size;
5557 int i, ofs;
5558 int datasize = is_q ? 128 : 64;
5559 int elements = datasize / esize;
5560 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
5561
5562 if (opcode == 0 || (size == 3 && !is_q)) {
5563 unallocated_encoding(s);
5564 return;
5565 }
5566
5567 if (!fp_access_check(s)) {
5568 return;
5569 }
5570
5571 tcg_resl = tcg_const_i64(0);
5572 tcg_resh = tcg_const_i64(0);
5573 tcg_res = tcg_temp_new_i64();
5574
5575 for (i = 0; i < elements; i++) {
5576 switch (opcode) {
5577 case 1: /* UZP1/2 */
5578 {
5579 int midpoint = elements / 2;
5580 if (i < midpoint) {
5581 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
5582 } else {
5583 read_vec_element(s, tcg_res, rm,
5584 2 * (i - midpoint) + part, size);
5585 }
5586 break;
5587 }
5588 case 2: /* TRN1/2 */
5589 if (i & 1) {
5590 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
5591 } else {
5592 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
5593 }
5594 break;
5595 case 3: /* ZIP1/2 */
5596 {
5597 int base = part * elements / 2;
5598 if (i & 1) {
5599 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
5600 } else {
5601 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
5602 }
5603 break;
5604 }
5605 default:
5606 g_assert_not_reached();
5607 }
5608
5609 ofs = i * esize;
5610 if (ofs < 64) {
5611 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
5612 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
5613 } else {
5614 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
5615 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
5616 }
5617 }
5618
5619 tcg_temp_free_i64(tcg_res);
5620
5621 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5622 tcg_temp_free_i64(tcg_resl);
5623 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5624 tcg_temp_free_i64(tcg_resh);
5625 }
5626
5627 static void do_minmaxop(DisasContext *s, TCGv_i32 tcg_elt1, TCGv_i32 tcg_elt2,
5628 int opc, bool is_min, TCGv_ptr fpst)
5629 {
5630 /* Helper function for disas_simd_across_lanes: do a single precision
5631 * min/max operation on the specified two inputs,
5632 * and return the result in tcg_elt1.
5633 */
5634 if (opc == 0xc) {
5635 if (is_min) {
5636 gen_helper_vfp_minnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5637 } else {
5638 gen_helper_vfp_maxnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5639 }
5640 } else {
5641 assert(opc == 0xf);
5642 if (is_min) {
5643 gen_helper_vfp_mins(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5644 } else {
5645 gen_helper_vfp_maxs(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5646 }
5647 }
5648 }
5649
5650 /* AdvSIMD across lanes
5651 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
5652 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5653 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
5654 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5655 */
5656 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
5657 {
5658 int rd = extract32(insn, 0, 5);
5659 int rn = extract32(insn, 5, 5);
5660 int size = extract32(insn, 22, 2);
5661 int opcode = extract32(insn, 12, 5);
5662 bool is_q = extract32(insn, 30, 1);
5663 bool is_u = extract32(insn, 29, 1);
5664 bool is_fp = false;
5665 bool is_min = false;
5666 int esize;
5667 int elements;
5668 int i;
5669 TCGv_i64 tcg_res, tcg_elt;
5670
5671 switch (opcode) {
5672 case 0x1b: /* ADDV */
5673 if (is_u) {
5674 unallocated_encoding(s);
5675 return;
5676 }
5677 /* fall through */
5678 case 0x3: /* SADDLV, UADDLV */
5679 case 0xa: /* SMAXV, UMAXV */
5680 case 0x1a: /* SMINV, UMINV */
5681 if (size == 3 || (size == 2 && !is_q)) {
5682 unallocated_encoding(s);
5683 return;
5684 }
5685 break;
5686 case 0xc: /* FMAXNMV, FMINNMV */
5687 case 0xf: /* FMAXV, FMINV */
5688 if (!is_u || !is_q || extract32(size, 0, 1)) {
5689 unallocated_encoding(s);
5690 return;
5691 }
5692 /* Bit 1 of size field encodes min vs max, and actual size is always
5693 * 32 bits: adjust the size variable so following code can rely on it
5694 */
5695 is_min = extract32(size, 1, 1);
5696 is_fp = true;
5697 size = 2;
5698 break;
5699 default:
5700 unallocated_encoding(s);
5701 return;
5702 }
5703
5704 if (!fp_access_check(s)) {
5705 return;
5706 }
5707
5708 esize = 8 << size;
5709 elements = (is_q ? 128 : 64) / esize;
5710
5711 tcg_res = tcg_temp_new_i64();
5712 tcg_elt = tcg_temp_new_i64();
5713
5714 /* These instructions operate across all lanes of a vector
5715 * to produce a single result. We can guarantee that a 64
5716 * bit intermediate is sufficient:
5717 * + for [US]ADDLV the maximum element size is 32 bits, and
5718 * the result type is 64 bits
5719 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
5720 * same as the element size, which is 32 bits at most
5721 * For the integer operations we can choose to work at 64
5722 * or 32 bits and truncate at the end; for simplicity
5723 * we use 64 bits always. The floating point
5724 * ops do require 32 bit intermediates, though.
5725 */
5726 if (!is_fp) {
5727 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
5728
5729 for (i = 1; i < elements; i++) {
5730 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
5731
5732 switch (opcode) {
5733 case 0x03: /* SADDLV / UADDLV */
5734 case 0x1b: /* ADDV */
5735 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
5736 break;
5737 case 0x0a: /* SMAXV / UMAXV */
5738 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
5739 tcg_res,
5740 tcg_res, tcg_elt, tcg_res, tcg_elt);
5741 break;
5742 case 0x1a: /* SMINV / UMINV */
5743 tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE,
5744 tcg_res,
5745 tcg_res, tcg_elt, tcg_res, tcg_elt);
5746 break;
5747 break;
5748 default:
5749 g_assert_not_reached();
5750 }
5751
5752 }
5753 } else {
5754 /* Floating point ops which work on 32 bit (single) intermediates.
5755 * Note that correct NaN propagation requires that we do these
5756 * operations in exactly the order specified by the pseudocode.
5757 */
5758 TCGv_i32 tcg_elt1 = tcg_temp_new_i32();
5759 TCGv_i32 tcg_elt2 = tcg_temp_new_i32();
5760 TCGv_i32 tcg_elt3 = tcg_temp_new_i32();
5761 TCGv_ptr fpst = get_fpstatus_ptr();
5762
5763 assert(esize == 32);
5764 assert(elements == 4);
5765
5766 read_vec_element(s, tcg_elt, rn, 0, MO_32);
5767 tcg_gen_extrl_i64_i32(tcg_elt1, tcg_elt);
5768 read_vec_element(s, tcg_elt, rn, 1, MO_32);
5769 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5770
5771 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5772
5773 read_vec_element(s, tcg_elt, rn, 2, MO_32);
5774 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5775 read_vec_element(s, tcg_elt, rn, 3, MO_32);
5776 tcg_gen_extrl_i64_i32(tcg_elt3, tcg_elt);
5777
5778 do_minmaxop(s, tcg_elt2, tcg_elt3, opcode, is_min, fpst);
5779
5780 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5781
5782 tcg_gen_extu_i32_i64(tcg_res, tcg_elt1);
5783 tcg_temp_free_i32(tcg_elt1);
5784 tcg_temp_free_i32(tcg_elt2);
5785 tcg_temp_free_i32(tcg_elt3);
5786 tcg_temp_free_ptr(fpst);
5787 }
5788
5789 tcg_temp_free_i64(tcg_elt);
5790
5791 /* Now truncate the result to the width required for the final output */
5792 if (opcode == 0x03) {
5793 /* SADDLV, UADDLV: result is 2*esize */
5794 size++;
5795 }
5796
5797 switch (size) {
5798 case 0:
5799 tcg_gen_ext8u_i64(tcg_res, tcg_res);
5800 break;
5801 case 1:
5802 tcg_gen_ext16u_i64(tcg_res, tcg_res);
5803 break;
5804 case 2:
5805 tcg_gen_ext32u_i64(tcg_res, tcg_res);
5806 break;
5807 case 3:
5808 break;
5809 default:
5810 g_assert_not_reached();
5811 }
5812
5813 write_fp_dreg(s, rd, tcg_res);
5814 tcg_temp_free_i64(tcg_res);
5815 }
5816
5817 /* DUP (Element, Vector)
5818 *
5819 * 31 30 29 21 20 16 15 10 9 5 4 0
5820 * +---+---+-------------------+--------+-------------+------+------+
5821 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5822 * +---+---+-------------------+--------+-------------+------+------+
5823 *
5824 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5825 */
5826 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
5827 int imm5)
5828 {
5829 int size = ctz32(imm5);
5830 int esize = 8 << size;
5831 int elements = (is_q ? 128 : 64) / esize;
5832 int index, i;
5833 TCGv_i64 tmp;
5834
5835 if (size > 3 || (size == 3 && !is_q)) {
5836 unallocated_encoding(s);
5837 return;
5838 }
5839
5840 if (!fp_access_check(s)) {
5841 return;
5842 }
5843
5844 index = imm5 >> (size + 1);
5845
5846 tmp = tcg_temp_new_i64();
5847 read_vec_element(s, tmp, rn, index, size);
5848
5849 for (i = 0; i < elements; i++) {
5850 write_vec_element(s, tmp, rd, i, size);
5851 }
5852
5853 if (!is_q) {
5854 clear_vec_high(s, rd);
5855 }
5856
5857 tcg_temp_free_i64(tmp);
5858 }
5859
5860 /* DUP (element, scalar)
5861 * 31 21 20 16 15 10 9 5 4 0
5862 * +-----------------------+--------+-------------+------+------+
5863 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5864 * +-----------------------+--------+-------------+------+------+
5865 */
5866 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
5867 int imm5)
5868 {
5869 int size = ctz32(imm5);
5870 int index;
5871 TCGv_i64 tmp;
5872
5873 if (size > 3) {
5874 unallocated_encoding(s);
5875 return;
5876 }
5877
5878 if (!fp_access_check(s)) {
5879 return;
5880 }
5881
5882 index = imm5 >> (size + 1);
5883
5884 /* This instruction just extracts the specified element and
5885 * zero-extends it into the bottom of the destination register.
5886 */
5887 tmp = tcg_temp_new_i64();
5888 read_vec_element(s, tmp, rn, index, size);
5889 write_fp_dreg(s, rd, tmp);
5890 tcg_temp_free_i64(tmp);
5891 }
5892
5893 /* DUP (General)
5894 *
5895 * 31 30 29 21 20 16 15 10 9 5 4 0
5896 * +---+---+-------------------+--------+-------------+------+------+
5897 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
5898 * +---+---+-------------------+--------+-------------+------+------+
5899 *
5900 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5901 */
5902 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
5903 int imm5)
5904 {
5905 int size = ctz32(imm5);
5906 int esize = 8 << size;
5907 int elements = (is_q ? 128 : 64)/esize;
5908 int i = 0;
5909
5910 if (size > 3 || ((size == 3) && !is_q)) {
5911 unallocated_encoding(s);
5912 return;
5913 }
5914
5915 if (!fp_access_check(s)) {
5916 return;
5917 }
5918
5919 for (i = 0; i < elements; i++) {
5920 write_vec_element(s, cpu_reg(s, rn), rd, i, size);
5921 }
5922 if (!is_q) {
5923 clear_vec_high(s, rd);
5924 }
5925 }
5926
5927 /* INS (Element)
5928 *
5929 * 31 21 20 16 15 14 11 10 9 5 4 0
5930 * +-----------------------+--------+------------+---+------+------+
5931 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
5932 * +-----------------------+--------+------------+---+------+------+
5933 *
5934 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5935 * index: encoded in imm5<4:size+1>
5936 */
5937 static void handle_simd_inse(DisasContext *s, int rd, int rn,
5938 int imm4, int imm5)
5939 {
5940 int size = ctz32(imm5);
5941 int src_index, dst_index;
5942 TCGv_i64 tmp;
5943
5944 if (size > 3) {
5945 unallocated_encoding(s);
5946 return;
5947 }
5948
5949 if (!fp_access_check(s)) {
5950 return;
5951 }
5952
5953 dst_index = extract32(imm5, 1+size, 5);
5954 src_index = extract32(imm4, size, 4);
5955
5956 tmp = tcg_temp_new_i64();
5957
5958 read_vec_element(s, tmp, rn, src_index, size);
5959 write_vec_element(s, tmp, rd, dst_index, size);
5960
5961 tcg_temp_free_i64(tmp);
5962 }
5963
5964
5965 /* INS (General)
5966 *
5967 * 31 21 20 16 15 10 9 5 4 0
5968 * +-----------------------+--------+-------------+------+------+
5969 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
5970 * +-----------------------+--------+-------------+------+------+
5971 *
5972 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5973 * index: encoded in imm5<4:size+1>
5974 */
5975 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
5976 {
5977 int size = ctz32(imm5);
5978 int idx;
5979
5980 if (size > 3) {
5981 unallocated_encoding(s);
5982 return;
5983 }
5984
5985 if (!fp_access_check(s)) {
5986 return;
5987 }
5988
5989 idx = extract32(imm5, 1 + size, 4 - size);
5990 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
5991 }
5992
5993 /*
5994 * UMOV (General)
5995 * SMOV (General)
5996 *
5997 * 31 30 29 21 20 16 15 12 10 9 5 4 0
5998 * +---+---+-------------------+--------+-------------+------+------+
5999 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
6000 * +---+---+-------------------+--------+-------------+------+------+
6001 *
6002 * U: unsigned when set
6003 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6004 */
6005 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
6006 int rn, int rd, int imm5)
6007 {
6008 int size = ctz32(imm5);
6009 int element;
6010 TCGv_i64 tcg_rd;
6011
6012 /* Check for UnallocatedEncodings */
6013 if (is_signed) {
6014 if (size > 2 || (size == 2 && !is_q)) {
6015 unallocated_encoding(s);
6016 return;
6017 }
6018 } else {
6019 if (size > 3
6020 || (size < 3 && is_q)
6021 || (size == 3 && !is_q)) {
6022 unallocated_encoding(s);
6023 return;
6024 }
6025 }
6026
6027 if (!fp_access_check(s)) {
6028 return;
6029 }
6030
6031 element = extract32(imm5, 1+size, 4);
6032
6033 tcg_rd = cpu_reg(s, rd);
6034 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
6035 if (is_signed && !is_q) {
6036 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6037 }
6038 }
6039
6040 /* AdvSIMD copy
6041 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6042 * +---+---+----+-----------------+------+---+------+---+------+------+
6043 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6044 * +---+---+----+-----------------+------+---+------+---+------+------+
6045 */
6046 static void disas_simd_copy(DisasContext *s, uint32_t insn)
6047 {
6048 int rd = extract32(insn, 0, 5);
6049 int rn = extract32(insn, 5, 5);
6050 int imm4 = extract32(insn, 11, 4);
6051 int op = extract32(insn, 29, 1);
6052 int is_q = extract32(insn, 30, 1);
6053 int imm5 = extract32(insn, 16, 5);
6054
6055 if (op) {
6056 if (is_q) {
6057 /* INS (element) */
6058 handle_simd_inse(s, rd, rn, imm4, imm5);
6059 } else {
6060 unallocated_encoding(s);
6061 }
6062 } else {
6063 switch (imm4) {
6064 case 0:
6065 /* DUP (element - vector) */
6066 handle_simd_dupe(s, is_q, rd, rn, imm5);
6067 break;
6068 case 1:
6069 /* DUP (general) */
6070 handle_simd_dupg(s, is_q, rd, rn, imm5);
6071 break;
6072 case 3:
6073 if (is_q) {
6074 /* INS (general) */
6075 handle_simd_insg(s, rd, rn, imm5);
6076 } else {
6077 unallocated_encoding(s);
6078 }
6079 break;
6080 case 5:
6081 case 7:
6082 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
6083 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
6084 break;
6085 default:
6086 unallocated_encoding(s);
6087 break;
6088 }
6089 }
6090 }
6091
6092 /* AdvSIMD modified immediate
6093 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
6094 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6095 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
6096 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6097 *
6098 * There are a number of operations that can be carried out here:
6099 * MOVI - move (shifted) imm into register
6100 * MVNI - move inverted (shifted) imm into register
6101 * ORR - bitwise OR of (shifted) imm with register
6102 * BIC - bitwise clear of (shifted) imm with register
6103 */
6104 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
6105 {
6106 int rd = extract32(insn, 0, 5);
6107 int cmode = extract32(insn, 12, 4);
6108 int cmode_3_1 = extract32(cmode, 1, 3);
6109 int cmode_0 = extract32(cmode, 0, 1);
6110 int o2 = extract32(insn, 11, 1);
6111 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
6112 bool is_neg = extract32(insn, 29, 1);
6113 bool is_q = extract32(insn, 30, 1);
6114 uint64_t imm = 0;
6115 TCGv_i64 tcg_rd, tcg_imm;
6116 int i;
6117
6118 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
6119 unallocated_encoding(s);
6120 return;
6121 }
6122
6123 if (!fp_access_check(s)) {
6124 return;
6125 }
6126
6127 /* See AdvSIMDExpandImm() in ARM ARM */
6128 switch (cmode_3_1) {
6129 case 0: /* Replicate(Zeros(24):imm8, 2) */
6130 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
6131 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
6132 case 3: /* Replicate(imm8:Zeros(24), 2) */
6133 {
6134 int shift = cmode_3_1 * 8;
6135 imm = bitfield_replicate(abcdefgh << shift, 32);
6136 break;
6137 }
6138 case 4: /* Replicate(Zeros(8):imm8, 4) */
6139 case 5: /* Replicate(imm8:Zeros(8), 4) */
6140 {
6141 int shift = (cmode_3_1 & 0x1) * 8;
6142 imm = bitfield_replicate(abcdefgh << shift, 16);
6143 break;
6144 }
6145 case 6:
6146 if (cmode_0) {
6147 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
6148 imm = (abcdefgh << 16) | 0xffff;
6149 } else {
6150 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
6151 imm = (abcdefgh << 8) | 0xff;
6152 }
6153 imm = bitfield_replicate(imm, 32);
6154 break;
6155 case 7:
6156 if (!cmode_0 && !is_neg) {
6157 imm = bitfield_replicate(abcdefgh, 8);
6158 } else if (!cmode_0 && is_neg) {
6159 int i;
6160 imm = 0;
6161 for (i = 0; i < 8; i++) {
6162 if ((abcdefgh) & (1 << i)) {
6163 imm |= 0xffULL << (i * 8);
6164 }
6165 }
6166 } else if (cmode_0) {
6167 if (is_neg) {
6168 imm = (abcdefgh & 0x3f) << 48;
6169 if (abcdefgh & 0x80) {
6170 imm |= 0x8000000000000000ULL;
6171 }
6172 if (abcdefgh & 0x40) {
6173 imm |= 0x3fc0000000000000ULL;
6174 } else {
6175 imm |= 0x4000000000000000ULL;
6176 }
6177 } else {
6178 imm = (abcdefgh & 0x3f) << 19;
6179 if (abcdefgh & 0x80) {
6180 imm |= 0x80000000;
6181 }
6182 if (abcdefgh & 0x40) {
6183 imm |= 0x3e000000;
6184 } else {
6185 imm |= 0x40000000;
6186 }
6187 imm |= (imm << 32);
6188 }
6189 }
6190 break;
6191 }
6192
6193 if (cmode_3_1 != 7 && is_neg) {
6194 imm = ~imm;
6195 }
6196
6197 tcg_imm = tcg_const_i64(imm);
6198 tcg_rd = new_tmp_a64(s);
6199
6200 for (i = 0; i < 2; i++) {
6201 int foffs = i ? fp_reg_hi_offset(s, rd) : fp_reg_offset(s, rd, MO_64);
6202
6203 if (i == 1 && !is_q) {
6204 /* non-quad ops clear high half of vector */
6205 tcg_gen_movi_i64(tcg_rd, 0);
6206 } else if ((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9) {
6207 tcg_gen_ld_i64(tcg_rd, cpu_env, foffs);
6208 if (is_neg) {
6209 /* AND (BIC) */
6210 tcg_gen_and_i64(tcg_rd, tcg_rd, tcg_imm);
6211 } else {
6212 /* ORR */
6213 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_imm);
6214 }
6215 } else {
6216 /* MOVI */
6217 tcg_gen_mov_i64(tcg_rd, tcg_imm);
6218 }
6219 tcg_gen_st_i64(tcg_rd, cpu_env, foffs);
6220 }
6221
6222 tcg_temp_free_i64(tcg_imm);
6223 }
6224
6225 /* AdvSIMD scalar copy
6226 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6227 * +-----+----+-----------------+------+---+------+---+------+------+
6228 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6229 * +-----+----+-----------------+------+---+------+---+------+------+
6230 */
6231 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
6232 {
6233 int rd = extract32(insn, 0, 5);
6234 int rn = extract32(insn, 5, 5);
6235 int imm4 = extract32(insn, 11, 4);
6236 int imm5 = extract32(insn, 16, 5);
6237 int op = extract32(insn, 29, 1);
6238
6239 if (op != 0 || imm4 != 0) {
6240 unallocated_encoding(s);
6241 return;
6242 }
6243
6244 /* DUP (element, scalar) */
6245 handle_simd_dupes(s, rd, rn, imm5);
6246 }
6247
6248 /* AdvSIMD scalar pairwise
6249 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6250 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6251 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6252 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6253 */
6254 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
6255 {
6256 int u = extract32(insn, 29, 1);
6257 int size = extract32(insn, 22, 2);
6258 int opcode = extract32(insn, 12, 5);
6259 int rn = extract32(insn, 5, 5);
6260 int rd = extract32(insn, 0, 5);
6261 TCGv_ptr fpst;
6262
6263 /* For some ops (the FP ones), size[1] is part of the encoding.
6264 * For ADDP strictly it is not but size[1] is always 1 for valid
6265 * encodings.
