]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/vfp_helper.c
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20190429' into...
[mirror_qemu.git] / target / arm / vfp_helper.c
1 /*
2 * ARM VFP floating-point operations
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/helper-proto.h"
24 #include "fpu/softfloat.h"
25 #include "internals.h"
26
27
28 /* VFP support. We follow the convention used for VFP instructions:
29 Single precision routines have a "s" suffix, double precision a
30 "d" suffix. */
31
32 /* Convert host exception flags to vfp form. */
33 static inline int vfp_exceptbits_from_host(int host_bits)
34 {
35 int target_bits = 0;
36
37 if (host_bits & float_flag_invalid)
38 target_bits |= 1;
39 if (host_bits & float_flag_divbyzero)
40 target_bits |= 2;
41 if (host_bits & float_flag_overflow)
42 target_bits |= 4;
43 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
44 target_bits |= 8;
45 if (host_bits & float_flag_inexact)
46 target_bits |= 0x10;
47 if (host_bits & float_flag_input_denormal)
48 target_bits |= 0x80;
49 return target_bits;
50 }
51
52 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
53 {
54 uint32_t i, fpscr;
55
56 fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
57 | (env->vfp.vec_len << 16)
58 | (env->vfp.vec_stride << 20);
59
60 i = get_float_exception_flags(&env->vfp.fp_status);
61 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
62 /* FZ16 does not generate an input denormal exception. */
63 i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
64 & ~float_flag_input_denormal);
65 fpscr |= vfp_exceptbits_from_host(i);
66
67 i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
68 fpscr |= i ? FPCR_QC : 0;
69
70 return fpscr;
71 }
72
73 uint32_t vfp_get_fpscr(CPUARMState *env)
74 {
75 return HELPER(vfp_get_fpscr)(env);
76 }
77
78 /* Convert vfp exception flags to target form. */
79 static inline int vfp_exceptbits_to_host(int target_bits)
80 {
81 int host_bits = 0;
82
83 if (target_bits & 1)
84 host_bits |= float_flag_invalid;
85 if (target_bits & 2)
86 host_bits |= float_flag_divbyzero;
87 if (target_bits & 4)
88 host_bits |= float_flag_overflow;
89 if (target_bits & 8)
90 host_bits |= float_flag_underflow;
91 if (target_bits & 0x10)
92 host_bits |= float_flag_inexact;
93 if (target_bits & 0x80)
94 host_bits |= float_flag_input_denormal;
95 return host_bits;
96 }
97
98 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
99 {
100 int i;
101 uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
102
103 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
104 if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) {
105 val &= ~FPCR_FZ16;
106 }
107
108 if (arm_feature(env, ARM_FEATURE_M)) {
109 /*
110 * M profile FPSCR is RES0 for the QC, STRIDE, FZ16, LEN bits
111 * and also for the trapped-exception-handling bits IxE.
112 */
113 val &= 0xf7c0009f;
114 }
115
116 /*
117 * We don't implement trapped exception handling, so the
118 * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
119 *
120 * If we exclude the exception flags, IOC|DZC|OFC|UFC|IXC|IDC
121 * (which are stored in fp_status), and the other RES0 bits
122 * in between, then we clear all of the low 16 bits.
123 */
124 env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
125 env->vfp.vec_len = (val >> 16) & 7;
126 env->vfp.vec_stride = (val >> 20) & 3;
127
128 /*
129 * The bit we set within fpscr_q is arbitrary; the register as a
130 * whole being zero/non-zero is what counts.
131 */
132 env->vfp.qc[0] = val & FPCR_QC;
133 env->vfp.qc[1] = 0;
134 env->vfp.qc[2] = 0;
135 env->vfp.qc[3] = 0;
136
137 changed ^= val;
138 if (changed & (3 << 22)) {
139 i = (val >> 22) & 3;
140 switch (i) {
141 case FPROUNDING_TIEEVEN:
142 i = float_round_nearest_even;
143 break;
144 case FPROUNDING_POSINF:
145 i = float_round_up;
146 break;
147 case FPROUNDING_NEGINF:
148 i = float_round_down;
149 break;
150 case FPROUNDING_ZERO:
151 i = float_round_to_zero;
152 break;
153 }
154 set_float_rounding_mode(i, &env->vfp.fp_status);
155 set_float_rounding_mode(i, &env->vfp.fp_status_f16);
156 }
157 if (changed & FPCR_FZ16) {
158 bool ftz_enabled = val & FPCR_FZ16;
159 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
160 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
161 }
162 if (changed & FPCR_FZ) {
163 bool ftz_enabled = val & FPCR_FZ;
164 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
165 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
166 }
167 if (changed & FPCR_DN) {
168 bool dnan_enabled = val & FPCR_DN;
169 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
170 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
171 }
172
173 /* The exception flags are ORed together when we read fpscr so we
174 * only need to preserve the current state in one of our
175 * float_status values.
