]> git.proxmox.com Git - mirror_qemu.git/blob - ui/vnc-enc-tight.c
Merge tag 'pull-aspeed-20240201' of https://github.com/legoater/qemu into staging
[mirror_qemu.git] / ui / vnc-enc-tight.c
1 /*
2 * QEMU VNC display driver: tight encoding
3 *
4 * From libvncserver/libvncserver/tight.c
5 * Copyright (C) 2000, 2001 Const Kaplinsky. All Rights Reserved.
6 * Copyright (C) 1999 AT&T Laboratories Cambridge. All Rights Reserved.
7 *
8 * Copyright (C) 2010 Corentin Chary <corentin.chary@gmail.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30
31 /* This needs to be before jpeglib.h line because of conflict with
32 INT32 definitions between jmorecfg.h (included by jpeglib.h) and
33 Win32 basetsd.h (included by windows.h). */
34 #include "qemu-common.h"
35
36 #ifdef CONFIG_VNC_PNG
37 /* The following define is needed by pngconf.h. Otherwise it won't compile,
38 because setjmp.h was already included by qemu-common.h. */
39 #define PNG_SKIP_SETJMP_CHECK
40 #include <png.h>
41 #endif
42 #ifdef CONFIG_VNC_JPEG
43 #include <jpeglib.h>
44 #endif
45
46 #include "qemu/bswap.h"
47 #include "vnc.h"
48 #include "vnc-enc-tight.h"
49 #include "vnc-palette.h"
50
51 /* Compression level stuff. The following array contains various
52 encoder parameters for each of 10 compression levels (0..9).
53 Last three parameters correspond to JPEG quality levels (0..9). */
54
55 static const struct {
56 int max_rect_size, max_rect_width;
57 int mono_min_rect_size, gradient_min_rect_size;
58 int idx_zlib_level, mono_zlib_level, raw_zlib_level, gradient_zlib_level;
59 int gradient_threshold, gradient_threshold24;
60 int idx_max_colors_divisor;
61 int jpeg_quality, jpeg_threshold, jpeg_threshold24;
62 } tight_conf[] = {
63 { 512, 32, 6, 65536, 0, 0, 0, 0, 0, 0, 4, 5, 10000, 23000 },
64 { 2048, 128, 6, 65536, 1, 1, 1, 0, 0, 0, 8, 10, 8000, 18000 },
65 { 6144, 256, 8, 65536, 3, 3, 2, 0, 0, 0, 24, 15, 6500, 15000 },
66 { 10240, 1024, 12, 65536, 5, 5, 3, 0, 0, 0, 32, 25, 5000, 12000 },
67 { 16384, 2048, 12, 65536, 6, 6, 4, 0, 0, 0, 32, 37, 4000, 10000 },
68 { 32768, 2048, 12, 4096, 7, 7, 5, 4, 150, 380, 32, 50, 3000, 8000 },
69 { 65536, 2048, 16, 4096, 7, 7, 6, 4, 170, 420, 48, 60, 2000, 5000 },
70 { 65536, 2048, 16, 4096, 8, 8, 7, 5, 180, 450, 64, 70, 1000, 2500 },
71 { 65536, 2048, 32, 8192, 9, 9, 8, 6, 190, 475, 64, 75, 500, 1200 },
72 { 65536, 2048, 32, 8192, 9, 9, 9, 6, 200, 500, 96, 80, 200, 500 }
73 };
74
75
76 static int tight_send_framebuffer_update(VncState *vs, int x, int y,
77 int w, int h);
78
79 #ifdef CONFIG_VNC_JPEG
80 static const struct {
81 double jpeg_freq_min; /* Don't send JPEG if the freq is bellow */
82 double jpeg_freq_threshold; /* Always send JPEG if the freq is above */
83 int jpeg_idx; /* Allow indexed JPEG */
84 int jpeg_full; /* Allow full color JPEG */
85 } tight_jpeg_conf[] = {
86 { 0, 8, 1, 1 },
87 { 0, 8, 1, 1 },
88 { 0, 8, 1, 1 },
89 { 0, 8, 1, 1 },
90 { 0, 10, 1, 1 },
91 { 0.1, 10, 1, 1 },
92 { 0.2, 10, 1, 1 },
93 { 0.3, 12, 0, 0 },
94 { 0.4, 14, 0, 0 },
95 { 0.5, 16, 0, 0 },
96 };
97 #endif
98
99 #ifdef CONFIG_VNC_PNG
100 static const struct {
101 int png_zlib_level, png_filters;
102 } tight_png_conf[] = {
103 { 0, PNG_NO_FILTERS },
104 { 1, PNG_NO_FILTERS },
105 { 2, PNG_NO_FILTERS },
106 { 3, PNG_NO_FILTERS },
107 { 4, PNG_NO_FILTERS },
108 { 5, PNG_ALL_FILTERS },
109 { 6, PNG_ALL_FILTERS },
110 { 7, PNG_ALL_FILTERS },
111 { 8, PNG_ALL_FILTERS },
112 { 9, PNG_ALL_FILTERS },
113 };
114
115 static int send_png_rect(VncState *vs, int x, int y, int w, int h,
116 VncPalette *palette);
117
118 static bool tight_can_send_png_rect(VncState *vs, int w, int h)
119 {
120 if (vs->tight.type != VNC_ENCODING_TIGHT_PNG) {
121 return false;
122 }
123
124 if (surface_bytes_per_pixel(vs->vd->ds) == 1 ||
125 vs->client_pf.bytes_per_pixel == 1) {
126 return false;
127 }
128
129 return true;
130 }
131 #endif
132
133 /*
134 * Code to guess if given rectangle is suitable for smooth image
135 * compression (by applying "gradient" filter or JPEG coder).
136 */
137
138 static unsigned int
139 tight_detect_smooth_image24(VncState *vs, int w, int h)
140 {
141 int off;
142 int x, y, d, dx;
143 unsigned int c;
144 unsigned int stats[256];
145 int pixels = 0;
146 int pix, left[3];
147 unsigned int errors;
148 unsigned char *buf = vs->tight.tight.buffer;
149
150 /*
151 * If client is big-endian, color samples begin from the second
152 * byte (offset 1) of a 32-bit pixel value.