6266 */
6267 opcode |= (extract32(size, 1, 1) << 5);
6268
6269 switch (opcode) {
6270 case 0x3b: /* ADDP */
6271 if (u || size != 3) {
6272 unallocated_encoding(s);
6273 return;
6274 }
6275 if (!fp_access_check(s)) {
6276 return;
6277 }
6278
6279 TCGV_UNUSED_PTR(fpst);
6280 break;
6281 case 0xc: /* FMAXNMP */
6282 case 0xd: /* FADDP */
6283 case 0xf: /* FMAXP */
6284 case 0x2c: /* FMINNMP */
6285 case 0x2f: /* FMINP */
6286 /* FP op, size[0] is 32 or 64 bit */
6287 if (!u) {
6288 unallocated_encoding(s);
6289 return;
6290 }
6291 if (!fp_access_check(s)) {
6292 return;
6293 }
6294
6295 size = extract32(size, 0, 1) ? 3 : 2;
6296 fpst = get_fpstatus_ptr();
6297 break;
6298 default:
6299 unallocated_encoding(s);
6300 return;
6301 }
6302
6303 if (size == 3) {
6304 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6305 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6306 TCGv_i64 tcg_res = tcg_temp_new_i64();
6307
6308 read_vec_element(s, tcg_op1, rn, 0, MO_64);
6309 read_vec_element(s, tcg_op2, rn, 1, MO_64);
6310
6311 switch (opcode) {
6312 case 0x3b: /* ADDP */
6313 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
6314 break;
6315 case 0xc: /* FMAXNMP */
6316 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6317 break;
6318 case 0xd: /* FADDP */
6319 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6320 break;
6321 case 0xf: /* FMAXP */
6322 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6323 break;
6324 case 0x2c: /* FMINNMP */
6325 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6326 break;
6327 case 0x2f: /* FMINP */
6328 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6329 break;
6330 default:
6331 g_assert_not_reached();
6332 }
6333
6334 write_fp_dreg(s, rd, tcg_res);
6335
6336 tcg_temp_free_i64(tcg_op1);
6337 tcg_temp_free_i64(tcg_op2);
6338 tcg_temp_free_i64(tcg_res);
6339 } else {
6340 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6341 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6342 TCGv_i32 tcg_res = tcg_temp_new_i32();
6343
6344 read_vec_element_i32(s, tcg_op1, rn, 0, MO_32);
6345 read_vec_element_i32(s, tcg_op2, rn, 1, MO_32);
6346
6347 switch (opcode) {
6348 case 0xc: /* FMAXNMP */
6349 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6350 break;
6351 case 0xd: /* FADDP */
6352 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6353 break;
6354 case 0xf: /* FMAXP */
6355 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6356 break;
6357 case 0x2c: /* FMINNMP */
6358 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6359 break;
6360 case 0x2f: /* FMINP */
6361 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6362 break;
6363 default:
6364 g_assert_not_reached();
6365 }
6366
6367 write_fp_sreg(s, rd, tcg_res);
6368
6369 tcg_temp_free_i32(tcg_op1);
6370 tcg_temp_free_i32(tcg_op2);
6371 tcg_temp_free_i32(tcg_res);
6372 }
6373
6374 if (!TCGV_IS_UNUSED_PTR(fpst)) {
6375 tcg_temp_free_ptr(fpst);
6376 }
6377 }
6378
6379 /*
6380 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
6381 *
6382 * This code is handles the common shifting code and is used by both
6383 * the vector and scalar code.
6384 */
6385 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6386 TCGv_i64 tcg_rnd, bool accumulate,
6387 bool is_u, int size, int shift)
6388 {
6389 bool extended_result = false;
6390 bool round = !TCGV_IS_UNUSED_I64(tcg_rnd);
6391 int ext_lshift = 0;
6392 TCGv_i64 tcg_src_hi;
6393
6394 if (round && size == 3) {
6395 extended_result = true;
6396 ext_lshift = 64 - shift;
6397 tcg_src_hi = tcg_temp_new_i64();
6398 } else if (shift == 64) {
6399 if (!accumulate && is_u) {
6400 /* result is zero */
6401 tcg_gen_movi_i64(tcg_res, 0);
6402 return;
6403 }
6404 }
6405
6406 /* Deal with the rounding step */
6407 if (round) {
6408 if (extended_result) {
6409 TCGv_i64 tcg_zero = tcg_const_i64(0);
6410 if (!is_u) {
6411 /* take care of sign extending tcg_res */
6412 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
6413 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6414 tcg_src, tcg_src_hi,
6415 tcg_rnd, tcg_zero);
6416 } else {
6417 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6418 tcg_src, tcg_zero,
6419 tcg_rnd, tcg_zero);
6420 }
6421 tcg_temp_free_i64(tcg_zero);
6422 } else {
6423 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
6424 }
6425 }
6426
6427 /* Now do the shift right */
6428 if (round && extended_result) {
6429 /* extended case, >64 bit precision required */
6430 if (ext_lshift == 0) {
6431 /* special case, only high bits matter */
6432 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
6433 } else {
6434 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6435 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
6436 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
6437 }
6438 } else {
6439 if (is_u) {
6440 if (shift == 64) {
6441 /* essentially shifting in 64 zeros */
6442 tcg_gen_movi_i64(tcg_src, 0);
6443 } else {
6444 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6445 }
6446 } else {
6447 if (shift == 64) {
6448 /* effectively extending the sign-bit */
6449 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
6450 } else {
6451 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
6452 }
6453 }
6454 }
6455
6456 if (accumulate) {
6457 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
6458 } else {
6459 tcg_gen_mov_i64(tcg_res, tcg_src);
6460 }
6461
6462 if (extended_result) {
6463 tcg_temp_free_i64(tcg_src_hi);
6464 }
6465 }
6466
6467 /* Common SHL/SLI - Shift left with an optional insert */
6468 static void handle_shli_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6469 bool insert, int shift)
6470 {
6471 if (insert) { /* SLI */
6472 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, shift, 64 - shift);
6473 } else { /* SHL */
6474 tcg_gen_shli_i64(tcg_res, tcg_src, shift);
6475 }
6476 }
6477
6478 /* SRI: shift right with insert */
6479 static void handle_shri_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6480 int size, int shift)
6481 {
6482 int esize = 8 << size;
6483
6484 /* shift count same as element size is valid but does nothing;
6485 * special case to avoid potential shift by 64.
6486 */
6487 if (shift != esize) {
6488 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6489 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, 0, esize - shift);
6490 }
6491 }
6492
6493 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
6494 static void handle_scalar_simd_shri(DisasContext *s,
6495 bool is_u, int immh, int immb,
6496 int opcode, int rn, int rd)
6497 {
6498 const int size = 3;
6499 int immhb = immh << 3 | immb;
6500 int shift = 2 * (8 << size) - immhb;
6501 bool accumulate = false;
6502 bool round = false;
6503 bool insert = false;
6504 TCGv_i64 tcg_rn;
6505 TCGv_i64 tcg_rd;
6506 TCGv_i64 tcg_round;
6507
6508 if (!extract32(immh, 3, 1)) {
6509 unallocated_encoding(s);
6510 return;
6511 }
6512
6513 if (!fp_access_check(s)) {
6514 return;
6515 }
6516
6517 switch (opcode) {
6518 case 0x02: /* SSRA / USRA (accumulate) */
6519 accumulate = true;
6520 break;
6521 case 0x04: /* SRSHR / URSHR (rounding) */
6522 round = true;
6523 break;
6524 case 0x06: /* SRSRA / URSRA (accum + rounding) */
6525 accumulate = round = true;
6526 break;
6527 case 0x08: /* SRI */
6528 insert = true;
6529 break;
6530 }
6531
6532 if (round) {
6533 uint64_t round_const = 1ULL << (shift - 1);
6534 tcg_round = tcg_const_i64(round_const);
6535 } else {
6536 TCGV_UNUSED_I64(tcg_round);
6537 }
6538
6539 tcg_rn = read_fp_dreg(s, rn);
6540 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6541
6542 if (insert) {
6543 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
6544 } else {
6545 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6546 accumulate, is_u, size, shift);
6547 }
6548
6549 write_fp_dreg(s, rd, tcg_rd);
6550
6551 tcg_temp_free_i64(tcg_rn);
6552 tcg_temp_free_i64(tcg_rd);
6553 if (round) {
6554 tcg_temp_free_i64(tcg_round);
6555 }
6556 }
6557
6558 /* SHL/SLI - Scalar shift left */
6559 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
6560 int immh, int immb, int opcode,
6561 int rn, int rd)
6562 {
6563 int size = 32 - clz32(immh) - 1;
6564 int immhb = immh << 3 | immb;
6565 int shift = immhb - (8 << size);
6566 TCGv_i64 tcg_rn = new_tmp_a64(s);
6567 TCGv_i64 tcg_rd = new_tmp_a64(s);
6568
6569 if (!extract32(immh, 3, 1)) {
6570 unallocated_encoding(s);
6571 return;
6572 }
6573
6574 if (!fp_access_check(s)) {
6575 return;
6576 }
6577
6578 tcg_rn = read_fp_dreg(s, rn);
6579 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6580
6581 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
6582
6583 write_fp_dreg(s, rd, tcg_rd);
6584
6585 tcg_temp_free_i64(tcg_rn);
6586 tcg_temp_free_i64(tcg_rd);
6587 }
6588
6589 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
6590 * (signed/unsigned) narrowing */
6591 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
6592 bool is_u_shift, bool is_u_narrow,
6593 int immh, int immb, int opcode,
6594 int rn, int rd)
6595 {
6596 int immhb = immh << 3 | immb;
6597 int size = 32 - clz32(immh) - 1;
6598 int esize = 8 << size;
6599 int shift = (2 * esize) - immhb;
6600 int elements = is_scalar ? 1 : (64 / esize);
6601 bool round = extract32(opcode, 0, 1);
6602 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
6603 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
6604 TCGv_i32 tcg_rd_narrowed;
6605 TCGv_i64 tcg_final;
6606
6607 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
6608 { gen_helper_neon_narrow_sat_s8,
6609 gen_helper_neon_unarrow_sat8 },
6610 { gen_helper_neon_narrow_sat_s16,
6611 gen_helper_neon_unarrow_sat16 },
6612 { gen_helper_neon_narrow_sat_s32,
6613 gen_helper_neon_unarrow_sat32 },
6614 { NULL, NULL },
6615 };
6616 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
6617 gen_helper_neon_narrow_sat_u8,
6618 gen_helper_neon_narrow_sat_u16,
6619 gen_helper_neon_narrow_sat_u32,
6620 NULL
6621 };
6622 NeonGenNarrowEnvFn *narrowfn;
6623
6624 int i;
6625
6626 assert(size < 4);
6627
6628 if (extract32(immh, 3, 1)) {
6629 unallocated_encoding(s);
6630 return;
6631 }
6632
6633 if (!fp_access_check(s)) {
6634 return;
6635 }
6636
6637 if (is_u_shift) {
6638 narrowfn = unsigned_narrow_fns[size];
6639 } else {
6640 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
6641 }
6642
6643 tcg_rn = tcg_temp_new_i64();
6644 tcg_rd = tcg_temp_new_i64();
6645 tcg_rd_narrowed = tcg_temp_new_i32();
6646 tcg_final = tcg_const_i64(0);
6647
6648 if (round) {
6649 uint64_t round_const = 1ULL << (shift - 1);
6650 tcg_round = tcg_const_i64(round_const);
6651 } else {
6652 TCGV_UNUSED_I64(tcg_round);
6653 }
6654
6655 for (i = 0; i < elements; i++) {
6656 read_vec_element(s, tcg_rn, rn, i, ldop);
6657 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6658 false, is_u_shift, size+1, shift);
6659 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
6660 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
6661 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
6662 }
6663
6664 if (!is_q) {
6665 clear_vec_high(s, rd);
6666 write_vec_element(s, tcg_final, rd, 0, MO_64);
6667 } else {
6668 write_vec_element(s, tcg_final, rd, 1, MO_64);
6669 }
6670
6671 if (round) {
6672 tcg_temp_free_i64(tcg_round);
6673 }
6674 tcg_temp_free_i64(tcg_rn);
6675 tcg_temp_free_i64(tcg_rd);
6676 tcg_temp_free_i32(tcg_rd_narrowed);
6677 tcg_temp_free_i64(tcg_final);
6678 return;
6679 }
6680
6681 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
6682 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
6683 bool src_unsigned, bool dst_unsigned,
6684 int immh, int immb, int rn, int rd)
6685 {
6686 int immhb = immh << 3 | immb;
6687 int size = 32 - clz32(immh) - 1;
6688 int shift = immhb - (8 << size);
6689 int pass;
6690
6691 assert(immh != 0);
6692 assert(!(scalar && is_q));
6693
6694 if (!scalar) {
6695 if (!is_q && extract32(immh, 3, 1)) {
6696 unallocated_encoding(s);
6697 return;
6698 }
6699
6700 /* Since we use the variable-shift helpers we must
6701 * replicate the shift count into each element of
6702 * the tcg_shift value.
6703 */
6704 switch (size) {
6705 case 0:
6706 shift |= shift << 8;
6707 /* fall through */
6708 case 1:
6709 shift |= shift << 16;
6710 break;
6711 case 2:
6712 case 3:
6713 break;
6714 default:
6715 g_assert_not_reached();
6716 }
6717 }
6718
6719 if (!fp_access_check(s)) {
6720 return;
6721 }
6722
6723 if (size == 3) {
6724 TCGv_i64 tcg_shift = tcg_const_i64(shift);
6725 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
6726 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
6727 { NULL, gen_helper_neon_qshl_u64 },
6728 };
6729 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
6730 int maxpass = is_q ? 2 : 1;
6731
6732 for (pass = 0; pass < maxpass; pass++) {
6733 TCGv_i64 tcg_op = tcg_temp_new_i64();
6734
6735 read_vec_element(s, tcg_op, rn, pass, MO_64);
6736 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6737 write_vec_element(s, tcg_op, rd, pass, MO_64);
6738
6739 tcg_temp_free_i64(tcg_op);
6740 }
6741 tcg_temp_free_i64(tcg_shift);
6742
6743 if (!is_q) {
6744 clear_vec_high(s, rd);
6745 }
6746 } else {
6747 TCGv_i32 tcg_shift = tcg_const_i32(shift);
6748 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
6749 {
6750 { gen_helper_neon_qshl_s8,
6751 gen_helper_neon_qshl_s16,
6752 gen_helper_neon_qshl_s32 },
6753 { gen_helper_neon_qshlu_s8,
6754 gen_helper_neon_qshlu_s16,
6755 gen_helper_neon_qshlu_s32 }
6756 }, {
6757 { NULL, NULL, NULL },
6758 { gen_helper_neon_qshl_u8,
6759 gen_helper_neon_qshl_u16,
6760 gen_helper_neon_qshl_u32 }
6761 }
6762 };
6763 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
6764 TCGMemOp memop = scalar ? size : MO_32;
6765 int maxpass = scalar ? 1 : is_q ? 4 : 2;
6766
6767 for (pass = 0; pass < maxpass; pass++) {
6768 TCGv_i32 tcg_op = tcg_temp_new_i32();
6769
6770 read_vec_element_i32(s, tcg_op, rn, pass, memop);
6771 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6772 if (scalar) {
6773 switch (size) {
6774 case 0:
6775 tcg_gen_ext8u_i32(tcg_op, tcg_op);
6776 break;
6777 case 1:
6778 tcg_gen_ext16u_i32(tcg_op, tcg_op);
6779 break;
6780 case 2:
6781 break;
6782 default:
6783 g_assert_not_reached();
6784 }
6785 write_fp_sreg(s, rd, tcg_op);
6786 } else {
6787 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6788 }
6789
6790 tcg_temp_free_i32(tcg_op);
6791 }
6792 tcg_temp_free_i32(tcg_shift);
6793
6794 if (!is_q && !scalar) {
6795 clear_vec_high(s, rd);
6796 }
6797 }
6798 }
6799
6800 /* Common vector code for handling integer to FP conversion */
6801 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
6802 int elements, int is_signed,
6803 int fracbits, int size)
6804 {
6805 bool is_double = size == 3 ? true : false;
6806 TCGv_ptr tcg_fpst = get_fpstatus_ptr();
6807 TCGv_i32 tcg_shift = tcg_const_i32(fracbits);
6808 TCGv_i64 tcg_int = tcg_temp_new_i64();
6809 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
6810 int pass;
6811
6812 for (pass = 0; pass < elements; pass++) {
6813 read_vec_element(s, tcg_int, rn, pass, mop);
6814
6815 if (is_double) {
6816 TCGv_i64 tcg_double = tcg_temp_new_i64();
6817 if (is_signed) {
6818 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6819 tcg_shift, tcg_fpst);
6820 } else {
6821 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6822 tcg_shift, tcg_fpst);
6823 }
6824 if (elements == 1) {
6825 write_fp_dreg(s, rd, tcg_double);
6826 } else {
6827 write_vec_element(s, tcg_double, rd, pass, MO_64);
6828 }
6829 tcg_temp_free_i64(tcg_double);
6830 } else {
6831 TCGv_i32 tcg_single = tcg_temp_new_i32();
6832 if (is_signed) {
6833 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6834 tcg_shift, tcg_fpst);
6835 } else {
6836 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6837 tcg_shift, tcg_fpst);
6838 }
6839 if (elements == 1) {
6840 write_fp_sreg(s, rd, tcg_single);
6841 } else {
6842 write_vec_element_i32(s, tcg_single, rd, pass, MO_32);
6843 }
6844 tcg_temp_free_i32(tcg_single);
6845 }
6846 }
6847
6848 if (!is_double && elements == 2) {
6849 clear_vec_high(s, rd);
6850 }
6851
6852 tcg_temp_free_i64(tcg_int);
6853 tcg_temp_free_ptr(tcg_fpst);
6854 tcg_temp_free_i32(tcg_shift);
6855 }
6856
6857 /* UCVTF/SCVTF - Integer to FP conversion */
6858 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
6859 bool is_q, bool is_u,
6860 int immh, int immb, int opcode,
6861 int rn, int rd)
6862 {
6863 bool is_double = extract32(immh, 3, 1);
6864 int size = is_double ? MO_64 : MO_32;
6865 int elements;
6866 int immhb = immh << 3 | immb;
6867 int fracbits = (is_double ? 128 : 64) - immhb;
6868
6869 if (!extract32(immh, 2, 2)) {
6870 unallocated_encoding(s);
6871 return;
6872 }
6873
6874 if (is_scalar) {
6875 elements = 1;
6876 } else {
6877 elements = is_double ? 2 : is_q ? 4 : 2;
6878 if (is_double && !is_q) {
6879 unallocated_encoding(s);
6880 return;
6881 }
6882 }
6883
6884 if (!fp_access_check(s)) {
6885 return;
6886 }
6887
6888 /* immh == 0 would be a failure of the decode logic */
6889 g_assert(immh);
6890
6891 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
6892 }
6893
6894 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
6895 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
6896 bool is_q, bool is_u,
6897 int immh, int immb, int rn, int rd)
6898 {
6899 bool is_double = extract32(immh, 3, 1);
6900 int immhb = immh << 3 | immb;
6901 int fracbits = (is_double ? 128 : 64) - immhb;
6902 int pass;
6903 TCGv_ptr tcg_fpstatus;
6904 TCGv_i32 tcg_rmode, tcg_shift;
6905
6906 if (!extract32(immh, 2, 2)) {
6907 unallocated_encoding(s);
6908 return;
6909 }
6910
6911 if (!is_scalar && !is_q && is_double) {
6912 unallocated_encoding(s);
6913 return;
6914 }
6915
6916 if (!fp_access_check(s)) {
6917 return;
6918 }
6919
6920 assert(!(is_scalar && is_q));
6921
6922 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
6923 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6924 tcg_fpstatus = get_fpstatus_ptr();
6925 tcg_shift = tcg_const_i32(fracbits);
6926
6927 if (is_double) {
6928 int maxpass = is_scalar ? 1 : 2;
6929
6930 for (pass = 0; pass < maxpass; pass++) {
6931 TCGv_i64 tcg_op = tcg_temp_new_i64();
6932
6933 read_vec_element(s, tcg_op, rn, pass, MO_64);
6934 if (is_u) {
6935 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6936 } else {
6937 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6938 }
6939 write_vec_element(s, tcg_op, rd, pass, MO_64);
6940 tcg_temp_free_i64(tcg_op);
6941 }
6942 if (!is_q) {
6943 clear_vec_high(s, rd);
6944 }
6945 } else {
6946 int maxpass = is_scalar ? 1 : is_q ? 4 : 2;
6947 for (pass = 0; pass < maxpass; pass++) {
6948 TCGv_i32 tcg_op = tcg_temp_new_i32();
6949
6950 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
6951 if (is_u) {
6952 gen_helper_vfp_touls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6953 } else {
6954 gen_helper_vfp_tosls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6955 }
6956 if (is_scalar) {
6957 write_fp_sreg(s, rd, tcg_op);
6958 } else {
6959 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6960 }
6961 tcg_temp_free_i32(tcg_op);
6962 }
6963 if (!is_q && !is_scalar) {
6964 clear_vec_high(s, rd);
6965 }
6966 }
6967
6968 tcg_temp_free_ptr(tcg_fpstatus);
6969 tcg_temp_free_i32(tcg_shift);
6970 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6971 tcg_temp_free_i32(tcg_rmode);
6972 }
6973
6974 /* AdvSIMD scalar shift by immediate
6975 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
6976 * +-----+---+-------------+------+------+--------+---+------+------+
6977 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
6978 * +-----+---+-------------+------+------+--------+---+------+------+
6979 *
6980 * This is the scalar version so it works on a fixed sized registers
6981 */
6982 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
6983 {
6984 int rd = extract32(insn, 0, 5);
6985 int rn = extract32(insn, 5, 5);
6986 int opcode = extract32(insn, 11, 5);
6987 int immb = extract32(insn, 16, 3);
6988 int immh = extract32(insn, 19, 4);
6989 bool is_u = extract32(insn, 29, 1);
6990
6991 if (immh == 0) {
6992 unallocated_encoding(s);
6993 return;
6994 }
6995
6996 switch (opcode) {
6997 case 0x08: /* SRI */
6998 if (!is_u) {
6999 unallocated_encoding(s);
7000 return;
7001 }
7002 /* fall through */
7003 case 0x00: /* SSHR / USHR */
7004 case 0x02: /* SSRA / USRA */
7005 case 0x04: /* SRSHR / URSHR */
7006 case 0x06: /* SRSRA / URSRA */
7007 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
7008 break;
7009 case 0x0a: /* SHL / SLI */
7010 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
7011 break;
7012 case 0x1c: /* SCVTF, UCVTF */
7013 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
7014 opcode, rn, rd);
7015 break;
7016 case 0x10: /* SQSHRUN, SQSHRUN2 */
7017 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
7018 if (!is_u) {
7019 unallocated_encoding(s);
7020 return;
7021 }
7022 handle_vec_simd_sqshrn(s, true, false, false, true,
7023 immh, immb, opcode, rn, rd);
7024 break;
7025 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
7026 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
7027 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
7028 immh, immb, opcode, rn, rd);
7029 break;
7030 case 0xc: /* SQSHLU */
7031 if (!is_u) {
7032 unallocated_encoding(s);
7033 return;
7034 }
7035 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
7036 break;
7037 case 0xe: /* SQSHL, UQSHL */
7038 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
7039 break;
7040 case 0x1f: /* FCVTZS, FCVTZU */
7041 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
7042 break;
7043 default:
7044 unallocated_encoding(s);
7045 break;
7046 }
7047 }
7048
7049 /* AdvSIMD scalar three different
7050 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
7051 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7052 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
7053 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7054 */
7055 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
7056 {
7057 bool is_u = extract32(insn, 29, 1);
7058 int size = extract32(insn, 22, 2);
7059 int opcode = extract32(insn, 12, 4);
7060 int rm = extract32(insn, 16, 5);
7061 int rn = extract32(insn, 5, 5);
7062 int rd = extract32(insn, 0, 5);
7063
7064 if (is_u) {
7065 unallocated_encoding(s);
7066 return;
7067 }
7068
7069 switch (opcode) {
7070 case 0x9: /* SQDMLAL, SQDMLAL2 */
7071 case 0xb: /* SQDMLSL, SQDMLSL2 */
7072 case 0xd: /* SQDMULL, SQDMULL2 */
7073 if (size == 0 || size == 3) {
7074 unallocated_encoding(s);
7075 return;
7076 }
7077 break;
7078 default:
7079 unallocated_encoding(s);
7080 return;
7081 }
7082
7083 if (!fp_access_check(s)) {
7084 return;
7085 }
7086
7087 if (size == 2) {
7088 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7089 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7090 TCGv_i64 tcg_res = tcg_temp_new_i64();
7091
7092 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
7093 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
7094
7095 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
7096 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
7097
7098 switch (opcode) {
7099 case 0xd: /* SQDMULL, SQDMULL2 */
7100 break;
7101 case 0xb: /* SQDMLSL, SQDMLSL2 */
7102 tcg_gen_neg_i64(tcg_res, tcg_res);
7103 /* fall through */
7104 case 0x9: /* SQDMLAL, SQDMLAL2 */
7105 read_vec_element(s, tcg_op1, rd, 0, MO_64);
7106 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
7107 tcg_res, tcg_op1);
7108 break;
7109 default:
7110 g_assert_not_reached();
7111 }
7112
7113 write_fp_dreg(s, rd, tcg_res);
7114
7115 tcg_temp_free_i64(tcg_op1);
7116 tcg_temp_free_i64(tcg_op2);
7117 tcg_temp_free_i64(tcg_res);
7118 } else {
7119 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7120 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7121 TCGv_i64 tcg_res = tcg_temp_new_i64();
7122
7123 read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
7124 read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
7125
7126 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
7127 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
7128
7129 switch (opcode) {
7130 case 0xd: /* SQDMULL, SQDMULL2 */
7131 break;
7132 case 0xb: /* SQDMLSL, SQDMLSL2 */
7133 gen_helper_neon_negl_u32(tcg_res, tcg_res);
7134 /* fall through */
7135 case 0x9: /* SQDMLAL, SQDMLAL2 */
7136 {
7137 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
7138 read_vec_element(s, tcg_op3, rd, 0, MO_32);
7139 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
7140 tcg_res, tcg_op3);
7141 tcg_temp_free_i64(tcg_op3);
7142 break;
7143 }
7144 default:
7145 g_assert_not_reached();
7146 }
7147
7148 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7149 write_fp_dreg(s, rd, tcg_res);
7150
7151 tcg_temp_free_i32(tcg_op1);
7152 tcg_temp_free_i32(tcg_op2);
7153 tcg_temp_free_i64(tcg_res);
7154 }
7155 }
7156
7157 static void handle_3same_64(DisasContext *s, int opcode, bool u,
7158 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
7159 {
7160 /* Handle 64x64->64 opcodes which are shared between the scalar
7161 * and vector 3-same groups. We cover every opcode where size == 3
7162 * is valid in either the three-reg-same (integer, not pairwise)
7163 * or scalar-three-reg-same groups. (Some opcodes are not yet
7164 * implemented.)