176 */
177 i = vfp_exceptbits_to_host(val);
178 set_float_exception_flags(i, &env->vfp.fp_status);
179 set_float_exception_flags(0, &env->vfp.fp_status_f16);
180 set_float_exception_flags(0, &env->vfp.standard_fp_status);
181 }
182
183 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
184 {
185 HELPER(vfp_set_fpscr)(env, val);
186 }
187
188 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
189
190 #define VFP_BINOP(name) \
191 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
192 { \
193 float_status *fpst = fpstp; \
194 return float32_ ## name(a, b, fpst); \
195 } \
196 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
197 { \
198 float_status *fpst = fpstp; \
199 return float64_ ## name(a, b, fpst); \
200 }
201 VFP_BINOP(add)
202 VFP_BINOP(sub)
203 VFP_BINOP(mul)
204 VFP_BINOP(div)
205 VFP_BINOP(min)
206 VFP_BINOP(max)
207 VFP_BINOP(minnum)
208 VFP_BINOP(maxnum)
209 #undef VFP_BINOP
210
211 float32 VFP_HELPER(neg, s)(float32 a)
212 {
213 return float32_chs(a);
214 }
215
216 float64 VFP_HELPER(neg, d)(float64 a)
217 {
218 return float64_chs(a);
219 }
220
221 float32 VFP_HELPER(abs, s)(float32 a)
222 {
223 return float32_abs(a);
224 }
225
226 float64 VFP_HELPER(abs, d)(float64 a)
227 {
228 return float64_abs(a);
229 }
230
231 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
232 {
233 return float32_sqrt(a, &env->vfp.fp_status);
234 }
235
236 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
237 {
238 return float64_sqrt(a, &env->vfp.fp_status);
239 }
240
241 static void softfloat_to_vfp_compare(CPUARMState *env, int cmp)
242 {
243 uint32_t flags;
244 switch (cmp) {
245 case float_relation_equal:
246 flags = 0x6;
247 break;
248 case float_relation_less:
249 flags = 0x8;
250 break;
251 case float_relation_greater:
252 flags = 0x2;
253 break;
254 case float_relation_unordered:
255 flags = 0x3;
256 break;
257 default:
258 g_assert_not_reached();
259 }
260 env->vfp.xregs[ARM_VFP_FPSCR] =
261 deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
262 }
263
264 /* XXX: check quiet/signaling case */
265 #define DO_VFP_cmp(p, type) \
266 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
267 { \
268 softfloat_to_vfp_compare(env, \
269 type ## _compare_quiet(a, b, &env->vfp.fp_status)); \
270 } \
271 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
272 { \
273 softfloat_to_vfp_compare(env, \
274 type ## _compare(a, b, &env->vfp.fp_status)); \
275 }
276 DO_VFP_cmp(s, float32)
277 DO_VFP_cmp(d, float64)
278 #undef DO_VFP_cmp
279
280 /* Integer to float and float to integer conversions */
281
282 #define CONV_ITOF(name, ftype, fsz, sign) \
283 ftype HELPER(name)(uint32_t x, void *fpstp) \
284 { \
285 float_status *fpst = fpstp; \
286 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
287 }
288
289 #define CONV_FTOI(name, ftype, fsz, sign, round) \
290 sign##int32_t HELPER(name)(ftype x, void *fpstp) \
291 { \
292 float_status *fpst = fpstp; \
293 if (float##fsz##_is_any_nan(x)) { \
294 float_raise(float_flag_invalid, fpst); \
295 return 0; \
296 } \
297 return float##fsz##_to_##sign##int32##round(x, fpst); \
298 }
299
300 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
301 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
302 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
303 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
304
305 FLOAT_CONVS(si, h, uint32_t, 16, )
306 FLOAT_CONVS(si, s, float32, 32, )
307 FLOAT_CONVS(si, d, float64, 64, )
308 FLOAT_CONVS(ui, h, uint32_t, 16, u)
309 FLOAT_CONVS(ui, s, float32, 32, u)
310 FLOAT_CONVS(ui, d, float64, 64, u)
311
312 #undef CONV_ITOF
313 #undef CONV_FTOI
314 #undef FLOAT_CONVS
315
316 /* floating point conversion */
317 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
318 {
319 return float32_to_float64(x, &env->vfp.fp_status);
320 }
321
322 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
323 {
324 return float64_to_float32(x, &env->vfp.fp_status);
325 }
326
327 /* VFP3 fixed point conversion. */
328 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
329 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
330 void *fpstp) \
331 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
332
333 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \
334 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
335 void *fpst) \
336 { \
337 if (unlikely(float##fsz##_is_any_nan(x))) { \
338 float_raise(float_flag_invalid, fpst); \
339 return 0; \
340 } \
341 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
342 }
343
344 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
345 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
346 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
347 float_round_to_zero, _round_to_zero) \
348 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
349 get_float_rounding_mode(fpst), )
350
351 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
352 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
353 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
354 get_float_rounding_mode(fpst), )
355
356 VFP_CONV_FIX(sh, d, 64, 64, int16)
357 VFP_CONV_FIX(sl, d, 64, 64, int32)
358 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
