]> git.proxmox.com Git - mirror_qemu.git/blob - translate-all.c
tcg: protect translation related stuff with tb_lock.
[mirror_qemu.git] / translate-all.c
1 /*
2 * Host code generation
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifdef _WIN32
20 #include <windows.h>
21 #endif
22 #include "qemu/osdep.h"
23
24
25 #include "qemu-common.h"
26 #define NO_CPU_IO_DEFS
27 #include "cpu.h"
28 #include "trace.h"
29 #include "disas/disas.h"
30 #include "exec/exec-all.h"
31 #include "tcg.h"
32 #if defined(CONFIG_USER_ONLY)
33 #include "qemu.h"
34 #include "exec/exec-all.h"
35 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36 #include <sys/param.h>
37 #if __FreeBSD_version >= 700104
38 #define HAVE_KINFO_GETVMMAP
39 #define sigqueue sigqueue_freebsd /* avoid redefinition */
40 #include <sys/proc.h>
41 #include <machine/profile.h>
42 #define _KERNEL
43 #include <sys/user.h>
44 #undef _KERNEL
45 #undef sigqueue
46 #include <libutil.h>
47 #endif
48 #endif
49 #else
50 #include "exec/address-spaces.h"
51 #endif
52
53 #include "exec/cputlb.h"
54 #include "exec/tb-hash.h"
55 #include "translate-all.h"
56 #include "qemu/bitmap.h"
57 #include "qemu/timer.h"
58 #include "exec/log.h"
59
60 /* #define DEBUG_TB_INVALIDATE */
61 /* #define DEBUG_TB_FLUSH */
62 /* #define DEBUG_LOCKING */
63 /* make various TB consistency checks */
64 /* #define DEBUG_TB_CHECK */
65
66 #if !defined(CONFIG_USER_ONLY)
67 /* TB consistency checks only implemented for usermode emulation. */
68 #undef DEBUG_TB_CHECK
69 #endif
70
71 /* Access to the various translations structures need to be serialised via locks
72 * for consistency. This is automatic for SoftMMU based system
73 * emulation due to its single threaded nature. In user-mode emulation
74 * access to the memory related structures are protected with the
75 * mmap_lock.
76 */
77 #ifdef DEBUG_LOCKING
78 #define DEBUG_MEM_LOCKS 1
79 #else
80 #define DEBUG_MEM_LOCKS 0
81 #endif
82
83 #ifdef CONFIG_SOFTMMU
84 #define assert_memory_lock() do { /* nothing */ } while (0)
85 #else
86 #define assert_memory_lock() do { \
87 if (DEBUG_MEM_LOCKS) { \
88 g_assert(have_mmap_lock()); \
89 } \
90 } while (0)
91 #endif
92
93 #define SMC_BITMAP_USE_THRESHOLD 10
94
95 typedef struct PageDesc {
96 /* list of TBs intersecting this ram page */
97 TranslationBlock *first_tb;
98 #ifdef CONFIG_SOFTMMU
99 /* in order to optimize self modifying code, we count the number
100 of lookups we do to a given page to use a bitmap */
101 unsigned int code_write_count;
102 unsigned long *code_bitmap;
103 #else
104 unsigned long flags;
105 #endif
106 } PageDesc;
107
108 /* In system mode we want L1_MAP to be based on ram offsets,
109 while in user mode we want it to be based on virtual addresses. */
110 #if !defined(CONFIG_USER_ONLY)
111 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
112 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
113 #else
114 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
115 #endif
116 #else
117 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
118 #endif
119
120 /* Size of the L2 (and L3, etc) page tables. */
121 #define V_L2_BITS 10
122 #define V_L2_SIZE (1 << V_L2_BITS)
123
124 uintptr_t qemu_host_page_size;
125 intptr_t qemu_host_page_mask;
126
127 /*
128 * L1 Mapping properties
129 */
130 static int v_l1_size;
131 static int v_l1_shift;
132 static int v_l2_levels;
133
134 /* The bottom level has pointers to PageDesc, and is indexed by
135 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
136 */
137 #define V_L1_MIN_BITS 4
138 #define V_L1_MAX_BITS (V_L2_BITS + 3)
139 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
140
141 static void *l1_map[V_L1_MAX_SIZE];
142
143 /* code generation context */
144 TCGContext tcg_ctx;
145 bool parallel_cpus;
146
147 /* translation block context */
148 #ifdef CONFIG_USER_ONLY
149 __thread int have_tb_lock;
150 #endif
151
152 static void page_table_config_init(void)
153 {
154 uint32_t v_l1_bits;
155
156 assert(TARGET_PAGE_BITS);
157 /* The bits remaining after N lower levels of page tables. */
158 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
159 if (v_l1_bits < V_L1_MIN_BITS) {
160 v_l1_bits += V_L2_BITS;
161 }
162
163 v_l1_size = 1 << v_l1_bits;
164 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
165 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
166
167 assert(v_l1_bits <= V_L1_MAX_BITS);
168 assert(v_l1_shift % V_L2_BITS == 0);
169 assert(v_l2_levels >= 0);
170 }
171
172 void tb_lock(void)
173 {
174 #ifdef CONFIG_USER_ONLY
175 assert(!have_tb_lock);
176 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
177 have_tb_lock++;
178 #endif
179 }
180
181 void tb_unlock(void)
182 {
183 #ifdef CONFIG_USER_ONLY
184 assert(have_tb_lock);
185 have_tb_lock--;
186 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
187 #endif
188 }
189
190 void tb_lock_reset(void)
191 {
192 #ifdef CONFIG_USER_ONLY
193 if (have_tb_lock) {
194 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
195 have_tb_lock = 0;
196 }
197 #endif
198 }
199
200 #ifdef DEBUG_LOCKING
201 #define DEBUG_TB_LOCKS 1
202 #else
203 #define DEBUG_TB_LOCKS 0
204 #endif
205
206 #ifdef CONFIG_SOFTMMU
207 #define assert_tb_lock() do { /* nothing */ } while (0)
208 #else
209 #define assert_tb_lock() do { \
210 if (DEBUG_TB_LOCKS) { \
211 g_assert(have_tb_lock); \
212 } \
213 } while (0)
214 #endif
215
216
217 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
218
219 void cpu_gen_init(void)
220 {
221 tcg_context_init(&tcg_ctx);
222 }
223
224 /* Encode VAL as a signed leb128 sequence at P.
225 Return P incremented past the encoded value. */
226 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
227 {
228 int more, byte;
229
230 do {
231 byte = val & 0x7f;
232 val >>= 7;
233 more = !((val == 0 && (byte & 0x40) == 0)
234 || (val == -1 && (byte & 0x40) != 0));
235 if (more) {
236 byte |= 0x80;
237 }
238 *p++ = byte;
239 } while (more);
240
241 return p;
242 }
243
244 /* Decode a signed leb128 sequence at *PP; increment *PP past the
245 decoded value. Return the decoded value. */
246 static target_long decode_sleb128(uint8_t **pp)
247 {
248 uint8_t *p = *pp;
249 target_long val = 0;
250 int byte, shift = 0;
251
252 do {
253 byte = *p++;
254 val |= (target_ulong)(byte & 0x7f) << shift;
255 shift += 7;
256 } while (byte & 0x80);
257 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
258 val |= -(target_ulong)1 << shift;
259 }
260
261 *pp = p;
262 return val;
263 }
264
265 /* Encode the data collected about the instructions while compiling TB.
266 Place the data at BLOCK, and return the number of bytes consumed.
267
268 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
269 which come from the target's insn_start data, followed by a uintptr_t
270 which comes from the host pc of the end of the code implementing the insn.
271
272 Each line of the table is encoded as sleb128 deltas from the previous
273 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
274 That is, the first column is seeded with the guest pc, the last column
275 with the host pc, and the middle columns with zeros. */
276
277 static int encode_search(TranslationBlock *tb, uint8_t *block)
278 {
279 uint8_t *highwater = tcg_ctx.code_gen_highwater;
280 uint8_t *p = block;
281 int i, j, n;
282
283 tb->tc_search = block;
284
285 for (i = 0, n = tb->icount; i < n; ++i) {
286 target_ulong prev;
287
288 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
289 if (i == 0) {
290 prev = (j == 0 ? tb->pc : 0);
291 } else {
292 prev = tcg_ctx.gen_insn_data[i - 1][j];
293 }
294 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
295 }
296 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
297 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
298
299 /* Test for (pending) buffer overflow. The assumption is that any
300 one row beginning below the high water mark cannot overrun
301 the buffer completely. Thus we can test for overflow after
302 encoding a row without having to check during encoding. */
303 if (unlikely(p > highwater)) {
304 return -1;
305 }
306 }
307
308 return p - block;
309 }
310
311 /* The cpu state corresponding to 'searched_pc' is restored.
