]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/kvm/kvm.c
include/block: Untangle inclusion loops
[mirror_qemu.git] / target / i386 / kvm / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <sys/ioctl.h>
20 #include <sys/utsname.h>
21 #include <sys/syscall.h>
22
23 #include <linux/kvm.h>
24 #include "standard-headers/asm-x86/kvm_para.h"
25
26 #include "cpu.h"
27 #include "host-cpu.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/hw_accel.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "kvm_i386.h"
33 #include "sev.h"
34 #include "hyperv.h"
35 #include "hyperv-proto.h"
36
37 #include "exec/gdbstub.h"
38 #include "qemu/host-utils.h"
39 #include "qemu/main-loop.h"
40 #include "qemu/ratelimit.h"
41 #include "qemu/config-file.h"
42 #include "qemu/error-report.h"
43 #include "qemu/memalign.h"
44 #include "hw/i386/x86.h"
45 #include "hw/i386/apic.h"
46 #include "hw/i386/apic_internal.h"
47 #include "hw/i386/apic-msidef.h"
48 #include "hw/i386/intel_iommu.h"
49 #include "hw/i386/x86-iommu.h"
50 #include "hw/i386/e820_memory_layout.h"
51
52 #include "hw/pci/pci.h"
53 #include "hw/pci/msi.h"
54 #include "hw/pci/msix.h"
55 #include "migration/blocker.h"
56 #include "exec/memattrs.h"
57 #include "trace.h"
58
59 #include CONFIG_DEVICES
60
61 //#define DEBUG_KVM
62
63 #ifdef DEBUG_KVM
64 #define DPRINTF(fmt, ...) \
65 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
66 #else
67 #define DPRINTF(fmt, ...) \
68 do { } while (0)
69 #endif
70
71 /* From arch/x86/kvm/lapic.h */
72 #define KVM_APIC_BUS_CYCLE_NS 1
73 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
74
75 #define MSR_KVM_WALL_CLOCK 0x11
76 #define MSR_KVM_SYSTEM_TIME 0x12
77
78 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
79 * 255 kvm_msr_entry structs */
80 #define MSR_BUF_SIZE 4096
81
82 static void kvm_init_msrs(X86CPU *cpu);
83
84 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
85 KVM_CAP_INFO(SET_TSS_ADDR),
86 KVM_CAP_INFO(EXT_CPUID),
87 KVM_CAP_INFO(MP_STATE),
88 KVM_CAP_LAST_INFO
89 };
90
91 static bool has_msr_star;
92 static bool has_msr_hsave_pa;
93 static bool has_msr_tsc_aux;
94 static bool has_msr_tsc_adjust;
95 static bool has_msr_tsc_deadline;
96 static bool has_msr_feature_control;
97 static bool has_msr_misc_enable;
98 static bool has_msr_smbase;
99 static bool has_msr_bndcfgs;
100 static int lm_capable_kernel;
101 static bool has_msr_hv_hypercall;
102 static bool has_msr_hv_crash;
103 static bool has_msr_hv_reset;
104 static bool has_msr_hv_vpindex;
105 static bool hv_vpindex_settable;
106 static bool has_msr_hv_runtime;
107 static bool has_msr_hv_synic;
108 static bool has_msr_hv_stimer;
109 static bool has_msr_hv_frequencies;
110 static bool has_msr_hv_reenlightenment;
111 static bool has_msr_hv_syndbg_options;
112 static bool has_msr_xss;
113 static bool has_msr_umwait;
114 static bool has_msr_spec_ctrl;
115 static bool has_tsc_scale_msr;
116 static bool has_msr_tsx_ctrl;
117 static bool has_msr_virt_ssbd;
118 static bool has_msr_smi_count;
119 static bool has_msr_arch_capabs;
120 static bool has_msr_core_capabs;
121 static bool has_msr_vmx_vmfunc;
122 static bool has_msr_ucode_rev;
123 static bool has_msr_vmx_procbased_ctls2;
124 static bool has_msr_perf_capabs;
125 static bool has_msr_pkrs;
126
127 static uint32_t has_architectural_pmu_version;
128 static uint32_t num_architectural_pmu_gp_counters;
129 static uint32_t num_architectural_pmu_fixed_counters;
130
131 static int has_xsave;
132 static int has_xsave2;
133 static int has_xcrs;
134 static int has_pit_state2;
135 static int has_sregs2;
136 static int has_exception_payload;
137 static int has_triple_fault_event;
138
139 static bool has_msr_mcg_ext_ctl;
140
141 static struct kvm_cpuid2 *cpuid_cache;
142 static struct kvm_cpuid2 *hv_cpuid_cache;
143 static struct kvm_msr_list *kvm_feature_msrs;
144
145 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
146
147 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
148 static RateLimit bus_lock_ratelimit_ctrl;
149 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
150
151 int kvm_has_pit_state2(void)
152 {
153 return has_pit_state2;
154 }
155
156 bool kvm_has_smm(void)
157 {
158 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
159 }
160
161 bool kvm_has_adjust_clock_stable(void)
162 {
163 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
164
165 return (ret & KVM_CLOCK_TSC_STABLE);
166 }
167
168 bool kvm_has_adjust_clock(void)
169 {
170 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
171 }
172
173 bool kvm_has_exception_payload(void)
174 {
175 return has_exception_payload;
176 }
177
178 static bool kvm_x2apic_api_set_flags(uint64_t flags)
179 {
180 KVMState *s = KVM_STATE(current_accel());
181
182 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
183 }
184
185 #define MEMORIZE(fn, _result) \
186 ({ \
187 static bool _memorized; \
188 \
189 if (_memorized) { \
190 return _result; \
191 } \
192 _memorized = true; \
193 _result = fn; \
194 })
195
196 static bool has_x2apic_api;
197
198 bool kvm_has_x2apic_api(void)
199 {
200 return has_x2apic_api;
201 }
202
203 bool kvm_enable_x2apic(void)
204 {
205 return MEMORIZE(
206 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
207 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
208 has_x2apic_api);
209 }
210
211 bool kvm_hv_vpindex_settable(void)
212 {
213 return hv_vpindex_settable;
214 }
215
216 static int kvm_get_tsc(CPUState *cs)
217 {
218 X86CPU *cpu = X86_CPU(cs);
219 CPUX86State *env = &cpu->env;
220 uint64_t value;
221 int ret;
222
223 if (env->tsc_valid) {
224 return 0;
225 }
226
227 env->tsc_valid = !runstate_is_running();
228
229 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
230 if (ret < 0) {
231 return ret;
232 }
233
234 env->tsc = value;
235 return 0;
236 }
237
238 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
239 {
240 kvm_get_tsc(cpu);
241 }
242
243 void kvm_synchronize_all_tsc(void)
244 {
245 CPUState *cpu;
246
247 if (kvm_enabled()) {
248 CPU_FOREACH(cpu) {
249 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
250 }
251 }
252 }
253
254 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
255 {
256 struct kvm_cpuid2 *cpuid;
257 int r, size;
258
259 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
260 cpuid = g_malloc0(size);
261 cpuid->nent = max;
262 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
263 if (r == 0 && cpuid->nent >= max) {
264 r = -E2BIG;
265 }
266 if (r < 0) {
267 if (r == -E2BIG) {
268 g_free(cpuid);
269 return NULL;
270 } else {
271 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
272 strerror(-r));
273 exit(1);
274 }
275 }
276 return cpuid;
277 }
278
279 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
280 * for all entries.
281 */
282 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
283 {
284 struct kvm_cpuid2 *cpuid;
285 int max = 1;
286
287 if (cpuid_cache != NULL) {
288 return cpuid_cache;
289 }
290 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
291 max *= 2;
292 }
293 cpuid_cache = cpuid;
294 return cpuid;
295 }
296
297 static bool host_tsx_broken(void)
298 {
299 int family, model, stepping;\
300 char vendor[CPUID_VENDOR_SZ + 1];
301
302 host_cpu_vendor_fms(vendor, &family, &model, &stepping);
303
304 /* Check if we are running on a Haswell host known to have broken TSX */
305 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
306 (family == 6) &&
307 ((model == 63 && stepping < 4) ||
308 model == 60 || model == 69 || model == 70);
309 }
310
311 /* Returns the value for a specific register on the cpuid entry
312 */
313 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
314 {
315 uint32_t ret = 0;
316 switch (reg) {
317 case R_EAX:
318 ret = entry->eax;
319 break;
320 case R_EBX:
321 ret = entry->ebx;
322 break;
323 case R_ECX:
324 ret = entry->ecx;
325 break;
326 case R_EDX:
327 ret = entry->edx;
328 break;
329 }
330 return ret;
331 }
332
333 /* Find matching entry for function/index on kvm_cpuid2 struct
334 */
335 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
336 uint32_t function,
337 uint32_t index)
338 {
339 int i;
340 for (i = 0; i < cpuid->nent; ++i) {
341 if (cpuid->entries[i].function == function &&
342 cpuid->entries[i].index == index) {
343 return &cpuid->entries[i];
344 }
345 }
346 /* not found: */
347 return NULL;
348 }
349
350 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
351 uint32_t index, int reg)
352 {
353 struct kvm_cpuid2 *cpuid;
354 uint32_t ret = 0;
355 uint32_t cpuid_1_edx;
356 uint64_t bitmask;
357
358 cpuid = get_supported_cpuid(s);
359
360 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
361 if (entry) {
362 ret = cpuid_entry_get_reg(entry, reg);
363 }
364
365 /* Fixups for the data returned by KVM, below */
366
367 if (function == 1 && reg == R_EDX) {
368 /* KVM before 2.6.30 misreports the following features */
369 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
370 } else if (function == 1 && reg == R_ECX) {
371 /* We can set the hypervisor flag, even if KVM does not return it on
372 * GET_SUPPORTED_CPUID
373 */
374 ret |= CPUID_EXT_HYPERVISOR;
375 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
376 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
377 * and the irqchip is in the kernel.
378 */
379 if (kvm_irqchip_in_kernel() &&
380 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
381 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
382 }
383
384 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
385 * without the in-kernel irqchip
386 */
387 if (!kvm_irqchip_in_kernel()) {
388 ret &= ~CPUID_EXT_X2APIC;
389 }
390
391 if (enable_cpu_pm) {
392 int disable_exits = kvm_check_extension(s,
393 KVM_CAP_X86_DISABLE_EXITS);
394
395 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
396 ret |= CPUID_EXT_MONITOR;
397 }
398 }
399 } else if (function == 6 && reg == R_EAX) {
400 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
401 } else if (function == 7 && index == 0 && reg == R_EBX) {
402 if (host_tsx_broken()) {
403 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
404 }
405 } else if (function == 7 && index == 0 && reg == R_EDX) {
406 /*
407 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
408 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
409 * returned by KVM_GET_MSR_INDEX_LIST.
410 */
411 if (!has_msr_arch_capabs) {
412 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
413 }
414 } else if (function == 0xd && index == 0 &&
415 (reg == R_EAX || reg == R_EDX)) {
416 /*
417 * The value returned by KVM_GET_SUPPORTED_CPUID does not include
418 * features that still have to be enabled with the arch_prctl
419 * system call. QEMU needs the full value, which is retrieved
420 * with KVM_GET_DEVICE_ATTR.
421 */
422 struct kvm_device_attr attr = {
423 .group = 0,
424 .attr = KVM_X86_XCOMP_GUEST_SUPP,
425 .addr = (unsigned long) &bitmask
426 };
427
428 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
429 if (!sys_attr) {
430 return ret;
431 }
432
433 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
434 if (rc < 0) {
435 if (rc != -ENXIO) {
436 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
437 "error: %d", rc);
438 }
439 return ret;
440 }
441 ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
442 } else if (function == 0x80000001 && reg == R_ECX) {
443 /*
444 * It's safe to enable TOPOEXT even if it's not returned by
445 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
446 * us to keep CPU models including TOPOEXT runnable on older kernels.
447 */
448 ret |= CPUID_EXT3_TOPOEXT;
449 } else if (function == 0x80000001 && reg == R_EDX) {
450 /* On Intel, kvm returns cpuid according to the Intel spec,
451 * so add missing bits according to the AMD spec:
452 */
453 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
454 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
455 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
456 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
457 * be enabled without the in-kernel irqchip
458 */
459 if (!kvm_irqchip_in_kernel()) {
460 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
461 }
462 if (kvm_irqchip_is_split()) {
463 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
464 }
465 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
466 ret |= 1U << KVM_HINTS_REALTIME;
467 }
468
469 return ret;
470 }
471
472 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
473 {
474 struct {
475 struct kvm_msrs info;
476 struct kvm_msr_entry entries[1];
477 } msr_data = {};
478 uint64_t value;
479 uint32_t ret, can_be_one, must_be_one;
480
481 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
482 return 0;
483 }
484
485 /* Check if requested MSR is supported feature MSR */
486 int i;
487 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
488 if (kvm_feature_msrs->indices[i] == index) {
489 break;
490 }
491 if (i == kvm_feature_msrs->nmsrs) {
492 return 0; /* if the feature MSR is not supported, simply return 0 */
493 }
494
495 msr_data.info.nmsrs = 1;
496 msr_data.entries[0].index = index;
497
498 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
499 if (ret != 1) {
500 error_report("KVM get MSR (index=0x%x) feature failed, %s",
501 index, strerror(-ret));
502 exit(1);
503 }
504
505 value = msr_data.entries[0].data;
506 switch (index) {
507 case MSR_IA32_VMX_PROCBASED_CTLS2:
508 if (!has_msr_vmx_procbased_ctls2) {
509 /* KVM forgot to add these bits for some time, do this ourselves. */
510 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
511 CPUID_XSAVE_XSAVES) {
512 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
513 }
514 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
515 CPUID_EXT_RDRAND) {
516 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
517 }
518 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
519 CPUID_7_0_EBX_INVPCID) {
520 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
521 }
522 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
523 CPUID_7_0_EBX_RDSEED) {
524 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
525 }
526 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
527 CPUID_EXT2_RDTSCP) {
528 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
529 }
530 }
531 /* fall through */
532 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
533 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
534 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
535 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
536 /*
537 * Return true for bits that can be one, but do not have to be one.
538 * The SDM tells us which bits could have a "must be one" setting,
539 * so we can do the opposite transformation in make_vmx_msr_value.
540 */
541 must_be_one = (uint32_t)value;
542 can_be_one = (uint32_t)(value >> 32);
543 return can_be_one & ~must_be_one;
544
545 default:
546 return value;
547 }
548 }
549
550 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
551 int *max_banks)
552 {
553 int r;
554
555 r = kvm_check_extension(s, KVM_CAP_MCE);
556 if (r > 0) {
557 *max_banks = r;
558 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
559 }
560 return -ENOSYS;
561 }
562
563 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
564 {
565 CPUState *cs = CPU(cpu);
566 CPUX86State *env = &cpu->env;
567 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
568 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
569 uint64_t mcg_status = MCG_STATUS_MCIP;
570 int flags = 0;
571
572 if (code == BUS_MCEERR_AR) {
573 status |= MCI_STATUS_AR | 0x134;
574 mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
575 } else {
576 status |= 0xc0;
577 mcg_status |= MCG_STATUS_RIPV;
578 }
579
580 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
581 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
582 * guest kernel back into env->mcg_ext_ctl.
583 */
584 cpu_synchronize_state(cs);
585 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
586 mcg_status |= MCG_STATUS_LMCE;
587 flags = 0;
588 }
589
590 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
591 (MCM_ADDR_PHYS << 6) | 0xc, flags);
592 }
593
594 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
595 {
596 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
597
598 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
599 &mff);
600 }
601
602 static void hardware_memory_error(void *host_addr)
603 {
604 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
605 error_report("QEMU got Hardware memory error at addr %p", host_addr);
606 exit(1);
607 }
608
609 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
610 {
611 X86CPU *cpu = X86_CPU(c);
612 CPUX86State *env = &cpu->env;
613 ram_addr_t ram_addr;
614 hwaddr paddr;
615
616 /* If we get an action required MCE, it has been injected by KVM
617 * while the VM was running. An action optional MCE instead should
618 * be coming from the main thread, which qemu_init_sigbus identifies
619 * as the "early kill" thread.
620 */
621 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
622
623 if ((env->mcg_cap & MCG_SER_P) && addr) {
624 ram_addr = qemu_ram_addr_from_host(addr);
625 if (ram_addr != RAM_ADDR_INVALID &&
626 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
627 kvm_hwpoison_page_add(ram_addr);
628 kvm_mce_inject(cpu, paddr, code);
629
630 /*
631 * Use different logging severity based on error type.
632 * If there is additional MCE reporting on the hypervisor, QEMU VA
633 * could be another source to identify the PA and MCE details.
634 */
635 if (code == BUS_MCEERR_AR) {
636 error_report("Guest MCE Memory Error at QEMU addr %p and "
637 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
638 addr, paddr, "BUS_MCEERR_AR");
639 } else {
640 warn_report("Guest MCE Memory Error at QEMU addr %p and "
641 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
642 addr, paddr, "BUS_MCEERR_AO");
643 }
644
645 return;
646 }
647
648 if (code == BUS_MCEERR_AO) {
649 warn_report("Hardware memory error at addr %p of type %s "
650 "for memory used by QEMU itself instead of guest system!",
651 addr, "BUS_MCEERR_AO");
652 }
653 }
654
655 if (code == BUS_MCEERR_AR) {
656 hardware_memory_error(addr);
657 }
658
659 /* Hope we are lucky for AO MCE, just notify a event */
660 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
661 }
662
663 static void kvm_reset_exception(CPUX86State *env)
664 {
665 env->exception_nr = -1;
666 env->exception_pending = 0;
667 env->exception_injected = 0;
668 env->exception_has_payload = false;
669 env->exception_payload = 0;
670 }
671
672 static void kvm_queue_exception(CPUX86State *env,
673 int32_t exception_nr,
674 uint8_t exception_has_payload,
675 uint64_t exception_payload)
676 {
677 assert(env->exception_nr == -1);
678 assert(!env->exception_pending);
679 assert(!env->exception_injected);
680 assert(!env->exception_has_payload);
681
682 env->exception_nr = exception_nr;
683
684 if (has_exception_payload) {
685 env->exception_pending = 1;
686
687 env->exception_has_payload = exception_has_payload;
688 env->exception_payload = exception_payload;
689 } else {
690 env->exception_injected = 1;
691
692 if (exception_nr == EXCP01_DB) {
693 assert(exception_has_payload);
694 env->dr[6] = exception_payload;
695 } else if (exception_nr == EXCP0E_PAGE) {
696 assert(exception_has_payload);
697 env->cr[2] = exception_payload;
698 } else {
699 assert(!exception_has_payload);
700 }
701 }
702 }
703
704 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
705 {
706 CPUX86State *env = &cpu->env;
707
708 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
709 unsigned int bank, bank_num = env->mcg_cap & 0xff;
710 struct kvm_x86_mce mce;
711
712 kvm_reset_exception(env);
713
714 /*
715 * There must be at least one bank in use if an MCE is pending.
716 * Find it and use its values for the event injection.
