]> git.proxmox.com Git - mirror_qemu.git/blob - tcg/tcg-op-gvec.c
Merge remote-tracking branch 'remotes/berrange-gitlab/tags/tls-deps-pull-request...
[mirror_qemu.git] / tcg / tcg-op-gvec.c
1 /*
2 * Generic vector operation expansion
3 *
4 * Copyright (c) 2018 Linaro
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "tcg/tcg.h"
22 #include "tcg/tcg-op.h"
23 #include "tcg/tcg-op-gvec.h"
24 #include "qemu/main-loop.h"
25 #include "tcg/tcg-gvec-desc.h"
26
27 #define MAX_UNROLL 4
28
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty[1] = { 0 };
31 #else
32 #define vecop_list_empty NULL
33 #endif
34
35
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
39 {
40 uint32_t max_align;
41
42 switch (oprsz) {
43 case 8:
44 case 16:
45 case 32:
46 tcg_debug_assert(oprsz <= maxsz);
47 break;
48 default:
49 tcg_debug_assert(oprsz == maxsz);
50 break;
51 }
52 tcg_debug_assert(maxsz <= (8 << SIMD_MAXSZ_BITS));
53
54 max_align = maxsz >= 16 ? 15 : 7;
55 tcg_debug_assert((maxsz & max_align) == 0);
56 tcg_debug_assert((ofs & max_align) == 0);
57 }
58
59 /* Verify vector overlap rules for two operands. */
60 static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
61 {
62 tcg_debug_assert(d == a || d + s <= a || a + s <= d);
63 }
64
65 /* Verify vector overlap rules for three operands. */
66 static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
67 {
68 check_overlap_2(d, a, s);
69 check_overlap_2(d, b, s);
70 check_overlap_2(a, b, s);
71 }
72
73 /* Verify vector overlap rules for four operands. */
74 static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
75 uint32_t c, uint32_t s)
76 {
77 check_overlap_2(d, a, s);
78 check_overlap_2(d, b, s);
79 check_overlap_2(d, c, s);
80 check_overlap_2(a, b, s);
81 check_overlap_2(a, c, s);
82 check_overlap_2(b, c, s);
83 }
84
85 /* Create a descriptor from components. */
86 uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
87 {
88 uint32_t desc = 0;
89
90 check_size_align(oprsz, maxsz, 0);
91 tcg_debug_assert(data == sextract32(data, 0, SIMD_DATA_BITS));
92
93 oprsz = (oprsz / 8) - 1;
94 maxsz = (maxsz / 8) - 1;
95
96 /*
97 * We have just asserted in check_size_align that either
98 * oprsz is {8,16,32} or matches maxsz. Encode the final
99 * case with '2', as that would otherwise map to 24.
100 */
101 if (oprsz == maxsz) {
102 oprsz = 2;
103 }
104
105 desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
106 desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
107 desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
108
109 return desc;
110 }
111
112 /* Generate a call to a gvec-style helper with two vector operands. */
113 void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs,
114 uint32_t oprsz, uint32_t maxsz, int32_t data,
115 gen_helper_gvec_2 *fn)
116 {
117 TCGv_ptr a0, a1;
118 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
119
120 a0 = tcg_temp_new_ptr();
121 a1 = tcg_temp_new_ptr();
122
123 tcg_gen_addi_ptr(a0, cpu_env, dofs);
124 tcg_gen_addi_ptr(a1, cpu_env, aofs);
125
126 fn(a0, a1, desc);
127
128 tcg_temp_free_ptr(a0);
129 tcg_temp_free_ptr(a1);
130 }
131
132 /* Generate a call to a gvec-style helper with two vector operands
133 and one scalar operand. */
134 void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c,
135 uint32_t oprsz, uint32_t maxsz, int32_t data,
136 gen_helper_gvec_2i *fn)
137 {
138 TCGv_ptr a0, a1;
139 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
140
141 a0 = tcg_temp_new_ptr();
142 a1 = tcg_temp_new_ptr();
143
144 tcg_gen_addi_ptr(a0, cpu_env, dofs);
145 tcg_gen_addi_ptr(a1, cpu_env, aofs);
146
147 fn(a0, a1, c, desc);
148
149 tcg_temp_free_ptr(a0);
150 tcg_temp_free_ptr(a1);
151 }
152
153 /* Generate a call to a gvec-style helper with three vector operands. */
154 void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
155 uint32_t oprsz, uint32_t maxsz, int32_t data,
156 gen_helper_gvec_3 *fn)
157 {
158 TCGv_ptr a0, a1, a2;
159 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
160
161 a0 = tcg_temp_new_ptr();
162 a1 = tcg_temp_new_ptr();
163 a2 = tcg_temp_new_ptr();
164
165 tcg_gen_addi_ptr(a0, cpu_env, dofs);
166 tcg_gen_addi_ptr(a1, cpu_env, aofs);
167 tcg_gen_addi_ptr(a2, cpu_env, bofs);
168
169 fn(a0, a1, a2, desc);
170
171 tcg_temp_free_ptr(a0);
172 tcg_temp_free_ptr(a1);
173 tcg_temp_free_ptr(a2);
174 }
175
176 /* Generate a call to a gvec-style helper with four vector operands. */
177 void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
178 uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
179 int32_t data, gen_helper_gvec_4 *fn)
180 {
181 TCGv_ptr a0, a1, a2, a3;
182 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
183
184 a0 = tcg_temp_new_ptr();
185 a1 = tcg_temp_new_ptr();
186 a2 = tcg_temp_new_ptr();
187 a3 = tcg_temp_new_ptr();
188
189 tcg_gen_addi_ptr(a0, cpu_env, dofs);
190 tcg_gen_addi_ptr(a1, cpu_env, aofs);
191 tcg_gen_addi_ptr(a2, cpu_env, bofs);
192 tcg_gen_addi_ptr(a3, cpu_env, cofs);
193
194 fn(a0, a1, a2, a3, desc);
195
196 tcg_temp_free_ptr(a0);
197 tcg_temp_free_ptr(a1);
198 tcg_temp_free_ptr(a2);
199 tcg_temp_free_ptr(a3);
200 }
201
202 /* Generate a call to a gvec-style helper with five vector operands. */
203 void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
204 uint32_t cofs, uint32_t xofs, uint32_t oprsz,
205 uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
206 {
207 TCGv_ptr a0, a1, a2, a3, a4;
208 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
209
210 a0 = tcg_temp_new_ptr();
211 a1 = tcg_temp_new_ptr();
212 a2 = tcg_temp_new_ptr();
213 a3 = tcg_temp_new_ptr();
214 a4 = tcg_temp_new_ptr();
215
216 tcg_gen_addi_ptr(a0, cpu_env, dofs);
217 tcg_gen_addi_ptr(a1, cpu_env, aofs);
218 tcg_gen_addi_ptr(a2, cpu_env, bofs);
219 tcg_gen_addi_ptr(a3, cpu_env, cofs);
220 tcg_gen_addi_ptr(a4, cpu_env, xofs);
221
222 fn(a0, a1, a2, a3, a4, desc);
223
224 tcg_temp_free_ptr(a0);
225 tcg_temp_free_ptr(a1);
226 tcg_temp_free_ptr(a2);
227 tcg_temp_free_ptr(a3);
228 tcg_temp_free_ptr(a4);
229 }
230
231 /* Generate a call to a gvec-style helper with three vector operands
232 and an extra pointer operand. */
233 void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs,
234 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
235 int32_t data, gen_helper_gvec_2_ptr *fn)
236 {
237 TCGv_ptr a0, a1;
238 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
239
240 a0 = tcg_temp_new_ptr();
241 a1 = tcg_temp_new_ptr();
242
243 tcg_gen_addi_ptr(a0, cpu_env, dofs);
244 tcg_gen_addi_ptr(a1, cpu_env, aofs);
245
246 fn(a0, a1, ptr, desc);
247
248 tcg_temp_free_ptr(a0);
249 tcg_temp_free_ptr(a1);
250 }
251
252 /* Generate a call to a gvec-style helper with three vector operands
253 and an extra pointer operand. */
254 void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
255 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
256 int32_t data, gen_helper_gvec_3_ptr *fn)
257 {
258 TCGv_ptr a0, a1, a2;
259 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
260
261 a0 = tcg_temp_new_ptr();
262 a1 = tcg_temp_new_ptr();
263 a2 = tcg_temp_new_ptr();
264
265 tcg_gen_addi_ptr(a0, cpu_env, dofs);
266 tcg_gen_addi_ptr(a1, cpu_env, aofs);
267 tcg_gen_addi_ptr(a2, cpu_env, bofs);
268
269 fn(a0, a1, a2, ptr, desc);
270
271 tcg_temp_free_ptr(a0);
272 tcg_temp_free_ptr(a1);
273 tcg_temp_free_ptr(a2);
274 }
275
276 /* Generate a call to a gvec-style helper with four vector operands
277 and an extra pointer operand. */
278 void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
279 uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
280 uint32_t maxsz, int32_t data,
281 gen_helper_gvec_4_ptr *fn)
282 {
283 TCGv_ptr a0, a1, a2, a3;
284 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
285
286 a0 = tcg_temp_new_ptr();
287 a1 = tcg_temp_new_ptr();
288 a2 = tcg_temp_new_ptr();
289 a3 = tcg_temp_new_ptr();
290
291 tcg_gen_addi_ptr(a0, cpu_env, dofs);
292 tcg_gen_addi_ptr(a1, cpu_env, aofs);
293 tcg_gen_addi_ptr(a2, cpu_env, bofs);
294 tcg_gen_addi_ptr(a3, cpu_env, cofs);
295
296 fn(a0, a1, a2, a3, ptr, desc);
297
298 tcg_temp_free_ptr(a0);
299 tcg_temp_free_ptr(a1);
300 tcg_temp_free_ptr(a2);
301 tcg_temp_free_ptr(a3);
302 }
303
304 /* Generate a call to a gvec-style helper with five vector operands
305 and an extra pointer operand. */
306 void tcg_gen_gvec_5_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
307 uint32_t cofs, uint32_t eofs, TCGv_ptr ptr,
308 uint32_t oprsz, uint32_t maxsz, int32_t data,
309 gen_helper_gvec_5_ptr *fn)
310 {
311 TCGv_ptr a0, a1, a2, a3, a4;
312 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
313
314 a0 = tcg_temp_new_ptr();
315 a1 = tcg_temp_new_ptr();
316 a2 = tcg_temp_new_ptr();
317 a3 = tcg_temp_new_ptr();
318 a4 = tcg_temp_new_ptr();
319
320 tcg_gen_addi_ptr(a0, cpu_env, dofs);
321 tcg_gen_addi_ptr(a1, cpu_env, aofs);
322 tcg_gen_addi_ptr(a2, cpu_env, bofs);
323 tcg_gen_addi_ptr(a3, cpu_env, cofs);
324 tcg_gen_addi_ptr(a4, cpu_env, eofs);
325
326 fn(a0, a1, a2, a3, a4, ptr, desc);
327
328 tcg_temp_free_ptr(a0);
329 tcg_temp_free_ptr(a1);
330 tcg_temp_free_ptr(a2);
331 tcg_temp_free_ptr(a3);
332 tcg_temp_free_ptr(a4);
333 }
334
335 /* Return true if we want to implement something of OPRSZ bytes
336 in units of LNSZ. This limits the expansion of inline code. */
337 static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
338 {
339 uint32_t q, r;
340
341 if (oprsz < lnsz) {
342 return false;
343 }
344
345 q = oprsz / lnsz;
346 r = oprsz % lnsz;
347 tcg_debug_assert((r & 7) == 0);
348
349 if (lnsz < 16) {
350 /* For sizes below 16, accept no remainder. */
351 if (r != 0) {
352 return false;
353 }
354 } else {
355 /*
356 * Recall that ARM SVE allows vector sizes that are not a
357 * power of 2, but always a multiple of 16. The intent is
358 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
359 * In addition, expand_clr needs to handle a multiple of 8.
360 * Thus we can handle the tail with one more operation per
361 * diminishing power of 2.
362 */
363 q += ctpop32(r);
364 }
365
366 return q <= MAX_UNROLL;
367 }
368
369 static void expand_clr(uint32_t dofs, uint32_t maxsz);
370
371 /* Duplicate C as per VECE. */
372 uint64_t (dup_const)(unsigned vece, uint64_t c)
373 {
374 switch (vece) {
375 case MO_8:
376 return 0x0101010101010101ull * (uint8_t)c;
377 case MO_16:
378 return 0x0001000100010001ull * (uint16_t)c;
379 case MO_32:
380 return 0x0000000100000001ull * (uint32_t)c;
381 case MO_64:
382 return c;
383 default:
384 g_assert_not_reached();
385 }
386 }
387
388 /* Duplicate IN into OUT as per VECE. */
389 void tcg_gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in)
390 {
391 switch (vece) {
392 case MO_8:
393 tcg_gen_ext8u_i32(out, in);
394 tcg_gen_muli_i32(out, out, 0x01010101);
395 break;
396 case MO_16:
397 tcg_gen_deposit_i32(out, in, in, 16, 16);
398 break;
399 case MO_32:
400 tcg_gen_mov_i32(out, in);
401 break;
402 default:
403 g_assert_not_reached();
404 }
405 }
406
407 void tcg_gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in)
408 {
409 switch (vece) {
410 case MO_8:
411 tcg_gen_ext8u_i64(out, in);
412 tcg_gen_muli_i64(out, out, 0x0101010101010101ull);
413 break;
414 case MO_16:
415 tcg_gen_ext16u_i64(out, in);
416 tcg_gen_muli_i64(out, out, 0x0001000100010001ull);
417 break;
418 case MO_32:
419 tcg_gen_deposit_i64(out, in, in, 32, 32);
420 break;
421 case MO_64:
422 tcg_gen_mov_i64(out, in);
423 break;
424 default:
425 g_assert_not_reached();
426 }
427 }
428
429 /* Select a supported vector type for implementing an operation on SIZE
430 * bytes. If OP is 0, assume that the real operation to be performed is
431 * required by all backends. Otherwise, make sure than OP can be performed
432 * on elements of size VECE in the selected type. Do not select V64 if
433 * PREFER_I64 is true. Return 0 if no vector type is selected.
434 */
435 static TCGType choose_vector_type(const TCGOpcode *list, unsigned vece,
436 uint32_t size, bool prefer_i64)
437 {
438 /*
439 * Recall that ARM SVE allows vector sizes that are not a
440 * power of 2, but always a multiple of 16. The intent is
441 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
442 * It is hard to imagine a case in which v256 is supported
443 * but v128 is not, but check anyway.
444 * In addition, expand_clr needs to handle a multiple of 8.
445 */
446 if (TCG_TARGET_HAS_v256 &&
447 check_size_impl(size, 32) &&
448 tcg_can_emit_vecop_list(list, TCG_TYPE_V256, vece) &&
449 (!(size & 16) ||
450 (TCG_TARGET_HAS_v128 &&
451 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece))) &&
452 (!(size & 8) ||
453 (TCG_TARGET_HAS_v64 &&
454 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
455 return TCG_TYPE_V256;
456 }
457 if (TCG_TARGET_HAS_v128 &&
458 check_size_impl(size, 16) &&
459 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece) &&
460 (!(size & 8) ||
461 (TCG_TARGET_HAS_v64 &&
462 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
463 return TCG_TYPE_V128;
464 }
465 if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8)
466 && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)) {
467 return TCG_TYPE_V64;
468 }
469 return 0;
470 }
471
472 static void do_dup_store(TCGType type, uint32_t dofs, uint32_t oprsz,
473 uint32_t maxsz, TCGv_vec t_vec)
474 {
475 uint32_t i = 0;
476
477 tcg_debug_assert(oprsz >= 8);
478
479 /*
480 * This may be expand_clr for the tail of an operation, e.g.
481 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
482 * are misaligned wrt the maximum vector size, so do that first.
