]> git.proxmox.com Git - mirror_qemu.git/blob - util/cutils.c
cutils: Adjust signature of parse_uint[_full]
[mirror_qemu.git] / util / cutils.c
1 /*
2 * Simple C functions to supplement the C library
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/host-utils.h"
27 #include <math.h>
28
29 #ifdef __FreeBSD__
30 #include <sys/sysctl.h>
31 #include <sys/user.h>
32 #endif
33
34 #ifdef __NetBSD__
35 #include <sys/sysctl.h>
36 #endif
37
38 #ifdef __HAIKU__
39 #include <kernel/image.h>
40 #endif
41
42 #ifdef __APPLE__
43 #include <mach-o/dyld.h>
44 #endif
45
46 #ifdef G_OS_WIN32
47 #include <pathcch.h>
48 #include <wchar.h>
49 #endif
50
51 #include "qemu/ctype.h"
52 #include "qemu/cutils.h"
53 #include "qemu/error-report.h"
54
55 void strpadcpy(char *buf, int buf_size, const char *str, char pad)
56 {
57 int len = qemu_strnlen(str, buf_size);
58 memcpy(buf, str, len);
59 memset(buf + len, pad, buf_size - len);
60 }
61
62 void pstrcpy(char *buf, int buf_size, const char *str)
63 {
64 int c;
65 char *q = buf;
66
67 if (buf_size <= 0)
68 return;
69
70 for(;;) {
71 c = *str++;
72 if (c == 0 || q >= buf + buf_size - 1)
73 break;
74 *q++ = c;
75 }
76 *q = '\0';
77 }
78
79 /* strcat and truncate. */
80 char *pstrcat(char *buf, int buf_size, const char *s)
81 {
82 int len;
83 len = strlen(buf);
84 if (len < buf_size)
85 pstrcpy(buf + len, buf_size - len, s);
86 return buf;
87 }
88
89 int strstart(const char *str, const char *val, const char **ptr)
90 {
91 const char *p, *q;
92 p = str;
93 q = val;
94 while (*q != '\0') {
95 if (*p != *q)
96 return 0;
97 p++;
98 q++;
99 }
100 if (ptr)
101 *ptr = p;
102 return 1;
103 }
104
105 int stristart(const char *str, const char *val, const char **ptr)
106 {
107 const char *p, *q;
108 p = str;
109 q = val;
110 while (*q != '\0') {
111 if (qemu_toupper(*p) != qemu_toupper(*q))
112 return 0;
113 p++;
114 q++;
115 }
116 if (ptr)
117 *ptr = p;
118 return 1;
119 }
120
121 /* XXX: use host strnlen if available ? */
122 int qemu_strnlen(const char *s, int max_len)
123 {
124 int i;
125
126 for(i = 0; i < max_len; i++) {
127 if (s[i] == '\0') {
128 break;
129 }
130 }
131 return i;
132 }
133
134 char *qemu_strsep(char **input, const char *delim)
135 {
136 char *result = *input;
137 if (result != NULL) {
138 char *p;
139
140 for (p = result; *p != '\0'; p++) {
141 if (strchr(delim, *p)) {
142 break;
143 }
144 }
145 if (*p == '\0') {
146 *input = NULL;
147 } else {
148 *p = '\0';
149 *input = p + 1;
150 }
151 }
152 return result;
153 }
154
155 time_t mktimegm(struct tm *tm)
156 {
157 time_t t;
158 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
159 if (m < 3) {
160 m += 12;
161 y--;
162 }
163 t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
164 y / 400 - 719469);
165 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
166 return t;
167 }
168
169 static int64_t suffix_mul(char suffix, int64_t unit)
170 {
171 switch (qemu_toupper(suffix)) {
172 case 'B':
173 return 1;
174 case 'K':
175 return unit;
176 case 'M':
177 return unit * unit;
178 case 'G':
179 return unit * unit * unit;
180 case 'T':
181 return unit * unit * unit * unit;
182 case 'P':
183 return unit * unit * unit * unit * unit;
184 case 'E':
185 return unit * unit * unit * unit * unit * unit;
186 }
187 return -1;
188 }
189
190 /*
191 * Convert size string to bytes.