717 */
718 for (bank = 0; bank < bank_num; bank++) {
719 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
720 break;
721 }
722 }
723 assert(bank < bank_num);
724
725 mce.bank = bank;
726 mce.status = env->mce_banks[bank * 4 + 1];
727 mce.mcg_status = env->mcg_status;
728 mce.addr = env->mce_banks[bank * 4 + 2];
729 mce.misc = env->mce_banks[bank * 4 + 3];
730
731 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
732 }
733 return 0;
734 }
735
736 static void cpu_update_state(void *opaque, bool running, RunState state)
737 {
738 CPUX86State *env = opaque;
739
740 if (running) {
741 env->tsc_valid = false;
742 }
743 }
744
745 unsigned long kvm_arch_vcpu_id(CPUState *cs)
746 {
747 X86CPU *cpu = X86_CPU(cs);
748 return cpu->apic_id;
749 }
750
751 #ifndef KVM_CPUID_SIGNATURE_NEXT
752 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
753 #endif
754
755 static bool hyperv_enabled(X86CPU *cpu)
756 {
757 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
758 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
759 cpu->hyperv_features || cpu->hyperv_passthrough);
760 }
761
762 /*
763 * Check whether target_freq is within conservative
764 * ntp correctable bounds (250ppm) of freq
765 */
766 static inline bool freq_within_bounds(int freq, int target_freq)
767 {
768 int max_freq = freq + (freq * 250 / 1000000);
769 int min_freq = freq - (freq * 250 / 1000000);
770
771 if (target_freq >= min_freq && target_freq <= max_freq) {
772 return true;
773 }
774
775 return false;
776 }
777
778 static int kvm_arch_set_tsc_khz(CPUState *cs)
779 {
780 X86CPU *cpu = X86_CPU(cs);
781 CPUX86State *env = &cpu->env;
782 int r, cur_freq;
783 bool set_ioctl = false;
784
785 if (!env->tsc_khz) {
786 return 0;
787 }
788
789 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
790 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
791
792 /*
793 * If TSC scaling is supported, attempt to set TSC frequency.
794 */
795 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
796 set_ioctl = true;
797 }
798
799 /*
800 * If desired TSC frequency is within bounds of NTP correction,
801 * attempt to set TSC frequency.
802 */
803 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
804 set_ioctl = true;
805 }
806
807 r = set_ioctl ?
808 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
809 -ENOTSUP;
810
811 if (r < 0) {
812 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
813 * TSC frequency doesn't match the one we want.
814 */
815 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
816 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
817 -ENOTSUP;
818 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
819 warn_report("TSC frequency mismatch between "
820 "VM (%" PRId64 " kHz) and host (%d kHz), "
821 "and TSC scaling unavailable",
822 env->tsc_khz, cur_freq);
823 return r;
824 }
825 }
826
827 return 0;
828 }
829
830 static bool tsc_is_stable_and_known(CPUX86State *env)
831 {
832 if (!env->tsc_khz) {
833 return false;
834 }
835 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
836 || env->user_tsc_khz;
837 }
838
839 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
840
841 static struct {
842 const char *desc;
843 struct {
844 uint32_t func;
845 int reg;
846 uint32_t bits;
847 } flags[2];
848 uint64_t dependencies;
849 } kvm_hyperv_properties[] = {
850 [HYPERV_FEAT_RELAXED] = {
851 .desc = "relaxed timing (hv-relaxed)",
852 .flags = {
853 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
854 .bits = HV_RELAXED_TIMING_RECOMMENDED}
855 }
856 },
857 [HYPERV_FEAT_VAPIC] = {
858 .desc = "virtual APIC (hv-vapic)",
859 .flags = {
860 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
861 .bits = HV_APIC_ACCESS_AVAILABLE}
862 }
863 },
864 [HYPERV_FEAT_TIME] = {
865 .desc = "clocksources (hv-time)",
866 .flags = {
867 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
868 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
869 }
870 },
871 [HYPERV_FEAT_CRASH] = {
872 .desc = "crash MSRs (hv-crash)",
873 .flags = {
874 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
875 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
876 }
877 },
878 [HYPERV_FEAT_RESET] = {
879 .desc = "reset MSR (hv-reset)",
880 .flags = {
881 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
882 .bits = HV_RESET_AVAILABLE}
883 }
884 },
885 [HYPERV_FEAT_VPINDEX] = {
886 .desc = "VP_INDEX MSR (hv-vpindex)",
887 .flags = {
888 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
889 .bits = HV_VP_INDEX_AVAILABLE}
890 }
891 },
892 [HYPERV_FEAT_RUNTIME] = {
893 .desc = "VP_RUNTIME MSR (hv-runtime)",
894 .flags = {
895 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
896 .bits = HV_VP_RUNTIME_AVAILABLE}
897 }
898 },
899 [HYPERV_FEAT_SYNIC] = {
900 .desc = "synthetic interrupt controller (hv-synic)",
901 .flags = {
902 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
903 .bits = HV_SYNIC_AVAILABLE}
904 }
905 },
906 [HYPERV_FEAT_STIMER] = {
907 .desc = "synthetic timers (hv-stimer)",
908 .flags = {
909 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
910 .bits = HV_SYNTIMERS_AVAILABLE}
911 },
912 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
913 },
914 [HYPERV_FEAT_FREQUENCIES] = {
915 .desc = "frequency MSRs (hv-frequencies)",
916 .flags = {
917 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
918 .bits = HV_ACCESS_FREQUENCY_MSRS},
919 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
920 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
921 }
922 },
923 [HYPERV_FEAT_REENLIGHTENMENT] = {
924 .desc = "reenlightenment MSRs (hv-reenlightenment)",
925 .flags = {
926 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
927 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
928 }
929 },
930 [HYPERV_FEAT_TLBFLUSH] = {
931 .desc = "paravirtualized TLB flush (hv-tlbflush)",
932 .flags = {
933 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
934 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
935 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
936 },
937 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
938 },
939 [HYPERV_FEAT_EVMCS] = {
940 .desc = "enlightened VMCS (hv-evmcs)",
941 .flags = {
942 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
943 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
944 },
945 .dependencies = BIT(HYPERV_FEAT_VAPIC)
946 },
947 [HYPERV_FEAT_IPI] = {
948 .desc = "paravirtualized IPI (hv-ipi)",
949 .flags = {
950 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
951 .bits = HV_CLUSTER_IPI_RECOMMENDED |
952 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
953 },
954 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
955 },
956 [HYPERV_FEAT_STIMER_DIRECT] = {
957 .desc = "direct mode synthetic timers (hv-stimer-direct)",
958 .flags = {
959 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
960 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
961 },
962 .dependencies = BIT(HYPERV_FEAT_STIMER)
963 },
964 [HYPERV_FEAT_AVIC] = {
965 .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
966 .flags = {
967 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
968 .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
969 }
970 },
971 #ifdef CONFIG_SYNDBG
972 [HYPERV_FEAT_SYNDBG] = {
973 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
974 .flags = {
975 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
976 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
977 },
978 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
979 },
980 #endif
981 [HYPERV_FEAT_MSR_BITMAP] = {
982 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
983 .flags = {
984 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
985 .bits = HV_NESTED_MSR_BITMAP}
986 }
987 },
988 [HYPERV_FEAT_XMM_INPUT] = {
989 .desc = "XMM fast hypercall input (hv-xmm-input)",
990 .flags = {
991 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
992 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
993 }
994 },
995 [HYPERV_FEAT_TLBFLUSH_EXT] = {
996 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
997 .flags = {
998 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
999 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1000 },
1001 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1002 },
1003 [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1004 .desc = "direct TLB flush (hv-tlbflush-direct)",
1005 .flags = {
1006 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1007 .bits = HV_NESTED_DIRECT_FLUSH}
1008 },
1009 .dependencies = BIT(HYPERV_FEAT_VAPIC)
1010 },
1011 };
1012
1013 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1014 bool do_sys_ioctl)
1015 {
1016 struct kvm_cpuid2 *cpuid;
1017 int r, size;
1018
1019 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1020 cpuid = g_malloc0(size);
1021 cpuid->nent = max;
1022
1023 if (do_sys_ioctl) {
1024 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1025 } else {
1026 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1027 }
1028 if (r == 0 && cpuid->nent >= max) {
1029 r = -E2BIG;
1030 }
1031 if (r < 0) {
1032 if (r == -E2BIG) {
1033 g_free(cpuid);
1034 return NULL;
1035 } else {
1036 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1037 strerror(-r));
1038 exit(1);
1039 }
1040 }
1041 return cpuid;
1042 }
1043
1044 /*
1045 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1046 * for all entries.
1047 */
1048 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1049 {
1050 struct kvm_cpuid2 *cpuid;
1051 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1052 int max = 11;
1053 int i;
1054 bool do_sys_ioctl;
1055
1056 do_sys_ioctl =
1057 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1058
1059 /*
1060 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1061 * unsupported, kvm_hyperv_expand_features() checks for that.
1062 */
1063 assert(do_sys_ioctl || cs->kvm_state);
1064
1065 /*
1066 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1067 * -E2BIG, however, it doesn't report back the right size. Keep increasing
1068 * it and re-trying until we succeed.
1069 */
1070 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1071 max++;
1072 }
1073
1074 /*
1075 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1076 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1077 * information early, just check for the capability and set the bit
1078 * manually.
1079 */
1080 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1081 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1082 for (i = 0; i < cpuid->nent; i++) {
1083 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1084 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1085 }
1086 }
1087 }
1088
1089 return cpuid;
1090 }
1091
1092 /*
1093 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1094 * leaves from KVM_CAP_HYPERV* and present MSRs data.
1095 */
1096 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1097 {
1098 X86CPU *cpu = X86_CPU(cs);
1099 struct kvm_cpuid2 *cpuid;
1100 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1101
1102 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1103 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1104 cpuid->nent = 2;
1105
1106 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1107 entry_feat = &cpuid->entries[0];
1108 entry_feat->function = HV_CPUID_FEATURES;
1109
1110 entry_recomm = &cpuid->entries[1];
1111 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1112 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1113
1114 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1115 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1116 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1117 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1118 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1119 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1120 }
1121
1122 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1123 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1124 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1125 }
1126
1127 if (has_msr_hv_frequencies) {
1128 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1129 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1130 }
1131
1132 if (has_msr_hv_crash) {
1133 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1134 }
1135
1136 if (has_msr_hv_reenlightenment) {
1137 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1138 }
1139
1140 if (has_msr_hv_reset) {
1141 entry_feat->eax |= HV_RESET_AVAILABLE;
1142 }
1143
1144 if (has_msr_hv_vpindex) {
1145 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1146 }
1147
1148 if (has_msr_hv_runtime) {
1149 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1150 }
1151
1152 if (has_msr_hv_synic) {
1153 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1154 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1155
1156 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1157 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1158 }
1159 }
1160
1161 if (has_msr_hv_stimer) {
1162 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1163 }
1164
1165 if (has_msr_hv_syndbg_options) {
1166 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1167 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1168 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1169 }
1170
1171 if (kvm_check_extension(cs->kvm_state,
1172 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1173 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1174 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1175 }
1176
1177 if (kvm_check_extension(cs->kvm_state,
1178 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1179 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1180 }
1181
1182 if (kvm_check_extension(cs->kvm_state,
1183 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1184 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1185 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1186 }
1187
1188 return cpuid;
1189 }
1190
1191 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1192 {
1193 struct kvm_cpuid_entry2 *entry;
1194 struct kvm_cpuid2 *cpuid;
1195
1196 if (hv_cpuid_cache) {
1197 cpuid = hv_cpuid_cache;
1198 } else {
1199 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1200 cpuid = get_supported_hv_cpuid(cs);
1201 } else {
1202 /*
1203 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1204 * before KVM context is created but this is only done when
1205 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1206 * KVM_CAP_HYPERV_CPUID.
1207 */
1208 assert(cs->kvm_state);
1209
1210 cpuid = get_supported_hv_cpuid_legacy(cs);
1211 }
1212 hv_cpuid_cache = cpuid;
1213 }
1214
1215 if (!cpuid) {
1216 return 0;
1217 }
1218
1219 entry = cpuid_find_entry(cpuid, func, 0);
1220 if (!entry) {
1221 return 0;
1222 }
1223
1224 return cpuid_entry_get_reg(entry, reg);
1225 }
1226
1227 static bool hyperv_feature_supported(CPUState *cs, int feature)
1228 {
1229 uint32_t func, bits;
1230 int i, reg;
1231
1232 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1233
1234 func = kvm_hyperv_properties[feature].flags[i].func;
1235 reg = kvm_hyperv_properties[feature].flags[i].reg;
1236 bits = kvm_hyperv_properties[feature].flags[i].bits;
1237
1238 if (!func) {
1239 continue;
1240 }
1241
1242 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1243 return false;
1244 }
1245 }
1246
1247 return true;
1248 }
1249
1250 /* Checks that all feature dependencies are enabled */
1251 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1252 {
1253 uint64_t deps;
1254 int dep_feat;
1255
1256 deps = kvm_hyperv_properties[feature].dependencies;
1257 while (deps) {
1258 dep_feat = ctz64(deps);
1259 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1260 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1261 kvm_hyperv_properties[feature].desc,
1262 kvm_hyperv_properties[dep_feat].desc);
1263 return false;
1264 }
1265 deps &= ~(1ull << dep_feat);
1266 }
1267
1268 return true;
1269 }
1270
1271 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1272 {
1273 X86CPU *cpu = X86_CPU(cs);
1274 uint32_t r = 0;
1275 int i, j;
1276
1277 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1278 if (!hyperv_feat_enabled(cpu, i)) {
1279 continue;
1280 }
1281
1282 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1283 if (kvm_hyperv_properties[i].flags[j].func != func) {
1284 continue;
1285 }
1286 if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1287 continue;
1288 }
1289
1290 r |= kvm_hyperv_properties[i].flags[j].bits;
1291 }
1292 }
1293
1294 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1295 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1296 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1297 r |= DEFAULT_EVMCS_VERSION;
1298 }
1299 }
1300
1301 return r;
1302 }
1303
1304 /*
1305 * Expand Hyper-V CPU features. In partucular, check that all the requested
1306 * features are supported by the host and the sanity of the configuration
1307 * (that all the required dependencies are included). Also, this takes care
1308 * of 'hv_passthrough' mode and fills the environment with all supported
1309 * Hyper-V features.
1310 */
1311 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1312 {
1313 CPUState *cs = CPU(cpu);
1314 Error *local_err = NULL;
1315 int feat;
1316
1317 if (!hyperv_enabled(cpu))
1318 return true;
1319
1320 /*
1321 * When kvm_hyperv_expand_features is called at CPU feature expansion
1322 * time per-CPU kvm_state is not available yet so we can only proceed
1323 * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1324 */
1325 if (!cs->kvm_state &&
1326 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1327 return true;
1328
1329 if (cpu->hyperv_passthrough) {
1330 cpu->hyperv_vendor_id[0] =
1331 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1332 cpu->hyperv_vendor_id[1] =
1333 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1334 cpu->hyperv_vendor_id[2] =
1335 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1336 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1337 sizeof(cpu->hyperv_vendor_id) + 1);
1338 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1339 sizeof(cpu->hyperv_vendor_id));
1340 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1341
1342 cpu->hyperv_interface_id[0] =
1343 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1344 cpu->hyperv_interface_id[1] =
1345 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1346 cpu->hyperv_interface_id[2] =
1347 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1348 cpu->hyperv_interface_id[3] =
1349 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1350
1351 cpu->hyperv_ver_id_build =
1352 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1353 cpu->hyperv_ver_id_major =
1354 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1355 cpu->hyperv_ver_id_minor =
1356 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1357 cpu->hyperv_ver_id_sp =
1358 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1359 cpu->hyperv_ver_id_sb =
1360 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1361 cpu->hyperv_ver_id_sn =
1362 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1363
1364 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1365 R_EAX);
1366 cpu->hyperv_limits[0] =
1367 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1368 cpu->hyperv_limits[1] =
1369 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1370 cpu->hyperv_limits[2] =
1371 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1372
1373 cpu->hyperv_spinlock_attempts =
1374 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1375
1376 /*
1377 * Mark feature as enabled in 'cpu->hyperv_features' as
1378 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1379 */
1380 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1381 if (hyperv_feature_supported(cs, feat)) {
1382 cpu->hyperv_features |= BIT(feat);
1383 }
1384 }
1385 } else {
1386 /* Check features availability and dependencies */
1387 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1388 /* If the feature was not requested skip it. */
1389 if (!hyperv_feat_enabled(cpu, feat)) {
1390 continue;
1391 }
1392
1393 /* Check if the feature is supported by KVM */
1394 if (!hyperv_feature_supported(cs, feat)) {
1395 error_setg(errp, "Hyper-V %s is not supported by kernel",
1396 kvm_hyperv_properties[feat].desc);
1397 return false;
1398 }
1399
1400 /* Check dependencies */
1401 if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1402 error_propagate(errp, local_err);
1403 return false;
1404 }
1405 }
1406 }
1407
1408 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1409 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1410 !cpu->hyperv_synic_kvm_only &&
1411 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1412 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1413 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1414 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1415 return false;
1416 }
1417
1418 return true;
1419 }
1420
1421 /*
1422 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1423 */
1424 static int hyperv_fill_cpuids(CPUState *cs,
1425 struct kvm_cpuid_entry2 *cpuid_ent)
1426 {
1427 X86CPU *cpu = X86_CPU(cs);
1428 struct kvm_cpuid_entry2 *c;
1429 uint32_t signature[3];
1430 uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1431 uint32_t nested_eax =
1432 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1433
1434 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1435 HV_CPUID_IMPLEMENT_LIMITS;
1436
1437 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1438 max_cpuid_leaf =
1439 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1440 }
1441
1442 c = &cpuid_ent[cpuid_i++];
1443 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1444 c->eax = max_cpuid_leaf;
1445 c->ebx = cpu->hyperv_vendor_id[0];
1446 c->ecx = cpu->hyperv_vendor_id[1];
1447 c->edx = cpu->hyperv_vendor_id[2];
1448
1449 c = &cpuid_ent[cpuid_i++];
1450 c->function = HV_CPUID_INTERFACE;
1451 c->eax = cpu->hyperv_interface_id[0];
1452 c->ebx = cpu->hyperv_interface_id[1];
1453 c->ecx = cpu->hyperv_interface_id[2];
1454 c->edx = cpu->hyperv_interface_id[3];
1455
1456 c = &cpuid_ent[cpuid_i++];
1457 c->function = HV_CPUID_VERSION;
1458 c->eax = cpu->hyperv_ver_id_build;
1459 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1460 cpu->hyperv_ver_id_minor;
1461 c->ecx = cpu->hyperv_ver_id_sp;
1462 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1463 (cpu->hyperv_ver_id_sn & 0xffffff);
1464
1465 c = &cpuid_ent[cpuid_i++];
1466 c->function = HV_CPUID_FEATURES;
1467 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1468 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1469 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1470
1471 /* Unconditionally required with any Hyper-V enlightenment */
1472 c->eax |= HV_HYPERCALL_AVAILABLE;
1473
1474 /* SynIC and Vmbus devices require messages/signals hypercalls */
1475 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1476 !cpu->hyperv_synic_kvm_only) {
1477 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1478 }
1479
1480
1481 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1482 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1483
1484 c = &cpuid_ent[cpuid_i++];
1485 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1486 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1487 c->ebx = cpu->hyperv_spinlock_attempts;
1488
1489 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1490 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1491 c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1492 }
1493
1494 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1495 c->eax |= HV_NO_NONARCH_CORESHARING;
1496 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1497 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1498 HV_NO_NONARCH_CORESHARING;
1499 }
1500
1501 c = &cpuid_ent[cpuid_i++];
1502 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1503 c->eax = cpu->hv_max_vps;
1504 c->ebx = cpu->hyperv_limits[0];
1505 c->ecx = cpu->hyperv_limits[1];
1506 c->edx = cpu->hyperv_limits[2];
1507
1508 if (nested_eax) {
1509 uint32_t function;
1510
1511 /* Create zeroed 0x40000006..0x40000009 leaves */
1512 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1513 function < HV_CPUID_NESTED_FEATURES; function++) {
1514 c = &cpuid_ent[cpuid_i++];
1515 c->function = function;
1516 }
1517
1518 c = &cpuid_ent[cpuid_i++];
1519 c->function = HV_CPUID_NESTED_FEATURES;
1520 c->eax = nested_eax;
1521 }
1522
1523 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1524 c = &cpuid_ent[cpuid_i++];
1525 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1526 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1527 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1528 memcpy(signature, "Microsoft VS", 12);
1529 c->eax = 0;
1530 c->ebx = signature[0];
1531 c->ecx = signature[1];
1532 c->edx = signature[2];
1533
1534 c = &cpuid_ent[cpuid_i++];
1535 c->function = HV_CPUID_SYNDBG_INTERFACE;
1536 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1537 c->eax = signature[0];
1538 c->ebx = 0;
1539 c->ecx = 0;
1540 c->edx = 0;
1541
1542 c = &cpuid_ent[cpuid_i++];
1543 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1544 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1545 c->ebx = 0;
1546 c->ecx = 0;
1547 c->edx = 0;
1548 }
1549
1550 return cpuid_i;
1551 }
1552
1553 static Error *hv_passthrough_mig_blocker;
1554 static Error *hv_no_nonarch_cs_mig_blocker;
1555
1556 /* Checks that the exposed eVMCS version range is supported by KVM */
1557 static bool evmcs_version_supported(uint16_t evmcs_version,
1558 uint16_t supported_evmcs_version)
1559 {
1560 uint8_t min_version = evmcs_version & 0xff;
1561 uint8_t max_version = evmcs_version >> 8;
1562 uint8_t min_supported_version = supported_evmcs_version & 0xff;
1563 uint8_t max_supported_version = supported_evmcs_version >> 8;
1564
1565 return (min_version >= min_supported_version) &&
1566 (max_version <= max_supported_version);
1567 }
1568
1569 static int hyperv_init_vcpu(X86CPU *cpu)
1570 {
1571 CPUState *cs = CPU(cpu);
1572 Error *local_err = NULL;
1573 int ret;
1574
1575 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1576 error_setg(&hv_passthrough_mig_blocker,
1577 "'hv-passthrough' CPU flag prevents migration, use explicit"
1578 " set of hv-* flags instead");
1579 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1580 if (ret < 0) {
1581 error_report_err(local_err);
1582 return ret;
1583 }
1584 }
1585
1586 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1587 hv_no_nonarch_cs_mig_blocker == NULL) {
1588 error_setg(&hv_no_nonarch_cs_mig_blocker,
1589 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1590 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1591 " make sure SMT is disabled and/or that vCPUs are properly"
1592 " pinned)");
1593 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1594 if (ret < 0) {
1595 error_report_err(local_err);
1596 return ret;
1597 }
1598 }
1599
1600 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1601 /*
1602 * the kernel doesn't support setting vp_index; assert that its value
1603 * is in sync
1604 */
1605 uint64_t value;
1606
1607 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1608 if (ret < 0) {
1609 return ret;
1610 }
1611
1612 if (value != hyperv_vp_index(CPU(cpu))) {
1613 error_report("kernel's vp_index != QEMU's vp_index");
1614 return -ENXIO;
1615 }
1616 }
1617
1618 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1619 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1620 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1621 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1622 if (ret < 0) {
1623 error_report("failed to turn on HyperV SynIC in KVM: %s",
1624 strerror(-ret));
1625 return ret;
1626 }
1627
1628 if (!cpu->hyperv_synic_kvm_only) {
1629 ret = hyperv_x86_synic_add(cpu);
1630 if (ret < 0) {
1631 error_report("failed to create HyperV SynIC: %s",
1632 strerror(-ret));
1633 return ret;
1634 }
1635 }
1636 }
1637
1638 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1639 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1640 uint16_t supported_evmcs_version;
1641
1642 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1643 (uintptr_t)&supported_evmcs_version);
1644
1645 /*
1646 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1647 * option sets. Note: we hardcode the maximum supported eVMCS version
1648 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1649 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1650 * to be added.
