]> git.proxmox.com Git - mirror_qemu.git/blob - target/s390x/kvm/kvm.c
6acf14d5ecb4ca8a407724146380b37f8e7e65d4
[mirror_qemu.git] / target / s390x / kvm / kvm.c
1 /*
2 * QEMU S390x KVM implementation
3 *
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23
24 #include <linux/kvm.h>
25 #include <asm/ptrace.h>
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "s390x-internal.h"
30 #include "kvm_s390x.h"
31 #include "sysemu/kvm_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "qemu/units.h"
37 #include "qemu/main-loop.h"
38 #include "qemu/mmap-alloc.h"
39 #include "qemu/log.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/hw_accel.h"
42 #include "sysemu/runstate.h"
43 #include "sysemu/device_tree.h"
44 #include "exec/gdbstub.h"
45 #include "exec/ram_addr.h"
46 #include "trace.h"
47 #include "hw/s390x/s390-pci-inst.h"
48 #include "hw/s390x/s390-pci-bus.h"
49 #include "hw/s390x/ipl.h"
50 #include "hw/s390x/ebcdic.h"
51 #include "exec/memattrs.h"
52 #include "hw/s390x/s390-virtio-ccw.h"
53 #include "hw/s390x/s390-virtio-hcall.h"
54 #include "hw/s390x/pv.h"
55
56 #ifndef DEBUG_KVM
57 #define DEBUG_KVM 0
58 #endif
59
60 #define DPRINTF(fmt, ...) do { \
61 if (DEBUG_KVM) { \
62 fprintf(stderr, fmt, ## __VA_ARGS__); \
63 } \
64 } while (0)
65
66 #define kvm_vm_check_mem_attr(s, attr) \
67 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
68
69 #define IPA0_DIAG 0x8300
70 #define IPA0_SIGP 0xae00
71 #define IPA0_B2 0xb200
72 #define IPA0_B9 0xb900
73 #define IPA0_EB 0xeb00
74 #define IPA0_E3 0xe300
75
76 #define PRIV_B2_SCLP_CALL 0x20
77 #define PRIV_B2_CSCH 0x30
78 #define PRIV_B2_HSCH 0x31
79 #define PRIV_B2_MSCH 0x32
80 #define PRIV_B2_SSCH 0x33
81 #define PRIV_B2_STSCH 0x34
82 #define PRIV_B2_TSCH 0x35
83 #define PRIV_B2_TPI 0x36
84 #define PRIV_B2_SAL 0x37
85 #define PRIV_B2_RSCH 0x38
86 #define PRIV_B2_STCRW 0x39
87 #define PRIV_B2_STCPS 0x3a
88 #define PRIV_B2_RCHP 0x3b
89 #define PRIV_B2_SCHM 0x3c
90 #define PRIV_B2_CHSC 0x5f
91 #define PRIV_B2_SIGA 0x74
92 #define PRIV_B2_XSCH 0x76
93
94 #define PRIV_EB_SQBS 0x8a
95 #define PRIV_EB_PCISTB 0xd0
96 #define PRIV_EB_SIC 0xd1
97
98 #define PRIV_B9_EQBS 0x9c
99 #define PRIV_B9_CLP 0xa0
100 #define PRIV_B9_PCISTG 0xd0
101 #define PRIV_B9_PCILG 0xd2
102 #define PRIV_B9_RPCIT 0xd3
103
104 #define PRIV_E3_MPCIFC 0xd0
105 #define PRIV_E3_STPCIFC 0xd4
106
107 #define DIAG_TIMEREVENT 0x288
108 #define DIAG_IPL 0x308
109 #define DIAG_SET_CONTROL_PROGRAM_CODES 0x318
110 #define DIAG_KVM_HYPERCALL 0x500
111 #define DIAG_KVM_BREAKPOINT 0x501
112
113 #define ICPT_INSTRUCTION 0x04
114 #define ICPT_PROGRAM 0x08
115 #define ICPT_EXT_INT 0x14
116 #define ICPT_WAITPSW 0x1c
117 #define ICPT_SOFT_INTERCEPT 0x24
118 #define ICPT_CPU_STOP 0x28
119 #define ICPT_OPEREXC 0x2c
120 #define ICPT_IO 0x40
121 #define ICPT_PV_INSTR 0x68
122 #define ICPT_PV_INSTR_NOTIFICATION 0x6c
123
124 #define NR_LOCAL_IRQS 32
125 /*
126 * Needs to be big enough to contain max_cpus emergency signals
127 * and in addition NR_LOCAL_IRQS interrupts
128 */
129 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \
130 (max_cpus + NR_LOCAL_IRQS))
131 /*
132 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages
133 * as the dirty bitmap must be managed by bitops that take an int as
134 * position indicator. This would end at an unaligned address
135 * (0x7fffff00000). As future variants might provide larger pages
136 * and to make all addresses properly aligned, let us split at 4TB.
137 */
138 #define KVM_SLOT_MAX_BYTES (4UL * TiB)
139
140 static CPUWatchpoint hw_watchpoint;
141 /*
142 * We don't use a list because this structure is also used to transmit the
143 * hardware breakpoints to the kernel.
144 */
145 static struct kvm_hw_breakpoint *hw_breakpoints;
146 static int nb_hw_breakpoints;
147
148 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
149 KVM_CAP_LAST_INFO
150 };
151
152 static int cap_sync_regs;
153 static int cap_async_pf;
154 static int cap_mem_op;
155 static int cap_s390_irq;
156 static int cap_ri;
157 static int cap_hpage_1m;
158 static int cap_vcpu_resets;
159 static int cap_protected;
160
161 static int active_cmma;
162
163 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
164 {
165 struct kvm_device_attr attr = {
166 .group = KVM_S390_VM_MEM_CTRL,
167 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
168 .addr = (uint64_t) memory_limit,
169 };
170
171 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
172 }
173
174 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
175 {
176 int rc;
177
178 struct kvm_device_attr attr = {
179 .group = KVM_S390_VM_MEM_CTRL,
180 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
181 .addr = (uint64_t) &new_limit,
182 };
183
184 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
185 return 0;
186 }
187
188 rc = kvm_s390_query_mem_limit(hw_limit);
189 if (rc) {
190 return rc;
191 } else if (*hw_limit < new_limit) {
192 return -E2BIG;
193 }
194
195 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
196 }
197
198 int kvm_s390_cmma_active(void)
199 {
200 return active_cmma;
201 }
202
203 static bool kvm_s390_cmma_available(void)
204 {
205 static bool initialized, value;
206
207 if (!initialized) {
208 initialized = true;
209 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
210 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
211 }
212 return value;
213 }
214
215 void kvm_s390_cmma_reset(void)
216 {
217 int rc;
218 struct kvm_device_attr attr = {
219 .group = KVM_S390_VM_MEM_CTRL,
220 .attr = KVM_S390_VM_MEM_CLR_CMMA,
221 };
222
223 if (!kvm_s390_cmma_active()) {
224 return;
225 }
226
227 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
228 trace_kvm_clear_cmma(rc);
229 }
230
231 static void kvm_s390_enable_cmma(void)
232 {
233 int rc;
234 struct kvm_device_attr attr = {
235 .group = KVM_S390_VM_MEM_CTRL,
236 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
237 };
238
239 if (cap_hpage_1m) {
240 warn_report("CMM will not be enabled because it is not "
241 "compatible with huge memory backings.");
242 return;
243 }
244 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
245 active_cmma = !rc;
246 trace_kvm_enable_cmma(rc);
247 }
248
249 static void kvm_s390_set_attr(uint64_t attr)
250 {
251 struct kvm_device_attr attribute = {
252 .group = KVM_S390_VM_CRYPTO,
253 .attr = attr,
254 };
255
256 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
257
258 if (ret) {
259 error_report("Failed to set crypto device attribute %lu: %s",
260 attr, strerror(-ret));
261 }
262 }
263
264 static void kvm_s390_init_aes_kw(void)
265 {
266 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
267
268 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
269 NULL)) {
270 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
271 }
272
273 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
274 kvm_s390_set_attr(attr);
275 }
276 }
277
278 static void kvm_s390_init_dea_kw(void)
279 {
280 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
281
282 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
283 NULL)) {
284 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
285 }
286
287 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
288 kvm_s390_set_attr(attr);
289 }
290 }
291
292 void kvm_s390_crypto_reset(void)
293 {
294 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
295 kvm_s390_init_aes_kw();
296 kvm_s390_init_dea_kw();
297 }
298 }
299
300 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
301 {
302 if (pagesize == 4 * KiB) {
303 return;
304 }
305
306 if (!hpage_1m_allowed()) {
307 error_setg(errp, "This QEMU machine does not support huge page "
308 "mappings");
309 return;
310 }
311
312 if (pagesize != 1 * MiB) {
313 error_setg(errp, "Memory backing with 2G pages was specified, "
314 "but KVM does not support this memory backing");
315 return;
316 }
317
318 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
319 error_setg(errp, "Memory backing with 1M pages was specified, "
320 "but KVM does not support this memory backing");
321 return;
322 }
323
324 cap_hpage_1m = 1;
325 }
326
327 int kvm_s390_get_hpage_1m(void)
328 {
329 return cap_hpage_1m;
330 }
331
332 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque)
333 {
334 MachineClass *mc = MACHINE_CLASS(oc);
335
336 mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
337 }
338
339 int kvm_arch_init(MachineState *ms, KVMState *s)
340 {
341 object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE,
342 false, NULL);
343
344 if (!kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) {
345 error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - "
346 "please use kernel 3.15 or newer");
347 return -1;
348 }
349 if (!kvm_check_extension(s, KVM_CAP_S390_COW)) {
350 error_report("KVM is missing capability KVM_CAP_S390_COW - "
351 "unsupported environment");
352 return -1;
353 }
354
355 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
356 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
357 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
358 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
359 cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS);
360 cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED);
361
362 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
363 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
364 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
365 if (ri_allowed()) {
366 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
367 cap_ri = 1;
368 }
369 }
370 if (cpu_model_allowed()) {
371 kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0);
372 }
373
374 /*
375 * The migration interface for ais was introduced with kernel 4.13
376 * but the capability itself had been active since 4.12. As migration
377 * support is considered necessary, we only try to enable this for
378 * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available.