153 */
154 off = vs->client_be;
155
156 memset(stats, 0, sizeof (stats));
157
158 for (y = 0, x = 0; y < h && x < w;) {
159 for (d = 0; d < h - y && d < w - x - VNC_TIGHT_DETECT_SUBROW_WIDTH;
160 d++) {
161 for (c = 0; c < 3; c++) {
162 left[c] = buf[((y+d)*w+x+d)*4+off+c] & 0xFF;
163 }
164 for (dx = 1; dx <= VNC_TIGHT_DETECT_SUBROW_WIDTH; dx++) {
165 for (c = 0; c < 3; c++) {
166 pix = buf[((y+d)*w+x+d+dx)*4+off+c] & 0xFF;
167 stats[abs(pix - left[c])]++;
168 left[c] = pix;
169 }
170 pixels++;
171 }
172 }
173 if (w > h) {
174 x += h;
175 y = 0;
176 } else {
177 x = 0;
178 y += w;
179 }
180 }
181
182 if (pixels == 0) {
183 return 0;
184 }
185
186 /* 95% smooth or more ... */
187 if (stats[0] * 33 / pixels >= 95) {
188 return 0;
189 }
190
191 errors = 0;
192 for (c = 1; c < 8; c++) {
193 errors += stats[c] * (c * c);
194 if (stats[c] == 0 || stats[c] > stats[c-1] * 2) {
195 return 0;
196 }
197 }
198 for (; c < 256; c++) {
199 errors += stats[c] * (c * c);
200 }
201 errors /= (pixels * 3 - stats[0]);
202
203 return errors;
204 }
205
206 #define DEFINE_DETECT_FUNCTION(bpp) \
207 \
208 static unsigned int \
209 tight_detect_smooth_image##bpp(VncState *vs, int w, int h) { \
210 bool endian; \
211 uint##bpp##_t pix; \
212 int max[3], shift[3]; \
213 int x, y, d, dx; \
214 unsigned int c; \
215 unsigned int stats[256]; \
216 int pixels = 0; \
217 int sample, sum, left[3]; \
218 unsigned int errors; \
219 unsigned char *buf = vs->tight.tight.buffer; \
220 \
221 endian = 0; /* FIXME */ \
222 \
223 \
224 max[0] = vs->client_pf.rmax; \
225 max[1] = vs->client_pf.gmax; \
226 max[2] = vs->client_pf.bmax; \
227 shift[0] = vs->client_pf.rshift; \
228 shift[1] = vs->client_pf.gshift; \
229 shift[2] = vs->client_pf.bshift; \
230 \
231 memset(stats, 0, sizeof(stats)); \
232 \
233 y = 0, x = 0; \
234 while (y < h && x < w) { \
235 for (d = 0; d < h - y && \
236 d < w - x - VNC_TIGHT_DETECT_SUBROW_WIDTH; d++) { \
237 pix = ((uint##bpp##_t *)buf)[(y+d)*w+x+d]; \
238 if (endian) { \
239 pix = bswap##bpp(pix); \
240 } \
241 for (c = 0; c < 3; c++) { \
242 left[c] = (int)(pix >> shift[c] & max[c]); \
243 } \
244 for (dx = 1; dx <= VNC_TIGHT_DETECT_SUBROW_WIDTH; \
245 dx++) { \
246 pix = ((uint##bpp##_t *)buf)[(y+d)*w+x+d+dx]; \
247 if (endian) { \
248 pix = bswap##bpp(pix); \
249 } \
250 sum = 0; \
251 for (c = 0; c < 3; c++) { \
252 sample = (int)(pix >> shift[c] & max[c]); \
253 sum += abs(sample - left[c]); \
254 left[c] = sample; \
255 } \
256 if (sum > 255) { \
257 sum = 255; \
258 } \
259 stats[sum]++; \
260 pixels++; \
261 } \
262 } \
263 if (w > h) { \
264 x += h; \
265 y = 0; \
266 } else { \
267 x = 0; \
268 y += w; \
269 } \
270 } \
271 if (pixels == 0) { \
272 return 0; \
273 } \
274 if ((stats[0] + stats[1]) * 100 / pixels >= 90) { \
275 return 0; \
276 } \
277 \
278 errors = 0; \
279 for (c = 1; c < 8; c++) { \
280 errors += stats[c] * (c * c); \
281 if (stats[c] == 0 || stats[c] > stats[c-1] * 2) { \
282 return 0; \
283 } \
284 } \
285 for (; c < 256; c++) { \
286 errors += stats[c] * (c * c); \
287 } \
288 errors /= (pixels - stats[0]); \
289 \
290 return errors; \
291 }
292
293 DEFINE_DETECT_FUNCTION(16)
294 DEFINE_DETECT_FUNCTION(32)
295
296 static int
297 tight_detect_smooth_image(VncState *vs, int w, int h)
298 {
299 unsigned int errors;
300 int compression = vs->tight.compression;
301 int quality = vs->tight.quality;
302
303 if (!vs->vd->lossy) {
304 return 0;
305 }
306
307 if (surface_bytes_per_pixel(vs->vd->ds) == 1 ||
308 vs->client_pf.bytes_per_pixel == 1 ||
309 w < VNC_TIGHT_DETECT_MIN_WIDTH || h < VNC_TIGHT_DETECT_MIN_HEIGHT) {
310 return 0;
311 }
312
313 if (vs->tight.quality != (uint8_t)-1) {
314 if (w * h < VNC_TIGHT_JPEG_MIN_RECT_SIZE) {
315 return 0;
316 }
317 } else {
318 if (w * h < tight_conf[compression].gradient_min_rect_size) {
319 return 0;
320 }
321 }
322
323 if (vs->client_pf.bytes_per_pixel == 4) {
324 if (vs->tight.pixel24) {
325 errors = tight_detect_smooth_image24(vs, w, h);
326 if (vs->tight.quality != (uint8_t)-1) {
327 return (errors < tight_conf[quality].jpeg_threshold24);
328 }
329 return (errors < tight_conf[compression].gradient_threshold24);
330 } else {
331 errors = tight_detect_smooth_image32(vs, w, h);
332 }
333 } else {
334 errors = tight_detect_smooth_image16(vs, w, h);
335 }
336 if (quality != (uint8_t)-1) {
337 return (errors < tight_conf[quality].jpeg_threshold);
338 }
339 return (errors < tight_conf[compression].gradient_threshold);
340 }
341
342 /*
343 * Code to determine how many different colors used in rectangle.
344 */
345 #define DEFINE_FILL_PALETTE_FUNCTION(bpp) \
346 \
347 static int \
348 tight_fill_palette##bpp(VncState *vs, int x, int y, \
349 int max, size_t count, \
350 uint32_t *bg, uint32_t *fg, \
351 VncPalette *palette) { \
352 uint##bpp##_t *data; \
353 uint##bpp##_t c0, c1, ci; \
354 int i, n0, n1; \
355 \
356 data = (uint##bpp##_t *)vs->tight.tight.buffer; \
357 \
358 c0 = data[0]; \
359 i = 1; \
360 while (i < count && data[i] == c0) \
361 i++; \
362 if (i >= count) { \
363 *bg = *fg = c0; \
364 return 1; \
365 } \
366 \
367 if (max < 2) { \
368 return 0; \
369 } \
370 \
371 n0 = i; \
372 c1 = data[i]; \
373 n1 = 0; \
374 for (i++; i < count; i++) { \
375 ci = data[i]; \
376 if (ci == c0) { \
377 n0++; \
378 } else if (ci == c1) { \
379 n1++; \
380 } else \
381 break; \
382 } \
383 if (i >= count) { \
384 if (n0 > n1) { \
385 *bg = (uint32_t)c0; \
386 *fg = (uint32_t)c1; \
387 } else { \
388 *bg = (uint32_t)c1; \
389 *fg = (uint32_t)c0; \
390 } \
391 return 2; \
392 } \
393 \
394 if (max == 2) { \
395 return 0; \
396 } \
397 \
398 palette_init(palette, max, bpp); \
399 palette_put(palette, c0); \
400 palette_put(palette, c1); \
401 palette_put(palette, ci); \
402 \
403 for (i++; i < count; i++) { \
404 if (data[i] == ci) { \
405 continue; \
406 } else { \
407 ci = data[i]; \
408 if (!palette_put(palette, (uint32_t)ci)) { \
409 return 0; \
410 } \
411 } \
412 } \
413 \
414 return palette_size(palette); \
415 }
416
417 DEFINE_FILL_PALETTE_FUNCTION(8)
418 DEFINE_FILL_PALETTE_FUNCTION(16)
419 DEFINE_FILL_PALETTE_FUNCTION(32)
420
421 static int tight_fill_palette(VncState *vs, int x, int y,
422 size_t count, uint32_t *bg, uint32_t *fg,
423 VncPalette *palette)
424 {
425 int max;
426
427 max = count / tight_conf[vs->tight.compression].idx_max_colors_divisor;
428 if (max < 2 &&
429 count >= tight_conf[vs->tight.compression].mono_min_rect_size) {
430 max = 2;
431 }
432 if (max >= 256) {
433 max = 256;
434 }
435
436 switch (vs->client_pf.bytes_per_pixel) {
437 case 4:
438 return tight_fill_palette32(vs, x, y, max, count, bg, fg, palette);
439 case 2:
440 return tight_fill_palette16(vs, x, y, max, count, bg, fg, palette);
441 default:
442 max = 2;
443 return tight_fill_palette8(vs, x, y, max, count, bg, fg, palette);
444 }
445 return 0;
446 }
447
448 /*
449 * Converting truecolor samples into palette indices.