192 *
193 * The size parsing supports the following syntaxes
194 * - 12345 - decimal, scale determined by @default_suffix and @unit
195 * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit
196 * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and
197 * fractional portion is truncated to byte
198 * - 0x7fEE - hexadecimal, unit determined by @default_suffix
199 *
200 * The following are intentionally not supported
201 * - hex with scaling suffix, such as 0x20M
202 * - octal, such as 08
203 * - fractional hex, such as 0x1.8
204 * - floating point exponents, such as 1e3
205 *
206 * The end pointer will be returned in *end, if not NULL. If there is
207 * no fraction, the input can be decimal or hexadecimal; if there is a
208 * fraction, then the input must be decimal and there must be a suffix
209 * (possibly by @default_suffix) larger than Byte, and the fractional
210 * portion may suffer from precision loss or rounding. The input must
211 * be positive.
212 *
213 * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on
214 * other error (with *@end left unchanged).
215 */
216 static int do_strtosz(const char *nptr, const char **end,
217 const char default_suffix, int64_t unit,
218 uint64_t *result)
219 {
220 int retval;
221 const char *endptr, *f;
222 unsigned char c;
223 uint64_t val, valf = 0;
224 int64_t mul;
225
226 /* Parse integral portion as decimal. */
227 retval = qemu_strtou64(nptr, &endptr, 10, &val);
228 if (retval) {
229 goto out;
230 }
231 if (memchr(nptr, '-', endptr - nptr) != NULL) {
232 endptr = nptr;
233 retval = -EINVAL;
234 goto out;
235 }
236 if (val == 0 && (*endptr == 'x' || *endptr == 'X')) {
237 /* Input looks like hex; reparse, and insist on no fraction or suffix. */
238 retval = qemu_strtou64(nptr, &endptr, 16, &val);
239 if (retval) {
240 goto out;
241 }
242 if (*endptr == '.' || suffix_mul(*endptr, unit) > 0) {
243 endptr = nptr;
244 retval = -EINVAL;
245 goto out;
246 }
247 } else if (*endptr == '.') {
248 /*
249 * Input looks like a fraction. Make sure even 1.k works
250 * without fractional digits. If we see an exponent, treat
251 * the entire input as invalid instead.
252 */
253 double fraction;
254
255 f = endptr;
256 retval = qemu_strtod_finite(f, &endptr, &fraction);
257 if (retval) {
258 endptr++;
259 } else if (memchr(f, 'e', endptr - f) || memchr(f, 'E', endptr - f)) {
260 endptr = nptr;
261 retval = -EINVAL;
262 goto out;
263 } else {
264 /* Extract into a 64-bit fixed-point fraction. */
265 valf = (uint64_t)(fraction * 0x1p64);
266 }
267 }
268 c = *endptr;
269 mul = suffix_mul(c, unit);
270 if (mul > 0) {
271 endptr++;
272 } else {
273 mul = suffix_mul(default_suffix, unit);
274 assert(mul > 0);
275 }
276 if (mul == 1) {
277 /* When a fraction is present, a scale is required. */
278 if (valf != 0) {
279 endptr = nptr;
280 retval = -EINVAL;
281 goto out;
282 }
283 } else {
284 uint64_t valh, tmp;
285
286 /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */
287 mulu64(&val, &valh, val, mul);
288 mulu64(&valf, &tmp, valf, mul);
289 val += tmp;
290 valh += val < tmp;
291
292 /* Round 0.5 upward. */
293 tmp = valf >> 63;
294 val += tmp;
295 valh += val < tmp;
296
297 /* Report overflow. */
298 if (valh != 0) {
299 retval = -ERANGE;
300 goto out;
301 }
302 }
303
304 retval = 0;
305
306 out:
307 if (end) {
308 *end = endptr;
309 } else if (*endptr) {
310 retval = -EINVAL;
311 }
312 if (retval == 0) {
313 *result = val;
314 }
315
316 return retval;
317 }
318
319 int qemu_strtosz(const char *nptr, const char **end, uint64_t *result)
320 {
321 return do_strtosz(nptr, end, 'B', 1024, result);
322 }
323
324 int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result)
325 {
326 return do_strtosz(nptr, end, 'M', 1024, result);