379 */
380 if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() &&
381 kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) {
382 kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0);
383 }
384
385 kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES);
386 return 0;
387 }
388
389 int kvm_arch_irqchip_create(KVMState *s)
390 {
391 return 0;
392 }
393
394 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
395 {
396 return cpu->cpu_index;
397 }
398
399 int kvm_arch_init_vcpu(CPUState *cs)
400 {
401 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
402 S390CPU *cpu = S390_CPU(cs);
403 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
404 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus));
405 return 0;
406 }
407
408 int kvm_arch_destroy_vcpu(CPUState *cs)
409 {
410 S390CPU *cpu = S390_CPU(cs);
411
412 g_free(cpu->irqstate);
413 cpu->irqstate = NULL;
414
415 return 0;
416 }
417
418 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type)
419 {
420 CPUState *cs = CPU(cpu);
421
422 /*
423 * The reset call is needed here to reset in-kernel vcpu data that
424 * we can't access directly from QEMU (i.e. with older kernels
425 * which don't support sync_regs/ONE_REG). Before this ioctl
426 * cpu_synchronize_state() is called in common kvm code
427 * (kvm-all).
428 */
429 if (kvm_vcpu_ioctl(cs, type)) {
430 error_report("CPU reset failed on CPU %i type %lx",
431 cs->cpu_index, type);
432 }
433 }
434
435 void kvm_s390_reset_vcpu_initial(S390CPU *cpu)
436 {
437 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
438 }
439
440 void kvm_s390_reset_vcpu_clear(S390CPU *cpu)
441 {
442 if (cap_vcpu_resets) {
443 kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET);
444 } else {
445 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
446 }
447 }
448
449 void kvm_s390_reset_vcpu_normal(S390CPU *cpu)
450 {
451 if (cap_vcpu_resets) {
452 kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET);
453 }
454 }
455
456 static int can_sync_regs(CPUState *cs, int regs)
457 {
458 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
459 }
460
461 int kvm_arch_put_registers(CPUState *cs, int level)
462 {
463 S390CPU *cpu = S390_CPU(cs);
464 CPUS390XState *env = &cpu->env;
465 struct kvm_sregs sregs;
466 struct kvm_regs regs;
467 struct kvm_fpu fpu = {};
468 int r;
469 int i;
470
471 /* always save the PSW and the GPRS*/
472 cs->kvm_run->psw_addr = env->psw.addr;
473 cs->kvm_run->psw_mask = env->psw.mask;
474
475 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
476 for (i = 0; i < 16; i++) {
477 cs->kvm_run->s.regs.gprs[i] = env->regs[i];
478 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
479 }
480 } else {
481 for (i = 0; i < 16; i++) {
482 regs.gprs[i] = env->regs[i];
483 }
484 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
485 if (r < 0) {
486 return r;
487 }
488 }
489
490 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
491 for (i = 0; i < 32; i++) {
492 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
493 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
494 }
495 cs->kvm_run->s.regs.fpc = env->fpc;
496 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
497 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
498 for (i = 0; i < 16; i++) {
499 cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
500 }
501 cs->kvm_run->s.regs.fpc = env->fpc;
502 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
503 } else {
504 /* Floating point */
505 for (i = 0; i < 16; i++) {
506 fpu.fprs[i] = *get_freg(env, i);
507 }
508 fpu.fpc = env->fpc;
509
510 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
511 if (r < 0) {
512 return r;
513 }
514 }
515
516 /* Do we need to save more than that? */
517 if (level == KVM_PUT_RUNTIME_STATE) {
518 return 0;
519 }
520
521 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
522 cs->kvm_run->s.regs.cputm = env->cputm;
523 cs->kvm_run->s.regs.ckc = env->ckc;
524 cs->kvm_run->s.regs.todpr = env->todpr;
525 cs->kvm_run->s.regs.gbea = env->gbea;
526 cs->kvm_run->s.regs.pp = env->pp;
527 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
528 } else {
529 /*
530 * These ONE_REGS are not protected by a capability. As they are only
531 * necessary for migration we just trace a possible error, but don't
532 * return with an error return code.
533 */
534 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
535 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
536 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
537 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
538 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
539 }
540
541 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
542 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
543 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
544 }
545
546 /* pfault parameters */
547 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
548 cs->kvm_run->s.regs.pft = env->pfault_token;
549 cs->kvm_run->s.regs.pfs = env->pfault_select;
550 cs->kvm_run->s.regs.pfc = env->pfault_compare;
551 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
552 } else if (cap_async_pf) {
553 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
554 if (r < 0) {
555 return r;
556 }
557 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
558 if (r < 0) {
559 return r;
560 }
561 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
562 if (r < 0) {
563 return r;
564 }
565 }
566
567 /* access registers and control registers*/
568 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
569 for (i = 0; i < 16; i++) {
570 cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
571 cs->kvm_run->s.regs.crs[i] = env->cregs[i];
572 }
573 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
574 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
575 } else {
576 for (i = 0; i < 16; i++) {
577 sregs.acrs[i] = env->aregs[i];
578 sregs.crs[i] = env->cregs[i];
579 }
580 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
581 if (r < 0) {
582 return r;
583 }
584 }
585
586 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
587 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
588 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
589 }
590
591 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
592 cs->kvm_run->s.regs.bpbc = env->bpbc;
593 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
594 }
595
596 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
597 cs->kvm_run->s.regs.etoken = env->etoken;
598 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension;
599 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
600 }
601
602 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
603 cs->kvm_run->s.regs.diag318 = env->diag318_info;
604 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
605 }
606
607 /* Finally the prefix */
608 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
609 cs->kvm_run->s.regs.prefix = env->psa;
610 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
611 } else {
612 /* prefix is only supported via sync regs */
613 }
614 return 0;
615 }
616
617 int kvm_arch_get_registers(CPUState *cs)
618 {
619 S390CPU *cpu = S390_CPU(cs);
620 CPUS390XState *env = &cpu->env;
621 struct kvm_sregs sregs;
622 struct kvm_regs regs;
623 struct kvm_fpu fpu;
624 int i, r;
625
626 /* get the PSW */
627 env->psw.addr = cs->kvm_run->psw_addr;
628 env->psw.mask = cs->kvm_run->psw_mask;
629
630 /* the GPRS */
631 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
632 for (i = 0; i < 16; i++) {
633 env->regs[i] = cs->kvm_run->s.regs.gprs[i];
634 }
635 } else {
636 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
637 if (r < 0) {
638 return r;
639 }
640 for (i = 0; i < 16; i++) {
641 env->regs[i] = regs.gprs[i];
642 }
643 }
644
645 /* The ACRS and CRS */
646 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
647 for (i = 0; i < 16; i++) {
648 env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
649 env->cregs[i] = cs->kvm_run->s.regs.crs[i];
650 }
651 } else {
652 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
653 if (r < 0) {
654 return r;
655 }
656 for (i = 0; i < 16; i++) {
657 env->aregs[i] = sregs.acrs[i];
658 env->cregs[i] = sregs.crs[i];
659 }
660 }
661
662 /* Floating point and vector registers */
663 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
664 for (i = 0; i < 32; i++) {
665 env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
666 env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
667 }
668 env->fpc = cs->kvm_run->s.regs.fpc;
669 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
670 for (i = 0; i < 16; i++) {
671 *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
672 }
673 env->fpc = cs->kvm_run->s.regs.fpc;
674 } else {
675 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
676 if (r < 0) {
677 return r;
678 }
679 for (i = 0; i < 16; i++) {
680 *get_freg(env, i) = fpu.fprs[i];
681 }
682 env->fpc = fpu.fpc;
683 }
684
685 /* The prefix */
686 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
687 env->psa = cs->kvm_run->s.regs.prefix;
688 }
689
690 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
691 env->cputm = cs->kvm_run->s.regs.cputm;
692 env->ckc = cs->kvm_run->s.regs.ckc;
693 env->todpr = cs->kvm_run->s.regs.todpr;
694 env->gbea = cs->kvm_run->s.regs.gbea;
695 env->pp = cs->kvm_run->s.regs.pp;
696 } else {
697 /*
698 * These ONE_REGS are not protected by a capability. As they are only
699 * necessary for migration we just trace a possible error, but don't
700 * return with an error return code.
