]> git.proxmox.com Git - mirror_qemu.git/blob - tcg/tcg-op-gvec.c
Merge tag 'linux-user-for-8.1-pull-request' of https://github.com/vivier/qemu into...
[mirror_qemu.git] / tcg / tcg-op-gvec.c
1 /*
2 * Generic vector operation expansion
3 *
4 * Copyright (c) 2018 Linaro
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "tcg/tcg.h"
22 #include "tcg/tcg-temp-internal.h"
23 #include "tcg/tcg-op.h"
24 #include "tcg/tcg-op-gvec.h"
25 #include "tcg/tcg-gvec-desc.h"
26
27 #define MAX_UNROLL 4
28
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty[1] = { 0 };
31 #else
32 #define vecop_list_empty NULL
33 #endif
34
35
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
39 {
40 uint32_t max_align;
41
42 switch (oprsz) {
43 case 8:
44 case 16:
45 case 32:
46 tcg_debug_assert(oprsz <= maxsz);
47 break;
48 default:
49 tcg_debug_assert(oprsz == maxsz);
50 break;
51 }
52 tcg_debug_assert(maxsz <= (8 << SIMD_MAXSZ_BITS));
53
54 max_align = maxsz >= 16 ? 15 : 7;
55 tcg_debug_assert((maxsz & max_align) == 0);
56 tcg_debug_assert((ofs & max_align) == 0);
57 }
58
59 /* Verify vector overlap rules for two operands. */
60 static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
61 {
62 tcg_debug_assert(d == a || d + s <= a || a + s <= d);
63 }
64
65 /* Verify vector overlap rules for three operands. */
66 static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
67 {
68 check_overlap_2(d, a, s);
69 check_overlap_2(d, b, s);
70 check_overlap_2(a, b, s);
71 }
72
73 /* Verify vector overlap rules for four operands. */
74 static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
75 uint32_t c, uint32_t s)
76 {
77 check_overlap_2(d, a, s);
78 check_overlap_2(d, b, s);
79 check_overlap_2(d, c, s);
80 check_overlap_2(a, b, s);
81 check_overlap_2(a, c, s);
82 check_overlap_2(b, c, s);
83 }
84
85 /* Create a descriptor from components. */
86 uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
87 {
88 uint32_t desc = 0;
89
90 check_size_align(oprsz, maxsz, 0);
91 tcg_debug_assert(data == sextract32(data, 0, SIMD_DATA_BITS));
92
93 oprsz = (oprsz / 8) - 1;
94 maxsz = (maxsz / 8) - 1;
95
96 /*
97 * We have just asserted in check_size_align that either
98 * oprsz is {8,16,32} or matches maxsz. Encode the final
99 * case with '2', as that would otherwise map to 24.
100 */
101 if (oprsz == maxsz) {
102 oprsz = 2;
103 }
104
105 desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
106 desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
107 desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
108
109 return desc;
110 }
111
112 /* Generate a call to a gvec-style helper with two vector operands. */
113 void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs,
114 uint32_t oprsz, uint32_t maxsz, int32_t data,
115 gen_helper_gvec_2 *fn)
116 {
117 TCGv_ptr a0, a1;
118 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
119
120 a0 = tcg_temp_ebb_new_ptr();
121 a1 = tcg_temp_ebb_new_ptr();
122
123 tcg_gen_addi_ptr(a0, cpu_env, dofs);
124 tcg_gen_addi_ptr(a1, cpu_env, aofs);
125
126 fn(a0, a1, desc);
127
128 tcg_temp_free_ptr(a0);
129 tcg_temp_free_ptr(a1);
130 }
131
132 /* Generate a call to a gvec-style helper with two vector operands
133 and one scalar operand. */
134 void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c,
135 uint32_t oprsz, uint32_t maxsz, int32_t data,
136 gen_helper_gvec_2i *fn)
137 {
138 TCGv_ptr a0, a1;
139 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
140
141 a0 = tcg_temp_ebb_new_ptr();
142 a1 = tcg_temp_ebb_new_ptr();
143
144 tcg_gen_addi_ptr(a0, cpu_env, dofs);
145 tcg_gen_addi_ptr(a1, cpu_env, aofs);
146
147 fn(a0, a1, c, desc);
148
149 tcg_temp_free_ptr(a0);
150 tcg_temp_free_ptr(a1);
151 }
152
153 /* Generate a call to a gvec-style helper with three vector operands. */
154 void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
155 uint32_t oprsz, uint32_t maxsz, int32_t data,
156 gen_helper_gvec_3 *fn)
157 {
158 TCGv_ptr a0, a1, a2;
159 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
160
161 a0 = tcg_temp_ebb_new_ptr();
162 a1 = tcg_temp_ebb_new_ptr();
163 a2 = tcg_temp_ebb_new_ptr();
164
165 tcg_gen_addi_ptr(a0, cpu_env, dofs);
166 tcg_gen_addi_ptr(a1, cpu_env, aofs);
167 tcg_gen_addi_ptr(a2, cpu_env, bofs);
168
169 fn(a0, a1, a2, desc);
170
171 tcg_temp_free_ptr(a0);
172 tcg_temp_free_ptr(a1);
173 tcg_temp_free_ptr(a2);
174 }
175
176 /* Generate a call to a gvec-style helper with four vector operands. */
177 void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
178 uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
179 int32_t data, gen_helper_gvec_4 *fn)
180 {
181 TCGv_ptr a0, a1, a2, a3;
182 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
183
184 a0 = tcg_temp_ebb_new_ptr();
185 a1 = tcg_temp_ebb_new_ptr();
186 a2 = tcg_temp_ebb_new_ptr();
187 a3 = tcg_temp_ebb_new_ptr();
188
189 tcg_gen_addi_ptr(a0, cpu_env, dofs);
190 tcg_gen_addi_ptr(a1, cpu_env, aofs);
191 tcg_gen_addi_ptr(a2, cpu_env, bofs);
192 tcg_gen_addi_ptr(a3, cpu_env, cofs);
193
194 fn(a0, a1, a2, a3, desc);
195
196 tcg_temp_free_ptr(a0);
197 tcg_temp_free_ptr(a1);
198 tcg_temp_free_ptr(a2);
199 tcg_temp_free_ptr(a3);
200 }
201
202 /* Generate a call to a gvec-style helper with five vector operands. */
203 void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
204 uint32_t cofs, uint32_t xofs, uint32_t oprsz,
205 uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
206 {
207 TCGv_ptr a0, a1, a2, a3, a4;
208 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
209
210 a0 = tcg_temp_ebb_new_ptr();
211 a1 = tcg_temp_ebb_new_ptr();
212 a2 = tcg_temp_ebb_new_ptr();
213 a3 = tcg_temp_ebb_new_ptr();
214 a4 = tcg_temp_ebb_new_ptr();
215
216 tcg_gen_addi_ptr(a0, cpu_env, dofs);
217 tcg_gen_addi_ptr(a1, cpu_env, aofs);
218 tcg_gen_addi_ptr(a2, cpu_env, bofs);
219 tcg_gen_addi_ptr(a3, cpu_env, cofs);
220 tcg_gen_addi_ptr(a4, cpu_env, xofs);
221
222 fn(a0, a1, a2, a3, a4, desc);
223
224 tcg_temp_free_ptr(a0);
225 tcg_temp_free_ptr(a1);
226 tcg_temp_free_ptr(a2);
227 tcg_temp_free_ptr(a3);
228 tcg_temp_free_ptr(a4);
229 }
230
231 /* Generate a call to a gvec-style helper with three vector operands
232 and an extra pointer operand. */
233 void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs,
234 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
235 int32_t data, gen_helper_gvec_2_ptr *fn)
236 {
237 TCGv_ptr a0, a1;
238 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
239
240 a0 = tcg_temp_ebb_new_ptr();
241 a1 = tcg_temp_ebb_new_ptr();
242
243 tcg_gen_addi_ptr(a0, cpu_env, dofs);
244 tcg_gen_addi_ptr(a1, cpu_env, aofs);
245
246 fn(a0, a1, ptr, desc);
247
248 tcg_temp_free_ptr(a0);
249 tcg_temp_free_ptr(a1);
250 }
251
252 /* Generate a call to a gvec-style helper with three vector operands
253 and an extra pointer operand. */
254 void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
255 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
256 int32_t data, gen_helper_gvec_3_ptr *fn)
257 {
258 TCGv_ptr a0, a1, a2;
259 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
260
261 a0 = tcg_temp_ebb_new_ptr();
262 a1 = tcg_temp_ebb_new_ptr();
263 a2 = tcg_temp_ebb_new_ptr();
264
265 tcg_gen_addi_ptr(a0, cpu_env, dofs);
266 tcg_gen_addi_ptr(a1, cpu_env, aofs);
267 tcg_gen_addi_ptr(a2, cpu_env, bofs);
268
269 fn(a0, a1, a2, ptr, desc);
270
271 tcg_temp_free_ptr(a0);
272 tcg_temp_free_ptr(a1);
273 tcg_temp_free_ptr(a2);
274 }
275
276 /* Generate a call to a gvec-style helper with four vector operands
277 and an extra pointer operand. */
278 void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
279 uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
280 uint32_t maxsz, int32_t data,
281 gen_helper_gvec_4_ptr *fn)
282 {
283 TCGv_ptr a0, a1, a2, a3;
284 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
285
286 a0 = tcg_temp_ebb_new_ptr();
287 a1 = tcg_temp_ebb_new_ptr();
288 a2 = tcg_temp_ebb_new_ptr();
289 a3 = tcg_temp_ebb_new_ptr();
290
291 tcg_gen_addi_ptr(a0, cpu_env, dofs);
292 tcg_gen_addi_ptr(a1, cpu_env, aofs);
293 tcg_gen_addi_ptr(a2, cpu_env, bofs);
294 tcg_gen_addi_ptr(a3, cpu_env, cofs);
295
296 fn(a0, a1, a2, a3, ptr, desc);
297
298 tcg_temp_free_ptr(a0);
299 tcg_temp_free_ptr(a1);
300 tcg_temp_free_ptr(a2);
301 tcg_temp_free_ptr(a3);
302 }
303
304 /* Generate a call to a gvec-style helper with five vector operands
305 and an extra pointer operand. */
306 void tcg_gen_gvec_5_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
307 uint32_t cofs, uint32_t eofs, TCGv_ptr ptr,
308 uint32_t oprsz, uint32_t maxsz, int32_t data,
309 gen_helper_gvec_5_ptr *fn)
310 {
311 TCGv_ptr a0, a1, a2, a3, a4;
312 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
313
314 a0 = tcg_temp_ebb_new_ptr();
315 a1 = tcg_temp_ebb_new_ptr();
316 a2 = tcg_temp_ebb_new_ptr();
317 a3 = tcg_temp_ebb_new_ptr();
318 a4 = tcg_temp_ebb_new_ptr();
319
320 tcg_gen_addi_ptr(a0, cpu_env, dofs);
321 tcg_gen_addi_ptr(a1, cpu_env, aofs);
322 tcg_gen_addi_ptr(a2, cpu_env, bofs);
323 tcg_gen_addi_ptr(a3, cpu_env, cofs);
324 tcg_gen_addi_ptr(a4, cpu_env, eofs);
325
326 fn(a0, a1, a2, a3, a4, ptr, desc);
327
328 tcg_temp_free_ptr(a0);
329 tcg_temp_free_ptr(a1);
330 tcg_temp_free_ptr(a2);
331 tcg_temp_free_ptr(a3);
332 tcg_temp_free_ptr(a4);
333 }
334
335 /* Return true if we want to implement something of OPRSZ bytes
336 in units of LNSZ. This limits the expansion of inline code. */
337 static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
338 {
339 uint32_t q, r;
340
341 if (oprsz < lnsz) {
342 return false;
343 }
344
345 q = oprsz / lnsz;
346 r = oprsz % lnsz;
347 tcg_debug_assert((r & 7) == 0);
348
349 if (lnsz < 16) {
350 /* For sizes below 16, accept no remainder. */
351 if (r != 0) {
352 return false;
353 }
354 } else {
355 /*
356 * Recall that ARM SVE allows vector sizes that are not a
357 * power of 2, but always a multiple of 16. The intent is
358 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
359 * In addition, expand_clr needs to handle a multiple of 8.
360 * Thus we can handle the tail with one more operation per
361 * diminishing power of 2.
362 */
363 q += ctpop32(r);
364 }
365
366 return q <= MAX_UNROLL;
367 }
368
369 static void expand_clr(uint32_t dofs, uint32_t maxsz);
370
371 /* Duplicate C as per VECE. */
372 uint64_t (dup_const)(unsigned vece, uint64_t c)
373 {
374 switch (vece) {
375 case MO_8:
376 return 0x0101010101010101ull * (uint8_t)c;
377 case MO_16:
378 return 0x0001000100010001ull * (uint16_t)c;
379 case MO_32:
380 return 0x0000000100000001ull * (uint32_t)c;
381 case MO_64:
382 return c;
383 default:
384 g_assert_not_reached();
385 }
386 }
387
388 /* Duplicate IN into OUT as per VECE. */
389 void tcg_gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in)
390 {
391 switch (vece) {
392 case MO_8:
393 tcg_gen_ext8u_i32(out, in);
394 tcg_gen_muli_i32(out, out, 0x01010101);
395 break;
396 case MO_16:
397 tcg_gen_deposit_i32(out, in, in, 16, 16);
398 break;
399 case MO_32:
400 tcg_gen_mov_i32(out, in);
401 break;
402 default:
403 g_assert_not_reached();
404 }
405 }
406
407 void tcg_gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in)
408 {
409 switch (vece) {
410 case MO_8:
411 tcg_gen_ext8u_i64(out, in);
412 tcg_gen_muli_i64(out, out, 0x0101010101010101ull);
413 break;
414 case MO_16:
415 tcg_gen_ext16u_i64(out, in);
416 tcg_gen_muli_i64(out, out, 0x0001000100010001ull);
417 break;
418 case MO_32:
419 tcg_gen_deposit_i64(out, in, in, 32, 32);
420 break;
421 case MO_64:
422 tcg_gen_mov_i64(out, in);
423 break;
424 default:
425 g_assert_not_reached();
426 }
427 }
428
429 /* Select a supported vector type for implementing an operation on SIZE
430 * bytes. If OP is 0, assume that the real operation to be performed is
431 * required by all backends. Otherwise, make sure than OP can be performed
432 * on elements of size VECE in the selected type. Do not select V64 if
433 * PREFER_I64 is true. Return 0 if no vector type is selected.
434 */
435 static TCGType choose_vector_type(const TCGOpcode *list, unsigned vece,
436 uint32_t size, bool prefer_i64)
437 {
438 /*
439 * Recall that ARM SVE allows vector sizes that are not a
440 * power of 2, but always a multiple of 16. The intent is
441 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
442 * It is hard to imagine a case in which v256 is supported
443 * but v128 is not, but check anyway.
444 * In addition, expand_clr needs to handle a multiple of 8.
445 */
446 if (TCG_TARGET_HAS_v256 &&
447 check_size_impl(size, 32) &&
448 tcg_can_emit_vecop_list(list, TCG_TYPE_V256, vece) &&
449 (!(size & 16) ||
450 (TCG_TARGET_HAS_v128 &&
451 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece))) &&
452 (!(size & 8) ||
453 (TCG_TARGET_HAS_v64 &&
454 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
455 return TCG_TYPE_V256;
456 }
457 if (TCG_TARGET_HAS_v128 &&
458 check_size_impl(size, 16) &&
459 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece) &&
460 (!(size & 8) ||
461 (TCG_TARGET_HAS_v64 &&
462 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
463 return TCG_TYPE_V128;
464 }
465 if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8)
466 && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)) {
467 return TCG_TYPE_V64;
468 }
469 return 0;
470 }
471
472 static void do_dup_store(TCGType type, uint32_t dofs, uint32_t oprsz,
473 uint32_t maxsz, TCGv_vec t_vec)
474 {
475 uint32_t i = 0;
476
477 tcg_debug_assert(oprsz >= 8);
478
479 /*
480 * This may be expand_clr for the tail of an operation, e.g.
481 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
482 * are misaligned wrt the maximum vector size, so do that first.
483 */
484 if (dofs & 8) {
485 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
486 i += 8;
487 }
488
489 switch (type) {
490 case TCG_TYPE_V256:
491 /*
492 * Recall that ARM SVE allows vector sizes that are not a
493 * power of 2, but always a multiple of 16. The intent is
494 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
495 */
496 for (; i + 32 <= oprsz; i += 32) {
497 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V256);
498 }
499 /* fallthru */
500 case TCG_TYPE_V128:
501 for (; i + 16 <= oprsz; i += 16) {
502 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V128);
503 }
504 break;
505 case TCG_TYPE_V64:
506 for (; i < oprsz; i += 8) {
507 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
508 }
509 break;
510 default:
511 g_assert_not_reached();
512 }
513
514 if (oprsz < maxsz) {
515 expand_clr(dofs + oprsz, maxsz - oprsz);
516 }
517 }
518
519 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
520 * Only one of IN_32 or IN_64 may be set;
521 * IN_C is used if IN_32 and IN_64 are unset.