312 * Called with tb_lock held.
313 */
314 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
315 uintptr_t searched_pc)
316 {
317 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
318 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
319 CPUArchState *env = cpu->env_ptr;
320 uint8_t *p = tb->tc_search;
321 int i, j, num_insns = tb->icount;
322 #ifdef CONFIG_PROFILER
323 int64_t ti = profile_getclock();
324 #endif
325
326 searched_pc -= GETPC_ADJ;
327
328 if (searched_pc < host_pc) {
329 return -1;
330 }
331
332 /* Reconstruct the stored insn data while looking for the point at
333 which the end of the insn exceeds the searched_pc. */
334 for (i = 0; i < num_insns; ++i) {
335 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
336 data[j] += decode_sleb128(&p);
337 }
338 host_pc += decode_sleb128(&p);
339 if (host_pc > searched_pc) {
340 goto found;
341 }
342 }
343 return -1;
344
345 found:
346 if (tb->cflags & CF_USE_ICOUNT) {
347 assert(use_icount);
348 /* Reset the cycle counter to the start of the block. */
349 cpu->icount_decr.u16.low += num_insns;
350 /* Clear the IO flag. */
351 cpu->can_do_io = 0;
352 }
353 cpu->icount_decr.u16.low -= i;
354 restore_state_to_opc(env, tb, data);
355
356 #ifdef CONFIG_PROFILER
357 tcg_ctx.restore_time += profile_getclock() - ti;
358 tcg_ctx.restore_count++;
359 #endif
360 return 0;
361 }
362
363 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
364 {
365 TranslationBlock *tb;
366 bool r = false;
367
368 tb_lock();
369 tb = tb_find_pc(retaddr);
370 if (tb) {
371 cpu_restore_state_from_tb(cpu, tb, retaddr);
372 if (tb->cflags & CF_NOCACHE) {
373 /* one-shot translation, invalidate it immediately */
374 tb_phys_invalidate(tb, -1);
375 tb_free(tb);
376 }
377 r = true;
378 }
379 tb_unlock();
380
381 return r;
382 }
383
384 void page_size_init(void)
385 {
386 /* NOTE: we can always suppose that qemu_host_page_size >=
387 TARGET_PAGE_SIZE */
388 qemu_real_host_page_size = getpagesize();
389 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
390 if (qemu_host_page_size == 0) {
391 qemu_host_page_size = qemu_real_host_page_size;
392 }
393 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
394 qemu_host_page_size = TARGET_PAGE_SIZE;
395 }
396 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
397 }
398
399 static void page_init(void)
400 {
401 page_size_init();
402 page_table_config_init();
403
404 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
405 {
406 #ifdef HAVE_KINFO_GETVMMAP
407 struct kinfo_vmentry *freep;
408 int i, cnt;
409
410 freep = kinfo_getvmmap(getpid(), &cnt);
411 if (freep) {
412 mmap_lock();
413 for (i = 0; i < cnt; i++) {
414 unsigned long startaddr, endaddr;
415
416 startaddr = freep[i].kve_start;
417 endaddr = freep[i].kve_end;
418 if (h2g_valid(startaddr)) {
419 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
420
421 if (h2g_valid(endaddr)) {
422 endaddr = h2g(endaddr);
423 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
424 } else {
425 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
426 endaddr = ~0ul;
427 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
428 #endif
429 }
430 }
431 }
432 free(freep);
433 mmap_unlock();
434 }
435 #else
436 FILE *f;
437
438 last_brk = (unsigned long)sbrk(0);
439
440 f = fopen("/compat/linux/proc/self/maps", "r");
441 if (f) {
442 mmap_lock();
443
444 do {
445 unsigned long startaddr, endaddr;
446 int n;
447
448 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
449
450 if (n == 2 && h2g_valid(startaddr)) {
451 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
452
453 if (h2g_valid(endaddr)) {
454 endaddr = h2g(endaddr);
455 } else {
456 endaddr = ~0ul;
457 }
458 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
459 }
460 } while (!feof(f));
461
462 fclose(f);
463 mmap_unlock();
464 }
465 #endif
466 }
467 #endif
468 }
469
470 /* If alloc=1:
471 * Called with tb_lock held for system emulation.
472 * Called with mmap_lock held for user-mode emulation.
473 */
474 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
475 {
476 PageDesc *pd;
477 void **lp;
478 int i;
479
480 if (alloc) {
481 assert_memory_lock();
482 }
483
484 /* Level 1. Always allocated. */
485 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
486
487 /* Level 2..N-1. */
488 for (i = v_l2_levels; i > 0; i--) {
489 void **p = atomic_rcu_read(lp);
490
491 if (p == NULL) {
492 if (!alloc) {
493 return NULL;
494 }
495 p = g_new0(void *, V_L2_SIZE);
496 atomic_rcu_set(lp, p);
497 }
498
499 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
500 }
501
502 pd = atomic_rcu_read(lp);
503 if (pd == NULL) {
504 if (!alloc) {
505 return NULL;
506 }
507 pd = g_new0(PageDesc, V_L2_SIZE);
508 atomic_rcu_set(lp, pd);
509 }
510
511 return pd + (index & (V_L2_SIZE - 1));
512 }
513
514 static inline PageDesc *page_find(tb_page_addr_t index)
515 {
516 return page_find_alloc(index, 0);
517 }
518
519 #if defined(CONFIG_USER_ONLY)
520 /* Currently it is not recommended to allocate big chunks of data in
521 user mode. It will change when a dedicated libc will be used. */
522 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
523 region in which the guest needs to run. Revisit this. */
524 #define USE_STATIC_CODE_GEN_BUFFER
525 #endif
526
527 /* Minimum size of the code gen buffer. This number is randomly chosen,
528 but not so small that we can't have a fair number of TB's live. */
529 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
530
531 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
532 indicated, this is constrained by the range of direct branches on the
533 host cpu, as used by the TCG implementation of goto_tb. */
534 #if defined(__x86_64__)
535 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
536 #elif defined(__sparc__)
537 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
538 #elif defined(__powerpc64__)
539 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
540 #elif defined(__powerpc__)
541 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
542 #elif defined(__aarch64__)
543 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
544 #elif defined(__arm__)
545 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
546 #elif defined(__s390x__)
547 /* We have a +- 4GB range on the branches; leave some slop. */
548 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
549 #elif defined(__mips__)
550 /* We have a 256MB branch region, but leave room to make sure the
551 main executable is also within that region. */
552 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
553 #else
554 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
555 #endif
556
557 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
558
559 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
560 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
561 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
562
563 static inline size_t size_code_gen_buffer(size_t tb_size)
564 {
565 /* Size the buffer. */
566 if (tb_size == 0) {
567 #ifdef USE_STATIC_CODE_GEN_BUFFER
568 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
569 #else
570 /* ??? Needs adjustments. */
571 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
572 static buffer, we could size this on RESERVED_VA, on the text
573 segment size of the executable, or continue to use the default. */
574 tb_size = (unsigned long)(ram_size / 4);
575 #endif
576 }
577 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
578 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
579 }
580 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
581 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
582 }
583 return tb_size;
584 }
585
586 #ifdef __mips__
587 /* In order to use J and JAL within the code_gen_buffer, we require
588 that the buffer not cross a 256MB boundary. */
589 static inline bool cross_256mb(void *addr, size_t size)
590 {
591 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
592 }
593
594 /* We weren't able to allocate a buffer without crossing that boundary,
595 so make do with the larger portion of the buffer that doesn't cross.