450 */
451 #define DEFINE_IDX_ENCODE_FUNCTION(bpp) \
452 \
453 static void \
454 tight_encode_indexed_rect##bpp(uint8_t *buf, int count, \
455 VncPalette *palette) { \
456 uint##bpp##_t *src; \
457 uint##bpp##_t rgb; \
458 int i, rep; \
459 uint8_t idx; \
460 \
461 src = (uint##bpp##_t *) buf; \
462 \
463 for (i = 0; i < count; ) { \
464 \
465 rgb = *src++; \
466 i++; \
467 rep = 0; \
468 while (i < count && *src == rgb) { \
469 rep++, src++, i++; \
470 } \
471 idx = palette_idx(palette, rgb); \
472 /* \
473 * Should never happen, but don't break everything \
474 * if it does, use the first color instead \
475 */ \
476 if (idx == (uint8_t)-1) { \
477 idx = 0; \
478 } \
479 while (rep >= 0) { \
480 *buf++ = idx; \
481 rep--; \
482 } \
483 } \
484 }
485
486 DEFINE_IDX_ENCODE_FUNCTION(16)
487 DEFINE_IDX_ENCODE_FUNCTION(32)
488
489 #define DEFINE_MONO_ENCODE_FUNCTION(bpp) \
490 \
491 static void \
492 tight_encode_mono_rect##bpp(uint8_t *buf, int w, int h, \
493 uint##bpp##_t bg, uint##bpp##_t fg) { \
494 uint##bpp##_t *ptr; \
495 unsigned int value, mask; \
496 int aligned_width; \
497 int x, y, bg_bits; \
498 \
499 ptr = (uint##bpp##_t *) buf; \
500 aligned_width = w - w % 8; \
501 \
502 for (y = 0; y < h; y++) { \
503 for (x = 0; x < aligned_width; x += 8) { \
504 for (bg_bits = 0; bg_bits < 8; bg_bits++) { \
505 if (*ptr++ != bg) { \
506 break; \
507 } \
508 } \
509 if (bg_bits == 8) { \
510 *buf++ = 0; \
511 continue; \
512 } \
513 mask = 0x80 >> bg_bits; \
514 value = mask; \
515 for (bg_bits++; bg_bits < 8; bg_bits++) { \
516 mask >>= 1; \
517 if (*ptr++ != bg) { \
518 value |= mask; \
519 } \
520 } \
521 *buf++ = (uint8_t)value; \
522 } \
523 \
524 mask = 0x80; \
525 value = 0; \
526 if (x >= w) { \
527 continue; \
528 } \
529 \
530 for (; x < w; x++) { \
531 if (*ptr++ != bg) { \
532 value |= mask; \
533 } \
534 mask >>= 1; \
535 } \
536 *buf++ = (uint8_t)value; \
537 } \
538 }
539
540 DEFINE_MONO_ENCODE_FUNCTION(8)
541 DEFINE_MONO_ENCODE_FUNCTION(16)
542 DEFINE_MONO_ENCODE_FUNCTION(32)
543
544 /*
545 * ``Gradient'' filter for 24-bit color samples.
546 * Should be called only when redMax, greenMax and blueMax are 255.
547 * Color components assumed to be byte-aligned.
548 */
549
550 static void
551 tight_filter_gradient24(VncState *vs, uint8_t *buf, int w, int h)
552 {
553 uint32_t *buf32;
554 uint32_t pix32;
555 int shift[3];
556 int *prev;
557 int here[3], upper[3], left[3], upperleft[3];
558 int prediction;
559 int x, y, c;
560
561 buf32 = (uint32_t *)buf;
562 memset(vs->tight.gradient.buffer, 0, w * 3 * sizeof(int));
563
564 if (1 /* FIXME */) {
565 shift[0] = vs->client_pf.rshift;
566 shift[1] = vs->client_pf.gshift;
567 shift[2] = vs->client_pf.bshift;
568 } else {
569 shift[0] = 24 - vs->client_pf.rshift;
570 shift[1] = 24 - vs->client_pf.gshift;
571 shift[2] = 24 - vs->client_pf.bshift;
572 }
573
574 for (y = 0; y < h; y++) {
575 for (c = 0; c < 3; c++) {
576 upper[c] = 0;
577 here[c] = 0;
578 }
579 prev = (int *)vs->tight.gradient.buffer;
580 for (x = 0; x < w; x++) {
581 pix32 = *buf32++;
582 for (c = 0; c < 3; c++) {
583 upperleft[c] = upper[c];
584 left[c] = here[c];
585 upper[c] = *prev;
586 here[c] = (int)(pix32 >> shift[c] & 0xFF);
587 *prev++ = here[c];
588
589 prediction = left[c] + upper[c] - upperleft[c];
590 if (prediction < 0) {
591 prediction = 0;
592 } else if (prediction > 0xFF) {
593 prediction = 0xFF;
594 }
595 *buf++ = (char)(here[c] - prediction);
596 }
597 }
598 }
599 }
600
601
602 /*
603 * ``Gradient'' filter for other color depths.
604 */
605
606 #define DEFINE_GRADIENT_FILTER_FUNCTION(bpp) \
607 \
608 static void \
609 tight_filter_gradient##bpp(VncState *vs, uint##bpp##_t *buf, \
610 int w, int h) { \
611 uint##bpp##_t pix, diff; \
612 bool endian; \
613 int *prev; \
614 int max[3], shift[3]; \
615 int here[3], upper[3], left[3], upperleft[3]; \
616 int prediction; \
617 int x, y, c; \
618 \
619 memset (vs->tight.gradient.buffer, 0, w * 3 * sizeof(int)); \
620 \
621 endian = 0; /* FIXME */ \
622 \
623 max[0] = vs->client_pf.rmax; \
624 max[1] = vs->client_pf.gmax; \
625 max[2] = vs->client_pf.bmax; \
626 shift[0] = vs->client_pf.rshift; \
627 shift[1] = vs->client_pf.gshift; \
628 shift[2] = vs->client_pf.bshift; \
629 \
630 for (y = 0; y < h; y++) { \
631 for (c = 0; c < 3; c++) { \
632 upper[c] = 0; \
633 here[c] = 0; \
634 } \
635 prev = (int *)vs->tight.gradient.buffer; \
636 for (x = 0; x < w; x++) { \
637 pix = *buf; \
638 if (endian) { \
639 pix = bswap##bpp(pix); \
640 } \
641 diff = 0; \
642 for (c = 0; c < 3; c++) { \
643 upperleft[c] = upper[c]; \
644 left[c] = here[c]; \
645 upper[c] = *prev; \
646 here[c] = (int)(pix >> shift[c] & max[c]); \
647 *prev++ = here[c]; \
648 \
649 prediction = left[c] + upper[c] - upperleft[c]; \
650 if (prediction < 0) { \
651 prediction = 0; \
652 } else if (prediction > max[c]) { \
653 prediction = max[c]; \
654 } \
655 diff |= ((here[c] - prediction) & max[c]) \
656 << shift[c]; \
657 } \
658 if (endian) { \
659 diff = bswap##bpp(diff); \
660 } \
661 *buf++ = diff; \
662 } \
663 } \
664 }
665
666 DEFINE_GRADIENT_FILTER_FUNCTION(16)
667 DEFINE_GRADIENT_FILTER_FUNCTION(32)
668
669 /*
670 * Check if a rectangle is all of the same color. If needSameColor is
671 * set to non-zero, then also check that its color equals to the
672 * *colorPtr value. The result is 1 if the test is successful, and in
673 * that case new color will be stored in *colorPtr.