522 */
523 static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz,
524 uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
525 uint64_t in_c)
526 {
527 TCGType type;
528 TCGv_i64 t_64;
529 TCGv_i32 t_32, t_desc;
530 TCGv_ptr t_ptr;
531 uint32_t i;
532
533 assert(vece <= (in_32 ? MO_32 : MO_64));
534 assert(in_32 == NULL || in_64 == NULL);
535
536 /* If we're storing 0, expand oprsz to maxsz. */
537 if (in_32 == NULL && in_64 == NULL) {
538 in_c = dup_const(vece, in_c);
539 if (in_c == 0) {
540 oprsz = maxsz;
541 vece = MO_8;
542 } else if (in_c == dup_const(MO_8, in_c)) {
543 vece = MO_8;
544 }
545 }
546
547 /* Implement inline with a vector type, if possible.
548 * Prefer integer when 64-bit host and no variable dup.
549 */
550 type = choose_vector_type(NULL, vece, oprsz,
551 (TCG_TARGET_REG_BITS == 64 && in_32 == NULL
552 && (in_64 == NULL || vece == MO_64)));
553 if (type != 0) {
554 TCGv_vec t_vec = tcg_temp_new_vec(type);
555
556 if (in_32) {
557 tcg_gen_dup_i32_vec(vece, t_vec, in_32);
558 } else if (in_64) {
559 tcg_gen_dup_i64_vec(vece, t_vec, in_64);
560 } else {
561 tcg_gen_dupi_vec(vece, t_vec, in_c);
562 }
563 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
564 tcg_temp_free_vec(t_vec);
565 return;
566 }
567
568 /* Otherwise, inline with an integer type, unless "large". */
569 if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
570 t_64 = NULL;
571 t_32 = NULL;
572
573 if (in_32) {
574 /* We are given a 32-bit variable input. For a 64-bit host,
575 use a 64-bit operation unless the 32-bit operation would
576 be simple enough. */
577 if (TCG_TARGET_REG_BITS == 64
578 && (vece != MO_32 || !check_size_impl(oprsz, 4))) {
579 t_64 = tcg_temp_ebb_new_i64();
580 tcg_gen_extu_i32_i64(t_64, in_32);
581 tcg_gen_dup_i64(vece, t_64, t_64);
582 } else {
583 t_32 = tcg_temp_ebb_new_i32();
584 tcg_gen_dup_i32(vece, t_32, in_32);
585 }
586 } else if (in_64) {
587 /* We are given a 64-bit variable input. */
588 t_64 = tcg_temp_ebb_new_i64();
589 tcg_gen_dup_i64(vece, t_64, in_64);
590 } else {
591 /* We are given a constant input. */
592 /* For 64-bit hosts, use 64-bit constants for "simple" constants
593 or when we'd need too many 32-bit stores, or when a 64-bit
594 constant is really required. */
595 if (vece == MO_64
596 || (TCG_TARGET_REG_BITS == 64
597 && (in_c == 0 || in_c == -1
598 || !check_size_impl(oprsz, 4)))) {
599 t_64 = tcg_constant_i64(in_c);
600 } else {
601 t_32 = tcg_constant_i32(in_c);
602 }
603 }
604
605 /* Implement inline if we picked an implementation size above. */
606 if (t_32) {
607 for (i = 0; i < oprsz; i += 4) {
608 tcg_gen_st_i32(t_32, cpu_env, dofs + i);
609 }
610 tcg_temp_free_i32(t_32);
611 goto done;
612 }
613 if (t_64) {
614 for (i = 0; i < oprsz; i += 8) {
615 tcg_gen_st_i64(t_64, cpu_env, dofs + i);
616 }
617 tcg_temp_free_i64(t_64);
618 goto done;
619 }
620 }
621
622 /* Otherwise implement out of line. */
623 t_ptr = tcg_temp_ebb_new_ptr();
624 tcg_gen_addi_ptr(t_ptr, cpu_env, dofs);
625
626 /*
627 * This may be expand_clr for the tail of an operation, e.g.
628 * oprsz == 8 && maxsz == 64. The size of the clear is misaligned
629 * wrt simd_desc and will assert. Simply pass all replicated byte
630 * stores through to memset.
631 */
632 if (oprsz == maxsz && vece == MO_8) {
633 TCGv_ptr t_size = tcg_constant_ptr(oprsz);
634 TCGv_i32 t_val;
635
636 if (in_32) {
637 t_val = in_32;
638 } else if (in_64) {
639 t_val = tcg_temp_ebb_new_i32();
640 tcg_gen_extrl_i64_i32(t_val, in_64);
641 } else {
642 t_val = tcg_constant_i32(in_c);
643 }
644 gen_helper_memset(t_ptr, t_ptr, t_val, t_size);
645
646 if (in_64) {
647 tcg_temp_free_i32(t_val);
648 }
649 tcg_temp_free_ptr(t_ptr);
650 return;
651 }
652
653 t_desc = tcg_constant_i32(simd_desc(oprsz, maxsz, 0));
654
655 if (vece == MO_64) {
656 if (in_64) {
657 gen_helper_gvec_dup64(t_ptr, t_desc, in_64);
658 } else {
659 t_64 = tcg_constant_i64(in_c);
660 gen_helper_gvec_dup64(t_ptr, t_desc, t_64);
661 }
662 } else {
663 typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32);
664 static dup_fn * const fns[3] = {
665 gen_helper_gvec_dup8,
666 gen_helper_gvec_dup16,
667 gen_helper_gvec_dup32
668 };
669
670 if (in_32) {
671 fns[vece](t_ptr, t_desc, in_32);
672 } else if (in_64) {
673 t_32 = tcg_temp_ebb_new_i32();
674 tcg_gen_extrl_i64_i32(t_32, in_64);
675 fns[vece](t_ptr, t_desc, t_32);
676 tcg_temp_free_i32(t_32);
677 } else {
678 if (vece == MO_8) {
679 in_c &= 0xff;
680 } else if (vece == MO_16) {
681 in_c &= 0xffff;
682 }
683 t_32 = tcg_constant_i32(in_c);
684 fns[vece](t_ptr, t_desc, t_32);
685 }
686 }
687
688 tcg_temp_free_ptr(t_ptr);
689 return;
690
691 done:
692 if (oprsz < maxsz) {
693 expand_clr(dofs + oprsz, maxsz - oprsz);
694 }
695 }
696
697 /* Likewise, but with zero. */
698 static void expand_clr(uint32_t dofs, uint32_t maxsz)
699 {
700 do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
701 }
702
703 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
704 static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
705 bool load_dest, void (*fni)(TCGv_i32, TCGv_i32))
706 {
707 TCGv_i32 t0 = tcg_temp_new_i32();
708 TCGv_i32 t1 = tcg_temp_new_i32();
709 uint32_t i;
710
711 for (i = 0; i < oprsz; i += 4) {
712 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
713 if (load_dest) {
714 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
715 }
716 fni(t1, t0);
717 tcg_gen_st_i32(t1, cpu_env, dofs + i);
718 }
719 tcg_temp_free_i32(t0);
720 tcg_temp_free_i32(t1);
721 }
722
723 static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
724 int32_t c, bool load_dest,
725 void (*fni)(TCGv_i32, TCGv_i32, int32_t))
726 {
727 TCGv_i32 t0 = tcg_temp_new_i32();
728 TCGv_i32 t1 = tcg_temp_new_i32();
729 uint32_t i;
730
731 for (i = 0; i < oprsz; i += 4) {
732 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
733 if (load_dest) {
734 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
735 }
736 fni(t1, t0, c);
737 tcg_gen_st_i32(t1, cpu_env, dofs + i);
738 }
739 tcg_temp_free_i32(t0);
740 tcg_temp_free_i32(t1);
741 }
742
743 static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
744 TCGv_i32 c, bool scalar_first,
745 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
746 {
747 TCGv_i32 t0 = tcg_temp_new_i32();
748 TCGv_i32 t1 = tcg_temp_new_i32();
749 uint32_t i;
750
751 for (i = 0; i < oprsz; i += 4) {
752 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
753 if (scalar_first) {
754 fni(t1, c, t0);
755 } else {
756 fni(t1, t0, c);
757 }
758 tcg_gen_st_i32(t1, cpu_env, dofs + i);
759 }
760 tcg_temp_free_i32(t0);
761 tcg_temp_free_i32(t1);
762 }
763
764 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
765 static void expand_3_i32(uint32_t dofs, uint32_t aofs,
766 uint32_t bofs, uint32_t oprsz, bool load_dest,
767 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
768 {
769 TCGv_i32 t0 = tcg_temp_new_i32();
770 TCGv_i32 t1 = tcg_temp_new_i32();
771 TCGv_i32 t2 = tcg_temp_new_i32();
772 uint32_t i;
773
774 for (i = 0; i < oprsz; i += 4) {
775 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
776 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
777 if (load_dest) {
778 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
779 }
780 fni(t2, t0, t1);
781 tcg_gen_st_i32(t2, cpu_env, dofs + i);
782 }
783 tcg_temp_free_i32(t2);
784 tcg_temp_free_i32(t1);
785 tcg_temp_free_i32(t0);
786 }
787
788 static void expand_3i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
789 uint32_t oprsz, int32_t c, bool load_dest,
790 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, int32_t))
791 {
792 TCGv_i32 t0 = tcg_temp_new_i32();
793 TCGv_i32 t1 = tcg_temp_new_i32();
794 TCGv_i32 t2 = tcg_temp_new_i32();
795 uint32_t i;
796
797 for (i = 0; i < oprsz; i += 4) {
798 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
799 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
800 if (load_dest) {
801 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
802 }
803 fni(t2, t0, t1, c);
804 tcg_gen_st_i32(t2, cpu_env, dofs + i);
805 }
806 tcg_temp_free_i32(t0);
807 tcg_temp_free_i32(t1);
808 tcg_temp_free_i32(t2);
809 }
810
811 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
812 static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
813 uint32_t cofs, uint32_t oprsz, bool write_aofs,
814 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
815 {
816 TCGv_i32 t0 = tcg_temp_new_i32();
817 TCGv_i32 t1 = tcg_temp_new_i32();
818 TCGv_i32 t2 = tcg_temp_new_i32();
819 TCGv_i32 t3 = tcg_temp_new_i32();
820 uint32_t i;
821
822 for (i = 0; i < oprsz; i += 4) {
823 tcg_gen_ld_i32(t1, cpu_env, aofs + i);
824 tcg_gen_ld_i32(t2, cpu_env, bofs + i);
825 tcg_gen_ld_i32(t3, cpu_env, cofs + i);
826 fni(t0, t1, t2, t3);
827 tcg_gen_st_i32(t0, cpu_env, dofs + i);
828 if (write_aofs) {
829 tcg_gen_st_i32(t1, cpu_env, aofs + i);
830 }
831 }
832 tcg_temp_free_i32(t3);
833 tcg_temp_free_i32(t2);
834 tcg_temp_free_i32(t1);
835 tcg_temp_free_i32(t0);
836 }
837
838 static void expand_4i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
839 uint32_t cofs, uint32_t oprsz, int32_t c,
840 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32,
841 int32_t))
842 {
843 TCGv_i32 t0 = tcg_temp_new_i32();
844 TCGv_i32 t1 = tcg_temp_new_i32();
845 TCGv_i32 t2 = tcg_temp_new_i32();
846 TCGv_i32 t3 = tcg_temp_new_i32();
847 uint32_t i;
848
849 for (i = 0; i < oprsz; i += 4) {
850 tcg_gen_ld_i32(t1, cpu_env, aofs + i);
851 tcg_gen_ld_i32(t2, cpu_env, bofs + i);
852 tcg_gen_ld_i32(t3, cpu_env, cofs + i);
853 fni(t0, t1, t2, t3, c);
854 tcg_gen_st_i32(t0, cpu_env, dofs + i);
855 }
856 tcg_temp_free_i32(t3);
857 tcg_temp_free_i32(t2);
858 tcg_temp_free_i32(t1);
859 tcg_temp_free_i32(t0);
860 }
861
862 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
863 static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
864 bool load_dest, void (*fni)(TCGv_i64, TCGv_i64))
865 {
866 TCGv_i64 t0 = tcg_temp_new_i64();
867 TCGv_i64 t1 = tcg_temp_new_i64();
868 uint32_t i;
869
870 for (i = 0; i < oprsz; i += 8) {
871 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
872 if (load_dest) {
873 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
874 }
875 fni(t1, t0);
876 tcg_gen_st_i64(t1, cpu_env, dofs + i);
877 }
878 tcg_temp_free_i64(t0);
879 tcg_temp_free_i64(t1);
880 }
881
882 static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
883 int64_t c, bool load_dest,
884 void (*fni)(TCGv_i64, TCGv_i64, int64_t))
885 {
886 TCGv_i64 t0 = tcg_temp_new_i64();
887 TCGv_i64 t1 = tcg_temp_new_i64();
888 uint32_t i;
889
890 for (i = 0; i < oprsz; i += 8) {
891 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
892 if (load_dest) {
893 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
894 }
895 fni(t1, t0, c);
896 tcg_gen_st_i64(t1, cpu_env, dofs + i);
897 }
898 tcg_temp_free_i64(t0);
899 tcg_temp_free_i64(t1);
900 }
901
902 static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
903 TCGv_i64 c, bool scalar_first,
904 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
905 {
906 TCGv_i64 t0 = tcg_temp_new_i64();
907 TCGv_i64 t1 = tcg_temp_new_i64();
908 uint32_t i;
909
910 for (i = 0; i < oprsz; i += 8) {
911 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
912 if (scalar_first) {
913 fni(t1, c, t0);
914 } else {
915 fni(t1, t0, c);
916 }
917 tcg_gen_st_i64(t1, cpu_env, dofs + i);
918 }
919 tcg_temp_free_i64(t0);
920 tcg_temp_free_i64(t1);
921 }
922
923 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
924 static void expand_3_i64(uint32_t dofs, uint32_t aofs,
925 uint32_t bofs, uint32_t oprsz, bool load_dest,
926 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
927 {
928 TCGv_i64 t0 = tcg_temp_new_i64();
929 TCGv_i64 t1 = tcg_temp_new_i64();
930 TCGv_i64 t2 = tcg_temp_new_i64();
931 uint32_t i;
932
933 for (i = 0; i < oprsz; i += 8) {
934 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
935 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
936 if (load_dest) {
937 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
938 }
939 fni(t2, t0, t1);
940 tcg_gen_st_i64(t2, cpu_env, dofs + i);
941 }
942 tcg_temp_free_i64(t2);
943 tcg_temp_free_i64(t1);
944 tcg_temp_free_i64(t0);
945 }
946
947 static void expand_3i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
948 uint32_t oprsz, int64_t c, bool load_dest,
949 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, int64_t))
950 {
951 TCGv_i64 t0 = tcg_temp_new_i64();
952 TCGv_i64 t1 = tcg_temp_new_i64();
953 TCGv_i64 t2 = tcg_temp_new_i64();
954 uint32_t i;
955
956 for (i = 0; i < oprsz; i += 8) {
957 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
958 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
959 if (load_dest) {
960 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
961 }
962 fni(t2, t0, t1, c);
963 tcg_gen_st_i64(t2, cpu_env, dofs + i);
964 }
965 tcg_temp_free_i64(t0);
966 tcg_temp_free_i64(t1);
967 tcg_temp_free_i64(t2);
968 }
969
970 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
971 static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
972 uint32_t cofs, uint32_t oprsz, bool write_aofs,
973 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
974 {
975 TCGv_i64 t0 = tcg_temp_new_i64();
976 TCGv_i64 t1 = tcg_temp_new_i64();
977 TCGv_i64 t2 = tcg_temp_new_i64();
978 TCGv_i64 t3 = tcg_temp_new_i64();
979 uint32_t i;
980
981 for (i = 0; i < oprsz; i += 8) {
982 tcg_gen_ld_i64(t1, cpu_env, aofs + i);
983 tcg_gen_ld_i64(t2, cpu_env, bofs + i);
984 tcg_gen_ld_i64(t3, cpu_env, cofs + i);
985 fni(t0, t1, t2, t3);
986 tcg_gen_st_i64(t0, cpu_env, dofs + i);
987 if (write_aofs) {
988 tcg_gen_st_i64(t1, cpu_env, aofs + i);
989 }
990 }
991 tcg_temp_free_i64(t3);
992 tcg_temp_free_i64(t2);
993 tcg_temp_free_i64(t1);
994 tcg_temp_free_i64(t0);
995 }
996
997 static void expand_4i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
998 uint32_t cofs, uint32_t oprsz, int64_t c,
999 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64,
1000 int64_t))
1001 {
1002 TCGv_i64 t0 = tcg_temp_new_i64();
1003 TCGv_i64 t1 = tcg_temp_new_i64();
1004 TCGv_i64 t2 = tcg_temp_new_i64();
1005 TCGv_i64 t3 = tcg_temp_new_i64();
1006 uint32_t i;
1007
1008 for (i = 0; i < oprsz; i += 8) {
1009 tcg_gen_ld_i64(t1, cpu_env, aofs + i);
1010 tcg_gen_ld_i64(t2, cpu_env, bofs + i);
1011 tcg_gen_ld_i64(t3, cpu_env, cofs + i);
1012 fni(t0, t1, t2, t3, c);
1013 tcg_gen_st_i64(t0, cpu_env, dofs + i);
1014 }
1015 tcg_temp_free_i64(t3);
1016 tcg_temp_free_i64(t2);
1017 tcg_temp_free_i64(t1);
1018 tcg_temp_free_i64(t0);
1019 }
1020
1021 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
1022 static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1023 uint32_t oprsz, uint32_t tysz, TCGType type,
1024 bool load_dest,
1025 void (*fni)(unsigned, TCGv_vec, TCGv_vec))
1026 {
1027 TCGv_vec t0 = tcg_temp_new_vec(type);
1028 TCGv_vec t1 = tcg_temp_new_vec(type);
1029 uint32_t i;
1030
1031 for (i = 0; i < oprsz; i += tysz) {
1032 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1033 if (load_dest) {
1034 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
1035 }
1036 fni(vece, t1, t0);
1037 tcg_gen_st_vec(t1, cpu_env, dofs + i);
1038 }
1039 tcg_temp_free_vec(t0);
1040 tcg_temp_free_vec(t1);
1041 }
1042
1043 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
1044 using host vectors. */
1045 static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1046 uint32_t oprsz, uint32_t tysz, TCGType type,
1047 int64_t c, bool load_dest,
1048 void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t))
1049 {
1050 TCGv_vec t0 = tcg_temp_new_vec(type);
1051 TCGv_vec t1 = tcg_temp_new_vec(type);
1052 uint32_t i;
1053
1054 for (i = 0; i < oprsz; i += tysz) {
1055 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1056 if (load_dest) {
1057 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
1058 }
1059 fni(vece, t1, t0, c);
1060 tcg_gen_st_vec(t1, cpu_env, dofs + i);
1061 }
1062 tcg_temp_free_vec(t0);
1063 tcg_temp_free_vec(t1);
1064 }
1065
1066 static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1067 uint32_t oprsz, uint32_t tysz, TCGType type,
1068 TCGv_vec c, bool scalar_first,
1069 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
1070 {
1071 TCGv_vec t0 = tcg_temp_new_vec(type);
1072 TCGv_vec t1 = tcg_temp_new_vec(type);
1073 uint32_t i;
1074
1075 for (i = 0; i < oprsz; i += tysz) {
1076 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1077 if (scalar_first) {
1078 fni(vece, t1, c, t0);
1079 } else {
1080 fni(vece, t1, t0, c);
1081 }
1082 tcg_gen_st_vec(t1, cpu_env, dofs + i);
1083 }
1084 tcg_temp_free_vec(t0);
1085 tcg_temp_free_vec(t1);
1086 }
1087
1088 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1089 static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1090 uint32_t bofs, uint32_t oprsz,
1091 uint32_t tysz, TCGType type, bool load_dest,
1092 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
1093 {
1094 TCGv_vec t0 = tcg_temp_new_vec(type);
1095 TCGv_vec t1 = tcg_temp_new_vec(type);
1096 TCGv_vec t2 = tcg_temp_new_vec(type);
1097 uint32_t i;
1098
1099 for (i = 0; i < oprsz; i += tysz) {
1100 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1101 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
1102 if (load_dest) {
1103 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
1104 }
1105 fni(vece, t2, t0, t1);
1106 tcg_gen_st_vec(t2, cpu_env, dofs + i);
1107 }
1108 tcg_temp_free_vec(t2);
1109 tcg_temp_free_vec(t1);
1110 tcg_temp_free_vec(t0);
1111 }
1112
1113 /*
1114 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1115 * using host vectors.