596 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
597 static inline void *split_cross_256mb(void *buf1, size_t size1)
598 {
599 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
600 size_t size2 = buf1 + size1 - buf2;
601
602 size1 = buf2 - buf1;
603 if (size1 < size2) {
604 size1 = size2;
605 buf1 = buf2;
606 }
607
608 tcg_ctx.code_gen_buffer_size = size1;
609 return buf1;
610 }
611 #endif
612
613 #ifdef USE_STATIC_CODE_GEN_BUFFER
614 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
615 __attribute__((aligned(CODE_GEN_ALIGN)));
616
617 # ifdef _WIN32
618 static inline void do_protect(void *addr, long size, int prot)
619 {
620 DWORD old_protect;
621 VirtualProtect(addr, size, prot, &old_protect);
622 }
623
624 static inline void map_exec(void *addr, long size)
625 {
626 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
627 }
628
629 static inline void map_none(void *addr, long size)
630 {
631 do_protect(addr, size, PAGE_NOACCESS);
632 }
633 # else
634 static inline void do_protect(void *addr, long size, int prot)
635 {
636 uintptr_t start, end;
637
638 start = (uintptr_t)addr;
639 start &= qemu_real_host_page_mask;
640
641 end = (uintptr_t)addr + size;
642 end = ROUND_UP(end, qemu_real_host_page_size);
643
644 mprotect((void *)start, end - start, prot);
645 }
646
647 static inline void map_exec(void *addr, long size)
648 {
649 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
650 }
651
652 static inline void map_none(void *addr, long size)
653 {
654 do_protect(addr, size, PROT_NONE);
655 }
656 # endif /* WIN32 */
657
658 static inline void *alloc_code_gen_buffer(void)
659 {
660 void *buf = static_code_gen_buffer;
661 size_t full_size, size;
662
663 /* The size of the buffer, rounded down to end on a page boundary. */
664 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
665 & qemu_real_host_page_mask) - (uintptr_t)buf;
666
667 /* Reserve a guard page. */
668 size = full_size - qemu_real_host_page_size;
669
670 /* Honor a command-line option limiting the size of the buffer. */
671 if (size > tcg_ctx.code_gen_buffer_size) {
672 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
673 & qemu_real_host_page_mask) - (uintptr_t)buf;
674 }
675 tcg_ctx.code_gen_buffer_size = size;
676
677 #ifdef __mips__
678 if (cross_256mb(buf, size)) {
679 buf = split_cross_256mb(buf, size);
680 size = tcg_ctx.code_gen_buffer_size;
681 }
682 #endif
683
684 map_exec(buf, size);
685 map_none(buf + size, qemu_real_host_page_size);
686 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
687
688 return buf;
689 }
690 #elif defined(_WIN32)
691 static inline void *alloc_code_gen_buffer(void)
692 {
693 size_t size = tcg_ctx.code_gen_buffer_size;
694 void *buf1, *buf2;
695
696 /* Perform the allocation in two steps, so that the guard page
697 is reserved but uncommitted. */
698 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
699 MEM_RESERVE, PAGE_NOACCESS);
700 if (buf1 != NULL) {
701 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
702 assert(buf1 == buf2);
703 }
704
705 return buf1;
706 }
707 #else
708 static inline void *alloc_code_gen_buffer(void)
709 {
710 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
711 uintptr_t start = 0;
712 size_t size = tcg_ctx.code_gen_buffer_size;
713 void *buf;
714
715 /* Constrain the position of the buffer based on the host cpu.
716 Note that these addresses are chosen in concert with the
717 addresses assigned in the relevant linker script file. */
718 # if defined(__PIE__) || defined(__PIC__)
719 /* Don't bother setting a preferred location if we're building
720 a position-independent executable. We're more likely to get
721 an address near the main executable if we let the kernel
722 choose the address. */
723 # elif defined(__x86_64__) && defined(MAP_32BIT)
724 /* Force the memory down into low memory with the executable.
725 Leave the choice of exact location with the kernel. */
726 flags |= MAP_32BIT;
727 /* Cannot expect to map more than 800MB in low memory. */
728 if (size > 800u * 1024 * 1024) {
729 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
730 }
731 # elif defined(__sparc__)
732 start = 0x40000000ul;
733 # elif defined(__s390x__)
734 start = 0x90000000ul;
735 # elif defined(__mips__)
736 # if _MIPS_SIM == _ABI64
737 start = 0x128000000ul;
738 # else
739 start = 0x08000000ul;
740 # endif
741 # endif
742
743 buf = mmap((void *)start, size + qemu_real_host_page_size,
744 PROT_NONE, flags, -1, 0);
745 if (buf == MAP_FAILED) {
746 return NULL;
747 }
748
749 #ifdef __mips__
750 if (cross_256mb(buf, size)) {
751 /* Try again, with the original still mapped, to avoid re-acquiring
752 that 256mb crossing. This time don't specify an address. */
753 size_t size2;
754 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
755 PROT_NONE, flags, -1, 0);
756 switch (buf2 != MAP_FAILED) {
757 case 1:
758 if (!cross_256mb(buf2, size)) {
759 /* Success! Use the new buffer. */
760 munmap(buf, size + qemu_real_host_page_size);
761 break;
762 }
763 /* Failure. Work with what we had. */
764 munmap(buf2, size + qemu_real_host_page_size);
765 /* fallthru */
766 default:
767 /* Split the original buffer. Free the smaller half. */
768 buf2 = split_cross_256mb(buf, size);
769 size2 = tcg_ctx.code_gen_buffer_size;
770 if (buf == buf2) {
771 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
772 } else {
773 munmap(buf, size - size2);
774 }
775 size = size2;
776 break;
777 }
778 buf = buf2;
779 }
780 #endif
781
782 /* Make the final buffer accessible. The guard page at the end
783 will remain inaccessible with PROT_NONE. */
784 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
785
786 /* Request large pages for the buffer. */
787 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
788
789 return buf;
790 }
791 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
792
793 static inline void code_gen_alloc(size_t tb_size)
794 {
795 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
796 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
797 if (tcg_ctx.code_gen_buffer == NULL) {
798 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
799 exit(1);
800 }
801
802 /* Estimate a good size for the number of TBs we can support. We
803 still haven't deducted the prologue from the buffer size here,
804 but that's minimal and won't affect the estimate much. */
805 tcg_ctx.code_gen_max_blocks
806 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
807 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
808
809 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
810 }
811
812 static void tb_htable_init(void)
813 {
814 unsigned int mode = QHT_MODE_AUTO_RESIZE;
815
816 qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
817 }
818
819 /* Must be called before using the QEMU cpus. 'tb_size' is the size
820 (in bytes) allocated to the translation buffer. Zero means default
821 size. */
822 void tcg_exec_init(unsigned long tb_size)
823 {
824 cpu_gen_init();
825 page_init();
826 tb_htable_init();
827 code_gen_alloc(tb_size);
828 #if defined(CONFIG_SOFTMMU)
829 /* There's no guest base to take into account, so go ahead and
830 initialize the prologue now. */
831 tcg_prologue_init(&tcg_ctx);
832 #endif
833 }
834
835 bool tcg_enabled(void)
836 {
837 return tcg_ctx.code_gen_buffer != NULL;
838 }
839
840 /*
841 * Allocate a new translation block. Flush the translation buffer if
842 * too many translation blocks or too much generated code.
843 *
844 * Called with tb_lock held.
845 */
846 static TranslationBlock *tb_alloc(target_ulong pc)
847 {
848 TranslationBlock *tb;
849
850 assert_tb_lock();
851
852 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
853 return NULL;
854 }
855 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
856 tb->pc = pc;
857 tb->cflags = 0;
858 tb->invalid = false;
859 return tb;
860 }
861
862 /* Called with tb_lock held. */
863 void tb_free(TranslationBlock *tb)
864 {
865 assert_tb_lock();
866
867 /* In practice this is mostly used for single use temporary TB
868 Ignore the hard cases and just back up if this TB happens to
869 be the last one generated. */
870 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
871 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
872 tcg_ctx.code_gen_ptr = tb->tc_ptr;
873 tcg_ctx.tb_ctx.nb_tbs--;
874 }
875 }
876
877 static inline void invalidate_page_bitmap(PageDesc *p)
878 {
879 #ifdef CONFIG_SOFTMMU
880 g_free(p->code_bitmap);
881 p->code_bitmap = NULL;
882 p->code_write_count = 0;
883 #endif
884 }
885
886 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
887 static void page_flush_tb_1(int level, void **lp)
888 {
889 int i;
890
891 if (*lp == NULL) {
892 return;
893 }
894 if (level == 0) {
895 PageDesc *pd = *lp;
896
897 for (i = 0; i < V_L2_SIZE; ++i) {
898 pd[i].first_tb = NULL;
899 invalidate_page_bitmap(pd + i);
900 }
901 } else {
902 void **pp = *lp;
903
904 for (i = 0; i < V_L2_SIZE; ++i) {
905 page_flush_tb_1(level - 1, pp + i);
906 }
907 }
908 }
909
910 static void page_flush_tb(void)
911 {
912 int i, l1_sz = v_l1_size;
913
914 for (i = 0; i < l1_sz; i++) {
915 page_flush_tb_1(v_l2_levels, l1_map + i);
916 }
917 }
918
919 /* flush all the translation blocks */
920 static void do_tb_flush(CPUState *cpu, void *data)
921 {
922 unsigned tb_flush_req = (unsigned) (uintptr_t) data;
923
924 tb_lock();
925
926 /* If it's already been done on request of another CPU,
927 * just retry.