674 */
675
676 static bool
677 check_solid_tile32(VncState *vs, int x, int y, int w, int h,
678 uint32_t *color, bool samecolor)
679 {
680 VncDisplay *vd = vs->vd;
681 uint32_t *fbptr;
682 uint32_t c;
683 int dx, dy;
684
685 fbptr = vnc_server_fb_ptr(vd, x, y);
686
687 c = *fbptr;
688 if (samecolor && (uint32_t)c != *color) {
689 return false;
690 }
691
692 for (dy = 0; dy < h; dy++) {
693 for (dx = 0; dx < w; dx++) {
694 if (c != fbptr[dx]) {
695 return false;
696 }
697 }
698 fbptr = (uint32_t *)
699 ((uint8_t *)fbptr + vnc_server_fb_stride(vd));
700 }
701
702 *color = (uint32_t)c;
703 return true;
704 }
705
706 static bool check_solid_tile(VncState *vs, int x, int y, int w, int h,
707 uint32_t* color, bool samecolor)
708 {
709 QEMU_BUILD_BUG_ON(VNC_SERVER_FB_BYTES != 4);
710 return check_solid_tile32(vs, x, y, w, h, color, samecolor);
711 }
712
713 static void find_best_solid_area(VncState *vs, int x, int y, int w, int h,
714 uint32_t color, int *w_ptr, int *h_ptr)
715 {
716 int dx, dy, dw, dh;
717 int w_prev;
718 int w_best = 0, h_best = 0;
719
720 w_prev = w;
721
722 for (dy = y; dy < y + h; dy += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) {
723
724 dh = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, y + h - dy);
725 dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, w_prev);
726
727 if (!check_solid_tile(vs, x, dy, dw, dh, &color, true)) {
728 break;
729 }
730
731 for (dx = x + dw; dx < x + w_prev;) {
732 dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, x + w_prev - dx);
733
734 if (!check_solid_tile(vs, dx, dy, dw, dh, &color, true)) {
735 break;
736 }
737 dx += dw;
738 }
739
740 w_prev = dx - x;
741 if (w_prev * (dy + dh - y) > w_best * h_best) {
742 w_best = w_prev;
743 h_best = dy + dh - y;
744 }
745 }
746
747 *w_ptr = w_best;
748 *h_ptr = h_best;
749 }
750
751 static void extend_solid_area(VncState *vs, int x, int y, int w, int h,
752 uint32_t color, int *x_ptr, int *y_ptr,
753 int *w_ptr, int *h_ptr)
754 {
755 int cx, cy;
756
757 /* Try to extend the area upwards. */
758 for ( cy = *y_ptr - 1;
759 cy >= y && check_solid_tile(vs, *x_ptr, cy, *w_ptr, 1, &color, true);
760 cy-- );
761 *h_ptr += *y_ptr - (cy + 1);
762 *y_ptr = cy + 1;
763
764 /* ... downwards. */
765 for ( cy = *y_ptr + *h_ptr;
766 cy < y + h &&
767 check_solid_tile(vs, *x_ptr, cy, *w_ptr, 1, &color, true);
768 cy++ );
769 *h_ptr += cy - (*y_ptr + *h_ptr);
770
771 /* ... to the left. */
772 for ( cx = *x_ptr - 1;
773 cx >= x && check_solid_tile(vs, cx, *y_ptr, 1, *h_ptr, &color, true);
774 cx-- );
775 *w_ptr += *x_ptr - (cx + 1);
776 *x_ptr = cx + 1;
777
778 /* ... to the right. */
779 for ( cx = *x_ptr + *w_ptr;
780 cx < x + w &&
781 check_solid_tile(vs, cx, *y_ptr, 1, *h_ptr, &color, true);
782 cx++ );
783 *w_ptr += cx - (*x_ptr + *w_ptr);
784 }
785
786 static int tight_init_stream(VncState *vs, int stream_id,
787 int level, int strategy)
788 {
789 z_streamp zstream = &vs->tight.stream[stream_id];
790
791 if (zstream->opaque == NULL) {
792 int err;
793
794 VNC_DEBUG("VNC: TIGHT: initializing zlib stream %d\n", stream_id);
795 VNC_DEBUG("VNC: TIGHT: opaque = %p | vs = %p\n", zstream->opaque, vs);
796 zstream->zalloc = vnc_zlib_zalloc;
797 zstream->zfree = vnc_zlib_zfree;
798
799 err = deflateInit2(zstream, level, Z_DEFLATED, MAX_WBITS,
800 MAX_MEM_LEVEL, strategy);
801
802 if (err != Z_OK) {
803 fprintf(stderr, "VNC: error initializing zlib\n");
804 return -1;
805 }
806
807 vs->tight.levels[stream_id] = level;
808 zstream->opaque = vs;
809 }
810
811 if (vs->tight.levels[stream_id] != level) {
812 if (deflateParams(zstream, level, strategy) != Z_OK) {
813 return -1;
814 }
815 vs->tight.levels[stream_id] = level;
816 }
817 return 0;
818 }
819
820 static void tight_send_compact_size(VncState *vs, size_t len)
821 {
822 int lpc = 0;
823 int bytes = 0;
824 char buf[3] = {0, 0, 0};
825
826 buf[bytes++] = len & 0x7F;
827 if (len > 0x7F) {
828 buf[bytes-1] |= 0x80;
829 buf[bytes++] = (len >> 7) & 0x7F;
830 if (len > 0x3FFF) {
831 buf[bytes-1] |= 0x80;
832 buf[bytes++] = (len >> 14) & 0xFF;
833 }
834 }
835 for (lpc = 0; lpc < bytes; lpc++) {
836 vnc_write_u8(vs, buf[lpc]);
837 }
838 }
839
840 static int tight_compress_data(VncState *vs, int stream_id, size_t bytes,
841 int level, int strategy)
842 {
843 z_streamp zstream = &vs->tight.stream[stream_id];
844 int previous_out;
845
846 if (bytes < VNC_TIGHT_MIN_TO_COMPRESS) {
847 vnc_write(vs, vs->tight.tight.buffer, vs->tight.tight.offset);
848 return bytes;
849 }
850
851 if (tight_init_stream(vs, stream_id, level, strategy)) {
852 return -1;
853 }
854
855 /* reserve memory in output buffer */
856 buffer_reserve(&vs->tight.zlib, bytes + 64);
857
858 /* set pointers */
859 zstream->next_in = vs->tight.tight.buffer;
860 zstream->avail_in = vs->tight.tight.offset;
861 zstream->next_out = vs->tight.zlib.buffer + vs->tight.zlib.offset;
862 zstream->avail_out = vs->tight.zlib.capacity - vs->tight.zlib.offset;
863 previous_out = zstream->avail_out;
864 zstream->data_type = Z_BINARY;
865
866 /* start encoding */
867 if (deflate(zstream, Z_SYNC_FLUSH) != Z_OK) {
868 fprintf(stderr, "VNC: error during tight compression\n");
869 return -1;
870 }
871
872 vs->tight.zlib.offset = vs->tight.zlib.capacity - zstream->avail_out;
873 /* ...how much data has actually been produced by deflate() */
874 bytes = previous_out - zstream->avail_out;
875
876 tight_send_compact_size(vs, bytes);
877 vnc_write(vs, vs->tight.zlib.buffer, bytes);
878
879 buffer_reset(&vs->tight.zlib);
880
881 return bytes;
882 }
883
884 /*
885 * Subencoding implementations.