483 */
484 if (dofs & 8) {
485 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
486 i += 8;
487 }
488
489 switch (type) {
490 case TCG_TYPE_V256:
491 /*
492 * Recall that ARM SVE allows vector sizes that are not a
493 * power of 2, but always a multiple of 16. The intent is
494 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
495 */
496 for (; i + 32 <= oprsz; i += 32) {
497 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V256);
498 }
499 /* fallthru */
500 case TCG_TYPE_V128:
501 for (; i + 16 <= oprsz; i += 16) {
502 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V128);
503 }
504 break;
505 case TCG_TYPE_V64:
506 for (; i < oprsz; i += 8) {
507 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
508 }
509 break;
510 default:
511 g_assert_not_reached();
512 }
513
514 if (oprsz < maxsz) {
515 expand_clr(dofs + oprsz, maxsz - oprsz);
516 }
517 }
518
519 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
520 * Only one of IN_32 or IN_64 may be set;
521 * IN_C is used if IN_32 and IN_64 are unset.
522 */
523 static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz,
524 uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
525 uint64_t in_c)
526 {
527 TCGType type;
528 TCGv_i64 t_64;
529 TCGv_i32 t_32, t_desc;
530 TCGv_ptr t_ptr;
531 uint32_t i;
532
533 assert(vece <= (in_32 ? MO_32 : MO_64));
534 assert(in_32 == NULL || in_64 == NULL);
535
536 /* If we're storing 0, expand oprsz to maxsz. */
537 if (in_32 == NULL && in_64 == NULL) {
538 in_c = dup_const(vece, in_c);
539 if (in_c == 0) {
540 oprsz = maxsz;
541 vece = MO_8;
542 } else if (in_c == dup_const(MO_8, in_c)) {
543 vece = MO_8;
544 }
545 }
546
547 /* Implement inline with a vector type, if possible.
548 * Prefer integer when 64-bit host and no variable dup.
549 */
550 type = choose_vector_type(NULL, vece, oprsz,
551 (TCG_TARGET_REG_BITS == 64 && in_32 == NULL
552 && (in_64 == NULL || vece == MO_64)));
553 if (type != 0) {
554 TCGv_vec t_vec = tcg_temp_new_vec(type);
555
556 if (in_32) {
557 tcg_gen_dup_i32_vec(vece, t_vec, in_32);
558 } else if (in_64) {
559 tcg_gen_dup_i64_vec(vece, t_vec, in_64);
560 } else {
561 tcg_gen_dupi_vec(vece, t_vec, in_c);
562 }
563 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
564 tcg_temp_free_vec(t_vec);
565 return;
566 }
567
568 /* Otherwise, inline with an integer type, unless "large". */
569 if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
570 t_64 = NULL;
571 t_32 = NULL;
572
573 if (in_32) {
574 /* We are given a 32-bit variable input. For a 64-bit host,
575 use a 64-bit operation unless the 32-bit operation would
576 be simple enough. */
577 if (TCG_TARGET_REG_BITS == 64
578 && (vece != MO_32 || !check_size_impl(oprsz, 4))) {
579 t_64 = tcg_temp_new_i64();
580 tcg_gen_extu_i32_i64(t_64, in_32);
581 tcg_gen_dup_i64(vece, t_64, t_64);
582 } else {
583 t_32 = tcg_temp_new_i32();
584 tcg_gen_dup_i32(vece, t_32, in_32);
585 }
586 } else if (in_64) {
587 /* We are given a 64-bit variable input. */
588 t_64 = tcg_temp_new_i64();
589 tcg_gen_dup_i64(vece, t_64, in_64);
590 } else {
591 /* We are given a constant input. */
592 /* For 64-bit hosts, use 64-bit constants for "simple" constants
593 or when we'd need too many 32-bit stores, or when a 64-bit
594 constant is really required. */
595 if (vece == MO_64
596 || (TCG_TARGET_REG_BITS == 64
597 && (in_c == 0 || in_c == -1
598 || !check_size_impl(oprsz, 4)))) {
599 t_64 = tcg_constant_i64(in_c);
600 } else {
601 t_32 = tcg_constant_i32(in_c);
602 }
603 }
604
605 /* Implement inline if we picked an implementation size above. */
606 if (t_32) {
607 for (i = 0; i < oprsz; i += 4) {
608 tcg_gen_st_i32(t_32, cpu_env, dofs + i);
609 }
610 tcg_temp_free_i32(t_32);
611 goto done;
612 }
613 if (t_64) {
614 for (i = 0; i < oprsz; i += 8) {
615 tcg_gen_st_i64(t_64, cpu_env, dofs + i);
616 }
617 tcg_temp_free_i64(t_64);
618 goto done;
619 }
620 }
621
622 /* Otherwise implement out of line. */
623 t_ptr = tcg_temp_new_ptr();
624 tcg_gen_addi_ptr(t_ptr, cpu_env, dofs);
625
626 /*
627 * This may be expand_clr for the tail of an operation, e.g.
628 * oprsz == 8 && maxsz == 64. The size of the clear is misaligned
629 * wrt simd_desc and will assert. Simply pass all replicated byte
630 * stores through to memset.
631 */
632 if (oprsz == maxsz && vece == MO_8) {
633 TCGv_ptr t_size = tcg_const_ptr(oprsz);
634 TCGv_i32 t_val;
635
636 if (in_32) {
637 t_val = in_32;
638 } else if (in_64) {
639 t_val = tcg_temp_new_i32();
640 tcg_gen_extrl_i64_i32(t_val, in_64);
641 } else {
642 t_val = tcg_constant_i32(in_c);
643 }
644 gen_helper_memset(t_ptr, t_ptr, t_val, t_size);
645
646 if (in_64) {
647 tcg_temp_free_i32(t_val);
648 }
649 tcg_temp_free_ptr(t_size);
650 tcg_temp_free_ptr(t_ptr);
651 return;
652 }
653
654 t_desc = tcg_constant_i32(simd_desc(oprsz, maxsz, 0));
655
656 if (vece == MO_64) {
657 if (in_64) {
658 gen_helper_gvec_dup64(t_ptr, t_desc, in_64);
659 } else {
660 t_64 = tcg_constant_i64(in_c);
661 gen_helper_gvec_dup64(t_ptr, t_desc, t_64);
662 }
663 } else {
664 typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32);
665 static dup_fn * const fns[3] = {
666 gen_helper_gvec_dup8,
667 gen_helper_gvec_dup16,
668 gen_helper_gvec_dup32
669 };
670
671 if (in_32) {
672 fns[vece](t_ptr, t_desc, in_32);
673 } else if (in_64) {
674 t_32 = tcg_temp_new_i32();
675 tcg_gen_extrl_i64_i32(t_32, in_64);
676 fns[vece](t_ptr, t_desc, t_32);
677 tcg_temp_free_i32(t_32);
678 } else {
679 if (vece == MO_8) {
680 in_c &= 0xff;
681 } else if (vece == MO_16) {
682 in_c &= 0xffff;
683 }
684 t_32 = tcg_constant_i32(in_c);
685 fns[vece](t_ptr, t_desc, t_32);
686 }
687 }
688
689 tcg_temp_free_ptr(t_ptr);
690 return;
691
692 done:
693 if (oprsz < maxsz) {
694 expand_clr(dofs + oprsz, maxsz - oprsz);
695 }
696 }
697
698 /* Likewise, but with zero. */
699 static void expand_clr(uint32_t dofs, uint32_t maxsz)
700 {
701 do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
702 }
703
704 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
705 static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
706 bool load_dest, void (*fni)(TCGv_i32, TCGv_i32))
707 {
708 TCGv_i32 t0 = tcg_temp_new_i32();
709 TCGv_i32 t1 = tcg_temp_new_i32();
710 uint32_t i;
711
712 for (i = 0; i < oprsz; i += 4) {
713 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
714 if (load_dest) {
715 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
716 }
717 fni(t1, t0);
718 tcg_gen_st_i32(t1, cpu_env, dofs + i);
719 }
720 tcg_temp_free_i32(t0);
721 tcg_temp_free_i32(t1);
722 }
723
724 static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
725 int32_t c, bool load_dest,
726 void (*fni)(TCGv_i32, TCGv_i32, int32_t))
727 {
728 TCGv_i32 t0 = tcg_temp_new_i32();
729 TCGv_i32 t1 = tcg_temp_new_i32();
730 uint32_t i;
731
732 for (i = 0; i < oprsz; i += 4) {
733 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
734 if (load_dest) {
735 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
736 }
737 fni(t1, t0, c);
738 tcg_gen_st_i32(t1, cpu_env, dofs + i);
739 }
740 tcg_temp_free_i32(t0);
741 tcg_temp_free_i32(t1);
742 }
743
744 static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
745 TCGv_i32 c, bool scalar_first,
746 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
747 {
748 TCGv_i32 t0 = tcg_temp_new_i32();
749 TCGv_i32 t1 = tcg_temp_new_i32();
750 uint32_t i;
751
752 for (i = 0; i < oprsz; i += 4) {
753 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
754 if (scalar_first) {
755 fni(t1, c, t0);
756 } else {
757 fni(t1, t0, c);
758 }
759 tcg_gen_st_i32(t1, cpu_env, dofs + i);
760 }
761 tcg_temp_free_i32(t0);
762 tcg_temp_free_i32(t1);
763 }
764
765 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
766 static void expand_3_i32(uint32_t dofs, uint32_t aofs,
767 uint32_t bofs, uint32_t oprsz, bool load_dest,
768 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
769 {
770 TCGv_i32 t0 = tcg_temp_new_i32();
771 TCGv_i32 t1 = tcg_temp_new_i32();
772 TCGv_i32 t2 = tcg_temp_new_i32();
773 uint32_t i;
774
775 for (i = 0; i < oprsz; i += 4) {
776 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
777 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
778 if (load_dest) {
779 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
780 }
781 fni(t2, t0, t1);
782 tcg_gen_st_i32(t2, cpu_env, dofs + i);
783 }
784 tcg_temp_free_i32(t2);
785 tcg_temp_free_i32(t1);
786 tcg_temp_free_i32(t0);
787 }
788
789 static void expand_3i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
790 uint32_t oprsz, int32_t c, bool load_dest,
791 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, int32_t))
792 {
793 TCGv_i32 t0 = tcg_temp_new_i32();
794 TCGv_i32 t1 = tcg_temp_new_i32();
795 TCGv_i32 t2 = tcg_temp_new_i32();
796 uint32_t i;
797
798 for (i = 0; i < oprsz; i += 4) {
799 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
800 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
801 if (load_dest) {
802 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
803 }
804 fni(t2, t0, t1, c);
805 tcg_gen_st_i32(t2, cpu_env, dofs + i);
806 }
807 tcg_temp_free_i32(t0);
808 tcg_temp_free_i32(t1);
809 tcg_temp_free_i32(t2);
810 }
811
812 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
813 static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
814 uint32_t cofs, uint32_t oprsz, bool write_aofs,
815 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
816 {
817 TCGv_i32 t0 = tcg_temp_new_i32();
818 TCGv_i32 t1 = tcg_temp_new_i32();
819 TCGv_i32 t2 = tcg_temp_new_i32();
820 TCGv_i32 t3 = tcg_temp_new_i32();
821 uint32_t i;
822
823 for (i = 0; i < oprsz; i += 4) {
824 tcg_gen_ld_i32(t1, cpu_env, aofs + i);
825 tcg_gen_ld_i32(t2, cpu_env, bofs + i);
826 tcg_gen_ld_i32(t3, cpu_env, cofs + i);
827 fni(t0, t1, t2, t3);
828 tcg_gen_st_i32(t0, cpu_env, dofs + i);
829 if (write_aofs) {
830 tcg_gen_st_i32(t1, cpu_env, aofs + i);
831 }
832 }
833 tcg_temp_free_i32(t3);
834 tcg_temp_free_i32(t2);
835 tcg_temp_free_i32(t1);
836 tcg_temp_free_i32(t0);
837 }
838
839 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
840 static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
841 bool load_dest, void (*fni)(TCGv_i64, TCGv_i64))
842 {
843 TCGv_i64 t0 = tcg_temp_new_i64();
844 TCGv_i64 t1 = tcg_temp_new_i64();
845 uint32_t i;
846
847 for (i = 0; i < oprsz; i += 8) {
848 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
849 if (load_dest) {
850 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
851 }
852 fni(t1, t0);
853 tcg_gen_st_i64(t1, cpu_env, dofs + i);
854 }
855 tcg_temp_free_i64(t0);
856 tcg_temp_free_i64(t1);
857 }
858
859 static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
860 int64_t c, bool load_dest,
861 void (*fni)(TCGv_i64, TCGv_i64, int64_t))
862 {
863 TCGv_i64 t0 = tcg_temp_new_i64();
864 TCGv_i64 t1 = tcg_temp_new_i64();
865 uint32_t i;
866
867 for (i = 0; i < oprsz; i += 8) {
868 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
869 if (load_dest) {
870 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
871 }
872 fni(t1, t0, c);
873 tcg_gen_st_i64(t1, cpu_env, dofs + i);
874 }
875 tcg_temp_free_i64(t0);
876 tcg_temp_free_i64(t1);
877 }
878
879 static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
880 TCGv_i64 c, bool scalar_first,
881 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
882 {
883 TCGv_i64 t0 = tcg_temp_new_i64();
884 TCGv_i64 t1 = tcg_temp_new_i64();
885 uint32_t i;
886
887 for (i = 0; i < oprsz; i += 8) {
888 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
889 if (scalar_first) {
890 fni(t1, c, t0);
891 } else {
892 fni(t1, t0, c);
893 }
894 tcg_gen_st_i64(t1, cpu_env, dofs + i);
895 }
896 tcg_temp_free_i64(t0);
897 tcg_temp_free_i64(t1);
898 }
899
900 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
901 static void expand_3_i64(uint32_t dofs, uint32_t aofs,
902 uint32_t bofs, uint32_t oprsz, bool load_dest,
903 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
904 {
905 TCGv_i64 t0 = tcg_temp_new_i64();
906 TCGv_i64 t1 = tcg_temp_new_i64();
907 TCGv_i64 t2 = tcg_temp_new_i64();
908 uint32_t i;
909
910 for (i = 0; i < oprsz; i += 8) {
911 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
912 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
913 if (load_dest) {
914 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
915 }
916 fni(t2, t0, t1);
917 tcg_gen_st_i64(t2, cpu_env, dofs + i);
918 }
919 tcg_temp_free_i64(t2);
920 tcg_temp_free_i64(t1);
921 tcg_temp_free_i64(t0);
922 }
923
924 static void expand_3i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
925 uint32_t oprsz, int64_t c, bool load_dest,
926 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, int64_t))
927 {
928 TCGv_i64 t0 = tcg_temp_new_i64();
929 TCGv_i64 t1 = tcg_temp_new_i64();
930 TCGv_i64 t2 = tcg_temp_new_i64();
931 uint32_t i;
932
933 for (i = 0; i < oprsz; i += 8) {
934 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
935 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
936 if (load_dest) {
937 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
938 }
939 fni(t2, t0, t1, c);
940 tcg_gen_st_i64(t2, cpu_env, dofs + i);
941 }
942 tcg_temp_free_i64(t0);
943 tcg_temp_free_i64(t1);
944 tcg_temp_free_i64(t2);
945 }
946
947 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
948 static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
949 uint32_t cofs, uint32_t oprsz, bool write_aofs,
950 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
951 {
952 TCGv_i64 t0 = tcg_temp_new_i64();
953 TCGv_i64 t1 = tcg_temp_new_i64();
954 TCGv_i64 t2 = tcg_temp_new_i64();
955 TCGv_i64 t3 = tcg_temp_new_i64();
956 uint32_t i;
957
958 for (i = 0; i < oprsz; i += 8) {
959 tcg_gen_ld_i64(t1, cpu_env, aofs + i);
960 tcg_gen_ld_i64(t2, cpu_env, bofs + i);
961 tcg_gen_ld_i64(t3, cpu_env, cofs + i);
962 fni(t0, t1, t2, t3);
963 tcg_gen_st_i64(t0, cpu_env, dofs + i);
964 if (write_aofs) {
965 tcg_gen_st_i64(t1, cpu_env, aofs + i);
966 }
967 }
968 tcg_temp_free_i64(t3);
969 tcg_temp_free_i64(t2);
970 tcg_temp_free_i64(t1);
971 tcg_temp_free_i64(t0);
972 }
973
974 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
975 static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
976 uint32_t oprsz, uint32_t tysz, TCGType type,
977 bool load_dest,
978 void (*fni)(unsigned, TCGv_vec, TCGv_vec))
979 {
980 TCGv_vec t0 = tcg_temp_new_vec(type);
981 TCGv_vec t1 = tcg_temp_new_vec(type);
982 uint32_t i;
983
984 for (i = 0; i < oprsz; i += tysz) {
985 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
986 if (load_dest) {
987 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
988 }
989 fni(vece, t1, t0);
990 tcg_gen_st_vec(t1, cpu_env, dofs + i);
991 }
992 tcg_temp_free_vec(t0);
993 tcg_temp_free_vec(t1);
994 }
995
996 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
997 using host vectors. */
998 static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
999 uint32_t oprsz, uint32_t tysz, TCGType type,
1000 int64_t c, bool load_dest,
1001 void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t))
1002 {
1003 TCGv_vec t0 = tcg_temp_new_vec(type);
1004 TCGv_vec t1 = tcg_temp_new_vec(type);
1005 uint32_t i;
1006
1007 for (i = 0; i < oprsz; i += tysz) {
1008 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1009 if (load_dest) {
1010 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
1011 }
1012 fni(vece, t1, t0, c);
1013 tcg_gen_st_vec(t1, cpu_env, dofs + i);
1014 }
1015 tcg_temp_free_vec(t0);
1016 tcg_temp_free_vec(t1);
1017 }
1018
1019 static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1020 uint32_t oprsz, uint32_t tysz, TCGType type,
1021 TCGv_vec c, bool scalar_first,
1022 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
1023 {
1024 TCGv_vec t0 = tcg_temp_new_vec(type);
1025 TCGv_vec t1 = tcg_temp_new_vec(type);
1026 uint32_t i;
1027
1028 for (i = 0; i < oprsz; i += tysz) {
1029 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1030 if (scalar_first) {
1031 fni(vece, t1, c, t0);
1032 } else {
1033 fni(vece, t1, t0, c);
1034 }
1035 tcg_gen_st_vec(t1, cpu_env, dofs + i);
1036 }
1037 tcg_temp_free_vec(t0);
1038 tcg_temp_free_vec(t1);
1039 }
1040
1041 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1042 static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1043 uint32_t bofs, uint32_t oprsz,
1044 uint32_t tysz, TCGType type, bool load_dest,
1045 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
1046 {
1047 TCGv_vec t0 = tcg_temp_new_vec(type);
1048 TCGv_vec t1 = tcg_temp_new_vec(type);
1049 TCGv_vec t2 = tcg_temp_new_vec(type);
1050 uint32_t i;
1051
1052 for (i = 0; i < oprsz; i += tysz) {
1053 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1054 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
1055 if (load_dest) {
1056 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
1057 }
1058 fni(vece, t2, t0, t1);
1059 tcg_gen_st_vec(t2, cpu_env, dofs + i);
1060 }
1061 tcg_temp_free_vec(t2);
1062 tcg_temp_free_vec(t1);
1063 tcg_temp_free_vec(t0);
1064 }
1065
1066 /*
1067 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1068 * using host vectors.