928 */
929 if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_req) {
930 goto done;
931 }
932
933 #if defined(DEBUG_TB_FLUSH)
934 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
935 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
936 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
937 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
938 tcg_ctx.tb_ctx.nb_tbs : 0);
939 #endif
940 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
941 > tcg_ctx.code_gen_buffer_size) {
942 cpu_abort(cpu, "Internal error: code buffer overflow\n");
943 }
944
945 CPU_FOREACH(cpu) {
946 int i;
947
948 for (i = 0; i < TB_JMP_CACHE_SIZE; ++i) {
949 atomic_set(&cpu->tb_jmp_cache[i], NULL);
950 }
951 }
952
953 tcg_ctx.tb_ctx.nb_tbs = 0;
954 qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
955 page_flush_tb();
956
957 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
958 /* XXX: flush processor icache at this point if cache flush is
959 expensive */
960 atomic_mb_set(&tcg_ctx.tb_ctx.tb_flush_count,
961 tcg_ctx.tb_ctx.tb_flush_count + 1);
962
963 done:
964 tb_unlock();
965 }
966
967 void tb_flush(CPUState *cpu)
968 {
969 if (tcg_enabled()) {
970 uintptr_t tb_flush_req = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
971 async_safe_run_on_cpu(cpu, do_tb_flush, (void *) tb_flush_req);
972 }
973 }
974
975 #ifdef DEBUG_TB_CHECK
976
977 static void
978 do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
979 {
980 TranslationBlock *tb = p;
981 target_ulong addr = *(target_ulong *)userp;
982
983 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
984 printf("ERROR invalidate: address=" TARGET_FMT_lx
985 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
986 }
987 }
988
989 /* verify that all the pages have correct rights for code
990 *
991 * Called with tb_lock held.
992 */
993 static void tb_invalidate_check(target_ulong address)
994 {
995 address &= TARGET_PAGE_MASK;
996 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
997 }
998
999 static void
1000 do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
1001 {
1002 TranslationBlock *tb = p;
1003 int flags1, flags2;
1004
1005 flags1 = page_get_flags(tb->pc);
1006 flags2 = page_get_flags(tb->pc + tb->size - 1);
1007 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1008 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1009 (long)tb->pc, tb->size, flags1, flags2);
1010 }
1011 }
1012
1013 /* verify that all the pages have correct rights for code */
1014 static void tb_page_check(void)
1015 {
1016 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
1017 }
1018
1019 #endif
1020
1021 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
1022 {
1023 TranslationBlock *tb1;
1024 unsigned int n1;
1025
1026 for (;;) {
1027 tb1 = *ptb;
1028 n1 = (uintptr_t)tb1 & 3;
1029 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1030 if (tb1 == tb) {
1031 *ptb = tb1->page_next[n1];
1032 break;
1033 }
1034 ptb = &tb1->page_next[n1];
1035 }
1036 }
1037
1038 /* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
1039 static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
1040 {
1041 TranslationBlock *tb1;
1042 uintptr_t *ptb, ntb;
1043 unsigned int n1;
1044
1045 ptb = &tb->jmp_list_next[n];
1046 if (*ptb) {
1047 /* find tb(n) in circular list */
1048 for (;;) {
1049 ntb = *ptb;
1050 n1 = ntb & 3;
1051 tb1 = (TranslationBlock *)(ntb & ~3);
1052 if (n1 == n && tb1 == tb) {
1053 break;
1054 }
1055 if (n1 == 2) {
1056 ptb = &tb1->jmp_list_first;
1057 } else {
1058 ptb = &tb1->jmp_list_next[n1];
1059 }
1060 }
1061 /* now we can suppress tb(n) from the list */
1062 *ptb = tb->jmp_list_next[n];
1063
1064 tb->jmp_list_next[n] = (uintptr_t)NULL;
1065 }
1066 }
1067
1068 /* reset the jump entry 'n' of a TB so that it is not chained to
1069 another TB */
1070 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1071 {
1072 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
1073 tb_set_jmp_target(tb, n, addr);
1074 }
1075
1076 /* remove any jumps to the TB */
1077 static inline void tb_jmp_unlink(TranslationBlock *tb)
1078 {
1079 TranslationBlock *tb1;
1080 uintptr_t *ptb, ntb;
1081 unsigned int n1;
1082
1083 ptb = &tb->jmp_list_first;
1084 for (;;) {
1085 ntb = *ptb;
1086 n1 = ntb & 3;
1087 tb1 = (TranslationBlock *)(ntb & ~3);
1088 if (n1 == 2) {
1089 break;
1090 }
1091 tb_reset_jump(tb1, n1);
1092 *ptb = tb1->jmp_list_next[n1];
1093 tb1->jmp_list_next[n1] = (uintptr_t)NULL;
1094 }
1095 }
1096
1097 /* invalidate one TB
1098 *
1099 * Called with tb_lock held.
1100 */
1101 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1102 {
1103 CPUState *cpu;
1104 PageDesc *p;
1105 uint32_t h;
1106 tb_page_addr_t phys_pc;
1107
1108 assert_tb_lock();
1109
1110 atomic_set(&tb->invalid, true);
1111
1112 /* remove the TB from the hash list */
1113 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1114 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1115 qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
1116
1117 /* remove the TB from the page list */
1118 if (tb->page_addr[0] != page_addr) {
1119 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1120 tb_page_remove(&p->first_tb, tb);
1121 invalidate_page_bitmap(p);
1122 }
1123 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
1124 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1125 tb_page_remove(&p->first_tb, tb);
1126 invalidate_page_bitmap(p);
1127 }
1128
1129 /* remove the TB from the hash list */
1130 h = tb_jmp_cache_hash_func(tb->pc);
1131 CPU_FOREACH(cpu) {
1132 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1133 atomic_set(&cpu->tb_jmp_cache[h], NULL);
1134 }
1135 }
1136
1137 /* suppress this TB from the two jump lists */
1138 tb_remove_from_jmp_list(tb, 0);
1139 tb_remove_from_jmp_list(tb, 1);
1140
1141 /* suppress any remaining jumps to this TB */
1142 tb_jmp_unlink(tb);
1143
1144 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1145 }
1146
1147 #ifdef CONFIG_SOFTMMU
1148 static void build_page_bitmap(PageDesc *p)
1149 {
1150 int n, tb_start, tb_end;
1151 TranslationBlock *tb;
1152
1153 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1154
1155 tb = p->first_tb;
1156 while (tb != NULL) {
1157 n = (uintptr_t)tb & 3;
1158 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1159 /* NOTE: this is subtle as a TB may span two physical pages */
1160 if (n == 0) {
1161 /* NOTE: tb_end may be after the end of the page, but
1162 it is not a problem */
1163 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1164 tb_end = tb_start + tb->size;
1165 if (tb_end > TARGET_PAGE_SIZE) {
1166 tb_end = TARGET_PAGE_SIZE;
1167 }
1168 } else {
1169 tb_start = 0;
1170 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1171 }
1172 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1173 tb = tb->page_next[n];
1174 }
1175 }
1176 #endif
1177
1178 /* add the tb in the target page and protect it if necessary
1179 *
1180 * Called with mmap_lock held for user-mode emulation.