886 */
887 static void tight_pack24(VncState *vs, uint8_t *buf, size_t count, size_t *ret)
888 {
889 uint8_t *buf8;
890 uint32_t pix;
891 int rshift, gshift, bshift;
892
893 buf8 = buf;
894
895 if (1 /* FIXME */) {
896 rshift = vs->client_pf.rshift;
897 gshift = vs->client_pf.gshift;
898 bshift = vs->client_pf.bshift;
899 } else {
900 rshift = 24 - vs->client_pf.rshift;
901 gshift = 24 - vs->client_pf.gshift;
902 bshift = 24 - vs->client_pf.bshift;
903 }
904
905 if (ret) {
906 *ret = count * 3;
907 }
908
909 while (count--) {
910 pix = ldl_he_p(buf8);
911 *buf++ = (char)(pix >> rshift);
912 *buf++ = (char)(pix >> gshift);
913 *buf++ = (char)(pix >> bshift);
914 buf8 += 4;
915 }
916 }
917
918 static int send_full_color_rect(VncState *vs, int x, int y, int w, int h)
919 {
920 int stream = 0;
921 ssize_t bytes;
922
923 #ifdef CONFIG_VNC_PNG
924 if (tight_can_send_png_rect(vs, w, h)) {
925 return send_png_rect(vs, x, y, w, h, NULL);
926 }
927 #endif
928
929 vnc_write_u8(vs, stream << 4); /* no flushing, no filter */
930
931 if (vs->tight.pixel24) {
932 tight_pack24(vs, vs->tight.tight.buffer, w * h, &vs->tight.tight.offset);
933 bytes = 3;
934 } else {
935 bytes = vs->client_pf.bytes_per_pixel;
936 }
937
938 bytes = tight_compress_data(vs, stream, w * h * bytes,
939 tight_conf[vs->tight.compression].raw_zlib_level,
940 Z_DEFAULT_STRATEGY);
941
942 return (bytes >= 0);
943 }
944
945 static int send_solid_rect(VncState *vs)
946 {
947 size_t bytes;
948
949 vnc_write_u8(vs, VNC_TIGHT_FILL << 4); /* no flushing, no filter */
950
951 if (vs->tight.pixel24) {
952 tight_pack24(vs, vs->tight.tight.buffer, 1, &vs->tight.tight.offset);
953 bytes = 3;
954 } else {
955 bytes = vs->client_pf.bytes_per_pixel;
956 }
957
958 vnc_write(vs, vs->tight.tight.buffer, bytes);
959 return 1;
960 }
961
962 static int send_mono_rect(VncState *vs, int x, int y,
963 int w, int h, uint32_t bg, uint32_t fg)
964 {
965 ssize_t bytes;
966 int stream = 1;
967 int level = tight_conf[vs->tight.compression].mono_zlib_level;
968
969 #ifdef CONFIG_VNC_PNG
970 if (tight_can_send_png_rect(vs, w, h)) {
971 int ret;
972 int bpp = vs->client_pf.bytes_per_pixel * 8;
973 VncPalette *palette = palette_new(2, bpp);
974
975 palette_put(palette, bg);
976 palette_put(palette, fg);
977 ret = send_png_rect(vs, x, y, w, h, palette);
978 palette_destroy(palette);
979 return ret;
980 }
981 #endif
982
983 bytes = DIV_ROUND_UP(w, 8) * h;
984
985 vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4);
986 vnc_write_u8(vs, VNC_TIGHT_FILTER_PALETTE);
987 vnc_write_u8(vs, 1);
988
989 switch (vs->client_pf.bytes_per_pixel) {
990 case 4:
991 {
992 uint32_t buf[2] = {bg, fg};
993 size_t ret = sizeof (buf);
994
995 if (vs->tight.pixel24) {
996 tight_pack24(vs, (unsigned char*)buf, 2, &ret);
997 }
998 vnc_write(vs, buf, ret);
999
1000 tight_encode_mono_rect32(vs->tight.tight.buffer, w, h, bg, fg);
1001 break;
1002 }
1003 case 2:
1004 vnc_write(vs, &bg, 2);
1005 vnc_write(vs, &fg, 2);
1006 tight_encode_mono_rect16(vs->tight.tight.buffer, w, h, bg, fg);
1007 break;
1008 default:
1009 vnc_write_u8(vs, bg);
1010 vnc_write_u8(vs, fg);
1011 tight_encode_mono_rect8(vs->tight.tight.buffer, w, h, bg, fg);
1012 break;
1013 }
1014 vs->tight.tight.offset = bytes;
1015
1016 bytes = tight_compress_data(vs, stream, bytes, level, Z_DEFAULT_STRATEGY);
1017 return (bytes >= 0);
1018 }
1019
1020 struct palette_cb_priv {
1021 VncState *vs;
1022 uint8_t *header;
1023 #ifdef CONFIG_VNC_PNG
1024 png_colorp png_palette;
1025 #endif
1026 };
1027
1028 static void write_palette(int idx, uint32_t color, void *opaque)
1029 {
1030 struct palette_cb_priv *priv = opaque;
1031 VncState *vs = priv->vs;
1032 uint32_t bytes = vs->client_pf.bytes_per_pixel;
1033
1034 if (bytes == 4) {
1035 ((uint32_t*)priv->header)[idx] = color;
1036 } else {
1037 ((uint16_t*)priv->header)[idx] = color;
1038 }
1039 }
1040
1041 static bool send_gradient_rect(VncState *vs, int x, int y, int w, int h)
1042 {
1043 int stream = 3;
1044 int level = tight_conf[vs->tight.compression].gradient_zlib_level;
1045 ssize_t bytes;
1046
1047 if (vs->client_pf.bytes_per_pixel == 1) {
1048 return send_full_color_rect(vs, x, y, w, h);
1049 }
1050
1051 vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4);
1052 vnc_write_u8(vs, VNC_TIGHT_FILTER_GRADIENT);
1053
1054 buffer_reserve(&vs->tight.gradient, w * 3 * sizeof (int));
1055
1056 if (vs->tight.pixel24) {
1057 tight_filter_gradient24(vs, vs->tight.tight.buffer, w, h);
1058 bytes = 3;
1059 } else if (vs->client_pf.bytes_per_pixel == 4) {
1060 tight_filter_gradient32(vs, (uint32_t *)vs->tight.tight.buffer, w, h);
1061 bytes = 4;
1062 } else {
1063 tight_filter_gradient16(vs, (uint16_t *)vs->tight.tight.buffer, w, h);
1064 bytes = 2;
1065 }
1066
1067 buffer_reset(&vs->tight.gradient);
1068
1069 bytes = w * h * bytes;
1070 vs->tight.tight.offset = bytes;
1071
1072 bytes = tight_compress_data(vs, stream, bytes,
1073 level, Z_FILTERED);
1074 return (bytes >= 0);
1075 }
1076
1077 static int send_palette_rect(VncState *vs, int x, int y,
1078 int w, int h, VncPalette *palette)
1079 {
1080 int stream = 2;
1081 int level = tight_conf[vs->tight.compression].idx_zlib_level;
1082 int colors;
1083 ssize_t bytes;
1084
1085 #ifdef CONFIG_VNC_PNG
1086 if (tight_can_send_png_rect(vs, w, h)) {
1087 return send_png_rect(vs, x, y, w, h, palette);
1088 }
1089 #endif
1090
1091 colors = palette_size(palette);
1092
1093 vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4);
1094 vnc_write_u8(vs, VNC_TIGHT_FILTER_PALETTE);
1095 vnc_write_u8(vs, colors - 1);
1096
1097 switch (vs->client_pf.bytes_per_pixel) {
1098 case 4:
1099 {
1100 size_t old_offset, offset;
1101 uint32_t header[palette_size(palette)];
1102 struct palette_cb_priv priv = { vs, (uint8_t *)header };
1103
1104 old_offset = vs->output.offset;
1105 palette_iter(palette, write_palette, &priv);
1106 vnc_write(vs, header, sizeof(header));
1107
1108 if (vs->tight.pixel24) {
1109 tight_pack24(vs, vs->output.buffer + old_offset, colors, &offset);
1110 vs->output.offset = old_offset + offset;
1111 }
1112
1113 tight_encode_indexed_rect32(vs->tight.tight.buffer, w * h, palette);
1114 break;
1115 }
1116 case 2:
1117 {
1118 uint16_t header[palette_size(palette)];
1119 struct palette_cb_priv priv = { vs, (uint8_t *)header };
1120
1121 palette_iter(palette, write_palette, &priv);
1122 vnc_write(vs, header, sizeof(header));
1123 tight_encode_indexed_rect16(vs->tight.tight.buffer, w * h, palette);
1124 break;
1125 }
1126 default:
1127 return -1; /* No palette for 8bits colors */
1128 break;
1129 }
1130 bytes = w * h;
1131 vs->tight.tight.offset = bytes;
1132
1133 bytes = tight_compress_data(vs, stream, bytes,
1134 level, Z_DEFAULT_STRATEGY);
1135 return (bytes >= 0);
1136 }
1137
1138 /*
1139 * JPEG compression stuff.