327 }
328
329 int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result)
330 {
331 return do_strtosz(nptr, end, 'B', 1000, result);
332 }
333
334 /**
335 * Helper function for error checking after strtol() and the like
336 */
337 static int check_strtox_error(const char *nptr, char *ep,
338 const char **endptr, bool check_zero,
339 int libc_errno)
340 {
341 assert(ep >= nptr);
342
343 /* Windows has a bug in that it fails to parse 0 from "0x" in base 16 */
344 if (check_zero && ep == nptr && libc_errno == 0) {
345 char *tmp;
346
347 errno = 0;
348 if (strtol(nptr, &tmp, 10) == 0 && errno == 0 &&
349 (*tmp == 'x' || *tmp == 'X')) {
350 ep = tmp;
351 }
352 }
353
354 if (endptr) {
355 *endptr = ep;
356 }
357
358 /* Turn "no conversion" into an error */
359 if (libc_errno == 0 && ep == nptr) {
360 return -EINVAL;
361 }
362
363 /* Fail when we're expected to consume the string, but didn't */
364 if (!endptr && *ep) {
365 return -EINVAL;
366 }
367
368 return -libc_errno;
369 }
370
371 /**
372 * Convert string @nptr to an integer, and store it in @result.
373 *
374 * This is a wrapper around strtol() that is harder to misuse.
375 * Semantics of @nptr, @endptr, @base match strtol() with differences
376 * noted below.
377 *
378 * @nptr may be null, and no conversion is performed then.
379 *
380 * If no conversion is performed, store @nptr in *@endptr and return
381 * -EINVAL.
382 *
383 * If @endptr is null, and the string isn't fully converted, return
384 * -EINVAL. This is the case when the pointer that would be stored in
385 * a non-null @endptr points to a character other than '\0'.
386 *
387 * If the conversion overflows @result, store INT_MAX in @result,
388 * and return -ERANGE.
389 *
390 * If the conversion underflows @result, store INT_MIN in @result,
391 * and return -ERANGE.
392 *
393 * Else store the converted value in @result, and return zero.
394 *
395 * This matches the behavior of strtol() on 32-bit platforms, even on
396 * platforms where long is 64-bits.
397 */
398 int qemu_strtoi(const char *nptr, const char **endptr, int base,
399 int *result)
400 {
401 char *ep;
402 long long lresult;
403
404 assert((unsigned) base <= 36 && base != 1);
405 if (!nptr) {
406 if (endptr) {
407 *endptr = nptr;
408 }
409 return -EINVAL;
410 }
411
412 errno = 0;
413 lresult = strtoll(nptr, &ep, base);
414 if (lresult < INT_MIN) {
415 *result = INT_MIN;
416 errno = ERANGE;
417 } else if (lresult > INT_MAX) {
418 *result = INT_MAX;
419 errno = ERANGE;
420 } else {
421 *result = lresult;
422 }
423 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno);
424 }
425
426 /**
427 * Convert string @nptr to an unsigned integer, and store it in @result.
428 *
429 * This is a wrapper around strtoul() that is harder to misuse.
430 * Semantics of @nptr, @endptr, @base match strtoul() with differences
431 * noted below.
432 *
433 * @nptr may be null, and no conversion is performed then.
434 *
435 * If no conversion is performed, store @nptr in *@endptr and return
436 * -EINVAL.
437 *
438 * If @endptr is null, and the string isn't fully converted, return
439 * -EINVAL. This is the case when the pointer that would be stored in
440 * a non-null @endptr points to a character other than '\0'.
441 *
442 * If the conversion overflows @result, store UINT_MAX in @result,
443 * and return -ERANGE.
444 *
445 * Else store the converted value in @result, and return zero.
446 *
447 * Note that a number with a leading minus sign gets converted without
448 * the minus sign, checked for overflow (see above), then negated (in
449 * @result's type). This matches the behavior of strtoul() on 32-bit
450 * platforms, even on platforms where long is 64-bits.