1181 */
1182 static inline void tb_alloc_page(TranslationBlock *tb,
1183 unsigned int n, tb_page_addr_t page_addr)
1184 {
1185 PageDesc *p;
1186 #ifndef CONFIG_USER_ONLY
1187 bool page_already_protected;
1188 #endif
1189
1190 assert_memory_lock();
1191
1192 tb->page_addr[n] = page_addr;
1193 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1194 tb->page_next[n] = p->first_tb;
1195 #ifndef CONFIG_USER_ONLY
1196 page_already_protected = p->first_tb != NULL;
1197 #endif
1198 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1199 invalidate_page_bitmap(p);
1200
1201 #if defined(CONFIG_USER_ONLY)
1202 if (p->flags & PAGE_WRITE) {
1203 target_ulong addr;
1204 PageDesc *p2;
1205 int prot;
1206
1207 /* force the host page as non writable (writes will have a
1208 page fault + mprotect overhead) */
1209 page_addr &= qemu_host_page_mask;
1210 prot = 0;
1211 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1212 addr += TARGET_PAGE_SIZE) {
1213
1214 p2 = page_find(addr >> TARGET_PAGE_BITS);
1215 if (!p2) {
1216 continue;
1217 }
1218 prot |= p2->flags;
1219 p2->flags &= ~PAGE_WRITE;
1220 }
1221 mprotect(g2h(page_addr), qemu_host_page_size,
1222 (prot & PAGE_BITS) & ~PAGE_WRITE);
1223 #ifdef DEBUG_TB_INVALIDATE
1224 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1225 page_addr);
1226 #endif
1227 }
1228 #else
1229 /* if some code is already present, then the pages are already
1230 protected. So we handle the case where only the first TB is
1231 allocated in a physical page */
1232 if (!page_already_protected) {
1233 tlb_protect_code(page_addr);
1234 }
1235 #endif
1236 }
1237
1238 /* add a new TB and link it to the physical page tables. phys_page2 is
1239 * (-1) to indicate that only one page contains the TB.
1240 *
1241 * Called with mmap_lock held for user-mode emulation.
1242 */
1243 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1244 tb_page_addr_t phys_page2)
1245 {
1246 uint32_t h;
1247
1248 assert_memory_lock();
1249
1250 /* add in the page list */
1251 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1252 if (phys_page2 != -1) {
1253 tb_alloc_page(tb, 1, phys_page2);
1254 } else {
1255 tb->page_addr[1] = -1;
1256 }
1257
1258 /* add in the hash table */
1259 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1260 qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);
1261
1262 #ifdef DEBUG_TB_CHECK
1263 tb_page_check();
1264 #endif
1265 }
1266
1267 /* Called with mmap_lock held for user mode emulation. */
1268 TranslationBlock *tb_gen_code(CPUState *cpu,
1269 target_ulong pc, target_ulong cs_base,
1270 uint32_t flags, int cflags)
1271 {
1272 CPUArchState *env = cpu->env_ptr;
1273 TranslationBlock *tb;
1274 tb_page_addr_t phys_pc, phys_page2;
1275 target_ulong virt_page2;
1276 tcg_insn_unit *gen_code_buf;
1277 int gen_code_size, search_size;
1278 #ifdef CONFIG_PROFILER
1279 int64_t ti;
1280 #endif
1281 assert_memory_lock();
1282
1283 phys_pc = get_page_addr_code(env, pc);
1284 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1285 cflags |= CF_USE_ICOUNT;
1286 }
1287
1288 tb = tb_alloc(pc);
1289 if (unlikely(!tb)) {
1290 buffer_overflow:
1291 /* flush must be done */
1292 tb_flush(cpu);
1293 mmap_unlock();
1294 cpu_loop_exit(cpu);
1295 }
1296
1297 gen_code_buf = tcg_ctx.code_gen_ptr;
1298 tb->tc_ptr = gen_code_buf;
1299 tb->cs_base = cs_base;
1300 tb->flags = flags;
1301 tb->cflags = cflags;
1302
1303 #ifdef CONFIG_PROFILER
1304 tcg_ctx.tb_count1++; /* includes aborted translations because of
1305 exceptions */
1306 ti = profile_getclock();
1307 #endif
1308
1309 tcg_func_start(&tcg_ctx);
1310
1311 tcg_ctx.cpu = ENV_GET_CPU(env);
1312 gen_intermediate_code(env, tb);
1313 tcg_ctx.cpu = NULL;
1314
1315 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1316
1317 /* generate machine code */
1318 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1319 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1320 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
1321 #ifdef USE_DIRECT_JUMP
1322 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1323 tcg_ctx.tb_jmp_target_addr = NULL;
1324 #else
1325 tcg_ctx.tb_jmp_insn_offset = NULL;
1326 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
1327 #endif
1328
1329 #ifdef CONFIG_PROFILER
1330 tcg_ctx.tb_count++;
1331 tcg_ctx.interm_time += profile_getclock() - ti;
1332 tcg_ctx.code_time -= profile_getclock();
1333 #endif
1334
1335 /* ??? Overflow could be handled better here. In particular, we
1336 don't need to re-do gen_intermediate_code, nor should we re-do
1337 the tcg optimization currently hidden inside tcg_gen_code. All
1338 that should be required is to flush the TBs, allocate a new TB,
1339 re-initialize it per above, and re-do the actual code generation. */
1340 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1341 if (unlikely(gen_code_size < 0)) {
1342 goto buffer_overflow;
1343 }
1344 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1345 if (unlikely(search_size < 0)) {
1346 goto buffer_overflow;
1347 }
1348
1349 #ifdef CONFIG_PROFILER
1350 tcg_ctx.code_time += profile_getclock();
1351 tcg_ctx.code_in_len += tb->size;
1352 tcg_ctx.code_out_len += gen_code_size;
1353 tcg_ctx.search_out_len += search_size;
1354 #endif
1355
1356 #ifdef DEBUG_DISAS
1357 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1358 qemu_log_in_addr_range(tb->pc)) {
1359 qemu_log("OUT: [size=%d]\n", gen_code_size);
1360 log_disas(tb->tc_ptr, gen_code_size);
1361 qemu_log("\n");
1362 qemu_log_flush();
1363 }
1364 #endif
1365
1366 tcg_ctx.code_gen_ptr = (void *)
1367 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1368 CODE_GEN_ALIGN);
1369
1370 /* init jump list */
1371 assert(((uintptr_t)tb & 3) == 0);
1372 tb->jmp_list_first = (uintptr_t)tb | 2;
1373 tb->jmp_list_next[0] = (uintptr_t)NULL;
1374 tb->jmp_list_next[1] = (uintptr_t)NULL;
1375
1376 /* init original jump addresses wich has been set during tcg_gen_code() */
1377 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1378 tb_reset_jump(tb, 0);
1379 }
1380 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1381 tb_reset_jump(tb, 1);
1382 }
1383
1384 /* check next page if needed */
1385 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1386 phys_page2 = -1;
1387 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1388 phys_page2 = get_page_addr_code(env, virt_page2);
1389 }
1390 /* As long as consistency of the TB stuff is provided by tb_lock in user
1391 * mode and is implicit in single-threaded softmmu emulation, no explicit
1392 * memory barrier is required before tb_link_page() makes the TB visible
1393 * through the physical hash table and physical page list.
1394 */
1395 tb_link_page(tb, phys_pc, phys_page2);
1396 return tb;
1397 }
1398
1399 /*
1400 * Invalidate all TBs which intersect with the target physical address range
1401 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1402 * 'is_cpu_write_access' should be true if called from a real cpu write
1403 * access: the virtual CPU will exit the current TB if code is modified inside
1404 * this TB.
1405 *
1406 * Called with mmap_lock held for user-mode emulation
1407 */
1408 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1409 {
1410 assert_memory_lock();
1411
1412 while (start < end) {
1413 tb_invalidate_phys_page_range(start, end, 0);
1414 start &= TARGET_PAGE_MASK;
1415 start += TARGET_PAGE_SIZE;
1416 }
1417 }
1418
1419 /*
1420 * Invalidate all TBs which intersect with the target physical address range
1421 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1422 * 'is_cpu_write_access' should be true if called from a real cpu write
1423 * access: the virtual CPU will exit the current TB if code is modified inside
1424 * this TB.