1651 */
1652 if (ret < 0) {
1653 error_report("Hyper-V %s is not supported by kernel",
1654 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1655 return ret;
1656 }
1657
1658 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1659 error_report("eVMCS version range [%d..%d] is not supported by "
1660 "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1661 evmcs_version >> 8, supported_evmcs_version & 0xff,
1662 supported_evmcs_version >> 8);
1663 return -ENOTSUP;
1664 }
1665 }
1666
1667 if (cpu->hyperv_enforce_cpuid) {
1668 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1669 if (ret < 0) {
1670 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1671 strerror(-ret));
1672 return ret;
1673 }
1674 }
1675
1676 return 0;
1677 }
1678
1679 static Error *invtsc_mig_blocker;
1680
1681 #define KVM_MAX_CPUID_ENTRIES 100
1682
1683 static void kvm_init_xsave(CPUX86State *env)
1684 {
1685 if (has_xsave2) {
1686 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1687 } else if (has_xsave) {
1688 env->xsave_buf_len = sizeof(struct kvm_xsave);
1689 } else {
1690 return;
1691 }
1692
1693 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1694 memset(env->xsave_buf, 0, env->xsave_buf_len);
1695 /*
1696 * The allocated storage must be large enough for all of the
1697 * possible XSAVE state components.
1698 */
1699 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1700 env->xsave_buf_len);
1701 }
1702
1703 static void kvm_init_nested_state(CPUX86State *env)
1704 {
1705 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1706 uint32_t size;
1707
1708 if (!env->nested_state) {
1709 return;
1710 }
1711
1712 size = env->nested_state->size;
1713
1714 memset(env->nested_state, 0, size);
1715 env->nested_state->size = size;
1716
1717 if (cpu_has_vmx(env)) {
1718 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1719 vmx_hdr = &env->nested_state->hdr.vmx;
1720 vmx_hdr->vmxon_pa = -1ull;
1721 vmx_hdr->vmcs12_pa = -1ull;
1722 } else if (cpu_has_svm(env)) {
1723 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1724 }
1725 }
1726
1727 int kvm_arch_init_vcpu(CPUState *cs)
1728 {
1729 struct {
1730 struct kvm_cpuid2 cpuid;
1731 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1732 } cpuid_data;
1733 /*
1734 * The kernel defines these structs with padding fields so there
1735 * should be no extra padding in our cpuid_data struct.
1736 */
1737 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1738 sizeof(struct kvm_cpuid2) +
1739 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1740
1741 X86CPU *cpu = X86_CPU(cs);
1742 CPUX86State *env = &cpu->env;
1743 uint32_t limit, i, j, cpuid_i;
1744 uint32_t unused;
1745 struct kvm_cpuid_entry2 *c;
1746 uint32_t signature[3];
1747 int kvm_base = KVM_CPUID_SIGNATURE;
1748 int max_nested_state_len;
1749 int r;
1750 Error *local_err = NULL;
1751
1752 memset(&cpuid_data, 0, sizeof(cpuid_data));
1753
1754 cpuid_i = 0;
1755
1756 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1757
1758 r = kvm_arch_set_tsc_khz(cs);
1759 if (r < 0) {
1760 return r;
1761 }
1762
1763 /* vcpu's TSC frequency is either specified by user, or following
1764 * the value used by KVM if the former is not present. In the
1765 * latter case, we query it from KVM and record in env->tsc_khz,
1766 * so that vcpu's TSC frequency can be migrated later via this field.
1767 */
1768 if (!env->tsc_khz) {
1769 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1770 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1771 -ENOTSUP;
1772 if (r > 0) {
1773 env->tsc_khz = r;
1774 }
1775 }
1776
1777 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1778
1779 /*
1780 * kvm_hyperv_expand_features() is called here for the second time in case
1781 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1782 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1783 * check which Hyper-V enlightenments are supported and which are not, we
1784 * can still proceed and check/expand Hyper-V enlightenments here so legacy
1785 * behavior is preserved.
1786 */
1787 if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1788 error_report_err(local_err);
1789 return -ENOSYS;
1790 }
1791
1792 if (hyperv_enabled(cpu)) {
1793 r = hyperv_init_vcpu(cpu);
1794 if (r) {
1795 return r;
1796 }
1797
1798 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1799 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1800 has_msr_hv_hypercall = true;
1801 }
1802
1803 if (cpu->expose_kvm) {
1804 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1805 c = &cpuid_data.entries[cpuid_i++];
1806 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1807 c->eax = KVM_CPUID_FEATURES | kvm_base;
1808 c->ebx = signature[0];
1809 c->ecx = signature[1];
1810 c->edx = signature[2];
1811
1812 c = &cpuid_data.entries[cpuid_i++];
1813 c->function = KVM_CPUID_FEATURES | kvm_base;
1814 c->eax = env->features[FEAT_KVM];
1815 c->edx = env->features[FEAT_KVM_HINTS];
1816 }
1817
1818 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1819
1820 if (cpu->kvm_pv_enforce_cpuid) {
1821 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1822 if (r < 0) {
1823 fprintf(stderr,
1824 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1825 strerror(-r));
1826 abort();
1827 }
1828 }
1829
1830 for (i = 0; i <= limit; i++) {
1831 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1832 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1833 abort();
1834 }
1835 c = &cpuid_data.entries[cpuid_i++];
1836
1837 switch (i) {
1838 case 2: {
1839 /* Keep reading function 2 till all the input is received */
1840 int times;
1841
1842 c->function = i;
1843 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1844 KVM_CPUID_FLAG_STATE_READ_NEXT;
1845 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1846 times = c->eax & 0xff;
1847
1848 for (j = 1; j < times; ++j) {
1849 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1850 fprintf(stderr, "cpuid_data is full, no space for "
1851 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1852 abort();
1853 }
1854 c = &cpuid_data.entries[cpuid_i++];
1855 c->function = i;
1856 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1857 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1858 }
1859 break;
1860 }
1861 case 0x1f:
1862 if (env->nr_dies < 2) {
1863 break;
1864 }
1865 /* fallthrough */
1866 case 4:
1867 case 0xb:
1868 case 0xd:
1869 for (j = 0; ; j++) {
1870 if (i == 0xd && j == 64) {
1871 break;
1872 }
1873
1874 if (i == 0x1f && j == 64) {
1875 break;
1876 }
1877
1878 c->function = i;
1879 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1880 c->index = j;
1881 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1882
1883 if (i == 4 && c->eax == 0) {
1884 break;
1885 }
1886 if (i == 0xb && !(c->ecx & 0xff00)) {
1887 break;
1888 }
1889 if (i == 0x1f && !(c->ecx & 0xff00)) {
1890 break;
1891 }
1892 if (i == 0xd && c->eax == 0) {
1893 continue;
1894 }
1895 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1896 fprintf(stderr, "cpuid_data is full, no space for "
1897 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1898 abort();
1899 }
1900 c = &cpuid_data.entries[cpuid_i++];
1901 }
1902 break;
1903 case 0x7:
1904 case 0x12:
1905 for (j = 0; ; j++) {
1906 c->function = i;
1907 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1908 c->index = j;
1909 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1910
1911 if (j > 1 && (c->eax & 0xf) != 1) {
1912 break;
1913 }
1914
1915 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1916 fprintf(stderr, "cpuid_data is full, no space for "
1917 "cpuid(eax:0x12,ecx:0x%x)\n", j);
1918 abort();
1919 }
1920 c = &cpuid_data.entries[cpuid_i++];
1921 }
1922 break;
1923 case 0x14:
1924 case 0x1d:
1925 case 0x1e: {
1926 uint32_t times;
1927
1928 c->function = i;
1929 c->index = 0;
1930 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1931 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1932 times = c->eax;
1933
1934 for (j = 1; j <= times; ++j) {
1935 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1936 fprintf(stderr, "cpuid_data is full, no space for "
1937 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1938 abort();
1939 }
1940 c = &cpuid_data.entries[cpuid_i++];
1941 c->function = i;
1942 c->index = j;
1943 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1944 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1945 }
1946 break;
1947 }
1948 default:
1949 c->function = i;
1950 c->flags = 0;
1951 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1952 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1953 /*
1954 * KVM already returns all zeroes if a CPUID entry is missing,
1955 * so we can omit it and avoid hitting KVM's 80-entry limit.
1956 */
1957 cpuid_i--;
1958 }
1959 break;
1960 }
1961 }
1962
1963 if (limit >= 0x0a) {
1964 uint32_t eax, edx;
1965
1966 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1967
1968 has_architectural_pmu_version = eax & 0xff;
1969 if (has_architectural_pmu_version > 0) {
1970 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1971
1972 /* Shouldn't be more than 32, since that's the number of bits
1973 * available in EBX to tell us _which_ counters are available.
1974 * Play it safe.
1975 */
1976 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1977 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1978 }
1979
1980 if (has_architectural_pmu_version > 1) {
1981 num_architectural_pmu_fixed_counters = edx & 0x1f;
1982
1983 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1984 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1985 }
1986 }
1987 }
1988 }
1989
1990 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1991
1992 for (i = 0x80000000; i <= limit; i++) {
1993 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1994 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1995 abort();
1996 }
1997 c = &cpuid_data.entries[cpuid_i++];
1998
1999 switch (i) {
2000 case 0x8000001d:
2001 /* Query for all AMD cache information leaves */
2002 for (j = 0; ; j++) {
2003 c->function = i;
2004 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2005 c->index = j;
2006 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2007
2008 if (c->eax == 0) {
2009 break;
2010 }
2011 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2012 fprintf(stderr, "cpuid_data is full, no space for "
2013 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2014 abort();
2015 }
2016 c = &cpuid_data.entries[cpuid_i++];
2017 }
2018 break;
2019 default:
2020 c->function = i;
2021 c->flags = 0;
2022 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2023 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2024 /*
2025 * KVM already returns all zeroes if a CPUID entry is missing,
2026 * so we can omit it and avoid hitting KVM's 80-entry limit.
2027 */
2028 cpuid_i--;
2029 }
2030 break;
2031 }
2032 }
2033
2034 /* Call Centaur's CPUID instructions they are supported. */
2035 if (env->cpuid_xlevel2 > 0) {
2036 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2037
2038 for (i = 0xC0000000; i <= limit; i++) {
2039 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2040 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
2041 abort();
2042 }
2043 c = &cpuid_data.entries[cpuid_i++];
2044
2045 c->function = i;
2046 c->flags = 0;
2047 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2048 }
2049 }
2050
2051 cpuid_data.cpuid.nent = cpuid_i;
2052
2053 if (((env->cpuid_version >> 8)&0xF) >= 6
2054 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2055 (CPUID_MCE | CPUID_MCA)
2056 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
2057 uint64_t mcg_cap, unsupported_caps;
2058 int banks;
2059 int ret;
2060
2061 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2062 if (ret < 0) {
2063 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2064 return ret;
2065 }
2066
2067 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2068 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2069 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2070 return -ENOTSUP;
2071 }
2072
2073 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2074 if (unsupported_caps) {
2075 if (unsupported_caps & MCG_LMCE_P) {
2076 error_report("kvm: LMCE not supported");
2077 return -ENOTSUP;
2078 }
2079 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2080 unsupported_caps);
2081 }
2082
2083 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2084 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2085 if (ret < 0) {
2086 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2087 return ret;
2088 }
2089 }
2090
2091 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2092
2093 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2094 if (c) {
2095 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2096 !!(c->ecx & CPUID_EXT_SMX);
2097 }
2098
2099 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2100 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2101 has_msr_feature_control = true;
2102 }
2103
2104 if (env->mcg_cap & MCG_LMCE_P) {
2105 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2106 }
2107
2108 if (!env->user_tsc_khz) {
2109 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2110 invtsc_mig_blocker == NULL) {
2111 error_setg(&invtsc_mig_blocker,
2112 "State blocked by non-migratable CPU device"
2113 " (invtsc flag)");
2114 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
2115 if (r < 0) {
2116 error_report_err(local_err);
2117 return r;
2118 }
2119 }
2120 }
2121
2122 if (cpu->vmware_cpuid_freq
2123 /* Guests depend on 0x40000000 to detect this feature, so only expose
2124 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2125 && cpu->expose_kvm
2126 && kvm_base == KVM_CPUID_SIGNATURE
2127 /* TSC clock must be stable and known for this feature. */
2128 && tsc_is_stable_and_known(env)) {
2129
2130 c = &cpuid_data.entries[cpuid_i++];
2131 c->function = KVM_CPUID_SIGNATURE | 0x10;
2132 c->eax = env->tsc_khz;
2133 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2134 c->ecx = c->edx = 0;
2135
2136 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2137 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2138 }
2139
2140 cpuid_data.cpuid.nent = cpuid_i;
2141
2142 cpuid_data.cpuid.padding = 0;
2143 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2144 if (r) {
2145 goto fail;
2146 }
2147 kvm_init_xsave(env);
2148
2149 max_nested_state_len = kvm_max_nested_state_length();
2150 if (max_nested_state_len > 0) {
2151 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2152
2153 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2154 env->nested_state = g_malloc0(max_nested_state_len);
2155 env->nested_state->size = max_nested_state_len;
2156
2157 kvm_init_nested_state(env);
2158 }
2159 }
2160
2161 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2162
2163 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2164 has_msr_tsc_aux = false;
2165 }
2166
2167 kvm_init_msrs(cpu);
2168
2169 return 0;
2170
2171 fail:
2172 migrate_del_blocker(invtsc_mig_blocker);
2173
2174 return r;
2175 }
2176
2177 int kvm_arch_destroy_vcpu(CPUState *cs)
2178 {
2179 X86CPU *cpu = X86_CPU(cs);
2180 CPUX86State *env = &cpu->env;
2181
2182 g_free(env->xsave_buf);
2183
2184 g_free(cpu->kvm_msr_buf);
2185 cpu->kvm_msr_buf = NULL;
2186
2187 g_free(env->nested_state);
2188 env->nested_state = NULL;
2189
2190 qemu_del_vm_change_state_handler(cpu->vmsentry);
2191
2192 return 0;
2193 }
2194
2195 void kvm_arch_reset_vcpu(X86CPU *cpu)
2196 {
2197 CPUX86State *env = &cpu->env;
2198
2199 env->xcr0 = 1;
2200 if (kvm_irqchip_in_kernel()) {
2201 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2202 KVM_MP_STATE_UNINITIALIZED;
2203 } else {
2204 env->mp_state = KVM_MP_STATE_RUNNABLE;
2205 }
2206
2207 /* enabled by default */
2208 env->poll_control_msr = 1;
2209
2210 kvm_init_nested_state(env);
2211
2212 sev_es_set_reset_vector(CPU(cpu));
2213 }
2214
2215 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2216 {
2217 CPUX86State *env = &cpu->env;
2218 int i;
2219
2220 /*
2221 * Reset SynIC after all other devices have been reset to let them remove
2222 * their SINT routes first.