1069 */
1070 static void expand_3i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1071 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
1072 TCGType type, int64_t c, bool load_dest,
1073 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec,
1074 int64_t))
1075 {
1076 TCGv_vec t0 = tcg_temp_new_vec(type);
1077 TCGv_vec t1 = tcg_temp_new_vec(type);
1078 TCGv_vec t2 = tcg_temp_new_vec(type);
1079 uint32_t i;
1080
1081 for (i = 0; i < oprsz; i += tysz) {
1082 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1083 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
1084 if (load_dest) {
1085 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
1086 }
1087 fni(vece, t2, t0, t1, c);
1088 tcg_gen_st_vec(t2, cpu_env, dofs + i);
1089 }
1090 tcg_temp_free_vec(t0);
1091 tcg_temp_free_vec(t1);
1092 tcg_temp_free_vec(t2);
1093 }
1094
1095 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1096 static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1097 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
1098 uint32_t tysz, TCGType type, bool write_aofs,
1099 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
1100 TCGv_vec, TCGv_vec))
1101 {
1102 TCGv_vec t0 = tcg_temp_new_vec(type);
1103 TCGv_vec t1 = tcg_temp_new_vec(type);
1104 TCGv_vec t2 = tcg_temp_new_vec(type);
1105 TCGv_vec t3 = tcg_temp_new_vec(type);
1106 uint32_t i;
1107
1108 for (i = 0; i < oprsz; i += tysz) {
1109 tcg_gen_ld_vec(t1, cpu_env, aofs + i);
1110 tcg_gen_ld_vec(t2, cpu_env, bofs + i);
1111 tcg_gen_ld_vec(t3, cpu_env, cofs + i);
1112 fni(vece, t0, t1, t2, t3);
1113 tcg_gen_st_vec(t0, cpu_env, dofs + i);
1114 if (write_aofs) {
1115 tcg_gen_st_vec(t1, cpu_env, aofs + i);
1116 }
1117 }
1118 tcg_temp_free_vec(t3);
1119 tcg_temp_free_vec(t2);
1120 tcg_temp_free_vec(t1);
1121 tcg_temp_free_vec(t0);
1122 }
1123
1124 /* Expand a vector two-operand operation. */
1125 void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs,
1126 uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
1127 {
1128 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1129 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1130 TCGType type;
1131 uint32_t some;
1132
1133 check_size_align(oprsz, maxsz, dofs | aofs);
1134 check_overlap_2(dofs, aofs, maxsz);
1135
1136 type = 0;
1137 if (g->fniv) {
1138 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1139 }
1140 switch (type) {
1141 case TCG_TYPE_V256:
1142 /* Recall that ARM SVE allows vector sizes that are not a
1143 * power of 2, but always a multiple of 16. The intent is
1144 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1145 */
1146 some = QEMU_ALIGN_DOWN(oprsz, 32);
1147 expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1148 g->load_dest, g->fniv);
1149 if (some == oprsz) {
1150 break;
1151 }
1152 dofs += some;
1153 aofs += some;
1154 oprsz -= some;
1155 maxsz -= some;
1156 /* fallthru */
1157 case TCG_TYPE_V128:
1158 expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1159 g->load_dest, g->fniv);
1160 break;
1161 case TCG_TYPE_V64:
1162 expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1163 g->load_dest, g->fniv);
1164 break;
1165
1166 case 0:
1167 if (g->fni8 && check_size_impl(oprsz, 8)) {
1168 expand_2_i64(dofs, aofs, oprsz, g->load_dest, g->fni8);
1169 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1170 expand_2_i32(dofs, aofs, oprsz, g->load_dest, g->fni4);
1171 } else {
1172 assert(g->fno != NULL);
1173 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno);
1174 oprsz = maxsz;
1175 }
1176 break;
1177
1178 default:
1179 g_assert_not_reached();
1180 }
1181 tcg_swap_vecop_list(hold_list);
1182
1183 if (oprsz < maxsz) {
1184 expand_clr(dofs + oprsz, maxsz - oprsz);
1185 }
1186 }
1187
1188 /* Expand a vector operation with two vectors and an immediate. */
1189 void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1190 uint32_t maxsz, int64_t c, const GVecGen2i *g)
1191 {
1192 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1193 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1194 TCGType type;
1195 uint32_t some;
1196
1197 check_size_align(oprsz, maxsz, dofs | aofs);
1198 check_overlap_2(dofs, aofs, maxsz);
1199
1200 type = 0;
1201 if (g->fniv) {
1202 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1203 }
1204 switch (type) {
1205 case TCG_TYPE_V256:
1206 /* Recall that ARM SVE allows vector sizes that are not a
1207 * power of 2, but always a multiple of 16. The intent is
1208 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1209 */
1210 some = QEMU_ALIGN_DOWN(oprsz, 32);
1211 expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1212 c, g->load_dest, g->fniv);
1213 if (some == oprsz) {
1214 break;
1215 }
1216 dofs += some;
1217 aofs += some;
1218 oprsz -= some;
1219 maxsz -= some;
1220 /* fallthru */
1221 case TCG_TYPE_V128:
1222 expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1223 c, g->load_dest, g->fniv);
1224 break;
1225 case TCG_TYPE_V64:
1226 expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1227 c, g->load_dest, g->fniv);
1228 break;
1229
1230 case 0:
1231 if (g->fni8 && check_size_impl(oprsz, 8)) {
1232 expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8);
1233 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1234 expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4);
1235 } else {
1236 if (g->fno) {
1237 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno);
1238 } else {
1239 TCGv_i64 tcg_c = tcg_constant_i64(c);
1240 tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz,
1241 maxsz, c, g->fnoi);
1242 }
1243 oprsz = maxsz;
1244 }
1245 break;
1246
1247 default:
1248 g_assert_not_reached();
1249 }
1250 tcg_swap_vecop_list(hold_list);
1251
1252 if (oprsz < maxsz) {
1253 expand_clr(dofs + oprsz, maxsz - oprsz);
1254 }
1255 }
1256
1257 /* Expand a vector operation with two vectors and a scalar. */
1258 void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1259 uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g)
1260 {
1261 TCGType type;
1262
1263 check_size_align(oprsz, maxsz, dofs | aofs);
1264 check_overlap_2(dofs, aofs, maxsz);
1265
1266 type = 0;
1267 if (g->fniv) {
1268 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1269 }
1270 if (type != 0) {
1271 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1272 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1273 TCGv_vec t_vec = tcg_temp_new_vec(type);
1274 uint32_t some;
1275
1276 tcg_gen_dup_i64_vec(g->vece, t_vec, c);
1277
1278 switch (type) {
1279 case TCG_TYPE_V256:
1280 /* Recall that ARM SVE allows vector sizes that are not a
1281 * power of 2, but always a multiple of 16. The intent is
1282 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1283 */
1284 some = QEMU_ALIGN_DOWN(oprsz, 32);
1285 expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1286 t_vec, g->scalar_first, g->fniv);
1287 if (some == oprsz) {
1288 break;
1289 }
1290 dofs += some;
1291 aofs += some;
1292 oprsz -= some;
1293 maxsz -= some;
1294 /* fallthru */
1295
1296 case TCG_TYPE_V128:
1297 expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1298 t_vec, g->scalar_first, g->fniv);
1299 break;
1300
1301 case TCG_TYPE_V64:
1302 expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1303 t_vec, g->scalar_first, g->fniv);
1304 break;
1305
1306 default:
1307 g_assert_not_reached();
1308 }
1309 tcg_temp_free_vec(t_vec);
1310 tcg_swap_vecop_list(hold_list);
1311 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1312 TCGv_i64 t64 = tcg_temp_new_i64();
1313
1314 tcg_gen_dup_i64(g->vece, t64, c);
1315 expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8);
1316 tcg_temp_free_i64(t64);
1317 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1318 TCGv_i32 t32 = tcg_temp_new_i32();
1319
1320 tcg_gen_extrl_i64_i32(t32, c);
1321 tcg_gen_dup_i32(g->vece, t32, t32);
1322 expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4);
1323 tcg_temp_free_i32(t32);
1324 } else {
1325 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno);
1326 return;
1327 }
1328
1329 if (oprsz < maxsz) {
1330 expand_clr(dofs + oprsz, maxsz - oprsz);
1331 }
1332 }
1333
1334 /* Expand a vector three-operand operation. */
1335 void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1336 uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
1337 {
1338 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1339 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1340 TCGType type;
1341 uint32_t some;
1342
1343 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1344 check_overlap_3(dofs, aofs, bofs, maxsz);
1345
1346 type = 0;
1347 if (g->fniv) {
1348 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1349 }
1350 switch (type) {
1351 case TCG_TYPE_V256:
1352 /* Recall that ARM SVE allows vector sizes that are not a
1353 * power of 2, but always a multiple of 16. The intent is
1354 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1355 */
1356 some = QEMU_ALIGN_DOWN(oprsz, 32);
1357 expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1358 g->load_dest, g->fniv);
1359 if (some == oprsz) {
1360 break;
1361 }
1362 dofs += some;
1363 aofs += some;
1364 bofs += some;
1365 oprsz -= some;
1366 maxsz -= some;
1367 /* fallthru */
1368 case TCG_TYPE_V128:
1369 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1370 g->load_dest, g->fniv);
1371 break;
1372 case TCG_TYPE_V64:
1373 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1374 g->load_dest, g->fniv);
1375 break;
1376
1377 case 0:
1378 if (g->fni8 && check_size_impl(oprsz, 8)) {
1379 expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
1380 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1381 expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
1382 } else {
1383 assert(g->fno != NULL);
1384 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz,
1385 maxsz, g->data, g->fno);
1386 oprsz = maxsz;
1387 }
1388 break;
1389
1390 default:
1391 g_assert_not_reached();
1392 }
1393 tcg_swap_vecop_list(hold_list);
1394
1395 if (oprsz < maxsz) {
1396 expand_clr(dofs + oprsz, maxsz - oprsz);
1397 }
1398 }
1399
1400 /* Expand a vector operation with three vectors and an immediate. */
1401 void tcg_gen_gvec_3i(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1402 uint32_t oprsz, uint32_t maxsz, int64_t c,
1403 const GVecGen3i *g)
1404 {
1405 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1406 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1407 TCGType type;
1408 uint32_t some;
1409
1410 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1411 check_overlap_3(dofs, aofs, bofs, maxsz);
1412
1413 type = 0;
1414 if (g->fniv) {
1415 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1416 }
1417 switch (type) {
1418 case TCG_TYPE_V256:
1419 /*
1420 * Recall that ARM SVE allows vector sizes that are not a
1421 * power of 2, but always a multiple of 16. The intent is
1422 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1423 */
1424 some = QEMU_ALIGN_DOWN(oprsz, 32);
1425 expand_3i_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1426 c, g->load_dest, g->fniv);
1427 if (some == oprsz) {
1428 break;
1429 }
1430 dofs += some;
1431 aofs += some;
1432 bofs += some;
1433 oprsz -= some;
1434 maxsz -= some;
1435 /* fallthru */
1436 case TCG_TYPE_V128:
1437 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1438 c, g->load_dest, g->fniv);
1439 break;
1440 case TCG_TYPE_V64:
1441 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1442 c, g->load_dest, g->fniv);
1443 break;
1444
1445 case 0:
1446 if (g->fni8 && check_size_impl(oprsz, 8)) {
1447 expand_3i_i64(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni8);
1448 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1449 expand_3i_i32(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni4);
1450 } else {
1451 assert(g->fno != NULL);
1452 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, c, g->fno);
1453 oprsz = maxsz;
1454 }
1455 break;
1456
1457 default:
1458 g_assert_not_reached();
1459 }
1460 tcg_swap_vecop_list(hold_list);
1461
1462 if (oprsz < maxsz) {
1463 expand_clr(dofs + oprsz, maxsz - oprsz);
1464 }
1465 }
1466
1467 /* Expand a vector four-operand operation. */
1468 void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1469 uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
1470 {
1471 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1472 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1473 TCGType type;
1474 uint32_t some;
1475
1476 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1477 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1478
1479 type = 0;
1480 if (g->fniv) {
1481 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1482 }
1483 switch (type) {
1484 case TCG_TYPE_V256:
1485 /* Recall that ARM SVE allows vector sizes that are not a
1486 * power of 2, but always a multiple of 16. The intent is
1487 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1488 */
1489 some = QEMU_ALIGN_DOWN(oprsz, 32);
1490 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some,
1491 32, TCG_TYPE_V256, g->write_aofs, g->fniv);
1492 if (some == oprsz) {
1493 break;
1494 }
1495 dofs += some;
1496 aofs += some;
1497 bofs += some;
1498 cofs += some;
1499 oprsz -= some;
1500 maxsz -= some;
1501 /* fallthru */
1502 case TCG_TYPE_V128:
1503 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1504 16, TCG_TYPE_V128, g->write_aofs, g->fniv);
1505 break;
1506 case TCG_TYPE_V64:
1507 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1508 8, TCG_TYPE_V64, g->write_aofs, g->fniv);
1509 break;
1510
1511 case 0:
1512 if (g->fni8 && check_size_impl(oprsz, 8)) {
1513 expand_4_i64(dofs, aofs, bofs, cofs, oprsz,
1514 g->write_aofs, g->fni8);
1515 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1516 expand_4_i32(dofs, aofs, bofs, cofs, oprsz,
1517 g->write_aofs, g->fni4);
1518 } else {
1519 assert(g->fno != NULL);
1520 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1521 oprsz, maxsz, g->data, g->fno);
1522 oprsz = maxsz;
1523 }
1524 break;
1525
1526 default:
1527 g_assert_not_reached();
1528 }
1529 tcg_swap_vecop_list(hold_list);
1530
1531 if (oprsz < maxsz) {
1532 expand_clr(dofs + oprsz, maxsz - oprsz);
1533 }
1534 }
1535
1536 /*
1537 * Expand specific vector operations.