1425 *
1426 * Called with mmap_lock held for user-mode emulation
1427 */
1428 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1429 int is_cpu_write_access)
1430 {
1431 TranslationBlock *tb, *tb_next;
1432 #if defined(TARGET_HAS_PRECISE_SMC)
1433 CPUState *cpu = current_cpu;
1434 CPUArchState *env = NULL;
1435 #endif
1436 tb_page_addr_t tb_start, tb_end;
1437 PageDesc *p;
1438 int n;
1439 #ifdef TARGET_HAS_PRECISE_SMC
1440 int current_tb_not_found = is_cpu_write_access;
1441 TranslationBlock *current_tb = NULL;
1442 int current_tb_modified = 0;
1443 target_ulong current_pc = 0;
1444 target_ulong current_cs_base = 0;
1445 uint32_t current_flags = 0;
1446 #endif /* TARGET_HAS_PRECISE_SMC */
1447
1448 assert_memory_lock();
1449
1450 p = page_find(start >> TARGET_PAGE_BITS);
1451 if (!p) {
1452 return;
1453 }
1454 #if defined(TARGET_HAS_PRECISE_SMC)
1455 if (cpu != NULL) {
1456 env = cpu->env_ptr;
1457 }
1458 #endif
1459
1460 /* we remove all the TBs in the range [start, end[ */
1461 /* XXX: see if in some cases it could be faster to invalidate all
1462 the code */
1463 tb_lock();
1464 tb = p->first_tb;
1465 while (tb != NULL) {
1466 n = (uintptr_t)tb & 3;
1467 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1468 tb_next = tb->page_next[n];
1469 /* NOTE: this is subtle as a TB may span two physical pages */
1470 if (n == 0) {
1471 /* NOTE: tb_end may be after the end of the page, but
1472 it is not a problem */
1473 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1474 tb_end = tb_start + tb->size;
1475 } else {
1476 tb_start = tb->page_addr[1];
1477 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1478 }
1479 if (!(tb_end <= start || tb_start >= end)) {
1480 #ifdef TARGET_HAS_PRECISE_SMC
1481 if (current_tb_not_found) {
1482 current_tb_not_found = 0;
1483 current_tb = NULL;
1484 if (cpu->mem_io_pc) {
1485 /* now we have a real cpu fault */
1486 current_tb = tb_find_pc(cpu->mem_io_pc);
1487 }
1488 }
1489 if (current_tb == tb &&
1490 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1491 /* If we are modifying the current TB, we must stop
1492 its execution. We could be more precise by checking
1493 that the modification is after the current PC, but it
1494 would require a specialized function to partially
1495 restore the CPU state */
1496
1497 current_tb_modified = 1;
1498 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1499 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1500 &current_flags);
1501 }
1502 #endif /* TARGET_HAS_PRECISE_SMC */
1503 tb_phys_invalidate(tb, -1);
1504 }
1505 tb = tb_next;
1506 }
1507 #if !defined(CONFIG_USER_ONLY)
1508 /* if no code remaining, no need to continue to use slow writes */
1509 if (!p->first_tb) {
1510 invalidate_page_bitmap(p);
1511 tlb_unprotect_code(start);
1512 }
1513 #endif
1514 #ifdef TARGET_HAS_PRECISE_SMC
1515 if (current_tb_modified) {
1516 /* we generate a block containing just the instruction
1517 modifying the memory. It will ensure that it cannot modify
1518 itself */
1519 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1520 cpu_loop_exit_noexc(cpu);
1521 }
1522 #endif
1523 tb_unlock();
1524 }
1525
1526 #ifdef CONFIG_SOFTMMU
1527 /* len must be <= 8 and start must be a multiple of len */
1528 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1529 {
1530 PageDesc *p;
1531
1532 #if 0
1533 if (1) {
1534 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1535 cpu_single_env->mem_io_vaddr, len,
1536 cpu_single_env->eip,
1537 cpu_single_env->eip +
1538 (intptr_t)cpu_single_env->segs[R_CS].base);
1539 }
1540 #endif
1541 p = page_find(start >> TARGET_PAGE_BITS);
1542 if (!p) {
1543 return;
1544 }
1545 if (!p->code_bitmap &&
1546 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1547 /* build code bitmap. FIXME: writes should be protected by
1548 * tb_lock, reads by tb_lock or RCU.
1549 */
1550 build_page_bitmap(p);
1551 }
1552 if (p->code_bitmap) {
1553 unsigned int nr;
1554 unsigned long b;
1555
1556 nr = start & ~TARGET_PAGE_MASK;
1557 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1558 if (b & ((1 << len) - 1)) {
1559 goto do_invalidate;
1560 }
1561 } else {
1562 do_invalidate:
1563 tb_invalidate_phys_page_range(start, start + len, 1);
1564 }
1565 }
1566 #else
1567 /* Called with mmap_lock held. If pc is not 0 then it indicates the
1568 * host PC of the faulting store instruction that caused this invalidate.
1569 * Returns true if the caller needs to abort execution of the current
1570 * TB (because it was modified by this store and the guest CPU has
1571 * precise-SMC semantics).
1572 */
1573 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
1574 {
1575 TranslationBlock *tb;
1576 PageDesc *p;
1577 int n;
1578 #ifdef TARGET_HAS_PRECISE_SMC
1579 TranslationBlock *current_tb = NULL;
1580 CPUState *cpu = current_cpu;
1581 CPUArchState *env = NULL;
1582 int current_tb_modified = 0;
1583 target_ulong current_pc = 0;
1584 target_ulong current_cs_base = 0;
1585 uint32_t current_flags = 0;
1586 #endif
1587
1588 addr &= TARGET_PAGE_MASK;
1589 p = page_find(addr >> TARGET_PAGE_BITS);
1590 if (!p) {
1591 return false;
1592 }
1593
1594 tb_lock();
1595 tb = p->first_tb;
1596 #ifdef TARGET_HAS_PRECISE_SMC
1597 if (tb && pc != 0) {
1598 current_tb = tb_find_pc(pc);
1599 }
1600 if (cpu != NULL) {
1601 env = cpu->env_ptr;
1602 }
1603 #endif
1604 while (tb != NULL) {
1605 n = (uintptr_t)tb & 3;
1606 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1607 #ifdef TARGET_HAS_PRECISE_SMC
1608 if (current_tb == tb &&
1609 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1610 /* If we are modifying the current TB, we must stop
1611 its execution. We could be more precise by checking
1612 that the modification is after the current PC, but it
1613 would require a specialized function to partially
1614 restore the CPU state */
1615
1616 current_tb_modified = 1;
1617 cpu_restore_state_from_tb(cpu, current_tb, pc);
1618 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1619 &current_flags);
1620 }
1621 #endif /* TARGET_HAS_PRECISE_SMC */
1622 tb_phys_invalidate(tb, addr);
1623 tb = tb->page_next[n];
1624 }
1625 p->first_tb = NULL;
1626 #ifdef TARGET_HAS_PRECISE_SMC
1627 if (current_tb_modified) {
1628 /* we generate a block containing just the instruction
1629 modifying the memory. It will ensure that it cannot modify
1630 itself */
1631 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1632 /* tb_lock will be reset after cpu_loop_exit_noexc longjmps
1633 * back into the cpu_exec loop. */
1634 return true;
1635 }
1636 #endif
1637 tb_unlock();
1638
1639 return false;
1640 }
1641 #endif
1642
1643 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1644 tb[1].tc_ptr. Return NULL if not found */
1645 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1646 {
1647 int m_min, m_max, m;
1648 uintptr_t v;
1649 TranslationBlock *tb;
1650
1651 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1652 return NULL;
1653 }
1654 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1655 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1656 return NULL;
1657 }
1658 /* binary search (cf Knuth) */
1659 m_min = 0;
1660 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1661 while (m_min <= m_max) {
1662 m = (m_min + m_max) >> 1;
1663 tb = &tcg_ctx.tb_ctx.tbs[m];
1664 v = (uintptr_t)tb->tc_ptr;
1665 if (v == tc_ptr) {
1666 return tb;
1667 } else if (tc_ptr < v) {
1668 m_max = m - 1;
1669 } else {
1670 m_min = m + 1;
1671 }
1672 }
1673 return &tcg_ctx.tb_ctx.tbs[m_max];
1674 }
1675
1676 #if !defined(CONFIG_USER_ONLY)
1677 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1678 {
1679 ram_addr_t ram_addr;
1680 MemoryRegion *mr;
1681 hwaddr l = 1;
1682
1683 rcu_read_lock();
1684 mr = address_space_translate(as, addr, &addr, &l, false);
1685 if (!(memory_region_is_ram(mr)
1686 || memory_region_is_romd(mr))) {
1687 rcu_read_unlock();
1688 return;
1689 }
1690 ram_addr = memory_region_get_ram_addr(mr) + addr;
1691 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1692 rcu_read_unlock();
1693 }
1694 #endif /* !defined(CONFIG_USER_ONLY) */
1695
1696 /* Called with tb_lock held. */
1697 void tb_check_watchpoint(CPUState *cpu)
1698 {
