]> git.proxmox.com Git - mirror_qemu.git/blob - target/hexagon/translate.c
95579ae2432f0949c4df2e8591809b56fbec120c
[mirror_qemu.git] / target / hexagon / translate.c
1 /*
2 * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #define QEMU_GENERATE
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "tcg/tcg-op.h"
22 #include "tcg/tcg-op-gvec.h"
23 #include "exec/helper-gen.h"
24 #include "exec/helper-proto.h"
25 #include "exec/translation-block.h"
26 #include "exec/log.h"
27 #include "internal.h"
28 #include "attribs.h"
29 #include "insn.h"
30 #include "decode.h"
31 #include "translate.h"
32 #include "genptr.h"
33 #include "printinsn.h"
34
35 #define HELPER_H "helper.h"
36 #include "exec/helper-info.c.inc"
37 #undef HELPER_H
38
39 #include "analyze_funcs_generated.c.inc"
40
41 typedef void (*AnalyzeInsn)(DisasContext *ctx);
42 static const AnalyzeInsn opcode_analyze[XX_LAST_OPCODE] = {
43 #define OPCODE(X) [X] = analyze_##X
44 #include "opcodes_def_generated.h.inc"
45 #undef OPCODE
46 };
47
48 TCGv hex_gpr[TOTAL_PER_THREAD_REGS];
49 TCGv hex_pred[NUM_PREGS];
50 TCGv hex_slot_cancelled;
51 TCGv hex_new_value_usr;
52 TCGv hex_reg_written[TOTAL_PER_THREAD_REGS];
53 TCGv hex_store_addr[STORES_MAX];
54 TCGv hex_store_width[STORES_MAX];
55 TCGv hex_store_val32[STORES_MAX];
56 TCGv_i64 hex_store_val64[STORES_MAX];
57 TCGv hex_llsc_addr;
58 TCGv hex_llsc_val;
59 TCGv_i64 hex_llsc_val_i64;
60 TCGv hex_vstore_addr[VSTORES_MAX];
61 TCGv hex_vstore_size[VSTORES_MAX];
62 TCGv hex_vstore_pending[VSTORES_MAX];
63
64 static const char * const hexagon_prednames[] = {
65 "p0", "p1", "p2", "p3"
66 };
67
68 intptr_t ctx_future_vreg_off(DisasContext *ctx, int regnum,
69 int num, bool alloc_ok)
70 {
71 intptr_t offset;
72
73 if (!ctx->need_commit) {
74 return offsetof(CPUHexagonState, VRegs[regnum]);
75 }
76
77 /* See if it is already allocated */
78 for (int i = 0; i < ctx->future_vregs_idx; i++) {
79 if (ctx->future_vregs_num[i] == regnum) {
80 return offsetof(CPUHexagonState, future_VRegs[i]);
81 }
82 }
83
84 g_assert(alloc_ok);
85 offset = offsetof(CPUHexagonState, future_VRegs[ctx->future_vregs_idx]);
86 for (int i = 0; i < num; i++) {
87 ctx->future_vregs_num[ctx->future_vregs_idx + i] = regnum++;
88 }
89 ctx->future_vregs_idx += num;
90 g_assert(ctx->future_vregs_idx <= VECTOR_TEMPS_MAX);
91 return offset;
92 }
93
94 intptr_t ctx_tmp_vreg_off(DisasContext *ctx, int regnum,
95 int num, bool alloc_ok)
96 {
97 intptr_t offset;
98
99 /* See if it is already allocated */
100 for (int i = 0; i < ctx->tmp_vregs_idx; i++) {
101 if (ctx->tmp_vregs_num[i] == regnum) {
102 return offsetof(CPUHexagonState, tmp_VRegs[i]);
103 }
104 }
105
106 g_assert(alloc_ok);
107 offset = offsetof(CPUHexagonState, tmp_VRegs[ctx->tmp_vregs_idx]);
108 for (int i = 0; i < num; i++) {
109 ctx->tmp_vregs_num[ctx->tmp_vregs_idx + i] = regnum++;
110 }
111 ctx->tmp_vregs_idx += num;
112 g_assert(ctx->tmp_vregs_idx <= VECTOR_TEMPS_MAX);
113 return offset;
114 }
115
116 static void gen_exception_raw(int excp)
117 {
118 gen_helper_raise_exception(tcg_env, tcg_constant_i32(excp));
119 }
120
121 static void gen_exec_counters(DisasContext *ctx)
122 {
123 tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_PKT_CNT],
124 hex_gpr[HEX_REG_QEMU_PKT_CNT], ctx->num_packets);
125 tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_INSN_CNT],
126 hex_gpr[HEX_REG_QEMU_INSN_CNT], ctx->num_insns);
127 tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_HVX_CNT],
128 hex_gpr[HEX_REG_QEMU_HVX_CNT], ctx->num_hvx_insns);
129 }
130
131 static bool use_goto_tb(DisasContext *ctx, target_ulong dest)
132 {
133 return translator_use_goto_tb(&ctx->base, dest);
134 }
135
136 static void gen_goto_tb(DisasContext *ctx, int idx, target_ulong dest, bool
137 move_to_pc)
138 {
139 if (use_goto_tb(ctx, dest)) {
140 tcg_gen_goto_tb(idx);
141 if (move_to_pc) {
142 tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest);
143 }
144 tcg_gen_exit_tb(ctx->base.tb, idx);
145 } else {
146 if (move_to_pc) {
147 tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest);
148 }