359 VFP_CONV_FIX(uh, d, 64, 64, uint16)
360 VFP_CONV_FIX(ul, d, 64, 64, uint32)
361 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
362 VFP_CONV_FIX(sh, s, 32, 32, int16)
363 VFP_CONV_FIX(sl, s, 32, 32, int32)
364 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
365 VFP_CONV_FIX(uh, s, 32, 32, uint16)
366 VFP_CONV_FIX(ul, s, 32, 32, uint32)
367 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
368
369 #undef VFP_CONV_FIX
370 #undef VFP_CONV_FIX_FLOAT
371 #undef VFP_CONV_FLOAT_FIX_ROUND
372 #undef VFP_CONV_FIX_A64
373
374 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
375 {
376 return int32_to_float16_scalbn(x, -shift, fpst);
377 }
378
379 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
380 {
381 return uint32_to_float16_scalbn(x, -shift, fpst);
382 }
383
384 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
385 {
386 return int64_to_float16_scalbn(x, -shift, fpst);
387 }
388
389 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
390 {
391 return uint64_to_float16_scalbn(x, -shift, fpst);
392 }
393
394 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
395 {
396 if (unlikely(float16_is_any_nan(x))) {
397 float_raise(float_flag_invalid, fpst);
398 return 0;
399 }
400 return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
401 shift, fpst);
402 }
403
404 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
405 {
406 if (unlikely(float16_is_any_nan(x))) {
407 float_raise(float_flag_invalid, fpst);
408 return 0;
409 }
410 return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
411 shift, fpst);
412 }
413
414 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
415 {
416 if (unlikely(float16_is_any_nan(x))) {
417 float_raise(float_flag_invalid, fpst);
418 return 0;
419 }
420 return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
421 shift, fpst);
422 }
423
424 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
425 {
426 if (unlikely(float16_is_any_nan(x))) {
427 float_raise(float_flag_invalid, fpst);
428 return 0;
429 }
430 return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
431 shift, fpst);
432 }
433
434 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
435 {
436 if (unlikely(float16_is_any_nan(x))) {
437 float_raise(float_flag_invalid, fpst);
438 return 0;
439 }
440 return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
441 shift, fpst);
442 }
443
444 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
445 {
446 if (unlikely(float16_is_any_nan(x))) {
447 float_raise(float_flag_invalid, fpst);
448 return 0;
449 }
450 return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
451 shift, fpst);
452 }
453
454 /* Set the current fp rounding mode and return the old one.
455 * The argument is a softfloat float_round_ value.
456 */
457 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
458 {
459 float_status *fp_status = fpstp;
460
461 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
462 set_float_rounding_mode(rmode, fp_status);
463
464 return prev_rmode;
465 }
466
467 /* Set the current fp rounding mode in the standard fp status and return
468 * the old one. This is for NEON instructions that need to change the
469 * rounding mode but wish to use the standard FPSCR values for everything
470 * else. Always set the rounding mode back to the correct value after
471 * modifying it.
472 * The argument is a softfloat float_round_ value.
473 */
474 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
475 {
476 float_status *fp_status = &env->vfp.standard_fp_status;
477
478 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
479 set_float_rounding_mode(rmode, fp_status);
480
481 return prev_rmode;
482 }
483
484 /* Half precision conversions. */
485 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
486 {
487 /* Squash FZ16 to 0 for the duration of conversion. In this case,
488 * it would affect flushing input denormals.
489 */
490 float_status *fpst = fpstp;
491 flag save = get_flush_inputs_to_zero(fpst);
492 set_flush_inputs_to_zero(false, fpst);
493 float32 r = float16_to_float32(a, !ahp_mode, fpst);
494 set_flush_inputs_to_zero(save, fpst);
495 return r;
496 }
497
498 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
499 {
500 /* Squash FZ16 to 0 for the duration of conversion. In this case,
501 * it would affect flushing output denormals.
502 */
503 float_status *fpst = fpstp;
504 flag save = get_flush_to_zero(fpst);
505 set_flush_to_zero(false, fpst);
506 float16 r = float32_to_float16(a, !ahp_mode, fpst);
507 set_flush_to_zero(save, fpst);
508 return r;
509 }
510
511 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
512 {
513 /* Squash FZ16 to 0 for the duration of conversion. In this case,
514 * it would affect flushing input denormals.
515 */
516 float_status *fpst = fpstp;
517 flag save = get_flush_inputs_to_zero(fpst);
518 set_flush_inputs_to_zero(false, fpst);
519 float64 r = float16_to_float64(a, !ahp_mode, fpst);
520 set_flush_inputs_to_zero(save, fpst);
521 return r;
522 }
523
524 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
525 {
526 /* Squash FZ16 to 0 for the duration of conversion. In this case,
527 * it would affect flushing output denormals.