1116 */
1117 static void expand_3i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1118 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
1119 TCGType type, int64_t c, bool load_dest,
1120 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec,
1121 int64_t))
1122 {
1123 TCGv_vec t0 = tcg_temp_new_vec(type);
1124 TCGv_vec t1 = tcg_temp_new_vec(type);
1125 TCGv_vec t2 = tcg_temp_new_vec(type);
1126 uint32_t i;
1127
1128 for (i = 0; i < oprsz; i += tysz) {
1129 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1130 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
1131 if (load_dest) {
1132 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
1133 }
1134 fni(vece, t2, t0, t1, c);
1135 tcg_gen_st_vec(t2, cpu_env, dofs + i);
1136 }
1137 tcg_temp_free_vec(t0);
1138 tcg_temp_free_vec(t1);
1139 tcg_temp_free_vec(t2);
1140 }
1141
1142 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1143 static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1144 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
1145 uint32_t tysz, TCGType type, bool write_aofs,
1146 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
1147 TCGv_vec, TCGv_vec))
1148 {
1149 TCGv_vec t0 = tcg_temp_new_vec(type);
1150 TCGv_vec t1 = tcg_temp_new_vec(type);
1151 TCGv_vec t2 = tcg_temp_new_vec(type);
1152 TCGv_vec t3 = tcg_temp_new_vec(type);
1153 uint32_t i;
1154
1155 for (i = 0; i < oprsz; i += tysz) {
1156 tcg_gen_ld_vec(t1, cpu_env, aofs + i);
1157 tcg_gen_ld_vec(t2, cpu_env, bofs + i);
1158 tcg_gen_ld_vec(t3, cpu_env, cofs + i);
1159 fni(vece, t0, t1, t2, t3);
1160 tcg_gen_st_vec(t0, cpu_env, dofs + i);
1161 if (write_aofs) {
1162 tcg_gen_st_vec(t1, cpu_env, aofs + i);
1163 }
1164 }
1165 tcg_temp_free_vec(t3);
1166 tcg_temp_free_vec(t2);
1167 tcg_temp_free_vec(t1);
1168 tcg_temp_free_vec(t0);
1169 }
1170
1171 /*
1172 * Expand OPSZ bytes worth of four-vector operands and an immediate operand
1173 * using host vectors.
1174 */
1175 static void expand_4i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1176 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
1177 uint32_t tysz, TCGType type, int64_t c,
1178 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
1179 TCGv_vec, TCGv_vec, int64_t))
1180 {
1181 TCGv_vec t0 = tcg_temp_new_vec(type);
1182 TCGv_vec t1 = tcg_temp_new_vec(type);
1183 TCGv_vec t2 = tcg_temp_new_vec(type);
1184 TCGv_vec t3 = tcg_temp_new_vec(type);
1185 uint32_t i;
1186
1187 for (i = 0; i < oprsz; i += tysz) {
1188 tcg_gen_ld_vec(t1, cpu_env, aofs + i);
1189 tcg_gen_ld_vec(t2, cpu_env, bofs + i);
1190 tcg_gen_ld_vec(t3, cpu_env, cofs + i);
1191 fni(vece, t0, t1, t2, t3, c);
1192 tcg_gen_st_vec(t0, cpu_env, dofs + i);
1193 }
1194 tcg_temp_free_vec(t3);
1195 tcg_temp_free_vec(t2);
1196 tcg_temp_free_vec(t1);
1197 tcg_temp_free_vec(t0);
1198 }
1199
1200 /* Expand a vector two-operand operation. */
1201 void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs,
1202 uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
1203 {
1204 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1205 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1206 TCGType type;
1207 uint32_t some;
1208
1209 check_size_align(oprsz, maxsz, dofs | aofs);
1210 check_overlap_2(dofs, aofs, maxsz);
1211
1212 type = 0;
1213 if (g->fniv) {
1214 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1215 }
1216 switch (type) {
1217 case TCG_TYPE_V256:
1218 /* Recall that ARM SVE allows vector sizes that are not a
1219 * power of 2, but always a multiple of 16. The intent is
1220 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1221 */
1222 some = QEMU_ALIGN_DOWN(oprsz, 32);
1223 expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1224 g->load_dest, g->fniv);
1225 if (some == oprsz) {
1226 break;
1227 }
1228 dofs += some;
1229 aofs += some;
1230 oprsz -= some;
1231 maxsz -= some;
1232 /* fallthru */
1233 case TCG_TYPE_V128:
1234 expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1235 g->load_dest, g->fniv);
1236 break;
1237 case TCG_TYPE_V64:
1238 expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1239 g->load_dest, g->fniv);
1240 break;
1241
1242 case 0:
1243 if (g->fni8 && check_size_impl(oprsz, 8)) {
1244 expand_2_i64(dofs, aofs, oprsz, g->load_dest, g->fni8);
1245 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1246 expand_2_i32(dofs, aofs, oprsz, g->load_dest, g->fni4);
1247 } else {
1248 assert(g->fno != NULL);
1249 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno);
1250 oprsz = maxsz;
1251 }
1252 break;
1253
1254 default:
1255 g_assert_not_reached();
1256 }
1257 tcg_swap_vecop_list(hold_list);
1258
1259 if (oprsz < maxsz) {
1260 expand_clr(dofs + oprsz, maxsz - oprsz);
1261 }
1262 }
1263
1264 /* Expand a vector operation with two vectors and an immediate. */
1265 void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1266 uint32_t maxsz, int64_t c, const GVecGen2i *g)
1267 {
1268 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1269 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1270 TCGType type;
1271 uint32_t some;
1272
1273 check_size_align(oprsz, maxsz, dofs | aofs);
1274 check_overlap_2(dofs, aofs, maxsz);
1275
1276 type = 0;
1277 if (g->fniv) {
1278 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1279 }
1280 switch (type) {
1281 case TCG_TYPE_V256:
1282 /* Recall that ARM SVE allows vector sizes that are not a
1283 * power of 2, but always a multiple of 16. The intent is
1284 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1285 */
1286 some = QEMU_ALIGN_DOWN(oprsz, 32);
1287 expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1288 c, g->load_dest, g->fniv);
1289 if (some == oprsz) {
1290 break;
1291 }
1292 dofs += some;
1293 aofs += some;
1294 oprsz -= some;
1295 maxsz -= some;
1296 /* fallthru */
1297 case TCG_TYPE_V128:
1298 expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1299 c, g->load_dest, g->fniv);
1300 break;
1301 case TCG_TYPE_V64:
1302 expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1303 c, g->load_dest, g->fniv);
1304 break;
1305
1306 case 0:
1307 if (g->fni8 && check_size_impl(oprsz, 8)) {
1308 expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8);
1309 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1310 expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4);
1311 } else {
1312 if (g->fno) {
1313 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno);
1314 } else {
1315 TCGv_i64 tcg_c = tcg_constant_i64(c);
1316 tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz,
1317 maxsz, c, g->fnoi);
1318 }
1319 oprsz = maxsz;
1320 }
1321 break;
1322
1323 default:
1324 g_assert_not_reached();
1325 }
1326 tcg_swap_vecop_list(hold_list);
1327
1328 if (oprsz < maxsz) {
1329 expand_clr(dofs + oprsz, maxsz - oprsz);
1330 }
1331 }
1332
1333 /* Expand a vector operation with two vectors and a scalar. */
1334 void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1335 uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g)
1336 {
1337 TCGType type;
1338
1339 check_size_align(oprsz, maxsz, dofs | aofs);
1340 check_overlap_2(dofs, aofs, maxsz);
1341
1342 type = 0;
1343 if (g->fniv) {
1344 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1345 }
1346 if (type != 0) {
1347 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1348 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1349 TCGv_vec t_vec = tcg_temp_new_vec(type);
1350 uint32_t some;
1351
1352 tcg_gen_dup_i64_vec(g->vece, t_vec, c);
1353
1354 switch (type) {
1355 case TCG_TYPE_V256:
1356 /* Recall that ARM SVE allows vector sizes that are not a
1357 * power of 2, but always a multiple of 16. The intent is
1358 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1359 */
1360 some = QEMU_ALIGN_DOWN(oprsz, 32);
1361 expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1362 t_vec, g->scalar_first, g->fniv);
1363 if (some == oprsz) {
1364 break;
1365 }
1366 dofs += some;
1367 aofs += some;
1368 oprsz -= some;
1369 maxsz -= some;
1370 /* fallthru */
1371
1372 case TCG_TYPE_V128:
1373 expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1374 t_vec, g->scalar_first, g->fniv);
1375 break;
1376
1377 case TCG_TYPE_V64:
1378 expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1379 t_vec, g->scalar_first, g->fniv);
1380 break;
1381
1382 default:
1383 g_assert_not_reached();
1384 }
1385 tcg_temp_free_vec(t_vec);
1386 tcg_swap_vecop_list(hold_list);
1387 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1388 TCGv_i64 t64 = tcg_temp_new_i64();
1389
1390 tcg_gen_dup_i64(g->vece, t64, c);
1391 expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8);
1392 tcg_temp_free_i64(t64);
1393 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1394 TCGv_i32 t32 = tcg_temp_new_i32();
1395
1396 tcg_gen_extrl_i64_i32(t32, c);
1397 tcg_gen_dup_i32(g->vece, t32, t32);
1398 expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4);
1399 tcg_temp_free_i32(t32);
1400 } else {
1401 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno);
1402 return;
1403 }
1404
1405 if (oprsz < maxsz) {
1406 expand_clr(dofs + oprsz, maxsz - oprsz);
1407 }
1408 }
1409
1410 /* Expand a vector three-operand operation. */
1411 void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1412 uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
1413 {
1414 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1415 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1416 TCGType type;
1417 uint32_t some;
1418
1419 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1420 check_overlap_3(dofs, aofs, bofs, maxsz);
1421
1422 type = 0;
1423 if (g->fniv) {
1424 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1425 }
1426 switch (type) {
1427 case TCG_TYPE_V256:
1428 /* Recall that ARM SVE allows vector sizes that are not a
1429 * power of 2, but always a multiple of 16. The intent is
1430 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1431 */
1432 some = QEMU_ALIGN_DOWN(oprsz, 32);
1433 expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1434 g->load_dest, g->fniv);
1435 if (some == oprsz) {
1436 break;
1437 }
1438 dofs += some;
1439 aofs += some;
1440 bofs += some;
1441 oprsz -= some;
1442 maxsz -= some;
1443 /* fallthru */
1444 case TCG_TYPE_V128:
1445 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1446 g->load_dest, g->fniv);
1447 break;
1448 case TCG_TYPE_V64:
1449 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1450 g->load_dest, g->fniv);
1451 break;
1452
1453 case 0:
1454 if (g->fni8 && check_size_impl(oprsz, 8)) {
1455 expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
1456 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1457 expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
1458 } else {
1459 assert(g->fno != NULL);
1460 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz,
1461 maxsz, g->data, g->fno);
1462 oprsz = maxsz;
1463 }
1464 break;
1465
1466 default:
1467 g_assert_not_reached();
1468 }
1469 tcg_swap_vecop_list(hold_list);
1470
1471 if (oprsz < maxsz) {
1472 expand_clr(dofs + oprsz, maxsz - oprsz);
1473 }
1474 }
1475
1476 /* Expand a vector operation with three vectors and an immediate. */
1477 void tcg_gen_gvec_3i(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1478 uint32_t oprsz, uint32_t maxsz, int64_t c,
1479 const GVecGen3i *g)
1480 {
1481 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1482 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1483 TCGType type;
1484 uint32_t some;
1485
1486 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1487 check_overlap_3(dofs, aofs, bofs, maxsz);
1488
1489 type = 0;
1490 if (g->fniv) {
1491 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1492 }
1493 switch (type) {
1494 case TCG_TYPE_V256:
1495 /*
1496 * Recall that ARM SVE allows vector sizes that are not a
1497 * power of 2, but always a multiple of 16. The intent is
1498 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1499 */
1500 some = QEMU_ALIGN_DOWN(oprsz, 32);
1501 expand_3i_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1502 c, g->load_dest, g->fniv);
1503 if (some == oprsz) {
1504 break;
1505 }
1506 dofs += some;
1507 aofs += some;
1508 bofs += some;
1509 oprsz -= some;
1510 maxsz -= some;
1511 /* fallthru */
1512 case TCG_TYPE_V128:
1513 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1514 c, g->load_dest, g->fniv);
1515 break;
1516 case TCG_TYPE_V64:
1517 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1518 c, g->load_dest, g->fniv);
1519 break;
1520
1521 case 0:
1522 if (g->fni8 && check_size_impl(oprsz, 8)) {
1523 expand_3i_i64(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni8);
1524 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1525 expand_3i_i32(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni4);
1526 } else {
1527 assert(g->fno != NULL);
1528 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, c, g->fno);
1529 oprsz = maxsz;
1530 }
1531 break;
1532
1533 default:
1534 g_assert_not_reached();
1535 }
1536 tcg_swap_vecop_list(hold_list);
1537
1538 if (oprsz < maxsz) {
1539 expand_clr(dofs + oprsz, maxsz - oprsz);
1540 }
1541 }
1542
1543 /* Expand a vector four-operand operation. */
1544 void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1545 uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
1546 {
1547 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1548 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1549 TCGType type;
1550 uint32_t some;
1551
1552 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1553 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1554
1555 type = 0;
1556 if (g->fniv) {
1557 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1558 }
1559 switch (type) {
1560 case TCG_TYPE_V256:
1561 /* Recall that ARM SVE allows vector sizes that are not a
1562 * power of 2, but always a multiple of 16. The intent is
1563 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1564 */
1565 some = QEMU_ALIGN_DOWN(oprsz, 32);
1566 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some,
1567 32, TCG_TYPE_V256, g->write_aofs, g->fniv);
1568 if (some == oprsz) {
1569 break;
1570 }
1571 dofs += some;
1572 aofs += some;
1573 bofs += some;
1574 cofs += some;
1575 oprsz -= some;
1576 maxsz -= some;
1577 /* fallthru */
1578 case TCG_TYPE_V128:
1579 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1580 16, TCG_TYPE_V128, g->write_aofs, g->fniv);
1581 break;
1582 case TCG_TYPE_V64:
1583 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1584 8, TCG_TYPE_V64, g->write_aofs, g->fniv);
1585 break;
1586
1587 case 0:
1588 if (g->fni8 && check_size_impl(oprsz, 8)) {
1589 expand_4_i64(dofs, aofs, bofs, cofs, oprsz,
1590 g->write_aofs, g->fni8);
1591 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1592 expand_4_i32(dofs, aofs, bofs, cofs, oprsz,
1593 g->write_aofs, g->fni4);
1594 } else {
1595 assert(g->fno != NULL);
1596 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1597 oprsz, maxsz, g->data, g->fno);
1598 oprsz = maxsz;
1599 }
1600 break;
1601
1602 default:
1603 g_assert_not_reached();
1604 }
1605 tcg_swap_vecop_list(hold_list);
1606
1607 if (oprsz < maxsz) {
1608 expand_clr(dofs + oprsz, maxsz - oprsz);
1609 }
1610 }
1611
1612 /* Expand a vector four-operand operation. */
1613 void tcg_gen_gvec_4i(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1614 uint32_t oprsz, uint32_t maxsz, int64_t c,
1615 const GVecGen4i *g)
1616 {
1617 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1618 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1619 TCGType type;
1620 uint32_t some;
1621
1622 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1623 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1624
1625 type = 0;
1626 if (g->fniv) {
1627 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1628 }
1629 switch (type) {
1630 case TCG_TYPE_V256:
1631 /*
1632 * Recall that ARM SVE allows vector sizes that are not a
1633 * power of 2, but always a multiple of 16. The intent is
1634 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1635 */
1636 some = QEMU_ALIGN_DOWN(oprsz, 32);
1637 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, some,
1638 32, TCG_TYPE_V256, c, g->fniv);
1639 if (some == oprsz) {
1640 break;
1641 }
1642 dofs += some;
1643 aofs += some;
1644 bofs += some;
1645 cofs += some;
1646 oprsz -= some;
1647 maxsz -= some;
1648 /* fallthru */
1649 case TCG_TYPE_V128:
1650 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1651 16, TCG_TYPE_V128, c, g->fniv);
1652 break;
1653 case TCG_TYPE_V64:
1654 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1655 8, TCG_TYPE_V64, c, g->fniv);
1656 break;
1657
1658 case 0:
1659 if (g->fni8 && check_size_impl(oprsz, 8)) {
1660 expand_4i_i64(dofs, aofs, bofs, cofs, oprsz, c, g->fni8);
1661 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1662 expand_4i_i32(dofs, aofs, bofs, cofs, oprsz, c, g->fni4);
1663 } else {
1664 assert(g->fno != NULL);
1665 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1666 oprsz, maxsz, c, g->fno);
1667 oprsz = maxsz;
1668 }
1669 break;
1670
1671 default:
1672 g_assert_not_reached();
1673 }
1674 tcg_swap_vecop_list(hold_list);
1675
1676 if (oprsz < maxsz) {
1677 expand_clr(dofs + oprsz, maxsz - oprsz);
1678 }
1679 }
1680
1681 /*
1682 * Expand specific vector operations.