7165 */
7166 TCGCond cond;
7167
7168 switch (opcode) {
7169 case 0x1: /* SQADD */
7170 if (u) {
7171 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7172 } else {
7173 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7174 }
7175 break;
7176 case 0x5: /* SQSUB */
7177 if (u) {
7178 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7179 } else {
7180 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7181 }
7182 break;
7183 case 0x6: /* CMGT, CMHI */
7184 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
7185 * We implement this using setcond (test) and then negating.
7186 */
7187 cond = u ? TCG_COND_GTU : TCG_COND_GT;
7188 do_cmop:
7189 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
7190 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7191 break;
7192 case 0x7: /* CMGE, CMHS */
7193 cond = u ? TCG_COND_GEU : TCG_COND_GE;
7194 goto do_cmop;
7195 case 0x11: /* CMTST, CMEQ */
7196 if (u) {
7197 cond = TCG_COND_EQ;
7198 goto do_cmop;
7199 }
7200 /* CMTST : test is "if (X & Y != 0)". */
7201 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
7202 tcg_gen_setcondi_i64(TCG_COND_NE, tcg_rd, tcg_rd, 0);
7203 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7204 break;
7205 case 0x8: /* SSHL, USHL */
7206 if (u) {
7207 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
7208 } else {
7209 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
7210 }
7211 break;
7212 case 0x9: /* SQSHL, UQSHL */
7213 if (u) {
7214 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7215 } else {
7216 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7217 }
7218 break;
7219 case 0xa: /* SRSHL, URSHL */
7220 if (u) {
7221 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
7222 } else {
7223 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
7224 }
7225 break;
7226 case 0xb: /* SQRSHL, UQRSHL */
7227 if (u) {
7228 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7229 } else {
7230 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7231 }
7232 break;
7233 case 0x10: /* ADD, SUB */
7234 if (u) {
7235 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
7236 } else {
7237 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
7238 }
7239 break;
7240 default:
7241 g_assert_not_reached();
7242 }
7243 }
7244
7245 /* Handle the 3-same-operands float operations; shared by the scalar
7246 * and vector encodings. The caller must filter out any encodings
7247 * not allocated for the encoding it is dealing with.
7248 */
7249 static void handle_3same_float(DisasContext *s, int size, int elements,
7250 int fpopcode, int rd, int rn, int rm)
7251 {
7252 int pass;
7253 TCGv_ptr fpst = get_fpstatus_ptr();
7254
7255 for (pass = 0; pass < elements; pass++) {
7256 if (size) {
7257 /* Double */
7258 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7259 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7260 TCGv_i64 tcg_res = tcg_temp_new_i64();
7261
7262 read_vec_element(s, tcg_op1, rn, pass, MO_64);
7263 read_vec_element(s, tcg_op2, rm, pass, MO_64);
7264
7265 switch (fpopcode) {
7266 case 0x39: /* FMLS */
7267 /* As usual for ARM, separate negation for fused multiply-add */
7268 gen_helper_vfp_negd(tcg_op1, tcg_op1);
7269 /* fall through */
7270 case 0x19: /* FMLA */
7271 read_vec_element(s, tcg_res, rd, pass, MO_64);
7272 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
7273 tcg_res, fpst);
7274 break;
7275 case 0x18: /* FMAXNM */
7276 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7277 break;
7278 case 0x1a: /* FADD */
7279 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7280 break;
7281 case 0x1b: /* FMULX */
7282 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
7283 break;
7284 case 0x1c: /* FCMEQ */
7285 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7286 break;
7287 case 0x1e: /* FMAX */
7288 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7289 break;
7290 case 0x1f: /* FRECPS */
7291 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7292 break;
7293 case 0x38: /* FMINNM */
7294 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7295 break;
7296 case 0x3a: /* FSUB */
7297 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7298 break;
7299 case 0x3e: /* FMIN */
7300 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7301 break;
7302 case 0x3f: /* FRSQRTS */
7303 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7304 break;
7305 case 0x5b: /* FMUL */
7306 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
7307 break;
7308 case 0x5c: /* FCMGE */
7309 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7310 break;
7311 case 0x5d: /* FACGE */
7312 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7313 break;
7314 case 0x5f: /* FDIV */
7315 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
7316 break;
7317 case 0x7a: /* FABD */
7318 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7319 gen_helper_vfp_absd(tcg_res, tcg_res);
7320 break;
7321 case 0x7c: /* FCMGT */
7322 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7323 break;
7324 case 0x7d: /* FACGT */
7325 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7326 break;
7327 default:
7328 g_assert_not_reached();
7329 }
7330
7331 write_vec_element(s, tcg_res, rd, pass, MO_64);
7332
7333 tcg_temp_free_i64(tcg_res);
7334 tcg_temp_free_i64(tcg_op1);
7335 tcg_temp_free_i64(tcg_op2);
7336 } else {
7337 /* Single */
7338 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7339 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7340 TCGv_i32 tcg_res = tcg_temp_new_i32();
7341
7342 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
7343 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
7344
7345 switch (fpopcode) {
7346 case 0x39: /* FMLS */
7347 /* As usual for ARM, separate negation for fused multiply-add */
7348 gen_helper_vfp_negs(tcg_op1, tcg_op1);
7349 /* fall through */
7350 case 0x19: /* FMLA */
7351 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7352 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
7353 tcg_res, fpst);
7354 break;
7355 case 0x1a: /* FADD */
7356 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7357 break;
7358 case 0x1b: /* FMULX */
7359 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
7360 break;
7361 case 0x1c: /* FCMEQ */
7362 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7363 break;
7364 case 0x1e: /* FMAX */
7365 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7366 break;
7367 case 0x1f: /* FRECPS */
7368 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7369 break;
7370 case 0x18: /* FMAXNM */
7371 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7372 break;
7373 case 0x38: /* FMINNM */
7374 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7375 break;
7376 case 0x3a: /* FSUB */
7377 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7378 break;
7379 case 0x3e: /* FMIN */
7380 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7381 break;
7382 case 0x3f: /* FRSQRTS */
7383 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7384 break;
7385 case 0x5b: /* FMUL */
7386 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
7387 break;
7388 case 0x5c: /* FCMGE */
7389 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7390 break;
7391 case 0x5d: /* FACGE */
7392 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7393 break;
7394 case 0x5f: /* FDIV */
7395 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
7396 break;
7397 case 0x7a: /* FABD */
7398 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7399 gen_helper_vfp_abss(tcg_res, tcg_res);
7400 break;
7401 case 0x7c: /* FCMGT */
7402 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7403 break;
7404 case 0x7d: /* FACGT */
7405 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7406 break;
7407 default:
7408 g_assert_not_reached();
7409 }
7410
7411 if (elements == 1) {
7412 /* scalar single so clear high part */
7413 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7414
7415 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
7416 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
7417 tcg_temp_free_i64(tcg_tmp);
7418 } else {
7419 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7420 }
7421
7422 tcg_temp_free_i32(tcg_res);
7423 tcg_temp_free_i32(tcg_op1);
7424 tcg_temp_free_i32(tcg_op2);
7425 }
7426 }
7427
7428 tcg_temp_free_ptr(fpst);
7429
7430 if ((elements << size) < 4) {
7431 /* scalar, or non-quad vector op */
7432 clear_vec_high(s, rd);
7433 }
7434 }
7435
7436 /* AdvSIMD scalar three same
7437 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
7438 * +-----+---+-----------+------+---+------+--------+---+------+------+
7439 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
7440 * +-----+---+-----------+------+---+------+--------+---+------+------+
7441 */
7442 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
7443 {
7444 int rd = extract32(insn, 0, 5);
7445 int rn = extract32(insn, 5, 5);
7446 int opcode = extract32(insn, 11, 5);
7447 int rm = extract32(insn, 16, 5);
7448 int size = extract32(insn, 22, 2);
7449 bool u = extract32(insn, 29, 1);
7450 TCGv_i64 tcg_rd;
7451
7452 if (opcode >= 0x18) {
7453 /* Floating point: U, size[1] and opcode indicate operation */
7454 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
7455 switch (fpopcode) {
7456 case 0x1b: /* FMULX */
7457 case 0x1f: /* FRECPS */
7458 case 0x3f: /* FRSQRTS */
7459 case 0x5d: /* FACGE */
7460 case 0x7d: /* FACGT */
7461 case 0x1c: /* FCMEQ */
7462 case 0x5c: /* FCMGE */
7463 case 0x7c: /* FCMGT */
7464 case 0x7a: /* FABD */
7465 break;
7466 default:
7467 unallocated_encoding(s);
7468 return;
7469 }
7470
7471 if (!fp_access_check(s)) {
7472 return;
7473 }
7474
7475 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
7476 return;
7477 }
7478
7479 switch (opcode) {
7480 case 0x1: /* SQADD, UQADD */
7481 case 0x5: /* SQSUB, UQSUB */
7482 case 0x9: /* SQSHL, UQSHL */
7483 case 0xb: /* SQRSHL, UQRSHL */
7484 break;
7485 case 0x8: /* SSHL, USHL */
7486 case 0xa: /* SRSHL, URSHL */
7487 case 0x6: /* CMGT, CMHI */
7488 case 0x7: /* CMGE, CMHS */
7489 case 0x11: /* CMTST, CMEQ */
7490 case 0x10: /* ADD, SUB (vector) */
7491 if (size != 3) {
7492 unallocated_encoding(s);
7493 return;
7494 }
7495 break;
7496 case 0x16: /* SQDMULH, SQRDMULH (vector) */
7497 if (size != 1 && size != 2) {
7498 unallocated_encoding(s);
7499 return;
7500 }
7501 break;
7502 default:
7503 unallocated_encoding(s);
7504 return;
7505 }
7506
7507 if (!fp_access_check(s)) {
7508 return;
7509 }
7510
7511 tcg_rd = tcg_temp_new_i64();
7512
7513 if (size == 3) {
7514 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7515 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
7516
7517 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
7518 tcg_temp_free_i64(tcg_rn);
7519 tcg_temp_free_i64(tcg_rm);
7520 } else {
7521 /* Do a single operation on the lowest element in the vector.
7522 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
7523 * no side effects for all these operations.
7524 * OPTME: special-purpose helpers would avoid doing some
7525 * unnecessary work in the helper for the 8 and 16 bit cases.
7526 */
7527 NeonGenTwoOpEnvFn *genenvfn;
7528 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7529 TCGv_i32 tcg_rm = tcg_temp_new_i32();
7530 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
7531
7532 read_vec_element_i32(s, tcg_rn, rn, 0, size);
7533 read_vec_element_i32(s, tcg_rm, rm, 0, size);
7534
7535 switch (opcode) {
7536 case 0x1: /* SQADD, UQADD */
7537 {
7538 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7539 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
7540 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
7541 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
7542 };
7543 genenvfn = fns[size][u];
7544 break;
7545 }
7546 case 0x5: /* SQSUB, UQSUB */
7547 {
7548 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7549 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
7550 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
7551 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
7552 };
7553 genenvfn = fns[size][u];
7554 break;
7555 }
7556 case 0x9: /* SQSHL, UQSHL */
7557 {
7558 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7559 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
7560 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
7561 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
7562 };
7563 genenvfn = fns[size][u];
7564 break;
7565 }
7566 case 0xb: /* SQRSHL, UQRSHL */
7567 {
7568 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7569 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
7570 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
7571 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
7572 };
7573 genenvfn = fns[size][u];
7574 break;
7575 }
7576 case 0x16: /* SQDMULH, SQRDMULH */
7577 {
7578 static NeonGenTwoOpEnvFn * const fns[2][2] = {
7579 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
7580 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
7581 };
7582 assert(size == 1 || size == 2);
7583 genenvfn = fns[size - 1][u];
7584 break;
7585 }
7586 default:
7587 g_assert_not_reached();
7588 }
7589
7590 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
7591 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
7592 tcg_temp_free_i32(tcg_rd32);
7593 tcg_temp_free_i32(tcg_rn);
7594 tcg_temp_free_i32(tcg_rm);
7595 }
7596
7597 write_fp_dreg(s, rd, tcg_rd);
7598
7599 tcg_temp_free_i64(tcg_rd);
7600 }
7601
7602 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
7603 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
7604 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
7605 {
7606 /* Handle 64->64 opcodes which are shared between the scalar and
7607 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
7608 * is valid in either group and also the double-precision fp ops.
7609 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
7610 * requires them.
7611 */
7612 TCGCond cond;
7613
7614 switch (opcode) {
7615 case 0x4: /* CLS, CLZ */
7616 if (u) {
7617 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
7618 } else {
7619 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
7620 }
7621 break;
7622 case 0x5: /* NOT */
7623 /* This opcode is shared with CNT and RBIT but we have earlier
7624 * enforced that size == 3 if and only if this is the NOT insn.
7625 */
7626 tcg_gen_not_i64(tcg_rd, tcg_rn);
7627 break;
7628 case 0x7: /* SQABS, SQNEG */
7629 if (u) {
7630 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
7631 } else {
7632 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
7633 }
7634 break;
7635 case 0xa: /* CMLT */
7636 /* 64 bit integer comparison against zero, result is
7637 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
7638 * subtracting 1.
7639 */
7640 cond = TCG_COND_LT;
7641 do_cmop:
7642 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
7643 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7644 break;
7645 case 0x8: /* CMGT, CMGE */
7646 cond = u ? TCG_COND_GE : TCG_COND_GT;
7647 goto do_cmop;
7648 case 0x9: /* CMEQ, CMLE */
7649 cond = u ? TCG_COND_LE : TCG_COND_EQ;
7650 goto do_cmop;
7651 case 0xb: /* ABS, NEG */
7652 if (u) {
7653 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7654 } else {
7655 TCGv_i64 tcg_zero = tcg_const_i64(0);
7656 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7657 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
7658 tcg_rn, tcg_rd);
7659 tcg_temp_free_i64(tcg_zero);
7660 }
7661 break;
7662 case 0x2f: /* FABS */
7663 gen_helper_vfp_absd(tcg_rd, tcg_rn);
7664 break;
7665 case 0x6f: /* FNEG */
7666 gen_helper_vfp_negd(tcg_rd, tcg_rn);
7667 break;
7668 case 0x7f: /* FSQRT */
7669 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
7670 break;
7671 case 0x1a: /* FCVTNS */
7672 case 0x1b: /* FCVTMS */
7673 case 0x1c: /* FCVTAS */
7674 case 0x3a: /* FCVTPS */
7675 case 0x3b: /* FCVTZS */
7676 {
7677 TCGv_i32 tcg_shift = tcg_const_i32(0);
7678 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7679 tcg_temp_free_i32(tcg_shift);
7680 break;
7681 }
7682 case 0x5a: /* FCVTNU */
7683 case 0x5b: /* FCVTMU */
7684 case 0x5c: /* FCVTAU */
7685 case 0x7a: /* FCVTPU */
7686 case 0x7b: /* FCVTZU */
7687 {
7688 TCGv_i32 tcg_shift = tcg_const_i32(0);
7689 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7690 tcg_temp_free_i32(tcg_shift);
7691 break;
7692 }
7693 case 0x18: /* FRINTN */
7694 case 0x19: /* FRINTM */
7695 case 0x38: /* FRINTP */
7696 case 0x39: /* FRINTZ */
7697 case 0x58: /* FRINTA */
7698 case 0x79: /* FRINTI */
7699 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
7700 break;
7701 case 0x59: /* FRINTX */
7702 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
7703 break;
7704 default:
7705 g_assert_not_reached();
7706 }
7707 }
7708
7709 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
7710 bool is_scalar, bool is_u, bool is_q,
7711 int size, int rn, int rd)
7712 {
7713 bool is_double = (size == 3);
7714 TCGv_ptr fpst;
7715
7716 if (!fp_access_check(s)) {
7717 return;
7718 }
7719
7720 fpst = get_fpstatus_ptr();
7721
7722 if (is_double) {
7723 TCGv_i64 tcg_op = tcg_temp_new_i64();
7724 TCGv_i64 tcg_zero = tcg_const_i64(0);
7725 TCGv_i64 tcg_res = tcg_temp_new_i64();
7726 NeonGenTwoDoubleOPFn *genfn;
7727 bool swap = false;
7728 int pass;
7729
7730 switch (opcode) {
7731 case 0x2e: /* FCMLT (zero) */
7732 swap = true;
7733 /* fallthrough */
7734 case 0x2c: /* FCMGT (zero) */
7735 genfn = gen_helper_neon_cgt_f64;
7736 break;
7737 case 0x2d: /* FCMEQ (zero) */
7738 genfn = gen_helper_neon_ceq_f64;
7739 break;
7740 case 0x6d: /* FCMLE (zero) */
7741 swap = true;
7742 /* fall through */
7743 case 0x6c: /* FCMGE (zero) */
7744 genfn = gen_helper_neon_cge_f64;
7745 break;
7746 default:
7747 g_assert_not_reached();
7748 }
7749
7750 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7751 read_vec_element(s, tcg_op, rn, pass, MO_64);
7752 if (swap) {
7753 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7754 } else {
7755 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7756 }
7757 write_vec_element(s, tcg_res, rd, pass, MO_64);
7758 }
7759 if (is_scalar) {
7760 clear_vec_high(s, rd);
7761 }
7762
7763 tcg_temp_free_i64(tcg_res);
7764 tcg_temp_free_i64(tcg_zero);
7765 tcg_temp_free_i64(tcg_op);
7766 } else {
7767 TCGv_i32 tcg_op = tcg_temp_new_i32();
7768 TCGv_i32 tcg_zero = tcg_const_i32(0);
7769 TCGv_i32 tcg_res = tcg_temp_new_i32();
7770 NeonGenTwoSingleOPFn *genfn;
7771 bool swap = false;
7772 int pass, maxpasses;
7773
7774 switch (opcode) {
7775 case 0x2e: /* FCMLT (zero) */
7776 swap = true;
7777 /* fall through */
7778 case 0x2c: /* FCMGT (zero) */
7779 genfn = gen_helper_neon_cgt_f32;
7780 break;
7781 case 0x2d: /* FCMEQ (zero) */
7782 genfn = gen_helper_neon_ceq_f32;
7783 break;
7784 case 0x6d: /* FCMLE (zero) */
7785 swap = true;
7786 /* fall through */
7787 case 0x6c: /* FCMGE (zero) */
7788 genfn = gen_helper_neon_cge_f32;
7789 break;
7790 default:
7791 g_assert_not_reached();
7792 }
7793
7794 if (is_scalar) {
7795 maxpasses = 1;
7796 } else {
7797 maxpasses = is_q ? 4 : 2;
7798 }
7799
7800 for (pass = 0; pass < maxpasses; pass++) {
7801 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7802 if (swap) {
7803 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7804 } else {
7805 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7806 }
7807 if (is_scalar) {
7808 write_fp_sreg(s, rd, tcg_res);
7809 } else {
7810 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7811 }
7812 }
7813 tcg_temp_free_i32(tcg_res);
7814 tcg_temp_free_i32(tcg_zero);
7815 tcg_temp_free_i32(tcg_op);
7816 if (!is_q && !is_scalar) {
7817 clear_vec_high(s, rd);
7818 }
7819 }
7820
7821 tcg_temp_free_ptr(fpst);
7822 }
7823
7824 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
7825 bool is_scalar, bool is_u, bool is_q,
7826 int size, int rn, int rd)
7827 {
7828 bool is_double = (size == 3);
7829 TCGv_ptr fpst = get_fpstatus_ptr();
7830
7831 if (is_double) {
7832 TCGv_i64 tcg_op = tcg_temp_new_i64();
7833 TCGv_i64 tcg_res = tcg_temp_new_i64();
7834 int pass;
7835
7836 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7837 read_vec_element(s, tcg_op, rn, pass, MO_64);
7838 switch (opcode) {
7839 case 0x3d: /* FRECPE */
7840 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
7841 break;
7842 case 0x3f: /* FRECPX */
7843 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
7844 break;
7845 case 0x7d: /* FRSQRTE */
7846 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
7847 break;
7848 default:
7849 g_assert_not_reached();
7850 }
7851 write_vec_element(s, tcg_res, rd, pass, MO_64);
7852 }
7853 if (is_scalar) {
7854 clear_vec_high(s, rd);
7855 }
7856
7857 tcg_temp_free_i64(tcg_res);
7858 tcg_temp_free_i64(tcg_op);
7859 } else {
7860 TCGv_i32 tcg_op = tcg_temp_new_i32();
7861 TCGv_i32 tcg_res = tcg_temp_new_i32();
7862 int pass, maxpasses;
7863
7864 if (is_scalar) {
7865 maxpasses = 1;
7866 } else {
7867 maxpasses = is_q ? 4 : 2;
7868 }
7869
7870 for (pass = 0; pass < maxpasses; pass++) {
7871 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7872
7873 switch (opcode) {
7874 case 0x3c: /* URECPE */
7875 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
7876 break;
7877 case 0x3d: /* FRECPE */
7878 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
7879 break;
7880 case 0x3f: /* FRECPX */
7881 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
7882 break;
7883 case 0x7d: /* FRSQRTE */
7884 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
7885 break;
7886 default:
7887 g_assert_not_reached();
7888 }
7889
7890 if (is_scalar) {
7891 write_fp_sreg(s, rd, tcg_res);
7892 } else {
7893 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7894 }
7895 }
7896 tcg_temp_free_i32(tcg_res);
7897 tcg_temp_free_i32(tcg_op);
7898 if (!is_q && !is_scalar) {
7899 clear_vec_high(s, rd);
7900 }
7901 }
7902 tcg_temp_free_ptr(fpst);
7903 }
7904
7905 static void handle_2misc_narrow(DisasContext *s, bool scalar,
7906 int opcode, bool u, bool is_q,
7907 int size, int rn, int rd)
7908 {
7909 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
7910 * in the source becomes a size element in the destination).