1140 */
1141 #ifdef CONFIG_VNC_JPEG
1142 /*
1143 * Destination manager implementation for JPEG library.
1144 */
1145
1146 /* This is called once per encoding */
1147 static void jpeg_init_destination(j_compress_ptr cinfo)
1148 {
1149 VncState *vs = cinfo->client_data;
1150 Buffer *buffer = &vs->tight.jpeg;
1151
1152 cinfo->dest->next_output_byte = (JOCTET *)buffer->buffer + buffer->offset;
1153 cinfo->dest->free_in_buffer = (size_t)(buffer->capacity - buffer->offset);
1154 }
1155
1156 /* This is called when we ran out of buffer (shouldn't happen!) */
1157 static boolean jpeg_empty_output_buffer(j_compress_ptr cinfo)
1158 {
1159 VncState *vs = cinfo->client_data;
1160 Buffer *buffer = &vs->tight.jpeg;
1161
1162 buffer->offset = buffer->capacity;
1163 buffer_reserve(buffer, 2048);
1164 jpeg_init_destination(cinfo);
1165 return TRUE;
1166 }
1167
1168 /* This is called when we are done processing data */
1169 static void jpeg_term_destination(j_compress_ptr cinfo)
1170 {
1171 VncState *vs = cinfo->client_data;
1172 Buffer *buffer = &vs->tight.jpeg;
1173
1174 buffer->offset = buffer->capacity - cinfo->dest->free_in_buffer;
1175 }
1176
1177 static int send_jpeg_rect(VncState *vs, int x, int y, int w, int h, int quality)
1178 {
1179 struct jpeg_compress_struct cinfo;
1180 struct jpeg_error_mgr jerr;
1181 struct jpeg_destination_mgr manager;
1182 pixman_image_t *linebuf;
1183 JSAMPROW row[1];
1184 uint8_t *buf;
1185 int dy;
1186
1187 if (surface_bytes_per_pixel(vs->vd->ds) == 1) {
1188 return send_full_color_rect(vs, x, y, w, h);
1189 }
1190
1191 buffer_reserve(&vs->tight.jpeg, 2048);
1192
1193 cinfo.err = jpeg_std_error(&jerr);
1194 jpeg_create_compress(&cinfo);
1195
1196 cinfo.client_data = vs;
1197 cinfo.image_width = w;
1198 cinfo.image_height = h;
1199 cinfo.input_components = 3;
1200 cinfo.in_color_space = JCS_RGB;
1201
1202 jpeg_set_defaults(&cinfo);
1203 jpeg_set_quality(&cinfo, quality, true);
1204
1205 manager.init_destination = jpeg_init_destination;
1206 manager.empty_output_buffer = jpeg_empty_output_buffer;
1207 manager.term_destination = jpeg_term_destination;
1208 cinfo.dest = &manager;
1209
1210 jpeg_start_compress(&cinfo, true);
1211
1212 linebuf = qemu_pixman_linebuf_create(PIXMAN_BE_r8g8b8, w);
1213 buf = (uint8_t *)pixman_image_get_data(linebuf);
1214 row[0] = buf;
1215 for (dy = 0; dy < h; dy++) {
1216 qemu_pixman_linebuf_fill(linebuf, vs->vd->server, w, x, y + dy);
1217 jpeg_write_scanlines(&cinfo, row, 1);
1218 }
1219 qemu_pixman_image_unref(linebuf);
1220
1221 jpeg_finish_compress(&cinfo);
1222 jpeg_destroy_compress(&cinfo);
1223
1224 vnc_write_u8(vs, VNC_TIGHT_JPEG << 4);
1225
1226 tight_send_compact_size(vs, vs->tight.jpeg.offset);
1227 vnc_write(vs, vs->tight.jpeg.buffer, vs->tight.jpeg.offset);
1228 buffer_reset(&vs->tight.jpeg);
1229
1230 return 1;
1231 }
1232 #endif /* CONFIG_VNC_JPEG */
1233
1234 /*
1235 * PNG compression stuff.
1236 */
1237 #ifdef CONFIG_VNC_PNG
1238 static void write_png_palette(int idx, uint32_t pix, void *opaque)
1239 {
1240 struct palette_cb_priv *priv = opaque;
1241 VncState *vs = priv->vs;
1242 png_colorp color = &priv->png_palette[idx];
1243
1244 if (vs->tight.pixel24)
1245 {
1246 color->red = (pix >> vs->client_pf.rshift) & vs->client_pf.rmax;
1247 color->green = (pix >> vs->client_pf.gshift) & vs->client_pf.gmax;
1248 color->blue = (pix >> vs->client_pf.bshift) & vs->client_pf.bmax;
1249 }
1250 else
1251 {
1252 int red, green, blue;
1253
1254 red = (pix >> vs->client_pf.rshift) & vs->client_pf.rmax;
1255 green = (pix >> vs->client_pf.gshift) & vs->client_pf.gmax;
1256 blue = (pix >> vs->client_pf.bshift) & vs->client_pf.bmax;
1257 color->red = ((red * 255 + vs->client_pf.rmax / 2) /
1258 vs->client_pf.rmax);
1259 color->green = ((green * 255 + vs->client_pf.gmax / 2) /
1260 vs->client_pf.gmax);
1261 color->blue = ((blue * 255 + vs->client_pf.bmax / 2) /
1262 vs->client_pf.bmax);
1263 }
1264 }
1265
1266 static void png_write_data(png_structp png_ptr, png_bytep data,
1267 png_size_t length)
1268 {
1269 VncState *vs = png_get_io_ptr(png_ptr);
1270
1271 buffer_reserve(&vs->tight.png, vs->tight.png.offset + length);
1272 memcpy(vs->tight.png.buffer + vs->tight.png.offset, data, length);
1273
1274 vs->tight.png.offset += length;
1275 }
1276
1277 static void png_flush_data(png_structp png_ptr)
1278 {
1279 }
1280
1281 static void *vnc_png_malloc(png_structp png_ptr, png_size_t size)
1282 {
1283 return g_malloc(size);
1284 }
1285
1286 static void vnc_png_free(png_structp png_ptr, png_voidp ptr)
1287 {
1288 g_free(ptr);
1289 }
1290
1291 static int send_png_rect(VncState *vs, int x, int y, int w, int h,
1292 VncPalette *palette)
1293 {
1294 png_byte color_type;
1295 png_structp png_ptr;
1296 png_infop info_ptr;
1297 png_colorp png_palette = NULL;
1298 pixman_image_t *linebuf;
1299 int level = tight_png_conf[vs->tight.compression].png_zlib_level;
1300 int filters = tight_png_conf[vs->tight.compression].png_filters;
1301 uint8_t *buf;
1302 int dy;
1303
1304 png_ptr = png_create_write_struct_2(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL,
1305 NULL, vnc_png_malloc, vnc_png_free);
1306
1307 if (png_ptr == NULL)
1308 return -1;
1309
1310 info_ptr = png_create_info_struct(png_ptr);
1311
1312 if (info_ptr == NULL) {
1313 png_destroy_write_struct(&png_ptr, NULL);
1314 return -1;
1315 }
1316
1317 png_set_write_fn(png_ptr, (void *) vs, png_write_data, png_flush_data);
1318 png_set_compression_level(png_ptr, level);
1319 png_set_filter(png_ptr, PNG_FILTER_TYPE_DEFAULT, filters);
1320
1321 if (palette) {
1322 color_type = PNG_COLOR_TYPE_PALETTE;
1323 } else {
1324 color_type = PNG_COLOR_TYPE_RGB;
1325 }
1326
1327 png_set_IHDR(png_ptr, info_ptr, w, h,