451 */
452 int qemu_strtoui(const char *nptr, const char **endptr, int base,
453 unsigned int *result)
454 {
455 char *ep;
456 unsigned long long lresult;
457 bool neg;
458
459 assert((unsigned) base <= 36 && base != 1);
460 if (!nptr) {
461 if (endptr) {
462 *endptr = nptr;
463 }
464 return -EINVAL;
465 }
466
467 errno = 0;
468 lresult = strtoull(nptr, &ep, base);
469
470 /* Windows returns 1 for negative out-of-range values. */
471 if (errno == ERANGE) {
472 *result = -1;
473 } else {
474 /*
475 * Note that platforms with 32-bit strtoul only accept input
476 * in the range [-4294967295, 4294967295]; but we used 64-bit
477 * strtoull which wraps -18446744073709551615 to 1 instead of
478 * declaring overflow. So we must check if '-' was parsed,
479 * and if so, undo the negation before doing our bounds check.
480 */
481 neg = memchr(nptr, '-', ep - nptr) != NULL;
482 if (neg) {
483 lresult = -lresult;
484 }
485 if (lresult > UINT_MAX) {
486 *result = UINT_MAX;
487 errno = ERANGE;
488 } else {
489 *result = neg ? -lresult : lresult;
490 }
491 }
492 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno);
493 }
494
495 /**
496 * Convert string @nptr to a long integer, and store it in @result.
497 *
498 * This is a wrapper around strtol() that is harder to misuse.
499 * Semantics of @nptr, @endptr, @base match strtol() with differences
500 * noted below.
501 *
502 * @nptr may be null, and no conversion is performed then.
503 *
504 * If no conversion is performed, store @nptr in *@endptr and return
505 * -EINVAL.
506 *
507 * If @endptr is null, and the string isn't fully converted, return
508 * -EINVAL. This is the case when the pointer that would be stored in
509 * a non-null @endptr points to a character other than '\0'.
510 *
511 * If the conversion overflows @result, store LONG_MAX in @result,
512 * and return -ERANGE.
513 *
514 * If the conversion underflows @result, store LONG_MIN in @result,
515 * and return -ERANGE.
516 *
517 * Else store the converted value in @result, and return zero.
518 */
519 int qemu_strtol(const char *nptr, const char **endptr, int base,
520 long *result)
521 {
522 char *ep;
523
524 assert((unsigned) base <= 36 && base != 1);
525 if (!nptr) {
526 if (endptr) {
527 *endptr = nptr;
528 }
529 return -EINVAL;
530 }
531
532 errno = 0;
533 *result = strtol(nptr, &ep, base);
534 return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
535 }
536
537 /**
538 * Convert string @nptr to an unsigned long, and store it in @result.
539 *
540 * This is a wrapper around strtoul() that is harder to misuse.
541 * Semantics of @nptr, @endptr, @base match strtoul() with differences
542 * noted below.
543 *
544 * @nptr may be null, and no conversion is performed then.
545 *
546 * If no conversion is performed, store @nptr in *@endptr and return
547 * -EINVAL.
548 *
549 * If @endptr is null, and the string isn't fully converted, return
550 * -EINVAL. This is the case when the pointer that would be stored in
551 * a non-null @endptr points to a character other than '\0'.
552 *
553 * If the conversion overflows @result, store ULONG_MAX in @result,
554 * and return -ERANGE.
555 *
556 * Else store the converted value in @result, and return zero.
557 *
558 * Note that a number with a leading minus sign gets converted without
559 * the minus sign, checked for overflow (see above), then negated (in
560 * @result's type). This is exactly how strtoul() works.
561 */
562 int qemu_strtoul(const char *nptr, const char **endptr, int base,
563 unsigned long *result)
564 {
565 char *ep;
566
567 assert((unsigned) base <= 36 && base != 1);
568 if (!nptr) {
569 if (endptr) {
570 *endptr = nptr;
571 }
572 return -EINVAL;
573 }
574
575 errno = 0;
576 *result = strtoul(nptr, &ep, base);
577 /* Windows returns 1 for negative out-of-range values. */
578 if (errno == ERANGE) {
579 *result = -1;
580 }
581 return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
582 }
583
584 /**
585 * Convert string @nptr to an int64_t.
586 *
587 * Works like qemu_strtol(), except it stores INT64_MAX on overflow,
588 * and INT64_MIN on underflow.