149 tcg_gen_lookup_and_goto_ptr();
150 }
151 }
152
153 static void gen_end_tb(DisasContext *ctx)
154 {
155 Packet *pkt = ctx->pkt;
156
157 gen_exec_counters(ctx);
158
159 if (ctx->branch_cond != TCG_COND_NEVER) {
160 if (ctx->branch_cond != TCG_COND_ALWAYS) {
161 TCGLabel *skip = gen_new_label();
162 tcg_gen_brcondi_tl(ctx->branch_cond, ctx->branch_taken, 0, skip);
163 gen_goto_tb(ctx, 0, ctx->branch_dest, true);
164 gen_set_label(skip);
165 gen_goto_tb(ctx, 1, ctx->next_PC, false);
166 } else {
167 gen_goto_tb(ctx, 0, ctx->branch_dest, true);
168 }
169 } else if (ctx->is_tight_loop &&
170 pkt->insn[pkt->num_insns - 1].opcode == J2_endloop0) {
171 /*
172 * When we're in a tight loop, we defer the endloop0 processing
173 * to take advantage of direct block chaining
174 */
175 TCGLabel *skip = gen_new_label();
176 tcg_gen_brcondi_tl(TCG_COND_LEU, hex_gpr[HEX_REG_LC0], 1, skip);
177 tcg_gen_subi_tl(hex_gpr[HEX_REG_LC0], hex_gpr[HEX_REG_LC0], 1);
178 gen_goto_tb(ctx, 0, ctx->base.tb->pc, true);
179 gen_set_label(skip);
180 gen_goto_tb(ctx, 1, ctx->next_PC, false);
181 } else {
182 tcg_gen_lookup_and_goto_ptr();
183 }
184
185 ctx->base.is_jmp = DISAS_NORETURN;
186 }
187
188 static void gen_exception_end_tb(DisasContext *ctx, int excp)
189 {
190 gen_exec_counters(ctx);
191 tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->next_PC);
192 gen_exception_raw(excp);
193 ctx->base.is_jmp = DISAS_NORETURN;
194
195 }
196
197 #define PACKET_BUFFER_LEN 1028
198 static void print_pkt(Packet *pkt)
199 {
200 GString *buf = g_string_sized_new(PACKET_BUFFER_LEN);
201 snprint_a_pkt_debug(buf, pkt);
202 HEX_DEBUG_LOG("%s", buf->str);
203 g_string_free(buf, true);
204 }
205 #define HEX_DEBUG_PRINT_PKT(pkt) \
206 do { \
207 if (HEX_DEBUG) { \
208 print_pkt(pkt); \
209 } \
210 } while (0)
211
212 static int read_packet_words(CPUHexagonState *env, DisasContext *ctx,
213 uint32_t words[])
214 {
215 bool found_end = false;
216 int nwords, max_words;
217
218 memset(words, 0, PACKET_WORDS_MAX * sizeof(uint32_t));
219 for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) {
220 words[nwords] =
221 translator_ldl(env, &ctx->base,
222 ctx->base.pc_next + nwords * sizeof(uint32_t));
223 found_end = is_packet_end(words[nwords]);
224 }
225 if (!found_end) {
226 /* Read too many words without finding the end */
227 return 0;
228 }
229
230 /* Check for page boundary crossing */
231 max_words = -(ctx->base.pc_next | TARGET_PAGE_MASK) / sizeof(uint32_t);
232 if (nwords > max_words) {
233 /* We can only cross a page boundary at the beginning of a TB */
234 g_assert(ctx->base.num_insns == 1);
235 }
236
237 HEX_DEBUG_LOG("decode_packet: pc = 0x%x\n", ctx->base.pc_next);
238 HEX_DEBUG_LOG(" words = { ");
239 for (int i = 0; i < nwords; i++) {
240 HEX_DEBUG_LOG("0x%x, ", words[i]);
241 }
242 HEX_DEBUG_LOG("}\n");
243
244 return nwords;
245 }
246
247 static bool check_for_attrib(Packet *pkt, int attrib)
248 {
249 for (int i = 0; i < pkt->num_insns; i++) {
250 if (GET_ATTRIB(pkt->insn[i].opcode, attrib)) {
251 return true;
252 }
253 }
254 return false;
255 }
256
257 static bool need_slot_cancelled(Packet *pkt)
258 {
259 /* We only need slot_cancelled for conditional store instructions */
260 for (int i = 0; i < pkt->num_insns; i++) {
261 uint16_t opcode = pkt->insn[i].opcode;
262 if (GET_ATTRIB(opcode, A_CONDEXEC) &&
263 GET_ATTRIB(opcode, A_SCALAR_STORE)) {
264 return true;
265 }
266 }
267 return false;
268 }
269
270 static bool need_next_PC(DisasContext *ctx)
271 {
272 Packet *pkt = ctx->pkt;
273
274 /* Check for conditional control flow or HW loop end */
275 for (int i = 0; i < pkt->num_insns; i++) {
276 uint16_t opcode = pkt->insn[i].opcode;
277 if (GET_ATTRIB(opcode, A_CONDEXEC) && GET_ATTRIB(opcode, A_COF)) {
278 return true;
279 }
280 if (GET_ATTRIB(opcode, A_HWLOOP0_END) ||
281 GET_ATTRIB(opcode, A_HWLOOP1_END)) {
282 return true;
283 }
284 }
285 return false;
286 }
287
288 /*
289 * The opcode_analyze functions mark most of the writes in a packet
290 * However, there are some implicit writes marked as attributes
291 * of the applicable instructions.
