]> git.proxmox.com Git - mirror_qemu.git/blob - util/bufferiszero.c
util/defer-call: move defer_call() to util/
[mirror_qemu.git] / util / bufferiszero.c
1 /*
2 * Simple C functions to supplement the C library
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "qemu/cutils.h"
26 #include "qemu/bswap.h"
27 #include "host/cpuinfo.h"
28
29 static bool
30 buffer_zero_int(const void *buf, size_t len)
31 {
32 if (unlikely(len < 8)) {
33 /* For a very small buffer, simply accumulate all the bytes. */
34 const unsigned char *p = buf;
35 const unsigned char *e = buf + len;
36 unsigned char t = 0;
37
38 do {
39 t |= *p++;
40 } while (p < e);
41
42 return t == 0;
43 } else {
44 /* Otherwise, use the unaligned memory access functions to
45 handle the beginning and end of the buffer, with a couple
46 of loops handling the middle aligned section. */
47 uint64_t t = ldq_he_p(buf);
48 const uint64_t *p = (uint64_t *)(((uintptr_t)buf + 8) & -8);
49 const uint64_t *e = (uint64_t *)(((uintptr_t)buf + len) & -8);
50
51 for (; p + 8 <= e; p += 8) {
52 __builtin_prefetch(p + 8);
53 if (t) {
54 return false;
55 }
56 t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7];
57 }
58 while (p < e) {
59 t |= *p++;
60 }
61 t |= ldq_he_p(buf + len - 8);
62
63 return t == 0;
64 }
65 }
66
67 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT) || defined(__SSE2__)
68 #include <immintrin.h>
69
70 /* Note that each of these vectorized functions require len >= 64. */
71
72 static bool __attribute__((target("sse2")))
73 buffer_zero_sse2(const void *buf, size_t len)
74 {
75 __m128i t = _mm_loadu_si128(buf);
76 __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
77 __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
78 __m128i zero = _mm_setzero_si128();
79
80 /* Loop over 16-byte aligned blocks of 64. */
81 while (likely(p <= e)) {
82 __builtin_prefetch(p);
83 t = _mm_cmpeq_epi8(t, zero);
84 if (unlikely(_mm_movemask_epi8(t) != 0xFFFF)) {
85 return false;
86 }
87 t = p[-4] | p[-3] | p[-2] | p[-1];
88 p += 4;
89 }
90
91 /* Finish the aligned tail. */
92 t |= e[-3];
93 t |= e[-2];
94 t |= e[-1];
95
96 /* Finish the unaligned tail. */
97 t |= _mm_loadu_si128(buf + len - 16);
98
99 return _mm_movemask_epi8(_mm_cmpeq_epi8(t, zero)) == 0xFFFF;
100 }
101
102 #ifdef CONFIG_AVX2_OPT
103 static bool __attribute__((target("sse4")))
104 buffer_zero_sse4(const void *buf, size_t len)
105 {
106 __m128i t = _mm_loadu_si128(buf);
107 __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
108 __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
109
110 /* Loop over 16-byte aligned blocks of 64. */
111 while (likely(p <= e)) {
112 __builtin_prefetch(p);
113 if (unlikely(!_mm_testz_si128(t, t))) {
114 return false;
115 }
116 t = p[-4] | p[-3] | p[-2] | p[-1];
117 p += 4;
118 }
119
120 /* Finish the aligned tail. */
121 t |= e[-3];
122 t |= e[-2];
123 t |= e[-1];
124
125 /* Finish the unaligned tail. */
126 t |= _mm_loadu_si128(buf + len - 16);
127
128 return _mm_testz_si128(t, t);
129 }
130
131 static bool __attribute__((target("avx2")))
132 buffer_zero_avx2(const void *buf, size_t len)
133 {
134 /* Begin with an unaligned head of 32 bytes. */
135 __m256i t = _mm256_loadu_si256(buf);
136 __m256i *p = (__m256i *)(((uintptr_t)buf + 5 * 32) & -32);
137 __m256i *e = (__m256i *)(((uintptr_t)buf + len) & -32);
138
139 /* Loop over 32-byte aligned blocks of 128. */
140 while (p <= e) {
141 __builtin_prefetch(p);
142 if (unlikely(!_mm256_testz_si256(t, t))) {
143 return false;
144 }
145 t = p[-4] | p[-3] | p[-2] | p[-1];
146 p += 4;
147 } ;
148
149 /* Finish the last block of 128 unaligned. */
150 t |= _mm256_loadu_si256(buf + len - 4 * 32);
151 t |= _mm256_loadu_si256(buf + len - 3 * 32);
152 t |= _mm256_loadu_si256(buf + len - 2 * 32);
153 t |= _mm256_loadu_si256(buf + len - 1 * 32);
154
155 return _mm256_testz_si256(t, t);