2223 */
2224 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2225 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2226 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2227 }
2228
2229 hyperv_x86_synic_reset(cpu);
2230 }
2231 }
2232
2233 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2234 {
2235 CPUX86State *env = &cpu->env;
2236
2237 /* APs get directly into wait-for-SIPI state. */
2238 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2239 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2240 }
2241 }
2242
2243 static int kvm_get_supported_feature_msrs(KVMState *s)
2244 {
2245 int ret = 0;
2246
2247 if (kvm_feature_msrs != NULL) {
2248 return 0;
2249 }
2250
2251 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2252 return 0;
2253 }
2254
2255 struct kvm_msr_list msr_list;
2256
2257 msr_list.nmsrs = 0;
2258 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2259 if (ret < 0 && ret != -E2BIG) {
2260 error_report("Fetch KVM feature MSR list failed: %s",
2261 strerror(-ret));
2262 return ret;
2263 }
2264
2265 assert(msr_list.nmsrs > 0);
2266 kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2267 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2268
2269 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2270 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2271
2272 if (ret < 0) {
2273 error_report("Fetch KVM feature MSR list failed: %s",
2274 strerror(-ret));
2275 g_free(kvm_feature_msrs);
2276 kvm_feature_msrs = NULL;
2277 return ret;
2278 }
2279
2280 return 0;
2281 }
2282
2283 static int kvm_get_supported_msrs(KVMState *s)
2284 {
2285 int ret = 0;
2286 struct kvm_msr_list msr_list, *kvm_msr_list;
2287
2288 /*
2289 * Obtain MSR list from KVM. These are the MSRs that we must
2290 * save/restore.
2291 */
2292 msr_list.nmsrs = 0;
2293 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2294 if (ret < 0 && ret != -E2BIG) {
2295 return ret;
2296 }
2297 /*
2298 * Old kernel modules had a bug and could write beyond the provided
2299 * memory. Allocate at least a safe amount of 1K.
2300 */
2301 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2302 msr_list.nmsrs *
2303 sizeof(msr_list.indices[0])));
2304
2305 kvm_msr_list->nmsrs = msr_list.nmsrs;
2306 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2307 if (ret >= 0) {
2308 int i;
2309
2310 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2311 switch (kvm_msr_list->indices[i]) {
2312 case MSR_STAR:
2313 has_msr_star = true;
2314 break;
2315 case MSR_VM_HSAVE_PA:
2316 has_msr_hsave_pa = true;
2317 break;
2318 case MSR_TSC_AUX:
2319 has_msr_tsc_aux = true;
2320 break;
2321 case MSR_TSC_ADJUST:
2322 has_msr_tsc_adjust = true;
2323 break;
2324 case MSR_IA32_TSCDEADLINE:
2325 has_msr_tsc_deadline = true;
2326 break;
2327 case MSR_IA32_SMBASE:
2328 has_msr_smbase = true;
2329 break;
2330 case MSR_SMI_COUNT:
2331 has_msr_smi_count = true;
2332 break;
2333 case MSR_IA32_MISC_ENABLE:
2334 has_msr_misc_enable = true;
2335 break;
2336 case MSR_IA32_BNDCFGS:
2337 has_msr_bndcfgs = true;
2338 break;
2339 case MSR_IA32_XSS:
2340 has_msr_xss = true;
2341 break;
2342 case MSR_IA32_UMWAIT_CONTROL:
2343 has_msr_umwait = true;
2344 break;
2345 case HV_X64_MSR_CRASH_CTL:
2346 has_msr_hv_crash = true;
2347 break;
2348 case HV_X64_MSR_RESET:
2349 has_msr_hv_reset = true;
2350 break;
2351 case HV_X64_MSR_VP_INDEX:
2352 has_msr_hv_vpindex = true;
2353 break;
2354 case HV_X64_MSR_VP_RUNTIME:
2355 has_msr_hv_runtime = true;
2356 break;
2357 case HV_X64_MSR_SCONTROL:
2358 has_msr_hv_synic = true;
2359 break;
2360 case HV_X64_MSR_STIMER0_CONFIG:
2361 has_msr_hv_stimer = true;
2362 break;
2363 case HV_X64_MSR_TSC_FREQUENCY:
2364 has_msr_hv_frequencies = true;
2365 break;
2366 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2367 has_msr_hv_reenlightenment = true;
2368 break;
2369 case HV_X64_MSR_SYNDBG_OPTIONS:
2370 has_msr_hv_syndbg_options = true;
2371 break;
2372 case MSR_IA32_SPEC_CTRL:
2373 has_msr_spec_ctrl = true;
2374 break;
2375 case MSR_AMD64_TSC_RATIO:
2376 has_tsc_scale_msr = true;
2377 break;
2378 case MSR_IA32_TSX_CTRL:
2379 has_msr_tsx_ctrl = true;
2380 break;
2381 case MSR_VIRT_SSBD:
2382 has_msr_virt_ssbd = true;
2383 break;
2384 case MSR_IA32_ARCH_CAPABILITIES:
2385 has_msr_arch_capabs = true;
2386 break;
2387 case MSR_IA32_CORE_CAPABILITY:
2388 has_msr_core_capabs = true;
2389 break;
2390 case MSR_IA32_PERF_CAPABILITIES:
2391 has_msr_perf_capabs = true;
2392 break;
2393 case MSR_IA32_VMX_VMFUNC:
2394 has_msr_vmx_vmfunc = true;
2395 break;
2396 case MSR_IA32_UCODE_REV:
2397 has_msr_ucode_rev = true;
2398 break;
2399 case MSR_IA32_VMX_PROCBASED_CTLS2:
2400 has_msr_vmx_procbased_ctls2 = true;
2401 break;
2402 case MSR_IA32_PKRS:
2403 has_msr_pkrs = true;
2404 break;
2405 }
2406 }
2407 }
2408
2409 g_free(kvm_msr_list);
2410
2411 return ret;
2412 }
2413
2414 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr,
2415 uint64_t *val)
2416 {
2417 CPUState *cs = CPU(cpu);
2418
2419 *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */
2420 *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */
2421
2422 return true;
2423 }
2424
2425 static Notifier smram_machine_done;
2426 static KVMMemoryListener smram_listener;
2427 static AddressSpace smram_address_space;
2428 static MemoryRegion smram_as_root;
2429 static MemoryRegion smram_as_mem;
2430
2431 static void register_smram_listener(Notifier *n, void *unused)
2432 {
2433 MemoryRegion *smram =
2434 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2435
2436 /* Outer container... */
2437 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2438 memory_region_set_enabled(&smram_as_root, true);
2439
2440 /* ... with two regions inside: normal system memory with low
2441 * priority, and...
2442 */
2443 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2444 get_system_memory(), 0, ~0ull);
2445 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2446 memory_region_set_enabled(&smram_as_mem, true);
2447
2448 if (smram) {
2449 /* ... SMRAM with higher priority */
2450 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2451 memory_region_set_enabled(smram, true);
2452 }
2453
2454 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2455 kvm_memory_listener_register(kvm_state, &smram_listener,
2456 &smram_address_space, 1, "kvm-smram");
2457 }
2458
2459 int kvm_arch_init(MachineState *ms, KVMState *s)
2460 {
2461 uint64_t identity_base = 0xfffbc000;
2462 uint64_t shadow_mem;
2463 int ret;
2464 struct utsname utsname;
2465 Error *local_err = NULL;
2466
2467 /*
2468 * Initialize SEV context, if required
2469 *
2470 * If no memory encryption is requested (ms->cgs == NULL) this is
2471 * a no-op.
2472 *
2473 * It's also a no-op if a non-SEV confidential guest support
2474 * mechanism is selected. SEV is the only mechanism available to
2475 * select on x86 at present, so this doesn't arise, but if new
2476 * mechanisms are supported in future (e.g. TDX), they'll need
2477 * their own initialization either here or elsewhere.
2478 */
2479 ret = sev_kvm_init(ms->cgs, &local_err);
2480 if (ret < 0) {
2481 error_report_err(local_err);
2482 return ret;
2483 }
2484
2485 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2486 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2487 return -ENOTSUP;
2488 }
2489
2490 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2491 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2492 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2493 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2494
2495 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2496
2497 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2498 if (has_exception_payload) {
2499 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2500 if (ret < 0) {
2501 error_report("kvm: Failed to enable exception payload cap: %s",
2502 strerror(-ret));
2503 return ret;
2504 }
2505 }
2506
2507 has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT);
2508 if (has_triple_fault_event) {
2509 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
2510 if (ret < 0) {
2511 error_report("kvm: Failed to enable triple fault event cap: %s",
2512 strerror(-ret));
2513 return ret;
2514 }
2515 }
2516
2517 ret = kvm_get_supported_msrs(s);
2518 if (ret < 0) {
2519 return ret;
2520 }
2521
2522 kvm_get_supported_feature_msrs(s);
2523
2524 uname(&utsname);
2525 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2526
2527 /*
2528 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2529 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2530 * Since these must be part of guest physical memory, we need to allocate
2531 * them, both by setting their start addresses in the kernel and by
2532 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2533 *
2534 * Older KVM versions may not support setting the identity map base. In
2535 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2536 * size.
2537 */
2538 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2539 /* Allows up to 16M BIOSes. */
2540 identity_base = 0xfeffc000;
2541
2542 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2543 if (ret < 0) {
2544 return ret;
2545 }
2546 }
2547
2548 /* Set TSS base one page after EPT identity map. */
2549 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2550 if (ret < 0) {
2551 return ret;
2552 }
2553
2554 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2555 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2556 if (ret < 0) {
2557 fprintf(stderr, "e820_add_entry() table is full\n");
2558 return ret;
2559 }
2560
2561 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2562 if (shadow_mem != -1) {
2563 shadow_mem /= 4096;
2564 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2565 if (ret < 0) {
2566 return ret;
2567 }
2568 }
2569
2570 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2571 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2572 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2573 smram_machine_done.notify = register_smram_listener;
2574 qemu_add_machine_init_done_notifier(&smram_machine_done);
2575 }
2576
2577 if (enable_cpu_pm) {
2578 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2579 int ret;
2580
2581 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2582 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2583 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2584 #endif
2585 if (disable_exits) {
2586 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2587 KVM_X86_DISABLE_EXITS_HLT |
2588 KVM_X86_DISABLE_EXITS_PAUSE |
2589 KVM_X86_DISABLE_EXITS_CSTATE);
2590 }
2591
2592 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2593 disable_exits);
2594 if (ret < 0) {
2595 error_report("kvm: guest stopping CPU not supported: %s",
2596 strerror(-ret));
2597 }
2598 }
2599
2600 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2601 X86MachineState *x86ms = X86_MACHINE(ms);
2602
2603 if (x86ms->bus_lock_ratelimit > 0) {
2604 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2605 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2606 error_report("kvm: bus lock detection unsupported");
2607 return -ENOTSUP;
2608 }
2609 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2610 KVM_BUS_LOCK_DETECTION_EXIT);
2611 if (ret < 0) {
2612 error_report("kvm: Failed to enable bus lock detection cap: %s",
2613 strerror(-ret));
2614 return ret;
2615 }
2616 ratelimit_init(&bus_lock_ratelimit_ctrl);
2617 ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2618 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2619 }
2620 }
2621
2622 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE &&
2623 kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
2624 uint64_t notify_window_flags =
2625 ((uint64_t)s->notify_window << 32) |
2626 KVM_X86_NOTIFY_VMEXIT_ENABLED |
2627 KVM_X86_NOTIFY_VMEXIT_USER;
2628 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
2629 notify_window_flags);
2630 if (ret < 0) {
2631 error_report("kvm: Failed to enable notify vmexit cap: %s",
2632 strerror(-ret));
2633 return ret;
2634 }
2635 }
2636 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
2637 bool r;
2638
2639 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
2640 KVM_MSR_EXIT_REASON_FILTER);
2641 if (ret) {
2642 error_report("Could not enable user space MSRs: %s",
2643 strerror(-ret));
2644 exit(1);
2645 }
2646
2647 r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
2648 kvm_rdmsr_core_thread_count, NULL);
2649 if (!r) {
2650 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
2651 strerror(-ret));
2652 exit(1);
2653 }
2654 }
2655
2656 return 0;
2657 }
2658
2659 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2660 {
2661 lhs->selector = rhs->selector;
2662 lhs->base = rhs->base;
2663 lhs->limit = rhs->limit;
2664 lhs->type = 3;
2665 lhs->present = 1;
2666 lhs->dpl = 3;
2667 lhs->db = 0;
2668 lhs->s = 1;
2669 lhs->l = 0;
2670 lhs->g = 0;
2671 lhs->avl = 0;
2672 lhs->unusable = 0;
2673 }
2674
2675 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2676 {
2677 unsigned flags = rhs->flags;
2678 lhs->selector = rhs->selector;
2679 lhs->base = rhs->base;
2680 lhs->limit = rhs->limit;
2681 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2682 lhs->present = (flags & DESC_P_MASK) != 0;
2683 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2684 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2685 lhs->s = (flags & DESC_S_MASK) != 0;
2686 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2687 lhs->g = (flags & DESC_G_MASK) != 0;
2688 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2689 lhs->unusable = !lhs->present;
2690 lhs->padding = 0;
2691 }
2692
2693 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2694 {
2695 lhs->selector = rhs->selector;
2696 lhs->base = rhs->base;
2697 lhs->limit = rhs->limit;
2698 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2699 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2700 (rhs->dpl << DESC_DPL_SHIFT) |
2701 (rhs->db << DESC_B_SHIFT) |
2702 (rhs->s * DESC_S_MASK) |
2703 (rhs->l << DESC_L_SHIFT) |
2704 (rhs->g * DESC_G_MASK) |
2705 (rhs->avl * DESC_AVL_MASK);
2706 }
2707
2708 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2709 {
2710 if (set) {
2711 *kvm_reg = *qemu_reg;
2712 } else {
2713 *qemu_reg = *kvm_reg;
2714 }
2715 }
2716
2717 static int kvm_getput_regs(X86CPU *cpu, int set)
2718 {
2719 CPUX86State *env = &cpu->env;
2720 struct kvm_regs regs;
2721 int ret = 0;
2722
2723 if (!set) {
2724 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2725 if (ret < 0) {
2726 return ret;
2727 }
2728 }
2729
2730 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2731 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2732 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2733 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2734 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2735 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2736 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2737 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2738 #ifdef TARGET_X86_64
2739 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2740 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2741 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2742 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2743 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2744 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2745 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2746 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2747 #endif
2748
2749 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2750 kvm_getput_reg(&regs.rip, &env->eip, set);
2751
2752 if (set) {
2753 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2754 }
2755
2756 return ret;
2757 }
2758
2759 static int kvm_put_fpu(X86CPU *cpu)
2760 {
2761 CPUX86State *env = &cpu->env;
2762 struct kvm_fpu fpu;
2763 int i;
2764
2765 memset(&fpu, 0, sizeof fpu);
2766 fpu.fsw = env->fpus & ~(7 << 11);
2767 fpu.fsw |= (env->fpstt & 7) << 11;
2768 fpu.fcw = env->fpuc;
2769 fpu.last_opcode = env->fpop;
2770 fpu.last_ip = env->fpip;
2771 fpu.last_dp = env->fpdp;
2772 for (i = 0; i < 8; ++i) {
2773 fpu.ftwx |= (!env->fptags[i]) << i;
2774 }
2775 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2776 for (i = 0; i < CPU_NB_REGS; i++) {
2777 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2778 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2779 }
2780 fpu.mxcsr = env->mxcsr;
2781
2782 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2783 }
2784
2785 static int kvm_put_xsave(X86CPU *cpu)
2786 {
2787 CPUX86State *env = &cpu->env;
2788 void *xsave = env->xsave_buf;
2789
2790 if (!has_xsave) {
2791 return kvm_put_fpu(cpu);
2792 }
2793 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2794
2795 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2796 }
2797
2798 static int kvm_put_xcrs(X86CPU *cpu)
2799 {
2800 CPUX86State *env = &cpu->env;
2801 struct kvm_xcrs xcrs = {};
2802
2803 if (!has_xcrs) {
2804 return 0;
2805 }
2806
2807 xcrs.nr_xcrs = 1;
2808 xcrs.flags = 0;
2809 xcrs.xcrs[0].xcr = 0;
2810 xcrs.xcrs[0].value = env->xcr0;
2811 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2812 }
2813
2814 static int kvm_put_sregs(X86CPU *cpu)
2815 {
2816 CPUX86State *env = &cpu->env;
2817 struct kvm_sregs sregs;
2818
2819 /*
2820 * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2821 * always followed by KVM_SET_VCPU_EVENTS.