292 */
293 static void mark_implicit_reg_write(DisasContext *ctx, int attrib, int rnum)
294 {
295 uint16_t opcode = ctx->insn->opcode;
296 if (GET_ATTRIB(opcode, attrib)) {
297 /*
298 * USR is used to set overflow and FP exceptions,
299 * so treat it as conditional
300 */
301 bool is_predicated = GET_ATTRIB(opcode, A_CONDEXEC) ||
302 rnum == HEX_REG_USR;
303
304 /* LC0/LC1 is conditionally written by endloop instructions */
305 if ((rnum == HEX_REG_LC0 || rnum == HEX_REG_LC1) &&
306 (opcode == J2_endloop0 ||
307 opcode == J2_endloop1 ||
308 opcode == J2_endloop01)) {
309 is_predicated = true;
310 }
311
312 ctx_log_reg_write(ctx, rnum, is_predicated);
313 }
314 }
315
316 static void mark_implicit_reg_writes(DisasContext *ctx)
317 {
318 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_FP, HEX_REG_FP);
319 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SP, HEX_REG_SP);
320 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LR, HEX_REG_LR);
321 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC0, HEX_REG_LC0);
322 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA0, HEX_REG_SA0);
323 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC1, HEX_REG_LC1);
324 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA1, HEX_REG_SA1);
325 mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_USR, HEX_REG_USR);
326 mark_implicit_reg_write(ctx, A_FPOP, HEX_REG_USR);
327 }
328
329 static void mark_implicit_pred_write(DisasContext *ctx, int attrib, int pnum)
330 {
331 if (GET_ATTRIB(ctx->insn->opcode, attrib)) {
332 ctx_log_pred_write(ctx, pnum);
333 }
334 }
335
336 static void mark_implicit_pred_writes(DisasContext *ctx)
337 {
338 mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P0, 0);
339 mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P1, 1);
340 mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P2, 2);
341 mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P3, 3);
342 }
343
344 static bool pkt_raises_exception(Packet *pkt)
345 {
346 if (check_for_attrib(pkt, A_LOAD) ||
347 check_for_attrib(pkt, A_STORE)) {
348 return true;
349 }
350 return false;
351 }
352
353 static bool need_commit(DisasContext *ctx)
354 {
355 Packet *pkt = ctx->pkt;
356
357 /*
358 * If the short-circuit property is set to false, we'll always do the commit
359 */
360 if (!ctx->short_circuit) {
361 return true;
362 }
363
364 if (pkt_raises_exception(pkt)) {
365 return true;
366 }
367
368 /* Registers with immutability flags require new_value */
369 for (int i = 0; i < ctx->reg_log_idx; i++) {
370 int rnum = ctx->reg_log[i];
371 if (reg_immut_masks[rnum]) {
372 return true;
373 }
374 }
375
376 /* Floating point instructions are hard-coded to use new_value */
377 if (check_for_attrib(pkt, A_FPOP)) {
378 return true;
379 }
380
381 if (pkt->num_insns == 1) {
382 if (pkt->pkt_has_hvx) {
383 /*
384 * The HVX instructions with generated helpers use
385 * pass-by-reference, so they need the read/write overlap
386 * check below.
387 * The HVX instructions with overrides are OK.
388 */
389 if (!ctx->has_hvx_helper) {
390 return false;
391 }
392 } else {
393 return false;
394 }
395 }
396
397 /* Check for overlap between register reads and writes */
398 for (int i = 0; i < ctx->reg_log_idx; i++) {
399 int rnum = ctx->reg_log[i];
400 if (test_bit(rnum, ctx->regs_read)) {
401 return true;
402 }
403 }
404
405 /* Check for overlap between predicate reads and writes */
406 for (int i = 0; i < ctx->preg_log_idx; i++) {
407 int pnum = ctx->preg_log[i];
408 if (test_bit(pnum, ctx->pregs_read)) {
409 return true;
410 }
411 }
412
413 /* Check for overlap between HVX reads and writes */
414 for (int i = 0; i < ctx->vreg_log_idx; i++) {
415 int vnum = ctx->vreg_log[i];
416 if (test_bit(vnum, ctx->vregs_read)) {
417 return true;
418 }
419 }
420 if (!bitmap_empty(ctx->vregs_updated_tmp, NUM_VREGS)) {
421 int i = find_first_bit(ctx->vregs_updated_tmp, NUM_VREGS);
422 while (i < NUM_VREGS) {
423 if (test_bit(i, ctx->vregs_read)) {
424 return true;
425 }
426 i = find_next_bit(ctx->vregs_updated_tmp, NUM_VREGS, i + 1);
427 }
428 }
429 if (!bitmap_empty(ctx->vregs_select, NUM_VREGS)) {
430 int i = find_first_bit(ctx->vregs_select, NUM_VREGS);
431 while (i < NUM_VREGS) {
432 if (test_bit(i, ctx->vregs_read)) {
433 return true;
434 }
435 i = find_next_bit(ctx->vregs_select, NUM_VREGS, i + 1);
436 }
437 }
438
439 /* Check for overlap between HVX predicate reads and writes */
440 for (int i = 0; i < ctx->qreg_log_idx; i++) {
441 int qnum = ctx->qreg_log[i];
442 if (test_bit(qnum, ctx->qregs_read)) {
443 return true;
444 }
445 }
446
447 return false;
448 }
449
450 static void mark_implicit_pred_read(DisasContext *ctx, int attrib, int pnum)
451 {
452 if (GET_ATTRIB(ctx->insn->opcode, attrib)) {
453 ctx_log_pred_read(ctx, pnum);
454 }
455 }
456
457 static void mark_implicit_pred_reads(DisasContext *ctx)
458 {
459 mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P0, 0);
460 mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P1, 1);
461 mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P3, 2);
462 mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P3, 3);
463 }
464
465 static void analyze_packet(DisasContext *ctx)
466 {
467 Packet *pkt = ctx->pkt;
468 ctx->has_hvx_helper = false;
469 for (int i = 0; i < pkt->num_insns; i++) {
470 Insn *insn = &pkt->insn[i];
471 ctx->insn = insn;
472 if (opcode_analyze[insn->opcode]) {
473 opcode_analyze[insn->opcode](ctx);
474 }
475 mark_implicit_reg_writes(ctx);
476 mark_implicit_pred_writes(ctx);
477 mark_implicit_pred_reads(ctx);
478 }
479
480 ctx->need_commit = need_commit(ctx);
481 }
482
483 static void gen_start_packet(DisasContext *ctx)
484 {
485 Packet *pkt = ctx->pkt;
486 target_ulong next_PC = ctx->base.pc_next + pkt->encod_pkt_size_in_bytes;
487 int i;
488
489 /* Clear out the disassembly context */
490 ctx->next_PC = next_PC;
491 ctx->reg_log_idx = 0;
492 bitmap_zero(ctx->regs_written, TOTAL_PER_THREAD_REGS);
493 bitmap_zero(ctx->regs_read, TOTAL_PER_THREAD_REGS);
494 bitmap_zero(ctx->predicated_regs, TOTAL_PER_THREAD_REGS);
495 ctx->preg_log_idx = 0;
496 bitmap_zero(ctx->pregs_written, NUM_PREGS);
497 bitmap_zero(ctx->pregs_read, NUM_PREGS);
498 ctx->future_vregs_idx = 0;
499 ctx->tmp_vregs_idx = 0;
500 ctx->vreg_log_idx = 0;
501 bitmap_zero(ctx->vregs_updated_tmp, NUM_VREGS);
502 bitmap_zero(ctx->vregs_updated, NUM_VREGS);
503 bitmap_zero(ctx->vregs_select, NUM_VREGS);
504 bitmap_zero(ctx->predicated_future_vregs, NUM_VREGS);
505 bitmap_zero(ctx->predicated_tmp_vregs, NUM_VREGS);
506 bitmap_zero(ctx->vregs_read, NUM_VREGS);
507 bitmap_zero(ctx->qregs_read, NUM_QREGS);
508 ctx->qreg_log_idx = 0;
509 for (i = 0; i < STORES_MAX; i++) {
510 ctx->store_width[i] = 0;
511 }
512 ctx->s1_store_processed = false;
513 ctx->pre_commit = true;
514 for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) {
515 ctx->new_value[i] = NULL;
516 }
517 for (i = 0; i < NUM_PREGS; i++) {
518 ctx->new_pred_value[i] = NULL;
519 }
520
521 analyze_packet(ctx);
522
523 /*
524 * pregs_written is used both in the analyze phase as well as the code
525 * gen phase, so clear it again.