589 */
590 int qemu_strtoi64(const char *nptr, const char **endptr, int base,
591 int64_t *result)
592 {
593 char *ep;
594
595 assert((unsigned) base <= 36 && base != 1);
596 if (!nptr) {
597 if (endptr) {
598 *endptr = nptr;
599 }
600 return -EINVAL;
601 }
602
603 /* This assumes int64_t is long long TODO relax */
604 QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long));
605 errno = 0;
606 *result = strtoll(nptr, &ep, base);
607 return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
608 }
609
610 /**
611 * Convert string @nptr to an uint64_t.
612 *
613 * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow.
614 * (If you want to prohibit negative numbers that wrap around to
615 * positive, use parse_uint()).
616 */
617 int qemu_strtou64(const char *nptr, const char **endptr, int base,
618 uint64_t *result)
619 {
620 char *ep;
621
622 assert((unsigned) base <= 36 && base != 1);
623 if (!nptr) {
624 if (endptr) {
625 *endptr = nptr;
626 }
627 return -EINVAL;
628 }
629
630 /* This assumes uint64_t is unsigned long long TODO relax */
631 QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long));
632 errno = 0;
633 *result = strtoull(nptr, &ep, base);
634 /* Windows returns 1 for negative out-of-range values. */
635 if (errno == ERANGE) {
636 *result = -1;
637 }
638 return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
639 }
640
641 /**
642 * Convert string @nptr to a double.
643 *
644 * This is a wrapper around strtod() that is harder to misuse.
645 * Semantics of @nptr and @endptr match strtod() with differences
646 * noted below.
647 *
648 * @nptr may be null, and no conversion is performed then.
649 *
650 * If no conversion is performed, store @nptr in *@endptr and return
651 * -EINVAL.
652 *
653 * If @endptr is null, and the string isn't fully converted, return
654 * -EINVAL. This is the case when the pointer that would be stored in
655 * a non-null @endptr points to a character other than '\0'.
656 *
657 * If the conversion overflows, store +/-HUGE_VAL in @result, depending
658 * on the sign, and return -ERANGE.
659 *
660 * If the conversion underflows, store +/-0.0 in @result, depending on the
661 * sign, and return -ERANGE.
662 *
663 * Else store the converted value in @result, and return zero.
664 */
665 int qemu_strtod(const char *nptr, const char **endptr, double *result)
666 {
667 char *ep;
668
669 if (!nptr) {
670 if (endptr) {
671 *endptr = nptr;
672 }
673 return -EINVAL;
674 }
675
676 errno = 0;
677 *result = strtod(nptr, &ep);
678 return check_strtox_error(nptr, ep, endptr, false, errno);
679 }
680
681 /**
682 * Convert string @nptr to a finite double.
683 *
684 * Works like qemu_strtod(), except that "NaN" and "inf" are rejected
685 * with -EINVAL and no conversion is performed.
686 */
687 int qemu_strtod_finite(const char *nptr, const char **endptr, double *result)
688 {
689 double tmp;
690 int ret;
691
692 ret = qemu_strtod(nptr, endptr, &tmp);
693 if (!ret && !isfinite(tmp)) {
694 if (endptr) {
695 *endptr = nptr;
696 }
697 ret = -EINVAL;
698 }
699
700 if (ret != -EINVAL) {
701 *result = tmp;
702 }
703 return ret;
704 }
705
706 /**
707 * Searches for the first occurrence of 'c' in 's', and returns a pointer
708 * to the trailing null byte if none was found.
709 */
710 #ifndef HAVE_STRCHRNUL
711 const char *qemu_strchrnul(const char *s, int c)
712 {
713 const char *e = strchr(s, c);
714 if (!e) {
715 e = s + strlen(s);
716 }
717 return e;
718 }
719 #endif
720
721 /**
722 * parse_uint:
723 *
724 * @s: String to parse
725 * @endptr: Destination for pointer to first character not consumed, must
726 * not be %NULL
727 * @base: integer base, between 2 and 36 inclusive, or 0
728 * @value: Destination for parsed integer value
729 *
730 * Parse unsigned integer
731 *
732 * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional
733 * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits.
734 *
735 * If @s is null, or @s doesn't start with an integer in the syntax
736 * above, set *@value to 0, *@endptr to @s, and return -EINVAL.