1328 8, color_type, PNG_INTERLACE_NONE,
1329 PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
1330
1331 if (color_type == PNG_COLOR_TYPE_PALETTE) {
1332 struct palette_cb_priv priv;
1333
1334 png_palette = png_malloc(png_ptr, sizeof(*png_palette) *
1335 palette_size(palette));
1336
1337 priv.vs = vs;
1338 priv.png_palette = png_palette;
1339 palette_iter(palette, write_png_palette, &priv);
1340
1341 png_set_PLTE(png_ptr, info_ptr, png_palette, palette_size(palette));
1342
1343 if (vs->client_pf.bytes_per_pixel == 4) {
1344 tight_encode_indexed_rect32(vs->tight.tight.buffer, w * h, palette);
1345 } else {
1346 tight_encode_indexed_rect16(vs->tight.tight.buffer, w * h, palette);
1347 }
1348 }
1349
1350 png_write_info(png_ptr, info_ptr);
1351
1352 buffer_reserve(&vs->tight.png, 2048);
1353 linebuf = qemu_pixman_linebuf_create(PIXMAN_BE_r8g8b8, w);
1354 buf = (uint8_t *)pixman_image_get_data(linebuf);
1355 for (dy = 0; dy < h; dy++)
1356 {
1357 if (color_type == PNG_COLOR_TYPE_PALETTE) {
1358 memcpy(buf, vs->tight.tight.buffer + (dy * w), w);
1359 } else {
1360 qemu_pixman_linebuf_fill(linebuf, vs->vd->server, w, x, y + dy);
1361 }
1362 png_write_row(png_ptr, buf);
1363 }
1364 qemu_pixman_image_unref(linebuf);
1365
1366 png_write_end(png_ptr, NULL);
1367
1368 if (color_type == PNG_COLOR_TYPE_PALETTE) {
1369 png_free(png_ptr, png_palette);
1370 }
1371
1372 png_destroy_write_struct(&png_ptr, &info_ptr);
1373
1374 vnc_write_u8(vs, VNC_TIGHT_PNG << 4);
1375
1376 tight_send_compact_size(vs, vs->tight.png.offset);
1377 vnc_write(vs, vs->tight.png.buffer, vs->tight.png.offset);
1378 buffer_reset(&vs->tight.png);
1379 return 1;
1380 }
1381 #endif /* CONFIG_VNC_PNG */
1382
1383 static void vnc_tight_start(VncState *vs)
1384 {
1385 buffer_reset(&vs->tight.tight);
1386
1387 // make the output buffer be the zlib buffer, so we can compress it later
1388 vs->tight.tmp = vs->output;
1389 vs->output = vs->tight.tight;
1390 }
1391
1392 static void vnc_tight_stop(VncState *vs)
1393 {
1394 // switch back to normal output/zlib buffers
1395 vs->tight.tight = vs->output;
1396 vs->output = vs->tight.tmp;
1397 }
1398
1399 static int send_sub_rect_nojpeg(VncState *vs, int x, int y, int w, int h,
1400 int bg, int fg, int colors, VncPalette *palette)
1401 {
1402 int ret;
1403
1404 if (colors == 0) {
1405 if (tight_detect_smooth_image(vs, w, h)) {
1406 ret = send_gradient_rect(vs, x, y, w, h);
1407 } else {
1408 ret = send_full_color_rect(vs, x, y, w, h);
1409 }
1410 } else if (colors == 1) {
1411 ret = send_solid_rect(vs);
1412 } else if (colors == 2) {
1413 ret = send_mono_rect(vs, x, y, w, h, bg, fg);
1414 } else if (colors <= 256) {
1415 ret = send_palette_rect(vs, x, y, w, h, palette);
1416 } else {
1417 ret = 0;
1418 }
1419 return ret;
1420 }
1421
1422 #ifdef CONFIG_VNC_JPEG
1423 static int send_sub_rect_jpeg(VncState *vs, int x, int y, int w, int h,
1424 int bg, int fg, int colors,
1425 VncPalette *palette, bool force)
1426 {
1427 int ret;
1428
1429 if (colors == 0) {
1430 if (force || (tight_jpeg_conf[vs->tight.quality].jpeg_full &&
1431 tight_detect_smooth_image(vs, w, h))) {
1432 int quality = tight_conf[vs->tight.quality].jpeg_quality;
1433
1434 ret = send_jpeg_rect(vs, x, y, w, h, quality);
1435 } else {
1436 ret = send_full_color_rect(vs, x, y, w, h);
1437 }
1438 } else if (colors == 1) {
1439 ret = send_solid_rect(vs);
1440 } else if (colors == 2) {
1441 ret = send_mono_rect(vs, x, y, w, h, bg, fg);
1442 } else if (colors <= 256) {
1443 if (force || (colors > 96 &&
1444 tight_jpeg_conf[vs->tight.quality].jpeg_idx &&
1445 tight_detect_smooth_image(vs, w, h))) {
1446 int quality = tight_conf[vs->tight.quality].jpeg_quality;
1447
1448 ret = send_jpeg_rect(vs, x, y, w, h, quality);
1449 } else {
1450 ret = send_palette_rect(vs, x, y, w, h, palette);
1451 }
1452 } else {
1453 ret = 0;
1454 }
1455 return ret;
1456 }
1457 #endif
1458
1459 static __thread VncPalette *color_count_palette;
1460 static __thread Notifier vnc_tight_cleanup_notifier;
1461
1462 static void vnc_tight_cleanup(Notifier *n, void *value)
1463 {
1464 g_free(color_count_palette);
1465 color_count_palette = NULL;
1466 }
1467
1468 static int send_sub_rect(VncState *vs, int x, int y, int w, int h)
1469 {
1470 uint32_t bg = 0, fg = 0;
1471 int colors;
1472 int ret = 0;
1473 #ifdef CONFIG_VNC_JPEG
1474 bool force_jpeg = false;
1475 bool allow_jpeg = true;
1476 #endif
1477
1478 if (!color_count_palette) {
1479 color_count_palette = g_malloc(sizeof(VncPalette));
1480 vnc_tight_cleanup_notifier.notify = vnc_tight_cleanup;
1481 qemu_thread_atexit_add(&vnc_tight_cleanup_notifier);
1482 }
1483
1484 vnc_framebuffer_update(vs, x, y, w, h, vs->tight.type);
1485
1486 vnc_tight_start(vs);
1487 vnc_raw_send_framebuffer_update(vs, x, y, w, h);
1488 vnc_tight_stop(vs);
1489
1490 #ifdef CONFIG_VNC_JPEG
1491 if (!vs->vd->non_adaptive && vs->tight.quality != (uint8_t)-1) {
1492 double freq = vnc_update_freq(vs, x, y, w, h);
1493
1494 if (freq < tight_jpeg_conf[vs->tight.quality].jpeg_freq_min) {
1495 allow_jpeg = false;
1496 }
1497 if (freq >= tight_jpeg_conf[vs->tight.quality].jpeg_freq_threshold) {
1498 force_jpeg = true;
1499 vnc_sent_lossy_rect(vs, x, y, w, h);
1500 }
1501 }
1502 #endif
1503
1504 colors = tight_fill_palette(vs, x, y, w * h, &bg, &fg, color_count_palette);
1505
1506 #ifdef CONFIG_VNC_JPEG
1507 if (allow_jpeg && vs->tight.quality != (uint8_t)-1) {
1508 ret = send_sub_rect_jpeg(vs, x, y, w, h, bg, fg, colors,
1509 color_count_palette, force_jpeg);
1510 } else {
1511 ret = send_sub_rect_nojpeg(vs, x, y, w, h, bg, fg, colors,
1512 color_count_palette);
1513 }
1514 #else
1515 ret = send_sub_rect_nojpeg(vs, x, y, w, h, bg, fg, colors,