701 */
702 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
703 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
704 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
705 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
706 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
707 }
708
709 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
710 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
711 }
712
713 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
714 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
715 }
716
717 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
718 env->bpbc = cs->kvm_run->s.regs.bpbc;
719 }
720
721 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
722 env->etoken = cs->kvm_run->s.regs.etoken;
723 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
724 }
725
726 /* pfault parameters */
727 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
728 env->pfault_token = cs->kvm_run->s.regs.pft;
729 env->pfault_select = cs->kvm_run->s.regs.pfs;
730 env->pfault_compare = cs->kvm_run->s.regs.pfc;
731 } else if (cap_async_pf) {
732 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
733 if (r < 0) {
734 return r;
735 }
736 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
737 if (r < 0) {
738 return r;
739 }
740 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
741 if (r < 0) {
742 return r;
743 }
744 }
745
746 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
747 env->diag318_info = cs->kvm_run->s.regs.diag318;
748 }
749
750 return 0;
751 }
752
753 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
754 {
755 int r;
756 struct kvm_device_attr attr = {
757 .group = KVM_S390_VM_TOD,
758 .attr = KVM_S390_VM_TOD_LOW,
759 .addr = (uint64_t)tod_low,
760 };
761
762 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
763 if (r) {
764 return r;
765 }
766
767 attr.attr = KVM_S390_VM_TOD_HIGH;
768 attr.addr = (uint64_t)tod_high;
769 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
770 }
771
772 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
773 {
774 int r;
775 struct kvm_s390_vm_tod_clock gtod;
776 struct kvm_device_attr attr = {
777 .group = KVM_S390_VM_TOD,
778 .attr = KVM_S390_VM_TOD_EXT,
779 .addr = (uint64_t)&gtod,
780 };
781
782 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
783 *tod_high = gtod.epoch_idx;
784 *tod_low = gtod.tod;
785
786 return r;
787 }
788
789 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
790 {
791 int r;
792 struct kvm_device_attr attr = {
793 .group = KVM_S390_VM_TOD,
794 .attr = KVM_S390_VM_TOD_LOW,
795 .addr = (uint64_t)&tod_low,
796 };
797
798 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
799 if (r) {
800 return r;
801 }
802
803 attr.attr = KVM_S390_VM_TOD_HIGH;
804 attr.addr = (uint64_t)&tod_high;
805 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
806 }
807
808 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
809 {
810 struct kvm_s390_vm_tod_clock gtod = {
811 .epoch_idx = tod_high,
812 .tod = tod_low,
813 };
814 struct kvm_device_attr attr = {
815 .group = KVM_S390_VM_TOD,
816 .attr = KVM_S390_VM_TOD_EXT,
817 .addr = (uint64_t)&gtod,
818 };
819
820 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
821 }
822
823 /**
824 * kvm_s390_mem_op:
825 * @addr: the logical start address in guest memory
826 * @ar: the access register number
827 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
828 * @len: length that should be transferred
829 * @is_write: true = write, false = read
830 * Returns: 0 on success, non-zero if an exception or error occurred
831 *
832 * Use KVM ioctl to read/write from/to guest memory. An access exception
833 * is injected into the vCPU in case of translation errors.
834 */
835 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
836 int len, bool is_write)
837 {
838 struct kvm_s390_mem_op mem_op = {
839 .gaddr = addr,
840 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
841 .size = len,
842 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
843 : KVM_S390_MEMOP_LOGICAL_READ,
844 .buf = (uint64_t)hostbuf,
845 .ar = ar,
846 };
847 int ret;
848
849 if (!cap_mem_op) {
850 return -ENOSYS;
851 }
852 if (!hostbuf) {
853 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
854 }
855
856 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
857 if (ret < 0) {
858 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
859 }
860 return ret;
861 }
862
863 int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf,
864 int len, bool is_write)
865 {
866 struct kvm_s390_mem_op mem_op = {
867 .sida_offset = offset,
868 .size = len,
869 .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE
870 : KVM_S390_MEMOP_SIDA_READ,
871 .buf = (uint64_t)hostbuf,
872 };
873 int ret;
874
875 if (!cap_mem_op || !cap_protected) {
876 return -ENOSYS;
877 }
878
879 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
880 if (ret < 0) {
881 error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
882 abort();
883 }
884 return ret;
885 }
886
887 static uint8_t const *sw_bp_inst;
888 static uint8_t sw_bp_ilen;
889
890 static void determine_sw_breakpoint_instr(void)
891 {
892 /* DIAG 501 is used for sw breakpoints with old kernels */
893 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
894 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
895 static const uint8_t instr_0x0000[] = {0x00, 0x00};
896
897 if (sw_bp_inst) {
898 return;
899 }
900 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
901 sw_bp_inst = diag_501;
902 sw_bp_ilen = sizeof(diag_501);
903 DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
904 } else {
905 sw_bp_inst = instr_0x0000;
906 sw_bp_ilen = sizeof(instr_0x0000);
907 DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
908 }
909 }
910
911 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
912 {
913 determine_sw_breakpoint_instr();
914
915 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
916 sw_bp_ilen, 0) ||
917 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
918 return -EINVAL;
919 }
920 return 0;
921 }
922
923 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
924 {
925 uint8_t t[MAX_ILEN];
926
927 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
928 return -EINVAL;
929 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
930 return -EINVAL;
931 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
932 sw_bp_ilen, 1)) {
933 return -EINVAL;
934 }
935
936 return 0;
937 }
938
939 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
940 int len, int type)
941 {
942 int n;
943
944 for (n = 0; n < nb_hw_breakpoints; n++) {
945 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
946 (hw_breakpoints[n].len == len || len == -1)) {
947 return &hw_breakpoints[n];
948 }
949 }
950
951 return NULL;
952 }
953
954 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
955 {
956 int size;
957
958 if (find_hw_breakpoint(addr, len, type)) {
959 return -EEXIST;
960 }
961
962 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
963
964 if (!hw_breakpoints) {
965 nb_hw_breakpoints = 0;
966 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
967 } else {
968 hw_breakpoints =
969 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
970 }
971
972 if (!hw_breakpoints) {
973 nb_hw_breakpoints = 0;
974 return -ENOMEM;
975 }
976
977 hw_breakpoints[nb_hw_breakpoints].addr = addr;
978 hw_breakpoints[nb_hw_breakpoints].len = len;
979 hw_breakpoints[nb_hw_breakpoints].type = type;
980
981 nb_hw_breakpoints++;
982
983 return 0;
984 }
985
986 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
987 target_ulong len, int type)
988 {
989 switch (type) {
990 case GDB_BREAKPOINT_HW:
991 type = KVM_HW_BP;
992 break;
993 case GDB_WATCHPOINT_WRITE:
994 if (len < 1) {
995 return -EINVAL;
996 }
997 type = KVM_HW_WP_WRITE;
998 break;
999 default:
1000 return -ENOSYS;
1001 }
1002 return insert_hw_breakpoint(addr, len, type);
1003 }
1004
1005 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1006 target_ulong len, int type)
1007 {
1008 int size;
1009 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
1010
1011 if (bp == NULL) {
1012 return -ENOENT;
1013 }
1014
1015 nb_hw_breakpoints--;
1016 if (nb_hw_breakpoints > 0) {
1017 /*
1018 * In order to trim the array, move the last element to the position to
1019 * be removed - if necessary.