737 *
738 * Set *@endptr to point right beyond the parsed integer (even if the integer
739 * overflows or is negative, all digits will be parsed and *@endptr will
740 * point right beyond them).
741 *
742 * If the integer is negative, set *@value to 0, and return -ERANGE.
743 * (If you want to allow negative numbers that wrap around within
744 * bounds, use qemu_strtou64()).
745 *
746 * If the integer overflows unsigned long long, set *@value to
747 * ULLONG_MAX, and return -ERANGE.
748 *
749 * Else, set *@value to the parsed integer, and return 0.
750 */
751 int parse_uint(const char *s, const char **endptr, int base, uint64_t *value)
752 {
753 int r = 0;
754 char *endp = (char *)s;
755 unsigned long long val = 0;
756
757 assert((unsigned) base <= 36 && base != 1);
758 if (!s) {
759 r = -EINVAL;
760 goto out;
761 }
762
763 errno = 0;
764 val = strtoull(s, &endp, base);
765 if (errno) {
766 r = -errno;
767 goto out;
768 }
769
770 if (endp == s) {
771 r = -EINVAL;
772 goto out;
773 }
774
775 /* make sure we reject negative numbers: */
776 while (qemu_isspace(*s)) {
777 s++;
778 }
779 if (*s == '-') {
780 val = 0;
781 r = -ERANGE;
782 goto out;
783 }
784
785 out:
786 *value = val;
787 *endptr = endp;
788 return r;
789 }
790
791 /**
792 * parse_uint_full:
793 *
794 * @s: String to parse
795 * @base: integer base, between 2 and 36 inclusive, or 0
796 * @value: Destination for parsed integer value
797 *
798 * Parse unsigned integer from entire string
799 *
800 * Have the same behavior of parse_uint(), but with an additional
801 * check for additional data after the parsed number. If extra
802 * characters are present after a non-overflowing parsed number, the
803 * function will return -EINVAL, and *@v will be set to 0.
804 */
805 int parse_uint_full(const char *s, int base, uint64_t *value)
806 {
807 const char *endp;
808 int r;
809
810 r = parse_uint(s, &endp, base, value);
811 if (r < 0) {
812 return r;
813 }
814 if (*endp) {
815 *value = 0;
816 return -EINVAL;
817 }
818
819 return 0;
820 }
821
822 int qemu_parse_fd(const char *param)
823 {
824 long fd;
825 char *endptr;
826
827 errno = 0;
828 fd = strtol(param, &endptr, 10);
829 if (param == endptr /* no conversion performed */ ||
830 errno != 0 /* not representable as long; possibly others */ ||
831 *endptr != '\0' /* final string not empty */ ||
832 fd < 0 /* invalid as file descriptor */ ||
833 fd > INT_MAX /* not representable as int */) {
834 return -1;
835 }
836 return fd;
837 }
838
839 /*
840 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128)
841 * Input is limited to 14-bit numbers
842 */
843 int uleb128_encode_small(uint8_t *out, uint32_t n)
844 {
845 g_assert(n <= 0x3fff);
846 if (n < 0x80) {
847 *out = n;
848 return 1;
849 } else {
850 *out++ = (n & 0x7f) | 0x80;
851 *out = n >> 7;
852 return 2;
853 }
854 }
855
856 int uleb128_decode_small(const uint8_t *in, uint32_t *n)
857 {
858 if (!(*in & 0x80)) {
859 *n = *in;
860 return 1;
861 } else {
862 *n = *in++ & 0x7f;
863 /* we exceed 14 bit number */
864 if (*in & 0x80) {
865 return -1;
866 }
867 *n |= *in << 7;
868 return 2;
869 }
870 }
871
872 /*
873 * helper to parse debug environment variables
874 */
875 int parse_debug_env(const char *name, int max, int initial)
876 {
877 char *debug_env = getenv(name);
878 char *inv = NULL;
879 long debug;
880
881 if (!debug_env) {
882 return initial;
883 }
884 errno = 0;
885 debug = strtol(debug_env, &inv, 10);
886 if (inv == debug_env) {
887 return initial;
888 }
889 if (debug < 0 || debug > max || errno != 0) {
890 warn_report("%s not in [0, %d]", name, max);
891 return initial;
892 }
893 return debug;
894 }
895
896 const char *si_prefix(unsigned int exp10)
897 {
898 static const char *prefixes[] = {
899 "a", "f", "p", "n", "u", "m", "", "K", "M", "G", "T", "P", "E"
900 };
901
902 exp10 += 18;
903 assert(exp10 % 3 == 0 && exp10 / 3 < ARRAY_SIZE(prefixes));
904 return prefixes[exp10 / 3];
905 }
906
907 const char *iec_binary_prefix(unsigned int exp2)
908 {
909 static const char *prefixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" };
910
911 assert(exp2 % 10 == 0 && exp2 / 10 < ARRAY_SIZE(prefixes));
912 return prefixes[exp2 / 10];
913 }
914
915 /*
916 * Return human readable string for size @val.