1683 */
1684
1685 static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b)
1686 {
1687 tcg_gen_mov_vec(a, b);
1688 }
1689
1690 void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs,
1691 uint32_t oprsz, uint32_t maxsz)
1692 {
1693 static const GVecGen2 g = {
1694 .fni8 = tcg_gen_mov_i64,
1695 .fniv = vec_mov2,
1696 .fno = gen_helper_gvec_mov,
1697 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1698 };
1699 if (dofs != aofs) {
1700 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1701 } else {
1702 check_size_align(oprsz, maxsz, dofs);
1703 if (oprsz < maxsz) {
1704 expand_clr(dofs + oprsz, maxsz - oprsz);
1705 }
1706 }
1707 }
1708
1709 void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz,
1710 uint32_t maxsz, TCGv_i32 in)
1711 {
1712 check_size_align(oprsz, maxsz, dofs);
1713 tcg_debug_assert(vece <= MO_32);
1714 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1715 }
1716
1717 void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz,
1718 uint32_t maxsz, TCGv_i64 in)
1719 {
1720 check_size_align(oprsz, maxsz, dofs);
1721 tcg_debug_assert(vece <= MO_64);
1722 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1723 }
1724
1725 void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs,
1726 uint32_t oprsz, uint32_t maxsz)
1727 {
1728 check_size_align(oprsz, maxsz, dofs);
1729 if (vece <= MO_64) {
1730 TCGType type = choose_vector_type(NULL, vece, oprsz, 0);
1731 if (type != 0) {
1732 TCGv_vec t_vec = tcg_temp_new_vec(type);
1733 tcg_gen_dup_mem_vec(vece, t_vec, cpu_env, aofs);
1734 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
1735 tcg_temp_free_vec(t_vec);
1736 } else if (vece <= MO_32) {
1737 TCGv_i32 in = tcg_temp_ebb_new_i32();
1738 switch (vece) {
1739 case MO_8:
1740 tcg_gen_ld8u_i32(in, cpu_env, aofs);
1741 break;
1742 case MO_16:
1743 tcg_gen_ld16u_i32(in, cpu_env, aofs);
1744 break;
1745 default:
1746 tcg_gen_ld_i32(in, cpu_env, aofs);
1747 break;
1748 }
1749 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1750 tcg_temp_free_i32(in);
1751 } else {
1752 TCGv_i64 in = tcg_temp_ebb_new_i64();
1753 tcg_gen_ld_i64(in, cpu_env, aofs);
1754 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1755 tcg_temp_free_i64(in);
1756 }
1757 } else if (vece == 4) {
1758 /* 128-bit duplicate. */
1759 int i;
1760
1761 tcg_debug_assert(oprsz >= 16);
1762 if (TCG_TARGET_HAS_v128) {
1763 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128);
1764
1765 tcg_gen_ld_vec(in, cpu_env, aofs);
1766 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1767 tcg_gen_st_vec(in, cpu_env, dofs + i);
1768 }
1769 tcg_temp_free_vec(in);
1770 } else {
1771 TCGv_i64 in0 = tcg_temp_ebb_new_i64();
1772 TCGv_i64 in1 = tcg_temp_ebb_new_i64();
1773
1774 tcg_gen_ld_i64(in0, cpu_env, aofs);
1775 tcg_gen_ld_i64(in1, cpu_env, aofs + 8);
1776 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1777 tcg_gen_st_i64(in0, cpu_env, dofs + i);
1778 tcg_gen_st_i64(in1, cpu_env, dofs + i + 8);
1779 }
1780 tcg_temp_free_i64(in0);
1781 tcg_temp_free_i64(in1);
1782 }
1783 if (oprsz < maxsz) {
1784 expand_clr(dofs + oprsz, maxsz - oprsz);
1785 }
1786 } else if (vece == 5) {
1787 /* 256-bit duplicate. */
1788 int i;
1789
1790 tcg_debug_assert(oprsz >= 32);
1791 tcg_debug_assert(oprsz % 32 == 0);
1792 if (TCG_TARGET_HAS_v256) {
1793 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V256);
1794
1795 tcg_gen_ld_vec(in, cpu_env, aofs);
1796 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1797 tcg_gen_st_vec(in, cpu_env, dofs + i);
1798 }
1799 tcg_temp_free_vec(in);
1800 } else if (TCG_TARGET_HAS_v128) {
1801 TCGv_vec in0 = tcg_temp_new_vec(TCG_TYPE_V128);
1802 TCGv_vec in1 = tcg_temp_new_vec(TCG_TYPE_V128);
1803
1804 tcg_gen_ld_vec(in0, cpu_env, aofs);
1805 tcg_gen_ld_vec(in1, cpu_env, aofs + 16);
1806 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1807 tcg_gen_st_vec(in0, cpu_env, dofs + i);
1808 tcg_gen_st_vec(in1, cpu_env, dofs + i + 16);
1809 }
1810 tcg_temp_free_vec(in0);
1811 tcg_temp_free_vec(in1);
1812 } else {
1813 TCGv_i64 in[4];
1814 int j;
1815
1816 for (j = 0; j < 4; ++j) {
1817 in[j] = tcg_temp_ebb_new_i64();
1818 tcg_gen_ld_i64(in[j], cpu_env, aofs + j * 8);
1819 }
1820 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1821 for (j = 0; j < 4; ++j) {
1822 tcg_gen_st_i64(in[j], cpu_env, dofs + i + j * 8);
1823 }
1824 }
1825 for (j = 0; j < 4; ++j) {
1826 tcg_temp_free_i64(in[j]);
1827 }
1828 }
1829 if (oprsz < maxsz) {
1830 expand_clr(dofs + oprsz, maxsz - oprsz);
1831 }
1832 } else {
1833 g_assert_not_reached();
1834 }
1835 }
1836
1837 void tcg_gen_gvec_dup_imm(unsigned vece, uint32_t dofs, uint32_t oprsz,
1838 uint32_t maxsz, uint64_t x)
1839 {
1840 check_size_align(oprsz, maxsz, dofs);
1841 do_dup(vece, dofs, oprsz, maxsz, NULL, NULL, x);
1842 }
1843
1844 void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs,
1845 uint32_t oprsz, uint32_t maxsz)
1846 {
1847 static const GVecGen2 g = {
1848 .fni8 = tcg_gen_not_i64,
1849 .fniv = tcg_gen_not_vec,
1850 .fno = gen_helper_gvec_not,
1851 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1852 };
1853 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1854 }
1855
1856 /* Perform a vector addition using normal addition and a mask. The mask
1857 should be the sign bit of each lane. This 6-operation form is more
1858 efficient than separate additions when there are 4 or more lanes in
1859 the 64-bit operation. */
1860 static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1861 {
1862 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
1863 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
1864 TCGv_i64 t3 = tcg_temp_ebb_new_i64();
1865
1866 tcg_gen_andc_i64(t1, a, m);
1867 tcg_gen_andc_i64(t2, b, m);
1868 tcg_gen_xor_i64(t3, a, b);
1869 tcg_gen_add_i64(d, t1, t2);
1870 tcg_gen_and_i64(t3, t3, m);
1871 tcg_gen_xor_i64(d, d, t3);
1872
1873 tcg_temp_free_i64(t1);
1874 tcg_temp_free_i64(t2);
1875 tcg_temp_free_i64(t3);
1876 }
1877
1878 void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1879 {
1880 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
1881 gen_addv_mask(d, a, b, m);
1882 }
1883
1884 void tcg_gen_vec_add8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1885 {
1886 TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80));
1887 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
1888 TCGv_i32 t2 = tcg_temp_ebb_new_i32();
1889 TCGv_i32 t3 = tcg_temp_ebb_new_i32();
1890
1891 tcg_gen_andc_i32(t1, a, m);
1892 tcg_gen_andc_i32(t2, b, m);
1893 tcg_gen_xor_i32(t3, a, b);
1894 tcg_gen_add_i32(d, t1, t2);
1895 tcg_gen_and_i32(t3, t3, m);
1896 tcg_gen_xor_i32(d, d, t3);
1897
1898 tcg_temp_free_i32(t1);
1899 tcg_temp_free_i32(t2);
1900 tcg_temp_free_i32(t3);
1901 }
1902
1903 void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1904 {
1905 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
1906 gen_addv_mask(d, a, b, m);
1907 }
1908
1909 void tcg_gen_vec_add16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1910 {
1911 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
1912 TCGv_i32 t2 = tcg_temp_ebb_new_i32();
1913
1914 tcg_gen_andi_i32(t1, a, ~0xffff);
1915 tcg_gen_add_i32(t2, a, b);
1916 tcg_gen_add_i32(t1, t1, b);
1917 tcg_gen_deposit_i32(d, t1, t2, 0, 16);
1918
1919 tcg_temp_free_i32(t1);
1920 tcg_temp_free_i32(t2);
1921 }
1922
1923 void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1924 {
1925 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
1926 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
1927
1928 tcg_gen_andi_i64(t1, a, ~0xffffffffull);
1929 tcg_gen_add_i64(t2, a, b);
1930 tcg_gen_add_i64(t1, t1, b);
1931 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1932
1933 tcg_temp_free_i64(t1);
1934 tcg_temp_free_i64(t2);
1935 }
1936
1937 static const TCGOpcode vecop_list_add[] = { INDEX_op_add_vec, 0 };
1938
1939 void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs,
1940 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1941 {
1942 static const GVecGen3 g[4] = {
1943 { .fni8 = tcg_gen_vec_add8_i64,
1944 .fniv = tcg_gen_add_vec,
1945 .fno = gen_helper_gvec_add8,
1946 .opt_opc = vecop_list_add,
1947 .vece = MO_8 },
1948 { .fni8 = tcg_gen_vec_add16_i64,
1949 .fniv = tcg_gen_add_vec,
1950 .fno = gen_helper_gvec_add16,
1951 .opt_opc = vecop_list_add,
1952 .vece = MO_16 },
1953 { .fni4 = tcg_gen_add_i32,
1954 .fniv = tcg_gen_add_vec,
1955 .fno = gen_helper_gvec_add32,
1956 .opt_opc = vecop_list_add,
1957 .vece = MO_32 },
1958 { .fni8 = tcg_gen_add_i64,
1959 .fniv = tcg_gen_add_vec,
1960 .fno = gen_helper_gvec_add64,
1961 .opt_opc = vecop_list_add,
1962 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1963 .vece = MO_64 },
1964 };
1965
1966 tcg_debug_assert(vece <= MO_64);
1967 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1968 }
1969
1970 void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs,
1971 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1972 {
1973 static const GVecGen2s g[4] = {
1974 { .fni8 = tcg_gen_vec_add8_i64,
1975 .fniv = tcg_gen_add_vec,
1976 .fno = gen_helper_gvec_adds8,
1977 .opt_opc = vecop_list_add,
1978 .vece = MO_8 },
1979 { .fni8 = tcg_gen_vec_add16_i64,
1980 .fniv = tcg_gen_add_vec,
1981 .fno = gen_helper_gvec_adds16,
1982 .opt_opc = vecop_list_add,
1983 .vece = MO_16 },
1984 { .fni4 = tcg_gen_add_i32,
1985 .fniv = tcg_gen_add_vec,
1986 .fno = gen_helper_gvec_adds32,
1987 .opt_opc = vecop_list_add,
1988 .vece = MO_32 },
1989 { .fni8 = tcg_gen_add_i64,
1990 .fniv = tcg_gen_add_vec,
1991 .fno = gen_helper_gvec_adds64,
1992 .opt_opc = vecop_list_add,
1993 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1994 .vece = MO_64 },
1995 };
1996
1997 tcg_debug_assert(vece <= MO_64);
1998 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1999 }
2000
2001 void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs,
2002 int64_t c, uint32_t oprsz, uint32_t maxsz)
2003 {
2004 TCGv_i64 tmp = tcg_constant_i64(c);
2005 tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz);
2006 }
2007
2008 static const TCGOpcode vecop_list_sub[] = { INDEX_op_sub_vec, 0 };
2009
2010 void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs,
2011 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2012 {
2013 static const GVecGen2s g[4] = {
2014 { .fni8 = tcg_gen_vec_sub8_i64,
2015 .fniv = tcg_gen_sub_vec,
2016 .fno = gen_helper_gvec_subs8,
2017 .opt_opc = vecop_list_sub,
2018 .vece = MO_8 },
2019 { .fni8 = tcg_gen_vec_sub16_i64,
2020 .fniv = tcg_gen_sub_vec,
2021 .fno = gen_helper_gvec_subs16,
2022 .opt_opc = vecop_list_sub,
2023 .vece = MO_16 },
2024 { .fni4 = tcg_gen_sub_i32,
2025 .fniv = tcg_gen_sub_vec,
2026 .fno = gen_helper_gvec_subs32,
2027 .opt_opc = vecop_list_sub,
2028 .vece = MO_32 },
2029 { .fni8 = tcg_gen_sub_i64,
2030 .fniv = tcg_gen_sub_vec,
2031 .fno = gen_helper_gvec_subs64,
2032 .opt_opc = vecop_list_sub,
2033 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2034 .vece = MO_64 },
2035 };
2036
2037 tcg_debug_assert(vece <= MO_64);
2038 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
2039 }
2040
2041 /* Perform a vector subtraction using normal subtraction and a mask.