1020 */
1021 if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
1022 *bp = hw_breakpoints[nb_hw_breakpoints];
1023 }
1024 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
1025 hw_breakpoints =
1026 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
1027 } else {
1028 g_free(hw_breakpoints);
1029 hw_breakpoints = NULL;
1030 }
1031
1032 return 0;
1033 }
1034
1035 void kvm_arch_remove_all_hw_breakpoints(void)
1036 {
1037 nb_hw_breakpoints = 0;
1038 g_free(hw_breakpoints);
1039 hw_breakpoints = NULL;
1040 }
1041
1042 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
1043 {
1044 int i;
1045
1046 if (nb_hw_breakpoints > 0) {
1047 dbg->arch.nr_hw_bp = nb_hw_breakpoints;
1048 dbg->arch.hw_bp = hw_breakpoints;
1049
1050 for (i = 0; i < nb_hw_breakpoints; ++i) {
1051 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
1052 hw_breakpoints[i].addr);
1053 }
1054 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1055 } else {
1056 dbg->arch.nr_hw_bp = 0;
1057 dbg->arch.hw_bp = NULL;
1058 }
1059 }
1060
1061 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1062 {
1063 }
1064
1065 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1066 {
1067 return MEMTXATTRS_UNSPECIFIED;
1068 }
1069
1070 int kvm_arch_process_async_events(CPUState *cs)
1071 {
1072 return cs->halted;
1073 }
1074
1075 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1076 struct kvm_s390_interrupt *interrupt)
1077 {
1078 int r = 0;
1079
1080 interrupt->type = irq->type;
1081 switch (irq->type) {
1082 case KVM_S390_INT_VIRTIO:
1083 interrupt->parm = irq->u.ext.ext_params;
1084 /* fall through */
1085 case KVM_S390_INT_PFAULT_INIT:
1086 case KVM_S390_INT_PFAULT_DONE:
1087 interrupt->parm64 = irq->u.ext.ext_params2;
1088 break;
1089 case KVM_S390_PROGRAM_INT:
1090 interrupt->parm = irq->u.pgm.code;
1091 break;
1092 case KVM_S390_SIGP_SET_PREFIX:
1093 interrupt->parm = irq->u.prefix.address;
1094 break;
1095 case KVM_S390_INT_SERVICE:
1096 interrupt->parm = irq->u.ext.ext_params;
1097 break;
1098 case KVM_S390_MCHK:
1099 interrupt->parm = irq->u.mchk.cr14;
1100 interrupt->parm64 = irq->u.mchk.mcic;
1101 break;
1102 case KVM_S390_INT_EXTERNAL_CALL:
1103 interrupt->parm = irq->u.extcall.code;
1104 break;
1105 case KVM_S390_INT_EMERGENCY:
1106 interrupt->parm = irq->u.emerg.code;
1107 break;
1108 case KVM_S390_SIGP_STOP:
1109 case KVM_S390_RESTART:
1110 break; /* These types have no parameters */
1111 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1112 interrupt->parm = irq->u.io.subchannel_id << 16;
1113 interrupt->parm |= irq->u.io.subchannel_nr;
1114 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1115 interrupt->parm64 |= irq->u.io.io_int_word;
1116 break;
1117 default:
1118 r = -EINVAL;
1119 break;
1120 }
1121 return r;
1122 }
1123
1124 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1125 {
1126 struct kvm_s390_interrupt kvmint = {};
1127 int r;
1128
1129 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1130 if (r < 0) {
1131 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1132 exit(1);
1133 }
1134
1135 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1136 if (r < 0) {
1137 fprintf(stderr, "KVM failed to inject interrupt\n");
1138 exit(1);
1139 }
1140 }
1141
1142 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1143 {
1144 CPUState *cs = CPU(cpu);
1145 int r;
1146
1147 if (cap_s390_irq) {
1148 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1149 if (!r) {
1150 return;
1151 }
1152 error_report("KVM failed to inject interrupt %llx", irq->type);
1153 exit(1);
1154 }
1155
1156 inject_vcpu_irq_legacy(cs, irq);
1157 }
1158
1159 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1160 {
1161 struct kvm_s390_interrupt kvmint = {};
1162 int r;
1163
1164 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1165 if (r < 0) {
1166 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1167 exit(1);
1168 }
1169
1170 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1171 if (r < 0) {
1172 fprintf(stderr, "KVM failed to inject interrupt\n");
1173 exit(1);
1174 }
1175 }
1176
1177 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1178 {
1179 struct kvm_s390_irq irq = {
1180 .type = KVM_S390_PROGRAM_INT,
1181 .u.pgm.code = code,
1182 };
1183 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1184 cpu->env.psw.addr);
1185 kvm_s390_vcpu_interrupt(cpu, &irq);
1186 }
1187
1188 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1189 {
1190 struct kvm_s390_irq irq = {
1191 .type = KVM_S390_PROGRAM_INT,
1192 .u.pgm.code = code,
1193 .u.pgm.trans_exc_code = te_code,
1194 .u.pgm.exc_access_id = te_code & 3,
1195 };
1196
1197 kvm_s390_vcpu_interrupt(cpu, &irq);
1198 }
1199
1200 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1201 uint16_t ipbh0)
1202 {
1203 CPUS390XState *env = &cpu->env;
1204 uint64_t sccb;
1205 uint32_t code;
1206 int r;
1207
1208 sccb = env->regs[ipbh0 & 0xf];
1209 code = env->regs[(ipbh0 & 0xf0) >> 4];
1210
1211 switch (run->s390_sieic.icptcode) {
1212 case ICPT_PV_INSTR_NOTIFICATION:
1213 g_assert(s390_is_pv());
1214 /* The notification intercepts are currently handled by KVM */
1215 error_report("unexpected SCLP PV notification");
1216 exit(1);
1217 break;
1218 case ICPT_PV_INSTR:
1219 g_assert(s390_is_pv());
1220 sclp_service_call_protected(env, sccb, code);
1221 /* Setting the CC is done by the Ultravisor. */
1222 break;
1223 case ICPT_INSTRUCTION:
1224 g_assert(!s390_is_pv());
1225 r = sclp_service_call(env, sccb, code);
1226 if (r < 0) {
1227 kvm_s390_program_interrupt(cpu, -r);
1228 return;
1229 }
1230 setcc(cpu, r);
1231 }
1232 }
1233
1234 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1235 {
1236 CPUS390XState *env = &cpu->env;
1237 int rc = 0;
1238 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1239
1240 switch (ipa1) {
1241 case PRIV_B2_XSCH:
1242 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1243 break;
1244 case PRIV_B2_CSCH:
1245 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1246 break;
1247 case PRIV_B2_HSCH:
1248 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1249 break;
1250 case PRIV_B2_MSCH:
1251 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1252 break;
1253 case PRIV_B2_SSCH:
1254 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1255 break;
1256 case PRIV_B2_STCRW:
1257 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1258 break;
1259 case PRIV_B2_STSCH:
1260 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1261 break;
1262 case PRIV_B2_TSCH:
1263 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1264 fprintf(stderr, "Spurious tsch intercept\n");
1265 break;
1266 case PRIV_B2_CHSC:
1267 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1268 break;
1269 case PRIV_B2_TPI:
1270 /* This should have been handled by kvm already. */
1271 fprintf(stderr, "Spurious tpi intercept\n");
1272 break;
1273 case PRIV_B2_SCHM:
1274 ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1275 run->s390_sieic.ipb, RA_IGNORED);
1276 break;
1277 case PRIV_B2_RSCH:
1278 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1279 break;
1280 case PRIV_B2_RCHP:
1281 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1282 break;
1283 case PRIV_B2_STCPS:
1284 /* We do not provide this instruction, it is suppressed. */
1285 break;
1286 case PRIV_B2_SAL:
1287 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1288 break;
1289 case PRIV_B2_SIGA:
1290 /* Not provided, set CC = 3 for subchannel not operational */
1291 setcc(cpu, 3);
1292 break;
1293 case PRIV_B2_SCLP_CALL:
1294 kvm_sclp_service_call(cpu, run, ipbh0);
1295 break;
1296 default:
1297 rc = -1;
1298 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1299 break;
1300 }
1301
1302 return rc;
1303 }
1304
1305 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1306 uint8_t *ar)
1307 {
1308 CPUS390XState *env = &cpu->env;
1309 uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1310 uint32_t base2 = run->s390_sieic.ipb >> 28;