7911 */
7912 int pass;
7913 TCGv_i32 tcg_res[2];
7914 int destelt = is_q ? 2 : 0;
7915 int passes = scalar ? 1 : 2;
7916
7917 if (scalar) {
7918 tcg_res[1] = tcg_const_i32(0);
7919 }
7920
7921 for (pass = 0; pass < passes; pass++) {
7922 TCGv_i64 tcg_op = tcg_temp_new_i64();
7923 NeonGenNarrowFn *genfn = NULL;
7924 NeonGenNarrowEnvFn *genenvfn = NULL;
7925
7926 if (scalar) {
7927 read_vec_element(s, tcg_op, rn, pass, size + 1);
7928 } else {
7929 read_vec_element(s, tcg_op, rn, pass, MO_64);
7930 }
7931 tcg_res[pass] = tcg_temp_new_i32();
7932
7933 switch (opcode) {
7934 case 0x12: /* XTN, SQXTUN */
7935 {
7936 static NeonGenNarrowFn * const xtnfns[3] = {
7937 gen_helper_neon_narrow_u8,
7938 gen_helper_neon_narrow_u16,
7939 tcg_gen_extrl_i64_i32,
7940 };
7941 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
7942 gen_helper_neon_unarrow_sat8,
7943 gen_helper_neon_unarrow_sat16,
7944 gen_helper_neon_unarrow_sat32,
7945 };
7946 if (u) {
7947 genenvfn = sqxtunfns[size];
7948 } else {
7949 genfn = xtnfns[size];
7950 }
7951 break;
7952 }
7953 case 0x14: /* SQXTN, UQXTN */
7954 {
7955 static NeonGenNarrowEnvFn * const fns[3][2] = {
7956 { gen_helper_neon_narrow_sat_s8,
7957 gen_helper_neon_narrow_sat_u8 },
7958 { gen_helper_neon_narrow_sat_s16,
7959 gen_helper_neon_narrow_sat_u16 },
7960 { gen_helper_neon_narrow_sat_s32,
7961 gen_helper_neon_narrow_sat_u32 },
7962 };
7963 genenvfn = fns[size][u];
7964 break;
7965 }
7966 case 0x16: /* FCVTN, FCVTN2 */
7967 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
7968 if (size == 2) {
7969 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
7970 } else {
7971 TCGv_i32 tcg_lo = tcg_temp_new_i32();
7972 TCGv_i32 tcg_hi = tcg_temp_new_i32();
7973 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
7974 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env);
7975 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env);
7976 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
7977 tcg_temp_free_i32(tcg_lo);
7978 tcg_temp_free_i32(tcg_hi);
7979 }
7980 break;
7981 case 0x56: /* FCVTXN, FCVTXN2 */
7982 /* 64 bit to 32 bit float conversion
7983 * with von Neumann rounding (round to odd)
7984 */
7985 assert(size == 2);
7986 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
7987 break;
7988 default:
7989 g_assert_not_reached();
7990 }
7991
7992 if (genfn) {
7993 genfn(tcg_res[pass], tcg_op);
7994 } else if (genenvfn) {
7995 genenvfn(tcg_res[pass], cpu_env, tcg_op);
7996 }
7997
7998 tcg_temp_free_i64(tcg_op);
7999 }
8000
8001 for (pass = 0; pass < 2; pass++) {
8002 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
8003 tcg_temp_free_i32(tcg_res[pass]);
8004 }
8005 if (!is_q) {
8006 clear_vec_high(s, rd);
8007 }
8008 }
8009
8010 /* Remaining saturating accumulating ops */
8011 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
8012 bool is_q, int size, int rn, int rd)
8013 {
8014 bool is_double = (size == 3);
8015
8016 if (is_double) {
8017 TCGv_i64 tcg_rn = tcg_temp_new_i64();
8018 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8019 int pass;
8020
8021 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8022 read_vec_element(s, tcg_rn, rn, pass, MO_64);
8023 read_vec_element(s, tcg_rd, rd, pass, MO_64);
8024
8025 if (is_u) { /* USQADD */
8026 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8027 } else { /* SUQADD */
8028 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8029 }
8030 write_vec_element(s, tcg_rd, rd, pass, MO_64);
8031 }
8032 if (is_scalar) {
8033 clear_vec_high(s, rd);
8034 }
8035
8036 tcg_temp_free_i64(tcg_rd);
8037 tcg_temp_free_i64(tcg_rn);
8038 } else {
8039 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8040 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8041 int pass, maxpasses;
8042
8043 if (is_scalar) {
8044 maxpasses = 1;
8045 } else {
8046 maxpasses = is_q ? 4 : 2;
8047 }
8048
8049 for (pass = 0; pass < maxpasses; pass++) {
8050 if (is_scalar) {
8051 read_vec_element_i32(s, tcg_rn, rn, pass, size);
8052 read_vec_element_i32(s, tcg_rd, rd, pass, size);
8053 } else {
8054 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
8055 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
8056 }
8057
8058 if (is_u) { /* USQADD */
8059 switch (size) {
8060 case 0:
8061 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8062 break;
8063 case 1:
8064 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8065 break;
8066 case 2:
8067 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8068 break;
8069 default:
8070 g_assert_not_reached();
8071 }
8072 } else { /* SUQADD */
8073 switch (size) {
8074 case 0:
8075 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8076 break;
8077 case 1:
8078 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8079 break;
8080 case 2:
8081 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8082 break;
8083 default:
8084 g_assert_not_reached();
8085 }
8086 }
8087
8088 if (is_scalar) {
8089 TCGv_i64 tcg_zero = tcg_const_i64(0);
8090 write_vec_element(s, tcg_zero, rd, 0, MO_64);
8091 tcg_temp_free_i64(tcg_zero);
8092 }
8093 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
8094 }
8095
8096 if (!is_q) {
8097 clear_vec_high(s, rd);
8098 }
8099
8100 tcg_temp_free_i32(tcg_rd);
8101 tcg_temp_free_i32(tcg_rn);
8102 }
8103 }
8104
8105 /* AdvSIMD scalar two reg misc
8106 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8107 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8108 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
8109 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8110 */
8111 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
8112 {
8113 int rd = extract32(insn, 0, 5);
8114 int rn = extract32(insn, 5, 5);
8115 int opcode = extract32(insn, 12, 5);
8116 int size = extract32(insn, 22, 2);
8117 bool u = extract32(insn, 29, 1);
8118 bool is_fcvt = false;
8119 int rmode;
8120 TCGv_i32 tcg_rmode;
8121 TCGv_ptr tcg_fpstatus;
8122
8123 switch (opcode) {
8124 case 0x3: /* USQADD / SUQADD*/
8125 if (!fp_access_check(s)) {
8126 return;
8127 }
8128 handle_2misc_satacc(s, true, u, false, size, rn, rd);
8129 return;
8130 case 0x7: /* SQABS / SQNEG */
8131 break;
8132 case 0xa: /* CMLT */
8133 if (u) {
8134 unallocated_encoding(s);
8135 return;
8136 }
8137 /* fall through */
8138 case 0x8: /* CMGT, CMGE */
8139 case 0x9: /* CMEQ, CMLE */
8140 case 0xb: /* ABS, NEG */
8141 if (size != 3) {
8142 unallocated_encoding(s);
8143 return;
8144 }
8145 break;
8146 case 0x12: /* SQXTUN */
8147 if (!u) {
8148 unallocated_encoding(s);
8149 return;
8150 }
8151 /* fall through */
8152 case 0x14: /* SQXTN, UQXTN */
8153 if (size == 3) {
8154 unallocated_encoding(s);
8155 return;
8156 }
8157 if (!fp_access_check(s)) {
8158 return;
8159 }
8160 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
8161 return;
8162 case 0xc ... 0xf:
8163 case 0x16 ... 0x1d:
8164 case 0x1f:
8165 /* Floating point: U, size[1] and opcode indicate operation;
8166 * size[0] indicates single or double precision.
8167 */
8168 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
8169 size = extract32(size, 0, 1) ? 3 : 2;
8170 switch (opcode) {
8171 case 0x2c: /* FCMGT (zero) */
8172 case 0x2d: /* FCMEQ (zero) */
8173 case 0x2e: /* FCMLT (zero) */
8174 case 0x6c: /* FCMGE (zero) */
8175 case 0x6d: /* FCMLE (zero) */
8176 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
8177 return;
8178 case 0x1d: /* SCVTF */
8179 case 0x5d: /* UCVTF */
8180 {
8181 bool is_signed = (opcode == 0x1d);
8182 if (!fp_access_check(s)) {
8183 return;
8184 }
8185 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
8186 return;
8187 }
8188 case 0x3d: /* FRECPE */
8189 case 0x3f: /* FRECPX */
8190 case 0x7d: /* FRSQRTE */
8191 if (!fp_access_check(s)) {
8192 return;
8193 }
8194 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
8195 return;
8196 case 0x1a: /* FCVTNS */
8197 case 0x1b: /* FCVTMS */
8198 case 0x3a: /* FCVTPS */
8199 case 0x3b: /* FCVTZS */
8200 case 0x5a: /* FCVTNU */
8201 case 0x5b: /* FCVTMU */
8202 case 0x7a: /* FCVTPU */
8203 case 0x7b: /* FCVTZU */
8204 is_fcvt = true;
8205 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
8206 break;
8207 case 0x1c: /* FCVTAS */
8208 case 0x5c: /* FCVTAU */
8209 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
8210 is_fcvt = true;
8211 rmode = FPROUNDING_TIEAWAY;
8212 break;
8213 case 0x56: /* FCVTXN, FCVTXN2 */
8214 if (size == 2) {
8215 unallocated_encoding(s);
8216 return;
8217 }
8218 if (!fp_access_check(s)) {
8219 return;
8220 }
8221 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
8222 return;
8223 default:
8224 unallocated_encoding(s);
8225 return;
8226 }
8227 break;
8228 default:
8229 unallocated_encoding(s);
8230 return;
8231 }
8232
8233 if (!fp_access_check(s)) {
8234 return;
8235 }
8236
8237 if (is_fcvt) {
8238 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
8239 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8240 tcg_fpstatus = get_fpstatus_ptr();
8241 } else {
8242 TCGV_UNUSED_I32(tcg_rmode);
8243 TCGV_UNUSED_PTR(tcg_fpstatus);
8244 }
8245
8246 if (size == 3) {
8247 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8248 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8249
8250 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
8251 write_fp_dreg(s, rd, tcg_rd);
8252 tcg_temp_free_i64(tcg_rd);
8253 tcg_temp_free_i64(tcg_rn);
8254 } else {
8255 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8256 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8257
8258 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8259
8260 switch (opcode) {
8261 case 0x7: /* SQABS, SQNEG */
8262 {
8263 NeonGenOneOpEnvFn *genfn;
8264 static NeonGenOneOpEnvFn * const fns[3][2] = {
8265 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
8266 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
8267 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
8268 };
8269 genfn = fns[size][u];
8270 genfn(tcg_rd, cpu_env, tcg_rn);
8271 break;
8272 }
8273 case 0x1a: /* FCVTNS */
8274 case 0x1b: /* FCVTMS */
8275 case 0x1c: /* FCVTAS */
8276 case 0x3a: /* FCVTPS */
8277 case 0x3b: /* FCVTZS */
8278 {
8279 TCGv_i32 tcg_shift = tcg_const_i32(0);
8280 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8281 tcg_temp_free_i32(tcg_shift);
8282 break;
8283 }
8284 case 0x5a: /* FCVTNU */
8285 case 0x5b: /* FCVTMU */
8286 case 0x5c: /* FCVTAU */
8287 case 0x7a: /* FCVTPU */
8288 case 0x7b: /* FCVTZU */
8289 {
8290 TCGv_i32 tcg_shift = tcg_const_i32(0);
8291 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8292 tcg_temp_free_i32(tcg_shift);
8293 break;
8294 }
8295 default:
8296 g_assert_not_reached();
8297 }
8298
8299 write_fp_sreg(s, rd, tcg_rd);
8300 tcg_temp_free_i32(tcg_rd);
8301 tcg_temp_free_i32(tcg_rn);
8302 }
8303
8304 if (is_fcvt) {
8305 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8306 tcg_temp_free_i32(tcg_rmode);
8307 tcg_temp_free_ptr(tcg_fpstatus);
8308 }
8309 }
8310
8311 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
8312 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
8313 int immh, int immb, int opcode, int rn, int rd)
8314 {
8315 int size = 32 - clz32(immh) - 1;
8316 int immhb = immh << 3 | immb;
8317 int shift = 2 * (8 << size) - immhb;
8318 bool accumulate = false;
8319 bool round = false;
8320 bool insert = false;
8321 int dsize = is_q ? 128 : 64;
8322 int esize = 8 << size;
8323 int elements = dsize/esize;
8324 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
8325 TCGv_i64 tcg_rn = new_tmp_a64(s);
8326 TCGv_i64 tcg_rd = new_tmp_a64(s);
8327 TCGv_i64 tcg_round;
8328 int i;
8329
8330 if (extract32(immh, 3, 1) && !is_q) {
8331 unallocated_encoding(s);
8332 return;
8333 }
8334
8335 if (size > 3 && !is_q) {
8336 unallocated_encoding(s);
8337 return;
8338 }
8339
8340 if (!fp_access_check(s)) {
8341 return;
8342 }
8343
8344 switch (opcode) {
8345 case 0x02: /* SSRA / USRA (accumulate) */
8346 accumulate = true;
8347 break;
8348 case 0x04: /* SRSHR / URSHR (rounding) */
8349 round = true;
8350 break;
8351 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8352 accumulate = round = true;
8353 break;
8354 case 0x08: /* SRI */
8355 insert = true;
8356 break;
8357 }
8358
8359 if (round) {
8360 uint64_t round_const = 1ULL << (shift - 1);
8361 tcg_round = tcg_const_i64(round_const);
8362 } else {
8363 TCGV_UNUSED_I64(tcg_round);
8364 }
8365
8366 for (i = 0; i < elements; i++) {
8367 read_vec_element(s, tcg_rn, rn, i, memop);
8368 if (accumulate || insert) {
8369 read_vec_element(s, tcg_rd, rd, i, memop);
8370 }
8371
8372 if (insert) {
8373 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
8374 } else {
8375 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8376 accumulate, is_u, size, shift);
8377 }
8378
8379 write_vec_element(s, tcg_rd, rd, i, size);
8380 }
8381
8382 if (!is_q) {
8383 clear_vec_high(s, rd);
8384 }
8385
8386 if (round) {
8387 tcg_temp_free_i64(tcg_round);
8388 }
8389 }
8390
8391 /* SHL/SLI - Vector shift left */
8392 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
8393 int immh, int immb, int opcode, int rn, int rd)
8394 {
8395 int size = 32 - clz32(immh) - 1;
8396 int immhb = immh << 3 | immb;
8397 int shift = immhb - (8 << size);
8398 int dsize = is_q ? 128 : 64;
8399 int esize = 8 << size;
8400 int elements = dsize/esize;
8401 TCGv_i64 tcg_rn = new_tmp_a64(s);
8402 TCGv_i64 tcg_rd = new_tmp_a64(s);
8403 int i;
8404
8405 if (extract32(immh, 3, 1) && !is_q) {
8406 unallocated_encoding(s);
8407 return;
8408 }
8409
8410 if (size > 3 && !is_q) {
8411 unallocated_encoding(s);
8412 return;
8413 }
8414
8415 if (!fp_access_check(s)) {
8416 return;
8417 }
8418
8419 for (i = 0; i < elements; i++) {
8420 read_vec_element(s, tcg_rn, rn, i, size);
8421 if (insert) {
8422 read_vec_element(s, tcg_rd, rd, i, size);
8423 }
8424
8425 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
8426
8427 write_vec_element(s, tcg_rd, rd, i, size);
8428 }
8429
8430 if (!is_q) {
8431 clear_vec_high(s, rd);
8432 }
8433 }
8434
8435 /* USHLL/SHLL - Vector shift left with widening */
8436 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
8437 int immh, int immb, int opcode, int rn, int rd)
8438 {
8439 int size = 32 - clz32(immh) - 1;
8440 int immhb = immh << 3 | immb;
8441 int shift = immhb - (8 << size);
8442 int dsize = 64;
8443 int esize = 8 << size;
8444 int elements = dsize/esize;
8445 TCGv_i64 tcg_rn = new_tmp_a64(s);
8446 TCGv_i64 tcg_rd = new_tmp_a64(s);
8447 int i;
8448
8449 if (size >= 3) {
8450 unallocated_encoding(s);
8451 return;
8452 }
8453
8454 if (!fp_access_check(s)) {
8455 return;
8456 }
8457
8458 /* For the LL variants the store is larger than the load,
8459 * so if rd == rn we would overwrite parts of our input.
8460 * So load everything right now and use shifts in the main loop.