1538 */
1539
1540 static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b)
1541 {
1542 tcg_gen_mov_vec(a, b);
1543 }
1544
1545 void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs,
1546 uint32_t oprsz, uint32_t maxsz)
1547 {
1548 static const GVecGen2 g = {
1549 .fni8 = tcg_gen_mov_i64,
1550 .fniv = vec_mov2,
1551 .fno = gen_helper_gvec_mov,
1552 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1553 };
1554 if (dofs != aofs) {
1555 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1556 } else {
1557 check_size_align(oprsz, maxsz, dofs);
1558 if (oprsz < maxsz) {
1559 expand_clr(dofs + oprsz, maxsz - oprsz);
1560 }
1561 }
1562 }
1563
1564 void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz,
1565 uint32_t maxsz, TCGv_i32 in)
1566 {
1567 check_size_align(oprsz, maxsz, dofs);
1568 tcg_debug_assert(vece <= MO_32);
1569 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1570 }
1571
1572 void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz,
1573 uint32_t maxsz, TCGv_i64 in)
1574 {
1575 check_size_align(oprsz, maxsz, dofs);
1576 tcg_debug_assert(vece <= MO_64);
1577 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1578 }
1579
1580 void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs,
1581 uint32_t oprsz, uint32_t maxsz)
1582 {
1583 check_size_align(oprsz, maxsz, dofs);
1584 if (vece <= MO_64) {
1585 TCGType type = choose_vector_type(NULL, vece, oprsz, 0);
1586 if (type != 0) {
1587 TCGv_vec t_vec = tcg_temp_new_vec(type);
1588 tcg_gen_dup_mem_vec(vece, t_vec, cpu_env, aofs);
1589 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
1590 tcg_temp_free_vec(t_vec);
1591 } else if (vece <= MO_32) {
1592 TCGv_i32 in = tcg_temp_new_i32();
1593 switch (vece) {
1594 case MO_8:
1595 tcg_gen_ld8u_i32(in, cpu_env, aofs);
1596 break;
1597 case MO_16:
1598 tcg_gen_ld16u_i32(in, cpu_env, aofs);
1599 break;
1600 default:
1601 tcg_gen_ld_i32(in, cpu_env, aofs);
1602 break;
1603 }
1604 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1605 tcg_temp_free_i32(in);
1606 } else {
1607 TCGv_i64 in = tcg_temp_new_i64();
1608 tcg_gen_ld_i64(in, cpu_env, aofs);
1609 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1610 tcg_temp_free_i64(in);
1611 }
1612 } else if (vece == 4) {
1613 /* 128-bit duplicate. */
1614 int i;
1615
1616 tcg_debug_assert(oprsz >= 16);
1617 if (TCG_TARGET_HAS_v128) {
1618 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128);
1619
1620 tcg_gen_ld_vec(in, cpu_env, aofs);
1621 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1622 tcg_gen_st_vec(in, cpu_env, dofs + i);
1623 }
1624 tcg_temp_free_vec(in);
1625 } else {
1626 TCGv_i64 in0 = tcg_temp_new_i64();
1627 TCGv_i64 in1 = tcg_temp_new_i64();
1628
1629 tcg_gen_ld_i64(in0, cpu_env, aofs);
1630 tcg_gen_ld_i64(in1, cpu_env, aofs + 8);
1631 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1632 tcg_gen_st_i64(in0, cpu_env, dofs + i);
1633 tcg_gen_st_i64(in1, cpu_env, dofs + i + 8);
1634 }
1635 tcg_temp_free_i64(in0);
1636 tcg_temp_free_i64(in1);
1637 }
1638 if (oprsz < maxsz) {
1639 expand_clr(dofs + oprsz, maxsz - oprsz);
1640 }
1641 } else if (vece == 5) {
1642 /* 256-bit duplicate. */
1643 int i;
1644
1645 tcg_debug_assert(oprsz >= 32);
1646 tcg_debug_assert(oprsz % 32 == 0);
1647 if (TCG_TARGET_HAS_v256) {
1648 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V256);
1649
1650 tcg_gen_ld_vec(in, cpu_env, aofs);
1651 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1652 tcg_gen_st_vec(in, cpu_env, dofs + i);
1653 }
1654 tcg_temp_free_vec(in);
1655 } else if (TCG_TARGET_HAS_v128) {
1656 TCGv_vec in0 = tcg_temp_new_vec(TCG_TYPE_V128);
1657 TCGv_vec in1 = tcg_temp_new_vec(TCG_TYPE_V128);
1658
1659 tcg_gen_ld_vec(in0, cpu_env, aofs);
1660 tcg_gen_ld_vec(in1, cpu_env, aofs + 16);
1661 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1662 tcg_gen_st_vec(in0, cpu_env, dofs + i);
1663 tcg_gen_st_vec(in1, cpu_env, dofs + i + 16);
1664 }
1665 tcg_temp_free_vec(in0);
1666 tcg_temp_free_vec(in1);
1667 } else {
1668 TCGv_i64 in[4];
1669 int j;
1670
1671 for (j = 0; j < 4; ++j) {
1672 in[j] = tcg_temp_new_i64();
1673 tcg_gen_ld_i64(in[j], cpu_env, aofs + j * 8);
1674 }
1675 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1676 for (j = 0; j < 4; ++j) {
1677 tcg_gen_st_i64(in[j], cpu_env, dofs + i + j * 8);
1678 }
1679 }
1680 for (j = 0; j < 4; ++j) {
1681 tcg_temp_free_i64(in[j]);
1682 }
1683 }
1684 if (oprsz < maxsz) {
1685 expand_clr(dofs + oprsz, maxsz - oprsz);
1686 }
1687 } else {
1688 g_assert_not_reached();
1689 }
1690 }
1691
1692 void tcg_gen_gvec_dup_imm(unsigned vece, uint32_t dofs, uint32_t oprsz,
1693 uint32_t maxsz, uint64_t x)
1694 {
1695 check_size_align(oprsz, maxsz, dofs);
1696 do_dup(vece, dofs, oprsz, maxsz, NULL, NULL, x);
1697 }
1698
1699 void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs,
1700 uint32_t oprsz, uint32_t maxsz)
1701 {
1702 static const GVecGen2 g = {
1703 .fni8 = tcg_gen_not_i64,
1704 .fniv = tcg_gen_not_vec,
1705 .fno = gen_helper_gvec_not,
1706 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1707 };
1708 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1709 }
1710
1711 /* Perform a vector addition using normal addition and a mask. The mask
1712 should be the sign bit of each lane. This 6-operation form is more
1713 efficient than separate additions when there are 4 or more lanes in
1714 the 64-bit operation. */
1715 static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1716 {
1717 TCGv_i64 t1 = tcg_temp_new_i64();
1718 TCGv_i64 t2 = tcg_temp_new_i64();
1719 TCGv_i64 t3 = tcg_temp_new_i64();
1720
1721 tcg_gen_andc_i64(t1, a, m);
1722 tcg_gen_andc_i64(t2, b, m);
1723 tcg_gen_xor_i64(t3, a, b);
1724 tcg_gen_add_i64(d, t1, t2);
1725 tcg_gen_and_i64(t3, t3, m);
1726 tcg_gen_xor_i64(d, d, t3);
1727
1728 tcg_temp_free_i64(t1);
1729 tcg_temp_free_i64(t2);
1730 tcg_temp_free_i64(t3);
1731 }
1732
1733 void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1734 {
1735 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
1736 gen_addv_mask(d, a, b, m);
1737 }
1738
1739 void tcg_gen_vec_add8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1740 {
1741 TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80));
1742 TCGv_i32 t1 = tcg_temp_new_i32();
1743 TCGv_i32 t2 = tcg_temp_new_i32();
1744 TCGv_i32 t3 = tcg_temp_new_i32();
1745
1746 tcg_gen_andc_i32(t1, a, m);
1747 tcg_gen_andc_i32(t2, b, m);
1748 tcg_gen_xor_i32(t3, a, b);
1749 tcg_gen_add_i32(d, t1, t2);
1750 tcg_gen_and_i32(t3, t3, m);
1751 tcg_gen_xor_i32(d, d, t3);
1752
1753 tcg_temp_free_i32(t1);
1754 tcg_temp_free_i32(t2);
1755 tcg_temp_free_i32(t3);
1756 }
1757
1758 void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1759 {
1760 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
1761 gen_addv_mask(d, a, b, m);
1762 }
1763
1764 void tcg_gen_vec_add16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1765 {
1766 TCGv_i32 t1 = tcg_temp_new_i32();
1767 TCGv_i32 t2 = tcg_temp_new_i32();
1768
1769 tcg_gen_andi_i32(t1, a, ~0xffff);
1770 tcg_gen_add_i32(t2, a, b);
1771 tcg_gen_add_i32(t1, t1, b);
1772 tcg_gen_deposit_i32(d, t1, t2, 0, 16);
1773
1774 tcg_temp_free_i32(t1);
1775 tcg_temp_free_i32(t2);
1776 }
1777
1778 void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1779 {
1780 TCGv_i64 t1 = tcg_temp_new_i64();
1781 TCGv_i64 t2 = tcg_temp_new_i64();
1782
1783 tcg_gen_andi_i64(t1, a, ~0xffffffffull);
1784 tcg_gen_add_i64(t2, a, b);
1785 tcg_gen_add_i64(t1, t1, b);
1786 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1787
1788 tcg_temp_free_i64(t1);
1789 tcg_temp_free_i64(t2);
1790 }
1791
1792 static const TCGOpcode vecop_list_add[] = { INDEX_op_add_vec, 0 };
1793
1794 void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs,
1795 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1796 {
1797 static const GVecGen3 g[4] = {
1798 { .fni8 = tcg_gen_vec_add8_i64,
1799 .fniv = tcg_gen_add_vec,
1800 .fno = gen_helper_gvec_add8,
1801 .opt_opc = vecop_list_add,
1802 .vece = MO_8 },
1803 { .fni8 = tcg_gen_vec_add16_i64,
1804 .fniv = tcg_gen_add_vec,
1805 .fno = gen_helper_gvec_add16,
1806 .opt_opc = vecop_list_add,
1807 .vece = MO_16 },
1808 { .fni4 = tcg_gen_add_i32,
1809 .fniv = tcg_gen_add_vec,
1810 .fno = gen_helper_gvec_add32,
1811 .opt_opc = vecop_list_add,
1812 .vece = MO_32 },
1813 { .fni8 = tcg_gen_add_i64,
1814 .fniv = tcg_gen_add_vec,
1815 .fno = gen_helper_gvec_add64,
1816 .opt_opc = vecop_list_add,
1817 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1818 .vece = MO_64 },
1819 };
1820
1821 tcg_debug_assert(vece <= MO_64);
1822 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1823 }
1824
1825 void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs,
1826 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1827 {
1828 static const GVecGen2s g[4] = {
1829 { .fni8 = tcg_gen_vec_add8_i64,
1830 .fniv = tcg_gen_add_vec,
1831 .fno = gen_helper_gvec_adds8,
1832 .opt_opc = vecop_list_add,
1833 .vece = MO_8 },
1834 { .fni8 = tcg_gen_vec_add16_i64,
1835 .fniv = tcg_gen_add_vec,
1836 .fno = gen_helper_gvec_adds16,
1837 .opt_opc = vecop_list_add,
1838 .vece = MO_16 },
1839 { .fni4 = tcg_gen_add_i32,
1840 .fniv = tcg_gen_add_vec,
1841 .fno = gen_helper_gvec_adds32,
1842 .opt_opc = vecop_list_add,
1843 .vece = MO_32 },
1844 { .fni8 = tcg_gen_add_i64,
1845 .fniv = tcg_gen_add_vec,
1846 .fno = gen_helper_gvec_adds64,
1847 .opt_opc = vecop_list_add,
1848 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1849 .vece = MO_64 },
1850 };
1851
1852 tcg_debug_assert(vece <= MO_64);
1853 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1854 }
1855
1856 void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs,
1857 int64_t c, uint32_t oprsz, uint32_t maxsz)
1858 {
1859 TCGv_i64 tmp = tcg_constant_i64(c);
1860 tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz);
1861 }
1862
1863 static const TCGOpcode vecop_list_sub[] = { INDEX_op_sub_vec, 0 };
1864
1865 void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs,
1866 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1867 {
1868 static const GVecGen2s g[4] = {
1869 { .fni8 = tcg_gen_vec_sub8_i64,
1870 .fniv = tcg_gen_sub_vec,
1871 .fno = gen_helper_gvec_subs8,
1872 .opt_opc = vecop_list_sub,
1873 .vece = MO_8 },
1874 { .fni8 = tcg_gen_vec_sub16_i64,
1875 .fniv = tcg_gen_sub_vec,
1876 .fno = gen_helper_gvec_subs16,
1877 .opt_opc = vecop_list_sub,
1878 .vece = MO_16 },
1879 { .fni4 = tcg_gen_sub_i32,
1880 .fniv = tcg_gen_sub_vec,
1881 .fno = gen_helper_gvec_subs32,
1882 .opt_opc = vecop_list_sub,
1883 .vece = MO_32 },
1884 { .fni8 = tcg_gen_sub_i64,
1885 .fniv = tcg_gen_sub_vec,
1886 .fno = gen_helper_gvec_subs64,
1887 .opt_opc = vecop_list_sub,
1888 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1889 .vece = MO_64 },
1890 };
1891
1892 tcg_debug_assert(vece <= MO_64);
1893 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1894 }
1895
1896 /* Perform a vector subtraction using normal subtraction and a mask.