2822 */
2823 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2824
2825 if ((env->eflags & VM_MASK)) {
2826 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2827 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2828 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2829 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2830 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2831 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2832 } else {
2833 set_seg(&sregs.cs, &env->segs[R_CS]);
2834 set_seg(&sregs.ds, &env->segs[R_DS]);
2835 set_seg(&sregs.es, &env->segs[R_ES]);
2836 set_seg(&sregs.fs, &env->segs[R_FS]);
2837 set_seg(&sregs.gs, &env->segs[R_GS]);
2838 set_seg(&sregs.ss, &env->segs[R_SS]);
2839 }
2840
2841 set_seg(&sregs.tr, &env->tr);
2842 set_seg(&sregs.ldt, &env->ldt);
2843
2844 sregs.idt.limit = env->idt.limit;
2845 sregs.idt.base = env->idt.base;
2846 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2847 sregs.gdt.limit = env->gdt.limit;
2848 sregs.gdt.base = env->gdt.base;
2849 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2850
2851 sregs.cr0 = env->cr[0];
2852 sregs.cr2 = env->cr[2];
2853 sregs.cr3 = env->cr[3];
2854 sregs.cr4 = env->cr[4];
2855
2856 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2857 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2858
2859 sregs.efer = env->efer;
2860
2861 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2862 }
2863
2864 static int kvm_put_sregs2(X86CPU *cpu)
2865 {
2866 CPUX86State *env = &cpu->env;
2867 struct kvm_sregs2 sregs;
2868 int i;
2869
2870 sregs.flags = 0;
2871
2872 if ((env->eflags & VM_MASK)) {
2873 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2874 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2875 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2876 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2877 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2878 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2879 } else {
2880 set_seg(&sregs.cs, &env->segs[R_CS]);
2881 set_seg(&sregs.ds, &env->segs[R_DS]);
2882 set_seg(&sregs.es, &env->segs[R_ES]);
2883 set_seg(&sregs.fs, &env->segs[R_FS]);
2884 set_seg(&sregs.gs, &env->segs[R_GS]);
2885 set_seg(&sregs.ss, &env->segs[R_SS]);
2886 }
2887
2888 set_seg(&sregs.tr, &env->tr);
2889 set_seg(&sregs.ldt, &env->ldt);
2890
2891 sregs.idt.limit = env->idt.limit;
2892 sregs.idt.base = env->idt.base;
2893 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2894 sregs.gdt.limit = env->gdt.limit;
2895 sregs.gdt.base = env->gdt.base;
2896 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2897
2898 sregs.cr0 = env->cr[0];
2899 sregs.cr2 = env->cr[2];
2900 sregs.cr3 = env->cr[3];
2901 sregs.cr4 = env->cr[4];
2902
2903 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2904 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2905
2906 sregs.efer = env->efer;
2907
2908 if (env->pdptrs_valid) {
2909 for (i = 0; i < 4; i++) {
2910 sregs.pdptrs[i] = env->pdptrs[i];
2911 }
2912 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
2913 }
2914
2915 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
2916 }
2917
2918
2919 static void kvm_msr_buf_reset(X86CPU *cpu)
2920 {
2921 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2922 }
2923
2924 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2925 {
2926 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2927 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2928 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2929
2930 assert((void *)(entry + 1) <= limit);
2931
2932 entry->index = index;
2933 entry->reserved = 0;
2934 entry->data = value;
2935 msrs->nmsrs++;
2936 }
2937
2938 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2939 {
2940 kvm_msr_buf_reset(cpu);
2941 kvm_msr_entry_add(cpu, index, value);
2942
2943 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2944 }
2945
2946 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
2947 {
2948 int ret;
2949 struct {
2950 struct kvm_msrs info;
2951 struct kvm_msr_entry entries[1];
2952 } msr_data = {
2953 .info.nmsrs = 1,
2954 .entries[0].index = index,
2955 };
2956
2957 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
2958 if (ret < 0) {
2959 return ret;
2960 }
2961 assert(ret == 1);
2962 *value = msr_data.entries[0].data;
2963 return ret;
2964 }
2965 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2966 {
2967 int ret;
2968
2969 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2970 assert(ret == 1);
2971 }
2972
2973 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2974 {
2975 CPUX86State *env = &cpu->env;
2976 int ret;
2977
2978 if (!has_msr_tsc_deadline) {
2979 return 0;
2980 }
2981
2982 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2983 if (ret < 0) {
2984 return ret;
2985 }
2986
2987 assert(ret == 1);
2988 return 0;
2989 }
2990
2991 /*
2992 * Provide a separate write service for the feature control MSR in order to
2993 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2994 * before writing any other state because forcibly leaving nested mode
2995 * invalidates the VCPU state.
2996 */
2997 static int kvm_put_msr_feature_control(X86CPU *cpu)
2998 {
2999 int ret;
3000
3001 if (!has_msr_feature_control) {
3002 return 0;
3003 }
3004
3005 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3006 cpu->env.msr_ia32_feature_control);
3007 if (ret < 0) {
3008 return ret;
3009 }
3010
3011 assert(ret == 1);
3012 return 0;
3013 }
3014
3015 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3016 {
3017 uint32_t default1, can_be_one, can_be_zero;
3018 uint32_t must_be_one;
3019
3020 switch (index) {
3021 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3022 default1 = 0x00000016;
3023 break;
3024 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3025 default1 = 0x0401e172;
3026 break;
3027 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3028 default1 = 0x000011ff;
3029 break;
3030 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3031 default1 = 0x00036dff;
3032 break;
3033 case MSR_IA32_VMX_PROCBASED_CTLS2:
3034 default1 = 0;
3035 break;
3036 default:
3037 abort();
3038 }
3039
3040 /* If a feature bit is set, the control can be either set or clear.
3041 * Otherwise the value is limited to either 0 or 1 by default1.
3042 */
3043 can_be_one = features | default1;
3044 can_be_zero = features | ~default1;
3045 must_be_one = ~can_be_zero;
3046
3047 /*
3048 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3049 * Bit 32:63 -> 1 if the control bit can be one.
3050 */
3051 return must_be_one | (((uint64_t)can_be_one) << 32);
3052 }
3053
3054 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3055 {
3056 uint64_t kvm_vmx_basic =
3057 kvm_arch_get_supported_msr_feature(kvm_state,
3058 MSR_IA32_VMX_BASIC);
3059
3060 if (!kvm_vmx_basic) {
3061 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3062 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3063 */
3064 return;
3065 }
3066
3067 uint64_t kvm_vmx_misc =
3068 kvm_arch_get_supported_msr_feature(kvm_state,
3069 MSR_IA32_VMX_MISC);
3070 uint64_t kvm_vmx_ept_vpid =
3071 kvm_arch_get_supported_msr_feature(kvm_state,
3072 MSR_IA32_VMX_EPT_VPID_CAP);
3073
3074 /*
3075 * If the guest is 64-bit, a value of 1 is allowed for the host address
3076 * space size vmexit control.
3077 */
3078 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3079 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3080
3081 /*
3082 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
3083 * not change them for backwards compatibility.
3084 */
3085 uint64_t fixed_vmx_basic = kvm_vmx_basic &
3086 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3087 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3088 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3089
3090 /*
3091 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
3092 * change in the future but are always zero for now, clear them to be
3093 * future proof. Bits 32-63 in theory could change, though KVM does
3094 * not support dual-monitor treatment and probably never will; mask
3095 * them out as well.
3096 */
3097 uint64_t fixed_vmx_misc = kvm_vmx_misc &
3098 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3099 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3100
3101 /*
3102 * EPT memory types should not change either, so we do not bother
3103 * adding features for them.
3104 */
3105 uint64_t fixed_vmx_ept_mask =
3106 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3107 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3108 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3109
3110 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3111 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3112 f[FEAT_VMX_PROCBASED_CTLS]));
3113 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3114 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3115 f[FEAT_VMX_PINBASED_CTLS]));
3116 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3117 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3118 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3119 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3120 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3121 f[FEAT_VMX_ENTRY_CTLS]));
3122 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3123 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3124 f[FEAT_VMX_SECONDARY_CTLS]));
3125 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3126 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3127 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3128 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3129 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3130 f[FEAT_VMX_MISC] | fixed_vmx_misc);
3131 if (has_msr_vmx_vmfunc) {
3132 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3133 }
3134
3135 /*
3136 * Just to be safe, write these with constant values. The CRn_FIXED1
3137 * MSRs are generated by KVM based on the vCPU's CPUID.
3138 */
3139 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3140 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3141 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3142 CR4_VMXE_MASK);
3143
3144 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3145 /* TSC multiplier (0x2032). */
3146 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3147 } else {
3148 /* Preemption timer (0x482E). */
3149 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3150 }
3151 }
3152
3153 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3154 {
3155 uint64_t kvm_perf_cap =
3156 kvm_arch_get_supported_msr_feature(kvm_state,
3157 MSR_IA32_PERF_CAPABILITIES);
3158
3159 if (kvm_perf_cap) {
3160 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3161 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3162 }
3163 }
3164
3165 static int kvm_buf_set_msrs(X86CPU *cpu)
3166 {
3167 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3168 if (ret < 0) {
3169 return ret;
3170 }
3171
3172 if (ret < cpu->kvm_msr_buf->nmsrs) {
3173 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3174 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3175 (uint32_t)e->index, (uint64_t)e->data);
3176 }
3177
3178 assert(ret == cpu->kvm_msr_buf->nmsrs);
3179 return 0;
3180 }
3181
3182 static void kvm_init_msrs(X86CPU *cpu)
3183 {
3184 CPUX86State *env = &cpu->env;
3185
3186 kvm_msr_buf_reset(cpu);
3187 if (has_msr_arch_capabs) {
3188 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3189 env->features[FEAT_ARCH_CAPABILITIES]);
3190 }
3191
3192 if (has_msr_core_capabs) {
3193 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3194 env->features[FEAT_CORE_CAPABILITY]);
3195 }
3196
3197 if (has_msr_perf_capabs && cpu->enable_pmu) {
3198 kvm_msr_entry_add_perf(cpu, env->features);
3199 }
3200
3201 if (has_msr_ucode_rev) {
3202 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3203 }
3204
3205 /*
3206 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3207 * all kernels with MSR features should have them.
3208 */
3209 if (kvm_feature_msrs && cpu_has_vmx(env)) {
3210 kvm_msr_entry_add_vmx(cpu, env->features);
3211 }
3212
3213 assert(kvm_buf_set_msrs(cpu) == 0);
3214 }
3215
3216 static int kvm_put_msrs(X86CPU *cpu, int level)
3217 {
3218 CPUX86State *env = &cpu->env;
3219 int i;
3220
3221 kvm_msr_buf_reset(cpu);
3222
3223 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3224 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3225 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3226 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3227 if (has_msr_star) {
3228 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3229 }
3230 if (has_msr_hsave_pa) {
3231 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3232 }
3233 if (has_msr_tsc_aux) {
3234 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3235 }
3236 if (has_msr_tsc_adjust) {
3237 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3238 }
3239 if (has_msr_misc_enable) {
3240 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3241 env->msr_ia32_misc_enable);
3242 }
3243 if (has_msr_smbase) {
3244 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3245 }
3246 if (has_msr_smi_count) {
3247 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3248 }
3249 if (has_msr_pkrs) {
3250 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3251 }
3252 if (has_msr_bndcfgs) {
3253 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3254 }
3255 if (has_msr_xss) {
3256 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3257 }
3258 if (has_msr_umwait) {
3259 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3260 }
3261 if (has_msr_spec_ctrl) {
3262 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3263 }
3264 if (has_tsc_scale_msr) {
3265 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3266 }
3267
3268 if (has_msr_tsx_ctrl) {
3269 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3270 }
3271 if (has_msr_virt_ssbd) {
3272 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3273 }
3274
3275 #ifdef TARGET_X86_64
3276 if (lm_capable_kernel) {
3277 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3278 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3279 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3280 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3281 }
3282 #endif
3283
3284 /*
3285 * The following MSRs have side effects on the guest or are too heavy
3286 * for normal writeback. Limit them to reset or full state updates.
3287 */
3288 if (level >= KVM_PUT_RESET_STATE) {
3289 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3290 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3291 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3292 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3293 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3294 }
3295 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3296 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3297 }
3298 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3299 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3300 }
3301 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3302 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3303 }
3304
3305 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3306 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3307 }
3308
3309 if (has_architectural_pmu_version > 0) {
3310 if (has_architectural_pmu_version > 1) {
3311 /* Stop the counter. */
3312 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3313 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3314 }
3315
3316 /* Set the counter values. */
3317 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3318 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3319 env->msr_fixed_counters[i]);
3320 }
3321 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3322 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3323 env->msr_gp_counters[i]);
3324 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3325 env->msr_gp_evtsel[i]);
3326 }
3327 if (has_architectural_pmu_version > 1) {
3328 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3329 env->msr_global_status);
3330 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3331 env->msr_global_ovf_ctrl);
3332
3333 /* Now start the PMU. */
3334 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3335 env->msr_fixed_ctr_ctrl);
3336 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3337 env->msr_global_ctrl);
3338 }
3339 }
3340 /*
3341 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3342 * only sync them to KVM on the first cpu
3343 */
3344 if (current_cpu == first_cpu) {
3345 if (has_msr_hv_hypercall) {
3346 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3347 env->msr_hv_guest_os_id);
3348 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3349 env->msr_hv_hypercall);
3350 }
3351 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3352 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3353 env->msr_hv_tsc);
3354 }
3355 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3356 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3357 env->msr_hv_reenlightenment_control);
3358 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3359 env->msr_hv_tsc_emulation_control);
3360 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3361 env->msr_hv_tsc_emulation_status);
3362 }
3363 #ifdef CONFIG_SYNDBG
3364 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3365 has_msr_hv_syndbg_options) {
3366 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3367 hyperv_syndbg_query_options());
3368 }
3369 #endif
3370 }
3371 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3372 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3373 env->msr_hv_vapic);
3374 }
3375 if (has_msr_hv_crash) {
3376 int j;
3377
3378 for (j = 0; j < HV_CRASH_PARAMS; j++)
3379 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3380 env->msr_hv_crash_params[j]);
3381
3382 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3383 }
3384 if (has_msr_hv_runtime) {
3385 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3386 }
3387 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3388 && hv_vpindex_settable) {
3389 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3390 hyperv_vp_index(CPU(cpu)));
3391 }
3392 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3393 int j;
3394
3395 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3396
3397 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3398 env->msr_hv_synic_control);
3399 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3400 env->msr_hv_synic_evt_page);
3401 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3402 env->msr_hv_synic_msg_page);
3403
3404 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3405 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3406 env->msr_hv_synic_sint[j]);
3407 }
3408 }
3409 if (has_msr_hv_stimer) {
3410 int j;
3411
3412 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3413 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3414 env->msr_hv_stimer_config[j]);
3415 }
3416
3417 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3418 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3419 env->msr_hv_stimer_count[j]);
3420 }
3421 }
3422 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3423 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3424
3425 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3426 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3427 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3428 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3429 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3430 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3431 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3432 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3433 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3434 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3435 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3436 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3437 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3438 /* The CPU GPs if we write to a bit above the physical limit of
3439 * the host CPU (and KVM emulates that)
3440 */
3441 uint64_t mask = env->mtrr_var[i].mask;
3442 mask &= phys_mask;
3443
3444 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3445 env->mtrr_var[i].base);
3446 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3447 }
3448 }
3449 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3450 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3451 0x14, 1, R_EAX) & 0x7;
3452
3453 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3454 env->msr_rtit_ctrl);
3455 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3456 env->msr_rtit_status);
3457 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3458 env->msr_rtit_output_base);
3459 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3460 env->msr_rtit_output_mask);
3461 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3462 env->msr_rtit_cr3_match);
3463 for (i = 0; i < addr_num; i++) {
3464 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3465 env->msr_rtit_addrs[i]);
3466 }
3467 }
3468
3469 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3470 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3471 env->msr_ia32_sgxlepubkeyhash[0]);
3472 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3473 env->msr_ia32_sgxlepubkeyhash[1]);
3474 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3475 env->msr_ia32_sgxlepubkeyhash[2]);
3476 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3477 env->msr_ia32_sgxlepubkeyhash[3]);
3478 }
3479
3480 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3481 kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3482 env->msr_xfd);
3483 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3484 env->msr_xfd_err);
3485 }
3486
3487 if (kvm_enabled() && cpu->enable_pmu &&
3488 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3489 uint64_t depth;
3490 int i, ret;
3491
3492 /*
3493 * Only migrate Arch LBR states when the host Arch LBR depth
3494 * equals that of source guest's, this is to avoid mismatch
3495 * of guest/host config for the msr hence avoid unexpected
3496 * misbehavior.
3497 */
3498 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3499
3500 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
3501 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3502 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3503
3504 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3505 if (!env->lbr_records[i].from) {
3506 continue;
3507 }
3508 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3509 env->lbr_records[i].from);
3510 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3511 env->lbr_records[i].to);
3512 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3513 env->lbr_records[i].info);
3514 }
3515 }
3516 }
3517
3518 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3519 * kvm_put_msr_feature_control. */
3520 }
3521
3522 if (env->mcg_cap) {
3523 int i;
3524
3525 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3526 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3527 if (has_msr_mcg_ext_ctl) {
3528 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3529 }
3530 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3531 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3532 }
3533 }
3534
3535 return kvm_buf_set_msrs(cpu);
3536 }
3537
3538
3539 static int kvm_get_fpu(X86CPU *cpu)
3540 {
3541 CPUX86State *env = &cpu->env;
3542 struct kvm_fpu fpu;
3543 int i, ret;
3544
3545 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3546 if (ret < 0) {
3547 return ret;
3548 }
3549
3550 env->fpstt = (fpu.fsw >> 11) & 7;
3551 env->fpus = fpu.fsw;
3552 env->fpuc = fpu.fcw;
3553 env->fpop = fpu.last_opcode;
3554 env->fpip = fpu.last_ip;
3555 env->fpdp = fpu.last_dp;
3556 for (i = 0; i < 8; ++i) {
3557 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3558 }
3559 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3560 for (i = 0; i < CPU_NB_REGS; i++) {
3561 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3562 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3563 }
3564 env->mxcsr = fpu.mxcsr;
3565
3566 return 0;
3567 }
3568
3569 static int kvm_get_xsave(X86CPU *cpu)
3570 {
3571 CPUX86State *env = &cpu->env;
3572 void *xsave = env->xsave_buf;
3573 int type, ret;
3574
3575 if (!has_xsave) {
3576 return kvm_get_fpu(cpu);
3577 }
3578
3579 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3580 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3581 if (ret < 0) {
3582 return ret;
3583 }
3584 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3585
3586 return 0;
3587 }
3588
3589 static int kvm_get_xcrs(X86CPU *cpu)
3590 {
3591 CPUX86State *env = &cpu->env;
3592 int i, ret;
3593 struct kvm_xcrs xcrs;
3594
3595 if (!has_xcrs) {
3596 return 0;
3597 }
3598
3599 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3600 if (ret < 0) {
3601 return ret;
3602 }
3603
3604 for (i = 0; i < xcrs.nr_xcrs; i++) {
3605 /* Only support xcr0 now */
3606 if (xcrs.xcrs[i].xcr == 0) {
3607 env->xcr0 = xcrs.xcrs[i].value;
3608 break;
3609 }
3610 }
3611 return 0;
3612 }
3613
3614 static int kvm_get_sregs(X86CPU *cpu)
3615 {
3616 CPUX86State *env = &cpu->env;
3617 struct kvm_sregs sregs;
3618 int ret;
3619
3620 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3621 if (ret < 0) {
3622 return ret;
3623 }
3624
3625 /*
3626 * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3627 * always preceded by KVM_GET_VCPU_EVENTS.