526 */
527 bitmap_zero(ctx->pregs_written, NUM_PREGS);
528
529 if (HEX_DEBUG) {
530 /* Handy place to set a breakpoint before the packet executes */
531 gen_helper_debug_start_packet(tcg_env);
532 }
533
534 /* Initialize the runtime state for packet semantics */
535 if (need_slot_cancelled(pkt)) {
536 tcg_gen_movi_tl(hex_slot_cancelled, 0);
537 }
538 ctx->branch_taken = NULL;
539 if (pkt->pkt_has_cof) {
540 ctx->branch_taken = tcg_temp_new();
541 if (pkt->pkt_has_multi_cof) {
542 tcg_gen_movi_tl(ctx->branch_taken, 0);
543 }
544 if (need_next_PC(ctx)) {
545 tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], next_PC);
546 }
547 }
548 if (HEX_DEBUG) {
549 ctx->pred_written = tcg_temp_new();
550 tcg_gen_movi_tl(ctx->pred_written, 0);
551 }
552
553 /* Preload the predicated registers into get_result_gpr(ctx, i) */
554 if (ctx->need_commit &&
555 !bitmap_empty(ctx->predicated_regs, TOTAL_PER_THREAD_REGS)) {
556 i = find_first_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS);
557 while (i < TOTAL_PER_THREAD_REGS) {
558 tcg_gen_mov_tl(get_result_gpr(ctx, i), hex_gpr[i]);
559 i = find_next_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS,
560 i + 1);
561 }
562 }
563
564 /*
565 * Preload the predicated pred registers into ctx->new_pred_value[pred_num]
566 * Only endloop instructions conditionally write to pred registers
567 */
568 if (ctx->need_commit && pkt->pkt_has_endloop) {
569 for (i = 0; i < ctx->preg_log_idx; i++) {
570 int pred_num = ctx->preg_log[i];
571 ctx->new_pred_value[pred_num] = tcg_temp_new();
572 tcg_gen_mov_tl(ctx->new_pred_value[pred_num], hex_pred[pred_num]);
573 }
574 }
575
576 /* Preload the predicated HVX registers into future_VRegs and tmp_VRegs */
577 if (!bitmap_empty(ctx->predicated_future_vregs, NUM_VREGS)) {
578 i = find_first_bit(ctx->predicated_future_vregs, NUM_VREGS);
579 while (i < NUM_VREGS) {
580 const intptr_t VdV_off =
581 ctx_future_vreg_off(ctx, i, 1, true);
582 intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]);
583 tcg_gen_gvec_mov(MO_64, VdV_off,
584 src_off,
585 sizeof(MMVector),
586 sizeof(MMVector));
587 i = find_next_bit(ctx->predicated_future_vregs, NUM_VREGS, i + 1);
588 }
589 }
590 if (!bitmap_empty(ctx->predicated_tmp_vregs, NUM_VREGS)) {
591 i = find_first_bit(ctx->predicated_tmp_vregs, NUM_VREGS);
592 while (i < NUM_VREGS) {
593 const intptr_t VdV_off =
594 ctx_tmp_vreg_off(ctx, i, 1, true);
595 intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]);
596 tcg_gen_gvec_mov(MO_64, VdV_off,
597 src_off,
598 sizeof(MMVector),
599 sizeof(MMVector));
600 i = find_next_bit(ctx->predicated_tmp_vregs, NUM_VREGS, i + 1);
601 }
602 }
603 }
604
605 bool is_gather_store_insn(DisasContext *ctx)
606 {
607 Packet *pkt = ctx->pkt;
608 Insn *insn = ctx->insn;
609 if (GET_ATTRIB(insn->opcode, A_CVI_NEW) &&
610 insn->new_value_producer_slot == 1) {
611 /* Look for gather instruction */
612 for (int i = 0; i < pkt->num_insns; i++) {
613 Insn *in = &pkt->insn[i];
614 if (GET_ATTRIB(in->opcode, A_CVI_GATHER) && in->slot == 1) {
615 return true;
616 }
617 }
618 }
619 return false;
620 }
621
622 static void mark_store_width(DisasContext *ctx)
623 {
624 uint16_t opcode = ctx->insn->opcode;
625 uint32_t slot = ctx->insn->slot;
626 uint8_t width = 0;
627
628 if (GET_ATTRIB(opcode, A_SCALAR_STORE)) {
629 if (GET_ATTRIB(opcode, A_MEMSIZE_0B)) {
630 return;
631 }
632 if (GET_ATTRIB(opcode, A_MEMSIZE_1B)) {
633 width |= 1;
634 }
635 if (GET_ATTRIB(opcode, A_MEMSIZE_2B)) {
636 width |= 2;
637 }
638 if (GET_ATTRIB(opcode, A_MEMSIZE_4B)) {
639 width |= 4;
640 }
641 if (GET_ATTRIB(opcode, A_MEMSIZE_8B)) {
642 width |= 8;
643 }
644 tcg_debug_assert(is_power_of_2(width));
645 ctx->store_width[slot] = width;
646 }
647 }
648
649 static void gen_insn(DisasContext *ctx)
650 {
651 if (ctx->insn->generate) {
652 ctx->insn->generate(ctx);
653 mark_store_width(ctx);
654 } else {
655 gen_exception_end_tb(ctx, HEX_EXCP_INVALID_OPCODE);
656 }
657 }
658
659 /*
660 * Helpers for generating the packet commit
661 */
662 static void gen_reg_writes(DisasContext *ctx)
663 {
664 int i;
665
666 /* Early exit if not needed */
667 if (!ctx->need_commit) {
668 return;
669 }
670
671 for (i = 0; i < ctx->reg_log_idx; i++) {
672 int reg_num = ctx->reg_log[i];
673
674 tcg_gen_mov_tl(hex_gpr[reg_num], get_result_gpr(ctx, reg_num));
675
676 /*
677 * ctx->is_tight_loop is set when SA0 points to the beginning of the TB.