1516 color_count_palette);
1517 #endif
1518
1519 return ret;
1520 }
1521
1522 static int send_sub_rect_solid(VncState *vs, int x, int y, int w, int h)
1523 {
1524 vnc_framebuffer_update(vs, x, y, w, h, vs->tight.type);
1525
1526 vnc_tight_start(vs);
1527 vnc_raw_send_framebuffer_update(vs, x, y, w, h);
1528 vnc_tight_stop(vs);
1529
1530 return send_solid_rect(vs);
1531 }
1532
1533 static int send_rect_simple(VncState *vs, int x, int y, int w, int h,
1534 bool split)
1535 {
1536 int max_size, max_width;
1537 int max_sub_width, max_sub_height;
1538 int dx, dy;
1539 int rw, rh;
1540 int n = 0;
1541
1542 max_size = tight_conf[vs->tight.compression].max_rect_size;
1543 max_width = tight_conf[vs->tight.compression].max_rect_width;
1544
1545 if (split && (w > max_width || w * h > max_size)) {
1546 max_sub_width = (w > max_width) ? max_width : w;
1547 max_sub_height = max_size / max_sub_width;
1548
1549 for (dy = 0; dy < h; dy += max_sub_height) {
1550 for (dx = 0; dx < w; dx += max_width) {
1551 rw = MIN(max_sub_width, w - dx);
1552 rh = MIN(max_sub_height, h - dy);
1553 n += send_sub_rect(vs, x+dx, y+dy, rw, rh);
1554 }
1555 }
1556 } else {
1557 n += send_sub_rect(vs, x, y, w, h);
1558 }
1559
1560 return n;
1561 }
1562
1563 static int find_large_solid_color_rect(VncState *vs, int x, int y,
1564 int w, int h, int max_rows)
1565 {
1566 int dx, dy, dw, dh;
1567 int n = 0;
1568
1569 /* Try to find large solid-color areas and send them separately. */
1570
1571 for (dy = y; dy < y + h; dy += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) {
1572
1573 /* If a rectangle becomes too large, send its upper part now. */
1574
1575 if (dy - y >= max_rows) {
1576 n += send_rect_simple(vs, x, y, w, max_rows, true);
1577 y += max_rows;
1578 h -= max_rows;
1579 }
1580
1581 dh = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, (y + h - dy));
1582
1583 for (dx = x; dx < x + w; dx += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) {
1584 uint32_t color_value;
1585 int x_best, y_best, w_best, h_best;
1586
1587 dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, (x + w - dx));
1588
1589 if (!check_solid_tile(vs, dx, dy, dw, dh, &color_value, false)) {
1590 continue ;
1591 }
1592
1593 /* Get dimensions of solid-color area. */
1594
1595 find_best_solid_area(vs, dx, dy, w - (dx - x), h - (dy - y),
1596 color_value, &w_best, &h_best);
1597
1598 /* Make sure a solid rectangle is large enough
1599 (or the whole rectangle is of the same color). */
1600
1601 if (w_best * h_best != w * h &&
1602 w_best * h_best < VNC_TIGHT_MIN_SOLID_SUBRECT_SIZE) {
1603 continue;
1604 }
1605
1606 /* Try to extend solid rectangle to maximum size. */
1607
1608 x_best = dx; y_best = dy;
1609 extend_solid_area(vs, x, y, w, h, color_value,
1610 &x_best, &y_best, &w_best, &h_best);
1611
1612 /* Send rectangles at top and left to solid-color area. */
1613
1614 if (y_best != y) {
1615 n += send_rect_simple(vs, x, y, w, y_best-y, true);
1616 }
1617 if (x_best != x) {
1618 n += tight_send_framebuffer_update(vs, x, y_best,
1619 x_best-x, h_best);
1620 }
1621
1622 /* Send solid-color rectangle. */
1623 n += send_sub_rect_solid(vs, x_best, y_best, w_best, h_best);
1624
1625 /* Send remaining rectangles (at right and bottom). */
1626
1627 if (x_best + w_best != x + w) {
1628 n += tight_send_framebuffer_update(vs, x_best+w_best,
1629 y_best,
1630 w-(x_best-x)-w_best,
1631 h_best);
1632 }
1633 if (y_best + h_best != y + h) {
1634 n += tight_send_framebuffer_update(vs, x, y_best+h_best,
1635 w, h-(y_best-y)-h_best);
1636 }
1637
1638 /* Return after all recursive calls are done. */
1639 return n;
1640 }
1641 }
1642 return n + send_rect_simple(vs, x, y, w, h, true);
1643 }
1644
1645 static int tight_send_framebuffer_update(VncState *vs, int x, int y,
1646 int w, int h)
1647 {
1648 int max_rows;
1649
1650 if (vs->client_pf.bytes_per_pixel == 4 && vs->client_pf.rmax == 0xFF &&
1651 vs->client_pf.bmax == 0xFF && vs->client_pf.gmax == 0xFF) {
1652 vs->tight.pixel24 = true;
1653 } else {
1654 vs->tight.pixel24 = false;
1655 }
1656
1657 #ifdef CONFIG_VNC_JPEG
1658 if (vs->tight.quality != (uint8_t)-1) {
1659 double freq = vnc_update_freq(vs, x, y, w, h);
1660
1661 if (freq > tight_jpeg_conf[vs->tight.quality].jpeg_freq_threshold) {
1662 return send_rect_simple(vs, x, y, w, h, false);
1663 }
1664 }
1665 #endif
1666
1667 if (w * h < VNC_TIGHT_MIN_SPLIT_RECT_SIZE) {
1668 return send_rect_simple(vs, x, y, w, h, true);
1669 }
1670
1671 /* Calculate maximum number of rows in one non-solid rectangle. */
1672
1673 max_rows = tight_conf[vs->tight.compression].max_rect_size;
1674 max_rows /= MIN(tight_conf[vs->tight.compression].max_rect_width, w);
1675
1676 return find_large_solid_color_rect(vs, x, y, w, h, max_rows);
1677 }
1678
1679 int vnc_tight_send_framebuffer_update(VncState *vs, int x, int y,
1680 int w, int h)
1681 {
1682 vs->tight.type = VNC_ENCODING_TIGHT;
1683 return tight_send_framebuffer_update(vs, x, y, w, h);
1684 }
1685
1686 int vnc_tight_png_send_framebuffer_update(VncState *vs, int x, int y,
1687 int w, int h)
1688 {
1689 vs->tight.type = VNC_ENCODING_TIGHT_PNG;
1690 return tight_send_framebuffer_update(vs, x, y, w, h);
1691 }
1692
1693 void vnc_tight_clear(VncState *vs)
1694 {
1695 int i;
1696 for (i=0; i<ARRAY_SIZE(vs->tight.stream); i++) {
1697 if (vs->tight.stream[i].opaque) {
1698 deflateEnd(&vs->tight.stream[i]);
1699 }
1700 }
1701
1702 buffer_free(&vs->tight.tight);
1703 buffer_free(&vs->tight.zlib);
1704 buffer_free(&vs->tight.gradient);
1705 #ifdef CONFIG_VNC_JPEG
1706 buffer_free(&vs->tight.jpeg);
1707 #endif
1708 #ifdef CONFIG_VNC_PNG
1709 buffer_free(&vs->tight.png);
1710 #endif
1711 }