1311 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1312 ((run->s390_sieic.ipb & 0xff00) << 4);
1313
1314 if (disp2 & 0x80000) {
1315 disp2 += 0xfff00000;
1316 }
1317 if (ar) {
1318 *ar = base2;
1319 }
1320
1321 return (base2 ? env->regs[base2] : 0) +
1322 (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1323 }
1324
1325 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1326 uint8_t *ar)
1327 {
1328 CPUS390XState *env = &cpu->env;
1329 uint32_t base2 = run->s390_sieic.ipb >> 28;
1330 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1331 ((run->s390_sieic.ipb & 0xff00) << 4);
1332
1333 if (disp2 & 0x80000) {
1334 disp2 += 0xfff00000;
1335 }
1336 if (ar) {
1337 *ar = base2;
1338 }
1339
1340 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1341 }
1342
1343 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1344 {
1345 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1346
1347 if (s390_has_feat(S390_FEAT_ZPCI)) {
1348 return clp_service_call(cpu, r2, RA_IGNORED);
1349 } else {
1350 return -1;
1351 }
1352 }
1353
1354 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1355 {
1356 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1357 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1358
1359 if (s390_has_feat(S390_FEAT_ZPCI)) {
1360 return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1361 } else {
1362 return -1;
1363 }
1364 }
1365
1366 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1367 {
1368 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1369 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1370
1371 if (s390_has_feat(S390_FEAT_ZPCI)) {
1372 return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1373 } else {
1374 return -1;
1375 }
1376 }
1377
1378 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1379 {
1380 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1381 uint64_t fiba;
1382 uint8_t ar;
1383
1384 if (s390_has_feat(S390_FEAT_ZPCI)) {
1385 fiba = get_base_disp_rxy(cpu, run, &ar);
1386
1387 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1388 } else {
1389 return -1;
1390 }
1391 }
1392
1393 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1394 {
1395 CPUS390XState *env = &cpu->env;
1396 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1397 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1398 uint8_t isc;
1399 uint16_t mode;
1400 int r;
1401
1402 mode = env->regs[r1] & 0xffff;
1403 isc = (env->regs[r3] >> 27) & 0x7;
1404 r = css_do_sic(env, isc, mode);
1405 if (r) {
1406 kvm_s390_program_interrupt(cpu, -r);
1407 }
1408
1409 return 0;
1410 }
1411
1412 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1413 {
1414 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1415 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1416
1417 if (s390_has_feat(S390_FEAT_ZPCI)) {
1418 return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1419 } else {
1420 return -1;
1421 }
1422 }
1423
1424 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1425 {
1426 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1427 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1428 uint64_t gaddr;
1429 uint8_t ar;
1430
1431 if (s390_has_feat(S390_FEAT_ZPCI)) {
1432 gaddr = get_base_disp_rsy(cpu, run, &ar);
1433
1434 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1435 } else {
1436 return -1;
1437 }
1438 }
1439
1440 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1441 {
1442 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1443 uint64_t fiba;
1444 uint8_t ar;
1445
1446 if (s390_has_feat(S390_FEAT_ZPCI)) {
1447 fiba = get_base_disp_rxy(cpu, run, &ar);
1448
1449 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1450 } else {
1451 return -1;
1452 }
1453 }
1454
1455 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1456 {
1457 int r = 0;
1458
1459 switch (ipa1) {
1460 case PRIV_B9_CLP:
1461 r = kvm_clp_service_call(cpu, run);
1462 break;
1463 case PRIV_B9_PCISTG:
1464 r = kvm_pcistg_service_call(cpu, run);
1465 break;
1466 case PRIV_B9_PCILG:
1467 r = kvm_pcilg_service_call(cpu, run);
1468 break;
1469 case PRIV_B9_RPCIT:
1470 r = kvm_rpcit_service_call(cpu, run);
1471 break;
1472 case PRIV_B9_EQBS:
1473 /* just inject exception */
1474 r = -1;
1475 break;
1476 default:
1477 r = -1;
1478 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1479 break;
1480 }
1481
1482 return r;
1483 }
1484
1485 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1486 {
1487 int r = 0;
1488
1489 switch (ipbl) {
1490 case PRIV_EB_PCISTB:
1491 r = kvm_pcistb_service_call(cpu, run);
1492 break;
1493 case PRIV_EB_SIC:
1494 r = kvm_sic_service_call(cpu, run);
1495 break;
1496 case PRIV_EB_SQBS:
1497 /* just inject exception */
1498 r = -1;
1499 break;
1500 default:
1501 r = -1;
1502 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1503 break;
1504 }
1505
1506 return r;
1507 }
1508
1509 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1510 {
1511 int r = 0;
1512
1513 switch (ipbl) {
1514 case PRIV_E3_MPCIFC:
1515 r = kvm_mpcifc_service_call(cpu, run);
1516 break;
1517 case PRIV_E3_STPCIFC:
1518 r = kvm_stpcifc_service_call(cpu, run);
1519 break;
1520 default:
1521 r = -1;
1522 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1523 break;
1524 }
1525
1526 return r;
1527 }
1528
1529 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1530 {
1531 CPUS390XState *env = &cpu->env;
1532 int ret;
1533
1534 ret = s390_virtio_hypercall(env);
1535 if (ret == -EINVAL) {
1536 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1537 return 0;
1538 }
1539
1540 return ret;
1541 }
1542
1543 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1544 {
1545 uint64_t r1, r3;
1546 int rc;
1547
1548 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1549 r3 = run->s390_sieic.ipa & 0x000f;
1550 rc = handle_diag_288(&cpu->env, r1, r3);
1551 if (rc) {
1552 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1553 }
1554 }
1555
1556 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1557 {
1558 uint64_t r1, r3;
1559
1560 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1561 r3 = run->s390_sieic.ipa & 0x000f;
1562 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1563 }
1564
1565 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1566 {
1567 CPUS390XState *env = &cpu->env;
1568 unsigned long pc;
1569
1570 pc = env->psw.addr - sw_bp_ilen;
1571 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1572 env->psw.addr = pc;
1573 return EXCP_DEBUG;
1574 }
1575
1576 return -ENOENT;
1577 }
1578
1579 void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info)
1580 {
1581 CPUS390XState *env = &S390_CPU(cs)->env;
1582
1583 /* Feat bit is set only if KVM supports sync for diag318 */
1584 if (s390_has_feat(S390_FEAT_DIAG_318)) {
1585 env->diag318_info = diag318_info;
1586 cs->kvm_run->s.regs.diag318 = diag318_info;
1587 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
1588 /*
1589 * diag 318 info is zeroed during a clear reset and
1590 * diag 308 IPL subcodes.
1591 */
1592 }
1593 }
1594
1595 static void handle_diag_318(S390CPU *cpu, struct kvm_run *run)
1596 {
1597 uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4;
1598 uint64_t diag318_info = run->s.regs.gprs[reg];
1599 CPUState *t;
1600
1601 /*
1602 * DIAG 318 can only be enabled with KVM support. As such, let's
1603 * ensure a guest cannot execute this instruction erroneously.
1604 */
1605 if (!s390_has_feat(S390_FEAT_DIAG_318)) {
1606 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1607 return;
1608 }
1609
1610 CPU_FOREACH(t) {
1611 run_on_cpu(t, s390_do_cpu_set_diag318,
1612 RUN_ON_CPU_HOST_ULONG(diag318_info));
1613 }
1614 }
1615
1616 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1617
1618 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1619 {
1620 int r = 0;
1621 uint16_t func_code;
1622
1623 /*
1624 * For any diagnose call we support, bits 48-63 of the resulting
1625 * address specify the function code; the remainder is ignored.