1897 Compare gen_addv_mask above. */
1898 static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1899 {
1900 TCGv_i64 t1 = tcg_temp_new_i64();
1901 TCGv_i64 t2 = tcg_temp_new_i64();
1902 TCGv_i64 t3 = tcg_temp_new_i64();
1903
1904 tcg_gen_or_i64(t1, a, m);
1905 tcg_gen_andc_i64(t2, b, m);
1906 tcg_gen_eqv_i64(t3, a, b);
1907 tcg_gen_sub_i64(d, t1, t2);
1908 tcg_gen_and_i64(t3, t3, m);
1909 tcg_gen_xor_i64(d, d, t3);
1910
1911 tcg_temp_free_i64(t1);
1912 tcg_temp_free_i64(t2);
1913 tcg_temp_free_i64(t3);
1914 }
1915
1916 void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1917 {
1918 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
1919 gen_subv_mask(d, a, b, m);
1920 }
1921
1922 void tcg_gen_vec_sub8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1923 {
1924 TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80));
1925 TCGv_i32 t1 = tcg_temp_new_i32();
1926 TCGv_i32 t2 = tcg_temp_new_i32();
1927 TCGv_i32 t3 = tcg_temp_new_i32();
1928
1929 tcg_gen_or_i32(t1, a, m);
1930 tcg_gen_andc_i32(t2, b, m);
1931 tcg_gen_eqv_i32(t3, a, b);
1932 tcg_gen_sub_i32(d, t1, t2);
1933 tcg_gen_and_i32(t3, t3, m);
1934 tcg_gen_xor_i32(d, d, t3);
1935
1936 tcg_temp_free_i32(t1);
1937 tcg_temp_free_i32(t2);
1938 tcg_temp_free_i32(t3);
1939 }
1940
1941 void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1942 {
1943 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
1944 gen_subv_mask(d, a, b, m);
1945 }
1946
1947 void tcg_gen_vec_sub16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1948 {
1949 TCGv_i32 t1 = tcg_temp_new_i32();
1950 TCGv_i32 t2 = tcg_temp_new_i32();
1951
1952 tcg_gen_andi_i32(t1, b, ~0xffff);
1953 tcg_gen_sub_i32(t2, a, b);
1954 tcg_gen_sub_i32(t1, a, t1);
1955 tcg_gen_deposit_i32(d, t1, t2, 0, 16);
1956
1957 tcg_temp_free_i32(t1);
1958 tcg_temp_free_i32(t2);
1959 }
1960
1961 void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1962 {
1963 TCGv_i64 t1 = tcg_temp_new_i64();
1964 TCGv_i64 t2 = tcg_temp_new_i64();
1965
1966 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
1967 tcg_gen_sub_i64(t2, a, b);
1968 tcg_gen_sub_i64(t1, a, t1);
1969 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1970
1971 tcg_temp_free_i64(t1);
1972 tcg_temp_free_i64(t2);
1973 }
1974
1975 void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs,
1976 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1977 {
1978 static const GVecGen3 g[4] = {
1979 { .fni8 = tcg_gen_vec_sub8_i64,
1980 .fniv = tcg_gen_sub_vec,
1981 .fno = gen_helper_gvec_sub8,
1982 .opt_opc = vecop_list_sub,
1983 .vece = MO_8 },
1984 { .fni8 = tcg_gen_vec_sub16_i64,
1985 .fniv = tcg_gen_sub_vec,
1986 .fno = gen_helper_gvec_sub16,
1987 .opt_opc = vecop_list_sub,
1988 .vece = MO_16 },
1989 { .fni4 = tcg_gen_sub_i32,
1990 .fniv = tcg_gen_sub_vec,
1991 .fno = gen_helper_gvec_sub32,
1992 .opt_opc = vecop_list_sub,
1993 .vece = MO_32 },
1994 { .fni8 = tcg_gen_sub_i64,
1995 .fniv = tcg_gen_sub_vec,
1996 .fno = gen_helper_gvec_sub64,
1997 .opt_opc = vecop_list_sub,
1998 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1999 .vece = MO_64 },
2000 };
2001
2002 tcg_debug_assert(vece <= MO_64);
2003 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2004 }
2005
2006 static const TCGOpcode vecop_list_mul[] = { INDEX_op_mul_vec, 0 };
2007
2008 void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs,
2009 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2010 {
2011 static const GVecGen3 g[4] = {
2012 { .fniv = tcg_gen_mul_vec,
2013 .fno = gen_helper_gvec_mul8,
2014 .opt_opc = vecop_list_mul,
2015 .vece = MO_8 },
2016 { .fniv = tcg_gen_mul_vec,
2017 .fno = gen_helper_gvec_mul16,
2018 .opt_opc = vecop_list_mul,
2019 .vece = MO_16 },
2020 { .fni4 = tcg_gen_mul_i32,
2021 .fniv = tcg_gen_mul_vec,
2022 .fno = gen_helper_gvec_mul32,
2023 .opt_opc = vecop_list_mul,
2024 .vece = MO_32 },
2025 { .fni8 = tcg_gen_mul_i64,
2026 .fniv = tcg_gen_mul_vec,
2027 .fno = gen_helper_gvec_mul64,
2028 .opt_opc = vecop_list_mul,
2029 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2030 .vece = MO_64 },
2031 };
2032
2033 tcg_debug_assert(vece <= MO_64);
2034 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2035 }
2036
2037 void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs,
2038 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2039 {
2040 static const GVecGen2s g[4] = {
2041 { .fniv = tcg_gen_mul_vec,
2042 .fno = gen_helper_gvec_muls8,
2043 .opt_opc = vecop_list_mul,
2044 .vece = MO_8 },
2045 { .fniv = tcg_gen_mul_vec,
2046 .fno = gen_helper_gvec_muls16,
2047 .opt_opc = vecop_list_mul,
2048 .vece = MO_16 },
2049 { .fni4 = tcg_gen_mul_i32,
2050 .fniv = tcg_gen_mul_vec,
2051 .fno = gen_helper_gvec_muls32,
2052 .opt_opc = vecop_list_mul,
2053 .vece = MO_32 },
2054 { .fni8 = tcg_gen_mul_i64,
2055 .fniv = tcg_gen_mul_vec,
2056 .fno = gen_helper_gvec_muls64,
2057 .opt_opc = vecop_list_mul,
2058 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2059 .vece = MO_64 },
2060 };
2061
2062 tcg_debug_assert(vece <= MO_64);
2063 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
2064 }
2065
2066 void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs,
2067 int64_t c, uint32_t oprsz, uint32_t maxsz)
2068 {
2069 TCGv_i64 tmp = tcg_constant_i64(c);
2070 tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz);
2071 }
2072
2073 void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs,
2074 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2075 {
2076 static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, 0 };
2077 static const GVecGen3 g[4] = {
2078 { .fniv = tcg_gen_ssadd_vec,
2079 .fno = gen_helper_gvec_ssadd8,
2080 .opt_opc = vecop_list,
2081 .vece = MO_8 },
2082 { .fniv = tcg_gen_ssadd_vec,
2083 .fno = gen_helper_gvec_ssadd16,
2084 .opt_opc = vecop_list,
2085 .vece = MO_16 },
2086 { .fniv = tcg_gen_ssadd_vec,
2087 .fno = gen_helper_gvec_ssadd32,
2088 .opt_opc = vecop_list,
2089 .vece = MO_32 },
2090 { .fniv = tcg_gen_ssadd_vec,
2091 .fno = gen_helper_gvec_ssadd64,
2092 .opt_opc = vecop_list,
2093 .vece = MO_64 },
2094 };
2095 tcg_debug_assert(vece <= MO_64);
2096 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2097 }
2098
2099 void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs,
2100 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2101 {
2102 static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, 0 };
2103 static const GVecGen3 g[4] = {
2104 { .fniv = tcg_gen_sssub_vec,
2105 .fno = gen_helper_gvec_sssub8,
2106 .opt_opc = vecop_list,
2107 .vece = MO_8 },
2108 { .fniv = tcg_gen_sssub_vec,
2109 .fno = gen_helper_gvec_sssub16,
2110 .opt_opc = vecop_list,
2111 .vece = MO_16 },
2112 { .fniv = tcg_gen_sssub_vec,
2113 .fno = gen_helper_gvec_sssub32,
2114 .opt_opc = vecop_list,
2115 .vece = MO_32 },
2116 { .fniv = tcg_gen_sssub_vec,
2117 .fno = gen_helper_gvec_sssub64,
2118 .opt_opc = vecop_list,
2119 .vece = MO_64 },
2120 };
2121 tcg_debug_assert(vece <= MO_64);
2122 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2123 }
2124
2125 static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2126 {
2127 TCGv_i32 max = tcg_constant_i32(-1);
2128 tcg_gen_add_i32(d, a, b);
2129 tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d);
2130 }
2131
2132 static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2133 {
2134 TCGv_i64 max = tcg_constant_i64(-1);
2135 tcg_gen_add_i64(d, a, b);
2136 tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d);
2137 }
2138
2139 void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs,
2140 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2141 {
2142 static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, 0 };
2143 static const GVecGen3 g[4] = {
2144 { .fniv = tcg_gen_usadd_vec,
2145 .fno = gen_helper_gvec_usadd8,
2146 .opt_opc = vecop_list,
2147 .vece = MO_8 },
2148 { .fniv = tcg_gen_usadd_vec,
2149 .fno = gen_helper_gvec_usadd16,
2150 .opt_opc = vecop_list,
2151 .vece = MO_16 },
2152 { .fni4 = tcg_gen_usadd_i32,
2153 .fniv = tcg_gen_usadd_vec,
2154 .fno = gen_helper_gvec_usadd32,
2155 .opt_opc = vecop_list,
2156 .vece = MO_32 },
2157 { .fni8 = tcg_gen_usadd_i64,
2158 .fniv = tcg_gen_usadd_vec,
2159 .fno = gen_helper_gvec_usadd64,
2160 .opt_opc = vecop_list,
2161 .vece = MO_64 }
2162 };
2163 tcg_debug_assert(vece <= MO_64);
2164 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2165 }
2166
2167 static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2168 {
2169 TCGv_i32 min = tcg_constant_i32(0);
2170 tcg_gen_sub_i32(d, a, b);
2171 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d);
2172 }
2173
2174 static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2175 {
2176 TCGv_i64 min = tcg_constant_i64(0);
2177 tcg_gen_sub_i64(d, a, b);
2178 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d);
2179 }
2180
2181 void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs,
2182 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2183 {
2184 static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, 0 };
2185 static const GVecGen3 g[4] = {
2186 { .fniv = tcg_gen_ussub_vec,
2187 .fno = gen_helper_gvec_ussub8,
2188 .opt_opc = vecop_list,
2189 .vece = MO_8 },
2190 { .fniv = tcg_gen_ussub_vec,
2191 .fno = gen_helper_gvec_ussub16,
2192 .opt_opc = vecop_list,
2193 .vece = MO_16 },
2194 { .fni4 = tcg_gen_ussub_i32,
2195 .fniv = tcg_gen_ussub_vec,
2196 .fno = gen_helper_gvec_ussub32,
2197 .opt_opc = vecop_list,
2198 .vece = MO_32 },
2199 { .fni8 = tcg_gen_ussub_i64,
2200 .fniv = tcg_gen_ussub_vec,
2201 .fno = gen_helper_gvec_ussub64,
2202 .opt_opc = vecop_list,
2203 .vece = MO_64 }
2204 };
2205 tcg_debug_assert(vece <= MO_64);
2206 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2207 }
2208
2209 void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs,
2210 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2211 {
2212 static const TCGOpcode vecop_list[] = { INDEX_op_smin_vec, 0 };
2213 static const GVecGen3 g[4] = {
2214 { .fniv = tcg_gen_smin_vec,
2215 .fno = gen_helper_gvec_smin8,
2216 .opt_opc = vecop_list,
2217 .vece = MO_8 },
2218 { .fniv = tcg_gen_smin_vec,
2219 .fno = gen_helper_gvec_smin16,
2220 .opt_opc = vecop_list,
2221 .vece = MO_16 },
2222 { .fni4 = tcg_gen_smin_i32,
2223 .fniv = tcg_gen_smin_vec,
2224 .fno = gen_helper_gvec_smin32,
2225 .opt_opc = vecop_list,
2226 .vece = MO_32 },
2227 { .fni8 = tcg_gen_smin_i64,
2228 .fniv = tcg_gen_smin_vec,
2229 .fno = gen_helper_gvec_smin64,
2230 .opt_opc = vecop_list,
2231 .vece = MO_64 }
2232 };
2233 tcg_debug_assert(vece <= MO_64);
2234 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2235 }
2236
2237 void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs,
2238 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2239 {
2240 static const TCGOpcode vecop_list[] = { INDEX_op_umin_vec, 0 };
2241 static const GVecGen3 g[4] = {
2242 { .fniv = tcg_gen_umin_vec,
2243 .fno = gen_helper_gvec_umin8,
2244 .opt_opc = vecop_list,
2245 .vece = MO_8 },
2246 { .fniv = tcg_gen_umin_vec,
2247 .fno = gen_helper_gvec_umin16,
2248 .opt_opc = vecop_list,
2249 .vece = MO_16 },
2250 { .fni4 = tcg_gen_umin_i32,
2251 .fniv = tcg_gen_umin_vec,
2252 .fno = gen_helper_gvec_umin32,
2253 .opt_opc = vecop_list,
2254 .vece = MO_32 },
2255 { .fni8 = tcg_gen_umin_i64,
2256 .fniv = tcg_gen_umin_vec,
2257 .fno = gen_helper_gvec_umin64,
2258 .opt_opc = vecop_list,
2259 .vece = MO_64 }
2260 };
2261 tcg_debug_assert(vece <= MO_64);
2262 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2263 }
2264
2265 void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs,
2266 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2267 {
2268 static const TCGOpcode vecop_list[] = { INDEX_op_smax_vec, 0 };
2269 static const GVecGen3 g[4] = {
2270 { .fniv = tcg_gen_smax_vec,
2271 .fno = gen_helper_gvec_smax8,
2272 .opt_opc = vecop_list,
2273 .vece = MO_8 },
2274 { .fniv = tcg_gen_smax_vec,
2275 .fno = gen_helper_gvec_smax16,
2276 .opt_opc = vecop_list,
2277 .vece = MO_16 },
2278 { .fni4 = tcg_gen_smax_i32,
2279 .fniv = tcg_gen_smax_vec,
2280 .fno = gen_helper_gvec_smax32,
2281 .opt_opc = vecop_list,
2282 .vece = MO_32 },
2283 { .fni8 = tcg_gen_smax_i64,
2284 .fniv = tcg_gen_smax_vec,
2285 .fno = gen_helper_gvec_smax64,
2286 .opt_opc = vecop_list,
2287 .vece = MO_64 }
2288 };
2289 tcg_debug_assert(vece <= MO_64);
2290 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2291 }
2292
2293 void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs,
2294 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2295 {
2296 static const TCGOpcode vecop_list[] = { INDEX_op_umax_vec, 0 };
2297 static const GVecGen3 g[4] = {
2298 { .fniv = tcg_gen_umax_vec,
2299 .fno = gen_helper_gvec_umax8,
2300 .opt_opc = vecop_list,
2301 .vece = MO_8 },
2302 { .fniv = tcg_gen_umax_vec,
2303 .fno = gen_helper_gvec_umax16,
2304 .opt_opc = vecop_list,
2305 .vece = MO_16 },
2306 { .fni4 = tcg_gen_umax_i32,
2307 .fniv = tcg_gen_umax_vec,
2308 .fno = gen_helper_gvec_umax32,
2309 .opt_opc = vecop_list,
2310 .vece = MO_32 },
2311 { .fni8 = tcg_gen_umax_i64,
2312 .fniv = tcg_gen_umax_vec,
2313 .fno = gen_helper_gvec_umax64,
2314 .opt_opc = vecop_list,
2315 .vece = MO_64 }
2316 };
2317 tcg_debug_assert(vece <= MO_64);
2318 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2319 }
2320
2321 /* Perform a vector negation using normal negation and a mask.
2322 Compare gen_subv_mask above. */
2323 static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
2324 {
2325 TCGv_i64 t2 = tcg_temp_new_i64();
2326 TCGv_i64 t3 = tcg_temp_new_i64();
2327
2328 tcg_gen_andc_i64(t3, m, b);
2329 tcg_gen_andc_i64(t2, b, m);
2330 tcg_gen_sub_i64(d, m, t2);
2331 tcg_gen_xor_i64(d, d, t3);
2332
2333 tcg_temp_free_i64(t2);
2334 tcg_temp_free_i64(t3);
2335 }
2336
2337 void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b)
2338 {
2339 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
2340 gen_negv_mask(d, b, m);
2341 }
2342
2343 void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b)
2344 {
2345 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
2346 gen_negv_mask(d, b, m);
2347 }
2348
2349 void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b)
2350 {
2351 TCGv_i64 t1 = tcg_temp_new_i64();
2352 TCGv_i64 t2 = tcg_temp_new_i64();
2353
2354 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2355 tcg_gen_neg_i64(t2, b);
2356 tcg_gen_neg_i64(t1, t1);
2357 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2358
2359 tcg_temp_free_i64(t1);
2360 tcg_temp_free_i64(t2);
2361 }
2362
2363 void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs,
2364 uint32_t oprsz, uint32_t maxsz)
2365 {
2366 static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, 0 };
2367 static const GVecGen2 g[4] = {
2368 { .fni8 = tcg_gen_vec_neg8_i64,
2369 .fniv = tcg_gen_neg_vec,
2370 .fno = gen_helper_gvec_neg8,
2371 .opt_opc = vecop_list,
2372 .vece = MO_8 },
2373 { .fni8 = tcg_gen_vec_neg16_i64,
2374 .fniv = tcg_gen_neg_vec,
2375 .fno = gen_helper_gvec_neg16,
2376 .opt_opc = vecop_list,
2377 .vece = MO_16 },
2378 { .fni4 = tcg_gen_neg_i32,
2379 .fniv = tcg_gen_neg_vec,
2380 .fno = gen_helper_gvec_neg32,
2381 .opt_opc = vecop_list,
2382 .vece = MO_32 },
2383 { .fni8 = tcg_gen_neg_i64,
2384 .fniv = tcg_gen_neg_vec,
2385 .fno = gen_helper_gvec_neg64,
2386 .opt_opc = vecop_list,
2387 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2388 .vece = MO_64 },
2389 };
2390
2391 tcg_debug_assert(vece <= MO_64);
2392 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2393 }
2394
2395 static void gen_absv_mask(TCGv_i64 d, TCGv_i64 b, unsigned vece)
2396 {
2397 TCGv_i64 t = tcg_temp_new_i64();
2398 int nbit = 8 << vece;
2399
2400 /* Create -1 for each negative element. */
2401 tcg_gen_shri_i64(t, b, nbit - 1);
2402 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2403 tcg_gen_muli_i64(t, t, (1 << nbit) - 1);
2404
2405 /*
2406 * Invert (via xor -1) and add one.