3628 */
3629
3630 get_seg(&env->segs[R_CS], &sregs.cs);
3631 get_seg(&env->segs[R_DS], &sregs.ds);
3632 get_seg(&env->segs[R_ES], &sregs.es);
3633 get_seg(&env->segs[R_FS], &sregs.fs);
3634 get_seg(&env->segs[R_GS], &sregs.gs);
3635 get_seg(&env->segs[R_SS], &sregs.ss);
3636
3637 get_seg(&env->tr, &sregs.tr);
3638 get_seg(&env->ldt, &sregs.ldt);
3639
3640 env->idt.limit = sregs.idt.limit;
3641 env->idt.base = sregs.idt.base;
3642 env->gdt.limit = sregs.gdt.limit;
3643 env->gdt.base = sregs.gdt.base;
3644
3645 env->cr[0] = sregs.cr0;
3646 env->cr[2] = sregs.cr2;
3647 env->cr[3] = sregs.cr3;
3648 env->cr[4] = sregs.cr4;
3649
3650 env->efer = sregs.efer;
3651
3652 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3653 x86_update_hflags(env);
3654
3655 return 0;
3656 }
3657
3658 static int kvm_get_sregs2(X86CPU *cpu)
3659 {
3660 CPUX86State *env = &cpu->env;
3661 struct kvm_sregs2 sregs;
3662 int i, ret;
3663
3664 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3665 if (ret < 0) {
3666 return ret;
3667 }
3668
3669 get_seg(&env->segs[R_CS], &sregs.cs);
3670 get_seg(&env->segs[R_DS], &sregs.ds);
3671 get_seg(&env->segs[R_ES], &sregs.es);
3672 get_seg(&env->segs[R_FS], &sregs.fs);
3673 get_seg(&env->segs[R_GS], &sregs.gs);
3674 get_seg(&env->segs[R_SS], &sregs.ss);
3675
3676 get_seg(&env->tr, &sregs.tr);
3677 get_seg(&env->ldt, &sregs.ldt);
3678
3679 env->idt.limit = sregs.idt.limit;
3680 env->idt.base = sregs.idt.base;
3681 env->gdt.limit = sregs.gdt.limit;
3682 env->gdt.base = sregs.gdt.base;
3683
3684 env->cr[0] = sregs.cr0;
3685 env->cr[2] = sregs.cr2;
3686 env->cr[3] = sregs.cr3;
3687 env->cr[4] = sregs.cr4;
3688
3689 env->efer = sregs.efer;
3690
3691 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3692
3693 if (env->pdptrs_valid) {
3694 for (i = 0; i < 4; i++) {
3695 env->pdptrs[i] = sregs.pdptrs[i];
3696 }
3697 }
3698
3699 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3700 x86_update_hflags(env);
3701
3702 return 0;
3703 }
3704
3705 static int kvm_get_msrs(X86CPU *cpu)
3706 {
3707 CPUX86State *env = &cpu->env;
3708 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3709 int ret, i;
3710 uint64_t mtrr_top_bits;
3711
3712 kvm_msr_buf_reset(cpu);
3713
3714 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3715 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3716 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3717 kvm_msr_entry_add(cpu, MSR_PAT, 0);
3718 if (has_msr_star) {
3719 kvm_msr_entry_add(cpu, MSR_STAR, 0);
3720 }
3721 if (has_msr_hsave_pa) {
3722 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3723 }
3724 if (has_msr_tsc_aux) {
3725 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3726 }
3727 if (has_msr_tsc_adjust) {
3728 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3729 }
3730 if (has_msr_tsc_deadline) {
3731 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3732 }
3733 if (has_msr_misc_enable) {
3734 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3735 }
3736 if (has_msr_smbase) {
3737 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3738 }
3739 if (has_msr_smi_count) {
3740 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3741 }
3742 if (has_msr_feature_control) {
3743 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3744 }
3745 if (has_msr_pkrs) {
3746 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3747 }
3748 if (has_msr_bndcfgs) {
3749 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3750 }
3751 if (has_msr_xss) {
3752 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3753 }
3754 if (has_msr_umwait) {
3755 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3756 }
3757 if (has_msr_spec_ctrl) {
3758 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3759 }
3760 if (has_tsc_scale_msr) {
3761 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3762 }
3763
3764 if (has_msr_tsx_ctrl) {
3765 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3766 }
3767 if (has_msr_virt_ssbd) {
3768 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3769 }
3770 if (!env->tsc_valid) {
3771 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3772 env->tsc_valid = !runstate_is_running();
3773 }
3774
3775 #ifdef TARGET_X86_64
3776 if (lm_capable_kernel) {
3777 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3778 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3779 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3780 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3781 }
3782 #endif
3783 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3784 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3785 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3786 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3787 }
3788 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3789 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3790 }
3791 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3792 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3793 }
3794 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3795 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3796 }
3797 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3798 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3799 }
3800 if (has_architectural_pmu_version > 0) {
3801 if (has_architectural_pmu_version > 1) {
3802 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3803 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3804 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3805 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3806 }
3807 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3808 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3809 }
3810 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3811 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3812 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3813 }
3814 }
3815
3816 if (env->mcg_cap) {
3817 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3818 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3819 if (has_msr_mcg_ext_ctl) {
3820 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3821 }
3822 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3823 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3824 }
3825 }
3826
3827 if (has_msr_hv_hypercall) {
3828 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3829 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3830 }
3831 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3832 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3833 }
3834 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3835 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3836 }
3837 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3838 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3839 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3840 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3841 }
3842 if (has_msr_hv_syndbg_options) {
3843 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3844 }
3845 if (has_msr_hv_crash) {
3846 int j;
3847
3848 for (j = 0; j < HV_CRASH_PARAMS; j++) {
3849 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3850 }
3851 }
3852 if (has_msr_hv_runtime) {
3853 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3854 }
3855 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3856 uint32_t msr;
3857
3858 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3859 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3860 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3861 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3862 kvm_msr_entry_add(cpu, msr, 0);
3863 }
3864 }
3865 if (has_msr_hv_stimer) {
3866 uint32_t msr;
3867
3868 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3869 msr++) {
3870 kvm_msr_entry_add(cpu, msr, 0);
3871 }
3872 }
3873 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3874 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3875 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3876 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3877 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3878 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3879 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3880 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3881 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3882 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3883 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3884 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3885 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3886 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3887 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3888 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3889 }
3890 }
3891
3892 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3893 int addr_num =
3894 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3895
3896 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3897 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3898 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3899 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3900 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3901 for (i = 0; i < addr_num; i++) {
3902 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3903 }
3904 }
3905
3906 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3907 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3908 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3909 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3910 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3911 }
3912
3913 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3914 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
3915 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
3916 }
3917
3918 if (kvm_enabled() && cpu->enable_pmu &&
3919 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3920 uint64_t depth;
3921 int i, ret;
3922
3923 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3924 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
3925 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
3926 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
3927
3928 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3929 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
3930 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
3931 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
3932 }
3933 }
3934 }
3935
3936 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3937 if (ret < 0) {
3938 return ret;
3939 }
3940
3941 if (ret < cpu->kvm_msr_buf->nmsrs) {
3942 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3943 error_report("error: failed to get MSR 0x%" PRIx32,
3944 (uint32_t)e->index);
3945 }
3946
3947 assert(ret == cpu->kvm_msr_buf->nmsrs);
3948 /*
3949 * MTRR masks: Each mask consists of 5 parts
3950 * a 10..0: must be zero
3951 * b 11 : valid bit
3952 * c n-1.12: actual mask bits
3953 * d 51..n: reserved must be zero
3954 * e 63.52: reserved must be zero
3955 *
3956 * 'n' is the number of physical bits supported by the CPU and is
3957 * apparently always <= 52. We know our 'n' but don't know what
3958 * the destinations 'n' is; it might be smaller, in which case
3959 * it masks (c) on loading. It might be larger, in which case
3960 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3961 * we're migrating to.
3962 */
3963
3964 if (cpu->fill_mtrr_mask) {
3965 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3966 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3967 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3968 } else {
3969 mtrr_top_bits = 0;
3970 }
3971
3972 for (i = 0; i < ret; i++) {
3973 uint32_t index = msrs[i].index;
3974 switch (index) {
3975 case MSR_IA32_SYSENTER_CS:
3976 env->sysenter_cs = msrs[i].data;
3977 break;
3978 case MSR_IA32_SYSENTER_ESP:
3979 env->sysenter_esp = msrs[i].data;
3980 break;
3981 case MSR_IA32_SYSENTER_EIP:
3982 env->sysenter_eip = msrs[i].data;
3983 break;
3984 case MSR_PAT:
3985 env->pat = msrs[i].data;
3986 break;
3987 case MSR_STAR:
3988 env->star = msrs[i].data;
3989 break;
3990 #ifdef TARGET_X86_64
3991 case MSR_CSTAR:
3992 env->cstar = msrs[i].data;
3993 break;
3994 case MSR_KERNELGSBASE:
3995 env->kernelgsbase = msrs[i].data;
3996 break;
3997 case MSR_FMASK:
3998 env->fmask = msrs[i].data;
3999 break;
4000 case MSR_LSTAR:
4001 env->lstar = msrs[i].data;
4002 break;
4003 #endif
4004 case MSR_IA32_TSC:
4005 env->tsc = msrs[i].data;
4006 break;
4007 case MSR_TSC_AUX:
4008 env->tsc_aux = msrs[i].data;
4009 break;
4010 case MSR_TSC_ADJUST:
4011 env->tsc_adjust = msrs[i].data;
4012 break;
4013 case MSR_IA32_TSCDEADLINE:
4014 env->tsc_deadline = msrs[i].data;
4015 break;
4016 case MSR_VM_HSAVE_PA:
4017 env->vm_hsave = msrs[i].data;
4018 break;
4019 case MSR_KVM_SYSTEM_TIME:
4020 env->system_time_msr = msrs[i].data;
4021 break;
4022 case MSR_KVM_WALL_CLOCK:
4023 env->wall_clock_msr = msrs[i].data;
4024 break;
4025 case MSR_MCG_STATUS:
4026 env->mcg_status = msrs[i].data;
4027 break;
4028 case MSR_MCG_CTL:
4029 env->mcg_ctl = msrs[i].data;
4030 break;
4031 case MSR_MCG_EXT_CTL:
4032 env->mcg_ext_ctl = msrs[i].data;
4033 break;
4034 case MSR_IA32_MISC_ENABLE:
4035 env->msr_ia32_misc_enable = msrs[i].data;
4036 break;
4037 case MSR_IA32_SMBASE:
4038 env->smbase = msrs[i].data;
4039 break;
4040 case MSR_SMI_COUNT:
4041 env->msr_smi_count = msrs[i].data;
4042 break;
4043 case MSR_IA32_FEATURE_CONTROL:
4044 env->msr_ia32_feature_control = msrs[i].data;
4045 break;
4046 case MSR_IA32_BNDCFGS:
4047 env->msr_bndcfgs = msrs[i].data;
4048 break;
4049 case MSR_IA32_XSS:
4050 env->xss = msrs[i].data;
4051 break;
4052 case MSR_IA32_UMWAIT_CONTROL:
4053 env->umwait = msrs[i].data;
4054 break;
4055 case MSR_IA32_PKRS:
4056 env->pkrs = msrs[i].data;
4057 break;
4058 default:
4059 if (msrs[i].index >= MSR_MC0_CTL &&
4060 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4061 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4062 }
4063 break;
4064 case MSR_KVM_ASYNC_PF_EN:
4065 env->async_pf_en_msr = msrs[i].data;
4066 break;
4067 case MSR_KVM_ASYNC_PF_INT:
4068 env->async_pf_int_msr = msrs[i].data;
4069 break;
4070 case MSR_KVM_PV_EOI_EN:
4071 env->pv_eoi_en_msr = msrs[i].data;
4072 break;
4073 case MSR_KVM_STEAL_TIME:
4074 env->steal_time_msr = msrs[i].data;
4075 break;
4076 case MSR_KVM_POLL_CONTROL: {
4077 env->poll_control_msr = msrs[i].data;
4078 break;
4079 }
4080 case MSR_CORE_PERF_FIXED_CTR_CTRL:
4081 env->msr_fixed_ctr_ctrl = msrs[i].data;
4082 break;
4083 case MSR_CORE_PERF_GLOBAL_CTRL:
4084 env->msr_global_ctrl = msrs[i].data;
4085 break;
4086 case MSR_CORE_PERF_GLOBAL_STATUS:
4087 env->msr_global_status = msrs[i].data;
4088 break;
4089 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4090 env->msr_global_ovf_ctrl = msrs[i].data;
4091 break;
4092 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4093 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4094 break;
4095 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4096 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4097 break;
4098 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4099 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4100 break;
4101 case HV_X64_MSR_HYPERCALL:
4102 env->msr_hv_hypercall = msrs[i].data;
4103 break;
4104 case HV_X64_MSR_GUEST_OS_ID:
4105 env->msr_hv_guest_os_id = msrs[i].data;
4106 break;
4107 case HV_X64_MSR_APIC_ASSIST_PAGE:
4108 env->msr_hv_vapic = msrs[i].data;
4109 break;
4110 case HV_X64_MSR_REFERENCE_TSC:
4111 env->msr_hv_tsc = msrs[i].data;
4112 break;
4113 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4114 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4115 break;
4116 case HV_X64_MSR_VP_RUNTIME:
4117 env->msr_hv_runtime = msrs[i].data;
4118 break;
4119 case HV_X64_MSR_SCONTROL:
4120 env->msr_hv_synic_control = msrs[i].data;
4121 break;
4122 case HV_X64_MSR_SIEFP:
4123 env->msr_hv_synic_evt_page = msrs[i].data;
4124 break;
4125 case HV_X64_MSR_SIMP:
4126 env->msr_hv_synic_msg_page = msrs[i].data;
4127 break;
4128 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4129 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4130 break;
4131 case HV_X64_MSR_STIMER0_CONFIG:
4132 case HV_X64_MSR_STIMER1_CONFIG:
4133 case HV_X64_MSR_STIMER2_CONFIG:
4134 case HV_X64_MSR_STIMER3_CONFIG:
4135 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4136 msrs[i].data;
4137 break;
4138 case HV_X64_MSR_STIMER0_COUNT:
4139 case HV_X64_MSR_STIMER1_COUNT:
4140 case HV_X64_MSR_STIMER2_COUNT:
4141 case HV_X64_MSR_STIMER3_COUNT:
4142 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4143 msrs[i].data;
4144 break;
4145 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4146 env->msr_hv_reenlightenment_control = msrs[i].data;
4147 break;
4148 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4149 env->msr_hv_tsc_emulation_control = msrs[i].data;
4150 break;
4151 case HV_X64_MSR_TSC_EMULATION_STATUS:
4152 env->msr_hv_tsc_emulation_status = msrs[i].data;
4153 break;
4154 case HV_X64_MSR_SYNDBG_OPTIONS:
4155 env->msr_hv_syndbg_options = msrs[i].data;
4156 break;
4157 case MSR_MTRRdefType:
4158 env->mtrr_deftype = msrs[i].data;
4159 break;
4160 case MSR_MTRRfix64K_00000:
4161 env->mtrr_fixed[0] = msrs[i].data;
4162 break;
4163 case MSR_MTRRfix16K_80000:
4164 env->mtrr_fixed[1] = msrs[i].data;
4165 break;
4166 case MSR_MTRRfix16K_A0000:
4167 env->mtrr_fixed[2] = msrs[i].data;
4168 break;
4169 case MSR_MTRRfix4K_C0000:
4170 env->mtrr_fixed[3] = msrs[i].data;
4171 break;
4172 case MSR_MTRRfix4K_C8000:
4173 env->mtrr_fixed[4] = msrs[i].data;
4174 break;
4175 case MSR_MTRRfix4K_D0000:
4176 env->mtrr_fixed[5] = msrs[i].data;
4177 break;
4178 case MSR_MTRRfix4K_D8000:
4179 env->mtrr_fixed[6] = msrs[i].data;
4180 break;
4181 case MSR_MTRRfix4K_E0000:
4182 env->mtrr_fixed[7] = msrs[i].data;
4183 break;
4184 case MSR_MTRRfix4K_E8000:
4185 env->mtrr_fixed[8] = msrs[i].data;
4186 break;
4187 case MSR_MTRRfix4K_F0000:
4188 env->mtrr_fixed[9] = msrs[i].data;
4189 break;
4190 case MSR_MTRRfix4K_F8000:
4191 env->mtrr_fixed[10] = msrs[i].data;
4192 break;
4193 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4194 if (index & 1) {
4195 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4196 mtrr_top_bits;
4197 } else {
4198 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4199 }
4200 break;
4201 case MSR_IA32_SPEC_CTRL:
4202 env->spec_ctrl = msrs[i].data;
4203 break;
4204 case MSR_AMD64_TSC_RATIO:
4205 env->amd_tsc_scale_msr = msrs[i].data;
4206 break;
4207 case MSR_IA32_TSX_CTRL:
4208 env->tsx_ctrl = msrs[i].data;
4209 break;
4210 case MSR_VIRT_SSBD:
4211 env->virt_ssbd = msrs[i].data;
4212 break;
4213 case MSR_IA32_RTIT_CTL:
4214 env->msr_rtit_ctrl = msrs[i].data;
4215 break;
4216 case MSR_IA32_RTIT_STATUS:
4217 env->msr_rtit_status = msrs[i].data;
4218 break;
4219 case MSR_IA32_RTIT_OUTPUT_BASE:
4220 env->msr_rtit_output_base = msrs[i].data;
4221 break;
4222 case MSR_IA32_RTIT_OUTPUT_MASK:
4223 env->msr_rtit_output_mask = msrs[i].data;
4224 break;
4225 case MSR_IA32_RTIT_CR3_MATCH:
4226 env->msr_rtit_cr3_match = msrs[i].data;
4227 break;
4228 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4229 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4230 break;
4231 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4232 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4233 msrs[i].data;
4234 break;
4235 case MSR_IA32_XFD:
4236 env->msr_xfd = msrs[i].data;
4237 break;
4238 case MSR_IA32_XFD_ERR:
4239 env->msr_xfd_err = msrs[i].data;
4240 break;
4241 case MSR_ARCH_LBR_CTL:
4242 env->msr_lbr_ctl = msrs[i].data;
4243 break;
4244 case MSR_ARCH_LBR_DEPTH:
4245 env->msr_lbr_depth = msrs[i].data;
4246 break;
4247 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4248 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4249 break;
4250 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4251 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4252 break;
4253 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4254 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4255 break;
4256 }
4257 }
4258
4259 return 0;
4260 }
4261
4262 static int kvm_put_mp_state(X86CPU *cpu)
4263 {
4264 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4265
4266 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4267 }
4268
4269 static int kvm_get_mp_state(X86CPU *cpu)
4270 {
4271 CPUState *cs = CPU(cpu);
4272 CPUX86State *env = &cpu->env;
4273 struct kvm_mp_state mp_state;
4274 int ret;
4275
4276 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4277 if (ret < 0) {
4278 return ret;
4279 }
4280 env->mp_state = mp_state.mp_state;
4281 if (kvm_irqchip_in_kernel()) {
4282 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4283 }
4284 return 0;
4285 }
4286
4287 static int kvm_get_apic(X86CPU *cpu)
4288 {
4289 DeviceState *apic = cpu->apic_state;
4290 struct kvm_lapic_state kapic;
4291 int ret;
4292
4293 if (apic && kvm_irqchip_in_kernel()) {
4294 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4295 if (ret < 0) {
4296 return ret;
4297 }
4298
4299 kvm_get_apic_state(apic, &kapic);
4300 }
4301 return 0;
4302 }
4303
4304 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4305 {
4306 CPUState *cs = CPU(cpu);
4307 CPUX86State *env = &cpu->env;
4308 struct kvm_vcpu_events events = {};
4309
4310 if (!kvm_has_vcpu_events()) {
4311 return 0;
4312 }
4313
4314 events.flags = 0;
4315
4316 if (has_exception_payload) {
4317 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4318 events.exception.pending = env->exception_pending;
4319 events.exception_has_payload = env->exception_has_payload;
4320 events.exception_payload = env->exception_payload;
4321 }
4322 events.exception.nr = env->exception_nr;
4323 events.exception.injected = env->exception_injected;
4324 events.exception.has_error_code = env->has_error_code;
4325 events.exception.error_code = env->error_code;
4326
4327 events.interrupt.injected = (env->interrupt_injected >= 0);
4328 events.interrupt.nr = env->interrupt_injected;
4329 events.interrupt.soft = env->soft_interrupt;
4330
4331 events.nmi.injected = env->nmi_injected;
4332 events.nmi.pending = env->nmi_pending;
4333 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4334
4335 events.sipi_vector = env->sipi_vector;
4336
4337 if (has_msr_smbase) {
4338 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4339 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4340 if (kvm_irqchip_in_kernel()) {
4341 /* As soon as these are moved to the kernel, remove them
4342 * from cs->interrupt_request.