1626 */
1627 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1628 switch (func_code) {
1629 case DIAG_TIMEREVENT:
1630 kvm_handle_diag_288(cpu, run);
1631 break;
1632 case DIAG_IPL:
1633 kvm_handle_diag_308(cpu, run);
1634 break;
1635 case DIAG_SET_CONTROL_PROGRAM_CODES:
1636 handle_diag_318(cpu, run);
1637 break;
1638 case DIAG_KVM_HYPERCALL:
1639 r = handle_hypercall(cpu, run);
1640 break;
1641 case DIAG_KVM_BREAKPOINT:
1642 r = handle_sw_breakpoint(cpu, run);
1643 break;
1644 default:
1645 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1646 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1647 break;
1648 }
1649
1650 return r;
1651 }
1652
1653 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1654 {
1655 CPUS390XState *env = &cpu->env;
1656 const uint8_t r1 = ipa1 >> 4;
1657 const uint8_t r3 = ipa1 & 0x0f;
1658 int ret;
1659 uint8_t order;
1660
1661 /* get order code */
1662 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1663
1664 ret = handle_sigp(env, order, r1, r3);
1665 setcc(cpu, ret);
1666 return 0;
1667 }
1668
1669 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1670 {
1671 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1672 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1673 int r = -1;
1674
1675 DPRINTF("handle_instruction 0x%x 0x%x\n",
1676 run->s390_sieic.ipa, run->s390_sieic.ipb);
1677 switch (ipa0) {
1678 case IPA0_B2:
1679 r = handle_b2(cpu, run, ipa1);
1680 break;
1681 case IPA0_B9:
1682 r = handle_b9(cpu, run, ipa1);
1683 break;
1684 case IPA0_EB:
1685 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1686 break;
1687 case IPA0_E3:
1688 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1689 break;
1690 case IPA0_DIAG:
1691 r = handle_diag(cpu, run, run->s390_sieic.ipb);
1692 break;
1693 case IPA0_SIGP:
1694 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1695 break;
1696 }
1697
1698 if (r < 0) {
1699 r = 0;
1700 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1701 }
1702
1703 return r;
1704 }
1705
1706 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1707 int pswoffset)
1708 {
1709 CPUState *cs = CPU(cpu);
1710
1711 s390_cpu_halt(cpu);
1712 cpu->env.crash_reason = reason;
1713 qemu_system_guest_panicked(cpu_get_crash_info(cs));
1714 }
1715
1716 /* try to detect pgm check loops */
1717 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1718 {
1719 CPUState *cs = CPU(cpu);
1720 PSW oldpsw, newpsw;
1721
1722 newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1723 offsetof(LowCore, program_new_psw));
1724 newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1725 offsetof(LowCore, program_new_psw) + 8);
1726 oldpsw.mask = run->psw_mask;
1727 oldpsw.addr = run->psw_addr;
1728 /*
1729 * Avoid endless loops of operation exceptions, if the pgm new
1730 * PSW will cause a new operation exception.
1731 * The heuristic checks if the pgm new psw is within 6 bytes before
1732 * the faulting psw address (with same DAT, AS settings) and the
1733 * new psw is not a wait psw and the fault was not triggered by
1734 * problem state. In that case go into crashed state.
1735 */
1736
1737 if (oldpsw.addr - newpsw.addr <= 6 &&
1738 !(newpsw.mask & PSW_MASK_WAIT) &&
1739 !(oldpsw.mask & PSW_MASK_PSTATE) &&
1740 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1741 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1742 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1743 offsetof(LowCore, program_new_psw));
1744 return EXCP_HALTED;
1745 }
1746 return 0;
1747 }
1748
1749 static int handle_intercept(S390CPU *cpu)
1750 {
1751 CPUState *cs = CPU(cpu);
1752 struct kvm_run *run = cs->kvm_run;
1753 int icpt_code = run->s390_sieic.icptcode;
1754 int r = 0;
1755
1756 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, (long)run->psw_addr);
1757 switch (icpt_code) {
1758 case ICPT_INSTRUCTION:
1759 case ICPT_PV_INSTR:
1760 case ICPT_PV_INSTR_NOTIFICATION:
1761 r = handle_instruction(cpu, run);
1762 break;
1763 case ICPT_PROGRAM:
1764 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1765 offsetof(LowCore, program_new_psw));
1766 r = EXCP_HALTED;
1767 break;
1768 case ICPT_EXT_INT:
1769 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1770 offsetof(LowCore, external_new_psw));
1771 r = EXCP_HALTED;
1772 break;
1773 case ICPT_WAITPSW:
1774 /* disabled wait, since enabled wait is handled in kernel */
1775 s390_handle_wait(cpu);
1776 r = EXCP_HALTED;
1777 break;
1778 case ICPT_CPU_STOP:
1779 do_stop_interrupt(&cpu->env);
1780 r = EXCP_HALTED;
1781 break;
1782 case ICPT_OPEREXC:
1783 /* check for break points */
1784 r = handle_sw_breakpoint(cpu, run);
1785 if (r == -ENOENT) {
1786 /* Then check for potential pgm check loops */
1787 r = handle_oper_loop(cpu, run);
1788 if (r == 0) {
1789 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1790 }
1791 }
1792 break;
1793 case ICPT_SOFT_INTERCEPT:
1794 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1795 exit(1);
1796 break;
1797 case ICPT_IO:
1798 fprintf(stderr, "KVM unimplemented icpt IO\n");
1799 exit(1);
1800 break;
1801 default:
1802 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1803 exit(1);
1804 break;
1805 }
1806
1807 return r;
1808 }
1809
1810 static int handle_tsch(S390CPU *cpu)
1811 {
1812 CPUState *cs = CPU(cpu);
1813 struct kvm_run *run = cs->kvm_run;
1814 int ret;
1815
1816 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1817 RA_IGNORED);
1818 if (ret < 0) {
1819 /*
1820 * Failure.
1821 * If an I/O interrupt had been dequeued, we have to reinject it.
1822 */
1823 if (run->s390_tsch.dequeued) {
1824 s390_io_interrupt(run->s390_tsch.subchannel_id,
1825 run->s390_tsch.subchannel_nr,
1826 run->s390_tsch.io_int_parm,
1827 run->s390_tsch.io_int_word);
1828 }
1829 ret = 0;
1830 }
1831 return ret;
1832 }
1833
1834 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1835 {
1836 const MachineState *ms = MACHINE(qdev_get_machine());
1837 uint16_t conf_cpus = 0, reserved_cpus = 0;
1838 SysIB_322 sysib;
1839 int del, i;
1840
1841 if (s390_is_pv()) {
1842 s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib));
1843 } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1844 return;
1845 }
1846 /* Shift the stack of Extended Names to prepare for our own data */
1847 memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1848 sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1849 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1850 * assumed it's not capable of managing Extended Names for lower levels.
1851 */
1852 for (del = 1; del < sysib.count; del++) {
1853 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1854 break;
1855 }
1856 }
1857 if (del < sysib.count) {
1858 memset(sysib.ext_names[del], 0,
1859 sizeof(sysib.ext_names[0]) * (sysib.count - del));
1860 }
1861
1862 /* count the cpus and split them into configured and reserved ones */
1863 for (i = 0; i < ms->possible_cpus->len; i++) {
1864 if (ms->possible_cpus->cpus[i].cpu) {
1865 conf_cpus++;
1866 } else {
1867 reserved_cpus++;
1868 }
1869 }
1870 sysib.vm[0].total_cpus = conf_cpus + reserved_cpus;
1871 sysib.vm[0].conf_cpus = conf_cpus;
1872 sysib.vm[0].reserved_cpus = reserved_cpus;
1873
1874 /* Insert short machine name in EBCDIC, padded with blanks */
1875 if (qemu_name) {
1876 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1877 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1878 strlen(qemu_name)));
1879 }
1880 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1881 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1882 * considered by s390 as not capable of providing any Extended Name.
1883 * Therefore if no name was specified on qemu invocation, we go with the
1884 * same "KVMguest" default, which KVM has filled into short name field.