678 * If we write to SA0, we have to turn off tight loop handling.
679 */
680 if (reg_num == HEX_REG_SA0) {
681 ctx->is_tight_loop = false;
682 }
683 }
684 }
685
686 static void gen_pred_writes(DisasContext *ctx)
687 {
688 /* Early exit if not needed or the log is empty */
689 if (!ctx->need_commit || !ctx->preg_log_idx) {
690 return;
691 }
692
693 for (int i = 0; i < ctx->preg_log_idx; i++) {
694 int pred_num = ctx->preg_log[i];
695 tcg_gen_mov_tl(hex_pred[pred_num], ctx->new_pred_value[pred_num]);
696 }
697 }
698
699 static void gen_check_store_width(DisasContext *ctx, int slot_num)
700 {
701 if (HEX_DEBUG) {
702 TCGv slot = tcg_constant_tl(slot_num);
703 TCGv check = tcg_constant_tl(ctx->store_width[slot_num]);
704 gen_helper_debug_check_store_width(tcg_env, slot, check);
705 }
706 }
707
708 static bool slot_is_predicated(Packet *pkt, int slot_num)
709 {
710 for (int i = 0; i < pkt->num_insns; i++) {
711 if (pkt->insn[i].slot == slot_num) {
712 return GET_ATTRIB(pkt->insn[i].opcode, A_CONDEXEC);
713 }
714 }
715 /* If we get to here, we didn't find an instruction in the requested slot */
716 g_assert_not_reached();
717 }
718
719 void process_store(DisasContext *ctx, int slot_num)
720 {
721 bool is_predicated = slot_is_predicated(ctx->pkt, slot_num);
722 TCGLabel *label_end = NULL;
723
724 /*
725 * We may have already processed this store
726 * See CHECK_NOSHUF in macros.h
727 */
728 if (slot_num == 1 && ctx->s1_store_processed) {
729 return;
730 }
731 ctx->s1_store_processed = true;
732
733 if (is_predicated) {
734 TCGv cancelled = tcg_temp_new();
735 label_end = gen_new_label();
736
737 /* Don't do anything if the slot was cancelled */
738 tcg_gen_extract_tl(cancelled, hex_slot_cancelled, slot_num, 1);
739 tcg_gen_brcondi_tl(TCG_COND_NE, cancelled, 0, label_end);
740 }
741 {
742 TCGv address = tcg_temp_new();
743 tcg_gen_mov_tl(address, hex_store_addr[slot_num]);
744
745 /*
746 * If we know the width from the DisasContext, we can
747 * generate much cleaner code.
748 * Unfortunately, not all instructions execute the fSTORE
749 * macro during code generation. Anything that uses the
750 * generic helper will have this problem. Instructions
751 * that use fWRAP to generate proper TCG code will be OK.
752 */
753 switch (ctx->store_width[slot_num]) {
754 case 1:
755 gen_check_store_width(ctx, slot_num);
756 tcg_gen_qemu_st_tl(hex_store_val32[slot_num],
757 hex_store_addr[slot_num],
758 ctx->mem_idx, MO_UB);
759 break;
760 case 2:
761 gen_check_store_width(ctx, slot_num);
762 tcg_gen_qemu_st_tl(hex_store_val32[slot_num],
763 hex_store_addr[slot_num],
764 ctx->mem_idx, MO_TEUW);
765 break;
766 case 4:
767 gen_check_store_width(ctx, slot_num);
768 tcg_gen_qemu_st_tl(hex_store_val32[slot_num],
769 hex_store_addr[slot_num],
770 ctx->mem_idx, MO_TEUL);
771 break;
772 case 8:
773 gen_check_store_width(ctx, slot_num);
774 tcg_gen_qemu_st_i64(hex_store_val64[slot_num],
775 hex_store_addr[slot_num],
776 ctx->mem_idx, MO_TEUQ);
777 break;
778 default:
779 {
780 /*
781 * If we get to here, we don't know the width at
782 * TCG generation time, we'll use a helper to
783 * avoid branching based on the width at runtime.
784 */
785 TCGv slot = tcg_constant_tl(slot_num);
786 gen_helper_commit_store(tcg_env, slot);
787 }
788 }
789 }
790 if (is_predicated) {
791 gen_set_label(label_end);
792 }
793 }
794
795 static void process_store_log(DisasContext *ctx)
796 {
797 /*
798 * When a packet has two stores, the hardware processes
799 * slot 1 and then slot 0. This will be important when
800 * the memory accesses overlap.