2407 * Because of the ordering the msb is cleared,
2408 * so we never have carry into the next element.
2409 */
2410 tcg_gen_xor_i64(d, b, t);
2411 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2412 tcg_gen_add_i64(d, d, t);
2413
2414 tcg_temp_free_i64(t);
2415 }
2416
2417 static void tcg_gen_vec_abs8_i64(TCGv_i64 d, TCGv_i64 b)
2418 {
2419 gen_absv_mask(d, b, MO_8);
2420 }
2421
2422 static void tcg_gen_vec_abs16_i64(TCGv_i64 d, TCGv_i64 b)
2423 {
2424 gen_absv_mask(d, b, MO_16);
2425 }
2426
2427 void tcg_gen_gvec_abs(unsigned vece, uint32_t dofs, uint32_t aofs,
2428 uint32_t oprsz, uint32_t maxsz)
2429 {
2430 static const TCGOpcode vecop_list[] = { INDEX_op_abs_vec, 0 };
2431 static const GVecGen2 g[4] = {
2432 { .fni8 = tcg_gen_vec_abs8_i64,
2433 .fniv = tcg_gen_abs_vec,
2434 .fno = gen_helper_gvec_abs8,
2435 .opt_opc = vecop_list,
2436 .vece = MO_8 },
2437 { .fni8 = tcg_gen_vec_abs16_i64,
2438 .fniv = tcg_gen_abs_vec,
2439 .fno = gen_helper_gvec_abs16,
2440 .opt_opc = vecop_list,
2441 .vece = MO_16 },
2442 { .fni4 = tcg_gen_abs_i32,
2443 .fniv = tcg_gen_abs_vec,
2444 .fno = gen_helper_gvec_abs32,
2445 .opt_opc = vecop_list,
2446 .vece = MO_32 },
2447 { .fni8 = tcg_gen_abs_i64,
2448 .fniv = tcg_gen_abs_vec,
2449 .fno = gen_helper_gvec_abs64,
2450 .opt_opc = vecop_list,
2451 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2452 .vece = MO_64 },
2453 };
2454
2455 tcg_debug_assert(vece <= MO_64);
2456 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2457 }
2458
2459 void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs,
2460 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2461 {
2462 static const GVecGen3 g = {
2463 .fni8 = tcg_gen_and_i64,
2464 .fniv = tcg_gen_and_vec,
2465 .fno = gen_helper_gvec_and,
2466 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2467 };
2468
2469 if (aofs == bofs) {
2470 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2471 } else {
2472 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2473 }
2474 }
2475
2476 void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs,
2477 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2478 {
2479 static const GVecGen3 g = {
2480 .fni8 = tcg_gen_or_i64,
2481 .fniv = tcg_gen_or_vec,
2482 .fno = gen_helper_gvec_or,
2483 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2484 };
2485
2486 if (aofs == bofs) {
2487 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2488 } else {
2489 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2490 }
2491 }
2492
2493 void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs,
2494 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2495 {
2496 static const GVecGen3 g = {
2497 .fni8 = tcg_gen_xor_i64,
2498 .fniv = tcg_gen_xor_vec,
2499 .fno = gen_helper_gvec_xor,
2500 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2501 };
2502
2503 if (aofs == bofs) {
2504 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2505 } else {
2506 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2507 }
2508 }
2509
2510 void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs,
2511 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2512 {
2513 static const GVecGen3 g = {
2514 .fni8 = tcg_gen_andc_i64,
2515 .fniv = tcg_gen_andc_vec,
2516 .fno = gen_helper_gvec_andc,
2517 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2518 };
2519
2520 if (aofs == bofs) {
2521 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2522 } else {
2523 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2524 }
2525 }
2526
2527 void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs,
2528 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2529 {
2530 static const GVecGen3 g = {
2531 .fni8 = tcg_gen_orc_i64,
2532 .fniv = tcg_gen_orc_vec,
2533 .fno = gen_helper_gvec_orc,
2534 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2535 };
2536
2537 if (aofs == bofs) {
2538 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2539 } else {
2540 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2541 }
2542 }
2543
2544 void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs,
2545 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2546 {
2547 static const GVecGen3 g = {
2548 .fni8 = tcg_gen_nand_i64,
2549 .fniv = tcg_gen_nand_vec,
2550 .fno = gen_helper_gvec_nand,
2551 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2552 };
2553
2554 if (aofs == bofs) {
2555 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2556 } else {
2557 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2558 }
2559 }
2560
2561 void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs,
2562 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2563 {
2564 static const GVecGen3 g = {
2565 .fni8 = tcg_gen_nor_i64,
2566 .fniv = tcg_gen_nor_vec,
2567 .fno = gen_helper_gvec_nor,
2568 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2569 };
2570
2571 if (aofs == bofs) {
2572 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2573 } else {
2574 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2575 }
2576 }
2577
2578 void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs,
2579 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2580 {
2581 static const GVecGen3 g = {
2582 .fni8 = tcg_gen_eqv_i64,
2583 .fniv = tcg_gen_eqv_vec,
2584 .fno = gen_helper_gvec_eqv,
2585 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2586 };
2587
2588 if (aofs == bofs) {
2589 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2590 } else {
2591 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2592 }
2593 }
2594
2595 static const GVecGen2s gop_ands = {
2596 .fni8 = tcg_gen_and_i64,
2597 .fniv = tcg_gen_and_vec,
2598 .fno = gen_helper_gvec_ands,
2599 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2600 .vece = MO_64
2601 };
2602
2603 void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs,
2604 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2605 {
2606 TCGv_i64 tmp = tcg_temp_new_i64();
2607 tcg_gen_dup_i64(vece, tmp, c);
2608 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2609 tcg_temp_free_i64(tmp);
2610 }
2611
2612 void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs,
2613 int64_t c, uint32_t oprsz, uint32_t maxsz)
2614 {
2615 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2616 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2617 }
2618
2619 static const GVecGen2s gop_xors = {
2620 .fni8 = tcg_gen_xor_i64,
2621 .fniv = tcg_gen_xor_vec,
2622 .fno = gen_helper_gvec_xors,
2623 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2624 .vece = MO_64
2625 };
2626
2627 void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs,
2628 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2629 {
2630 TCGv_i64 tmp = tcg_temp_new_i64();
2631 tcg_gen_dup_i64(vece, tmp, c);
2632 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2633 tcg_temp_free_i64(tmp);
2634 }
2635
2636 void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs,
2637 int64_t c, uint32_t oprsz, uint32_t maxsz)
2638 {
2639 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2640 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2641 }
2642
2643 static const GVecGen2s gop_ors = {
2644 .fni8 = tcg_gen_or_i64,
2645 .fniv = tcg_gen_or_vec,
2646 .fno = gen_helper_gvec_ors,
2647 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2648 .vece = MO_64
2649 };
2650
2651 void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs,
2652 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2653 {
2654 TCGv_i64 tmp = tcg_temp_new_i64();
2655 tcg_gen_dup_i64(vece, tmp, c);
2656 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2657 tcg_temp_free_i64(tmp);
2658 }
2659
2660 void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs,
2661 int64_t c, uint32_t oprsz, uint32_t maxsz)
2662 {
2663 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2664 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2665 }
2666
2667 void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2668 {
2669 uint64_t mask = dup_const(MO_8, 0xff << c);
2670 tcg_gen_shli_i64(d, a, c);
2671 tcg_gen_andi_i64(d, d, mask);
2672 }
2673
2674 void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2675 {
2676 uint64_t mask = dup_const(MO_16, 0xffff << c);
2677 tcg_gen_shli_i64(d, a, c);
2678 tcg_gen_andi_i64(d, d, mask);
2679 }
2680
2681 void tcg_gen_vec_shl8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2682 {
2683 uint32_t mask = dup_const(MO_8, 0xff << c);
2684 tcg_gen_shli_i32(d, a, c);
2685 tcg_gen_andi_i32(d, d, mask);
2686 }
2687
2688 void tcg_gen_vec_shl16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2689 {
2690 uint32_t mask = dup_const(MO_16, 0xffff << c);
2691 tcg_gen_shli_i32(d, a, c);
2692 tcg_gen_andi_i32(d, d, mask);
2693 }
2694
2695 void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs,
2696 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2697 {
2698 static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
2699 static const GVecGen2i g[4] = {
2700 { .fni8 = tcg_gen_vec_shl8i_i64,
2701 .fniv = tcg_gen_shli_vec,
2702 .fno = gen_helper_gvec_shl8i,
2703 .opt_opc = vecop_list,
2704 .vece = MO_8 },
2705 { .fni8 = tcg_gen_vec_shl16i_i64,
2706 .fniv = tcg_gen_shli_vec,
2707 .fno = gen_helper_gvec_shl16i,
2708 .opt_opc = vecop_list,
2709 .vece = MO_16 },
2710 { .fni4 = tcg_gen_shli_i32,
2711 .fniv = tcg_gen_shli_vec,
2712 .fno = gen_helper_gvec_shl32i,
2713 .opt_opc = vecop_list,
2714 .vece = MO_32 },
2715 { .fni8 = tcg_gen_shli_i64,
2716 .fniv = tcg_gen_shli_vec,
2717 .fno = gen_helper_gvec_shl64i,
2718 .opt_opc = vecop_list,
2719 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2720 .vece = MO_64 },
2721 };
2722
2723 tcg_debug_assert(vece <= MO_64);
2724 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2725 if (shift == 0) {
2726 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2727 } else {
2728 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2729 }
2730 }
2731
2732 void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2733 {
2734 uint64_t mask = dup_const(MO_8, 0xff >> c);
2735 tcg_gen_shri_i64(d, a, c);
2736 tcg_gen_andi_i64(d, d, mask);
2737 }
2738
2739 void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2740 {
2741 uint64_t mask = dup_const(MO_16, 0xffff >> c);
2742 tcg_gen_shri_i64(d, a, c);
2743 tcg_gen_andi_i64(d, d, mask);
2744 }
2745
2746 void tcg_gen_vec_shr8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2747 {
2748 uint32_t mask = dup_const(MO_8, 0xff >> c);
2749 tcg_gen_shri_i32(d, a, c);
2750 tcg_gen_andi_i32(d, d, mask);
2751 }
2752
2753 void tcg_gen_vec_shr16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2754 {
2755 uint32_t mask = dup_const(MO_16, 0xffff >> c);
2756 tcg_gen_shri_i32(d, a, c);
2757 tcg_gen_andi_i32(d, d, mask);
2758 }
2759
2760 void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs,
2761 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2762 {
2763 static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 };
2764 static const GVecGen2i g[4] = {
2765 { .fni8 = tcg_gen_vec_shr8i_i64,
2766 .fniv = tcg_gen_shri_vec,
2767 .fno = gen_helper_gvec_shr8i,
2768 .opt_opc = vecop_list,
2769 .vece = MO_8 },
2770 { .fni8 = tcg_gen_vec_shr16i_i64,
2771 .fniv = tcg_gen_shri_vec,
2772 .fno = gen_helper_gvec_shr16i,
2773 .opt_opc = vecop_list,
2774 .vece = MO_16 },
2775 { .fni4 = tcg_gen_shri_i32,
2776 .fniv = tcg_gen_shri_vec,
2777 .fno = gen_helper_gvec_shr32i,
2778 .opt_opc = vecop_list,
2779 .vece = MO_32 },
2780 { .fni8 = tcg_gen_shri_i64,
2781 .fniv = tcg_gen_shri_vec,
2782 .fno = gen_helper_gvec_shr64i,
2783 .opt_opc = vecop_list,
2784 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2785 .vece = MO_64 },
2786 };
2787
2788 tcg_debug_assert(vece <= MO_64);
2789 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2790 if (shift == 0) {
2791 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2792 } else {
2793 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2794 }
2795 }
2796
2797 void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2798 {
2799 uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
2800 uint64_t c_mask = dup_const(MO_8, 0xff >> c);
2801 TCGv_i64 s = tcg_temp_new_i64();
2802
2803 tcg_gen_shri_i64(d, a, c);
2804 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2805 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2806 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2807 tcg_gen_or_i64(d, d, s); /* include sign extension */
2808 tcg_temp_free_i64(s);
2809 }
2810
2811 void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2812 {
2813 uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
2814 uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
2815 TCGv_i64 s = tcg_temp_new_i64();
2816
2817 tcg_gen_shri_i64(d, a, c);
2818 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2819 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2820 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2821 tcg_gen_or_i64(d, d, s); /* include sign extension */
2822 tcg_temp_free_i64(s);
2823 }
2824
2825 void tcg_gen_vec_sar8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2826 {
2827 uint32_t s_mask = dup_const(MO_8, 0x80 >> c);
2828 uint32_t c_mask = dup_const(MO_8, 0xff >> c);
2829 TCGv_i32 s = tcg_temp_new_i32();
2830
2831 tcg_gen_shri_i32(d, a, c);
2832 tcg_gen_andi_i32(s, d, s_mask); /* isolate (shifted) sign bit */
2833 tcg_gen_muli_i32(s, s, (2 << c) - 2); /* replicate isolated signs */
2834 tcg_gen_andi_i32(d, d, c_mask); /* clear out bits above sign */
2835 tcg_gen_or_i32(d, d, s); /* include sign extension */
2836 tcg_temp_free_i32(s);
2837 }
2838
2839 void tcg_gen_vec_sar16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2840 {
2841 uint32_t s_mask = dup_const(MO_16, 0x8000 >> c);
2842 uint32_t c_mask = dup_const(MO_16, 0xffff >> c);
2843 TCGv_i32 s = tcg_temp_new_i32();
2844
2845 tcg_gen_shri_i32(d, a, c);
2846 tcg_gen_andi_i32(s, d, s_mask); /* isolate (shifted) sign bit */
2847 tcg_gen_andi_i32(d, d, c_mask); /* clear out bits above sign */
2848 tcg_gen_muli_i32(s, s, (2 << c) - 2); /* replicate isolated signs */
2849 tcg_gen_or_i32(d, d, s); /* include sign extension */
2850 tcg_temp_free_i32(s);
2851 }
2852
2853 void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs,
2854 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2855 {
2856 static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, 0 };
2857 static const GVecGen2i g[4] = {
2858 { .fni8 = tcg_gen_vec_sar8i_i64,
2859 .fniv = tcg_gen_sari_vec,
2860 .fno = gen_helper_gvec_sar8i,
2861 .opt_opc = vecop_list,
2862 .vece = MO_8 },
2863 { .fni8 = tcg_gen_vec_sar16i_i64,
2864 .fniv = tcg_gen_sari_vec,
2865 .fno = gen_helper_gvec_sar16i,
2866 .opt_opc = vecop_list,
2867 .vece = MO_16 },
2868 { .fni4 = tcg_gen_sari_i32,
2869 .fniv = tcg_gen_sari_vec,
2870 .fno = gen_helper_gvec_sar32i,
2871 .opt_opc = vecop_list,
2872 .vece = MO_32 },
2873 { .fni8 = tcg_gen_sari_i64,
2874 .fniv = tcg_gen_sari_vec,
2875 .fno = gen_helper_gvec_sar64i,
2876 .opt_opc = vecop_list,
2877 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2878 .vece = MO_64 },
2879 };
2880
2881 tcg_debug_assert(vece <= MO_64);
2882 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2883 if (shift == 0) {
2884 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2885 } else {
2886 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2887 }
2888 }
2889
2890 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2891 {
2892 uint64_t mask = dup_const(MO_8, 0xff << c);
2893
2894 tcg_gen_shli_i64(d, a, c);
2895 tcg_gen_shri_i64(a, a, 8 - c);
2896 tcg_gen_andi_i64(d, d, mask);
2897 tcg_gen_andi_i64(a, a, ~mask);
2898 tcg_gen_or_i64(d, d, a);
2899 }
2900
2901 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2902 {
2903 uint64_t mask = dup_const(MO_16, 0xffff << c);
2904
2905 tcg_gen_shli_i64(d, a, c);
2906 tcg_gen_shri_i64(a, a, 16 - c);
2907 tcg_gen_andi_i64(d, d, mask);
2908 tcg_gen_andi_i64(a, a, ~mask);
2909 tcg_gen_or_i64(d, d, a);
2910 }
2911
2912 void tcg_gen_gvec_rotli(unsigned vece, uint32_t dofs, uint32_t aofs,
2913 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2914 {
2915 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
2916 static const GVecGen2i g[4] = {
2917 { .fni8 = tcg_gen_vec_rotl8i_i64,
2918 .fniv = tcg_gen_rotli_vec,
2919 .fno = gen_helper_gvec_rotl8i,
2920 .opt_opc = vecop_list,
2921 .vece = MO_8 },
2922 { .fni8 = tcg_gen_vec_rotl16i_i64,
2923 .fniv = tcg_gen_rotli_vec,
2924 .fno = gen_helper_gvec_rotl16i,
2925 .opt_opc = vecop_list,
2926 .vece = MO_16 },
2927 { .fni4 = tcg_gen_rotli_i32,
2928 .fniv = tcg_gen_rotli_vec,
2929 .fno = gen_helper_gvec_rotl32i,
2930 .opt_opc = vecop_list,
2931 .vece = MO_32 },
2932 { .fni8 = tcg_gen_rotli_i64,
2933 .fniv = tcg_gen_rotli_vec,
2934 .fno = gen_helper_gvec_rotl64i,
2935 .opt_opc = vecop_list,
2936 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2937 .vece = MO_64 },
2938 };
2939
2940 tcg_debug_assert(vece <= MO_64);
2941 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2942 if (shift == 0) {
2943 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2944 } else {
2945 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2946 }
2947 }
2948
2949 void tcg_gen_gvec_rotri(unsigned vece, uint32_t dofs, uint32_t aofs,
2950 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2951 {
2952 tcg_debug_assert(vece <= MO_64);
2953 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2954 tcg_gen_gvec_rotli(vece, dofs, aofs, -shift & ((8 << vece) - 1),
2955 oprsz, maxsz);
2956 }
2957
2958 /*
2959 * Specialized generation vector shifts by a non-constant scalar.