528 */
529 float_status *fpst = fpstp;
530 flag save = get_flush_to_zero(fpst);
531 set_flush_to_zero(false, fpst);
532 float16 r = float64_to_float16(a, !ahp_mode, fpst);
533 set_flush_to_zero(save, fpst);
534 return r;
535 }
536
537 #define float32_two make_float32(0x40000000)
538 #define float32_three make_float32(0x40400000)
539 #define float32_one_point_five make_float32(0x3fc00000)
540
541 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
542 {
543 float_status *s = &env->vfp.standard_fp_status;
544 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
545 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
546 if (!(float32_is_zero(a) || float32_is_zero(b))) {
547 float_raise(float_flag_input_denormal, s);
548 }
549 return float32_two;
550 }
551 return float32_sub(float32_two, float32_mul(a, b, s), s);
552 }
553
554 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
555 {
556 float_status *s = &env->vfp.standard_fp_status;
557 float32 product;
558 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
559 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
560 if (!(float32_is_zero(a) || float32_is_zero(b))) {
561 float_raise(float_flag_input_denormal, s);
562 }
563 return float32_one_point_five;
564 }
565 product = float32_mul(a, b, s);
566 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
567 }
568
569 /* NEON helpers. */
570
571 /* Constants 256 and 512 are used in some helpers; we avoid relying on
572 * int->float conversions at run-time. */
573 #define float64_256 make_float64(0x4070000000000000LL)
574 #define float64_512 make_float64(0x4080000000000000LL)
575 #define float16_maxnorm make_float16(0x7bff)
576 #define float32_maxnorm make_float32(0x7f7fffff)
577 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
578
579 /* Reciprocal functions
580 *
581 * The algorithm that must be used to calculate the estimate
582 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
583 */
584
585 /* See RecipEstimate()
586 *
587 * input is a 9 bit fixed point number
588 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
589 * result range 256 .. 511 for a number from 1.0 to 511/256.
590 */
591
592 static int recip_estimate(int input)
593 {
594 int a, b, r;
595 assert(256 <= input && input < 512);
596 a = (input * 2) + 1;
597 b = (1 << 19) / a;
598 r = (b + 1) >> 1;
599 assert(256 <= r && r < 512);
600 return r;
601 }
602
603 /*
604 * Common wrapper to call recip_estimate
605 *
606 * The parameters are exponent and 64 bit fraction (without implicit
607 * bit) where the binary point is nominally at bit 52. Returns a
608 * float64 which can then be rounded to the appropriate size by the
609 * callee.
610 */
611
612 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
613 {
614 uint32_t scaled, estimate;
615 uint64_t result_frac;
616 int result_exp;
617
618 /* Handle sub-normals */
619 if (*exp == 0) {
620 if (extract64(frac, 51, 1) == 0) {
621 *exp = -1;
622 frac <<= 2;
623 } else {
624 frac <<= 1;
625 }
626 }
627
628 /* scaled = UInt('1':fraction<51:44>) */
629 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
630 estimate = recip_estimate(scaled);
631
632 result_exp = exp_off - *exp;
633 result_frac = deposit64(0, 44, 8, estimate);
634 if (result_exp == 0) {
635 result_frac = deposit64(result_frac >> 1, 51, 1, 1);
636 } else if (result_exp == -1) {
637 result_frac = deposit64(result_frac >> 2, 50, 2, 1);
638 result_exp = 0;
639 }
640
641 *exp = result_exp;
642
643 return result_frac;
644 }
645
646 static bool round_to_inf(float_status *fpst, bool sign_bit)
647 {
648 switch (fpst->float_rounding_mode) {
649 case float_round_nearest_even: /* Round to Nearest */
650 return true;
651 case float_round_up: /* Round to +Inf */
652 return !sign_bit;
653 case float_round_down: /* Round to -Inf */
654 return sign_bit;
655 case float_round_to_zero: /* Round to Zero */
656 return false;
657 }
658
659 g_assert_not_reached();
660 }
661
662 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
663 {
664 float_status *fpst = fpstp;
665 float16 f16 = float16_squash_input_denormal(input, fpst);
666 uint32_t f16_val = float16_val(f16);
667 uint32_t f16_sign = float16_is_neg(f16);
668 int f16_exp = extract32(f16_val, 10, 5);
669 uint32_t f16_frac = extract32(f16_val, 0, 10);
670 uint64_t f64_frac;
671
672 if (float16_is_any_nan(f16)) {
673 float16 nan = f16;
674 if (float16_is_signaling_nan(f16, fpst)) {
675 float_raise(float_flag_invalid, fpst);
676 nan = float16_silence_nan(f16, fpst);
677 }
678 if (fpst->default_nan_mode) {
679 nan = float16_default_nan(fpst);
680 }
681 return nan;
682 } else if (float16_is_infinity(f16)) {