4343 */
4344 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4345 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4346 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4347 } else {
4348 /* Keep these in cs->interrupt_request. */
4349 events.smi.pending = 0;
4350 events.smi.latched_init = 0;
4351 }
4352 /* Stop SMI delivery on old machine types to avoid a reboot
4353 * on an inward migration of an old VM.
4354 */
4355 if (!cpu->kvm_no_smi_migration) {
4356 events.flags |= KVM_VCPUEVENT_VALID_SMM;
4357 }
4358 }
4359
4360 if (level >= KVM_PUT_RESET_STATE) {
4361 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4362 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4363 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4364 }
4365 }
4366
4367 if (has_triple_fault_event) {
4368 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
4369 events.triple_fault.pending = env->triple_fault_pending;
4370 }
4371
4372 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4373 }
4374
4375 static int kvm_get_vcpu_events(X86CPU *cpu)
4376 {
4377 CPUX86State *env = &cpu->env;
4378 struct kvm_vcpu_events events;
4379 int ret;
4380
4381 if (!kvm_has_vcpu_events()) {
4382 return 0;
4383 }
4384
4385 memset(&events, 0, sizeof(events));
4386 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4387 if (ret < 0) {
4388 return ret;
4389 }
4390
4391 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4392 env->exception_pending = events.exception.pending;
4393 env->exception_has_payload = events.exception_has_payload;
4394 env->exception_payload = events.exception_payload;
4395 } else {
4396 env->exception_pending = 0;
4397 env->exception_has_payload = false;
4398 }
4399 env->exception_injected = events.exception.injected;
4400 env->exception_nr =
4401 (env->exception_pending || env->exception_injected) ?
4402 events.exception.nr : -1;
4403 env->has_error_code = events.exception.has_error_code;
4404 env->error_code = events.exception.error_code;
4405
4406 env->interrupt_injected =
4407 events.interrupt.injected ? events.interrupt.nr : -1;
4408 env->soft_interrupt = events.interrupt.soft;
4409
4410 env->nmi_injected = events.nmi.injected;
4411 env->nmi_pending = events.nmi.pending;
4412 if (events.nmi.masked) {
4413 env->hflags2 |= HF2_NMI_MASK;
4414 } else {
4415 env->hflags2 &= ~HF2_NMI_MASK;
4416 }
4417
4418 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4419 if (events.smi.smm) {
4420 env->hflags |= HF_SMM_MASK;
4421 } else {
4422 env->hflags &= ~HF_SMM_MASK;
4423 }
4424 if (events.smi.pending) {
4425 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4426 } else {
4427 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4428 }
4429 if (events.smi.smm_inside_nmi) {
4430 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4431 } else {
4432 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4433 }
4434 if (events.smi.latched_init) {
4435 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4436 } else {
4437 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4438 }
4439 }
4440
4441 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
4442 env->triple_fault_pending = events.triple_fault.pending;
4443 }
4444
4445 env->sipi_vector = events.sipi_vector;
4446
4447 return 0;
4448 }
4449
4450 static int kvm_guest_debug_workarounds(X86CPU *cpu)
4451 {
4452 CPUState *cs = CPU(cpu);
4453 CPUX86State *env = &cpu->env;
4454 int ret = 0;
4455 unsigned long reinject_trap = 0;
4456
4457 if (!kvm_has_vcpu_events()) {
4458 if (env->exception_nr == EXCP01_DB) {
4459 reinject_trap = KVM_GUESTDBG_INJECT_DB;
4460 } else if (env->exception_injected == EXCP03_INT3) {
4461 reinject_trap = KVM_GUESTDBG_INJECT_BP;
4462 }
4463 kvm_reset_exception(env);
4464 }
4465
4466 /*
4467 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4468 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4469 * by updating the debug state once again if single-stepping is on.
4470 * Another reason to call kvm_update_guest_debug here is a pending debug
4471 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4472 * reinject them via SET_GUEST_DEBUG.
4473 */
4474 if (reinject_trap ||
4475 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
4476 ret = kvm_update_guest_debug(cs, reinject_trap);
4477 }
4478 return ret;
4479 }
4480
4481 static int kvm_put_debugregs(X86CPU *cpu)
4482 {
4483 CPUX86State *env = &cpu->env;
4484 struct kvm_debugregs dbgregs;
4485 int i;
4486
4487 if (!kvm_has_debugregs()) {
4488 return 0;
4489 }
4490
4491 memset(&dbgregs, 0, sizeof(dbgregs));
4492 for (i = 0; i < 4; i++) {
4493 dbgregs.db[i] = env->dr[i];
4494 }
4495 dbgregs.dr6 = env->dr[6];
4496 dbgregs.dr7 = env->dr[7];
4497 dbgregs.flags = 0;
4498
4499 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4500 }
4501
4502 static int kvm_get_debugregs(X86CPU *cpu)
4503 {
4504 CPUX86State *env = &cpu->env;
4505 struct kvm_debugregs dbgregs;
4506 int i, ret;
4507
4508 if (!kvm_has_debugregs()) {
4509 return 0;
4510 }
4511
4512 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4513 if (ret < 0) {
4514 return ret;
4515 }
4516 for (i = 0; i < 4; i++) {
4517 env->dr[i] = dbgregs.db[i];
4518 }
4519 env->dr[4] = env->dr[6] = dbgregs.dr6;
4520 env->dr[5] = env->dr[7] = dbgregs.dr7;
4521
4522 return 0;
4523 }
4524
4525 static int kvm_put_nested_state(X86CPU *cpu)
4526 {
4527 CPUX86State *env = &cpu->env;
4528 int max_nested_state_len = kvm_max_nested_state_length();
4529
4530 if (!env->nested_state) {
4531 return 0;
4532 }
4533
4534 /*
4535 * Copy flags that are affected by reset from env->hflags and env->hflags2.
4536 */
4537 if (env->hflags & HF_GUEST_MASK) {
4538 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4539 } else {
4540 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4541 }
4542
4543 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4544 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4545 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4546 } else {
4547 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4548 }
4549
4550 assert(env->nested_state->size <= max_nested_state_len);
4551 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4552 }
4553
4554 static int kvm_get_nested_state(X86CPU *cpu)
4555 {
4556 CPUX86State *env = &cpu->env;
4557 int max_nested_state_len = kvm_max_nested_state_length();
4558 int ret;
4559
4560 if (!env->nested_state) {
4561 return 0;
4562 }
4563
4564 /*
4565 * It is possible that migration restored a smaller size into
4566 * nested_state->hdr.size than what our kernel support.
4567 * We preserve migration origin nested_state->hdr.size for
4568 * call to KVM_SET_NESTED_STATE but wish that our next call
4569 * to KVM_GET_NESTED_STATE will use max size our kernel support.
4570 */
4571 env->nested_state->size = max_nested_state_len;
4572
4573 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4574 if (ret < 0) {
4575 return ret;
4576 }
4577
4578 /*
4579 * Copy flags that are affected by reset to env->hflags and env->hflags2.
4580 */
4581 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4582 env->hflags |= HF_GUEST_MASK;
4583 } else {
4584 env->hflags &= ~HF_GUEST_MASK;
4585 }
4586
4587 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4588 if (cpu_has_svm(env)) {
4589 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4590 env->hflags2 |= HF2_GIF_MASK;
4591 } else {
4592 env->hflags2 &= ~HF2_GIF_MASK;
4593 }
4594 }
4595
4596 return ret;
4597 }
4598
4599 int kvm_arch_put_registers(CPUState *cpu, int level)
4600 {
4601 X86CPU *x86_cpu = X86_CPU(cpu);
4602 int ret;
4603
4604 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4605
4606 /*
4607 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
4608 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
4609 * preceed kvm_put_nested_state() when 'real' nested state is set.
4610 */
4611 if (level >= KVM_PUT_RESET_STATE) {
4612 ret = kvm_put_msr_feature_control(x86_cpu);
4613 if (ret < 0) {
4614 return ret;
4615 }
4616 }
4617
4618 /* must be before kvm_put_nested_state so that EFER.SVME is set */
4619 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4620 if (ret < 0) {
4621 return ret;
4622 }
4623
4624 if (level >= KVM_PUT_RESET_STATE) {
4625 ret = kvm_put_nested_state(x86_cpu);
4626 if (ret < 0) {
4627 return ret;
4628 }
4629 }
4630
4631 if (level == KVM_PUT_FULL_STATE) {
4632 /* We don't check for kvm_arch_set_tsc_khz() errors here,
4633 * because TSC frequency mismatch shouldn't abort migration,
4634 * unless the user explicitly asked for a more strict TSC
4635 * setting (e.g. using an explicit "tsc-freq" option).
4636 */
4637 kvm_arch_set_tsc_khz(cpu);
4638 }
4639
4640 ret = kvm_getput_regs(x86_cpu, 1);
4641 if (ret < 0) {
4642 return ret;
4643 }
4644 ret = kvm_put_xsave(x86_cpu);
4645 if (ret < 0) {
4646 return ret;
4647 }
4648 ret = kvm_put_xcrs(x86_cpu);
4649 if (ret < 0) {
4650 return ret;
4651 }
4652 /* must be before kvm_put_msrs */
4653 ret = kvm_inject_mce_oldstyle(x86_cpu);
4654 if (ret < 0) {
4655 return ret;
4656 }
4657 ret = kvm_put_msrs(x86_cpu, level);
4658 if (ret < 0) {
4659 return ret;
4660 }
4661 ret = kvm_put_vcpu_events(x86_cpu, level);
4662 if (ret < 0) {
4663 return ret;
4664 }
4665 if (level >= KVM_PUT_RESET_STATE) {
4666 ret = kvm_put_mp_state(x86_cpu);
4667 if (ret < 0) {
4668 return ret;
4669 }
4670 }
4671
4672 ret = kvm_put_tscdeadline_msr(x86_cpu);
4673 if (ret < 0) {
4674 return ret;
4675 }
4676 ret = kvm_put_debugregs(x86_cpu);
4677 if (ret < 0) {
4678 return ret;
4679 }
4680 /* must be last */
4681 ret = kvm_guest_debug_workarounds(x86_cpu);
4682 if (ret < 0) {
4683 return ret;
4684 }
4685 return 0;
4686 }
4687
4688 int kvm_arch_get_registers(CPUState *cs)
4689 {
4690 X86CPU *cpu = X86_CPU(cs);
4691 int ret;
4692
4693 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4694
4695 ret = kvm_get_vcpu_events(cpu);
4696 if (ret < 0) {
4697 goto out;
4698 }
4699 /*
4700 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4701 * KVM_GET_REGS and KVM_GET_SREGS.
4702 */
4703 ret = kvm_get_mp_state(cpu);
4704 if (ret < 0) {
4705 goto out;
4706 }
4707 ret = kvm_getput_regs(cpu, 0);
4708 if (ret < 0) {
4709 goto out;
4710 }
4711 ret = kvm_get_xsave(cpu);
4712 if (ret < 0) {
4713 goto out;
4714 }
4715 ret = kvm_get_xcrs(cpu);
4716 if (ret < 0) {
4717 goto out;
4718 }
4719 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4720 if (ret < 0) {
4721 goto out;
4722 }
4723 ret = kvm_get_msrs(cpu);
4724 if (ret < 0) {
4725 goto out;
4726 }
4727 ret = kvm_get_apic(cpu);
4728 if (ret < 0) {
4729 goto out;
4730 }
4731 ret = kvm_get_debugregs(cpu);
4732 if (ret < 0) {
4733 goto out;
4734 }
4735 ret = kvm_get_nested_state(cpu);
4736 if (ret < 0) {
4737 goto out;
4738 }
4739 ret = 0;
4740 out:
4741 cpu_sync_bndcs_hflags(&cpu->env);
4742 return ret;
4743 }
4744
4745 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4746 {
4747 X86CPU *x86_cpu = X86_CPU(cpu);
4748 CPUX86State *env = &x86_cpu->env;
4749 int ret;
4750
4751 /* Inject NMI */
4752 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4753 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4754 qemu_mutex_lock_iothread();
4755 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4756 qemu_mutex_unlock_iothread();
4757 DPRINTF("injected NMI\n");
4758 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4759 if (ret < 0) {
4760 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4761 strerror(-ret));
4762 }
4763 }
4764 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4765 qemu_mutex_lock_iothread();
4766 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4767 qemu_mutex_unlock_iothread();
4768 DPRINTF("injected SMI\n");
4769 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4770 if (ret < 0) {
4771 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4772 strerror(-ret));
4773 }
4774 }
4775 }
4776
4777 if (!kvm_pic_in_kernel()) {
4778 qemu_mutex_lock_iothread();
4779 }
4780
4781 /* Force the VCPU out of its inner loop to process any INIT requests
4782 * or (for userspace APIC, but it is cheap to combine the checks here)
4783 * pending TPR access reports.
4784 */
4785 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4786 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4787 !(env->hflags & HF_SMM_MASK)) {
4788 cpu->exit_request = 1;
4789 }
4790 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4791 cpu->exit_request = 1;
4792 }
4793 }
4794
4795 if (!kvm_pic_in_kernel()) {
4796 /* Try to inject an interrupt if the guest can accept it */
4797 if (run->ready_for_interrupt_injection &&
4798 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4799 (env->eflags & IF_MASK)) {
4800 int irq;
4801
4802 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4803 irq = cpu_get_pic_interrupt(env);
4804 if (irq >= 0) {
4805 struct kvm_interrupt intr;
4806
4807 intr.irq = irq;
4808 DPRINTF("injected interrupt %d\n", irq);
4809 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4810 if (ret < 0) {
4811 fprintf(stderr,
4812 "KVM: injection failed, interrupt lost (%s)\n",
4813 strerror(-ret));
4814 }
4815 }
4816 }
4817
4818 /* If we have an interrupt but the guest is not ready to receive an
4819 * interrupt, request an interrupt window exit. This will
4820 * cause a return to userspace as soon as the guest is ready to
4821 * receive interrupts. */
4822 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4823 run->request_interrupt_window = 1;
4824 } else {
4825 run->request_interrupt_window = 0;
4826 }
4827
4828 DPRINTF("setting tpr\n");
4829 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4830
4831 qemu_mutex_unlock_iothread();
4832 }
4833 }
4834
4835 static void kvm_rate_limit_on_bus_lock(void)
4836 {
4837 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4838
4839 if (delay_ns) {
4840 g_usleep(delay_ns / SCALE_US);
4841 }
4842 }
4843
4844 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4845 {
4846 X86CPU *x86_cpu = X86_CPU(cpu);
4847 CPUX86State *env = &x86_cpu->env;
4848
4849 if (run->flags & KVM_RUN_X86_SMM) {
4850 env->hflags |= HF_SMM_MASK;
4851 } else {
4852 env->hflags &= ~HF_SMM_MASK;
4853 }
4854 if (run->if_flag) {
4855 env->eflags |= IF_MASK;
4856 } else {
4857 env->eflags &= ~IF_MASK;
4858 }
4859 if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4860 kvm_rate_limit_on_bus_lock();
4861 }
4862
4863 /* We need to protect the apic state against concurrent accesses from
4864 * different threads in case the userspace irqchip is used. */
4865 if (!kvm_irqchip_in_kernel()) {
4866 qemu_mutex_lock_iothread();
4867 }
4868 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4869 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4870 if (!kvm_irqchip_in_kernel()) {
4871 qemu_mutex_unlock_iothread();
4872 }
4873 return cpu_get_mem_attrs(env);
4874 }
4875
4876 int kvm_arch_process_async_events(CPUState *cs)
4877 {
4878 X86CPU *cpu = X86_CPU(cs);
4879 CPUX86State *env = &cpu->env;
4880
4881 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4882 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4883 assert(env->mcg_cap);
4884
4885 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4886
4887 kvm_cpu_synchronize_state(cs);
4888
4889 if (env->exception_nr == EXCP08_DBLE) {
4890 /* this means triple fault */
4891 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4892 cs->exit_request = 1;
4893 return 0;
4894 }
4895 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4896 env->has_error_code = 0;
4897
4898 cs->halted = 0;
4899 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4900 env->mp_state = KVM_MP_STATE_RUNNABLE;
4901 }
4902 }
4903
4904 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4905 !(env->hflags & HF_SMM_MASK)) {
4906 kvm_cpu_synchronize_state(cs);
4907 do_cpu_init(cpu);
4908 }
4909
4910 if (kvm_irqchip_in_kernel()) {
4911 return 0;
4912 }
4913
4914 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4915 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4916 apic_poll_irq(cpu->apic_state);
4917 }
4918 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4919 (env->eflags & IF_MASK)) ||
4920 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4921 cs->halted = 0;
4922 }
4923 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4924 kvm_cpu_synchronize_state(cs);
4925 do_cpu_sipi(cpu);
4926 }
4927 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4928 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4929 kvm_cpu_synchronize_state(cs);
4930 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4931 env->tpr_access_type);
4932 }
4933
4934 return cs->halted;
4935 }
4936
4937 static int kvm_handle_halt(X86CPU *cpu)
4938 {
4939 CPUState *cs = CPU(cpu);
4940 CPUX86State *env = &cpu->env;
4941
4942 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4943 (env->eflags & IF_MASK)) &&
4944 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4945 cs->halted = 1;
4946 return EXCP_HLT;
4947 }
4948
4949 return 0;
4950 }
4951
4952 static int kvm_handle_tpr_access(X86CPU *cpu)
4953 {
4954 CPUState *cs = CPU(cpu);
4955 struct kvm_run *run = cs->kvm_run;
4956
4957 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4958 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4959 : TPR_ACCESS_READ);
4960 return 1;
4961 }
4962
4963 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4964 {
4965 static const uint8_t int3 = 0xcc;
4966
4967 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4968 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4969 return -EINVAL;
4970 }
4971 return 0;
4972 }
4973
4974 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4975 {
4976 uint8_t int3;
4977
4978 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4979 return -EINVAL;
4980 }
4981 if (int3 != 0xcc) {
4982 return 0;
4983 }
4984 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4985 return -EINVAL;
4986 }
4987 return 0;
4988 }
4989
4990 static struct {
4991 target_ulong addr;
4992 int len;
4993 int type;
4994 } hw_breakpoint[4];
4995
4996 static int nb_hw_breakpoint;
4997
4998 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4999 {
5000 int n;
5001
5002 for (n = 0; n < nb_hw_breakpoint; n++) {
5003 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5004 (hw_breakpoint[n].len == len || len == -1)) {
5005 return n;
5006 }
5007 }
5008 return -1;
5009 }
5010
5011 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
5012 target_ulong len, int type)
5013 {
5014 switch (type) {
5015 case GDB_BREAKPOINT_HW:
5016 len = 1;
5017 break;
5018 case GDB_WATCHPOINT_WRITE:
5019 case GDB_WATCHPOINT_ACCESS:
5020 switch (len) {
5021 case 1:
5022 break;
5023 case 2:
5024 case 4:
5025 case 8:
5026 if (addr & (len - 1)) {
5027 return -EINVAL;
5028 }
5029 break;