917 * @val can be anything that uint64_t allows (no more than "16 EiB").
918 * Use IEC binary units like KiB, MiB, and so forth.
919 * Caller is responsible for passing it to g_free().
920 */
921 char *size_to_str(uint64_t val)
922 {
923 uint64_t div;
924 int i;
925
926 /*
927 * The exponent (returned in i) minus one gives us
928 * floor(log2(val * 1024 / 1000). The correction makes us
929 * switch to the higher power when the integer part is >= 1000.
930 * (see e41b509d68afb1f for more info)
931 */
932 frexp(val / (1000.0 / 1024.0), &i);
933 i = (i - 1) / 10 * 10;
934 div = 1ULL << i;
935
936 return g_strdup_printf("%0.3g %sB", (double)val / div, iec_binary_prefix(i));
937 }
938
939 char *freq_to_str(uint64_t freq_hz)
940 {
941 double freq = freq_hz;
942 size_t exp10 = 0;
943
944 while (freq >= 1000.0) {
945 freq /= 1000.0;
946 exp10 += 3;
947 }
948
949 return g_strdup_printf("%0.3g %sHz", freq, si_prefix(exp10));
950 }
951
952 int qemu_pstrcmp0(const char **str1, const char **str2)
953 {
954 return g_strcmp0(*str1, *str2);
955 }
956
957 static inline bool starts_with_prefix(const char *dir)
958 {
959 size_t prefix_len = strlen(CONFIG_PREFIX);
960 return !memcmp(dir, CONFIG_PREFIX, prefix_len) &&
961 (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len]));
962 }
963
964 /* Return the next path component in dir, and store its length in *p_len. */
965 static inline const char *next_component(const char *dir, int *p_len)
966 {
967 int len;
968 while ((*dir && G_IS_DIR_SEPARATOR(*dir)) ||
969 (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) {
970 dir++;
971 }
972 len = 0;
973 while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) {
974 len++;
975 }
976 *p_len = len;
977 return dir;
978 }
979
980 static const char *exec_dir;
981
982 void qemu_init_exec_dir(const char *argv0)
983 {
984 #ifdef G_OS_WIN32
985 char *p;
986 char buf[MAX_PATH];
987 DWORD len;
988
989 if (exec_dir) {
990 return;
991 }
992
993 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
994 if (len == 0) {
995 return;
996 }
997
998 buf[len] = 0;
999 p = buf + len - 1;
1000 while (p != buf && *p != '\\') {
1001 p--;
1002 }
1003 *p = 0;
1004 if (access(buf, R_OK) == 0) {
1005 exec_dir = g_strdup(buf);
1006 } else {
1007 exec_dir = CONFIG_BINDIR;
1008 }
1009 #else
1010 char *p = NULL;
1011 char buf[PATH_MAX];
1012
1013 if (exec_dir) {
1014 return;
1015 }
1016
1017 #if defined(__linux__)
1018 {
1019 int len;
1020 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
1021 if (len > 0) {
1022 buf[len] = 0;
1023 p = buf;
1024 }
1025 }
1026 #elif defined(__FreeBSD__) \
1027 || (defined(__NetBSD__) && defined(KERN_PROC_PATHNAME))
1028 {
1029 #if defined(__FreeBSD__)
1030 static int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1};
1031 #else
1032 static int mib[4] = {CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME};
1033 #endif
1034 size_t len = sizeof(buf) - 1;
1035
1036 *buf = '\0';