2042 Compare gen_addv_mask above. */
2043 static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
2044 {
2045 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
2046 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
2047 TCGv_i64 t3 = tcg_temp_ebb_new_i64();
2048
2049 tcg_gen_or_i64(t1, a, m);
2050 tcg_gen_andc_i64(t2, b, m);
2051 tcg_gen_eqv_i64(t3, a, b);
2052 tcg_gen_sub_i64(d, t1, t2);
2053 tcg_gen_and_i64(t3, t3, m);
2054 tcg_gen_xor_i64(d, d, t3);
2055
2056 tcg_temp_free_i64(t1);
2057 tcg_temp_free_i64(t2);
2058 tcg_temp_free_i64(t3);
2059 }
2060
2061 void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2062 {
2063 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
2064 gen_subv_mask(d, a, b, m);
2065 }
2066
2067 void tcg_gen_vec_sub8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2068 {
2069 TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80));
2070 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
2071 TCGv_i32 t2 = tcg_temp_ebb_new_i32();
2072 TCGv_i32 t3 = tcg_temp_ebb_new_i32();
2073
2074 tcg_gen_or_i32(t1, a, m);
2075 tcg_gen_andc_i32(t2, b, m);
2076 tcg_gen_eqv_i32(t3, a, b);
2077 tcg_gen_sub_i32(d, t1, t2);
2078 tcg_gen_and_i32(t3, t3, m);
2079 tcg_gen_xor_i32(d, d, t3);
2080
2081 tcg_temp_free_i32(t1);
2082 tcg_temp_free_i32(t2);
2083 tcg_temp_free_i32(t3);
2084 }
2085
2086 void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2087 {
2088 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
2089 gen_subv_mask(d, a, b, m);
2090 }
2091
2092 void tcg_gen_vec_sub16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2093 {
2094 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
2095 TCGv_i32 t2 = tcg_temp_ebb_new_i32();
2096
2097 tcg_gen_andi_i32(t1, b, ~0xffff);
2098 tcg_gen_sub_i32(t2, a, b);
2099 tcg_gen_sub_i32(t1, a, t1);
2100 tcg_gen_deposit_i32(d, t1, t2, 0, 16);
2101
2102 tcg_temp_free_i32(t1);
2103 tcg_temp_free_i32(t2);
2104 }
2105
2106 void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2107 {
2108 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
2109 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
2110
2111 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2112 tcg_gen_sub_i64(t2, a, b);
2113 tcg_gen_sub_i64(t1, a, t1);
2114 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2115
2116 tcg_temp_free_i64(t1);
2117 tcg_temp_free_i64(t2);
2118 }
2119
2120 void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs,
2121 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2122 {
2123 static const GVecGen3 g[4] = {
2124 { .fni8 = tcg_gen_vec_sub8_i64,
2125 .fniv = tcg_gen_sub_vec,
2126 .fno = gen_helper_gvec_sub8,
2127 .opt_opc = vecop_list_sub,
2128 .vece = MO_8 },
2129 { .fni8 = tcg_gen_vec_sub16_i64,
2130 .fniv = tcg_gen_sub_vec,
2131 .fno = gen_helper_gvec_sub16,
2132 .opt_opc = vecop_list_sub,
2133 .vece = MO_16 },
2134 { .fni4 = tcg_gen_sub_i32,
2135 .fniv = tcg_gen_sub_vec,
2136 .fno = gen_helper_gvec_sub32,
2137 .opt_opc = vecop_list_sub,
2138 .vece = MO_32 },
2139 { .fni8 = tcg_gen_sub_i64,
2140 .fniv = tcg_gen_sub_vec,
2141 .fno = gen_helper_gvec_sub64,
2142 .opt_opc = vecop_list_sub,
2143 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2144 .vece = MO_64 },
2145 };
2146
2147 tcg_debug_assert(vece <= MO_64);
2148 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2149 }
2150
2151 static const TCGOpcode vecop_list_mul[] = { INDEX_op_mul_vec, 0 };
2152
2153 void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs,
2154 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2155 {
2156 static const GVecGen3 g[4] = {
2157 { .fniv = tcg_gen_mul_vec,
2158 .fno = gen_helper_gvec_mul8,
2159 .opt_opc = vecop_list_mul,
2160 .vece = MO_8 },
2161 { .fniv = tcg_gen_mul_vec,
2162 .fno = gen_helper_gvec_mul16,
2163 .opt_opc = vecop_list_mul,
2164 .vece = MO_16 },
2165 { .fni4 = tcg_gen_mul_i32,
2166 .fniv = tcg_gen_mul_vec,
2167 .fno = gen_helper_gvec_mul32,
2168 .opt_opc = vecop_list_mul,
2169 .vece = MO_32 },
2170 { .fni8 = tcg_gen_mul_i64,
2171 .fniv = tcg_gen_mul_vec,
2172 .fno = gen_helper_gvec_mul64,
2173 .opt_opc = vecop_list_mul,
2174 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2175 .vece = MO_64 },
2176 };
2177
2178 tcg_debug_assert(vece <= MO_64);
2179 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2180 }
2181
2182 void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs,
2183 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2184 {
2185 static const GVecGen2s g[4] = {
2186 { .fniv = tcg_gen_mul_vec,
2187 .fno = gen_helper_gvec_muls8,
2188 .opt_opc = vecop_list_mul,
2189 .vece = MO_8 },
2190 { .fniv = tcg_gen_mul_vec,
2191 .fno = gen_helper_gvec_muls16,
2192 .opt_opc = vecop_list_mul,
2193 .vece = MO_16 },
2194 { .fni4 = tcg_gen_mul_i32,
2195 .fniv = tcg_gen_mul_vec,
2196 .fno = gen_helper_gvec_muls32,
2197 .opt_opc = vecop_list_mul,
2198 .vece = MO_32 },
2199 { .fni8 = tcg_gen_mul_i64,
2200 .fniv = tcg_gen_mul_vec,
2201 .fno = gen_helper_gvec_muls64,
2202 .opt_opc = vecop_list_mul,
2203 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2204 .vece = MO_64 },
2205 };
2206
2207 tcg_debug_assert(vece <= MO_64);
2208 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
2209 }
2210
2211 void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs,
2212 int64_t c, uint32_t oprsz, uint32_t maxsz)
2213 {
2214 TCGv_i64 tmp = tcg_constant_i64(c);
2215 tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz);
2216 }
2217
2218 void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs,
2219 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2220 {
2221 static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, 0 };
2222 static const GVecGen3 g[4] = {
2223 { .fniv = tcg_gen_ssadd_vec,
2224 .fno = gen_helper_gvec_ssadd8,
2225 .opt_opc = vecop_list,
2226 .vece = MO_8 },
2227 { .fniv = tcg_gen_ssadd_vec,
2228 .fno = gen_helper_gvec_ssadd16,
2229 .opt_opc = vecop_list,
2230 .vece = MO_16 },
2231 { .fniv = tcg_gen_ssadd_vec,
2232 .fno = gen_helper_gvec_ssadd32,
2233 .opt_opc = vecop_list,
2234 .vece = MO_32 },
2235 { .fniv = tcg_gen_ssadd_vec,
2236 .fno = gen_helper_gvec_ssadd64,
2237 .opt_opc = vecop_list,
2238 .vece = MO_64 },
2239 };
2240 tcg_debug_assert(vece <= MO_64);
2241 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2242 }
2243
2244 void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs,
2245 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2246 {
2247 static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, 0 };
2248 static const GVecGen3 g[4] = {
2249 { .fniv = tcg_gen_sssub_vec,
2250 .fno = gen_helper_gvec_sssub8,
2251 .opt_opc = vecop_list,
2252 .vece = MO_8 },
2253 { .fniv = tcg_gen_sssub_vec,
2254 .fno = gen_helper_gvec_sssub16,
2255 .opt_opc = vecop_list,
2256 .vece = MO_16 },
2257 { .fniv = tcg_gen_sssub_vec,
2258 .fno = gen_helper_gvec_sssub32,
2259 .opt_opc = vecop_list,
2260 .vece = MO_32 },
2261 { .fniv = tcg_gen_sssub_vec,
2262 .fno = gen_helper_gvec_sssub64,
2263 .opt_opc = vecop_list,
2264 .vece = MO_64 },
2265 };
2266 tcg_debug_assert(vece <= MO_64);
2267 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2268 }
2269
2270 static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2271 {
2272 TCGv_i32 max = tcg_constant_i32(-1);
2273 tcg_gen_add_i32(d, a, b);
2274 tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d);
2275 }
2276
2277 static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2278 {
2279 TCGv_i64 max = tcg_constant_i64(-1);
2280 tcg_gen_add_i64(d, a, b);
2281 tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d);
2282 }
2283
2284 void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs,
2285 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2286 {
2287 static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, 0 };
2288 static const GVecGen3 g[4] = {
2289 { .fniv = tcg_gen_usadd_vec,
2290 .fno = gen_helper_gvec_usadd8,
2291 .opt_opc = vecop_list,
2292 .vece = MO_8 },
2293 { .fniv = tcg_gen_usadd_vec,
2294 .fno = gen_helper_gvec_usadd16,
2295 .opt_opc = vecop_list,
2296 .vece = MO_16 },
2297 { .fni4 = tcg_gen_usadd_i32,
2298 .fniv = tcg_gen_usadd_vec,
2299 .fno = gen_helper_gvec_usadd32,
2300 .opt_opc = vecop_list,
2301 .vece = MO_32 },
2302 { .fni8 = tcg_gen_usadd_i64,
2303 .fniv = tcg_gen_usadd_vec,
2304 .fno = gen_helper_gvec_usadd64,
2305 .opt_opc = vecop_list,
2306 .vece = MO_64 }
2307 };
2308 tcg_debug_assert(vece <= MO_64);
2309 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2310 }
2311
2312 static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2313 {
2314 TCGv_i32 min = tcg_constant_i32(0);
2315 tcg_gen_sub_i32(d, a, b);
2316 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d);
2317 }
2318
2319 static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2320 {
2321 TCGv_i64 min = tcg_constant_i64(0);
2322 tcg_gen_sub_i64(d, a, b);
2323 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d);
2324 }
2325
2326 void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs,
2327 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2328 {
2329 static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, 0 };
2330 static const GVecGen3 g[4] = {
2331 { .fniv = tcg_gen_ussub_vec,
2332 .fno = gen_helper_gvec_ussub8,
2333 .opt_opc = vecop_list,
2334 .vece = MO_8 },
2335 { .fniv = tcg_gen_ussub_vec,
2336 .fno = gen_helper_gvec_ussub16,
2337 .opt_opc = vecop_list,
2338 .vece = MO_16 },
2339 { .fni4 = tcg_gen_ussub_i32,
2340 .fniv = tcg_gen_ussub_vec,
2341 .fno = gen_helper_gvec_ussub32,
2342 .opt_opc = vecop_list,
2343 .vece = MO_32 },
2344 { .fni8 = tcg_gen_ussub_i64,
2345 .fniv = tcg_gen_ussub_vec,
2346 .fno = gen_helper_gvec_ussub64,
2347 .opt_opc = vecop_list,
2348 .vece = MO_64 }
2349 };
2350 tcg_debug_assert(vece <= MO_64);
2351 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2352 }
2353
2354 void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs,
2355 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2356 {
2357 static const TCGOpcode vecop_list[] = { INDEX_op_smin_vec, 0 };
2358 static const GVecGen3 g[4] = {
2359 { .fniv = tcg_gen_smin_vec,
2360 .fno = gen_helper_gvec_smin8,
2361 .opt_opc = vecop_list,
2362 .vece = MO_8 },
2363 { .fniv = tcg_gen_smin_vec,
2364 .fno = gen_helper_gvec_smin16,
2365 .opt_opc = vecop_list,
2366 .vece = MO_16 },
2367 { .fni4 = tcg_gen_smin_i32,
2368 .fniv = tcg_gen_smin_vec,
2369 .fno = gen_helper_gvec_smin32,
2370 .opt_opc = vecop_list,
2371 .vece = MO_32 },
2372 { .fni8 = tcg_gen_smin_i64,
2373 .fniv = tcg_gen_smin_vec,
2374 .fno = gen_helper_gvec_smin64,
2375 .opt_opc = vecop_list,
2376 .vece = MO_64 }
2377 };
2378 tcg_debug_assert(vece <= MO_64);
2379 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2380 }
2381
2382 void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs,
2383 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2384 {
2385 static const TCGOpcode vecop_list[] = { INDEX_op_umin_vec, 0 };
2386 static const GVecGen3 g[4] = {
2387 { .fniv = tcg_gen_umin_vec,
2388 .fno = gen_helper_gvec_umin8,
2389 .opt_opc = vecop_list,
2390 .vece = MO_8 },
2391 { .fniv = tcg_gen_umin_vec,
2392 .fno = gen_helper_gvec_umin16,
2393 .opt_opc = vecop_list,
2394 .vece = MO_16 },
2395 { .fni4 = tcg_gen_umin_i32,
2396 .fniv = tcg_gen_umin_vec,
2397 .fno = gen_helper_gvec_umin32,
2398 .opt_opc = vecop_list,
2399 .vece = MO_32 },
2400 { .fni8 = tcg_gen_umin_i64,
2401 .fniv = tcg_gen_umin_vec,
2402 .fno = gen_helper_gvec_umin64,
2403 .opt_opc = vecop_list,
2404 .vece = MO_64 }
2405 };
2406 tcg_debug_assert(vece <= MO_64);
2407 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2408 }
2409
2410 void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs,
2411 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2412 {
2413 static const TCGOpcode vecop_list[] = { INDEX_op_smax_vec, 0 };
2414 static const GVecGen3 g[4] = {
2415 { .fniv = tcg_gen_smax_vec,
2416 .fno = gen_helper_gvec_smax8,
2417 .opt_opc = vecop_list,
2418 .vece = MO_8 },
2419 { .fniv = tcg_gen_smax_vec,
2420 .fno = gen_helper_gvec_smax16,
2421 .opt_opc = vecop_list,
2422 .vece = MO_16 },
2423 { .fni4 = tcg_gen_smax_i32,
2424 .fniv = tcg_gen_smax_vec,
2425 .fno = gen_helper_gvec_smax32,
2426 .opt_opc = vecop_list,
2427 .vece = MO_32 },
2428 { .fni8 = tcg_gen_smax_i64,
2429 .fniv = tcg_gen_smax_vec,
2430 .fno = gen_helper_gvec_smax64,
2431 .opt_opc = vecop_list,
2432 .vece = MO_64 }
2433 };
2434 tcg_debug_assert(vece <= MO_64);
2435 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2436 }
2437
2438 void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs,
2439 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2440 {
2441 static const TCGOpcode vecop_list[] = { INDEX_op_umax_vec, 0 };
2442 static const GVecGen3 g[4] = {
2443 { .fniv = tcg_gen_umax_vec,
2444 .fno = gen_helper_gvec_umax8,
2445 .opt_opc = vecop_list,
2446 .vece = MO_8 },
2447 { .fniv = tcg_gen_umax_vec,
2448 .fno = gen_helper_gvec_umax16,
2449 .opt_opc = vecop_list,
2450 .vece = MO_16 },
2451 { .fni4 = tcg_gen_umax_i32,
2452 .fniv = tcg_gen_umax_vec,
2453 .fno = gen_helper_gvec_umax32,
2454 .opt_opc = vecop_list,
2455 .vece = MO_32 },
2456 { .fni8 = tcg_gen_umax_i64,
2457 .fniv = tcg_gen_umax_vec,
2458 .fno = gen_helper_gvec_umax64,
2459 .opt_opc = vecop_list,
2460 .vece = MO_64 }
2461 };
2462 tcg_debug_assert(vece <= MO_64);
2463 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2464 }
2465
2466 /* Perform a vector negation using normal negation and a mask.