8461 */
8462 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
8463
8464 for (i = 0; i < elements; i++) {
8465 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
8466 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
8467 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
8468 write_vec_element(s, tcg_rd, rd, i, size + 1);
8469 }
8470 }
8471
8472 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
8473 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
8474 int immh, int immb, int opcode, int rn, int rd)
8475 {
8476 int immhb = immh << 3 | immb;
8477 int size = 32 - clz32(immh) - 1;
8478 int dsize = 64;
8479 int esize = 8 << size;
8480 int elements = dsize/esize;
8481 int shift = (2 * esize) - immhb;
8482 bool round = extract32(opcode, 0, 1);
8483 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
8484 TCGv_i64 tcg_round;
8485 int i;
8486
8487 if (extract32(immh, 3, 1)) {
8488 unallocated_encoding(s);
8489 return;
8490 }
8491
8492 if (!fp_access_check(s)) {
8493 return;
8494 }
8495
8496 tcg_rn = tcg_temp_new_i64();
8497 tcg_rd = tcg_temp_new_i64();
8498 tcg_final = tcg_temp_new_i64();
8499 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
8500
8501 if (round) {
8502 uint64_t round_const = 1ULL << (shift - 1);
8503 tcg_round = tcg_const_i64(round_const);
8504 } else {
8505 TCGV_UNUSED_I64(tcg_round);
8506 }
8507
8508 for (i = 0; i < elements; i++) {
8509 read_vec_element(s, tcg_rn, rn, i, size+1);
8510 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8511 false, true, size+1, shift);
8512
8513 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8514 }
8515
8516 if (!is_q) {
8517 clear_vec_high(s, rd);
8518 write_vec_element(s, tcg_final, rd, 0, MO_64);
8519 } else {
8520 write_vec_element(s, tcg_final, rd, 1, MO_64);
8521 }
8522
8523 if (round) {
8524 tcg_temp_free_i64(tcg_round);
8525 }
8526 tcg_temp_free_i64(tcg_rn);
8527 tcg_temp_free_i64(tcg_rd);
8528 tcg_temp_free_i64(tcg_final);
8529 return;
8530 }
8531
8532
8533 /* AdvSIMD shift by immediate
8534 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8535 * +---+---+---+-------------+------+------+--------+---+------+------+
8536 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8537 * +---+---+---+-------------+------+------+--------+---+------+------+
8538 */
8539 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
8540 {
8541 int rd = extract32(insn, 0, 5);
8542 int rn = extract32(insn, 5, 5);
8543 int opcode = extract32(insn, 11, 5);
8544 int immb = extract32(insn, 16, 3);
8545 int immh = extract32(insn, 19, 4);
8546 bool is_u = extract32(insn, 29, 1);
8547 bool is_q = extract32(insn, 30, 1);
8548
8549 switch (opcode) {
8550 case 0x08: /* SRI */
8551 if (!is_u) {
8552 unallocated_encoding(s);
8553 return;
8554 }
8555 /* fall through */
8556 case 0x00: /* SSHR / USHR */
8557 case 0x02: /* SSRA / USRA (accumulate) */
8558 case 0x04: /* SRSHR / URSHR (rounding) */
8559 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8560 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
8561 break;
8562 case 0x0a: /* SHL / SLI */
8563 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8564 break;
8565 case 0x10: /* SHRN */
8566 case 0x11: /* RSHRN / SQRSHRUN */
8567 if (is_u) {
8568 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
8569 opcode, rn, rd);
8570 } else {
8571 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
8572 }
8573 break;
8574 case 0x12: /* SQSHRN / UQSHRN */
8575 case 0x13: /* SQRSHRN / UQRSHRN */
8576 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
8577 opcode, rn, rd);
8578 break;
8579 case 0x14: /* SSHLL / USHLL */
8580 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8581 break;
8582 case 0x1c: /* SCVTF / UCVTF */
8583 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
8584 opcode, rn, rd);
8585 break;
8586 case 0xc: /* SQSHLU */
8587 if (!is_u) {
8588 unallocated_encoding(s);
8589 return;
8590 }
8591 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
8592 break;
8593 case 0xe: /* SQSHL, UQSHL */
8594 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
8595 break;
8596 case 0x1f: /* FCVTZS/ FCVTZU */
8597 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
8598 return;
8599 default:
8600 unallocated_encoding(s);
8601 return;
8602 }
8603 }
8604
8605 /* Generate code to do a "long" addition or subtraction, ie one done in
8606 * TCGv_i64 on vector lanes twice the width specified by size.
8607 */
8608 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
8609 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
8610 {
8611 static NeonGenTwo64OpFn * const fns[3][2] = {
8612 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
8613 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
8614 { tcg_gen_add_i64, tcg_gen_sub_i64 },
8615 };
8616 NeonGenTwo64OpFn *genfn;
8617 assert(size < 3);
8618
8619 genfn = fns[size][is_sub];
8620 genfn(tcg_res, tcg_op1, tcg_op2);
8621 }
8622
8623 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
8624 int opcode, int rd, int rn, int rm)
8625 {
8626 /* 3-reg-different widening insns: 64 x 64 -> 128 */
8627 TCGv_i64 tcg_res[2];
8628 int pass, accop;
8629
8630 tcg_res[0] = tcg_temp_new_i64();
8631 tcg_res[1] = tcg_temp_new_i64();
8632
8633 /* Does this op do an adding accumulate, a subtracting accumulate,
8634 * or no accumulate at all?
8635 */
8636 switch (opcode) {
8637 case 5:
8638 case 8:
8639 case 9:
8640 accop = 1;
8641 break;
8642 case 10:
8643 case 11:
8644 accop = -1;
8645 break;
8646 default:
8647 accop = 0;
8648 break;
8649 }
8650
8651 if (accop != 0) {
8652 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
8653 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
8654 }
8655
8656 /* size == 2 means two 32x32->64 operations; this is worth special
8657 * casing because we can generally handle it inline.
8658 */
8659 if (size == 2) {
8660 for (pass = 0; pass < 2; pass++) {
8661 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8662 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8663 TCGv_i64 tcg_passres;
8664 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
8665
8666 int elt = pass + is_q * 2;
8667
8668 read_vec_element(s, tcg_op1, rn, elt, memop);
8669 read_vec_element(s, tcg_op2, rm, elt, memop);
8670
8671 if (accop == 0) {
8672 tcg_passres = tcg_res[pass];
8673 } else {
8674 tcg_passres = tcg_temp_new_i64();
8675 }
8676
8677 switch (opcode) {
8678 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8679 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
8680 break;
8681 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8682 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
8683 break;
8684 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8685 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8686 {
8687 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
8688 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
8689
8690 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
8691 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
8692 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
8693 tcg_passres,
8694 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
8695 tcg_temp_free_i64(tcg_tmp1);
8696 tcg_temp_free_i64(tcg_tmp2);
8697 break;
8698 }
8699 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8700 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8701 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8702 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8703 break;
8704 case 9: /* SQDMLAL, SQDMLAL2 */
8705 case 11: /* SQDMLSL, SQDMLSL2 */
8706 case 13: /* SQDMULL, SQDMULL2 */
8707 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8708 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
8709 tcg_passres, tcg_passres);
8710 break;
8711 default:
8712 g_assert_not_reached();
8713 }
8714
8715 if (opcode == 9 || opcode == 11) {
8716 /* saturating accumulate ops */
8717 if (accop < 0) {
8718 tcg_gen_neg_i64(tcg_passres, tcg_passres);
8719 }
8720 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
8721 tcg_res[pass], tcg_passres);
8722 } else if (accop > 0) {
8723 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8724 } else if (accop < 0) {
8725 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8726 }
8727
8728 if (accop != 0) {
8729 tcg_temp_free_i64(tcg_passres);
8730 }
8731
8732 tcg_temp_free_i64(tcg_op1);
8733 tcg_temp_free_i64(tcg_op2);
8734 }
8735 } else {
8736 /* size 0 or 1, generally helper functions */
8737 for (pass = 0; pass < 2; pass++) {
8738 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8739 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8740 TCGv_i64 tcg_passres;
8741 int elt = pass + is_q * 2;
8742
8743 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
8744 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
8745
8746 if (accop == 0) {
8747 tcg_passres = tcg_res[pass];
8748 } else {
8749 tcg_passres = tcg_temp_new_i64();
8750 }
8751
8752 switch (opcode) {
8753 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8754 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8755 {
8756 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
8757 static NeonGenWidenFn * const widenfns[2][2] = {
8758 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8759 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8760 };
8761 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8762
8763 widenfn(tcg_op2_64, tcg_op2);
8764 widenfn(tcg_passres, tcg_op1);
8765 gen_neon_addl(size, (opcode == 2), tcg_passres,
8766 tcg_passres, tcg_op2_64);
8767 tcg_temp_free_i64(tcg_op2_64);
8768 break;
8769 }
8770 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8771 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8772 if (size == 0) {
8773 if (is_u) {
8774 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
8775 } else {
8776 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
8777 }
8778 } else {
8779 if (is_u) {
8780 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
8781 } else {
8782 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
8783 }
8784 }
8785 break;
8786 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8787 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8788 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8789 if (size == 0) {
8790 if (is_u) {
8791 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
8792 } else {
8793 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
8794 }
8795 } else {
8796 if (is_u) {
8797 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
8798 } else {
8799 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8800 }
8801 }
8802 break;
8803 case 9: /* SQDMLAL, SQDMLAL2 */
8804 case 11: /* SQDMLSL, SQDMLSL2 */
8805 case 13: /* SQDMULL, SQDMULL2 */
8806 assert(size == 1);
8807 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8808 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
8809 tcg_passres, tcg_passres);
8810 break;
8811 case 14: /* PMULL */
8812 assert(size == 0);
8813 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
8814 break;
8815 default:
8816 g_assert_not_reached();
8817 }
8818 tcg_temp_free_i32(tcg_op1);
8819 tcg_temp_free_i32(tcg_op2);
8820
8821 if (accop != 0) {
8822 if (opcode == 9 || opcode == 11) {
8823 /* saturating accumulate ops */
8824 if (accop < 0) {
8825 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
8826 }
8827 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
8828 tcg_res[pass],
8829 tcg_passres);
8830 } else {
8831 gen_neon_addl(size, (accop < 0), tcg_res[pass],
8832 tcg_res[pass], tcg_passres);
8833 }
8834 tcg_temp_free_i64(tcg_passres);
8835 }
8836 }
8837 }
8838
8839 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
8840 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
8841 tcg_temp_free_i64(tcg_res[0]);
8842 tcg_temp_free_i64(tcg_res[1]);
8843 }
8844
8845 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
8846 int opcode, int rd, int rn, int rm)
8847 {
8848 TCGv_i64 tcg_res[2];
8849 int part = is_q ? 2 : 0;
8850 int pass;
8851
8852 for (pass = 0; pass < 2; pass++) {
8853 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8854 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8855 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
8856 static NeonGenWidenFn * const widenfns[3][2] = {
8857 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8858 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8859 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
8860 };
8861 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8862
8863 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8864 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
8865 widenfn(tcg_op2_wide, tcg_op2);
8866 tcg_temp_free_i32(tcg_op2);
8867 tcg_res[pass] = tcg_temp_new_i64();
8868 gen_neon_addl(size, (opcode == 3),
8869 tcg_res[pass], tcg_op1, tcg_op2_wide);
8870 tcg_temp_free_i64(tcg_op1);
8871 tcg_temp_free_i64(tcg_op2_wide);
8872 }
8873
8874 for (pass = 0; pass < 2; pass++) {
8875 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
8876 tcg_temp_free_i64(tcg_res[pass]);
8877 }
8878 }
8879
8880 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
8881 {
8882 tcg_gen_addi_i64(in, in, 1U << 31);
8883 tcg_gen_extrh_i64_i32(res, in);
8884 }
8885
8886 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
8887 int opcode, int rd, int rn, int rm)
8888 {
8889 TCGv_i32 tcg_res[2];
8890 int part = is_q ? 2 : 0;
8891 int pass;
8892
8893 for (pass = 0; pass < 2; pass++) {
8894 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8895 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8896 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
8897 static NeonGenNarrowFn * const narrowfns[3][2] = {
8898 { gen_helper_neon_narrow_high_u8,
8899 gen_helper_neon_narrow_round_high_u8 },
8900 { gen_helper_neon_narrow_high_u16,
8901 gen_helper_neon_narrow_round_high_u16 },
8902 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
8903 };
8904 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
8905
8906 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8907 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8908
8909 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
8910
8911 tcg_temp_free_i64(tcg_op1);
8912 tcg_temp_free_i64(tcg_op2);
8913
8914 tcg_res[pass] = tcg_temp_new_i32();
8915 gennarrow(tcg_res[pass], tcg_wideres);
8916 tcg_temp_free_i64(tcg_wideres);
8917 }
8918
8919 for (pass = 0; pass < 2; pass++) {
8920 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
8921 tcg_temp_free_i32(tcg_res[pass]);
8922 }
8923 if (!is_q) {
8924 clear_vec_high(s, rd);
8925 }
8926 }
8927
8928 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
8929 {
8930 /* PMULL of 64 x 64 -> 128 is an odd special case because it
8931 * is the only three-reg-diff instruction which produces a
8932 * 128-bit wide result from a single operation. However since
8933 * it's possible to calculate the two halves more or less
8934 * separately we just use two helper calls.
8935 */
8936 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8937 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8938 TCGv_i64 tcg_res = tcg_temp_new_i64();
8939
8940 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
8941 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
8942 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
8943 write_vec_element(s, tcg_res, rd, 0, MO_64);
8944 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
8945 write_vec_element(s, tcg_res, rd, 1, MO_64);
8946
8947 tcg_temp_free_i64(tcg_op1);
8948 tcg_temp_free_i64(tcg_op2);
8949 tcg_temp_free_i64(tcg_res);
8950 }
8951
8952 /* AdvSIMD three different
8953 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8954 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8955 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8956 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8957 */
8958 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
8959 {
8960 /* Instructions in this group fall into three basic classes
8961 * (in each case with the operation working on each element in
8962 * the input vectors):
8963 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
8964 * 128 bit input)
8965 * (2) wide 64 x 128 -> 128
8966 * (3) narrowing 128 x 128 -> 64
8967 * Here we do initial decode, catch unallocated cases and
8968 * dispatch to separate functions for each class.
8969 */
8970 int is_q = extract32(insn, 30, 1);
8971 int is_u = extract32(insn, 29, 1);
8972 int size = extract32(insn, 22, 2);
8973 int opcode = extract32(insn, 12, 4);
8974 int rm = extract32(insn, 16, 5);
8975 int rn = extract32(insn, 5, 5);
8976 int rd = extract32(insn, 0, 5);
8977
8978 switch (opcode) {
8979 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
8980 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
8981 /* 64 x 128 -> 128 */
8982 if (size == 3) {
8983 unallocated_encoding(s);
8984 return;
8985 }
8986 if (!fp_access_check(s)) {
8987 return;
8988 }
8989 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
8990 break;
8991 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
8992 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
8993 /* 128 x 128 -> 64 */
8994 if (size == 3) {
8995 unallocated_encoding(s);
8996 return;
8997 }
8998 if (!fp_access_check(s)) {
8999 return;
9000 }
9001 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
9002 break;
9003 case 14: /* PMULL, PMULL2 */
9004 if (is_u || size == 1 || size == 2) {
9005 unallocated_encoding(s);
9006 return;
9007 }
9008 if (size == 3) {
9009 if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
9010 unallocated_encoding(s);
9011 return;
9012 }
9013 if (!fp_access_check(s)) {
9014 return;
9015 }
9016 handle_pmull_64(s, is_q, rd, rn, rm);
9017 return;
9018 }
9019 goto is_widening;
9020 case 9: /* SQDMLAL, SQDMLAL2 */
9021 case 11: /* SQDMLSL, SQDMLSL2 */
9022 case 13: /* SQDMULL, SQDMULL2 */
9023 if (is_u || size == 0) {
9024 unallocated_encoding(s);
9025 return;
9026 }
9027 /* fall through */
9028 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
9029 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
9030 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
9031 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
9032 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
9033 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
9034 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
9035 /* 64 x 64 -> 128 */
9036 if (size == 3) {
9037 unallocated_encoding(s);
9038 return;
9039 }
9040 is_widening:
9041 if (!fp_access_check(s)) {
9042 return;
9043 }
9044
9045 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
9046 break;
9047 default:
9048 /* opcode 15 not allocated */
9049 unallocated_encoding(s);
9050 break;
9051 }
9052 }
9053
9054 /* Logic op (opcode == 3) subgroup of C3.6.16. */
9055 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
9056 {
9057 int rd = extract32(insn, 0, 5);
9058 int rn = extract32(insn, 5, 5);
9059 int rm = extract32(insn, 16, 5);
9060 int size = extract32(insn, 22, 2);
9061 bool is_u = extract32(insn, 29, 1);
9062 bool is_q = extract32(insn, 30, 1);
9063 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
9064 int pass;
9065
9066 if (!fp_access_check(s)) {
9067 return;
9068 }
9069
9070 tcg_op1 = tcg_temp_new_i64();
9071 tcg_op2 = tcg_temp_new_i64();
9072 tcg_res[0] = tcg_temp_new_i64();
9073 tcg_res[1] = tcg_temp_new_i64();
9074
9075 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
9076 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9077 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9078
9079 if (!is_u) {
9080 switch (size) {
9081 case 0: /* AND */
9082 tcg_gen_and_i64(tcg_res[pass], tcg_op1, tcg_op2);
9083 break;
9084 case 1: /* BIC */
9085 tcg_gen_andc_i64(tcg_res[pass], tcg_op1, tcg_op2);
9086 break;
9087 case 2: /* ORR */
9088 tcg_gen_or_i64(tcg_res[pass], tcg_op1, tcg_op2);
9089 break;
9090 case 3: /* ORN */
9091 tcg_gen_orc_i64(tcg_res[pass], tcg_op1, tcg_op2);
9092 break;
9093 }
9094 } else {
9095 if (size != 0) {
9096 /* B* ops need res loaded to operate on */
9097 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9098 }
9099
9100 switch (size) {
9101 case 0: /* EOR */
9102 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
9103 break;
9104 case 1: /* BSL bitwise select */
9105 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_op2);
9106 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_res[pass]);
9107 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op1);
9108 break;
9109 case 2: /* BIT, bitwise insert if true */
9110 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
9111 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_op2);
9112 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9113 break;
9114 case 3: /* BIF, bitwise insert if false */
9115 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
9116 tcg_gen_andc_i64(tcg_op1, tcg_op1, tcg_op2);
9117 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9118 break;
9119 }
9120 }
9121 }
9122
9123 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
9124 if (!is_q) {
9125 tcg_gen_movi_i64(tcg_res[1], 0);
9126 }
9127 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
9128
9129 tcg_temp_free_i64(tcg_op1);
9130 tcg_temp_free_i64(tcg_op2);
9131 tcg_temp_free_i64(tcg_res[0]);
9132 tcg_temp_free_i64(tcg_res[1]);
9133 }
9134
9135 /* Helper functions for 32 bit comparisons */
9136 static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9137 {
9138 tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2);
9139 }
9140
9141 static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9142 {
9143 tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2);
9144 }
9145
9146 static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9147 {
9148 tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2);
9149 }
9150
9151 static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9152 {
9153 tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2);
9154 }
9155
9156 /* Pairwise op subgroup of C3.6.16.
9157 *
9158 * This is called directly or via the handle_3same_float for float pairwise
9159 * operations where the opcode and size are calculated differently.
9160 */
9161 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
9162 int size, int rn, int rm, int rd)
9163 {
9164 TCGv_ptr fpst;
9165 int pass;
9166
9167 /* Floating point operations need fpst */
9168 if (opcode >= 0x58) {
9169 fpst = get_fpstatus_ptr();
9170 } else {
9171 TCGV_UNUSED_PTR(fpst);
9172 }
9173
9174 if (!fp_access_check(s)) {
9175 return;
9176 }
9177
9178 /* These operations work on the concatenated rm:rn, with each pair of
9179 * adjacent elements being operated on to produce an element in the result.
9180 */
9181 if (size == 3) {
9182 TCGv_i64 tcg_res[2];
9183
9184 for (pass = 0; pass < 2; pass++) {
9185 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9186 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9187 int passreg = (pass == 0) ? rn : rm;
9188
9189 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
9190 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
9191 tcg_res[pass] = tcg_temp_new_i64();
9192
9193 switch (opcode) {
9194 case 0x17: /* ADDP */
9195 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9196 break;
9197 case 0x58: /* FMAXNMP */
9198 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9199 break;
9200 case 0x5a: /* FADDP */
9201 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9202 break;
9203 case 0x5e: /* FMAXP */
9204 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9205 break;
9206 case 0x78: /* FMINNMP */
9207 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9208 break;
9209 case 0x7e: /* FMINP */
9210 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9211 break;
9212 default:
9213 g_assert_not_reached();
9214 }
9215
9216 tcg_temp_free_i64(tcg_op1);
9217 tcg_temp_free_i64(tcg_op2);
9218 }
9219
9220 for (pass = 0; pass < 2; pass++) {
9221 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9222 tcg_temp_free_i64(tcg_res[pass]);
9223 }
9224 } else {
9225 int maxpass = is_q ? 4 : 2;
9226 TCGv_i32 tcg_res[4];
9227
9228 for (pass = 0; pass < maxpass; pass++) {
9229 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9230 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9231 NeonGenTwoOpFn *genfn = NULL;
9232 int passreg = pass < (maxpass / 2) ? rn : rm;
9233 int passelt = (is_q && (pass & 1)) ? 2 : 0;
9234
9235 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
9236 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
9237 tcg_res[pass] = tcg_temp_new_i32();
9238
9239 switch (opcode) {
9240 case 0x17: /* ADDP */
9241 {
9242 static NeonGenTwoOpFn * const fns[3] = {
9243 gen_helper_neon_padd_u8,
9244 gen_helper_neon_padd_u16,
9245 tcg_gen_add_i32,
9246 };
9247 genfn = fns[size];
9248 break;
9249 }
9250 case 0x14: /* SMAXP, UMAXP */
9251 {
9252 static NeonGenTwoOpFn * const fns[3][2] = {
9253 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
9254 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
9255 { gen_max_s32, gen_max_u32 },
9256 };
9257 genfn = fns[size][u];
9258 break;
9259 }
9260 case 0x15: /* SMINP, UMINP */
9261 {
9262 static NeonGenTwoOpFn * const fns[3][2] = {
9263 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
9264 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
9265 { gen_min_s32, gen_min_u32 },
9266 };
9267 genfn = fns[size][u];
9268 break;
9269 }
9270 /* The FP operations are all on single floats (32 bit) */
9271 case 0x58: /* FMAXNMP */
9272 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9273 break;
9274 case 0x5a: /* FADDP */
9275 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9276 break;
9277 case 0x5e: /* FMAXP */
9278 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9279 break;
9280 case 0x78: /* FMINNMP */
9281 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9282 break;
9283 case 0x7e: /* FMINP */
9284 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9285 break;
9286 default:
9287 g_assert_not_reached();
9288 }
9289
9290 /* FP ops called directly, otherwise call now */
9291 if (genfn) {
9292 genfn(tcg_res[pass], tcg_op1, tcg_op2);
9293 }
9294
9295 tcg_temp_free_i32(tcg_op1);
9296 tcg_temp_free_i32(tcg_op2);
9297 }
9298
9299 for (pass = 0; pass < maxpass; pass++) {
9300 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9301 tcg_temp_free_i32(tcg_res[pass]);
9302 }
9303 if (!is_q) {
9304 clear_vec_high(s, rd);
9305 }
9306 }
9307
9308 if (!TCGV_IS_UNUSED_PTR(fpst)) {
9309 tcg_temp_free_ptr(fpst);
9310 }
9311 }
9312
9313 /* Floating point op subgroup of C3.6.16. */
9314 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
9315 {
9316 /* For floating point ops, the U, size[1] and opcode bits
9317 * together indicate the operation. size[0] indicates single
9318 * or double.