1037 if (!sysctl(mib, ARRAY_SIZE(mib), buf, &len, NULL, 0) &&
1038 *buf) {
1039 buf[sizeof(buf) - 1] = '\0';
1040 p = buf;
1041 }
1042 }
1043 #elif defined(__APPLE__)
1044 {
1045 char fpath[PATH_MAX];
1046 uint32_t len = sizeof(fpath);
1047 if (_NSGetExecutablePath(fpath, &len) == 0) {
1048 p = realpath(fpath, buf);
1049 if (!p) {
1050 return;
1051 }
1052 }
1053 }
1054 #elif defined(__HAIKU__)
1055 {
1056 image_info ii;
1057 int32_t c = 0;
1058
1059 *buf = '\0';
1060 while (get_next_image_info(0, &c, &ii) == B_OK) {
1061 if (ii.type == B_APP_IMAGE) {
1062 strncpy(buf, ii.name, sizeof(buf));
1063 buf[sizeof(buf) - 1] = 0;
1064 p = buf;
1065 break;
1066 }
1067 }
1068 }
1069 #endif
1070 /* If we don't have any way of figuring out the actual executable
1071 location then try argv[0]. */
1072 if (!p && argv0) {
1073 p = realpath(argv0, buf);
1074 }
1075 if (p) {
1076 exec_dir = g_path_get_dirname(p);
1077 } else {
1078 exec_dir = CONFIG_BINDIR;
1079 }
1080 #endif
1081 }
1082
1083 const char *qemu_get_exec_dir(void)
1084 {
1085 return exec_dir;
1086 }
1087
1088 char *get_relocated_path(const char *dir)
1089 {
1090 size_t prefix_len = strlen(CONFIG_PREFIX);
1091 const char *bindir = CONFIG_BINDIR;
1092 const char *exec_dir = qemu_get_exec_dir();
1093 GString *result;
1094 int len_dir, len_bindir;
1095
1096 /* Fail if qemu_init_exec_dir was not called. */
1097 assert(exec_dir[0]);
1098
1099 result = g_string_new(exec_dir);
1100 g_string_append(result, "/qemu-bundle");
1101 if (access(result->str, R_OK) == 0) {
1102 #ifdef G_OS_WIN32
1103 size_t size = mbsrtowcs(NULL, &dir, 0, &(mbstate_t){0}) + 1;
1104 PWSTR wdir = g_new(WCHAR, size);
1105 mbsrtowcs(wdir, &dir, size, &(mbstate_t){0});
1106
1107 PCWSTR wdir_skipped_root;
1108 PathCchSkipRoot(wdir, &wdir_skipped_root);
1109
1110 size = wcsrtombs(NULL, &wdir_skipped_root, 0, &(mbstate_t){0});
1111 char *cursor = result->str + result->len;
1112 g_string_set_size(result, result->len + size);
1113 wcsrtombs(cursor, &wdir_skipped_root, size + 1, &(mbstate_t){0});
1114 g_free(wdir);
1115 #else
1116 g_string_append(result, dir);
1117 #endif
1118 } else if (!starts_with_prefix(dir) || !starts_with_prefix(bindir)) {
1119 g_string_assign(result, dir);
1120 } else {
1121 g_string_assign(result, exec_dir);
1122
1123 /* Advance over common components. */
1124 len_dir = len_bindir = prefix_len;
1125 do {
1126 dir += len_dir;
1127 bindir += len_bindir;
1128 dir = next_component(dir, &len_dir);
1129 bindir = next_component(bindir, &len_bindir);
1130 } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir));
1131
1132 /* Ascend from bindir to the common prefix with dir. */
1133 while (len_bindir) {
1134 bindir += len_bindir;
1135 g_string_append(result, "/..");
1136 bindir = next_component(bindir, &len_bindir);
1137 }
1138
1139 if (*dir) {
1140 assert(G_IS_DIR_SEPARATOR(dir[-1]));
1141 g_string_append(result, dir - 1);
1142 }
1143 }
1144
1145 return g_string_free(result, false);
1146 }