683 return float16_set_sign(float16_zero, float16_is_neg(f16));
684 } else if (float16_is_zero(f16)) {
685 float_raise(float_flag_divbyzero, fpst);
686 return float16_set_sign(float16_infinity, float16_is_neg(f16));
687 } else if (float16_abs(f16) < (1 << 8)) {
688 /* Abs(value) < 2.0^-16 */
689 float_raise(float_flag_overflow | float_flag_inexact, fpst);
690 if (round_to_inf(fpst, f16_sign)) {
691 return float16_set_sign(float16_infinity, f16_sign);
692 } else {
693 return float16_set_sign(float16_maxnorm, f16_sign);
694 }
695 } else if (f16_exp >= 29 && fpst->flush_to_zero) {
696 float_raise(float_flag_underflow, fpst);
697 return float16_set_sign(float16_zero, float16_is_neg(f16));
698 }
699
700 f64_frac = call_recip_estimate(&f16_exp, 29,
701 ((uint64_t) f16_frac) << (52 - 10));
702
703 /* result = sign : result_exp<4:0> : fraction<51:42> */
704 f16_val = deposit32(0, 15, 1, f16_sign);
705 f16_val = deposit32(f16_val, 10, 5, f16_exp);
706 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
707 return make_float16(f16_val);
708 }
709
710 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
711 {
712 float_status *fpst = fpstp;
713 float32 f32 = float32_squash_input_denormal(input, fpst);
714 uint32_t f32_val = float32_val(f32);
715 bool f32_sign = float32_is_neg(f32);
716 int f32_exp = extract32(f32_val, 23, 8);
717 uint32_t f32_frac = extract32(f32_val, 0, 23);
718 uint64_t f64_frac;
719
720 if (float32_is_any_nan(f32)) {
721 float32 nan = f32;
722 if (float32_is_signaling_nan(f32, fpst)) {
723 float_raise(float_flag_invalid, fpst);
724 nan = float32_silence_nan(f32, fpst);
725 }
726 if (fpst->default_nan_mode) {
727 nan = float32_default_nan(fpst);
728 }
729 return nan;
730 } else if (float32_is_infinity(f32)) {
731 return float32_set_sign(float32_zero, float32_is_neg(f32));
732 } else if (float32_is_zero(f32)) {
733 float_raise(float_flag_divbyzero, fpst);
734 return float32_set_sign(float32_infinity, float32_is_neg(f32));
735 } else if (float32_abs(f32) < (1ULL << 21)) {
736 /* Abs(value) < 2.0^-128 */
737 float_raise(float_flag_overflow | float_flag_inexact, fpst);
738 if (round_to_inf(fpst, f32_sign)) {
739 return float32_set_sign(float32_infinity, f32_sign);
740 } else {
741 return float32_set_sign(float32_maxnorm, f32_sign);
742 }
743 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
744 float_raise(float_flag_underflow, fpst);
745 return float32_set_sign(float32_zero, float32_is_neg(f32));
746 }
747
748 f64_frac = call_recip_estimate(&f32_exp, 253,
749 ((uint64_t) f32_frac) << (52 - 23));
750
751 /* result = sign : result_exp<7:0> : fraction<51:29> */
752 f32_val = deposit32(0, 31, 1, f32_sign);
753 f32_val = deposit32(f32_val, 23, 8, f32_exp);
754 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
755 return make_float32(f32_val);
756 }
757
758 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
759 {
760 float_status *fpst = fpstp;
761 float64 f64 = float64_squash_input_denormal(input, fpst);
762 uint64_t f64_val = float64_val(f64);
763 bool f64_sign = float64_is_neg(f64);
764 int f64_exp = extract64(f64_val, 52, 11);
765 uint64_t f64_frac = extract64(f64_val, 0, 52);
766
767 /* Deal with any special cases */
768 if (float64_is_any_nan(f64)) {
769 float64 nan = f64;
770 if (float64_is_signaling_nan(f64, fpst)) {
771 float_raise(float_flag_invalid, fpst);
772 nan = float64_silence_nan(f64, fpst);
773 }
774 if (fpst->default_nan_mode) {
775 nan = float64_default_nan(fpst);
776 }
777 return nan;
778 } else if (float64_is_infinity(f64)) {
779 return float64_set_sign(float64_zero, float64_is_neg(f64));
780 } else if (float64_is_zero(f64)) {
781 float_raise(float_flag_divbyzero, fpst);
782 return float64_set_sign(float64_infinity, float64_is_neg(f64));
783 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
784 /* Abs(value) < 2.0^-1024 */
785 float_raise(float_flag_overflow | float_flag_inexact, fpst);
786 if (round_to_inf(fpst, f64_sign)) {
787 return float64_set_sign(float64_infinity, f64_sign);
788 } else {
789 return float64_set_sign(float64_maxnorm, f64_sign);
790 }
791 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
792 float_raise(float_flag_underflow, fpst);
793 return float64_set_sign(float64_zero, float64_is_neg(f64));
794 }
795
796 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
797
798 /* result = sign : result_exp<10:0> : fraction<51:0>; */
799 f64_val = deposit64(0, 63, 1, f64_sign);
800 f64_val = deposit64(f64_val, 52, 11, f64_exp);
801 f64_val = deposit64(f64_val, 0, 52, f64_frac);
802 return make_float64(f64_val);
803 }
804
805 /* The algorithm that must be used to calculate the estimate
806 * is specified by the ARM ARM.