9319 */
9320 int fpopcode = extract32(insn, 11, 5)
9321 | (extract32(insn, 23, 1) << 5)
9322 | (extract32(insn, 29, 1) << 6);
9323 int is_q = extract32(insn, 30, 1);
9324 int size = extract32(insn, 22, 1);
9325 int rm = extract32(insn, 16, 5);
9326 int rn = extract32(insn, 5, 5);
9327 int rd = extract32(insn, 0, 5);
9328
9329 int datasize = is_q ? 128 : 64;
9330 int esize = 32 << size;
9331 int elements = datasize / esize;
9332
9333 if (size == 1 && !is_q) {
9334 unallocated_encoding(s);
9335 return;
9336 }
9337
9338 switch (fpopcode) {
9339 case 0x58: /* FMAXNMP */
9340 case 0x5a: /* FADDP */
9341 case 0x5e: /* FMAXP */
9342 case 0x78: /* FMINNMP */
9343 case 0x7e: /* FMINP */
9344 if (size && !is_q) {
9345 unallocated_encoding(s);
9346 return;
9347 }
9348 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
9349 rn, rm, rd);
9350 return;
9351 case 0x1b: /* FMULX */
9352 case 0x1f: /* FRECPS */
9353 case 0x3f: /* FRSQRTS */
9354 case 0x5d: /* FACGE */
9355 case 0x7d: /* FACGT */
9356 case 0x19: /* FMLA */
9357 case 0x39: /* FMLS */
9358 case 0x18: /* FMAXNM */
9359 case 0x1a: /* FADD */
9360 case 0x1c: /* FCMEQ */
9361 case 0x1e: /* FMAX */
9362 case 0x38: /* FMINNM */
9363 case 0x3a: /* FSUB */
9364 case 0x3e: /* FMIN */
9365 case 0x5b: /* FMUL */
9366 case 0x5c: /* FCMGE */
9367 case 0x5f: /* FDIV */
9368 case 0x7a: /* FABD */
9369 case 0x7c: /* FCMGT */
9370 if (!fp_access_check(s)) {
9371 return;
9372 }
9373
9374 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
9375 return;
9376 default:
9377 unallocated_encoding(s);
9378 return;
9379 }
9380 }
9381
9382 /* Integer op subgroup of C3.6.16. */
9383 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
9384 {
9385 int is_q = extract32(insn, 30, 1);
9386 int u = extract32(insn, 29, 1);
9387 int size = extract32(insn, 22, 2);
9388 int opcode = extract32(insn, 11, 5);
9389 int rm = extract32(insn, 16, 5);
9390 int rn = extract32(insn, 5, 5);
9391 int rd = extract32(insn, 0, 5);
9392 int pass;
9393
9394 switch (opcode) {
9395 case 0x13: /* MUL, PMUL */
9396 if (u && size != 0) {
9397 unallocated_encoding(s);
9398 return;
9399 }
9400 /* fall through */
9401 case 0x0: /* SHADD, UHADD */
9402 case 0x2: /* SRHADD, URHADD */
9403 case 0x4: /* SHSUB, UHSUB */
9404 case 0xc: /* SMAX, UMAX */
9405 case 0xd: /* SMIN, UMIN */
9406 case 0xe: /* SABD, UABD */
9407 case 0xf: /* SABA, UABA */
9408 case 0x12: /* MLA, MLS */
9409 if (size == 3) {
9410 unallocated_encoding(s);
9411 return;
9412 }
9413 break;
9414 case 0x16: /* SQDMULH, SQRDMULH */
9415 if (size == 0 || size == 3) {
9416 unallocated_encoding(s);
9417 return;
9418 }
9419 break;
9420 default:
9421 if (size == 3 && !is_q) {
9422 unallocated_encoding(s);
9423 return;
9424 }
9425 break;
9426 }
9427
9428 if (!fp_access_check(s)) {
9429 return;
9430 }
9431
9432 if (size == 3) {
9433 assert(is_q);
9434 for (pass = 0; pass < 2; pass++) {
9435 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9436 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9437 TCGv_i64 tcg_res = tcg_temp_new_i64();
9438
9439 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9440 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9441
9442 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
9443
9444 write_vec_element(s, tcg_res, rd, pass, MO_64);
9445
9446 tcg_temp_free_i64(tcg_res);
9447 tcg_temp_free_i64(tcg_op1);
9448 tcg_temp_free_i64(tcg_op2);
9449 }
9450 } else {
9451 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
9452 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9453 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9454 TCGv_i32 tcg_res = tcg_temp_new_i32();
9455 NeonGenTwoOpFn *genfn = NULL;
9456 NeonGenTwoOpEnvFn *genenvfn = NULL;
9457
9458 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9459 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9460
9461 switch (opcode) {
9462 case 0x0: /* SHADD, UHADD */
9463 {
9464 static NeonGenTwoOpFn * const fns[3][2] = {
9465 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
9466 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
9467 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
9468 };
9469 genfn = fns[size][u];
9470 break;
9471 }
9472 case 0x1: /* SQADD, UQADD */
9473 {
9474 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9475 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9476 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9477 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9478 };
9479 genenvfn = fns[size][u];
9480 break;
9481 }
9482 case 0x2: /* SRHADD, URHADD */
9483 {
9484 static NeonGenTwoOpFn * const fns[3][2] = {
9485 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
9486 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
9487 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
9488 };
9489 genfn = fns[size][u];
9490 break;
9491 }
9492 case 0x4: /* SHSUB, UHSUB */
9493 {
9494 static NeonGenTwoOpFn * const fns[3][2] = {
9495 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
9496 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
9497 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
9498 };
9499 genfn = fns[size][u];
9500 break;
9501 }
9502 case 0x5: /* SQSUB, UQSUB */
9503 {
9504 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9505 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9506 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9507 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9508 };
9509 genenvfn = fns[size][u];
9510 break;
9511 }
9512 case 0x6: /* CMGT, CMHI */
9513 {
9514 static NeonGenTwoOpFn * const fns[3][2] = {
9515 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_u8 },
9516 { gen_helper_neon_cgt_s16, gen_helper_neon_cgt_u16 },
9517 { gen_helper_neon_cgt_s32, gen_helper_neon_cgt_u32 },
9518 };
9519 genfn = fns[size][u];
9520 break;
9521 }
9522 case 0x7: /* CMGE, CMHS */
9523 {
9524 static NeonGenTwoOpFn * const fns[3][2] = {
9525 { gen_helper_neon_cge_s8, gen_helper_neon_cge_u8 },
9526 { gen_helper_neon_cge_s16, gen_helper_neon_cge_u16 },
9527 { gen_helper_neon_cge_s32, gen_helper_neon_cge_u32 },
9528 };
9529 genfn = fns[size][u];
9530 break;
9531 }
9532 case 0x8: /* SSHL, USHL */
9533 {
9534 static NeonGenTwoOpFn * const fns[3][2] = {
9535 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
9536 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
9537 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
9538 };
9539 genfn = fns[size][u];
9540 break;
9541 }
9542 case 0x9: /* SQSHL, UQSHL */
9543 {
9544 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9545 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9546 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9547 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9548 };
9549 genenvfn = fns[size][u];
9550 break;
9551 }
9552 case 0xa: /* SRSHL, URSHL */
9553 {
9554 static NeonGenTwoOpFn * const fns[3][2] = {
9555 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
9556 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
9557 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
9558 };
9559 genfn = fns[size][u];
9560 break;
9561 }
9562 case 0xb: /* SQRSHL, UQRSHL */
9563 {
9564 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9565 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9566 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9567 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9568 };
9569 genenvfn = fns[size][u];
9570 break;
9571 }
9572 case 0xc: /* SMAX, UMAX */
9573 {
9574 static NeonGenTwoOpFn * const fns[3][2] = {
9575 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
9576 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
9577 { gen_max_s32, gen_max_u32 },
9578 };
9579 genfn = fns[size][u];
9580 break;
9581 }
9582
9583 case 0xd: /* SMIN, UMIN */
9584 {
9585 static NeonGenTwoOpFn * const fns[3][2] = {
9586 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
9587 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
9588 { gen_min_s32, gen_min_u32 },
9589 };
9590 genfn = fns[size][u];
9591 break;
9592 }
9593 case 0xe: /* SABD, UABD */
9594 case 0xf: /* SABA, UABA */
9595 {
9596 static NeonGenTwoOpFn * const fns[3][2] = {
9597 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
9598 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
9599 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
9600 };
9601 genfn = fns[size][u];
9602 break;
9603 }
9604 case 0x10: /* ADD, SUB */
9605 {
9606 static NeonGenTwoOpFn * const fns[3][2] = {
9607 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9608 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9609 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9610 };
9611 genfn = fns[size][u];
9612 break;
9613 }
9614 case 0x11: /* CMTST, CMEQ */
9615 {
9616 static NeonGenTwoOpFn * const fns[3][2] = {
9617 { gen_helper_neon_tst_u8, gen_helper_neon_ceq_u8 },
9618 { gen_helper_neon_tst_u16, gen_helper_neon_ceq_u16 },
9619 { gen_helper_neon_tst_u32, gen_helper_neon_ceq_u32 },
9620 };
9621 genfn = fns[size][u];
9622 break;
9623 }
9624 case 0x13: /* MUL, PMUL */
9625 if (u) {
9626 /* PMUL */
9627 assert(size == 0);
9628 genfn = gen_helper_neon_mul_p8;
9629 break;
9630 }
9631 /* fall through : MUL */
9632 case 0x12: /* MLA, MLS */
9633 {
9634 static NeonGenTwoOpFn * const fns[3] = {
9635 gen_helper_neon_mul_u8,
9636 gen_helper_neon_mul_u16,
9637 tcg_gen_mul_i32,
9638 };
9639 genfn = fns[size];
9640 break;
9641 }
9642 case 0x16: /* SQDMULH, SQRDMULH */
9643 {
9644 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9645 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9646 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9647 };
9648 assert(size == 1 || size == 2);
9649 genenvfn = fns[size - 1][u];
9650 break;
9651 }
9652 default:
9653 g_assert_not_reached();
9654 }
9655
9656 if (genenvfn) {
9657 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
9658 } else {
9659 genfn(tcg_res, tcg_op1, tcg_op2);
9660 }
9661
9662 if (opcode == 0xf || opcode == 0x12) {
9663 /* SABA, UABA, MLA, MLS: accumulating ops */
9664 static NeonGenTwoOpFn * const fns[3][2] = {
9665 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9666 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9667 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9668 };
9669 bool is_sub = (opcode == 0x12 && u); /* MLS */
9670
9671 genfn = fns[size][is_sub];
9672 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
9673 genfn(tcg_res, tcg_op1, tcg_res);
9674 }
9675
9676 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9677
9678 tcg_temp_free_i32(tcg_res);
9679 tcg_temp_free_i32(tcg_op1);
9680 tcg_temp_free_i32(tcg_op2);
9681 }
9682 }
9683
9684 if (!is_q) {
9685 clear_vec_high(s, rd);
9686 }
9687 }
9688
9689 /* AdvSIMD three same
9690 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9691 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9692 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9693 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9694 */
9695 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
9696 {
9697 int opcode = extract32(insn, 11, 5);
9698
9699 switch (opcode) {
9700 case 0x3: /* logic ops */
9701 disas_simd_3same_logic(s, insn);
9702 break;
9703 case 0x17: /* ADDP */
9704 case 0x14: /* SMAXP, UMAXP */
9705 case 0x15: /* SMINP, UMINP */
9706 {
9707 /* Pairwise operations */
9708 int is_q = extract32(insn, 30, 1);
9709 int u = extract32(insn, 29, 1);
9710 int size = extract32(insn, 22, 2);
9711 int rm = extract32(insn, 16, 5);
9712 int rn = extract32(insn, 5, 5);
9713 int rd = extract32(insn, 0, 5);
9714 if (opcode == 0x17) {
9715 if (u || (size == 3 && !is_q)) {
9716 unallocated_encoding(s);
9717 return;
9718 }
9719 } else {
9720 if (size == 3) {
9721 unallocated_encoding(s);
9722 return;
9723 }
9724 }
9725 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
9726 break;
9727 }
9728 case 0x18 ... 0x31:
9729 /* floating point ops, sz[1] and U are part of opcode */
9730 disas_simd_3same_float(s, insn);
9731 break;
9732 default:
9733 disas_simd_3same_int(s, insn);
9734 break;
9735 }
9736 }
9737
9738 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
9739 int size, int rn, int rd)
9740 {
9741 /* Handle 2-reg-misc ops which are widening (so each size element
9742 * in the source becomes a 2*size element in the destination.
9743 * The only instruction like this is FCVTL.
9744 */
9745 int pass;
9746
9747 if (size == 3) {
9748 /* 32 -> 64 bit fp conversion */
9749 TCGv_i64 tcg_res[2];
9750 int srcelt = is_q ? 2 : 0;
9751
9752 for (pass = 0; pass < 2; pass++) {
9753 TCGv_i32 tcg_op = tcg_temp_new_i32();
9754 tcg_res[pass] = tcg_temp_new_i64();
9755
9756 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
9757 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
9758 tcg_temp_free_i32(tcg_op);
9759 }
9760 for (pass = 0; pass < 2; pass++) {
9761 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9762 tcg_temp_free_i64(tcg_res[pass]);
9763 }
9764 } else {
9765 /* 16 -> 32 bit fp conversion */
9766 int srcelt = is_q ? 4 : 0;
9767 TCGv_i32 tcg_res[4];
9768
9769 for (pass = 0; pass < 4; pass++) {
9770 tcg_res[pass] = tcg_temp_new_i32();
9771
9772 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
9773 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
9774 cpu_env);
9775 }
9776 for (pass = 0; pass < 4; pass++) {
9777 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9778 tcg_temp_free_i32(tcg_res[pass]);
9779 }
9780 }
9781 }
9782
9783 static void handle_rev(DisasContext *s, int opcode, bool u,
9784 bool is_q, int size, int rn, int rd)
9785 {
9786 int op = (opcode << 1) | u;
9787 int opsz = op + size;
9788 int grp_size = 3 - opsz;
9789 int dsize = is_q ? 128 : 64;
9790 int i;
9791
9792 if (opsz >= 3) {
9793 unallocated_encoding(s);
9794 return;
9795 }
9796
9797 if (!fp_access_check(s)) {
9798 return;
9799 }
9800
9801 if (size == 0) {
9802 /* Special case bytes, use bswap op on each group of elements */
9803 int groups = dsize / (8 << grp_size);
9804
9805 for (i = 0; i < groups; i++) {
9806 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9807
9808 read_vec_element(s, tcg_tmp, rn, i, grp_size);
9809 switch (grp_size) {
9810 case MO_16:
9811 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
9812 break;
9813 case MO_32:
9814 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
9815 break;
9816 case MO_64:
9817 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
9818 break;
9819 default:
9820 g_assert_not_reached();
9821 }
9822 write_vec_element(s, tcg_tmp, rd, i, grp_size);
9823 tcg_temp_free_i64(tcg_tmp);
9824 }
9825 if (!is_q) {
9826 clear_vec_high(s, rd);
9827 }
9828 } else {
9829 int revmask = (1 << grp_size) - 1;
9830 int esize = 8 << size;
9831 int elements = dsize / esize;
9832 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9833 TCGv_i64 tcg_rd = tcg_const_i64(0);
9834 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
9835
9836 for (i = 0; i < elements; i++) {
9837 int e_rev = (i & 0xf) ^ revmask;
9838 int off = e_rev * esize;
9839 read_vec_element(s, tcg_rn, rn, i, size);
9840 if (off >= 64) {
9841 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
9842 tcg_rn, off - 64, esize);
9843 } else {
9844 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
9845 }
9846 }
9847 write_vec_element(s, tcg_rd, rd, 0, MO_64);
9848 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
9849
9850 tcg_temp_free_i64(tcg_rd_hi);
9851 tcg_temp_free_i64(tcg_rd);
9852 tcg_temp_free_i64(tcg_rn);
9853 }
9854 }
9855
9856 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
9857 bool is_q, int size, int rn, int rd)
9858 {
9859 /* Implement the pairwise operations from 2-misc:
9860 * SADDLP, UADDLP, SADALP, UADALP.
9861 * These all add pairs of elements in the input to produce a
9862 * double-width result element in the output (possibly accumulating).
9863 */
9864 bool accum = (opcode == 0x6);
9865 int maxpass = is_q ? 2 : 1;
9866 int pass;
9867 TCGv_i64 tcg_res[2];
9868
9869 if (size == 2) {
9870 /* 32 + 32 -> 64 op */
9871 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
9872
9873 for (pass = 0; pass < maxpass; pass++) {
9874 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9875 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9876
9877 tcg_res[pass] = tcg_temp_new_i64();
9878
9879 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
9880 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
9881 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9882 if (accum) {
9883 read_vec_element(s, tcg_op1, rd, pass, MO_64);
9884 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9885 }
9886
9887 tcg_temp_free_i64(tcg_op1);
9888 tcg_temp_free_i64(tcg_op2);
9889 }
9890 } else {
9891 for (pass = 0; pass < maxpass; pass++) {
9892 TCGv_i64 tcg_op = tcg_temp_new_i64();
9893 NeonGenOneOpFn *genfn;
9894 static NeonGenOneOpFn * const fns[2][2] = {
9895 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
9896 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
9897 };
9898
9899 genfn = fns[size][u];
9900
9901 tcg_res[pass] = tcg_temp_new_i64();
9902
9903 read_vec_element(s, tcg_op, rn, pass, MO_64);
9904 genfn(tcg_res[pass], tcg_op);
9905
9906 if (accum) {
9907 read_vec_element(s, tcg_op, rd, pass, MO_64);
9908 if (size == 0) {
9909 gen_helper_neon_addl_u16(tcg_res[pass],
9910 tcg_res[pass], tcg_op);
9911 } else {
9912 gen_helper_neon_addl_u32(tcg_res[pass],
9913 tcg_res[pass], tcg_op);
9914 }
9915 }
9916 tcg_temp_free_i64(tcg_op);
9917 }
9918 }
9919 if (!is_q) {
9920 tcg_res[1] = tcg_const_i64(0);
9921 }
9922 for (pass = 0; pass < 2; pass++) {
9923 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9924 tcg_temp_free_i64(tcg_res[pass]);
9925 }
9926 }
9927
9928 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
9929 {
9930 /* Implement SHLL and SHLL2 */
9931 int pass;
9932 int part = is_q ? 2 : 0;
9933 TCGv_i64 tcg_res[2];
9934
9935 for (pass = 0; pass < 2; pass++) {
9936 static NeonGenWidenFn * const widenfns[3] = {
9937 gen_helper_neon_widen_u8,
9938 gen_helper_neon_widen_u16,
9939 tcg_gen_extu_i32_i64,
9940 };
9941 NeonGenWidenFn *widenfn = widenfns[size];
9942 TCGv_i32 tcg_op = tcg_temp_new_i32();
9943
9944 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
9945 tcg_res[pass] = tcg_temp_new_i64();
9946 widenfn(tcg_res[pass], tcg_op);
9947 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
9948
9949 tcg_temp_free_i32(tcg_op);
9950 }
9951
9952 for (pass = 0; pass < 2; pass++) {
9953 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9954 tcg_temp_free_i64(tcg_res[pass]);
9955 }
9956 }
9957
9958 /* AdvSIMD two reg misc
9959 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9960 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9961 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9962 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9963 */
9964 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
9965 {
9966 int size = extract32(insn, 22, 2);
9967 int opcode = extract32(insn, 12, 5);
9968 bool u = extract32(insn, 29, 1);
9969 bool is_q = extract32(insn, 30, 1);
9970 int rn = extract32(insn, 5, 5);
9971 int rd = extract32(insn, 0, 5);
9972 bool need_fpstatus = false;
9973 bool need_rmode = false;
9974 int rmode = -1;
9975 TCGv_i32 tcg_rmode;
9976 TCGv_ptr tcg_fpstatus;
9977
9978 switch (opcode) {
9979 case 0x0: /* REV64, REV32 */
9980 case 0x1: /* REV16 */
9981 handle_rev(s, opcode, u, is_q, size, rn, rd);
9982 return;
9983 case 0x5: /* CNT, NOT, RBIT */
9984 if (u && size == 0) {
9985 /* NOT: adjust size so we can use the 64-bits-at-a-time loop. */
9986 size = 3;
9987 break;
9988 } else if (u && size == 1) {
9989 /* RBIT */
9990 break;
9991 } else if (!u && size == 0) {
9992 /* CNT */
9993 break;
9994 }
9995 unallocated_encoding(s);
9996 return;
9997 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
9998 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
9999 if (size == 3) {
10000 unallocated_encoding(s);
10001 return;
10002 }
10003 if (!fp_access_check(s)) {
10004 return;
10005 }
10006
10007 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
10008 return;
10009 case 0x4: /* CLS, CLZ */
10010 if (size == 3) {
10011 unallocated_encoding(s);
10012 return;
10013 }
10014 break;
10015 case 0x2: /* SADDLP, UADDLP */
10016 case 0x6: /* SADALP, UADALP */
10017 if (size == 3) {
10018 unallocated_encoding(s);
10019 return;
10020 }
10021 if (!fp_access_check(s)) {
10022 return;
10023 }
10024 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
10025 return;
10026 case 0x13: /* SHLL, SHLL2 */
10027 if (u == 0 || size == 3) {
10028 unallocated_encoding(s);
10029 return;
10030 }
10031 if (!fp_access_check(s)) {
10032 return;
10033 }
10034 handle_shll(s, is_q, size, rn, rd);
10035 return;
10036 case 0xa: /* CMLT */
10037 if (u == 1) {
10038 unallocated_encoding(s);
10039 return;
10040 }
10041 /* fall through */
10042 case 0x8: /* CMGT, CMGE */
10043 case 0x9: /* CMEQ, CMLE */
10044 case 0xb: /* ABS, NEG */
10045 if (size == 3 && !is_q) {
10046 unallocated_encoding(s);
10047 return;
10048 }
10049 break;
10050 case 0x3: /* SUQADD, USQADD */
10051 if (size == 3 && !is_q) {
10052 unallocated_encoding(s);
10053 return;
10054 }
10055 if (!fp_access_check(s)) {
10056 return;
10057 }
10058 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
10059 return;
10060 case 0x7: /* SQABS, SQNEG */
10061 if (size == 3 && !is_q) {
10062 unallocated_encoding(s);
10063 return;
10064 }
10065 break;
10066 case 0xc ... 0xf:
10067 case 0x16 ... 0x1d:
10068 case 0x1f:
10069 {
10070 /* Floating point: U, size[1] and opcode indicate operation;
10071 * size[0] indicates single or double precision.