1885 */
1886 strpadcpy((char *)sysib.ext_names[0],
1887 sizeof(sysib.ext_names[0]),
1888 qemu_name ?: "KVMguest", '\0');
1889
1890 /* Insert UUID */
1891 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1892
1893 if (s390_is_pv()) {
1894 s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib));
1895 } else {
1896 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1897 }
1898 }
1899
1900 static int handle_stsi(S390CPU *cpu)
1901 {
1902 CPUState *cs = CPU(cpu);
1903 struct kvm_run *run = cs->kvm_run;
1904
1905 switch (run->s390_stsi.fc) {
1906 case 3:
1907 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1908 return 0;
1909 }
1910 /* Only sysib 3.2.2 needs post-handling for now. */
1911 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1912 return 0;
1913 default:
1914 return 0;
1915 }
1916 }
1917
1918 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1919 {
1920 CPUState *cs = CPU(cpu);
1921 struct kvm_run *run = cs->kvm_run;
1922
1923 int ret = 0;
1924 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1925
1926 switch (arch_info->type) {
1927 case KVM_HW_WP_WRITE:
1928 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1929 cs->watchpoint_hit = &hw_watchpoint;
1930 hw_watchpoint.vaddr = arch_info->addr;
1931 hw_watchpoint.flags = BP_MEM_WRITE;
1932 ret = EXCP_DEBUG;
1933 }
1934 break;
1935 case KVM_HW_BP:
1936 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1937 ret = EXCP_DEBUG;
1938 }
1939 break;
1940 case KVM_SINGLESTEP:
1941 if (cs->singlestep_enabled) {
1942 ret = EXCP_DEBUG;
1943 }
1944 break;
1945 default:
1946 ret = -ENOSYS;
1947 }
1948
1949 return ret;
1950 }
1951
1952 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1953 {
1954 S390CPU *cpu = S390_CPU(cs);
1955 int ret = 0;
1956
1957 qemu_mutex_lock_iothread();
1958
1959 kvm_cpu_synchronize_state(cs);
1960
1961 switch (run->exit_reason) {
1962 case KVM_EXIT_S390_SIEIC:
1963 ret = handle_intercept(cpu);
1964 break;
1965 case KVM_EXIT_S390_RESET:
1966 s390_ipl_reset_request(cs, S390_RESET_REIPL);
1967 break;
1968 case KVM_EXIT_S390_TSCH:
1969 ret = handle_tsch(cpu);
1970 break;
1971 case KVM_EXIT_S390_STSI:
1972 ret = handle_stsi(cpu);
1973 break;
1974 case KVM_EXIT_DEBUG:
1975 ret = kvm_arch_handle_debug_exit(cpu);
1976 break;
1977 default:
1978 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1979 break;
1980 }
1981 qemu_mutex_unlock_iothread();
1982
1983 if (ret == 0) {
1984 ret = EXCP_INTERRUPT;
1985 }
1986 return ret;
1987 }
1988
1989 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1990 {
1991 return true;
1992 }
1993
1994 void kvm_s390_enable_css_support(S390CPU *cpu)
1995 {
1996 int r;
1997
1998 /* Activate host kernel channel subsystem support. */
1999 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
2000 assert(r == 0);
2001 }
2002
2003 void kvm_arch_init_irq_routing(KVMState *s)
2004 {
2005 /*
2006 * Note that while irqchip capabilities generally imply that cpustates
2007 * are handled in-kernel, it is not true for s390 (yet); therefore, we
2008 * have to override the common code kvm_halt_in_kernel_allowed setting.
2009 */
2010 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2011 kvm_gsi_routing_allowed = true;
2012 kvm_halt_in_kernel_allowed = false;
2013 }
2014 }
2015
2016 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
2017 int vq, bool assign)
2018 {
2019 struct kvm_ioeventfd kick = {
2020 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
2021 KVM_IOEVENTFD_FLAG_DATAMATCH,
2022 .fd = event_notifier_get_fd(notifier),
2023 .datamatch = vq,
2024 .addr = sch,
2025 .len = 8,
2026 };
2027 trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
2028 kick.datamatch);
2029 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
2030 return -ENOSYS;
2031 }
2032 if (!assign) {
2033 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2034 }
2035 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2036 }
2037
2038 int kvm_s390_get_ri(void)
2039 {
2040 return cap_ri;
2041 }
2042
2043 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2044 {
2045 struct kvm_mp_state mp_state = {};
2046 int ret;
2047
2048 /* the kvm part might not have been initialized yet */
2049 if (CPU(cpu)->kvm_state == NULL) {
2050 return 0;
2051 }
2052
2053 switch (cpu_state) {
2054 case S390_CPU_STATE_STOPPED:
2055 mp_state.mp_state = KVM_MP_STATE_STOPPED;
2056 break;
2057 case S390_CPU_STATE_CHECK_STOP:
2058 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2059 break;
2060 case S390_CPU_STATE_OPERATING:
2061 mp_state.mp_state = KVM_MP_STATE_OPERATING;
2062 break;
2063 case S390_CPU_STATE_LOAD:
2064 mp_state.mp_state = KVM_MP_STATE_LOAD;
2065 break;
2066 default:
2067 error_report("Requested CPU state is not a valid S390 CPU state: %u",
2068 cpu_state);
2069 exit(1);
2070 }
2071
2072 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2073 if (ret) {
2074 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2075 strerror(-ret));
2076 }
2077
2078 return ret;
2079 }
2080
2081 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2082 {
2083 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
2084 struct kvm_s390_irq_state irq_state = {
2085 .buf = (uint64_t) cpu->irqstate,
2086 .len = VCPU_IRQ_BUF_SIZE(max_cpus),
2087 };
2088 CPUState *cs = CPU(cpu);
2089 int32_t bytes;
2090
2091 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2092 return;
2093 }
2094
2095 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2096 if (bytes < 0) {
2097 cpu->irqstate_saved_size = 0;
2098 error_report("Migration of interrupt state failed");
2099 return;
2100 }
2101
2102 cpu->irqstate_saved_size = bytes;
2103 }
2104
2105 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2106 {
2107 CPUState *cs = CPU(cpu);
2108 struct kvm_s390_irq_state irq_state = {
2109 .buf = (uint64_t) cpu->irqstate,
2110 .len = cpu->irqstate_saved_size,
2111 };
2112 int r;
2113
2114 if (cpu->irqstate_saved_size == 0) {
2115 return 0;
2116 }
2117
2118 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2119 return -ENOSYS;
2120 }
2121
2122 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2123 if (r) {
2124 error_report("Setting interrupt state failed %d", r);
2125 }
2126 return r;
2127 }
2128
2129 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2130 uint64_t address, uint32_t data, PCIDevice *dev)
2131 {
2132 S390PCIBusDevice *pbdev;
2133 uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2134
2135 if (!dev) {
2136 DPRINTF("add_msi_route no pci device\n");
2137 return -ENODEV;
2138 }
2139
2140 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2141 if (!pbdev) {
2142 DPRINTF("add_msi_route no zpci device\n");
2143 return -ENODEV;
2144 }
2145
2146 route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2147 route->flags = 0;
2148 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2149 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2150 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2151 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2152 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2153 return 0;
2154 }
2155
2156 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2157 int vector, PCIDevice *dev)
2158 {
2159 return 0;
2160 }
2161
2162 int kvm_arch_release_virq_post(int virq)
2163 {
2164 return 0;
2165 }
2166
2167 int kvm_arch_msi_data_to_gsi(uint32_t data)
2168 {
2169 abort();
2170 }
2171
2172 static int query_cpu_subfunc(S390FeatBitmap features)
2173 {
2174 struct kvm_s390_vm_cpu_subfunc prop = {};
2175 struct kvm_device_attr attr = {
2176 .group = KVM_S390_VM_CPU_MODEL,
2177 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2178 .addr = (uint64_t) &prop,
2179 };
2180 int rc;
2181
2182 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2183 if (rc) {
2184 return rc;
2185 }
2186
2187 /*
2188 * We're going to add all subfunctions now, if the corresponding feature
2189 * is available that unlocks the query functions.