5030 default:
5031 return -EINVAL;
5032 }
5033 break;
5034 default:
5035 return -ENOSYS;
5036 }
5037
5038 if (nb_hw_breakpoint == 4) {
5039 return -ENOBUFS;
5040 }
5041 if (find_hw_breakpoint(addr, len, type) >= 0) {
5042 return -EEXIST;
5043 }
5044 hw_breakpoint[nb_hw_breakpoint].addr = addr;
5045 hw_breakpoint[nb_hw_breakpoint].len = len;
5046 hw_breakpoint[nb_hw_breakpoint].type = type;
5047 nb_hw_breakpoint++;
5048
5049 return 0;
5050 }
5051
5052 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
5053 target_ulong len, int type)
5054 {
5055 int n;
5056
5057 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5058 if (n < 0) {
5059 return -ENOENT;
5060 }
5061 nb_hw_breakpoint--;
5062 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5063
5064 return 0;
5065 }
5066
5067 void kvm_arch_remove_all_hw_breakpoints(void)
5068 {
5069 nb_hw_breakpoint = 0;
5070 }
5071
5072 static CPUWatchpoint hw_watchpoint;
5073
5074 static int kvm_handle_debug(X86CPU *cpu,
5075 struct kvm_debug_exit_arch *arch_info)
5076 {
5077 CPUState *cs = CPU(cpu);
5078 CPUX86State *env = &cpu->env;
5079 int ret = 0;
5080 int n;
5081
5082 if (arch_info->exception == EXCP01_DB) {
5083 if (arch_info->dr6 & DR6_BS) {
5084 if (cs->singlestep_enabled) {
5085 ret = EXCP_DEBUG;
5086 }
5087 } else {
5088 for (n = 0; n < 4; n++) {
5089 if (arch_info->dr6 & (1 << n)) {
5090 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5091 case 0x0:
5092 ret = EXCP_DEBUG;
5093 break;
5094 case 0x1:
5095 ret = EXCP_DEBUG;
5096 cs->watchpoint_hit = &hw_watchpoint;
5097 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5098 hw_watchpoint.flags = BP_MEM_WRITE;
5099 break;
5100 case 0x3:
5101 ret = EXCP_DEBUG;
5102 cs->watchpoint_hit = &hw_watchpoint;
5103 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5104 hw_watchpoint.flags = BP_MEM_ACCESS;
5105 break;
5106 }
5107 }
5108 }
5109 }
5110 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5111 ret = EXCP_DEBUG;
5112 }
5113 if (ret == 0) {
5114 cpu_synchronize_state(cs);
5115 assert(env->exception_nr == -1);
5116
5117 /* pass to guest */
5118 kvm_queue_exception(env, arch_info->exception,
5119 arch_info->exception == EXCP01_DB,
5120 arch_info->dr6);
5121 env->has_error_code = 0;
5122 }
5123
5124 return ret;
5125 }
5126
5127 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5128 {
5129 const uint8_t type_code[] = {
5130 [GDB_BREAKPOINT_HW] = 0x0,
5131 [GDB_WATCHPOINT_WRITE] = 0x1,
5132 [GDB_WATCHPOINT_ACCESS] = 0x3
5133 };
5134 const uint8_t len_code[] = {
5135 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5136 };
5137 int n;
5138
5139 if (kvm_sw_breakpoints_active(cpu)) {
5140 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5141 }
5142 if (nb_hw_breakpoint > 0) {
5143 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5144 dbg->arch.debugreg[7] = 0x0600;
5145 for (n = 0; n < nb_hw_breakpoint; n++) {
5146 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5147 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5148 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5149 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5150 }
5151 }
5152 }
5153
5154 static bool kvm_install_msr_filters(KVMState *s)
5155 {
5156 uint64_t zero = 0;
5157 struct kvm_msr_filter filter = {
5158 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5159 };
5160 int r, i, j = 0;
5161
5162 for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) {
5163 KVMMSRHandlers *handler = &msr_handlers[i];
5164 if (handler->msr) {
5165 struct kvm_msr_filter_range *range = &filter.ranges[j++];
5166
5167 *range = (struct kvm_msr_filter_range) {
5168 .flags = 0,
5169 .nmsrs = 1,
5170 .base = handler->msr,
5171 .bitmap = (__u8 *)&zero,
5172 };
5173
5174 if (handler->rdmsr) {
5175 range->flags |= KVM_MSR_FILTER_READ;
5176 }
5177
5178 if (handler->wrmsr) {
5179 range->flags |= KVM_MSR_FILTER_WRITE;
5180 }
5181 }
5182 }
5183
5184 r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5185 if (r) {
5186 return false;
5187 }
5188
5189 return true;
5190 }
5191
5192 bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5193 QEMUWRMSRHandler *wrmsr)
5194 {
5195 int i;
5196
5197 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5198 if (!msr_handlers[i].msr) {
5199 msr_handlers[i] = (KVMMSRHandlers) {
5200 .msr = msr,
5201 .rdmsr = rdmsr,
5202 .wrmsr = wrmsr,
5203 };
5204
5205 if (!kvm_install_msr_filters(s)) {
5206 msr_handlers[i] = (KVMMSRHandlers) { };
5207 return false;
5208 }
5209
5210 return true;
5211 }
5212 }
5213
5214 return false;
5215 }
5216
5217 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5218 {
5219 int i;
5220 bool r;
5221
5222 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5223 KVMMSRHandlers *handler = &msr_handlers[i];
5224 if (run->msr.index == handler->msr) {
5225 if (handler->rdmsr) {
5226 r = handler->rdmsr(cpu, handler->msr,
5227 (uint64_t *)&run->msr.data);
5228 run->msr.error = r ? 0 : 1;
5229 return 0;
5230 }
5231 }
5232 }
5233
5234 assert(false);
5235 }
5236
5237 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5238 {
5239 int i;
5240 bool r;
5241
5242 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5243 KVMMSRHandlers *handler = &msr_handlers[i];
5244 if (run->msr.index == handler->msr) {
5245 if (handler->wrmsr) {
5246 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5247 run->msr.error = r ? 0 : 1;
5248 return 0;
5249 }
5250 }
5251 }
5252
5253 assert(false);
5254 }
5255
5256 static bool has_sgx_provisioning;
5257
5258 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5259 {
5260 int fd, ret;
5261
5262 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5263 return false;
5264 }
5265
5266 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5267 if (fd < 0) {
5268 return false;
5269 }
5270
5271 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5272 if (ret) {
5273 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5274 exit(1);
5275 }
5276 close(fd);
5277 return true;
5278 }
5279
5280 bool kvm_enable_sgx_provisioning(KVMState *s)
5281 {
5282 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5283 }
5284
5285 static bool host_supports_vmx(void)
5286 {
5287 uint32_t ecx, unused;
5288
5289 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5290 return ecx & CPUID_EXT_VMX;
5291 }
5292
5293 #define VMX_INVALID_GUEST_STATE 0x80000021
5294
5295 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5296 {
5297 X86CPU *cpu = X86_CPU(cs);
5298 uint64_t code;
5299 int ret;
5300 bool ctx_invalid;
5301 char str[256];
5302 KVMState *state;
5303
5304 switch (run->exit_reason) {
5305 case KVM_EXIT_HLT:
5306 DPRINTF("handle_hlt\n");
5307 qemu_mutex_lock_iothread();
5308 ret = kvm_handle_halt(cpu);
5309 qemu_mutex_unlock_iothread();
5310 break;
5311 case KVM_EXIT_SET_TPR:
5312 ret = 0;
5313 break;
5314 case KVM_EXIT_TPR_ACCESS:
5315 qemu_mutex_lock_iothread();
5316 ret = kvm_handle_tpr_access(cpu);
5317 qemu_mutex_unlock_iothread();
5318 break;
5319 case KVM_EXIT_FAIL_ENTRY:
5320 code = run->fail_entry.hardware_entry_failure_reason;
5321 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5322 code);
5323 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5324 fprintf(stderr,
5325 "\nIf you're running a guest on an Intel machine without "
5326 "unrestricted mode\n"
5327 "support, the failure can be most likely due to the guest "
5328 "entering an invalid\n"
5329 "state for Intel VT. For example, the guest maybe running "
5330 "in big real mode\n"
5331 "which is not supported on less recent Intel processors."
5332 "\n\n");
5333 }
5334 ret = -1;
5335 break;
5336 case KVM_EXIT_EXCEPTION:
5337 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5338 run->ex.exception, run->ex.error_code);
5339 ret = -1;
5340 break;
5341 case KVM_EXIT_DEBUG:
5342 DPRINTF("kvm_exit_debug\n");
5343 qemu_mutex_lock_iothread();
5344 ret = kvm_handle_debug(cpu, &run->debug.arch);
5345 qemu_mutex_unlock_iothread();
5346 break;
5347 case KVM_EXIT_HYPERV:
5348 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5349 break;
5350 case KVM_EXIT_IOAPIC_EOI:
5351 ioapic_eoi_broadcast(run->eoi.vector);
5352 ret = 0;
5353 break;
5354 case KVM_EXIT_X86_BUS_LOCK:
5355 /* already handled in kvm_arch_post_run */
5356 ret = 0;
5357 break;
5358 case KVM_EXIT_NOTIFY:
5359 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
5360 state = KVM_STATE(current_accel());
5361 sprintf(str, "Encounter a notify exit with %svalid context in"
5362 " guest. There can be possible misbehaves in guest."
5363 " Please have a look.", ctx_invalid ? "in" : "");
5364 if (ctx_invalid ||
5365 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
5366 warn_report("KVM internal error: %s", str);
5367 ret = -1;
5368 } else {
5369 warn_report_once("KVM: %s", str);
5370 ret = 0;
5371 }
5372 break;
5373 case KVM_EXIT_X86_RDMSR:
5374 /* We only enable MSR filtering, any other exit is bogus */
5375 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5376 ret = kvm_handle_rdmsr(cpu, run);
5377 break;
5378 case KVM_EXIT_X86_WRMSR:
5379 /* We only enable MSR filtering, any other exit is bogus */
5380 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5381 ret = kvm_handle_wrmsr(cpu, run);
5382 break;
5383 default:
5384 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5385 ret = -1;
5386 break;
5387 }
5388
5389 return ret;
5390 }
5391
5392 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
5393 {
5394 X86CPU *cpu = X86_CPU(cs);
5395 CPUX86State *env = &cpu->env;
5396
5397 kvm_cpu_synchronize_state(cs);
5398 return !(env->cr[0] & CR0_PE_MASK) ||
5399 ((env->segs[R_CS].selector & 3) != 3);
5400 }
5401
5402 void kvm_arch_init_irq_routing(KVMState *s)
5403 {
5404 /* We know at this point that we're using the in-kernel
5405 * irqchip, so we can use irqfds, and on x86 we know
5406 * we can use msi via irqfd and GSI routing.
5407 */
5408 kvm_msi_via_irqfd_allowed = true;
5409 kvm_gsi_routing_allowed = true;
5410
5411 if (kvm_irqchip_is_split()) {
5412 KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5413 int i;
5414
5415 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5416 MSI routes for signaling interrupts to the local apics. */
5417 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5418 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5419 error_report("Could not enable split IRQ mode.");
5420 exit(1);
5421 }
5422 }
5423 kvm_irqchip_commit_route_changes(&c);
5424 }
5425 }
5426
5427 int kvm_arch_irqchip_create(KVMState *s)
5428 {
5429 int ret;
5430 if (kvm_kernel_irqchip_split()) {
5431 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5432 if (ret) {
5433 error_report("Could not enable split irqchip mode: %s",
5434 strerror(-ret));
5435 exit(1);
5436 } else {
5437 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5438 kvm_split_irqchip = true;
5439 return 1;
5440 }
5441 } else {
5442 return 0;
5443 }
5444 }
5445
5446 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5447 {
5448 CPUX86State *env;
5449 uint64_t ext_id;
5450
5451 if (!first_cpu) {
5452 return address;
5453 }
5454 env = &X86_CPU(first_cpu)->env;
5455 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5456 return address;
5457 }
5458
5459 /*
5460 * If the remappable format bit is set, or the upper bits are
5461 * already set in address_hi, or the low extended bits aren't
5462 * there anyway, do nothing.
5463 */
5464 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5465 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5466 return address;
5467 }
5468
5469 address &= ~ext_id;
5470 address |= ext_id << 35;
5471 return address;
5472 }
5473
5474 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5475 uint64_t address, uint32_t data, PCIDevice *dev)
5476 {
5477 X86IOMMUState *iommu = x86_iommu_get_default();
5478
5479 if (iommu) {
5480 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5481
5482 if (class->int_remap) {
5483 int ret;
5484 MSIMessage src, dst;
5485
5486 src.address = route->u.msi.address_hi;
5487 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5488 src.address |= route->u.msi.address_lo;
5489 src.data = route->u.msi.data;
5490
5491 ret = class->int_remap(iommu, &src, &dst, dev ? \
5492 pci_requester_id(dev) : \
5493 X86_IOMMU_SID_INVALID);
5494 if (ret) {
5495 trace_kvm_x86_fixup_msi_error(route->gsi);
5496 return 1;
5497 }
5498
5499 /*
5500 * Handled untranslated compatibilty format interrupt with
5501 * extended destination ID in the low bits 11-5. */
5502 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5503
5504 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5505 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5506 route->u.msi.data = dst.data;
5507 return 0;
5508 }
5509 }
5510
5511 address = kvm_swizzle_msi_ext_dest_id(address);
5512 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5513 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5514 return 0;
5515 }
5516
5517 typedef struct MSIRouteEntry MSIRouteEntry;
5518
5519 struct MSIRouteEntry {
5520 PCIDevice *dev; /* Device pointer */
5521 int vector; /* MSI/MSIX vector index */
5522 int virq; /* Virtual IRQ index */
5523 QLIST_ENTRY(MSIRouteEntry) list;
5524 };
5525
5526 /* List of used GSI routes */
5527 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5528 QLIST_HEAD_INITIALIZER(msi_route_list);
5529
5530 static void kvm_update_msi_routes_all(void *private, bool global,
5531 uint32_t index, uint32_t mask)
5532 {
5533 int cnt = 0, vector;
5534 MSIRouteEntry *entry;
5535 MSIMessage msg;
5536 PCIDevice *dev;
5537
5538 /* TODO: explicit route update */
5539 QLIST_FOREACH(entry, &msi_route_list, list) {
5540 cnt++;
5541 vector = entry->vector;
5542 dev = entry->dev;
5543 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5544 msg = msix_get_message(dev, vector);
5545 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5546 msg = msi_get_message(dev, vector);
5547 } else {
5548 /*
5549 * Either MSI/MSIX is disabled for the device, or the
5550 * specific message was masked out. Skip this one.
5551 */
5552 continue;
5553 }
5554 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5555 }
5556 kvm_irqchip_commit_routes(kvm_state);
5557 trace_kvm_x86_update_msi_routes(cnt);
5558 }
5559
5560 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5561 int vector, PCIDevice *dev)
5562 {
5563 static bool notify_list_inited = false;
5564 MSIRouteEntry *entry;
5565
5566 if (!dev) {
5567 /* These are (possibly) IOAPIC routes only used for split
5568 * kernel irqchip mode, while what we are housekeeping are
5569 * PCI devices only. */
5570 return 0;
5571 }
5572
5573 entry = g_new0(MSIRouteEntry, 1);
5574 entry->dev = dev;
5575 entry->vector = vector;
5576 entry->virq = route->gsi;
5577 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5578
5579 trace_kvm_x86_add_msi_route(route->gsi);
5580
5581 if (!notify_list_inited) {
5582 /* For the first time we do add route, add ourselves into
5583 * IOMMU's IEC notify list if needed. */
5584 X86IOMMUState *iommu = x86_iommu_get_default();
5585 if (iommu) {
5586 x86_iommu_iec_register_notifier(iommu,
5587 kvm_update_msi_routes_all,
5588 NULL);
5589 }
5590 notify_list_inited = true;
5591 }
5592 return 0;
5593 }
5594
5595 int kvm_arch_release_virq_post(int virq)
5596 {
5597 MSIRouteEntry *entry, *next;
5598 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5599 if (entry->virq == virq) {
5600 trace_kvm_x86_remove_msi_route(virq);
5601 QLIST_REMOVE(entry, list);
5602 g_free(entry);
5603 break;
5604 }
5605 }
5606 return 0;
5607 }
5608
5609 int kvm_arch_msi_data_to_gsi(uint32_t data)
5610 {
5611 abort();
5612 }
5613
5614 bool kvm_has_waitpkg(void)
5615 {
5616 return has_msr_umwait;
5617 }
5618
5619 bool kvm_arch_cpu_check_are_resettable(void)
5620 {
5621 return !sev_es_enabled();
5622 }
5623
5624 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025
5625
5626 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5627 {
5628 KVMState *s = kvm_state;
5629 uint64_t supported;
5630
5631 mask &= XSTATE_DYNAMIC_MASK;
5632 if (!mask) {
5633 return;
5634 }
5635 /*
5636 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5637 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5638 * about them already because they are not supported features.
5639 */
5640 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5641 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5642 mask &= supported;
5643
5644 while (mask) {
5645 int bit = ctz64(mask);
5646 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5647 if (rc) {
5648 /*
5649 * Older kernel version (<5.17) do not support
5650 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5651 * any dynamic feature from kvm_arch_get_supported_cpuid.
5652 */
5653 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5654 "for feature bit %d", bit);
5655 }
5656 mask &= ~BIT_ULL(bit);
5657 }
5658 }
5659
5660 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
5661 {
5662 KVMState *s = KVM_STATE(obj);
5663 return s->notify_vmexit;
5664 }
5665
5666 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
5667 {
5668 KVMState *s = KVM_STATE(obj);
5669
5670 if (s->fd != -1) {
5671 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5672 return;
5673 }
5674
5675 s->notify_vmexit = value;
5676 }
5677
5678 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
5679 const char *name, void *opaque,
5680 Error **errp)
5681 {
5682 KVMState *s = KVM_STATE(obj);
5683 uint32_t value = s->notify_window;
5684
5685 visit_type_uint32(v, name, &value, errp);
5686 }
5687
5688 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
5689 const char *name, void *opaque,
5690 Error **errp)
5691 {
5692 KVMState *s = KVM_STATE(obj);
5693 uint32_t value;
5694
5695 if (s->fd != -1) {
5696 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5697 return;
5698 }
5699
5700 if (!visit_type_uint32(v, name, &value, errp)) {
5701 return;
5702 }
5703
5704 s->notify_window = value;
5705 }
5706
5707 void kvm_arch_accel_class_init(ObjectClass *oc)
5708 {
5709 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
5710 &NotifyVmexitOption_lookup,
5711 kvm_arch_get_notify_vmexit,
5712 kvm_arch_set_notify_vmexit);
5713 object_class_property_set_description(oc, "notify-vmexit",
5714 "Enable notify VM exit");
5715
5716 object_class_property_add(oc, "notify-window", "uint32",
5717 kvm_arch_get_notify_window,
5718 kvm_arch_set_notify_window,
5719 NULL, NULL);
5720 object_class_property_set_description(oc, "notify-window",
5721 "Clock cycles without an event window "
5722 "after which a notification VM exit occurs");
5723 }
5724
5725 void kvm_set_max_apic_id(uint32_t max_apic_id)
5726 {
5727 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
5728 }