10072 */
10073 int is_double = extract32(size, 0, 1);
10074 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10075 size = is_double ? 3 : 2;
10076 switch (opcode) {
10077 case 0x2f: /* FABS */
10078 case 0x6f: /* FNEG */
10079 if (size == 3 && !is_q) {
10080 unallocated_encoding(s);
10081 return;
10082 }
10083 break;
10084 case 0x1d: /* SCVTF */
10085 case 0x5d: /* UCVTF */
10086 {
10087 bool is_signed = (opcode == 0x1d) ? true : false;
10088 int elements = is_double ? 2 : is_q ? 4 : 2;
10089 if (is_double && !is_q) {
10090 unallocated_encoding(s);
10091 return;
10092 }
10093 if (!fp_access_check(s)) {
10094 return;
10095 }
10096 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
10097 return;
10098 }
10099 case 0x2c: /* FCMGT (zero) */
10100 case 0x2d: /* FCMEQ (zero) */
10101 case 0x2e: /* FCMLT (zero) */
10102 case 0x6c: /* FCMGE (zero) */
10103 case 0x6d: /* FCMLE (zero) */
10104 if (size == 3 && !is_q) {
10105 unallocated_encoding(s);
10106 return;
10107 }
10108 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
10109 return;
10110 case 0x7f: /* FSQRT */
10111 if (size == 3 && !is_q) {
10112 unallocated_encoding(s);
10113 return;
10114 }
10115 break;
10116 case 0x1a: /* FCVTNS */
10117 case 0x1b: /* FCVTMS */
10118 case 0x3a: /* FCVTPS */
10119 case 0x3b: /* FCVTZS */
10120 case 0x5a: /* FCVTNU */
10121 case 0x5b: /* FCVTMU */
10122 case 0x7a: /* FCVTPU */
10123 case 0x7b: /* FCVTZU */
10124 need_fpstatus = true;
10125 need_rmode = true;
10126 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10127 if (size == 3 && !is_q) {
10128 unallocated_encoding(s);
10129 return;
10130 }
10131 break;
10132 case 0x5c: /* FCVTAU */
10133 case 0x1c: /* FCVTAS */
10134 need_fpstatus = true;
10135 need_rmode = true;
10136 rmode = FPROUNDING_TIEAWAY;
10137 if (size == 3 && !is_q) {
10138 unallocated_encoding(s);
10139 return;
10140 }
10141 break;
10142 case 0x3c: /* URECPE */
10143 if (size == 3) {
10144 unallocated_encoding(s);
10145 return;
10146 }
10147 /* fall through */
10148 case 0x3d: /* FRECPE */
10149 case 0x7d: /* FRSQRTE */
10150 if (size == 3 && !is_q) {
10151 unallocated_encoding(s);
10152 return;
10153 }
10154 if (!fp_access_check(s)) {
10155 return;
10156 }
10157 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
10158 return;
10159 case 0x56: /* FCVTXN, FCVTXN2 */
10160 if (size == 2) {
10161 unallocated_encoding(s);
10162 return;
10163 }
10164 /* fall through */
10165 case 0x16: /* FCVTN, FCVTN2 */
10166 /* handle_2misc_narrow does a 2*size -> size operation, but these
10167 * instructions encode the source size rather than dest size.
10168 */
10169 if (!fp_access_check(s)) {
10170 return;
10171 }
10172 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
10173 return;
10174 case 0x17: /* FCVTL, FCVTL2 */
10175 if (!fp_access_check(s)) {
10176 return;
10177 }
10178 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
10179 return;
10180 case 0x18: /* FRINTN */
10181 case 0x19: /* FRINTM */
10182 case 0x38: /* FRINTP */
10183 case 0x39: /* FRINTZ */
10184 need_rmode = true;
10185 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10186 /* fall through */
10187 case 0x59: /* FRINTX */
10188 case 0x79: /* FRINTI */
10189 need_fpstatus = true;
10190 if (size == 3 && !is_q) {
10191 unallocated_encoding(s);
10192 return;
10193 }
10194 break;
10195 case 0x58: /* FRINTA */
10196 need_rmode = true;
10197 rmode = FPROUNDING_TIEAWAY;
10198 need_fpstatus = true;
10199 if (size == 3 && !is_q) {
10200 unallocated_encoding(s);
10201 return;
10202 }
10203 break;
10204 case 0x7c: /* URSQRTE */
10205 if (size == 3) {
10206 unallocated_encoding(s);
10207 return;
10208 }
10209 need_fpstatus = true;
10210 break;
10211 default:
10212 unallocated_encoding(s);
10213 return;
10214 }
10215 break;
10216 }
10217 default:
10218 unallocated_encoding(s);
10219 return;
10220 }
10221
10222 if (!fp_access_check(s)) {
10223 return;
10224 }
10225
10226 if (need_fpstatus) {
10227 tcg_fpstatus = get_fpstatus_ptr();
10228 } else {
10229 TCGV_UNUSED_PTR(tcg_fpstatus);
10230 }
10231 if (need_rmode) {
10232 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10233 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10234 } else {
10235 TCGV_UNUSED_I32(tcg_rmode);
10236 }
10237
10238 if (size == 3) {
10239 /* All 64-bit element operations can be shared with scalar 2misc */
10240 int pass;
10241
10242 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
10243 TCGv_i64 tcg_op = tcg_temp_new_i64();
10244 TCGv_i64 tcg_res = tcg_temp_new_i64();
10245
10246 read_vec_element(s, tcg_op, rn, pass, MO_64);
10247
10248 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
10249 tcg_rmode, tcg_fpstatus);
10250
10251 write_vec_element(s, tcg_res, rd, pass, MO_64);
10252
10253 tcg_temp_free_i64(tcg_res);
10254 tcg_temp_free_i64(tcg_op);
10255 }
10256 } else {
10257 int pass;
10258
10259 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
10260 TCGv_i32 tcg_op = tcg_temp_new_i32();
10261 TCGv_i32 tcg_res = tcg_temp_new_i32();
10262 TCGCond cond;
10263
10264 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10265
10266 if (size == 2) {
10267 /* Special cases for 32 bit elements */
10268 switch (opcode) {
10269 case 0xa: /* CMLT */
10270 /* 32 bit integer comparison against zero, result is
10271 * test ? (2^32 - 1) : 0. We implement via setcond(test)
10272 * and inverting.
10273 */
10274 cond = TCG_COND_LT;
10275 do_cmop:
10276 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
10277 tcg_gen_neg_i32(tcg_res, tcg_res);
10278 break;
10279 case 0x8: /* CMGT, CMGE */
10280 cond = u ? TCG_COND_GE : TCG_COND_GT;
10281 goto do_cmop;
10282 case 0x9: /* CMEQ, CMLE */
10283 cond = u ? TCG_COND_LE : TCG_COND_EQ;
10284 goto do_cmop;
10285 case 0x4: /* CLS */
10286 if (u) {
10287 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
10288 } else {
10289 tcg_gen_clrsb_i32(tcg_res, tcg_op);
10290 }
10291 break;
10292 case 0x7: /* SQABS, SQNEG */
10293 if (u) {
10294 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
10295 } else {
10296 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
10297 }
10298 break;
10299 case 0xb: /* ABS, NEG */
10300 if (u) {
10301 tcg_gen_neg_i32(tcg_res, tcg_op);
10302 } else {
10303 TCGv_i32 tcg_zero = tcg_const_i32(0);
10304 tcg_gen_neg_i32(tcg_res, tcg_op);
10305 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
10306 tcg_zero, tcg_op, tcg_res);
10307 tcg_temp_free_i32(tcg_zero);
10308 }
10309 break;
10310 case 0x2f: /* FABS */
10311 gen_helper_vfp_abss(tcg_res, tcg_op);
10312 break;
10313 case 0x6f: /* FNEG */
10314 gen_helper_vfp_negs(tcg_res, tcg_op);
10315 break;
10316 case 0x7f: /* FSQRT */
10317 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
10318 break;
10319 case 0x1a: /* FCVTNS */
10320 case 0x1b: /* FCVTMS */
10321 case 0x1c: /* FCVTAS */
10322 case 0x3a: /* FCVTPS */
10323 case 0x3b: /* FCVTZS */
10324 {
10325 TCGv_i32 tcg_shift = tcg_const_i32(0);
10326 gen_helper_vfp_tosls(tcg_res, tcg_op,
10327 tcg_shift, tcg_fpstatus);
10328 tcg_temp_free_i32(tcg_shift);
10329 break;
10330 }
10331 case 0x5a: /* FCVTNU */
10332 case 0x5b: /* FCVTMU */
10333 case 0x5c: /* FCVTAU */
10334 case 0x7a: /* FCVTPU */
10335 case 0x7b: /* FCVTZU */
10336 {
10337 TCGv_i32 tcg_shift = tcg_const_i32(0);
10338 gen_helper_vfp_touls(tcg_res, tcg_op,
10339 tcg_shift, tcg_fpstatus);
10340 tcg_temp_free_i32(tcg_shift);
10341 break;
10342 }
10343 case 0x18: /* FRINTN */
10344 case 0x19: /* FRINTM */
10345 case 0x38: /* FRINTP */
10346 case 0x39: /* FRINTZ */
10347 case 0x58: /* FRINTA */
10348 case 0x79: /* FRINTI */
10349 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
10350 break;
10351 case 0x59: /* FRINTX */
10352 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
10353 break;
10354 case 0x7c: /* URSQRTE */
10355 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
10356 break;
10357 default:
10358 g_assert_not_reached();
10359 }
10360 } else {
10361 /* Use helpers for 8 and 16 bit elements */
10362 switch (opcode) {
10363 case 0x5: /* CNT, RBIT */
10364 /* For these two insns size is part of the opcode specifier
10365 * (handled earlier); they always operate on byte elements.
10366 */
10367 if (u) {
10368 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
10369 } else {
10370 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
10371 }
10372 break;
10373 case 0x7: /* SQABS, SQNEG */
10374 {
10375 NeonGenOneOpEnvFn *genfn;
10376 static NeonGenOneOpEnvFn * const fns[2][2] = {
10377 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10378 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10379 };
10380 genfn = fns[size][u];
10381 genfn(tcg_res, cpu_env, tcg_op);
10382 break;
10383 }
10384 case 0x8: /* CMGT, CMGE */
10385 case 0x9: /* CMEQ, CMLE */
10386 case 0xa: /* CMLT */
10387 {
10388 static NeonGenTwoOpFn * const fns[3][2] = {
10389 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
10390 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
10391 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
10392 };
10393 NeonGenTwoOpFn *genfn;
10394 int comp;
10395 bool reverse;
10396 TCGv_i32 tcg_zero = tcg_const_i32(0);
10397
10398 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
10399 comp = (opcode - 0x8) * 2 + u;
10400 /* ...but LE, LT are implemented as reverse GE, GT */
10401 reverse = (comp > 2);
10402 if (reverse) {
10403 comp = 4 - comp;
10404 }
10405 genfn = fns[comp][size];
10406 if (reverse) {
10407 genfn(tcg_res, tcg_zero, tcg_op);
10408 } else {
10409 genfn(tcg_res, tcg_op, tcg_zero);
10410 }
10411 tcg_temp_free_i32(tcg_zero);
10412 break;
10413 }
10414 case 0xb: /* ABS, NEG */
10415 if (u) {
10416 TCGv_i32 tcg_zero = tcg_const_i32(0);
10417 if (size) {
10418 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
10419 } else {
10420 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
10421 }
10422 tcg_temp_free_i32(tcg_zero);
10423 } else {
10424 if (size) {
10425 gen_helper_neon_abs_s16(tcg_res, tcg_op);
10426 } else {
10427 gen_helper_neon_abs_s8(tcg_res, tcg_op);
10428 }
10429 }
10430 break;
10431 case 0x4: /* CLS, CLZ */
10432 if (u) {
10433 if (size == 0) {
10434 gen_helper_neon_clz_u8(tcg_res, tcg_op);
10435 } else {
10436 gen_helper_neon_clz_u16(tcg_res, tcg_op);
10437 }
10438 } else {
10439 if (size == 0) {
10440 gen_helper_neon_cls_s8(tcg_res, tcg_op);
10441 } else {
10442 gen_helper_neon_cls_s16(tcg_res, tcg_op);
10443 }
10444 }
10445 break;
10446 default:
10447 g_assert_not_reached();
10448 }
10449 }
10450
10451 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10452
10453 tcg_temp_free_i32(tcg_res);
10454 tcg_temp_free_i32(tcg_op);
10455 }
10456 }
10457 if (!is_q) {
10458 clear_vec_high(s, rd);
10459 }
10460
10461 if (need_rmode) {
10462 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10463 tcg_temp_free_i32(tcg_rmode);
10464 }
10465 if (need_fpstatus) {
10466 tcg_temp_free_ptr(tcg_fpstatus);
10467 }
10468 }
10469
10470 /* AdvSIMD scalar x indexed element
10471 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10472 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10473 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10474 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10475 * AdvSIMD vector x indexed element
10476 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10477 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10478 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10479 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10480 */
10481 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
10482 {
10483 /* This encoding has two kinds of instruction:
10484 * normal, where we perform elt x idxelt => elt for each
10485 * element in the vector
10486 * long, where we perform elt x idxelt and generate a result of
10487 * double the width of the input element
10488 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
10489 */
10490 bool is_scalar = extract32(insn, 28, 1);
10491 bool is_q = extract32(insn, 30, 1);
10492 bool u = extract32(insn, 29, 1);
10493 int size = extract32(insn, 22, 2);
10494 int l = extract32(insn, 21, 1);
10495 int m = extract32(insn, 20, 1);
10496 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
10497 int rm = extract32(insn, 16, 4);
10498 int opcode = extract32(insn, 12, 4);
10499 int h = extract32(insn, 11, 1);
10500 int rn = extract32(insn, 5, 5);
10501 int rd = extract32(insn, 0, 5);
10502 bool is_long = false;
10503 bool is_fp = false;
10504 int index;
10505 TCGv_ptr fpst;
10506
10507 switch (opcode) {
10508 case 0x0: /* MLA */
10509 case 0x4: /* MLS */
10510 if (!u || is_scalar) {
10511 unallocated_encoding(s);
10512 return;
10513 }
10514 break;
10515 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10516 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10517 case 0xa: /* SMULL, SMULL2, UMULL, UMULL2 */
10518 if (is_scalar) {
10519 unallocated_encoding(s);
10520 return;
10521 }
10522 is_long = true;
10523 break;
10524 case 0x3: /* SQDMLAL, SQDMLAL2 */
10525 case 0x7: /* SQDMLSL, SQDMLSL2 */
10526 case 0xb: /* SQDMULL, SQDMULL2 */
10527 is_long = true;
10528 /* fall through */
10529 case 0xc: /* SQDMULH */
10530 case 0xd: /* SQRDMULH */
10531 if (u) {
10532 unallocated_encoding(s);
10533 return;
10534 }
10535 break;
10536 case 0x8: /* MUL */
10537 if (u || is_scalar) {
10538 unallocated_encoding(s);
10539 return;
10540 }
10541 break;
10542 case 0x1: /* FMLA */
10543 case 0x5: /* FMLS */
10544 if (u) {
10545 unallocated_encoding(s);
10546 return;
10547 }
10548 /* fall through */
10549 case 0x9: /* FMUL, FMULX */
10550 if (!extract32(size, 1, 1)) {
10551 unallocated_encoding(s);
10552 return;
10553 }
10554 is_fp = true;
10555 break;
10556 default:
10557 unallocated_encoding(s);
10558 return;
10559 }
10560
10561 if (is_fp) {
10562 /* low bit of size indicates single/double */
10563 size = extract32(size, 0, 1) ? 3 : 2;
10564 if (size == 2) {
10565 index = h << 1 | l;
10566 } else {
10567 if (l || !is_q) {
10568 unallocated_encoding(s);
10569 return;
10570 }
10571 index = h;
10572 }
10573 rm |= (m << 4);
10574 } else {
10575 switch (size) {
10576 case 1:
10577 index = h << 2 | l << 1 | m;
10578 break;
10579 case 2:
10580 index = h << 1 | l;
10581 rm |= (m << 4);
10582 break;
10583 default:
10584 unallocated_encoding(s);
10585 return;
10586 }
10587 }
10588
10589 if (!fp_access_check(s)) {
10590 return;
10591 }
10592
10593 if (is_fp) {
10594 fpst = get_fpstatus_ptr();
10595 } else {
10596 TCGV_UNUSED_PTR(fpst);
10597 }
10598
10599 if (size == 3) {
10600 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10601 int pass;
10602
10603 assert(is_fp && is_q && !is_long);
10604
10605 read_vec_element(s, tcg_idx, rm, index, MO_64);
10606
10607 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10608 TCGv_i64 tcg_op = tcg_temp_new_i64();
10609 TCGv_i64 tcg_res = tcg_temp_new_i64();
10610
10611 read_vec_element(s, tcg_op, rn, pass, MO_64);
10612
10613 switch (opcode) {
10614 case 0x5: /* FMLS */
10615 /* As usual for ARM, separate negation for fused multiply-add */
10616 gen_helper_vfp_negd(tcg_op, tcg_op);
10617 /* fall through */
10618 case 0x1: /* FMLA */
10619 read_vec_element(s, tcg_res, rd, pass, MO_64);
10620 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10621 break;
10622 case 0x9: /* FMUL, FMULX */
10623 if (u) {
10624 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
10625 } else {
10626 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
10627 }
10628 break;
10629 default:
10630 g_assert_not_reached();
10631 }
10632
10633 write_vec_element(s, tcg_res, rd, pass, MO_64);
10634 tcg_temp_free_i64(tcg_op);
10635 tcg_temp_free_i64(tcg_res);
10636 }
10637
10638 if (is_scalar) {
10639 clear_vec_high(s, rd);
10640 }
10641
10642 tcg_temp_free_i64(tcg_idx);
10643 } else if (!is_long) {
10644 /* 32 bit floating point, or 16 or 32 bit integer.
10645 * For the 16 bit scalar case we use the usual Neon helpers and
10646 * rely on the fact that 0 op 0 == 0 with no side effects.
10647 */
10648 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10649 int pass, maxpasses;
10650
10651 if (is_scalar) {
10652 maxpasses = 1;
10653 } else {
10654 maxpasses = is_q ? 4 : 2;
10655 }
10656
10657 read_vec_element_i32(s, tcg_idx, rm, index, size);
10658
10659 if (size == 1 && !is_scalar) {
10660 /* The simplest way to handle the 16x16 indexed ops is to duplicate
10661 * the index into both halves of the 32 bit tcg_idx and then use
10662 * the usual Neon helpers.