1699 TranslationBlock *tb;
1700
1701 tb = tb_find_pc(cpu->mem_io_pc);
1702 if (tb) {
1703 /* We can use retranslation to find the PC. */
1704 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1705 tb_phys_invalidate(tb, -1);
1706 } else {
1707 /* The exception probably happened in a helper. The CPU state should
1708 have been saved before calling it. Fetch the PC from there. */
1709 CPUArchState *env = cpu->env_ptr;
1710 target_ulong pc, cs_base;
1711 tb_page_addr_t addr;
1712 uint32_t flags;
1713
1714 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1715 addr = get_page_addr_code(env, pc);
1716 tb_invalidate_phys_range(addr, addr + 1);
1717 }
1718 }
1719
1720 #ifndef CONFIG_USER_ONLY
1721 /* in deterministic execution mode, instructions doing device I/Os
1722 must be at the end of the TB */
1723 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1724 {
1725 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1726 CPUArchState *env = cpu->env_ptr;
1727 #endif
1728 TranslationBlock *tb;
1729 uint32_t n, cflags;
1730 target_ulong pc, cs_base;
1731 uint32_t flags;
1732
1733 tb_lock();
1734 tb = tb_find_pc(retaddr);
1735 if (!tb) {
1736 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1737 (void *)retaddr);
1738 }
1739 n = cpu->icount_decr.u16.low + tb->icount;
1740 cpu_restore_state_from_tb(cpu, tb, retaddr);
1741 /* Calculate how many instructions had been executed before the fault
1742 occurred. */
1743 n = n - cpu->icount_decr.u16.low;
1744 /* Generate a new TB ending on the I/O insn. */
1745 n++;
1746 /* On MIPS and SH, delay slot instructions can only be restarted if
1747 they were already the first instruction in the TB. If this is not
1748 the first instruction in a TB then re-execute the preceding
1749 branch. */
1750 #if defined(TARGET_MIPS)
1751 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1752 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1753 cpu->icount_decr.u16.low++;
1754 env->hflags &= ~MIPS_HFLAG_BMASK;
1755 }
1756 #elif defined(TARGET_SH4)
1757 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1758 && n > 1) {
1759 env->pc -= 2;
1760 cpu->icount_decr.u16.low++;
1761 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1762 }
1763 #endif
1764 /* This should never happen. */
1765 if (n > CF_COUNT_MASK) {
1766 cpu_abort(cpu, "TB too big during recompile");
1767 }
1768
1769 cflags = n | CF_LAST_IO;
1770 pc = tb->pc;
1771 cs_base = tb->cs_base;
1772 flags = tb->flags;
1773 tb_phys_invalidate(tb, -1);
1774 if (tb->cflags & CF_NOCACHE) {
1775 if (tb->orig_tb) {
1776 /* Invalidate original TB if this TB was generated in
1777 * cpu_exec_nocache() */
1778 tb_phys_invalidate(tb->orig_tb, -1);
1779 }
1780 tb_free(tb);
1781 }
1782 /* FIXME: In theory this could raise an exception. In practice
1783 we have already translated the block once so it's probably ok. */
1784 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1785
1786 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1787 * the first in the TB) then we end up generating a whole new TB and
1788 * repeating the fault, which is horribly inefficient.
1789 * Better would be to execute just this insn uncached, or generate a
1790 * second new TB.
1791 *
1792 * cpu_loop_exit_noexc will longjmp back to cpu_exec where the
1793 * tb_lock gets reset.
1794 */
1795 cpu_loop_exit_noexc(cpu);
1796 }
1797
1798 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1799 {
1800 unsigned int i;
1801
1802 /* Discard jump cache entries for any tb which might potentially
1803 overlap the flushed page. */
1804 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1805 memset(&cpu->tb_jmp_cache[i], 0,
1806 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1807
1808 i = tb_jmp_cache_hash_page(addr);
1809 memset(&cpu->tb_jmp_cache[i], 0,
1810 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1811 }
1812
1813 static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
1814 struct qht_stats hst)
1815 {
1816 uint32_t hgram_opts;
1817 size_t hgram_bins;
1818 char *hgram;
1819
1820 if (!hst.head_buckets) {
1821 return;
1822 }
1823 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
1824 hst.used_head_buckets, hst.head_buckets,
1825 (double)hst.used_head_buckets / hst.head_buckets * 100);
1826
1827 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1828 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
1829 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
1830 hgram_opts |= QDIST_PR_NODECIMAL;
1831 }
1832 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
1833 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
1834 qdist_avg(&hst.occupancy) * 100, hgram);
1835 g_free(hgram);
1836
1837 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1838 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
1839 if (hgram_bins > 10) {
1840 hgram_bins = 10;
1841 } else {
1842 hgram_bins = 0;
1843 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
1844 }
1845 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
1846 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
1847 qdist_avg(&hst.chain), hgram);
1848 g_free(hgram);
1849 }
1850
1851 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1852 {
1853 int i, target_code_size, max_target_code_size;
1854 int direct_jmp_count, direct_jmp2_count, cross_page;
1855 TranslationBlock *tb;
1856 struct qht_stats hst;
1857
1858 tb_lock();
1859
1860 target_code_size = 0;
1861 max_target_code_size = 0;
1862 cross_page = 0;
1863 direct_jmp_count = 0;
1864 direct_jmp2_count = 0;
1865 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1866 tb = &tcg_ctx.tb_ctx.tbs[i];
1867 target_code_size += tb->size;
1868 if (tb->size > max_target_code_size) {
1869 max_target_code_size = tb->size;
1870 }
1871 if (tb->page_addr[1] != -1) {
1872 cross_page++;
1873 }
1874 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1875 direct_jmp_count++;
1876 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1877 direct_jmp2_count++;
1878 }
1879 }
1880 }
1881 /* XXX: avoid using doubles ? */
1882 cpu_fprintf(f, "Translation buffer state:\n");
1883 cpu_fprintf(f, "gen code size %td/%zd\n",
1884 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1885 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1886 cpu_fprintf(f, "TB count %d/%d\n",
1887 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1888 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1889 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1890 tcg_ctx.tb_ctx.nb_tbs : 0,
1891 max_target_code_size);
1892 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1893 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1894 tcg_ctx.code_gen_buffer) /
1895 tcg_ctx.tb_ctx.nb_tbs : 0,
1896 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1897 tcg_ctx.code_gen_buffer) /
1898 target_code_size : 0);
1899 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1900 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1901 tcg_ctx.tb_ctx.nb_tbs : 0);
1902 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1903 direct_jmp_count,
1904 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1905 tcg_ctx.tb_ctx.nb_tbs : 0,
1906 direct_jmp2_count,
1907 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1908 tcg_ctx.tb_ctx.nb_tbs : 0);
1909
1910 qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
1911 print_qht_statistics(f, cpu_fprintf, hst);
1912 qht_statistics_destroy(&hst);
1913
1914 cpu_fprintf(f, "\nStatistics:\n");
1915 cpu_fprintf(f, "TB flush count %u\n",
1916 atomic_read(&tcg_ctx.tb_ctx.tb_flush_count));
1917 cpu_fprintf(f, "TB invalidate count %d\n",
1918 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1919 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1920 tcg_dump_info(f, cpu_fprintf);
1921
1922 tb_unlock();
1923 }
1924
1925 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1926 {
1927 tcg_dump_op_count(f, cpu_fprintf);
1928 }
1929
1930 #else /* CONFIG_USER_ONLY */
1931
1932 void cpu_interrupt(CPUState *cpu, int mask)
1933 {
1934 cpu->interrupt_request |= mask;
1935 cpu->tcg_exit_req = 1;
1936 }
1937
1938 /*
1939 * Walks guest process memory "regions" one by one
1940 * and calls callback function 'fn' for each region.