2190 */
2191 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2192 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2193 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2194 }
2195 if (test_bit(S390_FEAT_MSA, features)) {
2196 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2197 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2198 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2199 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2200 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2201 }
2202 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2203 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2204 }
2205 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2206 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2207 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2208 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2209 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2210 }
2211 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2212 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2213 }
2214 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2215 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2216 }
2217 if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2218 s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2219 }
2220 if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2221 s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2222 }
2223 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2224 s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2225 }
2226 return 0;
2227 }
2228
2229 static int configure_cpu_subfunc(const S390FeatBitmap features)
2230 {
2231 struct kvm_s390_vm_cpu_subfunc prop = {};
2232 struct kvm_device_attr attr = {
2233 .group = KVM_S390_VM_CPU_MODEL,
2234 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2235 .addr = (uint64_t) &prop,
2236 };
2237
2238 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2239 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2240 /* hardware support might be missing, IBC will handle most of this */
2241 return 0;
2242 }
2243
2244 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2245 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2246 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2247 }
2248 if (test_bit(S390_FEAT_MSA, features)) {
2249 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2250 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2251 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2252 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2253 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2254 }
2255 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2256 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2257 }
2258 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2259 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2260 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2261 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2262 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2263 }
2264 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2265 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2266 }
2267 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2268 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2269 }
2270 if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2271 s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2272 }
2273 if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2274 s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2275 }
2276 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2277 s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2278 }
2279 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2280 }
2281
2282 static int kvm_to_feat[][2] = {
2283 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2284 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2285 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2286 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2287 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2288 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2289 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2290 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2291 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2292 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2293 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2294 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2295 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2296 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2297 };
2298
2299 static int query_cpu_feat(S390FeatBitmap features)
2300 {
2301 struct kvm_s390_vm_cpu_feat prop = {};
2302 struct kvm_device_attr attr = {
2303 .group = KVM_S390_VM_CPU_MODEL,
2304 .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2305 .addr = (uint64_t) &prop,
2306 };
2307 int rc;
2308 int i;
2309
2310 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2311 if (rc) {
2312 return rc;
2313 }
2314
2315 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2316 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2317 set_bit(kvm_to_feat[i][1], features);
2318 }
2319 }
2320 return 0;
2321 }
2322
2323 static int configure_cpu_feat(const S390FeatBitmap features)
2324 {
2325 struct kvm_s390_vm_cpu_feat prop = {};
2326 struct kvm_device_attr attr = {
2327 .group = KVM_S390_VM_CPU_MODEL,
2328 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2329 .addr = (uint64_t) &prop,
2330 };
2331 int i;
2332
2333 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2334 if (test_bit(kvm_to_feat[i][1], features)) {
2335 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2336 }
2337 }
2338 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2339 }
2340
2341 bool kvm_s390_cpu_models_supported(void)
2342 {
2343 if (!cpu_model_allowed()) {
2344 /* compatibility machines interfere with the cpu model */
2345 return false;
2346 }
2347 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2348 KVM_S390_VM_CPU_MACHINE) &&
2349 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2350 KVM_S390_VM_CPU_PROCESSOR) &&
2351 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2352 KVM_S390_VM_CPU_MACHINE_FEAT) &&
2353 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2354 KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2355 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2356 KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2357 }
2358
2359 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2360 {
2361 struct kvm_s390_vm_cpu_machine prop = {};
2362 struct kvm_device_attr attr = {
2363 .group = KVM_S390_VM_CPU_MODEL,
2364 .attr = KVM_S390_VM_CPU_MACHINE,
2365 .addr = (uint64_t) &prop,
2366 };
2367 uint16_t unblocked_ibc = 0, cpu_type = 0;
2368 int rc;
2369
2370 memset(model, 0, sizeof(*model));
2371
2372 if (!kvm_s390_cpu_models_supported()) {
2373 error_setg(errp, "KVM doesn't support CPU models");
2374 return;
2375 }
2376
2377 /* query the basic cpu model properties */
2378 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2379 if (rc) {
2380 error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2381 return;
2382 }
2383
2384 cpu_type = cpuid_type(prop.cpuid);
2385 if (has_ibc(prop.ibc)) {
2386 model->lowest_ibc = lowest_ibc(prop.ibc);
2387 unblocked_ibc = unblocked_ibc(prop.ibc);
2388 }
2389 model->cpu_id = cpuid_id(prop.cpuid);
2390 model->cpu_id_format = cpuid_format(prop.cpuid);
2391 model->cpu_ver = 0xff;
2392
2393 /* get supported cpu features indicated via STFL(E) */
2394 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2395 (uint8_t *) prop.fac_mask);
2396 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2397 if (test_bit(S390_FEAT_STFLE, model->features)) {
2398 set_bit(S390_FEAT_DAT_ENH_2, model->features);
2399 }
2400 /* get supported cpu features indicated e.g. via SCLP */
2401 rc = query_cpu_feat(model->features);
2402 if (rc) {
2403 error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2404 return;
2405 }
2406 /* get supported cpu subfunctions indicated via query / test bit */
2407 rc = query_cpu_subfunc(model->features);
2408 if (rc) {
2409 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2410 return;
2411 }
2412
2413 /* PTFF subfunctions might be indicated although kernel support missing */
2414 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2415 clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2416 clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2417 clear_bit(S390_FEAT_PTFF_STOE, model->features);
2418 clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2419 }
2420
2421 /* with cpu model support, CMM is only indicated if really available */
2422 if (kvm_s390_cmma_available()) {
2423 set_bit(S390_FEAT_CMM, model->features);
2424 } else {
2425 /* no cmm -> no cmm nt */
2426 clear_bit(S390_FEAT_CMM_NT, model->features);
2427 }
2428
2429 /* bpb needs kernel support for migration, VSIE and reset */
2430 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2431 clear_bit(S390_FEAT_BPB, model->features);
2432 }
2433
2434 /*
2435 * If we have support for protected virtualization, indicate
2436 * the protected virtualization IPL unpack facility.
2437 */
2438 if (cap_protected) {
2439 set_bit(S390_FEAT_UNPACK, model->features);
2440 }
2441
2442 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2443 set_bit(S390_FEAT_ZPCI, model->features);
2444 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2445
2446 if (s390_known_cpu_type(cpu_type)) {
2447 /* we want the exact model, even if some features are missing */
2448 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2449 ibc_ec_ga(unblocked_ibc), NULL);
2450 } else {
2451 /* model unknown, e.g. too new - search using features */
2452 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2453 ibc_ec_ga(unblocked_ibc),
2454 model->features);
2455 }
2456 if (!model->def) {
2457 error_setg(errp, "KVM: host CPU model could not be identified");
2458 return;
2459 }
2460 /* for now, we can only provide the AP feature with HW support */
2461 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2462 KVM_S390_VM_CRYPTO_ENABLE_APIE)) {
2463 set_bit(S390_FEAT_AP, model->features);
2464 }
2465
2466 /*
2467 * Extended-Length SCCB is handled entirely within QEMU.
2468 * For PV guests this is completely fenced by the Ultravisor, as Service
2469 * Call error checking and STFLE interpretation are handled via SIE.
2470 */
2471 set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features);
2472
2473 if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) {
2474 set_bit(S390_FEAT_DIAG_318, model->features);
2475 }
2476
2477 /* strip of features that are not part of the maximum model */
2478 bitmap_and(model->features, model->features, model->def->full_feat,
2479 S390_FEAT_MAX);
2480 }
2481
2482 static void kvm_s390_configure_apie(bool interpret)
2483 {
2484 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2485 KVM_S390_VM_CRYPTO_DISABLE_APIE;
2486
2487 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2488 kvm_s390_set_attr(attr);
2489 }
2490 }
2491
2492 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2493 {
2494 struct kvm_s390_vm_cpu_processor prop = {
2495 .fac_list = { 0 },
2496 };
2497 struct kvm_device_attr attr = {
2498 .group = KVM_S390_VM_CPU_MODEL,
2499 .attr = KVM_S390_VM_CPU_PROCESSOR,
2500 .addr = (uint64_t) &prop,
2501 };
2502 int rc;
2503
2504 if (!model) {
2505 /* compatibility handling if cpu models are disabled */
2506 if (kvm_s390_cmma_available()) {
2507 kvm_s390_enable_cmma();
2508 }
2509 return;
2510 }
2511 if (!kvm_s390_cpu_models_supported()) {
2512 error_setg(errp, "KVM doesn't support CPU models");
2513 return;
2514 }
2515 prop.cpuid = s390_cpuid_from_cpu_model(model);
2516 prop.ibc = s390_ibc_from_cpu_model(model);
2517 /* configure cpu features indicated via STFL(e) */
2518 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2519 (uint8_t *) prop.fac_list);
2520 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2521 if (rc) {
2522 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2523 return;
2524 }
2525 /* configure cpu features indicated e.g. via SCLP */
2526 rc = configure_cpu_feat(model->features);
2527 if (rc) {
2528 error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2529 return;
2530 }
2531 /* configure cpu subfunctions indicated via query / test bit */
2532 rc = configure_cpu_subfunc(model->features);
2533 if (rc) {
2534 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2535 return;
2536 }
2537 /* enable CMM via CMMA */
2538 if (test_bit(S390_FEAT_CMM, model->features)) {
2539 kvm_s390_enable_cmma();
2540 }
2541
2542 if (test_bit(S390_FEAT_AP, model->features)) {
2543 kvm_s390_configure_apie(true);
2544 }
2545 }
2546
2547 void kvm_s390_restart_interrupt(S390CPU *cpu)
2548 {
2549 struct kvm_s390_irq irq = {
2550 .type = KVM_S390_RESTART,
2551 };
2552
2553 kvm_s390_vcpu_interrupt(cpu, &irq);
2554 }
2555
2556 void kvm_s390_stop_interrupt(S390CPU *cpu)
2557 {
2558 struct kvm_s390_irq irq = {
2559 .type = KVM_S390_SIGP_STOP,
2560 };
2561
2562 kvm_s390_vcpu_interrupt(cpu, &irq);
2563 }
2564
2565 bool kvm_arch_cpu_check_are_resettable(void)
2566 {
2567 return true;
2568 }