801 */
802 Packet *pkt = ctx->pkt;
803 if (pkt->pkt_has_store_s1) {
804 g_assert(!pkt->pkt_has_dczeroa);
805 process_store(ctx, 1);
806 }
807 if (pkt->pkt_has_store_s0) {
808 g_assert(!pkt->pkt_has_dczeroa);
809 process_store(ctx, 0);
810 }
811 }
812
813 /* Zero out a 32-bit cache line */
814 static void process_dczeroa(DisasContext *ctx)
815 {
816 if (ctx->pkt->pkt_has_dczeroa) {
817 /* Store 32 bytes of zero starting at (addr & ~0x1f) */
818 TCGv addr = tcg_temp_new();
819 TCGv_i64 zero = tcg_constant_i64(0);
820
821 tcg_gen_andi_tl(addr, ctx->dczero_addr, ~0x1f);
822 tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ);
823 tcg_gen_addi_tl(addr, addr, 8);
824 tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ);
825 tcg_gen_addi_tl(addr, addr, 8);
826 tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ);
827 tcg_gen_addi_tl(addr, addr, 8);
828 tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ);
829 }
830 }
831
832 static bool pkt_has_hvx_store(Packet *pkt)
833 {
834 int i;
835 for (i = 0; i < pkt->num_insns; i++) {
836 int opcode = pkt->insn[i].opcode;
837 if (GET_ATTRIB(opcode, A_CVI) && GET_ATTRIB(opcode, A_STORE)) {
838 return true;
839 }
840 }
841 return false;
842 }
843
844 static void gen_commit_hvx(DisasContext *ctx)
845 {
846 int i;
847
848 /* Early exit if not needed */
849 if (!ctx->need_commit) {
850 g_assert(!pkt_has_hvx_store(ctx->pkt));
851 return;
852 }
853
854 /*
855 * for (i = 0; i < ctx->vreg_log_idx; i++) {
856 * int rnum = ctx->vreg_log[i];
857 * env->VRegs[rnum] = env->future_VRegs[rnum];
858 * }
859 */
860 for (i = 0; i < ctx->vreg_log_idx; i++) {
861 int rnum = ctx->vreg_log[i];
862 intptr_t dstoff = offsetof(CPUHexagonState, VRegs[rnum]);
863 intptr_t srcoff = ctx_future_vreg_off(ctx, rnum, 1, false);
864 size_t size = sizeof(MMVector);
865
866 tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
867 }
868
869 /*
870 * for (i = 0; i < ctx->qreg_log_idx; i++) {
871 * int rnum = ctx->qreg_log[i];
872 * env->QRegs[rnum] = env->future_QRegs[rnum];
873 * }
874 */
875 for (i = 0; i < ctx->qreg_log_idx; i++) {
876 int rnum = ctx->qreg_log[i];
877 intptr_t dstoff = offsetof(CPUHexagonState, QRegs[rnum]);
878 intptr_t srcoff = offsetof(CPUHexagonState, future_QRegs[rnum]);
879 size_t size = sizeof(MMQReg);
880
881 tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
882 }
883
884 if (pkt_has_hvx_store(ctx->pkt)) {
885 gen_helper_commit_hvx_stores(tcg_env);
886 }
887 }
888
889 static void update_exec_counters(DisasContext *ctx)
890 {
891 Packet *pkt = ctx->pkt;
892 int num_insns = pkt->num_insns;
893 int num_real_insns = 0;
894 int num_hvx_insns = 0;
895
896 for (int i = 0; i < num_insns; i++) {
897 if (!pkt->insn[i].is_endloop &&
898 !pkt->insn[i].part1 &&
899 !GET_ATTRIB(pkt->insn[i].opcode, A_IT_NOP)) {
900 num_real_insns++;
901 }
902 if (GET_ATTRIB(pkt->insn[i].opcode, A_CVI)) {
903 num_hvx_insns++;
904 }
905 }
906
907 ctx->num_packets++;
908 ctx->num_insns += num_real_insns;
909 ctx->num_hvx_insns += num_hvx_insns;
910 }
911
912 static void gen_commit_packet(DisasContext *ctx)
913 {
914 /*
915 * If there is more than one store in a packet, make sure they are all OK
916 * before proceeding with the rest of the packet commit.
917 *
918 * dczeroa has to be the only store operation in the packet, so we go
919 * ahead and process that first.
920 *
921 * When there is an HVX store, there can also be a scalar store in either
922 * slot 0 or slot1, so we create a mask for the helper to indicate what
923 * work to do.
924 *
925 * When there are two scalar stores, we probe the one in slot 0.
926 *
927 * Note that we don't call the probe helper for packets with only one
928 * store. Therefore, we call process_store_log before anything else
929 * involved in committing the packet.
930 */
931 Packet *pkt = ctx->pkt;
932 bool has_store_s0 = pkt->pkt_has_store_s0;
933 bool has_store_s1 = (pkt->pkt_has_store_s1 && !ctx->s1_store_processed);
934 bool has_hvx_store = pkt_has_hvx_store(pkt);
935 if (pkt->pkt_has_dczeroa) {
936 /*
937 * The dczeroa will be the store in slot 0, check that we don't have
938 * a store in slot 1 or an HVX store.