10663 */
10664 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10665 }
10666
10667 for (pass = 0; pass < maxpasses; pass++) {
10668 TCGv_i32 tcg_op = tcg_temp_new_i32();
10669 TCGv_i32 tcg_res = tcg_temp_new_i32();
10670
10671 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
10672
10673 switch (opcode) {
10674 case 0x0: /* MLA */
10675 case 0x4: /* MLS */
10676 case 0x8: /* MUL */
10677 {
10678 static NeonGenTwoOpFn * const fns[2][2] = {
10679 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
10680 { tcg_gen_add_i32, tcg_gen_sub_i32 },
10681 };
10682 NeonGenTwoOpFn *genfn;
10683 bool is_sub = opcode == 0x4;
10684
10685 if (size == 1) {
10686 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
10687 } else {
10688 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
10689 }
10690 if (opcode == 0x8) {
10691 break;
10692 }
10693 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
10694 genfn = fns[size - 1][is_sub];
10695 genfn(tcg_res, tcg_op, tcg_res);
10696 break;
10697 }
10698 case 0x5: /* FMLS */
10699 /* As usual for ARM, separate negation for fused multiply-add */
10700 gen_helper_vfp_negs(tcg_op, tcg_op);
10701 /* fall through */
10702 case 0x1: /* FMLA */
10703 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10704 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10705 break;
10706 case 0x9: /* FMUL, FMULX */
10707 if (u) {
10708 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
10709 } else {
10710 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
10711 }
10712 break;
10713 case 0xc: /* SQDMULH */
10714 if (size == 1) {
10715 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
10716 tcg_op, tcg_idx);
10717 } else {
10718 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
10719 tcg_op, tcg_idx);
10720 }
10721 break;
10722 case 0xd: /* SQRDMULH */
10723 if (size == 1) {
10724 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
10725 tcg_op, tcg_idx);
10726 } else {
10727 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
10728 tcg_op, tcg_idx);
10729 }
10730 break;
10731 default:
10732 g_assert_not_reached();
10733 }
10734
10735 if (is_scalar) {
10736 write_fp_sreg(s, rd, tcg_res);
10737 } else {
10738 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10739 }
10740
10741 tcg_temp_free_i32(tcg_op);
10742 tcg_temp_free_i32(tcg_res);
10743 }
10744
10745 tcg_temp_free_i32(tcg_idx);
10746
10747 if (!is_q) {
10748 clear_vec_high(s, rd);
10749 }
10750 } else {
10751 /* long ops: 16x16->32 or 32x32->64 */
10752 TCGv_i64 tcg_res[2];
10753 int pass;
10754 bool satop = extract32(opcode, 0, 1);
10755 TCGMemOp memop = MO_32;
10756
10757 if (satop || !u) {
10758 memop |= MO_SIGN;
10759 }
10760
10761 if (size == 2) {
10762 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10763
10764 read_vec_element(s, tcg_idx, rm, index, memop);
10765
10766 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10767 TCGv_i64 tcg_op = tcg_temp_new_i64();
10768 TCGv_i64 tcg_passres;
10769 int passelt;
10770
10771 if (is_scalar) {
10772 passelt = 0;
10773 } else {
10774 passelt = pass + (is_q * 2);
10775 }
10776
10777 read_vec_element(s, tcg_op, rn, passelt, memop);
10778
10779 tcg_res[pass] = tcg_temp_new_i64();
10780
10781 if (opcode == 0xa || opcode == 0xb) {
10782 /* Non-accumulating ops */
10783 tcg_passres = tcg_res[pass];
10784 } else {
10785 tcg_passres = tcg_temp_new_i64();
10786 }
10787
10788 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
10789 tcg_temp_free_i64(tcg_op);
10790
10791 if (satop) {
10792 /* saturating, doubling */
10793 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10794 tcg_passres, tcg_passres);
10795 }
10796
10797 if (opcode == 0xa || opcode == 0xb) {
10798 continue;
10799 }
10800
10801 /* Accumulating op: handle accumulate step */
10802 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10803
10804 switch (opcode) {
10805 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10806 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10807 break;
10808 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10809 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10810 break;
10811 case 0x7: /* SQDMLSL, SQDMLSL2 */
10812 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10813 /* fall through */
10814 case 0x3: /* SQDMLAL, SQDMLAL2 */
10815 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10816 tcg_res[pass],
10817 tcg_passres);
10818 break;
10819 default:
10820 g_assert_not_reached();
10821 }
10822 tcg_temp_free_i64(tcg_passres);
10823 }
10824 tcg_temp_free_i64(tcg_idx);
10825
10826 if (is_scalar) {
10827 clear_vec_high(s, rd);
10828 }
10829 } else {
10830 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10831
10832 assert(size == 1);
10833 read_vec_element_i32(s, tcg_idx, rm, index, size);
10834
10835 if (!is_scalar) {
10836 /* The simplest way to handle the 16x16 indexed ops is to
10837 * duplicate the index into both halves of the 32 bit tcg_idx
10838 * and then use the usual Neon helpers.
10839 */
10840 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10841 }
10842
10843 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10844 TCGv_i32 tcg_op = tcg_temp_new_i32();
10845 TCGv_i64 tcg_passres;
10846
10847 if (is_scalar) {
10848 read_vec_element_i32(s, tcg_op, rn, pass, size);
10849 } else {
10850 read_vec_element_i32(s, tcg_op, rn,
10851 pass + (is_q * 2), MO_32);
10852 }
10853
10854 tcg_res[pass] = tcg_temp_new_i64();
10855
10856 if (opcode == 0xa || opcode == 0xb) {
10857 /* Non-accumulating ops */
10858 tcg_passres = tcg_res[pass];
10859 } else {
10860 tcg_passres = tcg_temp_new_i64();
10861 }
10862
10863 if (memop & MO_SIGN) {
10864 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
10865 } else {
10866 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
10867 }
10868 if (satop) {
10869 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10870 tcg_passres, tcg_passres);
10871 }
10872 tcg_temp_free_i32(tcg_op);
10873
10874 if (opcode == 0xa || opcode == 0xb) {
10875 continue;
10876 }
10877
10878 /* Accumulating op: handle accumulate step */
10879 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10880
10881 switch (opcode) {
10882 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10883 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
10884 tcg_passres);
10885 break;
10886 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10887 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
10888 tcg_passres);
10889 break;
10890 case 0x7: /* SQDMLSL, SQDMLSL2 */
10891 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10892 /* fall through */
10893 case 0x3: /* SQDMLAL, SQDMLAL2 */
10894 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10895 tcg_res[pass],
10896 tcg_passres);
10897 break;
10898 default:
10899 g_assert_not_reached();
10900 }
10901 tcg_temp_free_i64(tcg_passres);
10902 }
10903 tcg_temp_free_i32(tcg_idx);
10904
10905 if (is_scalar) {
10906 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
10907 }
10908 }
10909
10910 if (is_scalar) {
10911 tcg_res[1] = tcg_const_i64(0);
10912 }
10913
10914 for (pass = 0; pass < 2; pass++) {
10915 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10916 tcg_temp_free_i64(tcg_res[pass]);
10917 }
10918 }
10919
10920 if (!TCGV_IS_UNUSED_PTR(fpst)) {
10921 tcg_temp_free_ptr(fpst);
10922 }
10923 }
10924
10925 /* Crypto AES
10926 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
10927 * +-----------------+------+-----------+--------+-----+------+------+
10928 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
10929 * +-----------------+------+-----------+--------+-----+------+------+
10930 */
10931 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
10932 {
10933 int size = extract32(insn, 22, 2);
10934 int opcode = extract32(insn, 12, 5);
10935 int rn = extract32(insn, 5, 5);
10936 int rd = extract32(insn, 0, 5);
10937 int decrypt;
10938 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_decrypt;
10939 CryptoThreeOpEnvFn *genfn;
10940
10941 if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
10942 || size != 0) {
10943 unallocated_encoding(s);
10944 return;
10945 }
10946
10947 switch (opcode) {
10948 case 0x4: /* AESE */
10949 decrypt = 0;
10950 genfn = gen_helper_crypto_aese;
10951 break;
10952 case 0x6: /* AESMC */
10953 decrypt = 0;
10954 genfn = gen_helper_crypto_aesmc;
10955 break;
10956 case 0x5: /* AESD */
10957 decrypt = 1;
10958 genfn = gen_helper_crypto_aese;
10959 break;
10960 case 0x7: /* AESIMC */
10961 decrypt = 1;
10962 genfn = gen_helper_crypto_aesmc;
10963 break;
10964 default:
10965 unallocated_encoding(s);
10966 return;
10967 }
10968
10969 if (!fp_access_check(s)) {
10970 return;
10971 }
10972
10973 /* Note that we convert the Vx register indexes into the
10974 * index within the vfp.regs[] array, so we can share the
10975 * helper with the AArch32 instructions.
10976 */
10977 tcg_rd_regno = tcg_const_i32(rd << 1);
10978 tcg_rn_regno = tcg_const_i32(rn << 1);
10979 tcg_decrypt = tcg_const_i32(decrypt);
10980
10981 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_decrypt);
10982
10983 tcg_temp_free_i32(tcg_rd_regno);
10984 tcg_temp_free_i32(tcg_rn_regno);
10985 tcg_temp_free_i32(tcg_decrypt);
10986 }
10987
10988 /* Crypto three-reg SHA
10989 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
10990 * +-----------------+------+---+------+---+--------+-----+------+------+
10991 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
10992 * +-----------------+------+---+------+---+--------+-----+------+------+
10993 */
10994 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
10995 {
10996 int size = extract32(insn, 22, 2);
10997 int opcode = extract32(insn, 12, 3);
10998 int rm = extract32(insn, 16, 5);
10999 int rn = extract32(insn, 5, 5);
11000 int rd = extract32(insn, 0, 5);
11001 CryptoThreeOpEnvFn *genfn;
11002 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_rm_regno;
11003 int feature = ARM_FEATURE_V8_SHA256;
11004
11005 if (size != 0) {
11006 unallocated_encoding(s);
11007 return;
11008 }
11009
11010 switch (opcode) {
11011 case 0: /* SHA1C */
11012 case 1: /* SHA1P */
11013 case 2: /* SHA1M */
11014 case 3: /* SHA1SU0 */
11015 genfn = NULL;
11016 feature = ARM_FEATURE_V8_SHA1;
11017 break;
11018 case 4: /* SHA256H */
11019 genfn = gen_helper_crypto_sha256h;
11020 break;
11021 case 5: /* SHA256H2 */
11022 genfn = gen_helper_crypto_sha256h2;
11023 break;
11024 case 6: /* SHA256SU1 */
11025 genfn = gen_helper_crypto_sha256su1;
11026 break;
11027 default:
11028 unallocated_encoding(s);
11029 return;
11030 }
11031
11032 if (!arm_dc_feature(s, feature)) {
11033 unallocated_encoding(s);
11034 return;
11035 }
11036
11037 if (!fp_access_check(s)) {
11038 return;
11039 }
11040
11041 tcg_rd_regno = tcg_const_i32(rd << 1);
11042 tcg_rn_regno = tcg_const_i32(rn << 1);
11043 tcg_rm_regno = tcg_const_i32(rm << 1);
11044
11045 if (genfn) {
11046 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_rm_regno);
11047 } else {
11048 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
11049
11050 gen_helper_crypto_sha1_3reg(cpu_env, tcg_rd_regno,
11051 tcg_rn_regno, tcg_rm_regno, tcg_opcode);
11052 tcg_temp_free_i32(tcg_opcode);
11053 }
11054
11055 tcg_temp_free_i32(tcg_rd_regno);
11056 tcg_temp_free_i32(tcg_rn_regno);
11057 tcg_temp_free_i32(tcg_rm_regno);
11058 }
11059
11060 /* Crypto two-reg SHA
11061 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
11062 * +-----------------+------+-----------+--------+-----+------+------+
11063 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
11064 * +-----------------+------+-----------+--------+-----+------+------+
11065 */
11066 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
11067 {
11068 int size = extract32(insn, 22, 2);
11069 int opcode = extract32(insn, 12, 5);
11070 int rn = extract32(insn, 5, 5);
11071 int rd = extract32(insn, 0, 5);
11072 CryptoTwoOpEnvFn *genfn;
11073 int feature;
11074 TCGv_i32 tcg_rd_regno, tcg_rn_regno;
11075
11076 if (size != 0) {
11077 unallocated_encoding(s);
11078 return;
11079 }
11080
11081 switch (opcode) {
11082 case 0: /* SHA1H */
11083 feature = ARM_FEATURE_V8_SHA1;
11084 genfn = gen_helper_crypto_sha1h;
11085 break;
11086 case 1: /* SHA1SU1 */
11087 feature = ARM_FEATURE_V8_SHA1;
11088 genfn = gen_helper_crypto_sha1su1;
11089 break;
11090 case 2: /* SHA256SU0 */
11091 feature = ARM_FEATURE_V8_SHA256;
11092 genfn = gen_helper_crypto_sha256su0;
11093 break;
11094 default:
11095 unallocated_encoding(s);
11096 return;
11097 }
11098
11099 if (!arm_dc_feature(s, feature)) {
11100 unallocated_encoding(s);
11101 return;
11102 }
11103
11104 if (!fp_access_check(s)) {
11105 return;
11106 }
11107
11108 tcg_rd_regno = tcg_const_i32(rd << 1);
11109 tcg_rn_regno = tcg_const_i32(rn << 1);
11110
11111 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno);
11112
11113 tcg_temp_free_i32(tcg_rd_regno);
11114 tcg_temp_free_i32(tcg_rn_regno);
11115 }
11116
11117 /* C3.6 Data processing - SIMD, inc Crypto
11118 *
11119 * As the decode gets a little complex we are using a table based
11120 * approach for this part of the decode.
11121 */
11122 static const AArch64DecodeTable data_proc_simd[] = {
11123 /* pattern , mask , fn */
11124 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
11125 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
11126 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
11127 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
11128 { 0x0e000400, 0x9fe08400, disas_simd_copy },
11129 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
11130 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
11131 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
11132 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
11133 { 0x0e000000, 0xbf208c00, disas_simd_tb },
11134 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
11135 { 0x2e000000, 0xbf208400, disas_simd_ext },
11136 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
11137 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
11138 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
11139 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
11140 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
11141 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
11142 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
11143 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
11144 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
11145 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
11146 { 0x00000000, 0x00000000, NULL }
11147 };
11148
11149 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
11150 {
11151 /* Note that this is called with all non-FP cases from
11152 * table C3-6 so it must UNDEF for entries not specifically
11153 * allocated to instructions in that table.
11154 */
11155 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
11156 if (fn) {
11157 fn(s, insn);
11158 } else {
11159 unallocated_encoding(s);
11160 }
11161 }
11162
11163 /* C3.6 Data processing - SIMD and floating point */
11164 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
11165 {
11166 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
11167 disas_data_proc_fp(s, insn);
11168 } else {
11169 /* SIMD, including crypto */
11170 disas_data_proc_simd(s, insn);
11171 }
11172 }
11173
11174 /* C3.1 A64 instruction index by encoding */
11175 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
11176 {
11177 uint32_t insn;
11178
11179 insn = arm_ldl_code(env, s->pc, s->sctlr_b);
11180 s->insn = insn;
11181 s->pc += 4;
11182
11183 s->fp_access_checked = false;
11184
11185 switch (extract32(insn, 25, 4)) {
11186 case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */
11187 unallocated_encoding(s);
11188 break;
11189 case 0x8: case 0x9: /* Data processing - immediate */
11190 disas_data_proc_imm(s, insn);
11191 break;
11192 case 0xa: case 0xb: /* Branch, exception generation and system insns */
11193 disas_b_exc_sys(s, insn);
11194 break;
11195 case 0x4:
11196 case 0x6:
11197 case 0xc:
11198 case 0xe: /* Loads and stores */
11199 disas_ldst(s, insn);
11200 break;
11201 case 0x5:
11202 case 0xd: /* Data processing - register */
11203 disas_data_proc_reg(s, insn);
11204 break;
11205 case 0x7:
11206 case 0xf: /* Data processing - SIMD and floating point */
11207 disas_data_proc_simd_fp(s, insn);
11208 break;
11209 default:
11210 assert(FALSE); /* all 15 cases should be handled above */
11211 break;
11212 }
11213
11214 /* if we allocated any temporaries, free them here */
11215 free_tmp_a64(s);
11216 }
11217
11218 static int aarch64_tr_init_disas_context(DisasContextBase *dcbase,
11219 CPUState *cpu, int max_insns)
11220 {
11221 DisasContext *dc = container_of(dcbase, DisasContext, base);
11222 CPUARMState *env = cpu->env_ptr;
11223 ARMCPU *arm_cpu = arm_env_get_cpu(env);
11224 int bound;
11225
11226 dc->pc = dc->base.pc_first;
11227 dc->condjmp = 0;
11228
11229 dc->aarch64 = 1;
11230 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
11231 * there is no secure EL1, so we route exceptions to EL3.
11232 */
11233 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
11234 !arm_el_is_aa64(env, 3);
11235 dc->thumb = 0;
11236 dc->sctlr_b = 0;
11237 dc->be_data = ARM_TBFLAG_BE_DATA(dc->base.tb->flags) ? MO_BE : MO_LE;
11238 dc->condexec_mask = 0;
11239 dc->condexec_cond = 0;
11240 dc->mmu_idx = core_to_arm_mmu_idx(env, ARM_TBFLAG_MMUIDX(dc->base.tb->flags));
11241 dc->tbi0 = ARM_TBFLAG_TBI0(dc->base.tb->flags);
11242 dc->tbi1 = ARM_TBFLAG_TBI1(dc->base.tb->flags);
11243 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
11244 #if !defined(CONFIG_USER_ONLY)
11245 dc->user = (dc->current_el == 0);
11246 #endif
11247 dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(dc->base.tb->flags);
11248 dc->vec_len = 0;
11249 dc->vec_stride = 0;
11250 dc->cp_regs = arm_cpu->cp_regs;
11251 dc->features = env->features;
11252
11253 /* Single step state. The code-generation logic here is:
11254 * SS_ACTIVE == 0:
11255 * generate code with no special handling for single-stepping (except
11256 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
11257 * this happens anyway because those changes are all system register or
11258 * PSTATE writes).
11259 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
11260 * emit code for one insn
11261 * emit code to clear PSTATE.SS
11262 * emit code to generate software step exception for completed step
11263 * end TB (as usual for having generated an exception)
11264 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
11265 * emit code to generate a software step exception
11266 * end the TB
11267 */
11268 dc->ss_active = ARM_TBFLAG_SS_ACTIVE(dc->base.tb->flags);
11269 dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(dc->base.tb->flags);
11270 dc->is_ldex = false;
11271 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
11272
11273 /* Bound the number of insns to execute to those left on the page. */
11274 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
11275
11276 /* If architectural single step active, limit to 1. */
11277 if (dc->ss_active) {
11278 bound = 1;
11279 }
11280 max_insns = MIN(max_insns, bound);
11281
11282 init_tmp_a64_array(dc);
11283
11284 return max_insns;
11285 }
11286
11287 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
11288 {
11289 tcg_clear_temp_count();
11290 }
11291
11292 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
11293 {
11294 DisasContext *dc = container_of(dcbase, DisasContext, base);
11295
11296 dc->insn_start_idx = tcg_op_buf_count();
11297 tcg_gen_insn_start(dc->pc, 0, 0);
11298 }
11299
11300 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
11301 const CPUBreakpoint *bp)
11302 {
11303 DisasContext *dc = container_of(dcbase, DisasContext, base);
11304
11305 if (bp->flags & BP_CPU) {
11306 gen_a64_set_pc_im(dc->pc);
11307 gen_helper_check_breakpoints(cpu_env);
11308 /* End the TB early; it likely won't be executed */
11309 dc->base.is_jmp = DISAS_TOO_MANY;
11310 } else {
11311 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
11312 /* The address covered by the breakpoint must be
11313 included in [tb->pc, tb->pc + tb->size) in order
11314 to for it to be properly cleared -- thus we
11315 increment the PC here so that the logic setting
11316 tb->size below does the right thing. */
11317 dc->pc += 4;
11318 dc->base.is_jmp = DISAS_NORETURN;
11319 }
11320
11321 return true;
11322 }
11323
11324 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
11325 {
11326 DisasContext *dc = container_of(dcbase, DisasContext, base);
11327 CPUARMState *env = cpu->env_ptr;
11328
11329 if (dc->ss_active && !dc->pstate_ss) {
11330 /* Singlestep state is Active-pending.
11331 * If we're in this state at the start of a TB then either
11332 * a) we just took an exception to an EL which is being debugged
11333 * and this is the first insn in the exception handler
11334 * b) debug exceptions were masked and we just unmasked them
11335 * without changing EL (eg by clearing PSTATE.D)
11336 * In either case we're going to take a swstep exception in the
11337 * "did not step an insn" case, and so the syndrome ISV and EX
11338 * bits should be zero.
11339 */
11340 assert(dc->base.num_insns == 1);
11341 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
11342 default_exception_el(dc));
11343 dc->base.is_jmp = DISAS_NORETURN;
11344 } else {
11345 disas_a64_insn(env, dc);
11346 }
11347
11348 dc->base.pc_next = dc->pc;
11349 translator_loop_temp_check(&dc->base);
11350 }
11351
11352 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
11353 {
11354 DisasContext *dc = container_of(dcbase, DisasContext, base);
11355
11356 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
11357 /* Note that this means single stepping WFI doesn't halt the CPU.
11358 * For conditional branch insns this is harmless unreachable code as
11359 * gen_goto_tb() has already handled emitting the debug exception
11360 * (and thus a tb-jump is not possible when singlestepping).
11361 */
11362 switch (dc->base.is_jmp) {
11363 default:
11364 gen_a64_set_pc_im(dc->pc);
11365 /* fall through */
11366 case DISAS_EXIT:
11367 case DISAS_JUMP:
11368 if (dc->base.singlestep_enabled) {
11369 gen_exception_internal(EXCP_DEBUG);
11370 } else {
11371 gen_step_complete_exception(dc);
11372 }
11373 break;
11374 case DISAS_NORETURN:
11375 break;
11376 }
11377 } else {
11378 switch (dc->base.is_jmp) {
11379 case DISAS_NEXT:
11380 case DISAS_TOO_MANY:
11381 gen_goto_tb(dc, 1, dc->pc);
11382 break;
11383 default:
11384 case DISAS_UPDATE:
11385 gen_a64_set_pc_im(dc->pc);
11386 /* fall through */
11387 case DISAS_JUMP:
11388 tcg_gen_lookup_and_goto_ptr();
11389 break;
11390 case DISAS_EXIT:
11391 tcg_gen_exit_tb(0);
11392 break;
11393 case DISAS_NORETURN:
11394 case DISAS_SWI:
11395 break;
11396 case DISAS_WFE:
11397 gen_a64_set_pc_im(dc->pc);
11398 gen_helper_wfe(cpu_env);
11399 break;
11400 case DISAS_YIELD:
11401 gen_a64_set_pc_im(dc->pc);
11402 gen_helper_yield(cpu_env);
11403 break;
11404 case DISAS_WFI:
11405 {
11406 /* This is a special case because we don't want to just halt the CPU
11407 * if trying to debug across a WFI.
11408 */
11409 TCGv_i32 tmp = tcg_const_i32(4);
11410
11411 gen_a64_set_pc_im(dc->pc);
11412 gen_helper_wfi(cpu_env, tmp);
11413 tcg_temp_free_i32(tmp);
11414 /* The helper doesn't necessarily throw an exception, but we
11415 * must go back to the main loop to check for interrupts anyway.
11416 */
11417 tcg_gen_exit_tb(0);
11418 break;
11419 }
11420 }
11421 }
11422
11423 /* Functions above can change dc->pc, so re-align db->pc_next */
11424 dc->base.pc_next = dc->pc;
11425 }
11426
11427 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
11428 CPUState *cpu)
11429 {
11430 DisasContext *dc = container_of(dcbase, DisasContext, base);
11431
11432 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
11433 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
11434 }
11435
11436 const TranslatorOps aarch64_translator_ops = {
11437 .init_disas_context = aarch64_tr_init_disas_context,
11438 .tb_start = aarch64_tr_tb_start,
11439 .insn_start = aarch64_tr_insn_start,
11440 .breakpoint_check = aarch64_tr_breakpoint_check,
11441 .translate_insn = aarch64_tr_translate_insn,
11442 .tb_stop = aarch64_tr_tb_stop,
11443 .disas_log = aarch64_tr_disas_log,
11444 };