1941 */
1942 struct walk_memory_regions_data {
1943 walk_memory_regions_fn fn;
1944 void *priv;
1945 target_ulong start;
1946 int prot;
1947 };
1948
1949 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1950 target_ulong end, int new_prot)
1951 {
1952 if (data->start != -1u) {
1953 int rc = data->fn(data->priv, data->start, end, data->prot);
1954 if (rc != 0) {
1955 return rc;
1956 }
1957 }
1958
1959 data->start = (new_prot ? end : -1u);
1960 data->prot = new_prot;
1961
1962 return 0;
1963 }
1964
1965 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1966 target_ulong base, int level, void **lp)
1967 {
1968 target_ulong pa;
1969 int i, rc;
1970
1971 if (*lp == NULL) {
1972 return walk_memory_regions_end(data, base, 0);
1973 }
1974
1975 if (level == 0) {
1976 PageDesc *pd = *lp;
1977
1978 for (i = 0; i < V_L2_SIZE; ++i) {
1979 int prot = pd[i].flags;
1980
1981 pa = base | (i << TARGET_PAGE_BITS);
1982 if (prot != data->prot) {
1983 rc = walk_memory_regions_end(data, pa, prot);
1984 if (rc != 0) {
1985 return rc;
1986 }
1987 }
1988 }
1989 } else {
1990 void **pp = *lp;
1991
1992 for (i = 0; i < V_L2_SIZE; ++i) {
1993 pa = base | ((target_ulong)i <<
1994 (TARGET_PAGE_BITS + V_L2_BITS * level));
1995 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1996 if (rc != 0) {
1997 return rc;
1998 }
1999 }
2000 }
2001
2002 return 0;
2003 }
2004
2005 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2006 {
2007 struct walk_memory_regions_data data;
2008 uintptr_t i, l1_sz = v_l1_size;
2009
2010 data.fn = fn;
2011 data.priv = priv;
2012 data.start = -1u;
2013 data.prot = 0;
2014
2015 for (i = 0; i < l1_sz; i++) {
2016 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2017 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2018 if (rc != 0) {
2019 return rc;
2020 }
2021 }
2022
2023 return walk_memory_regions_end(&data, 0, 0);
2024 }
2025
2026 static int dump_region(void *priv, target_ulong start,
2027 target_ulong end, unsigned long prot)
2028 {
2029 FILE *f = (FILE *)priv;
2030
2031 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2032 " "TARGET_FMT_lx" %c%c%c\n",
2033 start, end, end - start,
2034 ((prot & PAGE_READ) ? 'r' : '-'),
2035 ((prot & PAGE_WRITE) ? 'w' : '-'),
2036 ((prot & PAGE_EXEC) ? 'x' : '-'));
2037
2038 return 0;
2039 }
2040
2041 /* dump memory mappings */
2042 void page_dump(FILE *f)
2043 {
2044 const int length = sizeof(target_ulong) * 2;
2045 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2046 length, "start", length, "end", length, "size", "prot");
2047 walk_memory_regions(f, dump_region);
2048 }
2049
2050 int page_get_flags(target_ulong address)
2051 {
2052 PageDesc *p;
2053
2054 p = page_find(address >> TARGET_PAGE_BITS);
2055 if (!p) {
2056 return 0;
2057 }
2058 return p->flags;
2059 }
2060
2061 /* Modify the flags of a page and invalidate the code if necessary.
2062 The flag PAGE_WRITE_ORG is positioned automatically depending
2063 on PAGE_WRITE. The mmap_lock should already be held. */
2064 void page_set_flags(target_ulong start, target_ulong end, int flags)
2065 {
2066 target_ulong addr, len;
2067
2068 /* This function should never be called with addresses outside the
2069 guest address space. If this assert fires, it probably indicates
2070 a missing call to h2g_valid. */
2071 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2072 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2073 #endif
2074 assert(start < end);
2075 assert_memory_lock();
2076
2077 start = start & TARGET_PAGE_MASK;
2078 end = TARGET_PAGE_ALIGN(end);
2079
2080 if (flags & PAGE_WRITE) {
2081 flags |= PAGE_WRITE_ORG;
2082 }
2083
2084 for (addr = start, len = end - start;
2085 len != 0;
2086 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2087 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2088
2089 /* If the write protection bit is set, then we invalidate
2090 the code inside. */
2091 if (!(p->flags & PAGE_WRITE) &&
2092 (flags & PAGE_WRITE) &&
2093 p->first_tb) {
2094 tb_invalidate_phys_page(addr, 0);
2095 }
2096 p->flags = flags;
2097 }
2098 }
2099
2100 int page_check_range(target_ulong start, target_ulong len, int flags)
2101 {
2102 PageDesc *p;
2103 target_ulong end;
2104 target_ulong addr;
2105
2106 /* This function should never be called with addresses outside the
2107 guest address space. If this assert fires, it probably indicates
2108 a missing call to h2g_valid. */
2109 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2110 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2111 #endif
2112
2113 if (len == 0) {
2114 return 0;
2115 }
2116 if (start + len - 1 < start) {
2117 /* We've wrapped around. */
2118 return -1;
2119 }
2120
2121 /* must do before we loose bits in the next step */
2122 end = TARGET_PAGE_ALIGN(start + len);
2123 start = start & TARGET_PAGE_MASK;
2124
2125 for (addr = start, len = end - start;
2126 len != 0;
2127 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2128 p = page_find(addr >> TARGET_PAGE_BITS);
2129 if (!p) {
2130 return -1;
2131 }
2132 if (!(p->flags & PAGE_VALID)) {
2133 return -1;
2134 }
2135
2136 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2137 return -1;
2138 }
2139 if (flags & PAGE_WRITE) {
2140 if (!(p->flags & PAGE_WRITE_ORG)) {
2141 return -1;
2142 }
2143 /* unprotect the page if it was put read-only because it
2144 contains translated code */
2145 if (!(p->flags & PAGE_WRITE)) {
2146 if (!page_unprotect(addr, 0)) {
2147 return -1;
2148 }
2149 }
2150 }
2151 }
2152 return 0;
2153 }
2154
2155 /* called from signal handler: invalidate the code and unprotect the
2156 * page. Return 0 if the fault was not handled, 1 if it was handled,
2157 * and 2 if it was handled but the caller must cause the TB to be
2158 * immediately exited. (We can only return 2 if the 'pc' argument is
2159 * non-zero.)
2160 */
2161 int page_unprotect(target_ulong address, uintptr_t pc)
2162 {
2163 unsigned int prot;
2164 bool current_tb_invalidated;
2165 PageDesc *p;
2166 target_ulong host_start, host_end, addr;
2167
2168 /* Technically this isn't safe inside a signal handler. However we
2169 know this only ever happens in a synchronous SEGV handler, so in
2170 practice it seems to be ok. */
2171 mmap_lock();
2172
2173 p = page_find(address >> TARGET_PAGE_BITS);
2174 if (!p) {
2175 mmap_unlock();
2176 return 0;
2177 }
2178
2179 /* if the page was really writable, then we change its
2180 protection back to writable */
2181 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2182 host_start = address & qemu_host_page_mask;
2183 host_end = host_start + qemu_host_page_size;
2184
2185 prot = 0;
2186 current_tb_invalidated = false;
2187 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2188 p = page_find(addr >> TARGET_PAGE_BITS);
2189 p->flags |= PAGE_WRITE;
2190 prot |= p->flags;
2191
2192 /* and since the content will be modified, we must invalidate
2193 the corresponding translated code. */
2194 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2195 #ifdef DEBUG_TB_CHECK
2196 tb_invalidate_check(addr);
2197 #endif
2198 }
2199 mprotect((void *)g2h(host_start), qemu_host_page_size,
2200 prot & PAGE_BITS);
2201
2202 mmap_unlock();
2203 /* If current TB was invalidated return to main loop */
2204 return current_tb_invalidated ? 2 : 1;
2205 }
2206 mmap_unlock();
2207 return 0;
2208 }
2209 #endif /* CONFIG_USER_ONLY */