2467 Compare gen_subv_mask above. */
2468 static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
2469 {
2470 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
2471 TCGv_i64 t3 = tcg_temp_ebb_new_i64();
2472
2473 tcg_gen_andc_i64(t3, m, b);
2474 tcg_gen_andc_i64(t2, b, m);
2475 tcg_gen_sub_i64(d, m, t2);
2476 tcg_gen_xor_i64(d, d, t3);
2477
2478 tcg_temp_free_i64(t2);
2479 tcg_temp_free_i64(t3);
2480 }
2481
2482 void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b)
2483 {
2484 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
2485 gen_negv_mask(d, b, m);
2486 }
2487
2488 void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b)
2489 {
2490 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
2491 gen_negv_mask(d, b, m);
2492 }
2493
2494 void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b)
2495 {
2496 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
2497 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
2498
2499 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2500 tcg_gen_neg_i64(t2, b);
2501 tcg_gen_neg_i64(t1, t1);
2502 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2503
2504 tcg_temp_free_i64(t1);
2505 tcg_temp_free_i64(t2);
2506 }
2507
2508 void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs,
2509 uint32_t oprsz, uint32_t maxsz)
2510 {
2511 static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, 0 };
2512 static const GVecGen2 g[4] = {
2513 { .fni8 = tcg_gen_vec_neg8_i64,
2514 .fniv = tcg_gen_neg_vec,
2515 .fno = gen_helper_gvec_neg8,
2516 .opt_opc = vecop_list,
2517 .vece = MO_8 },
2518 { .fni8 = tcg_gen_vec_neg16_i64,
2519 .fniv = tcg_gen_neg_vec,
2520 .fno = gen_helper_gvec_neg16,
2521 .opt_opc = vecop_list,
2522 .vece = MO_16 },
2523 { .fni4 = tcg_gen_neg_i32,
2524 .fniv = tcg_gen_neg_vec,
2525 .fno = gen_helper_gvec_neg32,
2526 .opt_opc = vecop_list,
2527 .vece = MO_32 },
2528 { .fni8 = tcg_gen_neg_i64,
2529 .fniv = tcg_gen_neg_vec,
2530 .fno = gen_helper_gvec_neg64,
2531 .opt_opc = vecop_list,
2532 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2533 .vece = MO_64 },
2534 };
2535
2536 tcg_debug_assert(vece <= MO_64);
2537 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2538 }
2539
2540 static void gen_absv_mask(TCGv_i64 d, TCGv_i64 b, unsigned vece)
2541 {
2542 TCGv_i64 t = tcg_temp_ebb_new_i64();
2543 int nbit = 8 << vece;
2544
2545 /* Create -1 for each negative element. */
2546 tcg_gen_shri_i64(t, b, nbit - 1);
2547 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2548 tcg_gen_muli_i64(t, t, (1 << nbit) - 1);
2549
2550 /*
2551 * Invert (via xor -1) and add one.
2552 * Because of the ordering the msb is cleared,
2553 * so we never have carry into the next element.
2554 */
2555 tcg_gen_xor_i64(d, b, t);
2556 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2557 tcg_gen_add_i64(d, d, t);
2558
2559 tcg_temp_free_i64(t);
2560 }
2561
2562 static void tcg_gen_vec_abs8_i64(TCGv_i64 d, TCGv_i64 b)
2563 {
2564 gen_absv_mask(d, b, MO_8);
2565 }
2566
2567 static void tcg_gen_vec_abs16_i64(TCGv_i64 d, TCGv_i64 b)
2568 {
2569 gen_absv_mask(d, b, MO_16);
2570 }
2571
2572 void tcg_gen_gvec_abs(unsigned vece, uint32_t dofs, uint32_t aofs,
2573 uint32_t oprsz, uint32_t maxsz)
2574 {
2575 static const TCGOpcode vecop_list[] = { INDEX_op_abs_vec, 0 };
2576 static const GVecGen2 g[4] = {
2577 { .fni8 = tcg_gen_vec_abs8_i64,
2578 .fniv = tcg_gen_abs_vec,
2579 .fno = gen_helper_gvec_abs8,
2580 .opt_opc = vecop_list,
2581 .vece = MO_8 },
2582 { .fni8 = tcg_gen_vec_abs16_i64,
2583 .fniv = tcg_gen_abs_vec,
2584 .fno = gen_helper_gvec_abs16,
2585 .opt_opc = vecop_list,
2586 .vece = MO_16 },
2587 { .fni4 = tcg_gen_abs_i32,
2588 .fniv = tcg_gen_abs_vec,
2589 .fno = gen_helper_gvec_abs32,
2590 .opt_opc = vecop_list,
2591 .vece = MO_32 },
2592 { .fni8 = tcg_gen_abs_i64,
2593 .fniv = tcg_gen_abs_vec,
2594 .fno = gen_helper_gvec_abs64,
2595 .opt_opc = vecop_list,
2596 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2597 .vece = MO_64 },
2598 };
2599
2600 tcg_debug_assert(vece <= MO_64);
2601 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2602 }
2603
2604 void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs,
2605 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2606 {
2607 static const GVecGen3 g = {
2608 .fni8 = tcg_gen_and_i64,
2609 .fniv = tcg_gen_and_vec,
2610 .fno = gen_helper_gvec_and,
2611 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2612 };
2613
2614 if (aofs == bofs) {
2615 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2616 } else {
2617 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2618 }
2619 }
2620
2621 void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs,
2622 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2623 {
2624 static const GVecGen3 g = {
2625 .fni8 = tcg_gen_or_i64,
2626 .fniv = tcg_gen_or_vec,
2627 .fno = gen_helper_gvec_or,
2628 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2629 };
2630
2631 if (aofs == bofs) {
2632 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2633 } else {
2634 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2635 }
2636 }
2637
2638 void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs,
2639 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2640 {
2641 static const GVecGen3 g = {
2642 .fni8 = tcg_gen_xor_i64,
2643 .fniv = tcg_gen_xor_vec,
2644 .fno = gen_helper_gvec_xor,
2645 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2646 };
2647
2648 if (aofs == bofs) {
2649 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2650 } else {
2651 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2652 }
2653 }
2654
2655 void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs,
2656 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2657 {
2658 static const GVecGen3 g = {
2659 .fni8 = tcg_gen_andc_i64,
2660 .fniv = tcg_gen_andc_vec,
2661 .fno = gen_helper_gvec_andc,
2662 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2663 };
2664
2665 if (aofs == bofs) {
2666 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2667 } else {
2668 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2669 }
2670 }
2671
2672 void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs,
2673 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2674 {
2675 static const GVecGen3 g = {
2676 .fni8 = tcg_gen_orc_i64,
2677 .fniv = tcg_gen_orc_vec,
2678 .fno = gen_helper_gvec_orc,
2679 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2680 };
2681
2682 if (aofs == bofs) {
2683 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2684 } else {
2685 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2686 }
2687 }
2688
2689 void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs,
2690 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2691 {
2692 static const GVecGen3 g = {
2693 .fni8 = tcg_gen_nand_i64,
2694 .fniv = tcg_gen_nand_vec,
2695 .fno = gen_helper_gvec_nand,
2696 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2697 };
2698
2699 if (aofs == bofs) {
2700 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2701 } else {
2702 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2703 }
2704 }
2705
2706 void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs,
2707 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2708 {
2709 static const GVecGen3 g = {
2710 .fni8 = tcg_gen_nor_i64,
2711 .fniv = tcg_gen_nor_vec,
2712 .fno = gen_helper_gvec_nor,
2713 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2714 };
2715
2716 if (aofs == bofs) {
2717 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2718 } else {
2719 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2720 }
2721 }
2722
2723 void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs,
2724 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2725 {
2726 static const GVecGen3 g = {
2727 .fni8 = tcg_gen_eqv_i64,
2728 .fniv = tcg_gen_eqv_vec,
2729 .fno = gen_helper_gvec_eqv,
2730 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2731 };
2732
2733 if (aofs == bofs) {
2734 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2735 } else {
2736 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2737 }
2738 }
2739
2740 static const GVecGen2s gop_ands = {
2741 .fni8 = tcg_gen_and_i64,
2742 .fniv = tcg_gen_and_vec,
2743 .fno = gen_helper_gvec_ands,
2744 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2745 .vece = MO_64
2746 };
2747
2748 void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs,
2749 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2750 {
2751 TCGv_i64 tmp = tcg_temp_ebb_new_i64();
2752 tcg_gen_dup_i64(vece, tmp, c);
2753 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2754 tcg_temp_free_i64(tmp);
2755 }
2756
2757 void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs,
2758 int64_t c, uint32_t oprsz, uint32_t maxsz)
2759 {
2760 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2761 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2762 }
2763
2764 void tcg_gen_gvec_andcs(unsigned vece, uint32_t dofs, uint32_t aofs,
2765 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2766 {
2767 static GVecGen2s g = {
2768 .fni8 = tcg_gen_andc_i64,
2769 .fniv = tcg_gen_andc_vec,
2770 .fno = gen_helper_gvec_andcs,
2771 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2772 .vece = MO_64
2773 };
2774
2775 TCGv_i64 tmp = tcg_temp_ebb_new_i64();
2776 tcg_gen_dup_i64(vece, tmp, c);
2777 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g);
2778 tcg_temp_free_i64(tmp);
2779 }
2780
2781 static const GVecGen2s gop_xors = {
2782 .fni8 = tcg_gen_xor_i64,
2783 .fniv = tcg_gen_xor_vec,
2784 .fno = gen_helper_gvec_xors,
2785 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2786 .vece = MO_64
2787 };
2788
2789 void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs,
2790 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2791 {
2792 TCGv_i64 tmp = tcg_temp_ebb_new_i64();
2793 tcg_gen_dup_i64(vece, tmp, c);
2794 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2795 tcg_temp_free_i64(tmp);
2796 }
2797
2798 void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs,
2799 int64_t c, uint32_t oprsz, uint32_t maxsz)
2800 {
2801 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2802 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2803 }
2804
2805 static const GVecGen2s gop_ors = {
2806 .fni8 = tcg_gen_or_i64,
2807 .fniv = tcg_gen_or_vec,
2808 .fno = gen_helper_gvec_ors,
2809 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2810 .vece = MO_64
2811 };
2812
2813 void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs,
2814 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2815 {
2816 TCGv_i64 tmp = tcg_temp_ebb_new_i64();
2817 tcg_gen_dup_i64(vece, tmp, c);
2818 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2819 tcg_temp_free_i64(tmp);
2820 }
2821
2822 void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs,
2823 int64_t c, uint32_t oprsz, uint32_t maxsz)
2824 {
2825 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2826 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2827 }
2828
2829 void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2830 {
2831 uint64_t mask = dup_const(MO_8, 0xff << c);
2832 tcg_gen_shli_i64(d, a, c);
2833 tcg_gen_andi_i64(d, d, mask);
2834 }
2835
2836 void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2837 {
2838 uint64_t mask = dup_const(MO_16, 0xffff << c);
2839 tcg_gen_shli_i64(d, a, c);
2840 tcg_gen_andi_i64(d, d, mask);
2841 }
2842
2843 void tcg_gen_vec_shl8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2844 {
2845 uint32_t mask = dup_const(MO_8, 0xff << c);
2846 tcg_gen_shli_i32(d, a, c);
2847 tcg_gen_andi_i32(d, d, mask);
2848 }
2849
2850 void tcg_gen_vec_shl16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2851 {
2852 uint32_t mask = dup_const(MO_16, 0xffff << c);
2853 tcg_gen_shli_i32(d, a, c);
2854 tcg_gen_andi_i32(d, d, mask);
2855 }
2856
2857 void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs,
2858 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2859 {
2860 static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
2861 static const GVecGen2i g[4] = {
2862 { .fni8 = tcg_gen_vec_shl8i_i64,
2863 .fniv = tcg_gen_shli_vec,
2864 .fno = gen_helper_gvec_shl8i,
2865 .opt_opc = vecop_list,
2866 .vece = MO_8 },
2867 { .fni8 = tcg_gen_vec_shl16i_i64,
2868 .fniv = tcg_gen_shli_vec,
2869 .fno = gen_helper_gvec_shl16i,
2870 .opt_opc = vecop_list,
2871 .vece = MO_16 },
2872 { .fni4 = tcg_gen_shli_i32,
2873 .fniv = tcg_gen_shli_vec,
2874 .fno = gen_helper_gvec_shl32i,
2875 .opt_opc = vecop_list,
2876 .vece = MO_32 },
2877 { .fni8 = tcg_gen_shli_i64,
2878 .fniv = tcg_gen_shli_vec,
2879 .fno = gen_helper_gvec_shl64i,
2880 .opt_opc = vecop_list,
2881 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2882 .vece = MO_64 },
2883 };
2884
2885 tcg_debug_assert(vece <= MO_64);
2886 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2887 if (shift == 0) {
2888 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2889 } else {
2890 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2891 }
2892 }
2893
2894 void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2895 {
2896 uint64_t mask = dup_const(MO_8, 0xff >> c);
2897 tcg_gen_shri_i64(d, a, c);
2898 tcg_gen_andi_i64(d, d, mask);
2899 }
2900
2901 void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2902 {
2903 uint64_t mask = dup_const(MO_16, 0xffff >> c);
2904 tcg_gen_shri_i64(d, a, c);
2905 tcg_gen_andi_i64(d, d, mask);
2906 }
2907
2908 void tcg_gen_vec_shr8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2909 {
2910 uint32_t mask = dup_const(MO_8, 0xff >> c);
2911 tcg_gen_shri_i32(d, a, c);
2912 tcg_gen_andi_i32(d, d, mask);
2913 }
2914
2915 void tcg_gen_vec_shr16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2916 {
2917 uint32_t mask = dup_const(MO_16, 0xffff >> c);
2918 tcg_gen_shri_i32(d, a, c);
2919 tcg_gen_andi_i32(d, d, mask);
2920 }
2921
2922 void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs,
2923 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2924 {
2925 static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 };
2926 static const GVecGen2i g[4] = {
2927 { .fni8 = tcg_gen_vec_shr8i_i64,
2928 .fniv = tcg_gen_shri_vec,
2929 .fno = gen_helper_gvec_shr8i,
2930 .opt_opc = vecop_list,
2931 .vece = MO_8 },
2932 { .fni8 = tcg_gen_vec_shr16i_i64,
2933 .fniv = tcg_gen_shri_vec,
2934 .fno = gen_helper_gvec_shr16i,
2935 .opt_opc = vecop_list,
2936 .vece = MO_16 },
2937 { .fni4 = tcg_gen_shri_i32,
2938 .fniv = tcg_gen_shri_vec,
2939 .fno = gen_helper_gvec_shr32i,
2940 .opt_opc = vecop_list,
2941 .vece = MO_32 },
2942 { .fni8 = tcg_gen_shri_i64,
2943 .fniv = tcg_gen_shri_vec,
2944 .fno = gen_helper_gvec_shr64i,
2945 .opt_opc = vecop_list,
2946 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2947 .vece = MO_64 },
2948 };
2949
2950 tcg_debug_assert(vece <= MO_64);
2951 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2952 if (shift == 0) {
2953 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2954 } else {
2955 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2956 }
2957 }
2958
2959 void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2960 {
2961 uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
2962 uint64_t c_mask = dup_const(MO_8, 0xff >> c);
2963 TCGv_i64 s = tcg_temp_ebb_new_i64();
2964
2965 tcg_gen_shri_i64(d, a, c);
2966 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2967 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2968 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2969 tcg_gen_or_i64(d, d, s); /* include sign extension */
2970 tcg_temp_free_i64(s);
2971 }
2972
2973 void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2974 {
2975 uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
2976 uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
2977 TCGv_i64 s = tcg_temp_ebb_new_i64();
2978
2979 tcg_gen_shri_i64(d, a, c);
2980 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2981 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2982 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2983 tcg_gen_or_i64(d, d, s); /* include sign extension */
2984 tcg_temp_free_i64(s);
2985 }
2986
2987 void tcg_gen_vec_sar8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2988 {
2989 uint32_t s_mask = dup_const(MO_8, 0x80 >> c);
2990 uint32_t c_mask = dup_const(MO_8, 0xff >> c);
2991 TCGv_i32 s = tcg_temp_ebb_new_i32();
2992
2993 tcg_gen_shri_i32(d, a, c);
2994 tcg_gen_andi_i32(s, d, s_mask); /* isolate (shifted) sign bit */
2995 tcg_gen_muli_i32(s, s, (2 << c) - 2); /* replicate isolated signs */
2996 tcg_gen_andi_i32(d, d, c_mask); /* clear out bits above sign */
2997 tcg_gen_or_i32(d, d, s); /* include sign extension */
2998 tcg_temp_free_i32(s);
2999 }
3000
3001 void tcg_gen_vec_sar16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
3002 {
3003 uint32_t s_mask = dup_const(MO_16, 0x8000 >> c);
3004 uint32_t c_mask = dup_const(MO_16, 0xffff >> c);
3005 TCGv_i32 s = tcg_temp_ebb_new_i32();
3006
3007 tcg_gen_shri_i32(d, a, c);
3008 tcg_gen_andi_i32(s, d, s_mask); /* isolate (shifted) sign bit */
3009 tcg_gen_andi_i32(d, d, c_mask); /* clear out bits above sign */
3010 tcg_gen_muli_i32(s, s, (2 << c) - 2); /* replicate isolated signs */
3011 tcg_gen_or_i32(d, d, s); /* include sign extension */
3012 tcg_temp_free_i32(s);
3013 }
3014
3015 void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs,
3016 int64_t shift, uint32_t oprsz, uint32_t maxsz)
3017 {
3018 static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, 0 };
3019 static const GVecGen2i g[4] = {
3020 { .fni8 = tcg_gen_vec_sar8i_i64,
3021 .fniv = tcg_gen_sari_vec,
3022 .fno = gen_helper_gvec_sar8i,
3023 .opt_opc = vecop_list,
3024 .vece = MO_8 },
3025 { .fni8 = tcg_gen_vec_sar16i_i64,
3026 .fniv = tcg_gen_sari_vec,
3027 .fno = gen_helper_gvec_sar16i,
3028 .opt_opc = vecop_list,
3029 .vece = MO_16 },
3030 { .fni4 = tcg_gen_sari_i32,
3031 .fniv = tcg_gen_sari_vec,
3032 .fno = gen_helper_gvec_sar32i,
3033 .opt_opc = vecop_list,
3034 .vece = MO_32 },
3035 { .fni8 = tcg_gen_sari_i64,
3036 .fniv = tcg_gen_sari_vec,
3037 .fno = gen_helper_gvec_sar64i,
3038 .opt_opc = vecop_list,
3039 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3040 .vece = MO_64 },
3041 };
3042
3043 tcg_debug_assert(vece <= MO_64);
3044 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
3045 if (shift == 0) {
3046 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
3047 } else {
3048 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
3049 }
3050 }
3051
3052 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
3053 {
3054 uint64_t mask = dup_const(MO_8, 0xff << c);
3055
3056 tcg_gen_shli_i64(d, a, c);
3057 tcg_gen_shri_i64(a, a, 8 - c);
3058 tcg_gen_andi_i64(d, d, mask);
3059 tcg_gen_andi_i64(a, a, ~mask);
3060 tcg_gen_or_i64(d, d, a);
3061 }
3062
3063 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
3064 {
3065 uint64_t mask = dup_const(MO_16, 0xffff << c);
3066
3067 tcg_gen_shli_i64(d, a, c);
3068 tcg_gen_shri_i64(a, a, 16 - c);
3069 tcg_gen_andi_i64(d, d, mask);
3070 tcg_gen_andi_i64(a, a, ~mask);
3071 tcg_gen_or_i64(d, d, a);
3072 }
3073
3074 void tcg_gen_gvec_rotli(unsigned vece, uint32_t dofs, uint32_t aofs,
3075 int64_t shift, uint32_t oprsz, uint32_t maxsz)
3076 {
3077 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
3078 static const GVecGen2i g[4] = {
3079 { .fni8 = tcg_gen_vec_rotl8i_i64,
3080 .fniv = tcg_gen_rotli_vec,
3081 .fno = gen_helper_gvec_rotl8i,
3082 .opt_opc = vecop_list,
3083 .vece = MO_8 },
3084 { .fni8 = tcg_gen_vec_rotl16i_i64,
3085 .fniv = tcg_gen_rotli_vec,
3086 .fno = gen_helper_gvec_rotl16i,
3087 .opt_opc = vecop_list,
3088 .vece = MO_16 },
3089 { .fni4 = tcg_gen_rotli_i32,
3090 .fniv = tcg_gen_rotli_vec,
3091 .fno = gen_helper_gvec_rotl32i,
3092 .opt_opc = vecop_list,
3093 .vece = MO_32 },
3094 { .fni8 = tcg_gen_rotli_i64,
3095 .fniv = tcg_gen_rotli_vec,
3096 .fno = gen_helper_gvec_rotl64i,
3097 .opt_opc = vecop_list,
3098 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3099 .vece = MO_64 },
3100 };
3101
3102 tcg_debug_assert(vece <= MO_64);
3103 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
3104 if (shift == 0) {
3105 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
3106 } else {
3107 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
3108 }
3109 }
3110
3111 void tcg_gen_gvec_rotri(unsigned vece, uint32_t dofs, uint32_t aofs,
3112 int64_t shift, uint32_t oprsz, uint32_t maxsz)
3113 {
3114 tcg_debug_assert(vece <= MO_64);
3115 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
3116 tcg_gen_gvec_rotli(vece, dofs, aofs, -shift & ((8 << vece) - 1),
3117 oprsz, maxsz);
3118 }
3119
3120 /*
3121 * Specialized generation vector shifts by a non-constant scalar.