939 */
940 g_assert(!has_store_s1 && !has_hvx_store);
941 process_dczeroa(ctx);
942 } else if (has_hvx_store) {
943 if (!has_store_s0 && !has_store_s1) {
944 TCGv mem_idx = tcg_constant_tl(ctx->mem_idx);
945 gen_helper_probe_hvx_stores(tcg_env, mem_idx);
946 } else {
947 int mask = 0;
948
949 if (has_store_s0) {
950 mask =
951 FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST0, 1);
952 }
953 if (has_store_s1) {
954 mask =
955 FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST1, 1);
956 }
957 if (has_hvx_store) {
958 mask =
959 FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
960 HAS_HVX_STORES, 1);
961 }
962 if (has_store_s0 && slot_is_predicated(pkt, 0)) {
963 mask =
964 FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
965 S0_IS_PRED, 1);
966 }
967 if (has_store_s1 && slot_is_predicated(pkt, 1)) {
968 mask =
969 FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
970 S1_IS_PRED, 1);
971 }
972 mask = FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, MMU_IDX,
973 ctx->mem_idx);
974 gen_helper_probe_pkt_scalar_hvx_stores(tcg_env,
975 tcg_constant_tl(mask));
976 }
977 } else if (has_store_s0 && has_store_s1) {
978 /*
979 * process_store_log will execute the slot 1 store first,
980 * so we only have to probe the store in slot 0
981 */
982 int args = 0;
983 args =
984 FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, MMU_IDX, ctx->mem_idx);
985 if (slot_is_predicated(pkt, 0)) {
986 args =
987 FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, IS_PREDICATED, 1);
988 }
989 TCGv args_tcgv = tcg_constant_tl(args);
990 gen_helper_probe_pkt_scalar_store_s0(tcg_env, args_tcgv);
991 }
992
993 process_store_log(ctx);
994
995 gen_reg_writes(ctx);
996 gen_pred_writes(ctx);
997 if (pkt->pkt_has_hvx) {
998 gen_commit_hvx(ctx);
999 }
1000 update_exec_counters(ctx);
1001 if (HEX_DEBUG) {
1002 TCGv has_st0 =
1003 tcg_constant_tl(pkt->pkt_has_store_s0 && !pkt->pkt_has_dczeroa);
1004 TCGv has_st1 =
1005 tcg_constant_tl(pkt->pkt_has_store_s1 && !pkt->pkt_has_dczeroa);
1006
1007 /* Handy place to set a breakpoint at the end of execution */
1008 gen_helper_debug_commit_end(tcg_env, tcg_constant_tl(ctx->pkt->pc),
1009 ctx->pred_written, has_st0, has_st1);
1010 }
1011
1012 if (pkt->vhist_insn != NULL) {
1013 ctx->pre_commit = false;
1014 ctx->insn = pkt->vhist_insn;
1015 pkt->vhist_insn->generate(ctx);
1016 }
1017
1018 if (pkt->pkt_has_cof) {
1019 gen_end_tb(ctx);
1020 }
1021 }
1022
1023 static void decode_and_translate_packet(CPUHexagonState *env, DisasContext *ctx)
1024 {
1025 uint32_t words[PACKET_WORDS_MAX];
1026 int nwords;
1027 Packet pkt;
1028 int i;
1029
1030 nwords = read_packet_words(env, ctx, words);
1031 if (!nwords) {
1032 gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET);
1033 return;
1034 }
1035
1036 ctx->pkt = &pkt;
1037 if (decode_packet(ctx, nwords, words, &pkt, false) > 0) {
1038 pkt.pc = ctx->base.pc_next;
1039 HEX_DEBUG_PRINT_PKT(&pkt);
1040 gen_start_packet(ctx);
1041 for (i = 0; i < pkt.num_insns; i++) {
1042 ctx->insn = &pkt.insn[i];
1043 gen_insn(ctx);
1044 }
1045 gen_commit_packet(ctx);
1046 ctx->base.pc_next += pkt.encod_pkt_size_in_bytes;
1047 } else {
1048 gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET);
1049 }
1050 }
1051
1052 static void hexagon_tr_init_disas_context(DisasContextBase *dcbase,
1053 CPUState *cs)
1054 {
1055 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1056 HexagonCPU *hex_cpu = env_archcpu(cpu_env(cs));
1057 uint32_t hex_flags = dcbase->tb->flags;
1058
1059 ctx->mem_idx = MMU_USER_IDX;
1060 ctx->num_packets = 0;
1061 ctx->num_insns = 0;
1062 ctx->num_hvx_insns = 0;
1063 ctx->branch_cond = TCG_COND_NEVER;
1064 ctx->is_tight_loop = FIELD_EX32(hex_flags, TB_FLAGS, IS_TIGHT_LOOP);
1065 ctx->short_circuit = hex_cpu->short_circuit;
1066 }
1067
1068 static void hexagon_tr_tb_start(DisasContextBase *db, CPUState *cpu)
1069 {
1070 }
1071
1072 static void hexagon_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
1073 {
1074 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1075
1076 tcg_gen_insn_start(ctx->base.pc_next);
1077 }
1078
1079 static bool pkt_crosses_page(CPUHexagonState *env, DisasContext *ctx)
1080 {
1081 target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK;
1082 bool found_end = false;
1083 int nwords;
1084
1085 for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) {
1086 uint32_t word = cpu_ldl_code(env,
1087 ctx->base.pc_next + nwords * sizeof(uint32_t));
1088 found_end = is_packet_end(word);
1089 }
1090 uint32_t next_ptr = ctx->base.pc_next + nwords * sizeof(uint32_t);
1091 return found_end && next_ptr - page_start >= TARGET_PAGE_SIZE;
1092 }
1093
1094 static void hexagon_tr_translate_packet(DisasContextBase *dcbase, CPUState *cpu)
1095 {
1096 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1097 CPUHexagonState *env = cpu_env(cpu);
1098
1099 decode_and_translate_packet(env, ctx);
1100
1101 if (ctx->base.is_jmp == DISAS_NEXT) {
1102 target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK;
1103 target_ulong bytes_max = PACKET_WORDS_MAX * sizeof(target_ulong);
1104
1105 if (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE ||
1106 (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE - bytes_max &&
1107 pkt_crosses_page(env, ctx))) {
1108 ctx->base.is_jmp = DISAS_TOO_MANY;
1109 }
1110
1111 /*
1112 * The CPU log is used to compare against LLDB single stepping,
1113 * so end the TLB after every packet.