807 */
808
809 static int do_recip_sqrt_estimate(int a)
810 {
811 int b, estimate;
812
813 assert(128 <= a && a < 512);
814 if (a < 256) {
815 a = a * 2 + 1;
816 } else {
817 a = (a >> 1) << 1;
818 a = (a + 1) * 2;
819 }
820 b = 512;
821 while (a * (b + 1) * (b + 1) < (1 << 28)) {
822 b += 1;
823 }
824 estimate = (b + 1) / 2;
825 assert(256 <= estimate && estimate < 512);
826
827 return estimate;
828 }
829
830
831 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
832 {
833 int estimate;
834 uint32_t scaled;
835
836 if (*exp == 0) {
837 while (extract64(frac, 51, 1) == 0) {
838 frac = frac << 1;
839 *exp -= 1;
840 }
841 frac = extract64(frac, 0, 51) << 1;
842 }
843
844 if (*exp & 1) {
845 /* scaled = UInt('01':fraction<51:45>) */
846 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
847 } else {
848 /* scaled = UInt('1':fraction<51:44>) */
849 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
850 }
851 estimate = do_recip_sqrt_estimate(scaled);
852
853 *exp = (exp_off - *exp) / 2;
854 return extract64(estimate, 0, 8) << 44;
855 }
856
857 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
858 {
859 float_status *s = fpstp;
860 float16 f16 = float16_squash_input_denormal(input, s);
861 uint16_t val = float16_val(f16);
862 bool f16_sign = float16_is_neg(f16);
863 int f16_exp = extract32(val, 10, 5);
864 uint16_t f16_frac = extract32(val, 0, 10);
865 uint64_t f64_frac;
866
867 if (float16_is_any_nan(f16)) {
868 float16 nan = f16;
869 if (float16_is_signaling_nan(f16, s)) {
870 float_raise(float_flag_invalid, s);
871 nan = float16_silence_nan(f16, s);
872 }
873 if (s->default_nan_mode) {
874 nan = float16_default_nan(s);
875 }
876 return nan;
877 } else if (float16_is_zero(f16)) {
878 float_raise(float_flag_divbyzero, s);
879 return float16_set_sign(float16_infinity, f16_sign);
880 } else if (f16_sign) {
881 float_raise(float_flag_invalid, s);
882 return float16_default_nan(s);
883 } else if (float16_is_infinity(f16)) {
884 return float16_zero;
885 }
886
887 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
888 * preserving the parity of the exponent. */
889
890 f64_frac = ((uint64_t) f16_frac) << (52 - 10);
891
892 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
893
894 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
895 val = deposit32(0, 15, 1, f16_sign);
896 val = deposit32(val, 10, 5, f16_exp);
897 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
898 return make_float16(val);
899 }
900
901 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
902 {
903 float_status *s = fpstp;
904 float32 f32 = float32_squash_input_denormal(input, s);
905 uint32_t val = float32_val(f32);
906 uint32_t f32_sign = float32_is_neg(f32);
907 int f32_exp = extract32(val, 23, 8);
908 uint32_t f32_frac = extract32(val, 0, 23);
909 uint64_t f64_frac;
910
911 if (float32_is_any_nan(f32)) {
912 float32 nan = f32;
913 if (float32_is_signaling_nan(f32, s)) {
914 float_raise(float_flag_invalid, s);
915 nan = float32_silence_nan(f32, s);
916 }
917 if (s->default_nan_mode) {
918 nan = float32_default_nan(s);
919 }
920 return nan;
921 } else if (float32_is_zero(f32)) {
922 float_raise(float_flag_divbyzero, s);
923 return float32_set_sign(float32_infinity, float32_is_neg(f32));
924 } else if (float32_is_neg(f32)) {
925 float_raise(float_flag_invalid, s);
926 return float32_default_nan(s);
927 } else if (float32_is_infinity(f32)) {
928 return float32_zero;
929 }
930
931 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
932 * preserving the parity of the exponent. */
933
934 f64_frac = ((uint64_t) f32_frac) << 29;
935
936 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
937
938 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
939 val = deposit32(0, 31, 1, f32_sign);
940 val = deposit32(val, 23, 8, f32_exp);
941 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
942 return make_float32(val);
943 }
944
945 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
946 {
947 float_status *s = fpstp;
948 float64 f64 = float64_squash_input_denormal(input, s);
949 uint64_t val = float64_val(f64);
950 bool f64_sign = float64_is_neg(f64);