3122 */
3123
3124 typedef struct {
3125 void (*fni4)(TCGv_i32, TCGv_i32, TCGv_i32);
3126 void (*fni8)(TCGv_i64, TCGv_i64, TCGv_i64);
3127 void (*fniv_s)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32);
3128 void (*fniv_v)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec);
3129 gen_helper_gvec_2 *fno[4];
3130 TCGOpcode s_list[2];
3131 TCGOpcode v_list[2];
3132 } GVecGen2sh;
3133
3134 static void expand_2sh_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
3135 uint32_t oprsz, uint32_t tysz, TCGType type,
3136 TCGv_i32 shift,
3137 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32))
3138 {
3139 TCGv_vec t0 = tcg_temp_new_vec(type);
3140 uint32_t i;
3141
3142 for (i = 0; i < oprsz; i += tysz) {
3143 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
3144 fni(vece, t0, t0, shift);
3145 tcg_gen_st_vec(t0, cpu_env, dofs + i);
3146 }
3147 tcg_temp_free_vec(t0);
3148 }
3149
3150 static void
3151 do_gvec_shifts(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift,
3152 uint32_t oprsz, uint32_t maxsz, const GVecGen2sh *g)
3153 {
3154 TCGType type;
3155 uint32_t some;
3156
3157 check_size_align(oprsz, maxsz, dofs | aofs);
3158 check_overlap_2(dofs, aofs, maxsz);
3159
3160 /* If the backend has a scalar expansion, great. */
3161 type = choose_vector_type(g->s_list, vece, oprsz, vece == MO_64);
3162 if (type) {
3163 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
3164 switch (type) {
3165 case TCG_TYPE_V256:
3166 some = QEMU_ALIGN_DOWN(oprsz, 32);
3167 expand_2sh_vec(vece, dofs, aofs, some, 32,
3168 TCG_TYPE_V256, shift, g->fniv_s);
3169 if (some == oprsz) {
3170 break;
3171 }
3172 dofs += some;
3173 aofs += some;
3174 oprsz -= some;
3175 maxsz -= some;
3176 /* fallthru */
3177 case TCG_TYPE_V128:
3178 expand_2sh_vec(vece, dofs, aofs, oprsz, 16,
3179 TCG_TYPE_V128, shift, g->fniv_s);
3180 break;
3181 case TCG_TYPE_V64:
3182 expand_2sh_vec(vece, dofs, aofs, oprsz, 8,
3183 TCG_TYPE_V64, shift, g->fniv_s);
3184 break;
3185 default:
3186 g_assert_not_reached();
3187 }
3188 tcg_swap_vecop_list(hold_list);
3189 goto clear_tail;
3190 }
3191
3192 /* If the backend supports variable vector shifts, also cool. */
3193 type = choose_vector_type(g->v_list, vece, oprsz, vece == MO_64);
3194 if (type) {
3195 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
3196 TCGv_vec v_shift = tcg_temp_new_vec(type);
3197
3198 if (vece == MO_64) {
3199 TCGv_i64 sh64 = tcg_temp_ebb_new_i64();
3200 tcg_gen_extu_i32_i64(sh64, shift);
3201 tcg_gen_dup_i64_vec(MO_64, v_shift, sh64);
3202 tcg_temp_free_i64(sh64);
3203 } else {
3204 tcg_gen_dup_i32_vec(vece, v_shift, shift);
3205 }
3206
3207 switch (type) {
3208 case TCG_TYPE_V256:
3209 some = QEMU_ALIGN_DOWN(oprsz, 32);
3210 expand_2s_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256,
3211 v_shift, false, g->fniv_v);
3212 if (some == oprsz) {
3213 break;
3214 }
3215 dofs += some;
3216 aofs += some;
3217 oprsz -= some;
3218 maxsz -= some;
3219 /* fallthru */
3220 case TCG_TYPE_V128:
3221 expand_2s_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
3222 v_shift, false, g->fniv_v);
3223 break;
3224 case TCG_TYPE_V64:
3225 expand_2s_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
3226 v_shift, false, g->fniv_v);
3227 break;
3228 default:
3229 g_assert_not_reached();
3230 }
3231 tcg_temp_free_vec(v_shift);
3232 tcg_swap_vecop_list(hold_list);
3233 goto clear_tail;
3234 }
3235
3236 /* Otherwise fall back to integral... */
3237 if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3238 expand_2s_i32(dofs, aofs, oprsz, shift, false, g->fni4);
3239 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3240 TCGv_i64 sh64 = tcg_temp_ebb_new_i64();
3241 tcg_gen_extu_i32_i64(sh64, shift);
3242 expand_2s_i64(dofs, aofs, oprsz, sh64, false, g->fni8);
3243 tcg_temp_free_i64(sh64);
3244 } else {
3245 TCGv_ptr a0 = tcg_temp_ebb_new_ptr();
3246 TCGv_ptr a1 = tcg_temp_ebb_new_ptr();
3247 TCGv_i32 desc = tcg_temp_ebb_new_i32();
3248
3249 tcg_gen_shli_i32(desc, shift, SIMD_DATA_SHIFT);
3250 tcg_gen_ori_i32(desc, desc, simd_desc(oprsz, maxsz, 0));
3251 tcg_gen_addi_ptr(a0, cpu_env, dofs);
3252 tcg_gen_addi_ptr(a1, cpu_env, aofs);
3253
3254 g->fno[vece](a0, a1, desc);
3255
3256 tcg_temp_free_ptr(a0);
3257 tcg_temp_free_ptr(a1);
3258 tcg_temp_free_i32(desc);
3259 return;
3260 }
3261
3262 clear_tail:
3263 if (oprsz < maxsz) {
3264 expand_clr(dofs + oprsz, maxsz - oprsz);
3265 }
3266 }
3267
3268 void tcg_gen_gvec_shls(unsigned vece, uint32_t dofs, uint32_t aofs,
3269 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3270 {
3271 static const GVecGen2sh g = {
3272 .fni4 = tcg_gen_shl_i32,
3273 .fni8 = tcg_gen_shl_i64,
3274 .fniv_s = tcg_gen_shls_vec,
3275 .fniv_v = tcg_gen_shlv_vec,
3276 .fno = {
3277 gen_helper_gvec_shl8i,
3278 gen_helper_gvec_shl16i,
3279 gen_helper_gvec_shl32i,
3280 gen_helper_gvec_shl64i,
3281 },
3282 .s_list = { INDEX_op_shls_vec, 0 },
3283 .v_list = { INDEX_op_shlv_vec, 0 },
3284 };
3285
3286 tcg_debug_assert(vece <= MO_64);
3287 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3288 }
3289
3290 void tcg_gen_gvec_shrs(unsigned vece, uint32_t dofs, uint32_t aofs,
3291 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3292 {
3293 static const GVecGen2sh g = {
3294 .fni4 = tcg_gen_shr_i32,
3295 .fni8 = tcg_gen_shr_i64,
3296 .fniv_s = tcg_gen_shrs_vec,
3297 .fniv_v = tcg_gen_shrv_vec,
3298 .fno = {
3299 gen_helper_gvec_shr8i,
3300 gen_helper_gvec_shr16i,
3301 gen_helper_gvec_shr32i,
3302 gen_helper_gvec_shr64i,
3303 },
3304 .s_list = { INDEX_op_shrs_vec, 0 },
3305 .v_list = { INDEX_op_shrv_vec, 0 },
3306 };
3307
3308 tcg_debug_assert(vece <= MO_64);
3309 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3310 }
3311
3312 void tcg_gen_gvec_sars(unsigned vece, uint32_t dofs, uint32_t aofs,
3313 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3314 {
3315 static const GVecGen2sh g = {
3316 .fni4 = tcg_gen_sar_i32,
3317 .fni8 = tcg_gen_sar_i64,
3318 .fniv_s = tcg_gen_sars_vec,
3319 .fniv_v = tcg_gen_sarv_vec,
3320 .fno = {
3321 gen_helper_gvec_sar8i,
3322 gen_helper_gvec_sar16i,
3323 gen_helper_gvec_sar32i,
3324 gen_helper_gvec_sar64i,
3325 },
3326 .s_list = { INDEX_op_sars_vec, 0 },
3327 .v_list = { INDEX_op_sarv_vec, 0 },
3328 };
3329
3330 tcg_debug_assert(vece <= MO_64);
3331 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3332 }
3333
3334 void tcg_gen_gvec_rotls(unsigned vece, uint32_t dofs, uint32_t aofs,
3335 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3336 {
3337 static const GVecGen2sh g = {
3338 .fni4 = tcg_gen_rotl_i32,
3339 .fni8 = tcg_gen_rotl_i64,
3340 .fniv_s = tcg_gen_rotls_vec,
3341 .fniv_v = tcg_gen_rotlv_vec,
3342 .fno = {
3343 gen_helper_gvec_rotl8i,
3344 gen_helper_gvec_rotl16i,
3345 gen_helper_gvec_rotl32i,
3346 gen_helper_gvec_rotl64i,
3347 },
3348 .s_list = { INDEX_op_rotls_vec, 0 },
3349 .v_list = { INDEX_op_rotlv_vec, 0 },
3350 };
3351
3352 tcg_debug_assert(vece <= MO_64);
3353 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3354 }
3355
3356 void tcg_gen_gvec_rotrs(unsigned vece, uint32_t dofs, uint32_t aofs,
3357 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3358 {
3359 TCGv_i32 tmp = tcg_temp_ebb_new_i32();
3360
3361 tcg_gen_neg_i32(tmp, shift);
3362 tcg_gen_andi_i32(tmp, tmp, (8 << vece) - 1);
3363 tcg_gen_gvec_rotls(vece, dofs, aofs, tmp, oprsz, maxsz);
3364 tcg_temp_free_i32(tmp);
3365 }
3366
3367 /*
3368 * Expand D = A << (B % element bits)
3369 *
3370 * Unlike scalar shifts, where it is easy for the target front end
3371 * to include the modulo as part of the expansion. If the target
3372 * naturally includes the modulo as part of the operation, great!
3373 * If the target has some other behaviour from out-of-range shifts,
3374 * then it could not use this function anyway, and would need to
3375 * do it's own expansion with custom functions.
3376 */
3377 static void tcg_gen_shlv_mod_vec(unsigned vece, TCGv_vec d,
3378 TCGv_vec a, TCGv_vec b)
3379 {
3380 TCGv_vec t = tcg_temp_new_vec_matching(d);
3381 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3382
3383 tcg_gen_and_vec(vece, t, b, m);
3384 tcg_gen_shlv_vec(vece, d, a, t);
3385 tcg_temp_free_vec(t);
3386 }
3387
3388 static void tcg_gen_shl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3389 {
3390 TCGv_i32 t = tcg_temp_ebb_new_i32();
3391
3392 tcg_gen_andi_i32(t, b, 31);
3393 tcg_gen_shl_i32(d, a, t);
3394 tcg_temp_free_i32(t);
3395 }
3396
3397 static void tcg_gen_shl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3398 {
3399 TCGv_i64 t = tcg_temp_ebb_new_i64();
3400
3401 tcg_gen_andi_i64(t, b, 63);
3402 tcg_gen_shl_i64(d, a, t);
3403 tcg_temp_free_i64(t);
3404 }
3405
3406 void tcg_gen_gvec_shlv(unsigned vece, uint32_t dofs, uint32_t aofs,
3407 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3408 {
3409 static const TCGOpcode vecop_list[] = { INDEX_op_shlv_vec, 0 };
3410 static const GVecGen3 g[4] = {
3411 { .fniv = tcg_gen_shlv_mod_vec,
3412 .fno = gen_helper_gvec_shl8v,
3413 .opt_opc = vecop_list,
3414 .vece = MO_8 },
3415 { .fniv = tcg_gen_shlv_mod_vec,
3416 .fno = gen_helper_gvec_shl16v,
3417 .opt_opc = vecop_list,
3418 .vece = MO_16 },
3419 { .fni4 = tcg_gen_shl_mod_i32,
3420 .fniv = tcg_gen_shlv_mod_vec,
3421 .fno = gen_helper_gvec_shl32v,
3422 .opt_opc = vecop_list,
3423 .vece = MO_32 },
3424 { .fni8 = tcg_gen_shl_mod_i64,
3425 .fniv = tcg_gen_shlv_mod_vec,
3426 .fno = gen_helper_gvec_shl64v,
3427 .opt_opc = vecop_list,
3428 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3429 .vece = MO_64 },
3430 };
3431
3432 tcg_debug_assert(vece <= MO_64);
3433 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3434 }
3435
3436 /*
3437 * Similarly for logical right shifts.