2960 */
2961
2962 typedef struct {
2963 void (*fni4)(TCGv_i32, TCGv_i32, TCGv_i32);
2964 void (*fni8)(TCGv_i64, TCGv_i64, TCGv_i64);
2965 void (*fniv_s)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32);
2966 void (*fniv_v)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec);
2967 gen_helper_gvec_2 *fno[4];
2968 TCGOpcode s_list[2];
2969 TCGOpcode v_list[2];
2970 } GVecGen2sh;
2971
2972 static void expand_2sh_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
2973 uint32_t oprsz, uint32_t tysz, TCGType type,
2974 TCGv_i32 shift,
2975 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32))
2976 {
2977 TCGv_vec t0 = tcg_temp_new_vec(type);
2978 uint32_t i;
2979
2980 for (i = 0; i < oprsz; i += tysz) {
2981 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
2982 fni(vece, t0, t0, shift);
2983 tcg_gen_st_vec(t0, cpu_env, dofs + i);
2984 }
2985 tcg_temp_free_vec(t0);
2986 }
2987
2988 static void
2989 do_gvec_shifts(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift,
2990 uint32_t oprsz, uint32_t maxsz, const GVecGen2sh *g)
2991 {
2992 TCGType type;
2993 uint32_t some;
2994
2995 check_size_align(oprsz, maxsz, dofs | aofs);
2996 check_overlap_2(dofs, aofs, maxsz);
2997
2998 /* If the backend has a scalar expansion, great. */
2999 type = choose_vector_type(g->s_list, vece, oprsz, vece == MO_64);
3000 if (type) {
3001 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
3002 switch (type) {
3003 case TCG_TYPE_V256:
3004 some = QEMU_ALIGN_DOWN(oprsz, 32);
3005 expand_2sh_vec(vece, dofs, aofs, some, 32,
3006 TCG_TYPE_V256, shift, g->fniv_s);
3007 if (some == oprsz) {
3008 break;
3009 }
3010 dofs += some;
3011 aofs += some;
3012 oprsz -= some;
3013 maxsz -= some;
3014 /* fallthru */
3015 case TCG_TYPE_V128:
3016 expand_2sh_vec(vece, dofs, aofs, oprsz, 16,
3017 TCG_TYPE_V128, shift, g->fniv_s);
3018 break;
3019 case TCG_TYPE_V64:
3020 expand_2sh_vec(vece, dofs, aofs, oprsz, 8,
3021 TCG_TYPE_V64, shift, g->fniv_s);
3022 break;
3023 default:
3024 g_assert_not_reached();
3025 }
3026 tcg_swap_vecop_list(hold_list);
3027 goto clear_tail;
3028 }
3029
3030 /* If the backend supports variable vector shifts, also cool. */
3031 type = choose_vector_type(g->v_list, vece, oprsz, vece == MO_64);
3032 if (type) {
3033 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
3034 TCGv_vec v_shift = tcg_temp_new_vec(type);
3035
3036 if (vece == MO_64) {
3037 TCGv_i64 sh64 = tcg_temp_new_i64();
3038 tcg_gen_extu_i32_i64(sh64, shift);
3039 tcg_gen_dup_i64_vec(MO_64, v_shift, sh64);
3040 tcg_temp_free_i64(sh64);
3041 } else {
3042 tcg_gen_dup_i32_vec(vece, v_shift, shift);
3043 }
3044
3045 switch (type) {
3046 case TCG_TYPE_V256:
3047 some = QEMU_ALIGN_DOWN(oprsz, 32);
3048 expand_2s_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256,
3049 v_shift, false, g->fniv_v);
3050 if (some == oprsz) {
3051 break;
3052 }
3053 dofs += some;
3054 aofs += some;
3055 oprsz -= some;
3056 maxsz -= some;
3057 /* fallthru */
3058 case TCG_TYPE_V128:
3059 expand_2s_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
3060 v_shift, false, g->fniv_v);
3061 break;
3062 case TCG_TYPE_V64:
3063 expand_2s_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
3064 v_shift, false, g->fniv_v);
3065 break;
3066 default:
3067 g_assert_not_reached();
3068 }
3069 tcg_temp_free_vec(v_shift);
3070 tcg_swap_vecop_list(hold_list);
3071 goto clear_tail;
3072 }
3073
3074 /* Otherwise fall back to integral... */
3075 if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3076 expand_2s_i32(dofs, aofs, oprsz, shift, false, g->fni4);
3077 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3078 TCGv_i64 sh64 = tcg_temp_new_i64();
3079 tcg_gen_extu_i32_i64(sh64, shift);
3080 expand_2s_i64(dofs, aofs, oprsz, sh64, false, g->fni8);
3081 tcg_temp_free_i64(sh64);
3082 } else {
3083 TCGv_ptr a0 = tcg_temp_new_ptr();
3084 TCGv_ptr a1 = tcg_temp_new_ptr();
3085 TCGv_i32 desc = tcg_temp_new_i32();
3086
3087 tcg_gen_shli_i32(desc, shift, SIMD_DATA_SHIFT);
3088 tcg_gen_ori_i32(desc, desc, simd_desc(oprsz, maxsz, 0));
3089 tcg_gen_addi_ptr(a0, cpu_env, dofs);
3090 tcg_gen_addi_ptr(a1, cpu_env, aofs);
3091
3092 g->fno[vece](a0, a1, desc);
3093
3094 tcg_temp_free_ptr(a0);
3095 tcg_temp_free_ptr(a1);
3096 tcg_temp_free_i32(desc);
3097 return;
3098 }
3099
3100 clear_tail:
3101 if (oprsz < maxsz) {
3102 expand_clr(dofs + oprsz, maxsz - oprsz);
3103 }
3104 }
3105
3106 void tcg_gen_gvec_shls(unsigned vece, uint32_t dofs, uint32_t aofs,
3107 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3108 {
3109 static const GVecGen2sh g = {
3110 .fni4 = tcg_gen_shl_i32,
3111 .fni8 = tcg_gen_shl_i64,
3112 .fniv_s = tcg_gen_shls_vec,
3113 .fniv_v = tcg_gen_shlv_vec,
3114 .fno = {
3115 gen_helper_gvec_shl8i,
3116 gen_helper_gvec_shl16i,
3117 gen_helper_gvec_shl32i,
3118 gen_helper_gvec_shl64i,
3119 },
3120 .s_list = { INDEX_op_shls_vec, 0 },
3121 .v_list = { INDEX_op_shlv_vec, 0 },
3122 };
3123
3124 tcg_debug_assert(vece <= MO_64);
3125 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3126 }
3127
3128 void tcg_gen_gvec_shrs(unsigned vece, uint32_t dofs, uint32_t aofs,
3129 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3130 {
3131 static const GVecGen2sh g = {
3132 .fni4 = tcg_gen_shr_i32,
3133 .fni8 = tcg_gen_shr_i64,
3134 .fniv_s = tcg_gen_shrs_vec,
3135 .fniv_v = tcg_gen_shrv_vec,
3136 .fno = {
3137 gen_helper_gvec_shr8i,
3138 gen_helper_gvec_shr16i,
3139 gen_helper_gvec_shr32i,
3140 gen_helper_gvec_shr64i,
3141 },
3142 .s_list = { INDEX_op_shrs_vec, 0 },
3143 .v_list = { INDEX_op_shrv_vec, 0 },
3144 };
3145
3146 tcg_debug_assert(vece <= MO_64);
3147 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3148 }
3149
3150 void tcg_gen_gvec_sars(unsigned vece, uint32_t dofs, uint32_t aofs,
3151 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3152 {
3153 static const GVecGen2sh g = {
3154 .fni4 = tcg_gen_sar_i32,
3155 .fni8 = tcg_gen_sar_i64,
3156 .fniv_s = tcg_gen_sars_vec,
3157 .fniv_v = tcg_gen_sarv_vec,
3158 .fno = {
3159 gen_helper_gvec_sar8i,
3160 gen_helper_gvec_sar16i,
3161 gen_helper_gvec_sar32i,
3162 gen_helper_gvec_sar64i,
3163 },
3164 .s_list = { INDEX_op_sars_vec, 0 },
3165 .v_list = { INDEX_op_sarv_vec, 0 },
3166 };
3167
3168 tcg_debug_assert(vece <= MO_64);
3169 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3170 }
3171
3172 void tcg_gen_gvec_rotls(unsigned vece, uint32_t dofs, uint32_t aofs,
3173 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3174 {
3175 static const GVecGen2sh g = {
3176 .fni4 = tcg_gen_rotl_i32,
3177 .fni8 = tcg_gen_rotl_i64,
3178 .fniv_s = tcg_gen_rotls_vec,
3179 .fniv_v = tcg_gen_rotlv_vec,
3180 .fno = {
3181 gen_helper_gvec_rotl8i,
3182 gen_helper_gvec_rotl16i,
3183 gen_helper_gvec_rotl32i,
3184 gen_helper_gvec_rotl64i,
3185 },
3186 .s_list = { INDEX_op_rotls_vec, 0 },
3187 .v_list = { INDEX_op_rotlv_vec, 0 },
3188 };
3189
3190 tcg_debug_assert(vece <= MO_64);
3191 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3192 }
3193
3194 /*
3195 * Expand D = A << (B % element bits)
3196 *
3197 * Unlike scalar shifts, where it is easy for the target front end
3198 * to include the modulo as part of the expansion. If the target
3199 * naturally includes the modulo as part of the operation, great!
3200 * If the target has some other behaviour from out-of-range shifts,
3201 * then it could not use this function anyway, and would need to
3202 * do it's own expansion with custom functions.
3203 */
3204 static void tcg_gen_shlv_mod_vec(unsigned vece, TCGv_vec d,
3205 TCGv_vec a, TCGv_vec b)
3206 {
3207 TCGv_vec t = tcg_temp_new_vec_matching(d);
3208 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3209
3210 tcg_gen_and_vec(vece, t, b, m);
3211 tcg_gen_shlv_vec(vece, d, a, t);
3212 tcg_temp_free_vec(t);
3213 }
3214
3215 static void tcg_gen_shl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3216 {
3217 TCGv_i32 t = tcg_temp_new_i32();
3218
3219 tcg_gen_andi_i32(t, b, 31);
3220 tcg_gen_shl_i32(d, a, t);
3221 tcg_temp_free_i32(t);
3222 }
3223
3224 static void tcg_gen_shl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3225 {
3226 TCGv_i64 t = tcg_temp_new_i64();
3227
3228 tcg_gen_andi_i64(t, b, 63);
3229 tcg_gen_shl_i64(d, a, t);
3230 tcg_temp_free_i64(t);
3231 }
3232
3233 void tcg_gen_gvec_shlv(unsigned vece, uint32_t dofs, uint32_t aofs,
3234 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3235 {
3236 static const TCGOpcode vecop_list[] = { INDEX_op_shlv_vec, 0 };
3237 static const GVecGen3 g[4] = {
3238 { .fniv = tcg_gen_shlv_mod_vec,
3239 .fno = gen_helper_gvec_shl8v,
3240 .opt_opc = vecop_list,
3241 .vece = MO_8 },
3242 { .fniv = tcg_gen_shlv_mod_vec,
3243 .fno = gen_helper_gvec_shl16v,
3244 .opt_opc = vecop_list,
3245 .vece = MO_16 },
3246 { .fni4 = tcg_gen_shl_mod_i32,
3247 .fniv = tcg_gen_shlv_mod_vec,
3248 .fno = gen_helper_gvec_shl32v,
3249 .opt_opc = vecop_list,
3250 .vece = MO_32 },
3251 { .fni8 = tcg_gen_shl_mod_i64,
3252 .fniv = tcg_gen_shlv_mod_vec,
3253 .fno = gen_helper_gvec_shl64v,
3254 .opt_opc = vecop_list,
3255 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3256 .vece = MO_64 },
3257 };
3258
3259 tcg_debug_assert(vece <= MO_64);
3260 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3261 }
3262
3263 /*
3264 * Similarly for logical right shifts.