951 int f64_exp = extract64(val, 52, 11);
952 uint64_t f64_frac = extract64(val, 0, 52);
953
954 if (float64_is_any_nan(f64)) {
955 float64 nan = f64;
956 if (float64_is_signaling_nan(f64, s)) {
957 float_raise(float_flag_invalid, s);
958 nan = float64_silence_nan(f64, s);
959 }
960 if (s->default_nan_mode) {
961 nan = float64_default_nan(s);
962 }
963 return nan;
964 } else if (float64_is_zero(f64)) {
965 float_raise(float_flag_divbyzero, s);
966 return float64_set_sign(float64_infinity, float64_is_neg(f64));
967 } else if (float64_is_neg(f64)) {
968 float_raise(float_flag_invalid, s);
969 return float64_default_nan(s);
970 } else if (float64_is_infinity(f64)) {
971 return float64_zero;
972 }
973
974 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
975
976 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
977 val = deposit64(0, 61, 1, f64_sign);
978 val = deposit64(val, 52, 11, f64_exp);
979 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
980 return make_float64(val);
981 }
982
983 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
984 {
985 /* float_status *s = fpstp; */
986 int input, estimate;
987
988 if ((a & 0x80000000) == 0) {
989 return 0xffffffff;
990 }
991
992 input = extract32(a, 23, 9);
993 estimate = recip_estimate(input);
994
995 return deposit32(0, (32 - 9), 9, estimate);
996 }
997
998 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
999 {
1000 int estimate;
1001
1002 if ((a & 0xc0000000) == 0) {
1003 return 0xffffffff;
1004 }
1005
1006 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
1007
1008 return deposit32(0, 23, 9, estimate);
1009 }
1010
1011 /* VFPv4 fused multiply-accumulate */
1012 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
1013 {
1014 float_status *fpst = fpstp;
1015 return float32_muladd(a, b, c, 0, fpst);
1016 }
1017
1018 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
1019 {
1020 float_status *fpst = fpstp;
1021 return float64_muladd(a, b, c, 0, fpst);
1022 }
1023
1024 /* ARMv8 round to integral */
1025 float32 HELPER(rints_exact)(float32 x, void *fp_status)
1026 {
1027 return float32_round_to_int(x, fp_status);
1028 }
1029
1030 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
1031 {
1032 return float64_round_to_int(x, fp_status);
1033 }
1034
1035 float32 HELPER(rints)(float32 x, void *fp_status)
1036 {
1037 int old_flags = get_float_exception_flags(fp_status), new_flags;
1038 float32 ret;
1039
1040 ret = float32_round_to_int(x, fp_status);
1041
1042 /* Suppress any inexact exceptions the conversion produced */
1043 if (!(old_flags & float_flag_inexact)) {
1044 new_flags = get_float_exception_flags(fp_status);
1045 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1046 }
1047
1048 return ret;
1049 }
1050
1051 float64 HELPER(rintd)(float64 x, void *fp_status)
1052 {
1053 int old_flags = get_float_exception_flags(fp_status), new_flags;
1054 float64 ret;
1055
1056 ret = float64_round_to_int(x, fp_status);
1057
1058 new_flags = get_float_exception_flags(fp_status);
1059
1060 /* Suppress any inexact exceptions the conversion produced */
1061 if (!(old_flags & float_flag_inexact)) {
1062 new_flags = get_float_exception_flags(fp_status);
1063 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1064 }
1065
1066 return ret;
1067 }
1068
1069 /* Convert ARM rounding mode to softfloat */
1070 int arm_rmode_to_sf(int rmode)
1071 {
1072 switch (rmode) {
1073 case FPROUNDING_TIEAWAY:
1074 rmode = float_round_ties_away;
1075 break;
1076 case FPROUNDING_ODD:
1077 /* FIXME: add support for TIEAWAY and ODD */
1078 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
1079 rmode);
1080 /* fall through for now */
1081 case FPROUNDING_TIEEVEN:
1082 default:
1083 rmode = float_round_nearest_even;
1084 break;
1085 case FPROUNDING_POSINF:
1086 rmode = float_round_up;
1087 break;
1088 case FPROUNDING_NEGINF:
1089 rmode = float_round_down;
1090 break;
1091 case FPROUNDING_ZERO:
1092 rmode = float_round_to_zero;
1093 break;
1094 }
1095 return rmode;
1096 }
1097
1098 /*
1099 * Implement float64 to int32_t conversion without saturation;
1100 * the result is supplied modulo 2^32.