3438 */
3439
3440 static void tcg_gen_shrv_mod_vec(unsigned vece, TCGv_vec d,
3441 TCGv_vec a, TCGv_vec b)
3442 {
3443 TCGv_vec t = tcg_temp_new_vec_matching(d);
3444 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3445
3446 tcg_gen_and_vec(vece, t, b, m);
3447 tcg_gen_shrv_vec(vece, d, a, t);
3448 tcg_temp_free_vec(t);
3449 }
3450
3451 static void tcg_gen_shr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3452 {
3453 TCGv_i32 t = tcg_temp_ebb_new_i32();
3454
3455 tcg_gen_andi_i32(t, b, 31);
3456 tcg_gen_shr_i32(d, a, t);
3457 tcg_temp_free_i32(t);
3458 }
3459
3460 static void tcg_gen_shr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3461 {
3462 TCGv_i64 t = tcg_temp_ebb_new_i64();
3463
3464 tcg_gen_andi_i64(t, b, 63);
3465 tcg_gen_shr_i64(d, a, t);
3466 tcg_temp_free_i64(t);
3467 }
3468
3469 void tcg_gen_gvec_shrv(unsigned vece, uint32_t dofs, uint32_t aofs,
3470 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3471 {
3472 static const TCGOpcode vecop_list[] = { INDEX_op_shrv_vec, 0 };
3473 static const GVecGen3 g[4] = {
3474 { .fniv = tcg_gen_shrv_mod_vec,
3475 .fno = gen_helper_gvec_shr8v,
3476 .opt_opc = vecop_list,
3477 .vece = MO_8 },
3478 { .fniv = tcg_gen_shrv_mod_vec,
3479 .fno = gen_helper_gvec_shr16v,
3480 .opt_opc = vecop_list,
3481 .vece = MO_16 },
3482 { .fni4 = tcg_gen_shr_mod_i32,
3483 .fniv = tcg_gen_shrv_mod_vec,
3484 .fno = gen_helper_gvec_shr32v,
3485 .opt_opc = vecop_list,
3486 .vece = MO_32 },
3487 { .fni8 = tcg_gen_shr_mod_i64,
3488 .fniv = tcg_gen_shrv_mod_vec,
3489 .fno = gen_helper_gvec_shr64v,
3490 .opt_opc = vecop_list,
3491 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3492 .vece = MO_64 },
3493 };
3494
3495 tcg_debug_assert(vece <= MO_64);
3496 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3497 }
3498
3499 /*
3500 * Similarly for arithmetic right shifts.
3501 */
3502
3503 static void tcg_gen_sarv_mod_vec(unsigned vece, TCGv_vec d,
3504 TCGv_vec a, TCGv_vec b)
3505 {
3506 TCGv_vec t = tcg_temp_new_vec_matching(d);
3507 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3508
3509 tcg_gen_and_vec(vece, t, b, m);
3510 tcg_gen_sarv_vec(vece, d, a, t);
3511 tcg_temp_free_vec(t);
3512 }
3513
3514 static void tcg_gen_sar_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3515 {
3516 TCGv_i32 t = tcg_temp_ebb_new_i32();
3517
3518 tcg_gen_andi_i32(t, b, 31);
3519 tcg_gen_sar_i32(d, a, t);
3520 tcg_temp_free_i32(t);
3521 }
3522
3523 static void tcg_gen_sar_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3524 {
3525 TCGv_i64 t = tcg_temp_ebb_new_i64();
3526
3527 tcg_gen_andi_i64(t, b, 63);
3528 tcg_gen_sar_i64(d, a, t);
3529 tcg_temp_free_i64(t);
3530 }
3531
3532 void tcg_gen_gvec_sarv(unsigned vece, uint32_t dofs, uint32_t aofs,
3533 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3534 {
3535 static const TCGOpcode vecop_list[] = { INDEX_op_sarv_vec, 0 };
3536 static const GVecGen3 g[4] = {
3537 { .fniv = tcg_gen_sarv_mod_vec,
3538 .fno = gen_helper_gvec_sar8v,
3539 .opt_opc = vecop_list,
3540 .vece = MO_8 },
3541 { .fniv = tcg_gen_sarv_mod_vec,
3542 .fno = gen_helper_gvec_sar16v,
3543 .opt_opc = vecop_list,
3544 .vece = MO_16 },
3545 { .fni4 = tcg_gen_sar_mod_i32,
3546 .fniv = tcg_gen_sarv_mod_vec,
3547 .fno = gen_helper_gvec_sar32v,
3548 .opt_opc = vecop_list,
3549 .vece = MO_32 },
3550 { .fni8 = tcg_gen_sar_mod_i64,
3551 .fniv = tcg_gen_sarv_mod_vec,
3552 .fno = gen_helper_gvec_sar64v,
3553 .opt_opc = vecop_list,
3554 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3555 .vece = MO_64 },
3556 };
3557
3558 tcg_debug_assert(vece <= MO_64);
3559 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3560 }
3561
3562 /*
3563 * Similarly for rotates.
3564 */
3565
3566 static void tcg_gen_rotlv_mod_vec(unsigned vece, TCGv_vec d,
3567 TCGv_vec a, TCGv_vec b)
3568 {
3569 TCGv_vec t = tcg_temp_new_vec_matching(d);
3570 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3571
3572 tcg_gen_and_vec(vece, t, b, m);
3573 tcg_gen_rotlv_vec(vece, d, a, t);
3574 tcg_temp_free_vec(t);
3575 }
3576
3577 static void tcg_gen_rotl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3578 {
3579 TCGv_i32 t = tcg_temp_ebb_new_i32();
3580
3581 tcg_gen_andi_i32(t, b, 31);
3582 tcg_gen_rotl_i32(d, a, t);
3583 tcg_temp_free_i32(t);
3584 }
3585
3586 static void tcg_gen_rotl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3587 {
3588 TCGv_i64 t = tcg_temp_ebb_new_i64();
3589
3590 tcg_gen_andi_i64(t, b, 63);
3591 tcg_gen_rotl_i64(d, a, t);
3592 tcg_temp_free_i64(t);
3593 }
3594
3595 void tcg_gen_gvec_rotlv(unsigned vece, uint32_t dofs, uint32_t aofs,
3596 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3597 {
3598 static const TCGOpcode vecop_list[] = { INDEX_op_rotlv_vec, 0 };
3599 static const GVecGen3 g[4] = {
3600 { .fniv = tcg_gen_rotlv_mod_vec,
3601 .fno = gen_helper_gvec_rotl8v,
3602 .opt_opc = vecop_list,
3603 .vece = MO_8 },
3604 { .fniv = tcg_gen_rotlv_mod_vec,
3605 .fno = gen_helper_gvec_rotl16v,
3606 .opt_opc = vecop_list,
3607 .vece = MO_16 },
3608 { .fni4 = tcg_gen_rotl_mod_i32,
3609 .fniv = tcg_gen_rotlv_mod_vec,
3610 .fno = gen_helper_gvec_rotl32v,
3611 .opt_opc = vecop_list,
3612 .vece = MO_32 },
3613 { .fni8 = tcg_gen_rotl_mod_i64,
3614 .fniv = tcg_gen_rotlv_mod_vec,
3615 .fno = gen_helper_gvec_rotl64v,
3616 .opt_opc = vecop_list,
3617 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3618 .vece = MO_64 },
3619 };
3620
3621 tcg_debug_assert(vece <= MO_64);
3622 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3623 }
3624
3625 static void tcg_gen_rotrv_mod_vec(unsigned vece, TCGv_vec d,
3626 TCGv_vec a, TCGv_vec b)
3627 {
3628 TCGv_vec t = tcg_temp_new_vec_matching(d);
3629 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3630
3631 tcg_gen_and_vec(vece, t, b, m);
3632 tcg_gen_rotrv_vec(vece, d, a, t);
3633 tcg_temp_free_vec(t);
3634 }
3635
3636 static void tcg_gen_rotr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3637 {
3638 TCGv_i32 t = tcg_temp_ebb_new_i32();
3639
3640 tcg_gen_andi_i32(t, b, 31);
3641 tcg_gen_rotr_i32(d, a, t);
3642 tcg_temp_free_i32(t);
3643 }
3644
3645 static void tcg_gen_rotr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3646 {
3647 TCGv_i64 t = tcg_temp_ebb_new_i64();
3648
3649 tcg_gen_andi_i64(t, b, 63);
3650 tcg_gen_rotr_i64(d, a, t);
3651 tcg_temp_free_i64(t);
3652 }
3653
3654 void tcg_gen_gvec_rotrv(unsigned vece, uint32_t dofs, uint32_t aofs,
3655 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3656 {
3657 static const TCGOpcode vecop_list[] = { INDEX_op_rotrv_vec, 0 };
3658 static const GVecGen3 g[4] = {
3659 { .fniv = tcg_gen_rotrv_mod_vec,
3660 .fno = gen_helper_gvec_rotr8v,
3661 .opt_opc = vecop_list,
3662 .vece = MO_8 },
3663 { .fniv = tcg_gen_rotrv_mod_vec,
3664 .fno = gen_helper_gvec_rotr16v,
3665 .opt_opc = vecop_list,
3666 .vece = MO_16 },
3667 { .fni4 = tcg_gen_rotr_mod_i32,
3668 .fniv = tcg_gen_rotrv_mod_vec,
3669 .fno = gen_helper_gvec_rotr32v,
3670 .opt_opc = vecop_list,
3671 .vece = MO_32 },
3672 { .fni8 = tcg_gen_rotr_mod_i64,
3673 .fniv = tcg_gen_rotrv_mod_vec,
3674 .fno = gen_helper_gvec_rotr64v,
3675 .opt_opc = vecop_list,
3676 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3677 .vece = MO_64 },
3678 };
3679
3680 tcg_debug_assert(vece <= MO_64);
3681 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3682 }
3683
3684 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3685 static void expand_cmp_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3686 uint32_t oprsz, TCGCond cond)
3687 {
3688 TCGv_i32 t0 = tcg_temp_ebb_new_i32();
3689 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
3690 uint32_t i;
3691
3692 for (i = 0; i < oprsz; i += 4) {
3693 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
3694 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
3695 tcg_gen_setcond_i32(cond, t0, t0, t1);
3696 tcg_gen_neg_i32(t0, t0);
3697 tcg_gen_st_i32(t0, cpu_env, dofs + i);
3698 }
3699 tcg_temp_free_i32(t1);
3700 tcg_temp_free_i32(t0);
3701 }
3702
3703 static void expand_cmp_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3704 uint32_t oprsz, TCGCond cond)
3705 {
3706 TCGv_i64 t0 = tcg_temp_ebb_new_i64();
3707 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
3708 uint32_t i;
3709
3710 for (i = 0; i < oprsz; i += 8) {
3711 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
3712 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
3713 tcg_gen_setcond_i64(cond, t0, t0, t1);
3714 tcg_gen_neg_i64(t0, t0);
3715 tcg_gen_st_i64(t0, cpu_env, dofs + i);
3716 }
3717 tcg_temp_free_i64(t1);
3718 tcg_temp_free_i64(t0);
3719 }
3720
3721 static void expand_cmp_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
3722 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
3723 TCGType type, TCGCond cond)
3724 {
3725 TCGv_vec t0 = tcg_temp_new_vec(type);
3726 TCGv_vec t1 = tcg_temp_new_vec(type);
3727 uint32_t i;
3728
3729 for (i = 0; i < oprsz; i += tysz) {
3730 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
3731 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
3732 tcg_gen_cmp_vec(cond, vece, t0, t0, t1);
3733 tcg_gen_st_vec(t0, cpu_env, dofs + i);
3734 }
3735 tcg_temp_free_vec(t1);
3736 tcg_temp_free_vec(t0);
3737 }
3738
3739 void tcg_gen_gvec_cmp(TCGCond cond, unsigned vece, uint32_t dofs,
3740 uint32_t aofs, uint32_t bofs,
3741 uint32_t oprsz, uint32_t maxsz)
3742 {
3743 static const TCGOpcode cmp_list[] = { INDEX_op_cmp_vec, 0 };
3744 static gen_helper_gvec_3 * const eq_fn[4] = {
3745 gen_helper_gvec_eq8, gen_helper_gvec_eq16,
3746 gen_helper_gvec_eq32, gen_helper_gvec_eq64
3747 };
3748 static gen_helper_gvec_3 * const ne_fn[4] = {
3749 gen_helper_gvec_ne8, gen_helper_gvec_ne16,
3750 gen_helper_gvec_ne32, gen_helper_gvec_ne64
3751 };
3752 static gen_helper_gvec_3 * const lt_fn[4] = {
3753 gen_helper_gvec_lt8, gen_helper_gvec_lt16,
3754 gen_helper_gvec_lt32, gen_helper_gvec_lt64
3755 };
3756 static gen_helper_gvec_3 * const le_fn[4] = {
3757 gen_helper_gvec_le8, gen_helper_gvec_le16,
3758 gen_helper_gvec_le32, gen_helper_gvec_le64
3759 };
3760 static gen_helper_gvec_3 * const ltu_fn[4] = {
3761 gen_helper_gvec_ltu8, gen_helper_gvec_ltu16,
3762 gen_helper_gvec_ltu32, gen_helper_gvec_ltu64
3763 };
3764 static gen_helper_gvec_3 * const leu_fn[4] = {
3765 gen_helper_gvec_leu8, gen_helper_gvec_leu16,
3766 gen_helper_gvec_leu32, gen_helper_gvec_leu64
3767 };
3768 static gen_helper_gvec_3 * const * const fns[16] = {
3769 [TCG_COND_EQ] = eq_fn,
3770 [TCG_COND_NE] = ne_fn,
3771 [TCG_COND_LT] = lt_fn,
3772 [TCG_COND_LE] = le_fn,
3773 [TCG_COND_LTU] = ltu_fn,
3774 [TCG_COND_LEU] = leu_fn,
3775 };
3776
3777 const TCGOpcode *hold_list;
3778 TCGType type;
3779 uint32_t some;
3780
3781 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
3782 check_overlap_3(dofs, aofs, bofs, maxsz);
3783
3784 if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) {
3785 do_dup(MO_8, dofs, oprsz, maxsz,
3786 NULL, NULL, -(cond == TCG_COND_ALWAYS));
3787 return;
3788 }
3789
3790 /*
3791 * Implement inline with a vector type, if possible.
3792 * Prefer integer when 64-bit host and 64-bit comparison.
3793 */
3794 hold_list = tcg_swap_vecop_list(cmp_list);
3795 type = choose_vector_type(cmp_list, vece, oprsz,
3796 TCG_TARGET_REG_BITS == 64 && vece == MO_64);
3797 switch (type) {
3798 case TCG_TYPE_V256:
3799 /* Recall that ARM SVE allows vector sizes that are not a
3800 * power of 2, but always a multiple of 16. The intent is
3801 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3802 */
3803 some = QEMU_ALIGN_DOWN(oprsz, 32);
3804 expand_cmp_vec(vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond);
3805 if (some == oprsz) {
3806 break;
3807 }
3808 dofs += some;
3809 aofs += some;
3810 bofs += some;
3811 oprsz -= some;
3812 maxsz -= some;
3813 /* fallthru */
3814 case TCG_TYPE_V128:
3815 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond);
3816 break;
3817 case TCG_TYPE_V64:
3818 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond);
3819 break;
3820
3821 case 0:
3822 if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3823 expand_cmp_i64(dofs, aofs, bofs, oprsz, cond);
3824 } else if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3825 expand_cmp_i32(dofs, aofs, bofs, oprsz, cond);
3826 } else {
3827 gen_helper_gvec_3 * const *fn = fns[cond];
3828
3829 if (fn == NULL) {
3830 uint32_t tmp;
3831 tmp = aofs, aofs = bofs, bofs = tmp;
3832 cond = tcg_swap_cond(cond);
3833 fn = fns[cond];
3834 assert(fn != NULL);
3835 }
3836 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]);
3837 oprsz = maxsz;
3838 }
3839 break;
3840
3841 default:
3842 g_assert_not_reached();
3843 }
3844 tcg_swap_vecop_list(hold_list);
3845
3846 if (oprsz < maxsz) {
3847 expand_clr(dofs + oprsz, maxsz - oprsz);
3848 }
3849 }
3850
3851 static void tcg_gen_bitsel_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 c)
3852 {
3853 TCGv_i64 t = tcg_temp_ebb_new_i64();
3854
3855 tcg_gen_and_i64(t, b, a);
3856 tcg_gen_andc_i64(d, c, a);
3857 tcg_gen_or_i64(d, d, t);
3858 tcg_temp_free_i64(t);
3859 }
3860
3861 void tcg_gen_gvec_bitsel(unsigned vece, uint32_t dofs, uint32_t aofs,
3862 uint32_t bofs, uint32_t cofs,
3863 uint32_t oprsz, uint32_t maxsz)
3864 {
3865 static const GVecGen4 g = {
3866 .fni8 = tcg_gen_bitsel_i64,
3867 .fniv = tcg_gen_bitsel_vec,
3868 .fno = gen_helper_gvec_bitsel,
3869 };
3870
3871 tcg_gen_gvec_4(dofs, aofs, bofs, cofs, oprsz, maxsz, &g);
3872 }