3265 */
3266
3267 static void tcg_gen_shrv_mod_vec(unsigned vece, TCGv_vec d,
3268 TCGv_vec a, TCGv_vec b)
3269 {
3270 TCGv_vec t = tcg_temp_new_vec_matching(d);
3271 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3272
3273 tcg_gen_and_vec(vece, t, b, m);
3274 tcg_gen_shrv_vec(vece, d, a, t);
3275 tcg_temp_free_vec(t);
3276 }
3277
3278 static void tcg_gen_shr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3279 {
3280 TCGv_i32 t = tcg_temp_new_i32();
3281
3282 tcg_gen_andi_i32(t, b, 31);
3283 tcg_gen_shr_i32(d, a, t);
3284 tcg_temp_free_i32(t);
3285 }
3286
3287 static void tcg_gen_shr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3288 {
3289 TCGv_i64 t = tcg_temp_new_i64();
3290
3291 tcg_gen_andi_i64(t, b, 63);
3292 tcg_gen_shr_i64(d, a, t);
3293 tcg_temp_free_i64(t);
3294 }
3295
3296 void tcg_gen_gvec_shrv(unsigned vece, uint32_t dofs, uint32_t aofs,
3297 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3298 {
3299 static const TCGOpcode vecop_list[] = { INDEX_op_shrv_vec, 0 };
3300 static const GVecGen3 g[4] = {
3301 { .fniv = tcg_gen_shrv_mod_vec,
3302 .fno = gen_helper_gvec_shr8v,
3303 .opt_opc = vecop_list,
3304 .vece = MO_8 },
3305 { .fniv = tcg_gen_shrv_mod_vec,
3306 .fno = gen_helper_gvec_shr16v,
3307 .opt_opc = vecop_list,
3308 .vece = MO_16 },
3309 { .fni4 = tcg_gen_shr_mod_i32,
3310 .fniv = tcg_gen_shrv_mod_vec,
3311 .fno = gen_helper_gvec_shr32v,
3312 .opt_opc = vecop_list,
3313 .vece = MO_32 },
3314 { .fni8 = tcg_gen_shr_mod_i64,
3315 .fniv = tcg_gen_shrv_mod_vec,
3316 .fno = gen_helper_gvec_shr64v,
3317 .opt_opc = vecop_list,
3318 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3319 .vece = MO_64 },
3320 };
3321
3322 tcg_debug_assert(vece <= MO_64);
3323 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3324 }
3325
3326 /*
3327 * Similarly for arithmetic right shifts.
3328 */
3329
3330 static void tcg_gen_sarv_mod_vec(unsigned vece, TCGv_vec d,
3331 TCGv_vec a, TCGv_vec b)
3332 {
3333 TCGv_vec t = tcg_temp_new_vec_matching(d);
3334 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3335
3336 tcg_gen_and_vec(vece, t, b, m);
3337 tcg_gen_sarv_vec(vece, d, a, t);
3338 tcg_temp_free_vec(t);
3339 }
3340
3341 static void tcg_gen_sar_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3342 {
3343 TCGv_i32 t = tcg_temp_new_i32();
3344
3345 tcg_gen_andi_i32(t, b, 31);
3346 tcg_gen_sar_i32(d, a, t);
3347 tcg_temp_free_i32(t);
3348 }
3349
3350 static void tcg_gen_sar_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3351 {
3352 TCGv_i64 t = tcg_temp_new_i64();
3353
3354 tcg_gen_andi_i64(t, b, 63);
3355 tcg_gen_sar_i64(d, a, t);
3356 tcg_temp_free_i64(t);
3357 }
3358
3359 void tcg_gen_gvec_sarv(unsigned vece, uint32_t dofs, uint32_t aofs,
3360 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3361 {
3362 static const TCGOpcode vecop_list[] = { INDEX_op_sarv_vec, 0 };
3363 static const GVecGen3 g[4] = {
3364 { .fniv = tcg_gen_sarv_mod_vec,
3365 .fno = gen_helper_gvec_sar8v,
3366 .opt_opc = vecop_list,
3367 .vece = MO_8 },
3368 { .fniv = tcg_gen_sarv_mod_vec,
3369 .fno = gen_helper_gvec_sar16v,
3370 .opt_opc = vecop_list,
3371 .vece = MO_16 },
3372 { .fni4 = tcg_gen_sar_mod_i32,
3373 .fniv = tcg_gen_sarv_mod_vec,
3374 .fno = gen_helper_gvec_sar32v,
3375 .opt_opc = vecop_list,
3376 .vece = MO_32 },
3377 { .fni8 = tcg_gen_sar_mod_i64,
3378 .fniv = tcg_gen_sarv_mod_vec,
3379 .fno = gen_helper_gvec_sar64v,
3380 .opt_opc = vecop_list,
3381 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3382 .vece = MO_64 },
3383 };
3384
3385 tcg_debug_assert(vece <= MO_64);
3386 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3387 }
3388
3389 /*
3390 * Similarly for rotates.
3391 */
3392
3393 static void tcg_gen_rotlv_mod_vec(unsigned vece, TCGv_vec d,
3394 TCGv_vec a, TCGv_vec b)
3395 {
3396 TCGv_vec t = tcg_temp_new_vec_matching(d);
3397 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3398
3399 tcg_gen_and_vec(vece, t, b, m);
3400 tcg_gen_rotlv_vec(vece, d, a, t);
3401 tcg_temp_free_vec(t);
3402 }
3403
3404 static void tcg_gen_rotl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3405 {
3406 TCGv_i32 t = tcg_temp_new_i32();
3407
3408 tcg_gen_andi_i32(t, b, 31);
3409 tcg_gen_rotl_i32(d, a, t);
3410 tcg_temp_free_i32(t);
3411 }
3412
3413 static void tcg_gen_rotl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3414 {
3415 TCGv_i64 t = tcg_temp_new_i64();
3416
3417 tcg_gen_andi_i64(t, b, 63);
3418 tcg_gen_rotl_i64(d, a, t);
3419 tcg_temp_free_i64(t);
3420 }
3421
3422 void tcg_gen_gvec_rotlv(unsigned vece, uint32_t dofs, uint32_t aofs,
3423 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3424 {
3425 static const TCGOpcode vecop_list[] = { INDEX_op_rotlv_vec, 0 };
3426 static const GVecGen3 g[4] = {
3427 { .fniv = tcg_gen_rotlv_mod_vec,
3428 .fno = gen_helper_gvec_rotl8v,
3429 .opt_opc = vecop_list,
3430 .vece = MO_8 },
3431 { .fniv = tcg_gen_rotlv_mod_vec,
3432 .fno = gen_helper_gvec_rotl16v,
3433 .opt_opc = vecop_list,
3434 .vece = MO_16 },
3435 { .fni4 = tcg_gen_rotl_mod_i32,
3436 .fniv = tcg_gen_rotlv_mod_vec,
3437 .fno = gen_helper_gvec_rotl32v,
3438 .opt_opc = vecop_list,
3439 .vece = MO_32 },
3440 { .fni8 = tcg_gen_rotl_mod_i64,
3441 .fniv = tcg_gen_rotlv_mod_vec,
3442 .fno = gen_helper_gvec_rotl64v,
3443 .opt_opc = vecop_list,
3444 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3445 .vece = MO_64 },
3446 };
3447
3448 tcg_debug_assert(vece <= MO_64);
3449 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3450 }
3451
3452 static void tcg_gen_rotrv_mod_vec(unsigned vece, TCGv_vec d,
3453 TCGv_vec a, TCGv_vec b)
3454 {
3455 TCGv_vec t = tcg_temp_new_vec_matching(d);
3456 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3457
3458 tcg_gen_and_vec(vece, t, b, m);
3459 tcg_gen_rotrv_vec(vece, d, a, t);
3460 tcg_temp_free_vec(t);
3461 }
3462
3463 static void tcg_gen_rotr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3464 {
3465 TCGv_i32 t = tcg_temp_new_i32();
3466
3467 tcg_gen_andi_i32(t, b, 31);
3468 tcg_gen_rotr_i32(d, a, t);
3469 tcg_temp_free_i32(t);
3470 }
3471
3472 static void tcg_gen_rotr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3473 {
3474 TCGv_i64 t = tcg_temp_new_i64();
3475
3476 tcg_gen_andi_i64(t, b, 63);
3477 tcg_gen_rotr_i64(d, a, t);
3478 tcg_temp_free_i64(t);
3479 }
3480
3481 void tcg_gen_gvec_rotrv(unsigned vece, uint32_t dofs, uint32_t aofs,
3482 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3483 {
3484 static const TCGOpcode vecop_list[] = { INDEX_op_rotrv_vec, 0 };
3485 static const GVecGen3 g[4] = {
3486 { .fniv = tcg_gen_rotrv_mod_vec,
3487 .fno = gen_helper_gvec_rotr8v,
3488 .opt_opc = vecop_list,
3489 .vece = MO_8 },
3490 { .fniv = tcg_gen_rotrv_mod_vec,
3491 .fno = gen_helper_gvec_rotr16v,
3492 .opt_opc = vecop_list,
3493 .vece = MO_16 },
3494 { .fni4 = tcg_gen_rotr_mod_i32,
3495 .fniv = tcg_gen_rotrv_mod_vec,
3496 .fno = gen_helper_gvec_rotr32v,
3497 .opt_opc = vecop_list,
3498 .vece = MO_32 },
3499 { .fni8 = tcg_gen_rotr_mod_i64,
3500 .fniv = tcg_gen_rotrv_mod_vec,
3501 .fno = gen_helper_gvec_rotr64v,
3502 .opt_opc = vecop_list,
3503 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3504 .vece = MO_64 },
3505 };
3506
3507 tcg_debug_assert(vece <= MO_64);
3508 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3509 }
3510
3511 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3512 static void expand_cmp_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3513 uint32_t oprsz, TCGCond cond)
3514 {
3515 TCGv_i32 t0 = tcg_temp_new_i32();
3516 TCGv_i32 t1 = tcg_temp_new_i32();
3517 uint32_t i;
3518
3519 for (i = 0; i < oprsz; i += 4) {
3520 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
3521 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
3522 tcg_gen_setcond_i32(cond, t0, t0, t1);
3523 tcg_gen_neg_i32(t0, t0);
3524 tcg_gen_st_i32(t0, cpu_env, dofs + i);
3525 }
3526 tcg_temp_free_i32(t1);
3527 tcg_temp_free_i32(t0);
3528 }
3529
3530 static void expand_cmp_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3531 uint32_t oprsz, TCGCond cond)
3532 {
3533 TCGv_i64 t0 = tcg_temp_new_i64();
3534 TCGv_i64 t1 = tcg_temp_new_i64();
3535 uint32_t i;
3536
3537 for (i = 0; i < oprsz; i += 8) {
3538 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
3539 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
3540 tcg_gen_setcond_i64(cond, t0, t0, t1);
3541 tcg_gen_neg_i64(t0, t0);
3542 tcg_gen_st_i64(t0, cpu_env, dofs + i);
3543 }
3544 tcg_temp_free_i64(t1);
3545 tcg_temp_free_i64(t0);
3546 }
3547
3548 static void expand_cmp_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
3549 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
3550 TCGType type, TCGCond cond)
3551 {
3552 TCGv_vec t0 = tcg_temp_new_vec(type);
3553 TCGv_vec t1 = tcg_temp_new_vec(type);
3554 uint32_t i;
3555
3556 for (i = 0; i < oprsz; i += tysz) {
3557 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
3558 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
3559 tcg_gen_cmp_vec(cond, vece, t0, t0, t1);
3560 tcg_gen_st_vec(t0, cpu_env, dofs + i);
3561 }
3562 tcg_temp_free_vec(t1);
3563 tcg_temp_free_vec(t0);
3564 }
3565
3566 void tcg_gen_gvec_cmp(TCGCond cond, unsigned vece, uint32_t dofs,
3567 uint32_t aofs, uint32_t bofs,
3568 uint32_t oprsz, uint32_t maxsz)
3569 {
3570 static const TCGOpcode cmp_list[] = { INDEX_op_cmp_vec, 0 };
3571 static gen_helper_gvec_3 * const eq_fn[4] = {
3572 gen_helper_gvec_eq8, gen_helper_gvec_eq16,
3573 gen_helper_gvec_eq32, gen_helper_gvec_eq64
3574 };
3575 static gen_helper_gvec_3 * const ne_fn[4] = {
3576 gen_helper_gvec_ne8, gen_helper_gvec_ne16,
3577 gen_helper_gvec_ne32, gen_helper_gvec_ne64
3578 };
3579 static gen_helper_gvec_3 * const lt_fn[4] = {
3580 gen_helper_gvec_lt8, gen_helper_gvec_lt16,
3581 gen_helper_gvec_lt32, gen_helper_gvec_lt64
3582 };
3583 static gen_helper_gvec_3 * const le_fn[4] = {
3584 gen_helper_gvec_le8, gen_helper_gvec_le16,
3585 gen_helper_gvec_le32, gen_helper_gvec_le64
3586 };
3587 static gen_helper_gvec_3 * const ltu_fn[4] = {
3588 gen_helper_gvec_ltu8, gen_helper_gvec_ltu16,
3589 gen_helper_gvec_ltu32, gen_helper_gvec_ltu64
3590 };
3591 static gen_helper_gvec_3 * const leu_fn[4] = {
3592 gen_helper_gvec_leu8, gen_helper_gvec_leu16,
3593 gen_helper_gvec_leu32, gen_helper_gvec_leu64
3594 };
3595 static gen_helper_gvec_3 * const * const fns[16] = {
3596 [TCG_COND_EQ] = eq_fn,
3597 [TCG_COND_NE] = ne_fn,
3598 [TCG_COND_LT] = lt_fn,
3599 [TCG_COND_LE] = le_fn,
3600 [TCG_COND_LTU] = ltu_fn,
3601 [TCG_COND_LEU] = leu_fn,
3602 };
3603
3604 const TCGOpcode *hold_list;
3605 TCGType type;
3606 uint32_t some;
3607
3608 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
3609 check_overlap_3(dofs, aofs, bofs, maxsz);
3610
3611 if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) {
3612 do_dup(MO_8, dofs, oprsz, maxsz,
3613 NULL, NULL, -(cond == TCG_COND_ALWAYS));
3614 return;
3615 }
3616
3617 /*
3618 * Implement inline with a vector type, if possible.
3619 * Prefer integer when 64-bit host and 64-bit comparison.
3620 */
3621 hold_list = tcg_swap_vecop_list(cmp_list);
3622 type = choose_vector_type(cmp_list, vece, oprsz,
3623 TCG_TARGET_REG_BITS == 64 && vece == MO_64);
3624 switch (type) {
3625 case TCG_TYPE_V256:
3626 /* Recall that ARM SVE allows vector sizes that are not a
3627 * power of 2, but always a multiple of 16. The intent is
3628 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3629 */
3630 some = QEMU_ALIGN_DOWN(oprsz, 32);
3631 expand_cmp_vec(vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond);
3632 if (some == oprsz) {
3633 break;
3634 }
3635 dofs += some;
3636 aofs += some;
3637 bofs += some;
3638 oprsz -= some;
3639 maxsz -= some;
3640 /* fallthru */
3641 case TCG_TYPE_V128:
3642 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond);
3643 break;
3644 case TCG_TYPE_V64:
3645 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond);
3646 break;
3647
3648 case 0:
3649 if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3650 expand_cmp_i64(dofs, aofs, bofs, oprsz, cond);
3651 } else if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3652 expand_cmp_i32(dofs, aofs, bofs, oprsz, cond);
3653 } else {
3654 gen_helper_gvec_3 * const *fn = fns[cond];
3655
3656 if (fn == NULL) {
3657 uint32_t tmp;
3658 tmp = aofs, aofs = bofs, bofs = tmp;
3659 cond = tcg_swap_cond(cond);
3660 fn = fns[cond];
3661 assert(fn != NULL);
3662 }
3663 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]);
3664 oprsz = maxsz;
3665 }
3666 break;
3667
3668 default:
3669 g_assert_not_reached();
3670 }
3671 tcg_swap_vecop_list(hold_list);
3672
3673 if (oprsz < maxsz) {
3674 expand_clr(dofs + oprsz, maxsz - oprsz);
3675 }
3676 }
3677
3678 static void tcg_gen_bitsel_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 c)
3679 {
3680 TCGv_i64 t = tcg_temp_new_i64();
3681
3682 tcg_gen_and_i64(t, b, a);
3683 tcg_gen_andc_i64(d, c, a);
3684 tcg_gen_or_i64(d, d, t);
3685 tcg_temp_free_i64(t);
3686 }
3687
3688 void tcg_gen_gvec_bitsel(unsigned vece, uint32_t dofs, uint32_t aofs,
3689 uint32_t bofs, uint32_t cofs,
3690 uint32_t oprsz, uint32_t maxsz)
3691 {
3692 static const GVecGen4 g = {
3693 .fni8 = tcg_gen_bitsel_i64,
3694 .fniv = tcg_gen_bitsel_vec,
3695 .fno = gen_helper_gvec_bitsel,
3696 };
3697
3698 tcg_gen_gvec_4(dofs, aofs, bofs, cofs, oprsz, maxsz, &g);
3699 }