156 }
157 #endif /* CONFIG_AVX2_OPT */
158
159 #ifdef CONFIG_AVX512F_OPT
160 static bool __attribute__((target("avx512f")))
161 buffer_zero_avx512(const void *buf, size_t len)
162 {
163 /* Begin with an unaligned head of 64 bytes. */
164 __m512i t = _mm512_loadu_si512(buf);
165 __m512i *p = (__m512i *)(((uintptr_t)buf + 5 * 64) & -64);
166 __m512i *e = (__m512i *)(((uintptr_t)buf + len) & -64);
167
168 /* Loop over 64-byte aligned blocks of 256. */
169 while (p <= e) {
170 __builtin_prefetch(p);
171 if (unlikely(_mm512_test_epi64_mask(t, t))) {
172 return false;
173 }
174 t = p[-4] | p[-3] | p[-2] | p[-1];
175 p += 4;
176 }
177
178 t |= _mm512_loadu_si512(buf + len - 4 * 64);
179 t |= _mm512_loadu_si512(buf + len - 3 * 64);
180 t |= _mm512_loadu_si512(buf + len - 2 * 64);
181 t |= _mm512_loadu_si512(buf + len - 1 * 64);
182
183 return !_mm512_test_epi64_mask(t, t);
184
185 }
186 #endif /* CONFIG_AVX512F_OPT */
187
188 /*
189 * Make sure that these variables are appropriately initialized when
190 * SSE2 is enabled on the compiler command-line, but the compiler is
191 * too old to support CONFIG_AVX2_OPT.
192 */
193 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
194 # define INIT_USED 0
195 # define INIT_LENGTH 0
196 # define INIT_ACCEL buffer_zero_int
197 #else
198 # ifndef __SSE2__
199 # error "ISA selection confusion"
200 # endif
201 # define INIT_USED CPUINFO_SSE2
202 # define INIT_LENGTH 64
203 # define INIT_ACCEL buffer_zero_sse2
204 #endif
205
206 static unsigned used_accel = INIT_USED;
207 static unsigned length_to_accel = INIT_LENGTH;
208 static bool (*buffer_accel)(const void *, size_t) = INIT_ACCEL;
209
210 static unsigned __attribute__((noinline))
211 select_accel_cpuinfo(unsigned info)
212 {
213 /* Array is sorted in order of algorithm preference. */
214 static const struct {
215 unsigned bit;
216 unsigned len;
217 bool (*fn)(const void *, size_t);
218 } all[] = {
219 #ifdef CONFIG_AVX512F_OPT
220 { CPUINFO_AVX512F, 256, buffer_zero_avx512 },
221 #endif
222 #ifdef CONFIG_AVX2_OPT
223 { CPUINFO_AVX2, 128, buffer_zero_avx2 },
224 { CPUINFO_SSE4, 64, buffer_zero_sse4 },
225 #endif
226 { CPUINFO_SSE2, 64, buffer_zero_sse2 },
227 { CPUINFO_ALWAYS, 0, buffer_zero_int },
228 };
229
230 for (unsigned i = 0; i < ARRAY_SIZE(all); ++i) {
231 if (info & all[i].bit) {
232 length_to_accel = all[i].len;
233 buffer_accel = all[i].fn;
234 return all[i].bit;
235 }
236 }
237 return 0;
238 }
239
240 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
241 static void __attribute__((constructor)) init_accel(void)
242 {
243 used_accel = select_accel_cpuinfo(cpuinfo_init());
244 }
245 #endif /* CONFIG_AVX2_OPT */
246
247 bool test_buffer_is_zero_next_accel(void)
248 {
249 /*
250 * Accumulate the accelerators that we've already tested, and
251 * remove them from the set to test this round. We'll get back
252 * a zero from select_accel_cpuinfo when there are no more.
253 */
254 unsigned used = select_accel_cpuinfo(cpuinfo & ~used_accel);
255 used_accel |= used;
256 return used;
257 }
258
259 static bool select_accel_fn(const void *buf, size_t len)
260 {
261 if (likely(len >= length_to_accel)) {
262 return buffer_accel(buf, len);
263 }
264 return buffer_zero_int(buf, len);
265 }
266
267 #else
268 #define select_accel_fn buffer_zero_int
269 bool test_buffer_is_zero_next_accel(void)
270 {
271 return false;
272 }
273 #endif
274
275 /*
276 * Checks if a buffer is all zeroes
277 */
278 bool buffer_is_zero(const void *buf, size_t len)
279 {
280 if (unlikely(len == 0)) {
281 return true;
282 }
283
284 /* Fetch the beginning of the buffer while we select the accelerator. */
285 __builtin_prefetch(buf);
286
287 /* Use an optimized zero check if possible. Note that this also
288 includes a check for an unrolled loop over 64-bit integers. */
289 return select_accel_fn(buf, len);
290 }