1101 */
1102 uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
1103 {
1104 float_status *status = vstatus;
1105 uint32_t exp, sign;
1106 uint64_t frac;
1107 uint32_t inexact = 1; /* !Z */
1108
1109 sign = extract64(value, 63, 1);
1110 exp = extract64(value, 52, 11);
1111 frac = extract64(value, 0, 52);
1112
1113 if (exp == 0) {
1114 /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */
1115 inexact = sign;
1116 if (frac != 0) {
1117 if (status->flush_inputs_to_zero) {
1118 float_raise(float_flag_input_denormal, status);
1119 } else {
1120 float_raise(float_flag_inexact, status);
1121 inexact = 1;
1122 }
1123 }
1124 frac = 0;
1125 } else if (exp == 0x7ff) {
1126 /* This operation raises Invalid for both NaN and overflow (Inf). */
1127 float_raise(float_flag_invalid, status);
1128 frac = 0;
1129 } else {
1130 int true_exp = exp - 1023;
1131 int shift = true_exp - 52;
1132
1133 /* Restore implicit bit. */
1134 frac |= 1ull << 52;
1135
1136 /* Shift the fraction into place. */
1137 if (shift >= 0) {
1138 /* The number is so large we must shift the fraction left. */
1139 if (shift >= 64) {
1140 /* The fraction is shifted out entirely. */
1141 frac = 0;
1142 } else {
1143 frac <<= shift;
1144 }
1145 } else if (shift > -64) {
1146 /* Normal case -- shift right and notice if bits shift out. */
1147 inexact = (frac << (64 + shift)) != 0;
1148 frac >>= -shift;
1149 } else {
1150 /* The fraction is shifted out entirely. */
1151 frac = 0;
1152 }
1153
1154 /* Notice overflow or inexact exceptions. */
1155 if (true_exp > 31 || frac > (sign ? 0x80000000ull : 0x7fffffff)) {
1156 /* Overflow, for which this operation raises invalid. */
1157 float_raise(float_flag_invalid, status);
1158 inexact = 1;
1159 } else if (inexact) {
1160 float_raise(float_flag_inexact, status);
1161 }
1162
1163 /* Honor the sign. */
1164 if (sign) {
1165 frac = -frac;
1166 }
1167 }
1168
1169 /* Pack the result and the env->ZF representation of Z together. */
1170 return deposit64(frac, 32, 32, inexact);
1171 }
1172
1173 uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1174 {
1175 uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
1176 uint32_t result = pair;
1177 uint32_t z = (pair >> 32) == 0;
1178
1179 /* Store Z, clear NCV, in FPSCR.NZCV. */
1180 env->vfp.xregs[ARM_VFP_FPSCR]
1181 = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z);
1182
1183 return result;
1184 }
1185
1186 /* Round a float32 to an integer that fits in int32_t or int64_t. */
1187 static float32 frint_s(float32 f, float_status *fpst, int intsize)
1188 {
1189 int old_flags = get_float_exception_flags(fpst);
1190 uint32_t exp = extract32(f, 23, 8);
1191
1192 if (unlikely(exp == 0xff)) {
1193 /* NaN or Inf. */
1194 goto overflow;
1195 }
1196
1197 /* Round and re-extract the exponent. */
1198 f = float32_round_to_int(f, fpst);
1199 exp = extract32(f, 23, 8);
1200
1201 /* Validate the range of the result. */
1202 if (exp < 126 + intsize) {
1203 /* abs(F) <= INT{N}_MAX */
1204 return f;
1205 }
1206 if (exp == 126 + intsize) {
1207 uint32_t sign = extract32(f, 31, 1);
1208 uint32_t frac = extract32(f, 0, 23);
1209 if (sign && frac == 0) {
1210 /* F == INT{N}_MIN */
1211 return f;
1212 }
1213 }
1214
1215 overflow:
1216 /*
1217 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1218 * inexact exception float32_round_to_int may have raised.
1219 */
1220 set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1221 return (0x100u + 126u + intsize) << 23;
1222 }
1223
1224 float32 HELPER(frint32_s)(float32 f, void *fpst)
1225 {
1226 return frint_s(f, fpst, 32);
1227 }
1228
1229 float32 HELPER(frint64_s)(float32 f, void *fpst)
1230 {
1231 return frint_s(f, fpst, 64);
1232 }
1233
1234 /* Round a float64 to an integer that fits in int32_t or int64_t. */
1235 static float64 frint_d(float64 f, float_status *fpst, int intsize)
1236 {
1237 int old_flags = get_float_exception_flags(fpst);
1238 uint32_t exp = extract64(f, 52, 11);
1239
1240 if (unlikely(exp == 0x7ff)) {
1241 /* NaN or Inf. */
1242 goto overflow;
1243 }
1244
1245 /* Round and re-extract the exponent. */
1246 f = float64_round_to_int(f, fpst);
1247 exp = extract64(f, 52, 11);
1248
1249 /* Validate the range of the result. */
1250 if (exp < 1022 + intsize) {
1251 /* abs(F) <= INT{N}_MAX */
1252 return f;
1253 }
1254 if (exp == 1022 + intsize) {
1255 uint64_t sign = extract64(f, 63, 1);
1256 uint64_t frac = extract64(f, 0, 52);
1257 if (sign && frac == 0) {
1258 /* F == INT{N}_MIN */
1259 return f;
1260 }
1261 }
1262
1263 overflow:
1264 /*
1265 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1266 * inexact exception float64_round_to_int may have raised.
1267 */
1268 set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1269 return (uint64_t)(0x800 + 1022 + intsize) << 52;
1270 }
1271
1272 float64 HELPER(frint32_d)(float64 f, void *fpst)
1273 {
1274 return frint_d(f, fpst, 32);
1275 }
1276
1277 float64 HELPER(frint64_d)(float64 f, void *fpst)
1278 {
1279 return frint_d(f, fpst, 64);
1280 }