1114 */
1115 HexagonCPU *hex_cpu = env_archcpu(env);
1116 if (hex_cpu->lldb_compat && qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
1117 ctx->base.is_jmp = DISAS_TOO_MANY;
1118 }
1119 }
1120 }
1121
1122 static void hexagon_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
1123 {
1124 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1125
1126 switch (ctx->base.is_jmp) {
1127 case DISAS_TOO_MANY:
1128 gen_exec_counters(ctx);
1129 tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->base.pc_next);
1130 tcg_gen_exit_tb(NULL, 0);
1131 break;
1132 case DISAS_NORETURN:
1133 break;
1134 default:
1135 g_assert_not_reached();
1136 }
1137 }
1138
1139 static void hexagon_tr_disas_log(const DisasContextBase *dcbase,
1140 CPUState *cpu, FILE *logfile)
1141 {
1142 fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first));
1143 target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size);
1144 }
1145
1146
1147 static const TranslatorOps hexagon_tr_ops = {
1148 .init_disas_context = hexagon_tr_init_disas_context,
1149 .tb_start = hexagon_tr_tb_start,
1150 .insn_start = hexagon_tr_insn_start,
1151 .translate_insn = hexagon_tr_translate_packet,
1152 .tb_stop = hexagon_tr_tb_stop,
1153 .disas_log = hexagon_tr_disas_log,
1154 };
1155
1156 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns,
1157 target_ulong pc, void *host_pc)
1158 {
1159 DisasContext ctx;
1160
1161 translator_loop(cs, tb, max_insns, pc, host_pc,
1162 &hexagon_tr_ops, &ctx.base);
1163 }
1164
1165 #define NAME_LEN 64
1166 static char reg_written_names[TOTAL_PER_THREAD_REGS][NAME_LEN];
1167 static char store_addr_names[STORES_MAX][NAME_LEN];
1168 static char store_width_names[STORES_MAX][NAME_LEN];
1169 static char store_val32_names[STORES_MAX][NAME_LEN];
1170 static char store_val64_names[STORES_MAX][NAME_LEN];
1171 static char vstore_addr_names[VSTORES_MAX][NAME_LEN];
1172 static char vstore_size_names[VSTORES_MAX][NAME_LEN];
1173 static char vstore_pending_names[VSTORES_MAX][NAME_LEN];
1174
1175 void hexagon_translate_init(void)
1176 {
1177 int i;
1178
1179 opcode_init();
1180
1181 for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) {
1182 hex_gpr[i] = tcg_global_mem_new(tcg_env,
1183 offsetof(CPUHexagonState, gpr[i]),
1184 hexagon_regnames[i]);
1185
1186 if (HEX_DEBUG) {
1187 snprintf(reg_written_names[i], NAME_LEN, "reg_written_%s",
1188 hexagon_regnames[i]);
1189 hex_reg_written[i] = tcg_global_mem_new(tcg_env,
1190 offsetof(CPUHexagonState, reg_written[i]),
1191 reg_written_names[i]);
1192 }
1193 }
1194 hex_new_value_usr = tcg_global_mem_new(tcg_env,
1195 offsetof(CPUHexagonState, new_value_usr), "new_value_usr");
1196
1197 for (i = 0; i < NUM_PREGS; i++) {
1198 hex_pred[i] = tcg_global_mem_new(tcg_env,
1199 offsetof(CPUHexagonState, pred[i]),
1200 hexagon_prednames[i]);
1201 }
1202 hex_slot_cancelled = tcg_global_mem_new(tcg_env,
1203 offsetof(CPUHexagonState, slot_cancelled), "slot_cancelled");
1204 hex_llsc_addr = tcg_global_mem_new(tcg_env,
1205 offsetof(CPUHexagonState, llsc_addr), "llsc_addr");
1206 hex_llsc_val = tcg_global_mem_new(tcg_env,
1207 offsetof(CPUHexagonState, llsc_val), "llsc_val");
1208 hex_llsc_val_i64 = tcg_global_mem_new_i64(tcg_env,
1209 offsetof(CPUHexagonState, llsc_val_i64), "llsc_val_i64");
1210 for (i = 0; i < STORES_MAX; i++) {
1211 snprintf(store_addr_names[i], NAME_LEN, "store_addr_%d", i);
1212 hex_store_addr[i] = tcg_global_mem_new(tcg_env,
1213 offsetof(CPUHexagonState, mem_log_stores[i].va),
1214 store_addr_names[i]);
1215
1216 snprintf(store_width_names[i], NAME_LEN, "store_width_%d", i);
1217 hex_store_width[i] = tcg_global_mem_new(tcg_env,
1218 offsetof(CPUHexagonState, mem_log_stores[i].width),
1219 store_width_names[i]);
1220
1221 snprintf(store_val32_names[i], NAME_LEN, "store_val32_%d", i);
1222 hex_store_val32[i] = tcg_global_mem_new(tcg_env,
1223 offsetof(CPUHexagonState, mem_log_stores[i].data32),
1224 store_val32_names[i]);
1225
1226 snprintf(store_val64_names[i], NAME_LEN, "store_val64_%d", i);
1227 hex_store_val64[i] = tcg_global_mem_new_i64(tcg_env,
1228 offsetof(CPUHexagonState, mem_log_stores[i].data64),
1229 store_val64_names[i]);
1230 }
1231 for (i = 0; i < VSTORES_MAX; i++) {
1232 snprintf(vstore_addr_names[i], NAME_LEN, "vstore_addr_%d", i);
1233 hex_vstore_addr[i] = tcg_global_mem_new(tcg_env,
1234 offsetof(CPUHexagonState, vstore[i].va),
1235 vstore_addr_names[i]);
1236
1237 snprintf(vstore_size_names[i], NAME_LEN, "vstore_size_%d", i);
1238 hex_vstore_size[i] = tcg_global_mem_new(tcg_env,
1239 offsetof(CPUHexagonState, vstore[i].size),
1240 vstore_size_names[i]);
1241
1242 snprintf(vstore_pending_names[i], NAME_LEN, "vstore_pending_%d", i);
1243 hex_vstore_pending[i] = tcg_global_mem_new(tcg_env,
1244 offsetof(CPUHexagonState, vstore_pending[i]),
1245 vstore_pending_names[i]);
1246 }
1247 }